
SciPost Phys. 18, 090 (2025)

Investigating finite-size effects in random
matrices by counting resonances

Anton Kutlin1⋆ and Carlo Vanoni2,3†

1 Abdus Salam International Center for Theoretical Physics,
Strada Costiera 11, 34151 Trieste, Italy

2 SISSA – International School for Advanced Studies,
via Bonomea 265, 34136, Trieste, Italy

3 INFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy

⋆ anton.kutlin@gmail.com , † cvanoni@sissa.it

Abstract

Resonance counting is an intuitive and widely used tool in Random Matrix Theory and
Anderson Localization. Its undoubted advantage is its simplicity: in principle, it is easily
applicable to any random matrix ensemble. On the downside, the notion of resonance is
ill-defined, and the “number of resonances” does not have a direct mapping to any com-
monly used physical observable like the participation entropy, the fractal dimensions, or
the gap ratios (r-parameter), restricting the method’s predictive power to the thermo-
dynamic limit only where it can be used for locating the Anderson localization transi-
tion. In this work, we reevaluate the notion of resonances and relate it to measurable
quantities, building a foundation for the future application of the method to finite-size
systems. To access the HTML version of the paper & discuss it with the authors, visit
https://enabla.com/pub/558.
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1 Introduction

Whether a quantum system thermalizes or not under its own unitary dynamics is an issue
that has received a lot of attention in the last decades and a general theory allowing to dis-
cern thermal from non-ergodic systems is still lacking [1, 2]. Thermal quantum systems are
expected to satisfy the Eigenstate Thermalization Hypothesis (ETH) [3], stating that the expec-
tation values of observables will evolve in time and ultimately saturate to the value predicted
by a microcanonical ensemble [3, 4]. On the contrary, non-ergodic quantum systems violate
ETH: there are many such examples, including localized systems [5–11], as well as models
displaying Hilbert space fragmentation [12–19]. In the case of localization transitions, i.e.
when a system undergoes a dynamical phase transition from an ergodic to a localized phase,
the mechanism driving the phase change resides in the suppression of resonances across the
transition [20].

In its traditional formulation, the notion of “resonance” is related to other concepts such as
“level repulsion”, “anti-crossing”, or “avoided crossing” [21], and can be introduced as follows:
the eigenvalues E1,2 of a 2×2 real Hamiltonian H can be approximated by its diagonal elements
ϵ1,2 provided its off-diagonal element v is negligible compared to the difference between the
diagonal elements, i.e., v≪ω= ϵ2 − ϵ1. Hence, if

v ≳ω , (1)

the shifts ∆1,2 = E1,2− ϵ1,2 are also greater than or of the order of ω, and the sites are said to
be “in resonance” or “hybridized” [22], meaning that the eigenstates occupy both sites about
equally. Therefore, the presence of many resonances eases transport across different portions
of the system, thus leading to ergodicity. Given this simple construction, it is tempting to
generalize this idea to N × N matrices of arbitrary size N , saying that if there are M sites
j = {1,2, ..., M} such that v0 j ≳ ϵ j − ϵ0, then the zeroth site should be “in resonance” with
∼ M other sites, and the corresponding eigenstate should have at least ∼ 1 + M relatively
large components in the coordinate basis; this principle has found an extensive use not only
in the studies of a single-particle localization [23–26] but also in the studies of the mesoscopic
systems localization [27] and the many-body localization [28], including the ones considering
the Anderson localization in the Hilbert space [29–32]. For example, provided the distribution
of v has a typical scale vtyp, one can correspondingly define a typical critical value of the
energy difference ϵ2 − ϵ1 as ωcrit ∼ vtyp, meaning that all resonant sites should typically form
a miniband of width ωcrit and, hence, the typical number of such resonant sites should be of
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the order of
M ∼ωcrit/δϵ ∼ vtyp/δϵ , (2)

with δϵ being the mean onsite energies spacing. This generalization provides the lower-bound
estimation for the number of sites where the eigenstate has a relevant weight and it is usually
used in the thermodynamic limit N → ∞ to distinguish between localized and delocalized
states, giving rise to the necessary criterion limN→∞M(N)<∞ for the state to belong to the
localized phase known as the Anderson localization criterion. Indeed, according to Anderson
[5], the phase can be considered localized as long as the perturbation theory converges, and
the condition vtyp ≪ δϵ is the convergence criterion based on the first-order perturbation
theory.

However, the notion of resonance is sometimes referred also in relation to such concepts
as “fractal dimension”, “support set volume”, and “ergodic bubble”, and here is why: in its
extreme, a wave function ψ having the majority of its weight on Ω sites can be imagined as
having only Ω non-zero components of equal intensity ψ(i)2 = 1/Ω, leading to the partic-
ipation entropy value S = −

∑

iψ(i)
2 lnψ(i)2 = lnΩ. In real-world situations, we can still

introduce the support set volume Ω via its relation to entropy as, e.g., Ω = exp(S), but then
it would be as challenging to calculate it analytically as the entropy itself. On the other hand,
from the analogy with the toy eigenstate having Ω equal non-zero components, it is clear that
the ergodic volume Ω must be somehow related to the number of resonances M introduced
above. And, while Ω is indeed sometimes referenced as the “number of resonances” [33], and
thus it would be tempting to write Ω= 1+M , the actual relation is Ω≳ M + 1.

Hence, on the one hand, we have the easily calculable quantity M , which does not seem
to have a clear relation to any observable in finite-size systems and, strictly speaking, can only
be used in the thermodynamic limit to determine the localization transition. On the other
hand, we have the ergodic volume Ω, which is related to entropy and other commonly used
observables but cannot be easily accessed analytically. On top of that, there is an intuition
suggesting that there should probably be a more helpful relation between Ω and M than the
inequality above. In this work, we shed light on this relation.

The main result of the paper is a resonance criterion that doesn’t make use of arbitrary
thresholds, but rather is self-consistent and automatically avoids the issue. We also propose an
ansatz for the wave function supported independently by phenomenological and microscopical
considerations that, combined with the resonance criterion, allows us to compute observable
quantities such as the participation entropy and the support set dimension. We then test the
predictive power of our theory against numerical results on different types of Rosenzweig-
Porter models.

The rest of the paper is organized as follows. In Sec. 2.1, we discuss a relation between
resonance counting and the Jacobi diagonalization procedure, which leads us to the concept of
dressed hopping. In Sec. 2.2, we argue that the dressed hopping is not the end of the story and
propose a modification to the naive resonance condition given in the Introduction. In Sec. 3,
we discuss the common problems of the resonance conditions introduced earlier and propose
the phenomenological self-consistent criterion that solves them all; this is the main result of our
paper. Then, in Sections 4 and 5, we test our self-consistent approach to resonance counting
by numerically comparing it to the results of exact diagonalization for a range of random
matrix models. Finally, we re-derive the previously studied resonance conditions from the
exact microscopic size-increment equations in Sec. 6.1, provide an in-detail comparison of the
resulting approximations with the phenomenological results and exact numerics in Sec. 6.2,
and conclude the main part of the paper in Sec. 7.
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2 Background and motivation

2.1 Resonance counting and Jacobi rotations

The reason why M defined via Eq. (2) only provides the lower-bound estimation for Ω can be
seen from the picture of Jacobi rotation [34]. For clarity, let us briefly introduce the Jacobi
algorithm. The idea is very simple: given a symmetric matrix H, the iterative algorithm chooses
an off-diagonal element Hi j and applies a Givens rotation U(i, j) on the 2× 2 submatrix with
elements Hii , Hi j , H ji , H j j in such a way that [U(i, j)HU(i, j)†]i j = [U(i, j)HU(i, j)†] ji = 0.
This procedure, other than affecting the diagonal elements Hii and H j j causing level repulsion,
will also affect all the matrix elements belonging to the same row or column of the decimated
elements. This algorithm turns out to be effective in addressing properties in localized single-
particle [35] and many-body quantum systems [20] and in well-thermalizing models [36].
Let us mention that different choices of the elements to decimate can be made. By choosing
the current largest element one guarantees fast convergence, but in our setting it is useful to
pick the off-diagonal element Hi j for which Hi j/(Hii −H j j) is largest, representing the largest
current resonance. This choice may not be the most efficient from the numerical point of view
but, in some contexts, allows building successful analytic theories [23–26].

Consider a random matrix with a site having M0 resonances in the coordinate basis; that
would mean we need to perform at least M0 rotations to eliminate these resonances and obtain
the corresponding eigenstate. However, these M0 rotations may create new resonances, and
we will have to perform even more rotations involving our state to eliminate them. So, if one
wanted to improve the lower bound forΩ, they would need to consider the resonances not only
on the first but also on the latter steps of the Jacobi diagonalization procedure. Assuming the
subsequent rotations do not undo the preceding ones, the improved lower bound estimation
then takes the form Ω ≳ 1+

∑

i Mi , where Mi ’s are the numbers of resonances eliminated by
the subsequent rotations.

The presented picture of Jacobi rotations can be employed in the following way. Consider
a random matrix and pick a site; then, while performing Jacobi rotations, only apply them to
the rest of the system, i.e., diagonalize the submatrix excluding the chosen site. After this sub-
diagonalization, the hopping between our site and the rest of the system is expressed in the
eigenbasis of the submatrix, i.e., it is now “dressed” compared to the original “bare” hopping.
Thus, since the distribution of the dressed hopping elements contains information about the
ergodic volume of the submatrix, the number of resonances counted using this distribution
should provide a better estimation for Ω than the one utilizing the bare hopping distribution.

Another possible point of view on this construction is to consider the submatrix HN as the
original system and the chosen site as the addition, increasing the size of the original system
(see Fig. 1). So, if the addition of the new site does not disturb the eigenenergy En of the
original system too much, the corresponding eigenvector |n〉 does not redistribute too much
of its weight to the newly added site. In contrast, if some other eigenenergy Ek “resonates”
with the newly added site, this site would now likely be in the support set of the corresponding
deformed eigenstate of the extended system. Thus, for a system with M dressed resonances,
we expect to see the newly added site in the support sets of M submatrix-originating eigen-
states. Hence, the eigenstate originating from the additional site must occupy at least 1+ M
sites to be orthogonal to the rest of the eigenstates (it follows from counting the degrees of
freedom). Therefore we get another lower-bound estimation for the support set volume, but
this time, we expect it to be a much better bound than the one utilizing bare hopping instead
of the dressed ones.
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Figure 1: Pictorial representation of a site addition to a random graph (representing
a random matrix). Different shading on nodes and edges represents different on-site
energies and different hopping strengths. When a new site is added (right), a new
row and column are added to the matrix, containing the hopping strength from the
new site to the other sites (here represented in red shades).

2.2 Direct and indirect resonances

While the Jacobi rotations picture sheds some light on possible ways of improving the res-
onance counting procedure, there is still something missing from the picture. To see why,
consider the Gaussian Rosenzweig-Porter (RP) ensemble [37] having independent uniformly
distributed onsite energies Hii = ϵi ∈ [−w, w] and normally distributed hopping elements
Hi j = vi j with zero mean and size-dependent variance 〈vi j〉2 = N−γ: due to the Gaus-
sian distribution of the bare hopping, the dressed hopping has precisely the same distri-
bution as the bare one, as a linear combination of normally distributed random variables
is also normally distributed. Still, since the traditional resonance condition (1) predicts
the typical number of resonances M , Eq. (2), to be of the order of the ratio vtyp/δ with
δ ∼

p

〈Tr{H2}/N〉/N ∼ max{w/N , N−(1+γ)/2} now denoting the mean level spacing,1 the
scaling of the number of resonances M ∼ min{N1−γ/2, N1/2} correctly predicts the Anderson
localization transition γAT = 2 but severely underestimates the support set volume Ω ∼ M in
the delocalized phase, unable to correctly locate the ergodic-fractal transition γET = 1 even
in the thermodynamic limit.2 The reason for that may be the resonance criterion itself as it is
based on the analogy with the 2×2 matrices and the first-order perturbation theory. Hence, it
should probably be modified when one talks about matrices of arbitrary size in the delocalized
phase.

To find out the appropriate modification, notice a similarity between the site-addition pic-
ture from the end of Sec. 2.1 and the Thouless criterion of localization [41] based on compar-
ing the eigenenergies’ shift ∆ induced by the boundary conditions change to the mean level
spacing δ. Indeed, the addition of the new site can be seen as an alteration of the bound-

1The change of the meaning of δ reflects the change of the physical picture in mind: while in Sec. 1 we were
counting resonances between sites with certain onsite energies connected by bare hopping, here we count reso-
nances between an arbitrary site and the eigenstates of the rest of the system, connected by the dressed hopping.

2Which is not a surprise given the aforementioned relation between this resonance condition (1) and the An-
derson criterion of localization as opposed to the Mott’s criterion of ergodicity [38–40].
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ary conditions for the original system, which may cause an indirect (and mediated by the new
site) resonance between close-in-energy unperturbed eigenstates, even in the absence of direct
hopping between the two eigenstates [9]. Hence, the notion of the “sufficient disturbance” to
the original eigenenergies can be reconsidered: when a shift of the order of δ is enough for
the state to hybridize with the newly added site, it looks like an overkill to require the shift ∆
to be of the order of ω due to the direct resonance paradigm from Sec. 1.

To formulate the corresponding resonance condition mathematically, consider the ex-
tended (N+1)×(N+1) Hamiltonian HN+1 and write the corresponding eigensystem equation
in the block form as

HN+1 |E〉=





HN |v〉

〈v| ϵ









PN |E〉

ψE(ϵ)



= E





PN |E〉

ψE(ϵ)



= E |E〉 . (3)

In the above expression HN is the Hamiltonian of the original N × N system, |v〉 is a hopping
column vector connecting the new site to the original system, ϵ is the new site’s onsite energy,
E and |E〉 are the extended Hamiltonian’s eigenenergy and eigenstate, PN is a projector to
the original system’s Hilbert space, and ψE(ϵ) is the eigenstate’s amplitude on the new site,
i.e., |ψE(ϵ)|2 = 〈E| (I− PN ) |E〉, with I being the identity matrix. Then, acting in the spirit of
Gaussian elimination, i.e., expressing ψE(ϵ) from the eigensystem equation as

ψE(ϵ) =
〈v|PN |E〉

E − ϵ
, (4)

and substituting it to the equation HN PN |E〉+ψE(ϵ) |v〉 = EPN |E〉, one finds that PN |E〉 sat-
isfies the (nonlinear) eigensystem equation Heff (E)PN |E〉 = EPN |E〉 with the effective Hamil-
tonian

Heff (E) = HN + Veff (E) = HN +
|v〉 〈v|
E − ϵ

. (5)

Hence, after linearizing the equation by substituting E with the original Hamiltonian’s eigenen-
ergy En, HN |n〉= En |n〉, we get from the perturbation theory for the linearized effective Hamil-
tonian Heff (En) that

E − En =∆n ∼



n
�

�Veff (En)
�

�n
�

∼ v2
n/ωn , (6)

where vn = 〈n|v〉 is the hopping vector’s component in the eigenbasis |n〉 of HN , andωn = En−ϵ
is the difference between the original system’s eigenenergy under consideration and the new
site’s onsite energy. Then, the new Thouless-inspired resonance condition takes the form

v2
n ≳min{ω2

n,ωnδ} , (7)

where the term ω2
n in the r.h.s. appears due to the necessity of counting also the direct

resonances between the newly added site and the subsystem’s eigenstates having the clos-
est eigenenergies to the site’s onsite energy. In contrast to Eq. (1), the resonance condition
(7) applied to the RP model with 1 < γ < 2 predicts the number of resonances to scale as
M ∼ ωcrit/δ ∼ v2

typ/δ
2 ∼ N2−γ and gives the correct ergodic-fractal transition threshold at

γET = 1 (M ∝ N , the volume law) as well as correct Anderson localization transition at
γAT = 2 (M∝ N0, finite support).

The reason why one should include the indirect resonances in the picture and relate the
total number of all such resonances to the support set volume is the same as in Sec. 2.1, i.e.,
it is justified by counting the degrees of freedom. The only change is in the definition of
the “sufficient disturbance” of the original eigenenergies: if the site’s addition can cause two
eigenenergies of the original system to collide and the corresponding eigenstates to hybridize,
it is reasonable to expect this site to be a part of their support sets.

6
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3 Self-consistent resonance condition

While the resonance condition (7) looks more grounded than Eq. (1), they both have several
problems in common. One of the problems is the threshold problem: what does “≳” actually
mean? Without answering this question, one can only estimate the scaling of M but cannot
unambiguously compute the prefactor: while deriving Eq. 7, should we define the event of
resonance as∆> δ, or as∆> δ/2, or as anything else? Moreover, the prefactor itself has little
value unless the finite-size number of resonances M is linked to some measurable observable,
and this is the second common problem of resonance counting defined via conditions Eq. (1)
and Eq. (7): given the value of M , how to calculate, e.g., the participation entropy S? To
answer these questions, notice that, so far, the notion of resonances has always been related
to the energy spectrum and eigenenergies shifts, while the target observables like Ω or S are
the properties of the wavefunctions. Hence, it seems reasonable to redefine the notion of
resonances such that it would be directly linked to the wavefunctions’ shape, which is what
we do in the present section.

Consider the exact expression (4) for the occupation of the newly added site; after approx-
imating PN |E〉 by the unperturbed eigenstate |n〉 of Hn, we obtain the perturbation theory
result for the occupation as

ψn(ϵ)
2 ∼

v2
n

(En − ϵ)2
=

v2
n

ω2
n

. (8)

For each particular realization of the random Hamiltonian under consideration, the approxi-
mation (8) may or may not hold independently of the phase our system is in as the approxima-
tion’s applicability is only related to the very values of v2

n andω2
n; for more detailed discussion

of this fact, see Sec. 6.1. In other words, while v2
n/ω

2
n is small enough, the perturbation theory

works, but it breaks down if this ratio becomes larger than some threshold. The threshold is
there to omit the divergence of v2

n/ω
2
n at smallω’s, i.e., due to the normalization condition, and

the dominant contribution to the normalization of the wavefunction is commonly attributed
to the support set [42] consisting of strongly hybridized sites with roughly equal occupations,
i.e., the ergodic bubble or the head of the wavefunction; here and below, the terms “support
set”, “ergodic bubble”, and the “wavefunction’s head” will be used interchangeably due to their
synonymous meaning. Based on this idealized picture, we conclude that the occupation of the
newly added site by the eigenstate ψn should look like

ψn(ϵ)
2 ∼

¨

ψ2
head , v2

n/ω
2
n > C/Ω ,

v2
n/ω

2
n , v2

n/ω
2
n < C/Ω ,

(9)

where ψ2
head is distributed as components of a fully ergodic eigenstate, Ω is the number of

sites in the support set,3 and C is the total weight of the state concentrated in its head, i.e.,
C = Ω




ψ2
head

�

(see Fig. 2 for a visual representation of ψ2). From this point of view, the
probability of a resonance can be unambiguously defined as the probability for the newly
added site to become part of the perturbed eigenstate’s head, and the corresponding resonance
condition takes the form

v2
n >ω

2
nC/Ω , (10)

where C and Ω should be self-consistently determined from the equations

C = 1− (N + 1−Ω)



v2
n/ω

2
n

�

tail , Ω= 1+ N P(Ω, C) . (11)

Here, P(Ω, C) is the probability for Eq. (10) to hold (i.e., the probability of resonance), while
the averaging 〈...〉tail in the expression for C is calculated only over the values of the ratio v2

n/ω
2
n

3Not to be confused with the relation Ω = exp(S) briefly mentioned in Sec. 1; here and below, Ω has a similar
physical meaning but a more complicated relation to S which is discussed in the present section.
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C

ω
υ

Ω N − Ωsites sites
C
Ω

Ω
C

∼ υ2

ω2

ψ2

Figure 2: Visual representation of the wavefunction according to Eq. Eq. (9). It can
be represented as split into two parts: the head, having support on Ω sites and taken
as a Haar random vector, and the tail, where there are no resonances and one can
use the perturbation theory expression.

which do not exceed C/Ω. The above equations are easily obtained: the number Ω of sites in
the head is simply given by the number of resonances, N times the probability of resonance,
plus “1” standing for the newly added site.4 On the other hand, one minus the average value
of ψ2

n in the tails times the number of sites in the tails gives the total weight C in the head. A
microscopic derivation of Eq. (10) can be performed via the secular equation and we discuss
it in Sec. 6, where we also highlight the connection with the resonance condition Eq. 7.

As one can see, the self-consistent resonance condition does not have the threshold problem
as the threshold is determined self-consistently and has a clear physical meaning. Indeed,
equating the l.h.s. and the r.h.s. of Eq. (10) and using Eq. (6), we see that, in the borderline
case between resonant and non-resonant, the energy shift∆ is of the order ofωcritC/Ω∼ Cδ;
so, the value of the threshold is equal to C , the total eigenstate’s weight attributable to the
resonant sites. However, since the definition ofωcrit requires the existence of a typical scale of
the dressed hopping distribution, one should not understand this threshold picture too literally
but rather just use the self-consistent approach to resonance counting as described above.

Another advantage of this approach is its immediate connection to measurable observables
like participation entropy. Indeed, provided all sites of the system are statistically equivalent,
one can readily calculate such quantities using Eq. (9) as the ansatz for the wavefunction com-
ponents. In this case, the distribution of ψ2

head can be modeled by, e.g., the beta distribution,
as it is the distribution of the components of the Gaussian Orthogonal/Unitary/Symplectic
Ensemble Hamiltonian’s eigenstates, see App. A.

To conclude the Section and for further convenience, we provide here the analytical expres-
sions for the probability of resonance P(Ω, C), the mean tail’s occupation




v2
n/ω

2
n

�

tail entering
the equations Eq. (11), and the participation entropy calculated using the ansatz Eq. (9). For
simplicity, consider the eigenstates in the middle of the spectrum and put En = 0 so that
|ωn| ∼ |ϵ|; then, assuming the onsite energies to be uniformly distributed between ±w, we get
the probability for v2

n to be larger than ω2
nC/Ω as

P(Ω, C) =

∫ w

0

dω
w

∫ ∞

ω2C/Ω
pv2(ξ)dξ= 1−

∫ w2C/Ω

0

dξpv2(ξ)

�

1−

√

√ ξΩ

w2C

�

, (12)

4More concretely, this “1” comes from the fact that the approximation (8), being indexed by n = 1...N , can
approximate at most N out of the N+1 eigenstates of the extended system as it cannot approximate the eigenstate
adiabatically connected with the one localized on the new site in the limit vk → 0 for all k. By the adiabatic
continuity, this special eigenstate always has (one of) the largest occupation(s) of this site and hence always
counted as a part of the head. For more details on this, see Sec. 6.1 and Fig. 12b.
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where pv2(ξ) is the probability distribution function (PDF) corresponding to the distribution
of the dressed hopping elements squared. The mean tails occupation can be obtained similarly
and takes the form

�

v2
n

ω2
n

�

tail

=

∫ w2C/Ω

0

dξpv2(ξ)

∫ w

p
ξΩ/C

dω
w
ξ

ω2
=

∫ w2C/Ω

0

dξpv2(ξ)

�√

√ ξC
w2Ω
−
ξ

w2

�

. (13)

Finally, the specific mean tail’s participation entropy stail =



−(v2
n/ω

2
n) ln

�

v2
n/ω

2
n

��

tail becomes

stail = −
∫ w2C/Ω

0

dξpv2(ξ)

�√

√ ξC
w2Ω

�

ln
�

C
Ω

�

− 2
�

+
2ξ
w2
(1+ ln w)−

ξ lnξ
w2

�

, (14)

and the total participation entropy for the beta-distributed head components takes the form

S = Ω shead + (N + 1−Ω) stail = C (H (Ω/2)−H(1/2))− C ln(C) + (N + 1−Ω) stail , (15)

where H(Ω/2) is the Harmonic number, and shead is calculated in App. A.

4 Analytical study of the Gaussian Rosenzweig-Porter model

Now, after having the improved resonance condition at our disposal, let us try it on the Gaus-
sian Rosenzweig-Porter model, which is defined as

HGRP = H0 + V , (H0)i j = εiδi j , εi ∈ [−w, w] , V = N−γ/2HGOE , (16)

where the elements of HGOE are i.i.d. Gaussian r.v.s, with zero mean and unit variance. This
model has a non-trivial phase diagram, displaying, irrespectively of the value of w, an ergodic
phase for γ < 1, a fractal phase for 1 < γ < 2, and a localized phase for γ > 2 [37, 43].
The main advantage of this model for our purposes is that the dressed hopping distribution is
known exactly and, as it has already been mentioned in Sec. 2.2, coincides with the distribution
of the bare hopping. Therefore we can directly substitute the PDF of the normal distribution
to Eqs. (12) and (13), numerically solve Eqs. (11) and, using Eq. (9) with the beta-distributed
head (see App. A), compute the participation entropy S(N) and the related quantities such as
the support set dimension

D(N) =
S(N)
ln(N)

, (17)

and the corresponding beta-function (see Sec. 4.1 for details)

β(N) =
d ln(D)
d ln(N)

; (18)

the results are depicted in Fig. 3, and we discuss in some more detail the properties of the
β-function in Sec. 4.1, as it is a new prediction showing some unexpected features. The code
that performs the analysis just described and that we used for producing the results reported
in the next paragraphs can be found in the GitHub repository in Ref. [44].

Let us mention that the above definition of the support set dimension in Eq. (17) (which is
just the fractal dimension Dq with q = 1) is commonly used in the literature [43,45], but differ-
ent definitions are possible, e.g. the differential support set dimension D(N) = dS(N)/d ln(N),
which was used in Refs. [33,46] for addressing the renormalization group flow in the Ander-
son model. The advantage of D(N) consists of having milder finite-size effects, albeit being
numerically less stable, because of the presence of the derivative. In the thermodynamic limit,
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Figure 3: The participation entropy (left panel) and the support set dimension’s beta
function (right panel) for the Gaussian RP model with w = 1 obtained using exact
diagonalization (points and broken lines) and the self-consistent resonance criterion
(continuous curves). For the latter, the size varies from N = 24 to N = 2100 − 2300,
depending on γ. Also, the dashed lines on the right panel show another analytical
prediction for the same quantity derived in App. B based on the ideas from Ref. [47];
for further discussion of this result, see App. B.

the two quantities are equivalent, and here, since we do not aim at reducing the finite-size
effects but at understanding them, we choose to work with Eq. (17) for better numerical sta-
bility and easier comparison with the literature on Rosenzweig-Porter models. As one can see,
the self-consistent resonance condition (10) not only correctly reproduces the thermodynamic
limit phase diagram but also qualitatively captures the finite-size effects.

An intriguing and somehow unexpected behavior of the total head’s weight C is given in
Fig. 4: as one can see, this quantity exhibits substantial finite size effects which can be observed
even at N = 2100. In addition to that, C has two limiting thermodynamic values corresponding
to the ergodic/localized phases (C = 1) and non-ergodic delocalized (C = 0.5) phases, while,
at the transition points γAT = 2 and γET = 1, C saturates at intermediate w-dependent values.

4.1 The beta-function of the Gaussian Rosenzweig-Porter model

Let us discuss a bit more in detail the analytical prediction for the β-function of the Gaussian
RP model. First of all, as we already emphasized, it matches the numerical results at a finite
size, and therefore, its predictions are reliable. It is natural to compare it with the results
obtained for the Anderson model on Random Regular Graphs [33], in finite dimension [46],
and in many-body localization [48], as there are interesting differences.

Let us first mention some basic properties. The support set dimension D is bounded,
0 ≤ D ≤ 1, while it is not true in general at finite size for the differential support set di-
mension D; see, e.g., the behavior of the participation entropy for γ > 2 in the left panel of
Fig. 3, where its slope is negative and, hence, D < 0. Also, at finite size, the flow curves have
to have an infinite slope when approaching the β = 0, in order to cross it for a finite value
of the system size. If, instead, the slope is finite, the β = 0 line can be reached only in the
thermodynamic limit. We can see in Fig. 3 this feature. Let us also remark that, as expected,
for γ ∈ (1,2) the termination point of the RG flow occurs at 0< D < 1, signaling the presence
of the fractal phase. For γ > 2, the fractal dimension in the thermodynamic limit vanishes;
interestingly enough, the β-function value in the thermodynamic limit is negative, and it’s
magnitude increases with γ. More specifically, estimating this limiting value directly from the
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Figure 4: The total head’s weight C according to the solution of Eq. (11) for w = 1.
Given that the value of C can be associated with the threshold value for the indirect
resonance condition (7), we can conclude that Eq. (7) should also work fairly well
even without the self-consistent equations as 0.5≲ C ≲ 1.

perturbation theory (which works very well in the localized phase with γ > 2), we get

S(N) = N



−ψn(ϵ)
2 ln
�

ψn(ϵ)
2
��

∼ N

 

c
vtyp

w
− 2

∫ ∞

vtyp

dω
v2

typ

ω2
ln

v2
typ

ω2

!

∝ N1−γ/2 , (19)

where c ∝ N0 stands for the head contribution corresponding to the (unlikely) event of
|En−ϵ|=ω≲ vtyp = N−γ/2 happening with the probability vtyp/w. This suggests the presence
of a line of fixed points (D = 0,β = 1 − γ/2) in the localized phase, see Fig. 3, similarly to
what happens in the Anderson model on RRGs [33]. Let us also notice that the analytical
predictions of Ref. [47] are not valid in the localized regime (see also App. B), as visible from
the dashed lines.

Let us now discuss some differences with the RG flow in the Anderson model. Our aim
is not to draw connections between these models, as there is no theoretical reason for them
to have similarities in a renormalization group sense, but just to describe the differences the
models display. In Refs. [33, 46] the authors describe the full renormalization group flow
for the differential support set dimension in the Anderson model, both on Random Regular
Graphs and in finite dimensions. From the behavior of the β-function, the authors verified
the one-parameter scaling hypothesis in both cases in the ergodic regime. In the present case,
there cannot be one-parameter scaling in the fractal phase, by definition. But there is another
interesting distinction: in the Anderson model, in the ergodic phase, the differential support
set dimension displays a minimum and then saturates to the ergodic value D = 1 when the
system size is increased. In the Gaussian RP model, the opposite happens in the fractal phase
with the plain support set dimension D, which has a maximum at very small sizes before
flowing to the saturation value.

5 Resonance counting in other Rosenzweig-Porter models

In this Section, we extend the results previously shown for the Gaussian Rosenzweig-Porter
model to other random-matrix ensembles, still displaying a localization transition. However,
for non-Gaussian cases, we are not able to compute explicitly the distribution of dressed hop-
pings, and thus we need to solve numerically the self-consistent resonance condition (10).
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Since our ultimate goal is to address the properties of the Anderson model, after a consistency
check we will focus on Rosenzweig-Porter models resembling features of the Anderson model
on random graphs.

Let us briefly explain how we numerically solve the self-consistent equations from Sec. 3.
The main goal of the numerical solution is that of having the correct distribution of dressed
hopping, since the analytical computation of the distribution lies beyond the scope of this pa-
per. To do so, we numerically compute the exact eigenvectors |n〉 and eigenvalues En of many
samples of random matrices. We then collect the corresponding samples of dressed hoppings
vn = 〈n|v〉 by independently sampling the new hopping vectors |v〉, and the energy differences
ωn = En−ε by independently sampling new onsite energies ε’s, ultimately obtaining a collec-
tion ofψ2

n = v2
n/ω

2
n. Once a sufficiently large sample (let us say of size m) ofψ2

n’s is collected,
we sort it in ascending order and, while iterating through the sample with the index k, we
compute the “current” P, Ω, and C as

P(k) = 1− k/m , Ω(k) = 1+ N P(k) , C(k) = 1− (N + 1−Ω(k))〈ψ2
j 〉 j<k , (20)

where k is the current position in the sample and 〈...〉 j<k represents the average of the elements
up to the k-th. For each k, we check whetherψ2

k > C(k)/Ω(k); when this condition is satisfied
for the first time, we compute the entropy in the tails as

stails = −
1
k

k
∑

j=1

ψ2
k logψ2

k , (21)

and use the current values of Ω and C to obtain the expression for the total entropy according
to Eq. (15). The code that performs the analysis just described and that we used for producing
the results reported in the next paragraphs can be found in the GitHub repository in Ref. [44].

5.1 A further check on Gaussian Rosenzweig-Porter

As a first check, we compute numerically the probability of resonances, and consequently the
participation entropy, for the Gaussian Rosenzweig-Porter model (that we solved analytically
in Sec. 4). As it should, the match for participation entropy and support set dimension between
exact diagonalization and numerical resonance counting due to the self-consistent resonance
condition is remarkably good, as shown in Fig. 5.

5.2 The log-normal Rosenzweig-Porter model

Let us now take a more complicated Rosenzweig-Porter model, called log-normal Rosenzweig-
Porter model. It is defined by the matrix ensemble

HLNRP = H0 + V , (H0)i j = εiδi j , pV (v)∝
1
|v|

exp

¨

−
ln2(|v|/N−γ/2)

2p ln
�

Nγ/2
�

«

, (22)

where εi is, again, uniformly distributed, εi ∈ [−w, w]. Setting p = 1, one obtains a phase
diagram according to which the system is ergodic for γ < 4 and localized for γ > 4, with
{p = 1,γ = 4} being a tricritical point on the phase diagram in the variables {p,γ} [43, 49].
The interest in the log-normal RP model resides in its similarity with the Anderson model
on Random Regular Graphs. Indeed, it has been shown that the distribution of the effective
long-range hopping in the Anderson model on RRGs is approximately given by the log-normal
distribution with p = 1 [38].

We show in Fig. 6 the comparison between the analytical prediction following from Eq. (10)
and the numerical results coming from exact diagonalization. We can notice that the qualita-
tive behavior of the numerical and analytical results is the same, and, despite the numerical
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Figure 5: Comparison between exact diagonalization (solid lines) and analytical pre-
diction (dashed) for the Gaussian Rosenzweig-Porter model. (Left) Participation en-
tropy. (Right) support set dimension.

4 5 6 7 8 9 10 11
log2N

0

1

2

3

4

5

6

7

S

LNRP

γ = 3.00

γ = 3.50

γ = 4.00

γ = 4.50

γ = 5.00

4 5 6 7 8 9 10 11
log2N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D

LNRP

γ = 3.00

γ = 3.50

γ = 4.00

γ = 4.50

γ = 5.00

Figure 6: Comparison between exact diagonalization (solid lines) and analytical pre-
diction (dashed) for the log-normal Rosenzweig-Porter model. (Left) Participation
entropy. (Right) support set dimension (17).

values being different (which is due to the fact that the correct distribution ansatz for ψ2
head

is unlikely to be as simple as in the Gaussian RP case), the numerical and analytical curves
tend to approach each other as the size grows, hinting that the physical behavior is correctly
captured by our analytical description also in this case.

In particular, notice that, for γ= γc = 4, the analytical results for D display a minimum as
the numerics do, for roughly the same values of the systems size. The fact of the minimum’s
existence is non-trivial. Indeed, as the function D(N ; p,γ) is expected to be an analytic and,
hence, smooth function of all the parameters at finite system sizes, the minimum cannot im-
mediately disappear at γ > γc or γ < γc , implying the existence of a vast range of possible
behaviors of the support set dimension at larger sizes. Assume, for example, that the criti-
cal point of the LN-RP model is localized; this assumption seems reasonable as the model is
claimed to be a proxy for the Anderson model on RRGs, which is localized at its critical point.
However, this would imply that the critical curve D(N)must have at least one more extremum
at larger sizes – a maximum. Moreover, by the function’s analyticity, this maximum would
also be present in the close-to-criticality ergodic phase, i.e., at γ < 4, resulting in the support
set dimension D(N) having at least three extrema at large but finite sizes in this phase, see
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Figure 7: Sketch of the dependence of the support set dimension D on the system
size L = log N . In both cases, log Nmax represents the maximum system size avail-
able from exact-diagonalization (see Fig. 6), while the part in the shaded region
is speculative and represents the object of our discussion. (Left) As suggested by
the numerical data and from previous results, for γ = γc the model is ergodic in the
thermodynamic limit (differently from the RRG). This leads to the presence of a max-
imum in D at large sizes, as explained in the main text. For some γ, minimum and
maximum merge in a saddle. (Right) Assuming the critical point is localized, as a
consequence of continuity in γ there must be an additional maximum and minimum
for γ≲ γc , which is harder to comprehend.

the right panel of Fig. 7. On the other hand, if one would assume the critical point to be er-
godic or at least fractal with the limiting support set dimension D(N =∞) depending on w,
it would be possible to avoid the introduction of an additional extrema in the ergodic phase;
the localized one though would still have to have at least two extrema, with the maximum
emerging from N =∞ as γ > γc deviates from its critical value, see the left panel of Fig. 7. In
fact, there are indications that the critical point of the log-normal Rosenzweig-Porter model is
indeed delocalized; it can be inferred from, e.g., the self-consistent graphical solution for the
LN-RP limiting support set dimension presented in [43], though the tricritical point lies at the
very boundary of the graphical methods’ applicability.5 This fact, together with the complex-
ity of the finite-size effects the model must show to have the tricritical point localized, poses
questions about the extent of similarities between the LN-RP model and the Anderson model
on RRG.

5.3 The Bernoulli Rosenzweig-Porter model

As a further step in the direction of the Anderson model on RRG, let us introduce the Bernoulli
Rosenzweig-Porter model. It essentially consists of an Anderson model on an Erdos-Renyi
graph [43], in the sense that, given N sites, each of them is connected to another one by a unit
hopping with an assigned probability that, in our case, is K/N ; this also motivates the name
“Bernoulli Rosenzweig-Porter model”. This choice allows us to have, on average, connectivity
K , as in the RRG, with the advantage of having the possibility of adding a single site without
having to reshuffle the full adjacency matrix of the graph. On the other hand, the graph is not
strictly regular, but only on average.

The Hamiltonian is therefore

HER = H0 + V , (H0)i j = εiδi j , εi ∈ [−w, w] , (23)

5In [43], the equation (51) defines a quantity c, related to the support set dimension as D = 1 − c, which
vanishes as one approaches the tricritical point from either direction on the phase diagram, Figure 11, meaning
that the limiting value of D at this point is 1, corresponding to the ergodic phase.

14

https://scipost.org
https://scipost.org/SciPostPhys.18.3.090


SciPost Phys. 18, 090 (2025)

4 6 8 10 12
log2N

1

2

3

4

5

6

7

S
BRP

W = 5.00

W = 10.00

W = 15.00

W = 20.00

W = 25.00

4 6 8 10 12
log2N

0.1

0.2

0.3

0.4

0.5

D

BRP

W = 5.00

W = 10.00

W = 15.00

W = 20.00

W = 25.00

Figure 8: Comparison between exact diagonalization (solid lines) and analytical pre-
diction (dashed) for the Bernoulli Rosenzweig-Porter model. (Left) Participation en-
tropy. (Right) support set dimension.

with V being the adjacency matrix of an Erdos-Renyi graph, i.e., with Vi j = 1 if i is connected to
j and zero otherwise. To the best of our knowledge, the Bernoulli Rosenzweig-Porter model has
never been introduced before (although similar models have been considered, e.g. Ref. [50]),
so we do not know its properties such as the position of the localization transition precisely.
We expect it to be comparable with the value Wc = 18.17 of the RRG [51]. Our goal here is to
test our analytical approximations against the exact numerical results, and the comparison is
shown in Fig. 8.

Once again we can see that the qualitative picture is correctly captured by our resonance
criterion, despite the quantitative difference between numerical and analytical results. This
disagreement is most probably a consequence of the ansatz for the heads of the eigenstates,
which might be not optimal for sparse matrices. However, the main goal is achieved also in
this case: our self-consistent resonance criterion captures the finite-size effects qualitatively
correctly, and we hope to find the quantitative correspondence also improving with size when
the larger sizes become accessible to exact diagonalization.

6 Microscopic approach to resonance criteria

The resonance conditions Eq. (1) and Eq. (7) were introduced from the energy spectrum point
of view, while the self-consistent condition (10) was based directly on the spatial eigenstates’
configuration. Still, both Eq. (7) and Eq. (10) can correctly predict the full phase diagram in the
thermodynamic limit and, for the Gaussian RP model, even give qualitatively similar values
of Ω.6 In this section, we take a step back and analyze the resonance conditions described
previously from a microscopic viewpoint, performing a careful asymptotic analysis of the exact
equations for eigenenergies and eigenstates of the extended system. This allows us to give an
even more solid motivation to our results.

6It can be inferred from Fig. 4 and the applicability of the threshold picture to the Gaussian RP model, suggesting
that the threshold C is of the order of 1 and does not significantly change with size, implying a rough equivalence
between (7) and (10) in this particular case.
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6.1 Asymptotic analysis of the exact size-increment equations

To start with, suppose we know everything about the Hamiltonian H0 and the arbitrary (not
necessarily small) perturbation V ; our task is to find the eigensystem of H = H0+V . It can be
done as follows: first, we rewrite the eigensystem equation (H0 + V ) |E〉= E |E〉 in the form

|E〉= G0(E)V |E〉 , (24)

with the resolvent G0(E) defined as G0(E) = (E −H0)−1; second, we obtain the secular equa-
tion as ||G0(E)V − I|| = 0. If V is a rank-one matrix, e.g., V = |g〉 〈g|, it gives the well-known
secular equation of the Richardson model [52–56], 〈g|G0(E)|g〉 = 1. If V has rank two,
V = |u〉 〈v|+ |v〉 〈u|, the secular equation takes the form









G0
uv(E)− 1 G0

uu(E)
G0

vv(E) G0
vu(E)− 1









= 0 , with G0
uv(E) = 〈u|G

0(E) |v〉 . (25)

If the (N + 1) × (N + 1) Hamiltonian H0 represents the system of N connected sites with
eigenenergies En together with one disconnected site with onsite energy ϵ, the Hamiltonian H
with

V = |v〉 〈ϵ|+ |ϵ〉 〈v| , (26)

represents the system where this lonely site |ϵ〉 is connected to the rest of the system via
the hopping vector |v〉. In other words, if we consider the connected N × N block of H0 as
the Hamiltonian HN of the original N -sites system, the Hamiltonian H can be seen as the
Hamiltonian HN+1 of the extended system, and the exact secular equation Eq. (25) provides
the way to study the evolution of the eigenenergies as we grow the system size site by site.
The secular equation then takes a simpler form G0

vv(E) = 1/G0
ϵϵ(E) = E − ϵ, or, explicitly,

N
∑

n=1

v2
n

E − En
= E − ϵ , (27)

where vn = 〈n|v〉 is the component of the hopping vector |v〉 in the eigenbasis of HN , i.e., the
dressed hopping.

As one can see from Fig. 9, the equation (27) has N +1 solutions for E, each of those lying
in-between two neighboring eigenvalues En of the original system. This observation suggests
rewriting of Eq. (27) in the form

∆k = v2
k

�

 

Ek − ϵ +∆k −
∑

n̸=k

v2
n

ωkn +∆k

!

, (28)

where ωkn = Ek − En, and ∆k = E − Ek is the new unknown. For any fixed k, there are N + 1
solutions for ∆k, as it should be; however, the goal behind this rewriting is not to find all
roots for fixed k, but to find the least-absolute-value solutions for each k. Such solutions never
exceed the corresponding level spacing and can be either of the order of the typical level
spacing δ or smaller, fitting in Thouless’s picture of eigenvalues shifts from Sec. 2.2. Thus,
assuming ∆k≪min{ωk,k+1,ωk,k−1}, we can write an asymptotic version of Eq. (28) as

∆k ∼
v2

k

Ek − ϵ −
∑

n̸=k v2
n/ωkn +∆k(1+

∑

n̸=k v2
n/ω

2
kn)
=

v2
k

ωk +∆kΓ
2
k

, (29)

which leads to an easily solvable quadratic equation for ∆k, resulting in

∆k ∼ sign(ωk)

q

ω2
k + 4v2

k Γ
2
k − |ωk|

2Γ 2
k

. (30)
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Figure 9: An example of a graphical solution to Eq. (27) with ϵ = 0 for the Gaussian
RP model with γ = 1.5, N = 8, and w = 1; the red line is the equation’s right-hand
side, the blue curves represent the left-hand side, and their intersections represent
the solutions, E. The vertical dashed lines mark the eight eigenenergies En of the
original system.

Here, we chose the smallest ∆k and defined

ωk = Ek − ϵ −
∑

n̸=k

v2
n/ωkn , Γ 2

k = 1+
∑

n̸=k

v2
n/ω

2
kn . (31)

Finally, we can substitute this approximate solution to the roughened version ∆k ≪ δ of the
above approximation’s applicability condition∆k≪min{ωk,k+1,ωk,k−1} and obtain its explicit
form as

v2
k ≪ Γ

2
k δ

2 +ωkδ . (32)

If, in addition, ωk≫∆kΓ
2
k , instead of Eq. (30) we can get

∆k ∼ v2
k/ωk , (33)

which is asymptotically correct provided both v2
k/ωk≪ δ and v2

k/ωk≪ωk/Γ
2
k hold, i.e.,

v2
k ≪min{ω2

k/Γ
2
k ,ωkδ} . (34)

Here, one may notice a similarity between the approximation applicability condition (34)
and the indirect resonance condition (7) as they differ only by the definitions of ωk and the
factor 1/Γ 2

k in the r.h.s. of Eq. (34). To see how this observation allows relating the conditions
Eq. (7) and Eq. (10), let us now focus on the eigenstates but from the perspective of the exact
equation (24). Substituting Eq. (26) into Eq. (24), we get

|E〉= 〈ϵ|E〉
N
∑

n=1

vn

E − En
|n〉+ 〈v|E〉

1
E − ϵ
|ϵ〉 , (35)

where |n〉 are the eigenstates of HN corresponding to the eigenenergies En. Then, multiplying
Eq. (24) by 〈v| to get 〈v|E〉= 〈ϵ|E〉G0

vv(E) and using the secular equation Eq. (27) in the form
G0

vv(E) = E − ϵ, we get

|E〉= 〈ϵ|E〉

�

|ϵ〉+
N
∑

n=1

vn

E − En
|n〉

�

, (36)
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(a) The Gaussian Rosenzweig-Porter model with N = 27 and γ = 1.5; the on-site disorder is sampled
from the uniform distribution ϵ ∈ [−1, 1].

(b) The Bernoulli Rosenzweig-Porter model with K = 3, N = 27; the on-site disorder is sampled from
the uniform distribution ϵ ∈ [−15,15].

Figure 10: The validity check of Eq. (39). Each plot shows a single realization of a
random matrix from the corresponding ensemble, with no averaging taken. Different
continuous lines show the exact (N + 1)th site’s occupations ψ(ϵ)2 as functions of
the corresponding onsite energy ϵ; the legends show the indices of the considered
eigenstates. The points show Eq. (39); their color shows if the condition (32) in the
form |∆k| < min{|Ek − Ek±1|}/2 holds or not: green means it holds, and red means
it does not.
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from where, employing the normalization condition 〈E|E〉= 1, we obtain

ψE(ϵ)
2 = 〈ϵ|E〉2 = 1

�

�

1+
N
∑

n=1

v2
n

(E(ϵ)− En)2

�

=
dE(ϵ)

dϵ
. (37)

Here, E(ϵ) is one of the N + 1 branches of the solution of Eq. (27), and the very last equality
can be checked by directly differentiating Eq. (27).

Finally, by passing from E(ϵ) to ∆k(ϵ), isolating the term v2
k/∆

2
k from the rest of the sum,

multiplying the nominator and denominator by v2
k and using Eq. (28), we rewrite the r.h.s. of

Eq. (37) in the form

ψE(ϵ)
2 = v2

k

�





 

Ek − ϵ +∆k −
∑

n̸=k

v2
n

ωkn +∆k

!2

+ v2
k

 

1+
∑

n̸=k

v2
n

(ωkn +∆k)2

!



 , (38)

which is still exact but seems to be a bit more suitable for asymptotic analysis as it reminds
the Lorentzian form of the local density of states. To highlight the analogy even more, we can
assume Eq. (32) to hold, neglect ∆k where needed, and get

ψE(ϵ)
2 (32)∼

v2
k

(ωk +∆kΓ
2
k )

2 + v2
k Γ

2
k

, (39)

or, proceeding further with (34), get

ψE(ϵ)
2 (34)∼ v2

k/ω
2
k . (40)

As we can see, the indirect resonance condition (7) (or, rather, (34)) plays the role of the
applicability condition of the eigenstates’ perturbation theory expression (8) (or, rather, (40)).
The regularized occupation ansatz (9), in its turn, behaves similarly to the Lorentzian approx-
imation (39), so we expect 1/Γ 2

k to serve as a microscopic analog of the phenomenological
threshold C/Ω.

The numerical assessment of the approximation (39) is shown in Fig. 10. Looking at these
plots, one may notice a curious fact that could have been seen from the approximation’s deriva-
tion itself: each fixed-index curve plotted according to Eq. (39) approximates not one but two
eigenstates with neighboring eigenenergies! Indeed, the approximation led to Eq. (28) states
that the branch E(ϵ) corresponding to ∆k(ϵ) = E(ϵ) − Ek should be the closest one to Ek,
and this non-analytic closeness condition forces our approximation to jump between different
branches of E(ϵ): for the large negative ϵ the closest E(ϵ) is larger than Ek, while for the large
positive ϵ the closest E(ϵ) is smaller than Ek.

One more surprising thing one can notice from the comparison of the exact and approx-
imate occupations in Fig. 10 is that sometimes the points’ color turns red, signifying the ap-
proximation condition no longer holds, while the approximation still works pretty well. To
understand why, consider Fig. 11: due to the spread of the values of v2

n , terms from (27) with
relatively large values of v2

n are directly affecting not only their corresponding level spacings
but also some next neighbors’ ones. And, while, formally speaking, (39) can never hold for
∆k > δ, the rare large realizations of vk, providing vn’s with n close to k are much smaller,
force the corresponding asymptotic expressions to “jump” between different branches, effec-
tively describing an envelope of several different wave functions; see Fig. 12 for even more
impressive demonstration of this effect. However, the quality of this occasionally good en-
velope approximation inevitably degrades as ∆k grows because Γk and ωk do not contain a
valuable dependence on ∆k, which, eventually, cannot be ignored. In the next section, we
derive a correct applicability condition for this “envelope approximation” and show its con-
nection to the self-consistent resonance condition introduced in Sec. 3.
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Figure 11: A few branches of E(ϵ) corresponding to Fig. 10b; the solid lines represent
the exact branches, and the dashed horizontal lines mark the values of En. The points
are plotted according to Eq. (30).

6.2 Self-consistent probabilistic approximation

To start with, let us reconsider the transformations leading from Eq. (37) to Eq. (39), and try to
understand, without referencing the secular equation (27), why the Lorentzian approximation
can work beyond the range of applicability set by Eq. (32). When isolating the term v2

k/∆
2
k

in the exact occupation expression (37), we set the stage for separating the contribution of
this individual term in the sum

∑N
n=1 v2

n/(E− En)2 from the collective contribution of all other
terms. This means that the resulting approximation’s applicability should be decided by the
relation between the collective and individual contributions; hence, the applicability criterion
should look like

v2
k

∆2
k

≫ 1+
∑

n̸=k

v2
n

(∆k +ωkn)2
, (41)

where we did not rely on any approximation for∆k and just used its exact value. Also, we now
do not require∆k to be the least-absolute-value solution for a given k; instead, we fix a branch
of E(ϵ) and look at all possible expressions for it, E(ϵ) = Ek +∆k, k = 1, ..., N . Thus, if, for a
given ϵ and a fixed branch of E(ϵ), the condition (41) breaks down for all k, the approximation
of an individual contribution fails, and we find ourselves inside the head of the wavefunction
where the occupation is determined by the collective contribution. This would mean that the
r.h.s. of Eq. (41) is of the order of the corresponding inverse occupation 1/ψE(ϵ)2 for any k,
meaning that removing any single term from the sum does not significantly affect its value.
Given that we do not know how to write this collective contribution explicitly, we propose a
probabilistic analog of the exact condition (41) in the form

v2
k

∆2
k

≫ Γ 2
head , (42)

where we defined Γ 2
head as a random variable emulating the distribution of the r.h.s. of Eq. (41)

when its fluctuations with k are negligible. The corresponding probabilistic version of the
Lorentzian occupation approximation (39) is then

ψE(ϵ)
2 ∼

¨

1/Γ 2
head , ∆2

k/v2
k ≳ 1/Γ 2

head ,

∆2
k/v2

k , ∆2
k/v2

k ≪ 1/Γ 2
head .

(43)

In contrast to all other criteria and approximations discussed in Sec. 6.1, this pair cannot
be compared with an individual realization of an eigenstate, but it is designed to predict a
distribution of the tails’ components of the eigenstates.
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(a) The same eigenstates as in Fig. 10b approximated using Eq. (39) but in a linear scale. One can
clearly see that the red envelope describes the occupations almost perfectly despite (32) does not hold.

(b) The whole spectrum of the eigenstates for the same realization as in Fig. 10b and Fig. 12a with
the additional (N + 1)th occupation (black solid line) obtained from the normalization condition by
subtracting a sum of all other approximate occupations from one.

Figure 12: An illustration of how well (39) can work even beyond its mathematically
justified range of applicability (32). Notice that the Lorentzian approximations (39)
to the eigenstates of HN+1 are enumerated by the index k which takes only N values
corresponding to the eigenstates of HN ; hence, there is always one eigenstate which
can never be approximated directly by Eq. (39) but, providing (39) works well for all
other eigenstates, can be found from the normalization, as shown in the lower panel,
Fig. 12b. This eigenstate corresponds to the largest occupation, always counted as a
head, and corresponds to the “1+” part of the equations for Ω, e.g., (11).
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Figure 13: Comparison between different resonance conditions for the Gaussian RP
model at different γ’s (top raw) and the Bernoulli RP model at different w’s (bottom
row). The blue points (named “Indirect”) are computed using the indirect resonance
condition ∆k >min(|Ek−1 − Ek|, |Ek − Ek+1|) with ∆k from Eq. (30) to separate tails
from heads and using the Lorentzian approximation (39) to calculate C and S via
Eq. (11) and Eq. (15). The orange points (named “Self cons.”) are obtained using
the self-consistent criterion (10) and the equations below but with ωk calculated via
Eq. (31). The green points are obtained numerically using the exact eigenfunctions.

Let us now discuss how to estimate the distribution of ∆k. According to the exact expres-
sion (37), a site’s occupation is equal to the derivative of the corresponding eigenenergy with
respect to the site’s onsite energy. Hence, ψE(ϵ)2 = d∆k/dϵ, and we can integrate the r.h.s.
of Eq. (43) to get

∆k ∼

¨

ϵ/Γ 2
head + const. , ∆2

k/v2
k ≳ 1/Γ 2

head ,

v2
k/(Ek − ϵ)∼ v2

k/ωhead , ∆2
k/v2

k ≪ 1/Γ 2
head ,

(44)

where Ek is the integration constant. Because the above arguments do not allow an exact
calculation of this constant, we introduce ωhead similarly to how we did earlier with Γ 2

head,
i.e., as a random variable emulating the actual distribution of Ek − ϵ. Provided the width of
the distribution of Ek is small compared to the onsite disorder, one can assume ωhead to be
distributed as ϵ − E, where E marks the energy under consideration.

Finally, recalling that the piecewise form used in Eqs. (43) and (44) (and even in (9)) is
just a way to regularize the otherwise singular expressions, on can rewrite the newly derived
expression in a form closely resembling Eq. 39, namely, as

ψE(ϵ)
2 ∼

v2
k

ω2
tail + v2

k Γ
2
head

. (45)

Associating 1/Γ 2
head with ψ2

head from Eq. (8), we finally obtain the mathematical justification
for the extended range of applicability of the Lorentzian approximation Eq. (39) and realize it
is just the microscopic version of the self-consistent criterion phenomenologically introduced
in Sec. 3. In fact, we could have used this Lorentzian regularization instead of Eq. (9) already
there, but, given that it does not drastically improve predictions while significantly complicates
formulas, we prefer the piecewise regularization as given by Eq. (9).
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Table 1: Resonance conditions studied throughout the paper and their relations to
the applicability conditions from Sec. 6.1 and to each other.

Phenomenological condition Its microscopic analog Wave function profile

Direct, ∆≳ω, (1) – –

Indirect, ∆≳min{δ, v}, (7)
Applicability condition (34) Singular, (8) & (40)

Applicability condition (32) Lorentzian, (39)

Self-consistent, (10) Probabilistic condition (42) Regularized, (9) & (45)

As one final remark, let us get back to the threshold problem and its solution we discussed
in Sec. 3. As we mentioned there, provided the distribution of the dressed hopping has a
characteristic scale, the self-consistent resonance condition (10) is roughly equivalent to the
indirect resonance condition (7) derived from the prescription ∆ < Cδ, with C being the
correct threshold. However, as C is the total weight of the eigenstate’s head, it cannot be
larger than one. How is it then possible to claim that the self-consistent condition (10) can
explain the extended range of applicability of Eq. (39) when the corresponding ∆k clearly
exceeds the mean level spacing? The answer lies in the absence of the characteristic scale
of the Bernoulli RP’s dressed hopping distribution. Indeed, since the distribution is clearly
heavy-tailed, the threshold argument from the Sec. 3 is not applicable here, and the resonance
condition (10) for the Bernoulli RP model goes beyond the condition (7), which we can see in
the Fig. 13.

A summary of all the resonance conditions, eigenstate approximations, their applicability
conditions, and their interrelations studied throughout the paper, is given in Table 1.

7 Conclusion

In this paper, we have systematically addressed the concept of resonances, intending to bridge
the gap between the naive, physically intuitive definition and a predictive tool able to reliably
compute relevant quantities such as participation entropies and their corresponding fractal
dimensions. We have achieved this goal by introducing a self-consistent resonance criterion,
that has many advantages. First of all, it is physically grounded and formally justified, both
in terms of a perturbation theory expansion for the wave function of a new site added to the
system and via a controlled approximation of the exact size-increment equation describing
the site addition (see Sec. 6.1). Moreover, it is free from a problem that is typical of other
definitions of resonances: it does not make use of an arbitrary threshold to decide whether a
site is in resonance or not, but the self-consistency automatically amends this issue.

We have also proposed an ansatz for approximating the wave function, which is tightly
bonded to the resonances picture and distinguishes between components according to the
resonance criterion prescription: the support set components are approximated with Haar
random vectors, while the tails are approximated according to the second-order perturbation
theory. Within this ansatz, we could predict analytically the participation entropy and the
support set dimension of the finite size Gaussian Rosenzweig-Porter model, in perfect agree-
ment with the numerical results and with other approaches (see Ref. [47] and App. B). We
could also make new predictions for the β-function of the model. The analytical solution of
this model has been possible because of the known distribution of the dressed hoppings. We
have also tested our method on other, more complicated random matrix models, for which
the distribution of the dressed hoppings is not known, forcing us to compute it numerically.
Also in those cases, we have shown how our method captures correctly the behavior of the
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system, with the analytical predictions that seem to approach the numerical curves as the size
grows. However, for these other models, the (generic) ansatz we have proposed for the wave
function’s head’s distribution is not as suitable as it was for the Gaussian Rosenzweig-Porter
model, thus leading to a discrepancy in the numerical values; we believe this discrepancy can
be reduced by choosing a better, system-specific ansatz for the head’s distribution. We leave for
future work the goal of finding a more refined ansatz for the ergodic part of the wave function
and the analytical computation of the dressed hopping distribution.

Finally, the careful finite-size analysis we performed for the log-normal Rosenzweig-Porter
model raised questions about if it can actually serve as a proxy to the Anderson model on RRG,
and to what extent. As an alternative, we introduced the Bernoulli Rosenzweig-Porter model
which is expected to serve as a better proxy while preserving the simplicity of the RP models
and thus saving the hope of obtaining its analytical description, sooner or later.
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A Exact entropy for the rotational-invariant random matrices

In rotational-invariant random matrix ensembles such as the Gaussian Orthogonal Ensemble
(GOE), Gaussian Unitary Ensemble (GUE), or Gaussian Symplectic Ensemble (GSE), the eigen-
vectors, due to the rotational symmetry, are distributed uniformly over all directions, meaning
that the individual components’ distribution does not depend on the basis we are working on.
An example of a basis-independent vector distribution is a multivariate normal distribution
with a unit covariance matrix. However, the multivariate normal distribution does not respect
the normalization; hence, we take the normalized multivariate normal distribution, e.g., the
corresponding occupations |φ(i)|2 of the site i can be described by the expression

|φ(i)|2 =

∑β
α=1 x2

α(i)
∑β
α=1 x2

α(i) +
∑N

j ̸=i

∑β
α=1 x2

α( j)
, (A.1)

where N is the size of the matrix, xα(i) are the i.i.d. standard Gaussian random variables, and
β is the Dyson index (βGOE = 1, βGU E = 2, βGSE = 4). Thus, the distribution of |φ(i)|2 can
then be written as

pφ2(ν) =

∫ ∞

0

dxdrδ
�

ν−
x

x + r

�

χ2
β(x)χ

2
β(N−1)(r) , (A.2)

where χ2
k (x) stands for the PDFs of the chi-squared distribution with k degrees of freedom.

After taking this integral, one finds that pφ2(ν) ∝ νβ/2−1(1 − ν)β(N−1)/2−1; i.e., |φ(i)|2 is
distributed according to the beta distribution, |φ(i)|2 ∼ B(β/2,β(N − 1)/2). So, having the
explicit exact expression for the PDF of the occupations, we can obtain the exact expression
for the corresponding participation entropy as

Sβ(N) = −N



|φ(i)|2 ln |φ(i)|2
�

= H(βN/2)−H(β/2) , (A.3)

where H(x) is the Harmonic number.
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Due to their maximal ergodicity, the eigenstates of the rotational-invariant ensembles can
serve as a reasonable model for the heads of the more complicated ensembles’ eigenstates. For
example, for β = 1, the total entropy of such a head according to the ansatz Eq. (9) would be

Shead(Ω, C) = Ωshead = −Ω



Cφ2 ln
�

Cφ2
��

= CS1(Ω)− C ln C . (A.4)

B Another analytical approach to the Gaussian RP model

In the right panel of Fig. 3, we compare our analytical prediction for the support set dimension
beta function of the Gaussian RP model with the exact numerical results and with the analytical
results based on Ref. [47]. In this section, we summarize the idea of that paper and describe
how we apply it to our case.

The main idea of Ref. [47] lies in the ansatz for the distribution of the Gaussian RP eigen-
functions’ components which is composed of two parts: the Lorentzian local density of states
(“a Breit-Wigner formula with the spreading width Γ calculated by the Fermi golden rule”) and
the Gaussian fluctuations (“a local Porter-Thomas law”) on top of it. The distribution is then
reads as

pψE
(x) =

∫

ρ(ϵ)dϵ
p

2π 〈|ψE(ϵ)|2〉
exp

�

−
x2

2 〈|ψE(ϵ)|2〉

�

,



|ψE(ϵ)|2
�

∼
eC

(E − ϵ)2 + Γ (E)2
, (B.1)

where eC is a constant to find from the normalization, ρ(ϵ) represents a PDF of the onsite en-
ergies, and Γ (E)∼ πN1−γρ(E) providing γ > 1 and N ≫ 1. This ansatz has its problems: e.g.,
due to the infinite support of the Gaussian, it always gives a non-zero probability for the nor-
malization to be violated. But, for large enough N and γ<2,7 the corresponding effects should
be negligible, and this is what the authors of Ref. [47] prove with their beautiful numerics
using ρ(ϵ) ∝ e−ϵ

2/2. So, let us now use this ansatz to calculate the participation entropy
S(N) in the middle of the spectrum of the Gaussian RP model with the box-distributed onsite
energies.

First, let us compute the normalization constant eC using ρ(ϵ) = 1/2w for −w< ϵ < w and
ρ(ϵ) = 0 otherwise. From the requirement




ψ2
0

�

= 1/N where we explicitly put E to zero, we
find

1
N
=

∫ ∞

−∞
x2pψ0

(x)dx =

∫ w

−w

dϵ
2w

eC
ϵ2 + Γ 2

= eC
tan−1

�w
Γ

�

wΓ
=⇒ eC =

wΓ

N tan−1
�w
Γ

� , (B.2)

with Γ = Γ (0) = πN1−γ/2w; the relation between eC and C from the main text will be discussed
later. Next, we compute the participation entropy as

S = −N

∫ ∞

−∞
x2 ln

�

x2
�

pψ0
(x)dx

= N

∫ w

−w

dϵ
2w

∫ ∞

−∞

−x2 ln
�

x2
�

dϵ
p

2π 〈|ψE(ϵ)|2〉
exp

�

−
x2

2 〈|ψE(ϵ)|2〉

�

= N

∫ w

−w

dϵ
2w




|ψ0(ϵ)|2
� �

γ+ ln(2)− 2− ln
�


|ψ0(ϵ)|2
���

= γ+ ln
�

2/eC
�

− 2+ N eC

∫ w

−w

dϵ
2w

ln
�

ϵ2 + Γ 2
�

ϵ2 + Γ 2
,

(B.3)

7For γ > 2, the problem with the normalization becomes essential, leading to incorrect results evident in Fig. 3.
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where γ stands for the Euler gamma. The last integral can be expressed using a generalized
hypergeometric function (or a polylogarithm), and the result for the corresponding support
set dimension’s β-function can be seen as the dashed lines in the right panel of Fig. 3. As
follows from the comparison, the result is equivalent to ours for large N but deviates from the
numerical results and the self-consistent resonance counting prediction for intermediate sizes
as well as at the Anderson transition, γ= 2. A reason for this discrepancy may lie in the nature
of the Breit-Wigner approximation as it assumes the broadening Γ to self-average, while this
assumption fails at intermediate sizes, critical points, and localized phases.

Finally, let us link the γ-dependent quantity eC to the head’s weight C from the main text,
which appears to be γ-independent, see Fig. 4. This apparent discrepancy originates from the
difference in the definitions of the quantities; and, since the definition of the head’s weight C ,
in contrast to the one of eC , includes the hopping distribution explicitly, there can be no exact
relation between these two quantities. However, one can try to estimate C from Eq. B.1 as a
weight of the head of the averaged wave function defining the “head” as anything larger than
a half-maximum of




|ψ0(ϵ)|2
�

, i.e., as

C ≈ N

∫

|ϵ|<min{w,Γ }

dϵ
2w

eC
ϵ2 + Γ 2

=
N eC
wΓ

tan−1
�

min{Γ , w}
Γ

�

=
tan−1(min{1, w/Γ })

tan−1(w/Γ )
. (B.4)

In the large-N limit, Γ ∝ N1−γ, and for 1 < γ < 2 (for γ > 2, (B.1) systematically violates
normalization), our estimate gives C ≈ 1/2, while for γ < 1, it is C ≈ 1, which is in fact exactly
what we see in Fig. 4!
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