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Abstract

We extend the construction of the T-duality symmetry for the 2d compact boson to arbi-
trary values of the radius by including topological manipulations such as gauging con-
tinuous symmetries with flat connections. We show that the entire circle branch of the
c = 1 conformal manifold can be generated using these manipulations, resulting in a
non-invertible T-duality symmetry when the gauging sends the radius to its inverse value.
Using the recently proposed symmetry TFT describing continuous global symmetries of
the boundary theory, we identify the topological operator corresponding to these new
T-duality symmetries as an open condensation defect of the bulk theory, constructed
by (higher) gauging an R subgroup of the bulk global symmetries. Notably, when the
boundary theory is the compact boson with a rational square radius, this operator re-
duces to the familiar T-duality defect described by a Tambara-Yamagami fusion category.
This construction thus naturally includes all possible discrete T-duality symmetries of the
theory in a unified way.
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1 Introduction

The work of [1] has put forward that symmetries are implemented in a relativistic quantum
field theory (QFT) by topological defects. In a way, this tells us that symmetries of a QFT are
related to its topological sector. In turn, the latter is naturally encoded in a topological QFT
(TQFT), actually in one dimension higher as in the symmetry TQFT (SymTFT) paradigm [2–7].
This raises the question of what type of TQFTs one should be dealing with. A basic remark is
that many QFTs have continuous symmetries, and hence a continuous infinity of topological
defects. While most examples of SymTFTs are based on TQFTs with a finite number of defects,1

it is clear that a generalization to TQFTs with an infinite number of defects is both needed and
natural.

In the recent works [25–27] it was realized that a set of such TQFTs consists in BF theories
with gauge connections taking values in non-compact gauge groups.2 Since we will stick to
abelian symmetries, the gauge group of interest will be R. We will usually refer to these theo-
ries as non-compact TQFTs. In this context, it is natural to ask whether, within this framework,
one can identify and describe more exotic types of generalized symmetries, whose elements are
labeled by continuous rather than discrete parameters. Such symmetries would extend beyond
the conventional framework of fusion categories, which typically assumes a finite number of
simple objects.3

As a paradigmatic case of a QFT with continuous symmetries, in this paper we consider the
theory of a compact boson in 2d. This is actually a CFT, indeed probably the most studied one
(see e.g. [37]), while also exhibiting a range of subtle features. This theory has two U(1) (0-
form) symmetries, usually labeled as ‘momentum’ and ‘winding’. Its SymTFT was described
in [25] (see also [38, 39]), and is simply a 3d BF theory with two gauge fields in R. An
interesting observation is that the radius of the compact scalar can naturally be encoded in the
topological boundary conditions of the symTFT [25,38]. Since the TQFT is non-compact, there
is indeed a continuous choice of boundary conditions. As a consequence, a rescaling of the
radius can be considered as a change in the topological boundary conditions of the SymTFT. In
the SymTFT dictionary, a change in the topological boundary conditions is usually interpreted
as a topological manipulation in the physical theory. In the following, we show that this is
indeed the case.

A key concept that goes hand in hand with non-compact TQFTs is the one of gauging a
continuous group with flat connections. In this approach we effectively gauge the symmetry,
ensuring that the field strength of the gauge field remains identically zero, and we perform

1In this context, the SymTFT is limited to describing only the finite symmetries of the boundary QFT. However, it
has proven to be highly effective in formalizing a wide range of phenomena, including the study of non-invertible
symmetries (see e.g. [8–12]) together with the characterization of their anomalies (e.g. [13–18]), the study of
gapped (e.g. [19, 20]) and gapless (e.g. [21, 22]) phases with categorical symmetries, and the study of solitonic
particles and their scattering properties (e.g. [23,24]).

2See [28] for an alternative proposal to describe continuous symmetry from the perspective of a bulk non-
topological theory.

3For some examples of constructions involving continuous non-invertible symmetries, see [29–36].
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the path integral only over flat connections. For instance, given the compact scalar, we can
gauge its winding symmetry. This operation removes all the winding states, and renders the
vertex operators with any non-quantized momentum genuine. Namely, the scalar is decom-
pactified. Such a theory has now a non-compact R momentum 0-form symmetry. In a second
step, we can further gauge a Z subgroup of R. This new operation restores a quantization of
the momentum of the vertex operators, with a new radius determined by the periodicity in
choosing the emedding Z ⊂ R. Notice that we are generating the entire circle branch of the
c = 1 conformal manifold with topological manipulations. If we also include the gauging of
charge conjugation, we actually generate the entire connected component of the conformal
manifold.

Seeing an arbitrary rescaling of the radius as a topological manipulation, we are now in
a position to define symmetry defects that combine T-duality of the compact boson with a
rescaling from R to 1/R. The general procedure to construct topological duality lines for this
type of theories is to perform the topological manipulation on half-space [40, 41]. Since the
two sides are quantum mechanically the same theory, the interface separating the gauged
and ungauged theory is actually a topological operator of the theory, thus generating a global
symmetry. The existence of such duality defects, which are non-invertible outside the self-dual
radius, has been recognized for a long time in theories with a rational squared radius [42]. In
these cases, the conformal field theory (CFT) is rational.4 For these specific radii, the definition
of the duality line involves gauging only a finite ZN subgroup of U(1)× U(1) forming the so-
called Tambara-Yamagami fusion category [45]. We argue that using non-compact TQFTs, we
can extend this understanding to any value of the radius. Following the same strategy as in the
rational case, we show that the non-invertible symmetry defects of the compact scalar theory
arise in the SymTFT as condensation defects [46, 47] of a specific R subgroup of the R × R
global symmetry.5 In other words, we need to higher gauge on a codimension one surface
a non-compact, continuous symmetry, with flat connections. We show that, similarly to their
discrete counterpart [8,9], these defects are invertible as long as they are closed, whereas when
open, their boundary gives rise to a non-invertible defect, the sought-for T-duality symmetry
defect of the boundary theory.6 We show that, by varying the topological boundary condition,
the latter condensate of the non-compact TQFT nicely reduces to all possible duality defects
of the boundary CFT.

The paper is structured as follows. In Section 2 we discuss the SymTFT for the 2d compact
boson, emphasizing the boundary conditions at the topological and at the physical boundaries.
In Section 3 we show how changing the radius is obtained by performing two successive gaug-
ings, from a 2d perspective, and discuss how the non-invertible duality symmetry acts on vertex
operators for generic radius. In Section 4 we build the condensation defects in the SymTFT, by
explicitly taking continuous sums (integrals, that is) of line defects. We then specialize to the
T-duality symmetry defect and check that it acts as expected when open. In Section 5 we give
an analogous treatment for the known case of a SymTFT based on the usual compact TQFT,
namely for the scalar at rational radius. The purpose is twofold: to demonstrate our approach
in a case where the TQFT is finite, and also to discuss how the general case in the continuous
case reduces to the known case when the radius takes rational values. In the Appendices, we
present both some background material, and further details of our construction.

4However, categorical symmetries are not exclusive to rational CFTs. For examples of non-rational CFTs with
categorical symmetries, see e.g. [42–44].

5For a previous discussion on the interpretation of T-duality (and its non-Abelian generalization) from a SymTFT
perspective, see [48].

6To make those twist defects genuine, one should gauge the invertible symmetry generated by the closed con-
densation defects in the bulk. The gauged SymTFT now enjoys genuine topological operators describing the bulk
dual of the T-duality defect [8,9]. However the information we will need in the present work is nicely encoded in
the ungauged SymTFT, by looking at the condensation defects and their boundaries.
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2 The symmetry TFT

In this section we review basics of three dimensional BF theory as a SymTFT for 2-dimensional
theories with U(1)×U(1) global symmetries. In particular, as proposed in [25,26], these sym-
metries are captured by a 3d TFT constructed out of two R-valued 1-form gauge connections
b± (see Appendix A for some remarks on the distinctions between R- and U(1)-valued gauge
fields) with action

S =
iN
2π

∫

X3

b+d b− , (1)

and gauge transformations
b±→ b± + dλ± . (2)

Since b± are R-valued gauge fields, we can perform a field redefinition b± → αb± for any
α ∈ R, without spoiling any quantization conditions. Therefore, we can set N = 1 without any
loss of generality. This is a crucial difference with respect to the case in which B± are U(1)-
valued gauge fields, where N is quantized and the theory is quantum mechanically equivalent
to a ZN gauge theory [49]. In the following, we will highlight some of the differences between
these two setups. Throughout this work, we will conventionally denote with capital letters
U(1)-valued gauge fields while with lowercase letters we denote R-valued gauge fields.

The equations of motion imply that d b± = 0, thus the only non-trivial gauge invariant
observables are line operators constructed out of the holonomies of the gauge fields

Ux(γ) = exp

�

ix

∫

γ

b+
�

, Vy(γ) = exp

�

iy

∫

γ

b−
�

, (3)

where the dependence on γ is purely topological and x , y are real parameters. Notice that this
TQFT enjoys an infinite set of line operators continuously parametrized by x and y . We refer
to these as non-compact TQFTs, owing to the non-compact spectrum of operators.

From the equations of motion we can derive braiding relations between line operators:

〈Ux(γ)Vy(γ
′)〉= exp
�

2πi x y Link(γ,γ′)
�

. (4)

Thus the R-valued BF theory has an R×R 1-form symmetry generated by Ux , Vy with a non-
trivial ’t Hooft anomaly, captured by the braiding (4).7

When placed in a 3d manifold with boundaries, we need to specify boundary conditions
for b±. The manifold we will consider is a slab X3 = Σ2× I , where Σ2 is a 2d manifold and I is
an interval, so that ∂ X3 = Σ2 ∪Σ2.8 On one of the two boundaries, Σ2, we impose dynamical
boundary conditions while on the other one, Σ2, we impose topological boundary conditions
that specify the symmetry content of the theory.

2.1 Topological boundary conditions

Let us start by analyzing the full set of topological boundary conditions. We take the approach
of coupling the theory to topological edge modes living on the boundary, which cancel the
gauge variation coming from the bulk theory. Equivalently, topological boundary conditions of
3d Abelian TQFTs are in one-to-one correspondence with Lagrangian subgroups (see e.g. [51]),
i.e. maximal sets of bulk line operators that have trivial braiding among themselves.

7This anomaly should not be confused with a ’t Hooft anomaly of the boundary QFT. The latter is naturally
embedded in the SymTFT framework as the absence of a topological boundary condition corresponding to the
global variant with the gauged symmetry [13,16,17,50].

8We denote Σ2 the surface with opposite orientation with respect to Σ2. We can also write Σ2 = −Σ2.
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Performing a gauge transformation of the action (1), and focusing on the boundary at Σ2,
we get

δS =
i

2π

∫

Σ2

λ+d b− . (5)

To ensure gauge invariance, we can add topological boundary edge modes. The bulk/boundary
system is now described by the action

S3d/2d = S +
iR
2π

∫

Σ2

Φ d b− , (6)

where Φ is a compact scalar (i.e. U(1)-valued such that Φ∼ Φ+2π) subject to the linear gauge
transformation

Φ→ Φ− R−1λ+ , (7)

and R is an arbitrary real constant parametrizing a continuous family of boundary conditions.
The equations of motion on Σ2 and the sum over fluxes

∫

γ⊂Σ2
dΦ ∈ 2πZ impose

b+|Σ2
= −RdΦ ,

∫

γ⊂Σ2

b− ∈ 2πR−1Z . (8)

Thus, they are boundary conditions trivializing the lines U 1
R n, VRw with n, w ∈ Z. This set of

lines is a Lagrangian algebra of the bulk TQFT [25, 38]. By varying R, one generates all such
Lagrangian algebras. The nontrivial boundary lines are now

Ux(γ) , Vy(γ) , x ∼ x +
1
R

, y ∼ y + R . (9)

Therefore, they generate a U(1)×U(1) 0-form global symmetry of the boundary theory. Notice
that the limits R→ 0,∞ correspond to Dirichlet boundary conditions for b± respectively, such
that the boundary symmetry is R.

2.2 Physical boundary and slab compactification

We now want to discuss the non-topological boundary conditions imposed at the other bound-
ary Σ2 of the 3d slab manifold X3. Generically, this boundary can host any 2d QFT with a
U(1)× U(1) 0-form global symmetry. One of the simplest 2d theories of this kind is the c = 1
compact boson, which is known to arise by imposing conformal boundary conditions [52]9

b−|Σ2
= i ⋆2 b+|Σ2

. (10)

These boundary conditions10 can be implemented by the following bulk/boundary action

S2d/3d = S +
1

4π

∫

Σ2

b− ∧ ⋆2 b− . (11)

Note that we have used the leftover rescaling b±→ β∓1 b± (with β ∈ R) to fix the coefficient
of the boundary action to its most convenient value, hence eliminating an otherwise arbitrary
constant.

9Notice that the boundary conditions (10) do not depend on extra boundary edge modes. Thus the boundary
theory is completely determined by the bulk TQFT and its topological boundary condition. This idea was recently
studied in [38,39] and interpreted as a toy model of the holographic principle.

10The gauge transformations of b± have to be restricted at Σ2 in order to be compatible with the boundary
conditions.
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After setting the topological and physical boundary conditions, the symmetry TFT dictio-
nary should produce a well-defined theory with a given global symmetry. This is done by slab
compactification, i.e. by collapsing together the two boundaries, achieved by evaluating the
full action on-shell:

S2d/3d/2d =
iR
2π

∫

Σ2

dΦ ∧ b− +
1

4π

∫

Σ2

b− ∧ ⋆2 b− , (12)

where we have used the fact that Σ2 = −Σ2. Since the two boundaries have been superim-
posed, we can enforce the topological and conformal boundary conditions (8), (10) at the
same time, obtaining b− = −iR ⋆2 dΦ on Σ2. We finally get

S2d =
R2

4π

∫

Σ2

dΦ∧ ⋆2dΦ . (13)

This is exactly the action describing a compact boson with radius R.
We can interpret a shift in boundary conditions specified by R to ones specified by R′ as a

topological manipulation sending R to R′. When R′/R = q/p ∈ Q (with gcd(p, q) = 1), this is
the gauging of the subgroup Zp×Zq of the momentum and winding symmetry U(1)m×U(1)w.
For generic irrational R′/R, this shift is achieved by a two-step gauging procedure:

1. First we gauge U(1)w with flat connections. The gauged theory is the non-compact
boson, where all the winding modes are not gauge invariant. Notice that the U(1)m
symmetry gets extended by the Z quantum symmetry so that we get an R global sym-
metry.

2. We gauge a Z subgroup of the R symmetry, generated by shifts of period 2πR′. The
gauged theory is the compact boson at radius R′. The U(1)w symmetry emerges as the
quantum symmetry of the gauged Z symmetry, while U(1)m = R/Z. Notice that, due to
the non trivial exact sequence 1→ Z→ R→ U(1)→ 1, the two U(1) symmetries have
a mixed ’t Hooft anomaly [53].

Therefore combining 1. and 2. we effectively shift the radius from R to R′. Notice that when
R′ = q

p R, then 1.+ 2. is an alternative but equivalent route to the Zp × Zq ⊂ U(1)m × U(1)w
gauging. In Section 3 we describe this procedure in more detail, at the Lagrangian level.

Let us finally comment on the fact that there is a dual formulation of the bulk theory.
This dual formulation comes from interchanging the roles of b+ and b− in (1).11 All the
steps would go through similarly, introducing now an edge mode eΦ. Aiming to trivialize the
same lines U 1

R n, VRw, the roles of R and R−1 must also be interchanged, so that in particular

b− = −R−1deΦ on Σ2. Now enforcing (10), namely b+ = i⋆2 b− on Σ2, and performing the slab
compactification, one eventually finds the action for a scalar field eΦ of radius 1/R, i.e. the T-dual
theory of that in (13). Indeed, in this setting the relation (10) is equivalent to deΦ= iR2 ⋆2 dΦ.

3 Gauging and self-duality symmetries in the compact boson

One of the benefits of working with R valued gauge fields in the bulk SymTFT is that it allows
us to perform topological manipulations sending the radius R to any new R′. This is done via
the two-step gauging procedure introduced at the end of Section 2.2. This is in contrast to the
U(1) BF theory where we can only perform the discrete gaugings Zp × Zq ⊂ U(1)m × U(1)w.

11The two formulations differ by a boundary term.
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In this section, we will describe these gauging procedures from the path integral perspective
of the 2d theory of a compact boson Φ ∼ Φ + 2π, described by the action (13) and whose
(genuine) local operators are the vertex operators defined as

Vn,w(x) =: exp (inΦ(x))exp (iweΦ(x)) : , (14)

where n, w ∈ Z and eΦ is the dual scalar, describing the winding modes of the compact boson.
Let us first start with the more familiar case of gauging Zq ⊂ U(1)w. We perform gauging

in the path integral by adding a term to the action coupling a dynamical gauge field A∈ U(1)
to the conserved current ⋆J = i

2πdΦ:

SZq gauged =
R2

4π

∫

dΦ∧ ⋆dΦ+
i

2π

∫

dΦ∧ A−
iq
2π

∫

dΦ′ ∧ A . (15)

In the third term, the coupling to the scalar Φ′ ∈ U(1) ensures that A is quantum mechanically
equivalent to a Zq gauge field. That is to say, summing over the fluxes of Φ′,

∫

dΦ′ ∈ 2πZ,
imposes that

∫

A∈
2πZ

q
. (16)

Performing instead the path integral over A gives the delta function,

δ(dΦ= qdΦ′) , (17)

such that integrating over Φ imposes the above relation and we have the new theory

SZq gauged =
R2q2

4π

∫

dΦ′ ∧ ⋆dΦ′ , (18)

which is the compact boson at the new radius R′ = Rq. At the level of the local operators,
such a gauging tells us that now only the winding vertex operators with charges w = w′q are
genuine, and they can be written as eiw′eΦ′ . Likewise, it incorporates twisted sectors12 as the
momentum vertex operators with charges n= n′/q become genuine. They are indeed written
as ein′Φ′ .

Similarly, we can perform the discrete gauging Zp ⊂ U(1)m of the shift symmetry. To
do so, we add a term to the action with the gauge field A coupled to the conserved current
⋆J = R2

2π ⋆ dΦ:

SZp gauged =
R2

4π

∫

(dΦ− A)∧ ⋆(dΦ− A)−
ip
2π

∫

deΦ′ ∧ A . (19)

Again, the path integral over eΦ′ ∈ U(1) imposes the condition
∫

A ∈ 2πZ
p . The path integral

over A gives instead the delta function

δ(R2 ⋆ (dΦ− A) = ipdeΦ′) , (20)

such that eventually

SZp gauged =
p2

4πR2

∫

deΦ′ ∧ ⋆deΦ′ . (21)

Note however that the ⋆ in the delta function (20) means that we are dualizing the action
also, sending n↔ w and inverting the radius along with a rescaling.13 We see the rescaling

12The introduction of twisted sectors is important to ensure modular invariance of the 2d CFT.
13In other words, we see that the above procedure of gauging (a discrete subgroup of) the momentum symmetry

in the path integral effectively implements T-duality at the same time. In fact, when p = 1 this procedure is exactly
performing the T-duality, sending R→ 1/R and n↔ w. In that case, it is an invertible operation since we are only
gauging the identity.
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describes the compact boson Φ′ at radius R′ = R/p. The genuine operators in the Φ′ theory
are those with charges (n, w) = (n′p, w′/p).

The combined gauging of Zp×Zq ⊂ U(1)m×U(1)w is only possible for gcd(p, q) = 1 due to
the mixed t’Hooft anomaly between the two U(1) factors. When the radius is R2 = p

q , gauging
the subgroup Zp ×Zq ⊂ U(1)m × U(1)w along with T-duality, results in a non-trivial operation
that maps the theory onto itself. This is the mechanism for generating the non-invertible T-
duality symmetry as described in [42].

Now, we can move on to the more interesting case, describing the two-step gauging pro-
cedure to send R→ R′. The first step is to gauge the entire U(1)w with flat connections. We
do so by adding a term to the action coupling the conserved current ⋆J = i

2πdΦ to the gauge
field A∈ U(1):

SU(1)w gauged =
R2

4π

∫

dΦ∧ ⋆dΦ+
i

2π

∫

dΦ∧ A−
i

2πR

∫

dφ′ ∧ A . (22)

The third term couples the gauge field to the scalar φ′ ∈ R which acts as a Lagrange multiplier
enforcing the flatness of A. The prefactor is arbitrary, and we have fixed it for future conve-
nience. As φ′ is R-valued, it has no winding

∫

dφ′ = 0, and therefore will not restrict the
holonomies of A. The integral over A supplies the delta function

δ(dΦ= R−1dφ′) . (23)

This implies that we are picking out the non-winding sector for the boson, making the resulting
theory indistinguishable from the non-compact boson,

SU(1)w gauged =
1

4π

∫

dφ′ ∧ ⋆dφ′ , (24)

with R momentum symmetry. This means that momentum vertex operators are genuine for
all n ∈ R, while no winding vertex operators are genuine for any value of w ̸= 0.

The second step of the procedure is to gauge a Z subgroup of the Rmomentum symmetry.
This is achieved by the following coupling

SZ◦U(1)w gauging =
1

4π

∫

(dφ′ − a)∧ ⋆(dφ′ − a)−
i

2πR′

∫

deΦ′′ ∧ a , (25)

where a is now an R-valued gauge field and in the last term we have coupled a to eΦ′′ ∈ U(1)
such that
∫

a ∈ 2πR′Z. Integrating over a imposes,

δ(⋆(dφ′ − a)) =
i

R′
deΦ′′ , (26)

such that

SZ◦U(1)w gauging =
1

4π(R′)2

∫

deΦ′′ ∧ ⋆deΦ′′ . (27)

Note that, as in the discrete case, the inclusion of the Hodge star in the delta function means
we are also T-dualizing. The resulting theory is that of the compact boson Φ′′ at radius R′ ∈ R.

Equipped with these gauging procedures, we can define a non-invertible self-duality sym-
metry for the compact boson at any value of the radius. For generic R ∈ R this is from the
following steps:

1. Gauging U(1)w with flat connections.

2. Gauging Z ⊂ R for the shift of period 2π 1
R .
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3. Performing the T -duality sending 1/R→ R.

Note that the last two steps are performed at the same time in the Lagrangian procedure
outlined above.

The corresponding duality defect N (γ) can be constructed by performing this sequential
gaugings on half space and imposing Dirichlet boundary conditions for the corresponding
gauge fields on the interface γ.14

3.1 Action on vertex operators

To actually check that N (γ) is a non trivial symmetry operator, we should compute its action
on the local operators of the theory. A similar procedure to the one described above can be
applied to determine how this duality symmetry acts on the vertex operators of the theory.

For simplicity let us consider the insertion of a vertex operator Vn,0, so that the action can
be written as

S =

∫

R2

4π
dΦ∧ ⋆dΦ−
∫

inΦδ(x) . (28)

The first step of gauging U(1)w gives the action

SU(1)w gauged =
R2

4π

∫

dΦ∧ ⋆dΦ+
i

2π

∫

dΦ∧ A−
i

2πR

∫

dφ′ ∧ A−
∫

inΦδ(x) . (29)

The integral over A gives the action

SU(1)w gauged =
1

4π

∫

dφ′ ∧ ⋆dφ′ −
in
R

∫

φ′δ(x) , (30)

describing a non-compact boson with the insertion of a vertex operator of charge n/R.
The second step of gauging the subgroup Z of the shift symmetry R is described by the

action

SZ◦U(1)w gauging =
1

4π

∫

(dφ′ − a)∧ ⋆(dφ′ − a)−
iR
2π

∫

dΦ′′ ∧ a−
in
R

∫

φ′δ(x) . (31)

The integral of a now gives the action

SZ◦U(1)w gauging =
R2

4π

∫

dΦ′′ ∧ ⋆dΦ′′ −
in
R2

∫

eΦ′′δ(x) , (32)

describing the original theory of a compact boson at radius R but with the insertion of a vertex
operator V0,n/R2 . Notice that if n/R2 ̸∈ Z, the action (32) is not gauge invariant and the
resulting correlator vanishes.

A similar analysis can be done for vertex operators with a non-trivial winding charge. The
generic action of the T-duality defect (up to a prefactor that we are not fixing) is then

N : Vn,w→

¨

VR2w, n
R2

, if R2w ∈ Z , n
R2 ∈ Z ,

non genuine operators, otherwise.
(33)

When R2 = p
q we recover (up to normalization constants) the action of the duality symmetry

described in [42], showing that the sequence of gaugings of U(1)w and Z are equivalent to
the discrete gauging of Zp×Zq ⊂ U(1)m×U(1)w. On the other hand, when R2 is an irrational

14See e.g. [54] for a construction of the T-duality defect of the compact boson at the Lagrangian level.
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C(Σ2)

L(γ)

=

L′(γ)

L(γ) L′(γ)

C(Σ2)

Figure 1: Action of 2d surface operators on line defects. Left: A cylindrical config-
uration surrounding a line defect. After shrinking the surface, a new line defect is
obtained. Right: A junction between the surface and line defects.

number, the T-duality symmetry maps all the genuine vertex operators to non-genuine ones.
We notice that this is consistent with the scaling dimension of these operators, given by

∆n,w =
1
2

�

n2

R2
+w2R2

�

. (34)

Indeed it is trivial to check that

∆n,w =∆R2w, n
R2

, ∀R ∈ R . (35)

Note that since the two-point functions involving vertex operators are entirely determined by
the scaling dimensions ∆n,w, the identity (35) imposes selection rules on these functions. In
particular, when R2 ̸∈Q, these selection rules establish identities between the two-point func-
tions of genuine local operators and those of non-genuine operators connected by a topological
line, consistent with the presence of the non-invertible duality symmetry N (see e.g. [55]).
Conversely, when R2 ∈ Q, in addition to these relations, we also get identities between corre-
lation functions involving only genuine operators (see also [54] for a recent discussion).

4 Condensation defects and non-invertible T-duality

In this section, we show how the SymTFT systematically encodes the duality defects of the
boundary theory.

So far, in the three-dimensional BF theory (1) we have only considered line operators
generating 1-form symmetries. In fact, such a TQFT also enjoys 0-form symmetries, generated
by two-dimensional topological surfaces and acting on line operators as depicted in figure 1.
These surface defects are obtained as condensation defects [46,47].

The general construction of condensation defects C(Σ;A) is from higher gauging a 1-
form symmetry A on the codimension-1 manifold Σ ⊂ X3. The condensation defects can be
expressed as a sum over line insertions along non-trivial cycles:

C(Σ;A) = 1
#

∑

γ∈H1(Σ,A)
W (γ) , (36)

where W is the simplest generating line for the chosen symmetry A. The normalization factor
1
# , which in the discrete case is fixed to be |H1(Σ,A)|−1/2 [47], in our case will be fixed by
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Ux ′Vy ′

Ux Vy

= exp
�

πi(x y ′ + y x ′)
�

Ux ′Vy ′

Ux Vy

= exp
�

πi(x y ′ + y x ′)
�

Ux ′Vy ′

Ux Vy

Figure 2: Resolving the junction of lines, to get a normal ordering phase.

imposing the correct action on the line operators of the theory. In particular, we will be inter-
ested in the 0-form invertible symmetries of the theory, thus the normalization can be easily
fixed by imposing the invertibility of the condensation defect.

From the boundary point of view, these symmetries are generically topological manipula-
tions changing the global variant of the theory. By placing these surface defects on a submani-
fold of the 3d slab parallel to the boundaries, we can fuse them with the topological boundary,
thereby generating a new boundary condition. A characteristic of condensation defects is that
they can be opened. As we will see, for specific choices of boundary conditions the open de-
fects induce new 0-form symmetries of the boundary theory, coming from specific self-dualities
under some topological manipulation.

Our goal is to define and characterize condensation defects of the R-valued BF theory
(see [35] for a previous discussions about condensation defects of a R global symmetry), thus
identifying the aforementioned 0-form symmetries present in theories with U(1) global sym-
metries.

4.1 A family of condensation defects

Our main motivation is to find a condensation defect that reduces to the T-duality defect, i.e.
swapping Wilson lines U ↔ V with the same charges in the bulk, such that it exchanges
R↔ 1

R for any value of the radius.
Let us start by considering condensation defects defined on a submanifold parallel to the

boundary, Σ = T2, by a higher gauging of an R subgroup of R×R which we will take to be a
general linear combination, generated by the U and V lines living on the same cycle γ:

C T
s (T

2)∝
∑

γ∈H1(Σ,R)

U(γ)V (−sγ)

∝
∫

x ,y∈R
U(xα+ yβ)V (−sxα− s yβ) ,

(37)

where s ∈ R is a real coefficient parametrizing a family of condensation defects. In going
from the first to the second line of (37) we have translated a formal sum into an actual double
integral over R valued charges, and we have parametrized the torus by its 1-cycles α, β .

Introducing a convenient normalization, and a phase after normal ordering U and V on
the different cycles (see [9,47] and figure 2), we get

C T
s (T

2) = s

∫

x ,y∈R
e−2πisx y Uy(β)V−s y(β)Ux(α)V−sx(α) . (38)
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We will soon show that the above normalization ensures that C T
s squares to one (and as a con-

sequence, it is invertible). Note that the normalization precisely excludes a linear combination
that is degenerate along one of the R factors. In fact, the latter defects can be shown to be
non-invertible, similarly as discussed in [47] for the discrete case. We will not discuss them
further.

The C T
s defect acts on the line Uz(β) as

C T
s (T

2)Uz(β) = s

∫

x ,y
e−2πisx y Uy(β)V−s y(β)Ux(α)V−sx(α)Uz(β)

= s

∫

x ,y
e−2πixs(y+z) Uy+z(β)V−s y(β) .

(39)

The integral over x produces a Dirac delta function15

∫ ∞

−∞
d x e2πisx(y+z) =

1
s
δ(y + z) , (40)

such that

C T
s (T

2)Uz(β) =

∫

d y δ(y + z)Uy+z(β)V−s y(β)

= Vsz(β) .
(41)

Similarly we get

C T
s (T

2)Vt(β) = Ut/s(β) . (42)

Note that the family of condensation defects C T
s acts effectively on the gauge fields as

b±→ s±1 b∓ , (43)

which is a symmetry of the action (1).
It is now obvious to check that C T

s squares to the identity. Indeed

(C T
s (T

2))2Uz(β) = C T
s (T

2)Vsz(β) = U sz
s
(β) = Uz(β) , (44)

and similarly for the action on Vt(β). Hence we conclude that (C T
s (T

2))2 = 1. In Appendix B,
we give a different derivation of the same result. Further, we also have that

C T
s (T

2)C T
s′ (T

2)Uz(β) = C T
s (T

2)Vs′z(β) = U s′
s z(β) ,

C T
s (T

2)C T
s′ (T

2)Vt(β) = C T
s (T

2)Ut/s′(β) = V s
s′ t
(β) ,

(45)

so that the fusion of two such defects implements the rescaling

b±→
�

s′

s

�±1

b± . (46)

Note that this is also a symmetry of the action (1).16 Actually, such a fusion of two defects
turns out to be a condensation defect obtained by higher-gauging the full R×R symmetry with
a torsion phase parametrized by [θ] ∈ H2(R×R, U(1)) = R, namely

C T
s (T

2)C T
s′ (T

2) = Cθ (T2) = θ (θ + 1)

∫

a,b,x ,y∈R
e−2πi(θa y−(θ+1)bx)Uy(β)Vb(β)Ux(α)Va(α) . (47)

15It is the normalization of the Dirac delta that determines the normalization of C T
s .

16When the action is supplemented with the physical boundary term (11), the above rescaling is no longer a
symmetry (except for s = ±1). This will play a major role below.
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with
θ =

1
s′
s − 1

. (48)

This defect has straightforwardly the inverse Cθ
−1
(T2), with θ−1 = 1/( s

s′ − 1) = −(θ + 1).
For s′/s = −1, i.e. θ = −1/2, this is a condensation defect that implements charge conju-

gation in the bulk theory. The construction excludes the case when s = s′, since in this case
we get C T

s C T
s = 1.

The invertible 0-form symmetry generated by C T
s and Cθ is O(1, 1;R). Interestingly, these

surface defects span the circle branch of the c = 1 conformal manifold, i.e. the subset of the
c = 1 conformal manifold with a U(1)× U(1) global symmetry.17 This follows from the fact
that the entire conformal manifold is generated by topological manipulations which include
gauging of continuous symmetries with flat connections. It would be interesting to further
explore this correspondence in more complicated situations.

4.2 Self-duality defect

Let us understand more in detail the action of the above condensation defects on the theory
defined on a slab. The boundary conditions that we impose are the conformal ones (10) at
the physical boundary, and the ones that fix the radius R (8) at the topological boundary. Note
first that the physical boundary conditions are only preserved by C T

s=1, Cθ=−1/2, and C T
s=−1.

These correspond to T-duality, charge conjugation, and their composition, respectively. Hence
only (the boundaries of) the latter can aspire at being symmetry defects of a given theory.

Let us focus on C T
s=1. It exchanges Uz and Vz lines.18 Thus in particular it sends the lines

Un/R to the lines Vn/R = V
eRew, and the lines VRw to URw = U

en/eR. This can be interpreted as the
mapping between two theories defined by:

en= w , ew= n , eR=
1
R

. (49)

This is the usual T-duality. More precisely, on the physical theory after slab compactification
this defect is exchanging momentum and winding modes, and rescaling the radius from R to
1/R. Since the latter manipulation involves a (discrete) gauging, we expect the symmetry
generated by this defect to be non-invertible, except for R = 1 where we have a self-T-dual
theory and this transformation is an invertible symmetry.

As shown in [8,9] the non-invertible T-duality defect in the boundary theory corresponds,
within the SymTFT, to the boundary of an open condensation defect. This defect is defined
by a half-higher gauging with Dirichlet boundary conditions.19 An easy way to observe the
non-invertibility of an open condensation defect C T

s=1(C) is by examining its self-fusion when
it has a boundary. The result is a 1-dimensional condensation defect of the same R subgroup
of the bulk R × R symmetry. This arises because the Dirichlet boundary conditions imposed

17Notice that if we also include the topological manipulations involving ZC
2 charge conjugation, we actually

produce the entire connected conformal manifold of c = 1 CFTs.
18As for Cθ=−

1
2 , it implements n→−n, w→−w, i.e. charge conjugation.

19To produce a genuine bulk symmetry operator for a boundary duality defect, we should gauge the Z2 0-form
symmetry generated by the condensation defect C T

s , with the option of adding discrete torsion ε ∈ H3(Z2, U(1))
which correspond to the Frobenius-Schur indicator of the boundary symmetry [16, 17]. It is important to note
that the choice of s corresponds to selecting a bicharacter for the duality symmetry [16, 17]. Upon gauging,
the boundary of this defect becomes a genuine topological line operator with non-invertible fusion properties,
and its boundary value reproduces the duality symmetry. This gauged TFT thus serves as the symmetry TFT for
the boundary duality defect, together with the invertible symmetries of the theory (see, for example, [8, 9]). It
describes generalizations of the Tambara-Yamagami fusion category with an infinite number of objects. However,
for the purposes of this work, it is sufficient to consider the ungauged theory, which includes all its condensation
defects and their associated twist defects.
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∂Σ2

Ux Vy

CT
s=1(Σ2)

=

Ux Vy

Uy Vx

∂Σ2

Ux Vy

CT
s=1(Σ2)

∂Σ′2

CT
s=1(Σ

′
2)

=

Ux Vy

∫

z∈R UzV−z(∂Σ2)

Figure 3: Action of the open condensation defect on a bulk topological line. Left: The
action produces a topological junction between two topological line operators. For
simple lines this junction reduces to a delta function as explained in equation (52).
Right: The fusion of two open condensation defects results in a non-simple line on
the boundary of the 2-dimensional surface Σ2.

on the boundary of the condensation defect allow the twist defects to absorb the lines that
generate the R subgroup, i.e.

CT
s=1(Σ2)× Ux V−x(∂Σ2) = CT

s=1(Σ2) . (50)

When fusing two condensation defects C T
s=1 with boundaries, the resulting object is a genuine

line operator, which must be consistent with the property outlined in (50), meaning it must
act as a projector. Consequently, we obtain:20

CT
s=1(Σ2)× CT

s=1(Σ2)∝
∫

x∈R
Ux V−x(∂Σ2) . (51)

This fusion rule is explicitly verified through a detailed computation in Appendix B.1. Addi-
tionally, it is worth noting that equation (51) aligns well with the action of the open cylinder
on a topological line, as illustrated in Figure 3. Specifically, when an open condensation defect
acts on a generic bulk line Ux Vy , it creates a topological junction between this line and the one
obtained by the action of CT

s=1. Since Ux Vy (for any x , y) are simple lines, the only possible
topological junctions are identity operators. Therefore, the open condensation defect projects
out the non-invariant lines, resulting in

CT
s=1(Σ2)Ux Vy(γ)∝ δ(x − y)Uy Vx(γ) , (52)

where Σ2 and γ arranged as in the left of figure 3. Then we get

CT
s=1(Σ2)× CT

s=1(Σ2)Ux Vy(γ)∝
∫

z∈R
UzV−z(∂Σ2)Ux Vy(γ)

∝
∫

z∈R
e−2πiz(x−y)Ux Vy(γ)∝ δ(x − y)Ux Vy(γ) ,

(53)

consistently with (52).

Duality defect on the boundary. To produce the boundary T-duality defect, we must open
the condensation defect along one of its cycles and allow it to terminate on the boundaries of
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CT
s=1(Σ2)

=

N (∂Σ2)

Figure 4: Bulk realization of the boundary duality defect. Left: A condensation defect
is placed perpendicularly to the boundary. Right: After the slab compactification, the
boundary on the condensation defect generates a topological line operator of the
theory.

the slab. Upon compactification of the slab, this configuration gives rise to a codimension-1
topological operator in the boundary theory, which we denote by N (∂Σ2) (see figure 4).

We would like to show how the boundary properties of the duality symmetry emerge from
the bulk perspective. To do so, consider the open condensation defect as a cylinder C, with
the α cycle parallel to the boundary and the β cycle being the one with a boundary. Only the
endable lines, determined by our choice of topological boundary conditions, will live along
the β direction, and the symmetry-generating lines along the α direction. The sum over U , V
along the same cycle is now only sensible when the charge lattices of the U and V lines are
overlapping.

We choose topological boundary conditions as in (8), ensuring that both U n
R
(β) and VRw(β)

with n, w ∈ Z are trivialized at the boundary. Consequently, the integral over y of Uy(β)
simplifies to a sum over n, yielding Uy=n/R(β). For s = 1, we must determine which of the
V−y=−n/R(β) are also trivializable. These correspond to values of n for which there exists an
integer w such that−n/R= wR. Therefore, for irrational R2, the overlap reduces to the identity
operator so that only the integral over the α direction remains non-trivial. On the contrary, for
R2 = p/q the integral over the β direction reduces to a discrete sum, so that the condensation
defect can be written as

CT
s=1(Σ2;∂Σ2 ⊂ ∂ X3) =

∑

k∈Z

∫

x∈R
e−2πi

p
pqkx UppqkV−ppqk(β)Ux V−x(α) , if R2 =

p
q

. (54)

In this configuration, CT
s=1 will act by projecting out all the endable lines that are not in the

overlapping sub-lattice, hence in particular all the non-trivial lines in the irrational case.21 It
is then clearly non-invertible, except when R= 1. Generically we get

CT
s=1(Σ2)U n

R
VRw(γ)∝

(

U R2w
R

VR( n
R2 ) , if R2w ∈ Z , n

R2 ∈ Z ,

non genuine operators, otherwise,
(55)

where ∂Σ2 ⊂ ∂ X3,∂ γ ⊂ ∂ X3 and Link(∂ γ,∂Σ2) = 1. After the slab compactification, this
implies the following action on the primary operators of the boundary theory

N (∂Σ2)Vn,w∝

¨

VR2w, n
R2

, if R2w ∈ Z , n
R2 ∈ Z ,

non genuine operators, otherwise.
(56)

20In the following discussion, we will frequently omit the proportionality factors involved in the fusion process.
These factors are computed in Appendix B and will be briefly discussed at the end of this section.

21Note that for rational R2, this projection is less severe than in the case of an open defect in the bulk (52). As
we will argue, this is closely related to the fact that, at these specific radii, the boundary theory is self-dual under
discrete (rather than continuous) gauging.
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This nicely reproduces the action on the vertex operators described in section 3.1.
Finally, let us compute the fusion of two duality defects. This can be achieved by placing

two concentric defects, each ending perpendicularly on the two boundaries. As described
earlier, the integral over the lines in the β direction, perpendicular to the boundary, depends
on the topological boundary conditions. When R2 is irrational, the integral reduces to the
identity, and the fusion of two condensation defects becomes

CT
s=1(Σ2)× CT

s=1(Σ2)∝
∫

x∈R
Ux V−x(∂Σ2) , (57)

as in the bulk analysis.
After the slab compactification, we can impose the physical boundary conditions on this

expression, yielding

N (∂Σ2)×N (∂Σ2)∝
∫

x∈R
Ux V−x(∂Σ2)≡

∫

x∈R
U (w)−2πxRU (m)

2π x
R

, (58)

where U (m)a U (w)b (with a, b ∈ [0,2π)) are the topological operators generating the
U(1)m × U(1)w symmetry of the boundary compact boson. Notice that the combination
U (w)−2πxRU (m)

2π x
R

(with x ∈ R) generates a non-compact direction of the U(1)× U(1) global sym-
metry.

In contrast, when R2 = p/q, the integral over the β direction reduces to an infinite sum.
Thus, the fusion of two condensation defects in this case becomes

CT
s=1(Σ2)× CT

s=1(Σ2)∝
∑

k,k′∈Z

∫

x ,y∈R
e−2πi

p
pq(kx+k′ y+2k′x)Uppq(k+k′)V−ppq(k+k′)(β)Ux+y V−(x+y)(α)

=
∑

k∈Z
Uk/
p

pqV−k/
p

pq(α) .
(59)

After the slab compactification, we obtain

N (∂Σ2)×N (∂Σ2)∝
∑

k∈Z
Uk/
p

pqV−k/
p

pq(∂Σ2) =
∑

k∈Z
U (w)
− 2π

q k
U (m)2π

p k
(∂Σ2) , (60)

which, up to an infinite proportionality factor, is the sum of lines generating the
Zp × Zq ⊂ U(1)m × U(1)w symmetry of the boundary theory. We have thus shown that the
bulk condensation defect reproduces all possible duality defects of the boundary theory.

We now briefly discuss the normalization of the self-duality defect N . In both equations
(60) and (58), an infinite proportionality factor appears, which can be absorbed into the defi-
nition of the boundary duality operator N . However, the normalization of a symmetry defect
is constrained by locality conditions. Specifically, for R2 = p

q , the normalization of N can be
established using modular bootstrap arguments, starting with the torus partition function of
the compact boson. Inserting the defect along the spatial cycle projects onto states invariant
under N . After performing an S transformation, for N to be a well-defined topological defect
it must produce a well-defined twisted Hilbert space, which dictates the correct normalization
(see, e.g., [42,44]). To achieve the appropriate normalization for R2 = p

q , the open condensa-
tion defect should be properly normalized by dividing by the infinite factor obtained in (59),
ensuring that the final result is free from infinities. When R2 ̸∈ Q the non-invertible defect
involves the gauging of a continuous symmetry and we expect the twisted Hilbert space to
contain a continuum of states. Consequently, the analysis applicable to the discrete case does
not straightforwardly extend to this scenario. Although a detailed exploration is beyond the
scope of this work, it would be interesting to further investigate the Hilbert space interpreta-
tion of these symmetries and to rigorously define their normalizations.
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5 Analogies and differences with a U(1) BF symmetry TFT

To emphasize the conceptual difference with the standard case of U(1)-valued BF theory, we
will briefly summarize how to construct boundary conditions and the condensation defects for
these theories (see [47] for a previous discussion). The bulk theory is described by the action

SU(1) =
iN
2π

∫

X3

B+dB− , (61)

with N an integer that cannot be rescaled away because of the quantization of the fluxes of
B±. Line operators of this theory are of the form

Um(γ) = exp

�

im

∫

γ

B+
�

, Vn(γ) = exp

�

in

∫

γ

B−
�

, (62)

with n, m = 0, . . . , N − 1 and braiding 〈Um(γ)Vn(γ′)〉 = exp
�2πimn

N Link(γ,γ′)
�

. They generate
a ZN ×ZN 1-form symmetry in the 3d bulk. Under the gauge transformation

δB± = dλ± , with

∫

γ

dλ± ∈ 2πZ ,

the action picks up a boundary term

δSU(1) =
iN
2π

∫

Σ2

λ+dB− , (63)

where we now focus on the topological boundary of the slab. To ensure gauge invariance we
couple the theory to a compact scalar edge mode Φ∼ Φ+ 2π with the gauge transformation

Φ→ Φ− qλ+ , (64)

and with a bulk/boundary action

S3d/2d = SU(1) +
ip
2π

∫

Σ2

ΦdB− , (65)

with q, p ∈ Z. Gauge invariance implies N = pq. The boundary equations of motion are

B+|Σ2
= −

1
q

dΦ , (66)

which imply
∫

γ∈H1(Σ2,Z)
B+ ∈

2πZ
q

. (67)

Moreover, the sum over the edge modes’ fluxes
∫

dΦ ∈ 2πZ implies
∫

γ∈H1(Σ2,Z)
B− ∈

2πZ
p

. (68)

As a consequence, the lines Uqm′ , Vpn′ with m′(n′) = 0, . . . , p−1(q−1) are trivial when pushed
parallel to the boundary. More specifically, they can end topologically on the boundary since
they are gauge invariant. For Uqm′ , this is seen by defining the dressed line operators

Uqm′ = exp

�

iqm′
∫

γ

B+ +m′ Φ|∂ γ

�

. (69)
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For Vpn′ , one can provide a similar dressing by a scalar which is the (non-local) boundary dual
to Φ, as we will comment below. The non-trivial boundary topological operators generate a
Zq×Zp 0-form global symmetry on the boundary. Therefore, the full set of topological bound-
ary conditions is classified by the integers q (or p) which are divisors of N . Notice that the
same classification arises by constructing Lagrangian algebras Lq = (Uqm′ , VN

q n′) correspond-

ing to a maximal set of commuting lines. They exactly correspond to the ones trivialized by
the boundary condition. The extreme cases are q = 1 (Dirichlet for B+) and p = 1 (Dirichlet
for B−), for which the 0-form symmetry on the boundary corresponds to either ZN of the bulk
ZN ×ZN 1-form symmetry.

5.1 Physical boundary conditions and rational radius

We would now like to impose the conformal boundary conditions at the physical boundary
of the slab, similarly to (10). Before proceeding, let us underscore what physical system we
are aiming to describe: it is a theory of a compact boson, for which we are singling out a
ZN subgroup of its U(1)× U(1) global 0-form symmetry. For Dirichlet topological boundary
conditions for either B+ or B−, the ZN is embedded in either U(1). We can assume without
loss of generality that we start from such a situation. Then, the only topological manipulations
that are allowed in this setup correspond to gauging all or part of this ZN . Hence the different
theories are in one-to-one correspondence with divisors of N .

Note that now we cannot rescale freely the discrete gauge fields B±. We will see later
that some peculiar rescalings can be implemented, however for the moment let us assume
that integrality of their fluxes fixes the normalization. As a consequence, the coefficient of the
analog of (11) is now physical. We thus write:

S2d/3d = S +
1

4πR2
0

∫

Σ2

B− ∧ ⋆2B− . (70)

The boundary conditions are then

B−|Σ2
= iNR2

0 ⋆2 B+|Σ2
. (71)

We then proceed exactly as in the continuous case with the slab compactification, first getting
B− = −ipR2

0 ⋆2 dΦ and then finally

S2d =
p2R2

0

4π

∫

Σ2

dΦ∧ ⋆2dΦ . (72)

This means that the physical radius is R= pR0. In particular, in going from Dirichlet boundary
conditions for B+ (p = N) to Dirichlet for B− (p = 1), one goes from radius R= NR0 to radius
R′ = R0 = R/N . When Dirichlet is on B+, the boundary ZN symmetry is the momentum one.
Hence we recover that fully gauging this momentum symmetry gives back a theory where the
radius is N times smaller. If N has divisors, then by gauging Zq ⊂ ZN we can go from R= NR0
to R′ = pR0 = R/q. We conclude that the U(1) BF theory allows us to describe the compact
boson at any radius, but this comes at the cost of coupling the theory to backgrounds for only a
ZN ⊂ U(1)m×U(1)w symmetry, thus with the possibility of performing only its corresponding
topological manipulations. In this sense, the U(1) BF theory provides less information about
the boundary compact boson compared to the non-compact R-valued BF theory discussed in
the previous sections.

In analogy to the continuous case, the bulk theory has a dual formulation where we ex-
change B+ and B− and ensure that the same lines are trivialised on the boundary. We find
that this dual formulation in the bulk implements the T-duality upon slab compactification. In
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detail, this works as follows. Switching the roles of B+ and B−, we see that the same conformal
boundary conditions (71) are obtained by writing the analog of (70) with B+ and replacing
R0 by eR0 = (NR0)−1. In order to get the same boundary ending lines in (67) and (68), the
topological boundary condition corresponds to that imposing B−|Σ̄2

= − 1
p d eφ. Compactifying

the interval we get

S2d =
1

4πp2R2
0

∫

Σ2

deΦ∧ ⋆2deΦ , (73)

which is exactly the T -dual of (72). This is a completely equivalent description of the same
theory. Hence we can contemplate performing this T-duality to undo the rescaling of the radius
caused by a gauging. More precisely, given a rational radius R2 = p

q , we can select a symmetry

Zn
p×Z

w
q ⊂ U(1)m×U(1)w such upon gauging, the radius becomes R′ = q

p

Ç

p
q . Then performing

the T -duality sends us back to the original radius. Again, this is a non-invertible operation as
it involves discrete gaugings (unless we are at the self-dual radius).

Let us finally comment on the possibility to perform an effective (discrete) rescaling of B±.
In principle, for any N , one can take an l such that gcd(N , l) = 1 and generate all the lines
with Ul and V(l−1)N , where (l−1)N is an integer in ZN such that (l−1)N l = 1 mod N . Note
that also the braiding of the lines is preserved. At this stage it is not clear what this operation
does on the physical theory, because clearly we cannot apply the rescaling to the action (61)
without spoiling the normalization (which is fixed for us by the fact that we focus on the ZN
symmetry of the physical theory). We will see below what condensation defect implements
such a rescaling, and how it can affect the topological and/or physical boundary conditions.

5.2 Condensation defects for the U(1) BF theory

As in the continuous case, we can define a family of (invertible) condensation defects from
higher gauging on Σ = T2 a ZN subgroup of ZN × ZN . They are labeled this time by an
integer k, which must have gcd(N , k) = 1 and in particular, is non-vanishing.22 Using a natural
normalization for finite groups, we can write

CZN
k (T

2) = |H1(T
2,ZN )|−1/2
∑

γ∈H1(T2,ZN )

U(γ)V (−kγ)

=
1
N

N−1
∑

a,b=0

U(aα+ bβ)V (−kaα− kbβ) .
(74)

We have parametrized the torus by its 1-cycles α, β , with charges a, b ∈ ZN along the respec-
tive cycles. There is a need for a normal ordering phase e−2πi kab

N to account for the ordering
ambiguities of U and V . We then have

CZN
k (T

2) =
1
N

N−1
∑

a,b=0

e−2πi kab
N Ub(β)V−kb(β)Ua(α)V−ka(α) . (75)

Let us consider the defect acting on the line operator Un(β):

CZN
k (T

2)Un(β) =
1
N

N−1
∑

a,b=0

e−2πi kab
N Ub(β)V−kb(β)Ua(α)V−ka(α)Un(β)

=
1
N

N−1
∑

a,b=0

e−2πi a
N k(b+n) Ub+n(β)V−kb(β) .

(76)

22When gcd(N , k) ̸= 1 or k = 0 the resulting defect is non-invertible.
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The sum over a gives the Kronecker delta function Nδ(kb + kn = 0 mod N) which, since we
assume gcd(N , k) = 1, is equivalent to Nδ(b+ n= 0 mod N). We then have

CZN
k (T

2)Un(β) = Vkn(β) . (77)

The action on Vw(β) yields
CZN

k (T
2)Vw(β) = U(k−1)N w(β) , (78)

where as before, k(k−1)N = 1 mod N . Note that for k = 1, this condensation defect just swaps
the U and V lines. For k > 1, the parameter k serves to reshuffle the Wilson lines. That is,
it maps a generator of ZN to another generator of ZN , such that it is an automorphism of
ZN . From the way it acts on Wilson lines, the defect CZN

k appears to effectively map the gauge
fields B+→ kB− and B−→ (k−1)N B+, swapping gauge fields and also performing the rescaling
described at the end of the previous section.

As in the continuous case, the above transformations straightforwardly show that
(CZN

k )
2 = I. We can also compose two defects with different labels. Their action is

CZN
k (T

2)CZN
k′ (T

2)Un(β) = CZN
k (T

2)Vk′n(β) = U(k−1)N k′n ,

CZN
k (T

2)CZN
k′ (T

2)Vw(β) = CZN
k (T

2)U(k′−1)N w(β) = Vk(k′−1)N w .
(79)

This is a combined rescaling as at the end of the previous subsection, with l = (k−1)N k′ (which
also satisfies gcd(N , l) = 1 since both k and k′, and hence their inverses mod N , do). For k = 1
and k′ = −1, the combination of condensation defects implements charge conjugation. In all
generality, we can see the combination of two defects as a higher gauging of the full ZN ×ZN ,
with torsion.

We can also consider condensation defects constructed by higher gauging a subgroup
Zq ⊂ ZN ×ZN , for q a divisor of N . We define them as

C
Zq

k (T
2) =

1
q

q−1
∑

a,b=0

e−2πi pkab
q Upb(β)V−kpb(β)Upa(α)V−kpa(α) , (80)

where p = N/q and gcd(k, q) = 1. Its action on the line defects of the theory is

C
Zq

k (T
2)Un(β) =
∑

b∈Zq

δ(pb+ n= 0 mod q)Upb+n(β)V−pkb(β) ,

C
Zq

k (T
2)Vm(β) =
∑

b∈Zq

δ(m− pkb = 0 mod q)Upb(β)V−pkb+m(β) .
(81)

The action of the defect is invertible when gcd(p, q) = 1, which we verify through fusion
arguments provided in Appendix B.2.

Non-invertible defects. As in the continuous case, we wish to interpret how these defects
act on the theory defined on the slab. Thus, we wish to pick out which of the (boundaries of)
defects will act as symmetry defects for the 2d theory.

Firstly, we see that the BF action (61) is only invariant under swapping B+↔±B− which
is implemented by the CZN

k defect for k = ±1. Secondly, the physical boundary conditions

(71) are only conserved by CZN
k=±1 in the case when R2

0 = N−1. This means that when we
compactify the interval, with suitable physical boundary conditions such that the 2d theory is
at radius R=
Ç

p
q , the defects CZN

k=1, the fused defect CZN
k=1 × CZN

k=−1, and CZN
k=−1 will produce T-

duality, charge conjugation, and their composition, respectively. The limitations in the discrete
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case of defining T-duality and charge conjugation defects again highlight the usefulness of the
non-compact BF theory, where we were able to define such defects for any value of the radius.

In the case that R0 =
1p
N
= 1p

pq and R =
Ç

p
q , the boundaries of these defects, once we

compactify the interval, will become (possibly non-invertible) symmetry generators in the 2d
theory. We can define such non-invertible defects by cutting open a hole along one of the
cycles of the defect and pulling it to the topological boundary. To demonstrate this, we can
construct the defect on the cylinder C, with the α cycle parallel to the boundary and the β
cycle ending on the boundary. Now, based on the chosen boundary conditions, only lines that
can end trivially on the topological boundary are along the β direction, and the remaining
symmetry-generating lines are along the α direction. The sum over U , V along the same cycle
in the defect, now is only sensible when summing over the overlapping sub-lattices of charges.
This will also alter the normalization of the defect.

Let us show this construction explicitly for the CZN
k=1 defect. We take the topological bound-

ary conditions such that the lines Uqm(β) and Vpℓ(β) with m ∈ Zp and ℓ ∈ Zq end trivially
on the boundary. The two lattices of charges of boundary ending lines only overlap for the
charges ∈ lcm(p, q)Zgcd(p,q). The remaining lines along the α direction are Ur(α) and Us(α)
with r ∈ Zp and s ∈ Zq. Asking that p > q, these lattices of charges overlap on Zq. The

CZN
k=1(Σ2) defect perpendicular to the boundary can be written as

CZN
k=1(Σ2) =

1
q

q−1
∑

r−0

gcd(p,q)−1
∑

ℓ=0

e−2πi ℓr
gcd(p,q) Ulcm(p,q)ℓ(β)V−lcm(p,q)ℓ(β)Ur(α)V−r(α) . (82)

Analogously to the continuous case, the defect will swap U↔ V while also projecting out all
endable lines that do not lie within the overlapping sub-lattice. Its action on lines is summa-
rized by

CZN
k=1(Σ2)UqnVpw(γ) =

¨

VqnUpw(γ) , if n ∈ lcm(p,q)
q Z , w ∈ lcm(p,q)

p Z ,

non-genuine operators, otherwise,
(83)

where ∂Σ2 ∈ ∂ X3, ∂ γ ∈ ∂ X3, and Link(∂Σ2,∂ γ) = 1. After the slab compactification, and
selecting the physical radius to be R2 = p

q , we get the correct action

N (∂Σ2)Vn,w∝ VR2w, n
R2

. (84)

Let us make some remarks on the values of p and q. If p, q are coprime, the U and V
charge lattices overlap only at the identity, and the defect projects out all non-trivial operators
(analogous to the irrational R2 in the continuous case). When p, q are such that gcd(p, q)> 1
the charge lattices will overlap at some select values. If p = q, the U , V charge lattices overlap
for all points such that CZN (Σ2) does not project out any lines and the defect is invertible. This
is the discrete analogy of the self-dual radius, requiring R= pR0 =

pp
p2
= 1, where the theory

is self T-dual.
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A Abelian gauge theory basics

We review the most basic facts about Abelian gauge fields for the sake of clarity. We will
be pedantic, as most of the interesting phenomena described in this paper follow from basic
subtleties regarding the quantizaton of periods, large gauge transformations, and related ar-
guments. The main goal of this section is thus to clarify the distinction between the compact
and non-compact gauge groups G = U(1) and R, respectively.

A gauge field is a fake one-form. It can in principle only be defined as a one-form on
the total space of an associated vector bundle. However, in more down-to-earth terms, it is a
one-form up to the transformation

A→ A+ g−1d g , (A.1)

where g : X3→ G is any function from spacetime into the abelian group, not its Lie algebra.
Assuming that the group G is connected (otherwise we can always focus on a connected

component), then any element can be written as an exponential of a Lie algebra element as
g = eεT , where ε is a parameter, and T ∈ Lie(G). However, given a function g : X3→ G, there
may or may not be a corresponding ε : X3 → Lie(G). Put differently, the logarithm log(g(x))
may have branch cuts somewhere in X3. If the log is globally well-defined, we call this a small
gauge transformation. In this case, we can say that

A→ A+ dε . (A.2)

Otherwise, we say it is a large gauge transformation.
For the choice G = R, any g : X3→ R is just a single-valued function on X3, hence a global

logarithm can be defined. In this case, all gauge transformations take the form dε, meaning
they are all exact one-forms. Therefore, there are no large gauge transformations for G = R,
regardless of the topology of X3.

For the case G = U(1), the maps g are classified by Π1(X3), in terms of their winding
number. If such a map has non-zero winding, then it does not admit a well-defined global
logarithm. The best we can do is write g(x) = eε(x), for a multi-valued function ε(x). We can
still make sense of the expression g−1d g, and its period along any loop γ will be integrally
quantized:

1
2π

∫

γ

g−1d g = 1
2π

∫

γ

dε ∈ Z . (A.3)

From here, we can draw conclusions about flux quantization. For any Riemann surface Σ, we
can make a cell-decomposition into disks Di that overlap appropriately. If we focus on one
such disk, we can trivialize the connection in its interior, but will be forced to perform a gauge
transformation along its boundary γi = ∂ Di to patch it into the rest of the surface. This gauge
transformation, integrated along γi will be quantized, as we just saw. Using Stokes’ theorem,
we interpret this as

1
2π

∫

Di

F = ni , (A.4)

the period of the field-strength along the disk. Summing up all such disk integrals, we arrive
at the conclusion that

1
2π

∫

Σ

F =
∑

i

ni ∈ Z . (A.5)
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For the case G = R, since there are no large gauge transformations, all such ni are zero.
To summarize

1
2π

∫

Σ

F =

�

n , for G = U(1) ,
0 , for G = R .

�

(A.6)

Let us now delve into the consequences for Wilson loops. Given a closed curve γ ⊂ X3, we
want to define the gauge-invariant observable

Wp(γ) = eip
∫

γ
A . (A.7)

Under any gauge transformation A 7→ A+ g−1d g, we impose that

Wp 7→Wp eip
∫

γ
g−1d g !

=Wp . (A.8)

In the U(1) case, this will require p ∈ Z. In the R case, any p will do.
To summarize

For Wp(γ) , p ∈
�

Z , for G = U(1) ,
R , for G = R .

�

(A.9)

B Details on the fusion of condensation defects

In this section, we provide alternative views and technical details on the computations related
to the fusion of condensation defects as discussed in the main text.

B.1 Defects in the R BF theory

We can consider the gauging described by the condensation defects (37) from the path integral
perspective. This presentation has the advantage of making the fusion of open defects clearer
[9].

Let us consider the C T
s=1(Σ) defect, defined on a manifold with boundary, ∂Σ ̸= 0 . This

defect is made from gauging the R symmetry along the diagonal, i.e.

SC T
Σ =

i
2π

∫

Σ

(a ∧ (b+ − b−) + adφ) +
i

2π

∫

∂Σ

(σ∧ (b+ − b−) +σdφ) . (B.1)

Here b± are the conserved currents for the Re/m symmetries respectively, a is a 1-form gauge
field, φ is a 0-form field which acts as a Lagrange multiplier to enforce the flatness of a, and
σ is an edge mode that we must introduce to ensure the gauge invariance of the action when
Σ has a boundary. All these fields take values in R. Their gauge transformations are

a→ a+ dλa , φ→ φ −λ+ +λ− , σ→ σ−λa . (B.2)

One can check that SC T
Σ in indeed gauge invariant, taking into account that b±→ b±+dλ± and

that moreover, b± are flat as a result of the bulk equations of motion. Then, the condensation
defect can be defined as

C T
s=1(Σ) =

∫

DaDφDσ exp SC T
Σ . (B.3)

To compute the parallel fusion of the defect C T
s=1(Σ)with itself, we add together two copies

of (B.1) localised on Σ and Σ+ ε respectively. We must also take into account the non-trivial
contribution from the slab of the bulk theory between the two defects. To do so, we consider
the equations of motion for the b± fields after gauging on Σ and Σ+ ε,

d b± ± aδ(x − xΣ)± a′δ(x − xΣ+ε) = 0 . (B.4)
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Since the gauge fields a, a′ are imposed to be flat by their equations of motion, we can write

b± = ±aθ (x − xΣ)± a′θ (x − xΣ+ε) . (B.5)

Plugging this into the bulk and defect actions and taking the limit ε→ 0 we find the contribu-
tion,

i
2π

∫

Σ

a ∧ a′ . (B.6)

This contribution is related to the phase factor arising from the linking between the lines
making up the two defects. With this, the total action for the fusion becomes

S(C
T
Σ )

2
=

i
2π

∫

Σ

((a+ a′)∧ (b+ − b−) + adφ + a′dφ′ + a ∧ a′)

+
i

2π

∫

∂Σ

((σ+σ′)∧ (b+ + b−) +σdφ +σ′dφ′) .
(B.7)

Making the field redefinitions

a→ a− a′ , σ→ σ−σ′ , φ′→ φ′ +φ , (B.8)

the action becomes

S(C
T
Σ )

2
=

i
2π

∫

Σ

(a ∧ (b+ − b−) + adφ + a′dφ′ + a ∧ a′)

+
i

2π

∫

∂Σ

(σ∧ (b+ − b−) +σdφ +σ′dφ′) .
(B.9)

The path integral over a′ imposes that a = −dφ′, which implies that all the terms defined on Σ
are trivialised and we are left with only the boundary terms (after a further shift σ→ σ+φ′)

S(C
T
Σ )

2
=

i
2π

∫

∂Σ

(σ∧ (b+ − b−) +σdφ +σ′dφ′) . (B.10)

Theσ∧(b++b−)+σdφ terms in the action express the gauging of the sameR symmetry along
∂Σ. The last term, σ′dφ′, is a decoupled R BF theory that will give an (infinite) normalisation
factor. Summarizing, we get

(C T
s=1(Σ))

2 = |H1(∂Σ,R)|C T
s=1(∂Σ) . (B.11)

This verifies the non-invertibility of the open defect and the result presented in (51), together
with the advantage of providing the correct proportionality factor.

We can also consider the fusion of two defects C T
s (Σ) and C T

s′ (Σ) again from the Lagrangian
perspective. Here we take that ∂Σ= 0. We get

SC T
s ×C T

s′ =
i

2π

∫

Σ

�

a ∧ (b+ − sb−) + adφ + a′ ∧ (b+ − s′b−) + a′dφ′ +
1
2
(s+ s′)a ∧ a′
�

. (B.12)

Here 1
2(s+ s′)a ∧ a′ is the linking phase that comes from the contribution of the bulk, see the

discussion around (B.6). Now, we can make the field redefinitions

ã = a+ a′ , ã′ = −sa− s′a′ , φ̃ =
sφ′ − s′φ

s− s′
, φ̃′ =

φ′ −φ
s− s′

, (B.13)
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such that

SC T
s ×C T

s′ =
i

2π

∫

Σ

�

ã ∧ b+ + ã′ ∧ b− +
(s+ s′)

2(s− s′)
ã ∧ ã′ + ãdφ̃ + ã′dφ̃′

�

. (B.14)

The fusion of C T
s × C T

s′ now expresses the fact that we are gauging the full Re ×Rm symmetry

with torsion given by θ̃ = (s+s′)
2(s−s′)

C T
s × C T

s′ = C θ̃ . (B.15)

Let us explicitly show that this connects with the definition of the Cθ defect in (47). Starting
from the Lagrangian (B.14) and choosingΣ= T2 for convenience, we can use Poincaré duality
to describe the defect as the sum over line insertions along the α,β 1-cycles of the torus, i.e.

Cθ (T2)∝
∫

a,b,x ,y∈R
e2πiθ̃ (x b−a y)Uy(β)Ux(α)Vb(β)Va(α) . (B.16)

The phase e2πiθ̃ (x b−ya) is the torsion phase originating from the θ̃ ã ∧ ã′ term in the action.
We are not concerned with the normalisation here. By our convention, we wish to resolve
the mesh of lines such that we act on lines along the β cycle. This amounts to including the
normal ordering phase eπi(x b+ya):

Cθ (T2)∝
∫

a,b,x ,y∈R
e−2πi((θ̃− 1

2 )a y−(θ̃+ 1
2 )x b)Uy(β)Vb(β)Ux(α)Va(α) . (B.17)

Defining θ = θ̃ − 1
2 we get precisely the Cθ defect in (47). Expressing θ = θ̃ − 1

2 =
s′+s

2(s′−s) −
1
2

in terms of s, s′

θ =
1

s′/s− 1
, (B.18)

which is exactly as we expected in (48).

B.2 Defects in the U(1) BF theory

Here we check the invertibility of defects in the discrete case through parallel fusion from the
summation over lines perspective.

Let us begin by considering the fusion of C
Zq

k (T
2) (80) with itself,

C
Zq

k (T
2)× C

Zq

k (T
2) =

1
q2

∑

a,b∈Zq

∑

c,d∈Zq

e−
2πi
q pkabe−

2πi
q pkcd e−

4πi
q pkcb (B.19)

× Upa(β)V−pka(β)Upc(β)V−pkc(β)Upb(α)V−pkb(α)Upd(α)V−pkd(α) .

We have picked up the phase e−
4πi
q pkcb from moving all α dependent lines to the r.h.s., which

will allow us to fuse like operators. Redefining our variables,

e = a+ c , f = b+ d , (B.20)

we can rewrite the fusion as,

C
Zq

k (T
2)×C

Zq

k (T
2) =

1
q2

∑

e, f ∈Zq

∑

c,d∈Zq

e−
2πi
q pk(e f −ed+ f c)Upe(β)V−pke(β)Up f (α)V−pk f (α) . (B.21)

The sums over c, d give the Kronecker deltas,

1
q

∑

c∈Zq

e−
2πi
q cpk f = δ(p f = 0 mod q) ,

1
q

∑

d∈Zq

e
2πi
q dpke = δ(pe = 0 mod q) , (B.22)
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where we have used that gcd(k, q) = 1. When gcd(p, q) = g > 1,

C
Zq

k (T
2)× C

Zq

k (T
2) =
∑

e, f ∈Zg

U N
g e(β)V− N

g ke(β)U N
g f (α)V− N

g k f (α)

= g C
Zg

0 .

(B.23)

Notice that when gcd(p, q) = 1 these delta functions are only satisfied when f = e = 0 and
thus we find C

Zq

k (T
2) × C

Zq

k (T
2) = 1. Namely, this verifies the invertibility of CZN

k , which
corresponds to the case where p = 1 and q = N .

Likewise, we can also use parallel fusion arguments to show that the opened defect
CZN

k=1(Σ2) (82), ∂Σ2 ̸= 0, is non-invertible for generic values of p, q. We get

CZN
k=1(Σ2)× CZN

k=1(Σ2) =
1
q2

∑

r,s∈Zq

∑

ℓ,t∈Zgcd(p,q)

e−
2πi

gcd(p,q) ℓr e−
2πi

gcd(p,q) st e−
4πi

gcd(p,q) t r

× Ulcm(p,q)ℓ(β)V−lcm(p,q)ℓ(β)Ulcm(p,q)t(β)V−lcm(p,q)t(β)

× Ur(α)V−r(α)Us(α)V−s(α) .

(B.24)

Redefining the summation variables,

u= ℓ+ t , v = r + s , (B.25)

we get

CZN
k=1(Σ2)× CZN

k=1(Σ2) =
1
q2

∑

v,s∈Zq

∑

u,t∈Zgcd(p,q)

e−
2πi

gcd(p,q) (uv+t v−su)

× Ulcm(p,q)u(β)V−lcm(p,q)u(β)Uv(α)V−v(α) .

(B.26)

The sums over s and t produce the respective Kronecker delta functions,

∑

s∈Zq

e−
2πi

gcd(p,q) su = q δ(u= 0 mod gcd(p, q)) ,

∑

t∈Zgcd(p,q)

e−
2πi

gcd(p,q) t v = gcd(p, q) δ(v = 0 mod gcd(p, q)) .
(B.27)

The fusion becomes

CZN
k=1(Σ2)× CZN

k=1(Σ2) =
gcd(p, q)

q

q−1
∑

v=0

δ(v = 0 mod gcd(p, q)) Uv(α)V−v(α) . (B.28)

For general p, q values the r.h.s. does not equal one and therefore CZN
k (Σ2) is non-invertible.

However, when p = q the normalization factor is one and the delta function is only satisfied
for v = 0; everything on the r.h.s. trivializes and the fusion is equal to one. This verifies the
expected invertibility of the open defect when the 2d theory is at the self-dual radius.
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