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Abstract

The Onsager algebra, invented to solve the two-dimensional Ising model, can be used to
construct conserved charges for a family of integrable N-state chiral clock models. We
show how it naturally gives rise to a “pivot” procedure for this family of chiral Hamil-
tonians. These Hamiltonians have an anti-unitary CPT symmetry that when combined
with the usual ZN clock symmetry gives a non-Abelian dihedral symmetry group D2N .
We show that this symmetry gives rise to symmetry-protected topological (SPT) order
in this family for all even N, and representation-SPT (RSPT) physics for all odd N. The
simplest such example is a next-nearest-neighbour chain generalising the spin-1/2 clus-
ter model, an SPT phase of matter. We derive a matrix-product state representation of
its fixed-point ground state along with the ensuing entanglement spectrum and symme-
try fractionalisation. We analyse a rich phase diagram combining this model with the
Onsager-integrable chiral Potts chain, and find trivial, symmetry-breaking and (R)SPT
orders, as well as extended gapless regions. For odd N, the phase transitions are “un-
necessarily” critical from the SPT point of view.
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1 Introduction
The interplay of symmetries, topology and entanglement results in a zoo of interesting topolog-
ical phases of quantum matter [1,2]. A particularly useful technique is to map a lattice model
with well-understood physics to one with a non-trivial order. Kramers-Wannier (KW) dual-
ity [3], for example, relates models belonging to the trivial phase to those with spontaneously
broken symmetries. In the setting of symmetry-protected topological (SPT) phases of matter,
an analogous role is played by the so-called SPT entangler [4–8]. It is a finite-depth unitary
operator that transforms trivial models into non-trivial SPTs characterised by unbroken sym-
metries and distinguished from the trivial phase by robust boundary modes and topological
response to gauge fields.

The pivot procedure [7,9] provides a systematic way of constructing such SPT entanglers.
Pivot Hamiltonians generate SPT entanglers upon exponentiation, and themselves have long-
range order. Adding them to trivial and SPT Hamiltonians1 produces a rich phase diagram.

1A Hamiltonian belonging to the trivial phase has a unique ground state that can be smoothly connected to a
product state without breaking symmetry. Hamiltonians belonging to non-trivial SPT phases have unique ground
states in the absence of boundaries but cannot be adiabatically connected to a product state along a symmetric
path. Note that we consider the zero temperature phase diagram and so classifying gapped ‘parent’ Hamiltonians
and their ground states is equivalent [10]. Key notions are reviewed in [2,5,11–13].
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Figure 1: Web of maps generated by pivoting and Kramers-Wannier duality in the
Onsager-integrable chiral-clock family.

Analysing this structure allows a deeper understanding of how various quantum orders are
intertwined in the phase diagrams of lattice models. The key example of [7,9] starts with the
transverse-field Ising chain (i.e. a qubit chain) and yields the cluster model Hamiltonian [14]
describing a non-trivial SPT phase [15].

We show how the pivot procedure in this case follows directly from the Onsager algebra,
introduced by Onsager to compute the free energy of the 2D classical Ising model [16] and
the spectrum of the corresponding quantum chain. This infinite-dimensional Lie algebra is
constructed by splitting the transverse-field Ising Hamiltonian into two pieces A0 and A1, the
former coupling to the transverse field and the latter the nearest-neighbour interaction. As
we explain below, the other generators are found by taking repeated commutators with these
two [17,18], and imposing the Dolan-Grady relations [19].

The Onsager algebra is all that is needed to implement this pivot procedure. Any pair
of Hamiltonians generating an Onsager algebra will satisfy the same pivot relations, and re-
sulting Hamiltonians are given by the same simple closed-form expressions in terms of the
Onsager generators. The explicit expressions of the Hamiltonians in terms of the the usual
qudit operators may be rather nasty, but combining the pivot procedure with the Onsager al-
gebra allows us to derive important physical properties in a simple and systematic fashion.
Whether the starting Hamiltonian is of pivot type in the sense of Ref. [7] depends on whether
the procedure results in an SPT model for an appropriate symmetry group.

A beautiful presentation of the Onsager algebra is provided by a set of ZN -invariant clock
chains [17,20,21]. Namely, the “superintegrable chiral Potts” chain [22] also can be split into
two pieces that generate the identical algebra. For N > 2 the algebra is not sufficient to solve
the model, but it can be used to construct a sequence of commuting charges. These charges
indicate the chain with periodic boundary conditions is integrable.

In this paper, we exploit the connection between pivoting and the Onsager algebra to apply
the pivot procedure to this family of Onsager-integrable clock Hamiltonians. The resulting
Hamiltonians are related by both pivoting and Kramers-Wannier duality, as illustrated in Fig. 1.
We show that the global symmetry for a given N is the dihedral group D2N , arising from the ZN
clock symmetry along with an anti-unitary CPT symmetry. One key consequence of the pivot
procedure is that non-trivial models (for example with symmetry fractionalisation) can arise by
unitarily transforming from models with easy-to-understand behaviour. For example, taking
A0 to be the Hamiltonian yields a trivial paramagnet, while taking A1 induces spontaneous
symmetry breaking. The Hamiltonian A2 is generated by pivoting A0 with A1. For N = 2 these
correspond to the familiar Ising paramagnet and ferromagnet respectively, while A2 is the
cluster Hamiltonian with SPT order (see Eq. (6) below).

One of the main results of this paper is a demonstration that for any even N , A2 describes
an SPT phase. For odd N , it describes a “representation SPT” (RSPT) [23], similar to what
occurs in even-spin Haldane phases [24]. RSPTs do not enjoy the same topological protection
as SPTs, but nevertheless have some similar phenomenology [25].
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Both SPT and RSPT phases exhibit symmetry fractionalisation, but only for the former are
the representations projective. The dominant Schmidt eigenvalues for both form a doublet,
but only for the former do all eigenvalues pair. Thus the SPT at even N disappears only when
parameters are tuned through a bulk phase transition. For odd N , however, the RSPT can dis-
appear [25] at a boundary transition or at an “unnecessary” bulk transition [26–32]. (For our
purposes, we say that a ground state is an RSPT when the dominant Schmidt eigenvalues have
a degeneracy due to a non-trivial linear irreducible representation of the non-Abelian symme-
try.) Connecting the various Hamiltonians yields interesting phase diagrams. We find (R)SPT
phases and extended gapless phases as well as more conventional disordered and spontaneous
symmetry broken phases. The interpolation H = A1+λA0 is the familiar transverse-field Ising
model for N = 2 and corresponds to the “superintegrable chiral Potts” chain for N ≥ 3 [20,33].
The latter, at least for N = 3, contains extended gapless phases [34,35]. Hamiltonians that con-
nect A0, A1, A2 exhibit an even richer phase diagram, for example including symmetry-enriched
critical points for N = 2 [6, 36]. Another result of ours is to show that for N = 3 and N = 4
this model hosts a variety of strongly correlated gapped and gapless states. For any linear
combination of the Ak, the model is presumably integrable, as it possesses an infinite set of
local and mutually-commuting charges [21]. However, utilising integrability in chiral clock
models requires a rather intricate analysis, and we defer it to a separate paper [37].

The paper is organised as follows. In Section 2, we introduce both the pivot procedure
and the Onsager algebra, and show that implementing the former follows directly from build-
ing Hamiltonians from the generators of the latter. In Section 3 we introduce the chiral-clock
family of Hamiltonians and its Onsager-algebra structure. We find its symmetries and ground
states, in particular the matrix-product state ground state for A2. In Section 4 we show that SPT
and RSPT phases occur at even and odd N respectively, all exhibiting symmetry fractionalisa-
tion. In Section 5 we discuss the phase diagram of the combined Hamiltonian αA0+βA1+γA2,
illuminating how the distinct phases fit together. Finally, we detail some natural questions for
future work.

2 Pivoting with Onsager

2.1 What Onsager did

Onsager’s solution of the two-dimensional classical Ising model with periodic boundary condi-
tions [16] is a tour de force. He computed the full spectrum of the transfer matrix, and hence
the exact partition function. Taking a strongly anisotropic limit then yields the exact spectrum
of the corresponding quantum Hamiltonian of the transverse-field Ising chain.

The core of Onsager’s result comes from understanding the algebra obeyed by the gener-
ators of the Hamiltonian and transfer matrix. These generators are written in terms of Pauli
matrices acting on the usual Hilbert space of L two-state systems, i.e. (C2)⊗L . The two basic
generators are

A0 = −
L
∑

j=1

σx
j , A1 = −

L
∑

j=1

σz
jσ

z
j+1 , (1)

where in the latter σz
L+1 ≡ σ

z
1. The transverse-field Ising Hamiltonian with periodic boundary

conditions is then simply HI = A0 +λA1.
Other generators of the Onsager algebra are found by taking commutators of the basic two,

subject to two key identities. Onsager showed by explicit computation that
�

A1,
�

A1, [A1, A0]
�

�

= 16[A1, A0] ,
�

A0,
�

A0, [A0, A1]
�

�

= 16[A0, A1] . (2)
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Imposing these identities, now known as the Dolan-Grady conditions, results in an infinite-
dimensional Lie algebra, canonically represented by a set of generators {Al , Gm

�

�l, m ∈ Z},
with G−k = −Gk and G0= 0. The next two generators are defined by

G1 =
1
4

�

A1, A0

�

, A2 = A0 −
1
2

�

A1, G1

�

, (3)

so that the first Dolan-Grady condition can be written as
�

A1, A2

�

=
�

A0, A1

�

. With A0 and A1
defined by (1), A2 =

∑

j σ
z
j−1σ

x
j σ

z
j+1 results. (Here and henceforth all sums over j run from

1 to L.) Proceeding in this fashion, Onsager defined and found explicit expressions for all the
generators, and showed that they satisfy

�

Al , Am

�

= 4Gl−m ,
�

Gl , Am

�

= 2Al+m − 2Am−l ,
�

Gl , Gm

�

= 0 . (4)

A quicker way of establishing (4) for A0 and A1 from (1) is by rewriting them in terms of
Majorana-fermion bilinears by using the Jordan-Wigner transformation. A commutator of
fermion bilinears always yields a bilinear, so all the Onsager generators in this representa-
tion can be written as fermion bilinears. Explicit expressions and other useful details may be
found in e.g. [38].

The exact spectrum of HI follows from the Onsager algebra (4) because of a crucial sim-
plification of the presentation (1). As there are only L(2L − 1) possible fermion bilinears on
L sites, there can be at most 2L− 1 distinct generators of (4) (by construction all generators
are translation invariant). Indeed, Al+L = ±Al and Gl+L = ±Gl , where the sign can be found
in [16] (or working out the explicit fermion-bilinear expressions). To find the spectrum, one
then can reduce the spectrum of HI to a sum by taking the Fourier transformation of the On-
sager generators.

Such a simplification does not occur in the chiral-clock presentations of the Onsager algebra
that we study. As we describe below, however, the Onsager algebra provides a systematic way
of constructing pivot Hamiltonians, making it useful in any presentation.

2.2 The Ising pivot

The pivot procedure provides a method for generating SPT phases via unitary transformations
[7, 9]. One starts with a Hamiltonian H0 with a trivial (product state) ground state and then
searches for a local “pivot” Hamiltonian Hpivot that yields an SPT Hamiltonian via

HSPT = U(π)H0U(π)† , U(θ ) = exp(−iθHpivot) . (5)

The simplest example comes from the Ising Hamiltonian (1). Taking H0 = A0 from there gives
a trivial paramagnetic phase with a unique ground state. Defining Hpivot = A1/4 from (1) then
gives

HSPT = e−iπA1/4 A0 eiπA1/4 =
∑

j

σz
j−1σ

x
j σ

z
j+1 = A2 . (6)

All three of these Hamiltonians have a Z2 × Z
T
2 symmetry, generated by the spin-flip

∏

j σ
x
j ,

and complex conjugation in the Z-diagonal basis. This symmetry protects the SPT order (see
Section 4.1 for details).

The Hamiltonian −HSPT is the canonical cluster model [14], and both ±HSPT exhibit SPT
order. (The sign can be toggled by conjugating by

∏

kσ
x
4kσ

x
4k+1 [7].) Stated differently,

exp(−iπA1/4) is the cluster SPT entangler.2 Since the ground state of A0 is a product state

2The fact that the ground state of the cluster model can be generated via a finite-time evolution generated by
Ising-like Hamiltonians is well known from the study of measurement-based quantum computing (MBQC) [39].
In this context the cluster state, as well as other SPT ground states, serves as a good resource state [40–43].
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and the terms in A1 are all mutually commuting, the ground state of A2 can be written as a
matrix-product state (MPS) with bond dimension two. Continuing in this fashion allows us to
generate an infinite family called the (generalised) cluster models [5, 44–49]. For example,
pivoting HSPT with H0 gives another (SPT) spin chain with Hamiltonian

∑

jσ
y
j−1σ

x
j σ

y
j+1. Since

A0 and A1 from (1) can be written in terms of fermion bilinears, all Hamiltonians generated in
this fashion are written as bilinears. They all can thus be easily solved via standard techniques.

In general, the pivot procedure [7] works as follows. The starting point is a Hamiltonian
H0 with symmetry group G, and a product state for its unique ground state. Considering
the one-parameter deformation H(θ ) = e−iθHpivot H0eiθHpivot , we require that H(2π) = H(0),
and that H(π) is a non-trivial SPT phase protected by the group G. This means that, for
U(θ ) = exp(−iθHpivot), U(2π) is a symmetry of H0, while U(π) acts as an SPT entangler.
In our analysis below we broaden this picture to include multiple generalisations of the Ising
pivot including where U(π) is not an SPT.

2.3 Pivoting with Onsager

Here we show that constructing pivots of this type does not require the explicit representation
(1), but only the Onsager algebra. Given any lattice Hamiltonian realisation of A0 and A1
satisfying the Dolan-Grady relations, we show how pivoting generates a family of Hamiltonians
with a simple closed form in terms of the Onsager generators. We here prove this fact, and in
the rest of the paper exploit it.

The connection between the two procedures is rather direct. Indeed, when A0 and A1
are defined by (1), A2 from the Onsager definition (3) is equal to HSPT from (6). The latter
equation thus implies that A2 can be found by pivoting with A1/4, i.e.

A2 = e−iπA1/4 A0 eiπA1/4 . (7)

This relation follows directly from the Onsager algebra, and is a particular case of the general
identity (see [17,50] for related results)

e−iαAm Al eiαAm = cos2(2α)Al + sin2(2α)A2m−l + i sin(4α)Gl−m . (8)

To prove (8), we first use the Onsager algebra to generalise the Dolan-Grady relations to
�

�

[Al , Am], Am

�

, Am

�

= 4
�

�

Gl−m, Am

�

, Am

�

= 8
�

Al − A2m−l , Am

�

= 32 Gl−m = 16
�

Al , Am

�

. (9)

Using the standard identity [51]

e−BCeB =
∞
∑

p=0

1
p!

�

�

[C , B], B
�

, . . . , B
�

︸ ︷︷ ︸

p−fold

(10)

with (9) yields

e−iαAmAl e
iαAm = Al +

�

Al , Am

�

∞
∑

n=1

(iα)2n−1

(2n− 1)!
16n−1 +

��

Al , Am

�

, Am

�

∞
∑

n=1

(iα)2n

(2n)!
16n−1 .

The two sums are i sin(4α)/4 and − sin2(2α)/8 respectively, and using (4) to rewrite the re-
maining commutators yields (8).

The identity (8) yields a sequence of exact pivot relations, with no further computations
necessary. Defining Um(θ ) = e−iθAm/4 yields

Um(π)Al Um(π)
† = A2m−l , Um(2π)Al Um(2π)

† = Al . (11)
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All Al thus can be generated by a sequence of pivots with A0 and A1:

Al+2 = U1(π)U0(π)Al U0(π)
†U1(π)

† , A−l = U0(π)Al U0(π)
† . (12)

The Al thus fall into an even and an odd family, unitarily equivalent to A0 and A1 respectively.
The two families are themselves related by a duality An → A1−n that preserves the algebra
(in the chiral clock family this is a KW duality [52], see Fig. 1). Moreover, any unitary sym-
metry commuting with A0 and A1 commutes with all the Al . The same holds for anti-unitary
symmetries, because using Um(−π) in Eq. (11) yields the same action on the Al .

This construction immediately gives us information about the phase structure. Suppose
that A0 is a representative of the trivial phase. Then A2k necessarily has a unique ground state
for all k, i.e., there is no symmetry breaking in the ground state. If A2k is a non-trivial SPT for
some value of k, Eq. (11) tells us immediately that Ak/4 is a pivot Hamilton giving the SPT
entangler for this model. Moreover, the pivot Hamiltonian itself generates a symmetry of the
‘halfway point’ between the starting model and the pivoted model:

�

Al , Al−m + Al+m

�

= 4G−m + 4Gm = 0 . (13)

In our examples, all Al have integer eigenvalues and so generate a U(1) symmetry.

3 The integrable chiral clock chains

In this section we give a set of chiral Hamiltonians satisfying the Onsager algebra, and explore
their basic properties using pivoting. We exploit the fact that the Onsager algebra automatically
follows from any A0 and A1 obeying Dolan-Grady conditions; the remainder of the relations
are simply definitions and consistency conditions [17–20]. Thus any Hamiltonian built from
Onsager-algebra generators Al possesses an elegant pivot structure, i.e. any model obeying (2)
automatically satisfies (11). We emphasise that although the chains are integrable, they are
not free-fermionic.

3.1 Onsager and the integrable chiral clock models

We study Hamiltonians generated by two pieces of the “superintegrable chiral Potts” Hamilto-
nian chain [17,18,20,21]. These pieces satisfy the Dolan-Grady relations and hence generate
the Onsager algebra. We call this set of chains the Onsager-integrable chiral-clock family.3

The Hilbert space is a chain of N -state quantum systems, i.e.
�

CN
�⊗L

, acted on by “shift” and
“clock” operators generalising Pauli matrices. Each such operator X j , Z j acts non-trivially on
a single site j of the chain, and they obey X j Zk =ω

δ jk ZkX j , along with (X j)N = (Z j)N = 1. In
the Z-diagonal basis they act on the jth site as

X j =
N−1
∑

a j=0

�

�a j − 1
� 


a j

�

� , Z j =
N−1
∑

a j=0

ωa j
�

�a j

� 


a j

�

� , (14)

while leaving other sites unchanged. We have defined ω = e2πi/N and identify basis states
modulo N , i.e. |a〉 ≡ |a mod N〉. For N = 2 they reduce to the corresponding Pauli operators
σx

j , σz
j .

We build our Hamiltonians from the operators

h2 j−1 = X j , h2 j = Z−1
j Z j+1 , (15)

3We call them “clock” instead of “Potts” chains because the latter typically have SN symmetry that ours do not
possess. We use “Onsager-integrable” instead of “superintegrable” as the former is more specific.
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where the site-index j on the right-hand-side is, as always, defined mod L. These operators
obey ωhkhk+1 = hk+1hk and commute otherwise. The Onsager generators are then

A0 = −
4
N

∑

j

N−1
∑

m=1

αm

�

h2 j−1

�m
, A1 = −

4
N

∑

j

N−1
∑

m=1

αm

�

h2 j

�m
, αm =

1
1−ωm

. (16)

For N = 2 these reduce to (1). This presentation is “self-dual” in that A0 and A1 are related by
Kramers-Wannier duality. This duality here shifts all hk → hk+1 and so exchanges A0 and A1.
Since the algebra of the hm is invariant under this shift, one Dolan-Grady condition implies the
other. The “superintegrable chiral Potts” Hamiltonian is H(λ) = A1 +λA0; it is an anisotropic
limit of the 2D classical “chiral Potts” model [17,22,53,54].

The operators from (16) satisfy the Dolan-Grady conditions (2) and hence generate the full
Onsager algebra (4) for any N [20]. We review this calculation in Appendix A. Closed-form
expressions for the generators in general, however, are not known, as the explicit expressions
get rather nasty beyond the first few. Expressions for A−1 can be found in [21, 38]. The
expression for A2 is found by using duality from A−1, pivoting using (7), or simply working
out the commutators from the definition (3). We present the calculations in Appendix A; see
also [17]. The nicest way to write the result is as

A2 = −
4
N

∑

j

N−1
∑

m=1

αmS(m)j−1, jX
m
j S(m)j, j+1 ,

S(m)j−1, j = 1−
2m
N
−

2
N

N−1
∑

m′=1

αm′(1−ωmm′)Z−m′
j−1 Zm′

j .

(17)

A key feature of this form is that S(m)j−1, j has eigenvalues ±1. Thus despite its complicated-
looking definition, in the Z-basis this operator is diagonal with entries ±1. The expression for
A−1 is found simply by writing these expressions in terms of the hk and then shifting hk→ hk+1.

The Onsager relations mean that any linear combination of the Al possesses an infinite
sequence of local and mutually commuting charges [21], i.e.

H ≡
b
∑

k=a

tkAk , Qm ≡
b
∑

k=a

tk(Am+k + A−m+k) =⇒
�

H,Qm

�

= 0 . (18)

The existence of this sequence implies that any such model is integrable. These conserved
charges do not exhaust the symmetries of H. A U(1)-invariant Hamiltonian that commutes
with all the Onsager generators was discussed in depth in [38]. Thus H commutes with this
Hamiltonian, meaning the latter can be thought of as an additional conserved charge. Another
symmetry is the dihedral symmetry discussed next.

3.2 Dihedral symmetry

The appearance of a larger non-Abelian symmetry group in chiral clock models is known; see
e.g. [35,55–58]. We describe its most general form here. The generators of the Hamiltonians
are all invariant under the ZN symmetry generated by

r =
∏

j

X j =⇒ hkr = rhk . (19)

Less obviously, the symmetry extends to the dihedral group D2N , whose generators obey

D2N
∼= 〈r, s|rN = s2 = 1, srs = r−1〉 . (20)
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The second generator s implements CPT symmetry here. We define P to be spatial inversion,
exchanging site j with L + 1 − j. (The particular choice of fixed site or bond is arbitrary in
a translationally invariant system.) Charge conjugation C is defined so that CX jC

† = X †
j and

C Z jC
† = Z†

j for all j. In the Z-diagonal basis it is

C =
∏

j

C j , where C j =
N−1
∑

a=0

�

�a j

� 


N − a j

�

� . (21)

Time reversal is implemented by an anti-unitary operator K that we define as complex conju-
gation in the Z-basis. It is simple to check that s = C PK is a symmetry of all our chiral-clock
Hamiltonians:

sA0s = A0 , sA1s = A1 =⇒ sAls = Al . (22)

The dihedral symmetry will prove crucial in our analysis of the phases of these Hamiltonians.

3.3 Maps amongst the family

One key observation in Ref. [7] is that the pivoting relation in the cluster models gives us a
large number of mappings between models. Since we showed that the unitary transformations
(11) follow solely from the Onsager algebra, pivoting with Am thus unitarily transforms any
Al → A2m−l . Hence, visualising the space of models {Ak} as points on a line, pivoting with Am
corresponds to reflection around each point m. Combining two pivots as in e.g. (12) gives a
unitary transformation that shifts the index Al → Al+2, as illustrated in Fig. 1.

As indicated above, Kramers-Wannier duality maps A0 → A1 and vice versa. The Onsager
algebra then requires that sending A0→ A1 maps An→ A1−n. In Fig. 1, this map corresponds
to reflection about the bond between A0 and A1. Some care must be taken: Kramers-Wannier
duality is not invertible, and so is not a one-to-one map. Indeed, we show explicitly below
that the ground state of A1 (and hence all Al for odd l) is N -fold degenerate, while the ground
state of A0 is unique.

Other operators allow us to relate different models. The anti-unitary operator
V =

�

∏

j Z j

�

K obeys

V2 = (−1)L , VA2k+1 = A2k+1V , VA2k = −A2kV . (23)

There is a unitary operator with the same commutation/anticommutation property [35].
When L= 0 mod N the unitary operator W = P

∏

j X j
j obeys [35]

W2 = 1 , WA2k+1 = −A2k+1W , WA2k = A2kW . (24)

Combining the two shows that the spectrum of any linear combination of the Al is symmetric
about zero when L is a multiple of N . Moreover, the spectrum of H =

∑

l t lAl is invariant
under sending all t2k→−t2k.

3.4 Ground states

Thanks to the Onsager algebra and the pivot relations, determining the ground state(s) of any
Hamiltonian Al is straightforward.

Although they look rather complicated in their definition, the operators A0 and A1 individ-
ually take on a simple form in the right basis [17,20]. The eigenvectors of X j are

�

�

�v(n)j

¶

=
1
p

N

N−1
∑

a j=0

ω−na j
�

�a j

�

=⇒ X j

�

�

�v(n)j

¶

=ω−n
�

�

�v(n)j

¶

, (25)
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Figure 2: Graphical representations of U1(π) as products U j, j+1 from (30). The left-
hand picture is a depth-two local unitary circuit, the middle a staircase circuit. The
latter can be interpreted as an MPU with bond-dimension N (right).

so the eigenvectors of A0 are simply product states

A0

∏

j

�

�

�v
(n j)
j

E

= E0

�

{n j}
�

∏

j

�

�

�v
(n j)
j

E

, where E0

�

{n j}
�

= −
4
N

L
∑

j=1

N−1
∑

m=1

αmω
−mn j , (26)

for any choice of the n j = 0, . . . , N − 1. The eigenvalues simplify using the trigonometric
identity

N−1
∑

m=1

αmω
−mn =

(N − 1)
2
− n , 0≤ n≤ N − 1 , (27)

so that

E0

�

{n j}
�

= −2L
N − 1

N
+

4
N

∑

j

n j . (28)

Hence the unique ground state of A0 has all n j = 0, yielding a trivial paramagnet. Worth noting
is that the full spectrum is invariant under E0→−E0, and that all eigenvalues are integers up
to the shift and the overall factor of 4/N .

Any basis state in the Z-diagonal basis is an eigenstate of A1. Denoting the eigenvalue of
Z j on each site as ωa j , using (27) gives the eigenvalue of A1 to be

E1 = −2L
N − 1

N
+

4
N

∑

j

�

�

a j − a j+1

�

mod N
�

. (29)

We emphasise that each term in this sum is taken mod N , as a consequence of the restriction
in (27). The energy E1 from (29) is invariant under shifting all a j → (a j +m)mod N for any
m, so each level is N -fold degenerate. The N ground states of A1 are therefore given by setting
a j = a for all j. These ferromagnetic ground states spontaneously break the ZN symmetry r.

The operators Al for even and odd l are unitarily equivalent to A0 and A1 respectively, as
follows from the pivot relation (12). Thus Al has a unique ground state for l even, while for
odd l it has an N -fold ground-state degeneracy. Moreover, since U0 is a product of on-site
unitary operators, it can be thought of as a matrix-product unitary operator (MPU) of bond-
dimension zero. For the operator U1, we exploit the fact that A1 is a sum of commuting terms.
Then U1(π) = exp(−iπA1/4) can be written as a product of two-site unitaries as

U1(π) =
∏

j

U j, j+1 , U j, j+1 ≡ exp

�

i
π

N

N−1
∑

m=1

1
1−ωm

Z−m
j Zm

j+1

�

. (30)

As illustrated in Fig. 2, we can rewrite this product as an MPU of bond-dimension N . Thus
the ground states of A2k and A2k+1 can each be written as an MPS of bond dimension upper
bounded by N k.

The N -channel MPS for the ground state of A2 can be put in an elegant form. Using a
bit of Fourier transformation along with (27) shows that the MPU tensor acts on the X -basis
eigenstates (25) as

U j, j+1

�

�

�v(s)j v(t)j+1

¶

=
1
N

N−1
∑

r=0

λr

�

�

�v(s+r)
j v(t−r)

j+1

¶

, λr =
ωr/2

sin(π(r + 1
2)/N)

. (31)
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The ground state of A2 is thus

|ψ2〉= UL1 · · ·U23U12

�

�

�v(0)1 v(0)2 · · · v
(0)
L

¶

= N−L
∑

n1,...,nL

 

L
∏

j=1

λn j

!

�

�

�v(n1−nL)
1 v(n2−n1)

2 v(n3−n2)
3 · · · v(nL−nL−1)

L

¶

= N−3L/2
∑

a1,...,aL

∑

n1,...,nL

 

L
∏

j=1

λn j
ωa j(n j−1−n j)

!

|a1 · · · aL〉 ,

(32)

where all sums run from 0 to N− 1. Converting the sums over the {n j} into matrix products
yields

|ψ2〉=
∑

a1,...,aL

tr
�

Aa1
· · ·AaL

�

|a1 · · · aL〉 , An,n′
a =

λn′

N
p

N
ωa(n−n′) . (33)

It is straightforward to obtain the entanglement spectrum from this expression, as we discuss
in the next section.

4 SPTs and RSPTs in the chiral-clock family

SPT phases are guaranteed to be stable only to perturbations preserving the protecting symme-
tries. One thus expects there to be a (non-symmetric) finite-depth local unitary transformation
from a ground state with SPT order into a trivial product state [59]. The inverse of such a trans-
formation is an SPT entangler [4–8,60]. SPTs in clock models outside of the chiral family we
consider have been studied previously [61,62], and are interesting because of their relation to
deconfined quantum critical points [32, 63–65]. For a general review of SPT physics and for
further references, see, for example, Refs. [2,5,11–13].

In Section 3.4 we showed how the ground state of A2 indeed takes the form of a finite-
depth local unitary transformation applied to a trivial state. Since we know that this state has
SPT order for N = 2, at least for the symmetry group Z2 × ZT

2 as reviewed in Section 4.1, it
is natural to hope that this property holds for all N . The situation, however, is subtler. An
SPT with a protecting symmetry group G = G0 or G = G0 ⋊ ZCPT

2 , where G0 acts on-site,
can occur when the group cohomology H2(G, U(1)) is non-trivial [10, 13, 59]. Concretely,
this corresponds to the classification of non-trivial projective representations of the symmetry
group on the bond indices of an MPS representation of the ground state. The appearance of
a non-trivial projective representation corresponds to a non-trivial SPT order. We showed in
Section 3.2 that G = D2N = ZN ⋊ZCPT

2 for our models. Since H2(D2N , U(1)) = Z2 for N even
and is otherwise trivial [66], we have the possibility of an SPT protected by this symmetry
group only for even N .

In this section, we probe deeper by analysing the properties of the MPS ground state (33)
of A2. In particular, we compute its entanglement spectrum and symmetry fractionalisation.
We show that for even N we indeed have SPT order for our D2N symmetry group. For odd
N we find that we cannot have SPT order for any protecting symmetry group. However, the
ground state has behaviour reminiscent of an SPT, but without being as robust. Such phases
were dubbed RSPTs in a closely related context [23], and we discuss how they arise here. For
conceptual orientation we will first analyse the cluster model, i.e., the case where N = 2.

4.1 SPT order in the ground state of A2 for N =2 and symmetry fractionalisation

Projective symmetry fractionalisation in the ground state is characteristic of SPT order. Sym-
metry fractionalisation is particularly clear in the MPS picture: if two sets of matrices Aa and
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Ba represent the same state, then Aa = eiϕMBaM−1 for some phase ϕ and invertible matrix
M on the bonds [67]. For an SPT with a unitary on-site symmetry group G that preserves the
ground state, applying a symmetry to the physical index gives us an equivalent state, and the
corresponding M are unitary and form a projective representation of G [68]. The cohomology
class of the representation classifies the SPT order [10,13,24,59,66].

Recall the cluster model Hamiltonian A2 =
∑

j σ
z
j−1σ

x
j σ

z
j+1 from (6). Along with the Z2

symmetry generated by
∏

j X j and the ZCPT
2 symmetry, this model has a ZT

2 time-reversal sym-
metry generated by K, complex conjugation in the Z basis. It is well known (see e.g. [7])
that the symmetry Z2 ×ZT

2 protects SPT order in this model, as we show now via non-trivial
symmetry fractionalisation4 of this Abelian group.

Specialising Eq. (33) to N = 2 we have that the ground state MPS of the cluster chain has
tensor

An,n′
a ∝ (−1)a(n−n′)in′ . (34)

Let us renormalise A to make this relation an equality. Consider the action of the on-site
symmetry

∏

jσ
x
j ; then, at a fixed site, the tensor after the symmetry action, B is given by

Bn,n′
a =

∑

a′
σx

aa′A
n,n′

a′ = (−1)(1−a)(n−n′)in′ =
∑

m,m′
σz

nmAm,m′
a σz

m′n′ . (35)

Suppressing bond indices we write
∑

a′ σ
x
a,a′Aa′ = σ

zAaσ
z , and we say the on-site symmetry

σx has fractionalised as σz on the bonds.
Time-reversal acts on the MPS tensor by conjugation [69], and so we have

Bn,n′
a =An,n′

a = (−1)a(n−n′)(−i)n
′
= −i

∑

m,m′
σx

nmAm,m′
a σx

m′n′ . (36)

We then see that since σx and σz do not commute (and no multiplication of these generators
by complex phases will change this), we have a projective representation of Z2 × ZT

2 on the
bonds. This projective representation cannot change without either breaking this symmetry,
or tuning through a phase transition.

Below we make the corresponding analysis for our D2N symmetry group for all N . For
N = 2 this reduces to Z2 × ZCPT

2 and it is worth noting that this group differs from both the
unitary Z2 ×Z2 and the anti-unitary Z2 ×Z

T
2 symmetries that typically protect the SPT order

of the cluster model [7].

4.2 No SPT for A2 with odd N

The distinction between odd and even N is apparent in the entanglement spectrum of |ψ2〉.
Using λn =ωn/2|λn| we write the matrix elements of A j from (33) as

An,n′
a = Γ n,n′

j Λn′ , Γ n,n′
a ≡ N−

1
2 ωa(n−n′)ωn′/2 , Λn′ = N−1 |λn′ | . (37)

This MPS is in canonical form [69,70] because the transfer matrix T n,p;n′,p′ =
∑

a An,n′
a A p,p′

a
has dominant right (left) eigenvector δn′,p′ (Λ2

nδn,p) with eigenvalue 1. The entanglement
spectrum for a bipartition of an open chain is then {Λ2

n}, where

Λ−1
n = N sin

�

(2n+ 1)π
2N

�

, n= 0, 1, . . . , N − 1 . (38)

4Note that for groups with a ZT
2 anti-unitary time-reversal, the SPT classification is a twisted group cohomology.

However, for our purposes we simply want to show the cluster state has a non-trivial projective representation of
the group on the bond space; for further details see Ref. [13].
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A necessary but not sufficient condition for SPT order is an exact degeneracy in the en-
tanglement spectrum [24, 71, 72]. Since the argument of the sine in (38) is symmetric about
π/2, there is indeed a two-fold degeneracy throughout the spectrum for N even. We show in
Section 4.3 that this exact degeneracy is a consequence of a projective representation of D2N ,
implying SPT order.

For N odd, however, the single non-degenerate Schmidt value Λ(N−1)/2 = N−1 means that
there is no non-trivial projective representation in the ground state of A2. This observation
is consistent with the lack of D2N = ZN ⋊ ZCPT

2 SPT order for N odd [66]. Moreover, it im-
plies a stronger statement: for N odd, A2 cannot describe a non-trivial SPT phase, even if
we have missed some symmetries. However, as only the lowest Schmidt value for N odd is
non-degenerate, we expect that some of the physics is independent of N .

4.3 Symmetry fractionalisation

We will now show how the D2N symmetry fractionalises for all N , resulting in a non-trivial
projective representation for even N .

Having given a simple example of symmetry fractionalisation in Section 4.1, we now intro-
duce notation for the general case. Suppose we have a symmetry group G where each element
acts as an on-site unitary u(g) as well as possibly implementing either time-reversal or spatial-
inversion. One then can implement these elements on the MPS in terms of matrices U(g) for
g ∈ G that satisfy [69]

U(g)Λ= ΛU(g) ,
N−1
∑

b=0

u(g)a,b eΓb = eiϕ(g)U(g) Γa U(g)† , (39)

where Γ and Λ are the canonical decomposition of the MPS, and eΓ = Γ for on-site global
symmetries. When g implements lattice inversion, we have eΓ = Γ T , while for the anti-unitary
time-reversal eΓ = Γ . Thus for our combined CPT symmetry, eΓ = Γ †.

The non-trivial symmetry fractionalisation for the ground state A2 with even N follows
from the Z2 ×ZCPT

2 subgroup of our D2N symmetry. The Z2 symmetry from X N/2 acting on a
given site is implemented by matrices on the adjacent bonds by

N−1
∑

b=0

X N/2
a,b Γb = ZN/2 Γa ZN/2 , (40)

where the Xa,b are the matrix elements of the operator X . For the ZCPT
2 symmetry,

N−1
∑

b=0

Cab

�

Γb
�†
= e−2iϕ

�

eiϕ
p

ZV
�

Γ j

�

e−iϕV
p

Z
†�

, (41)

where Cab are the matrix elements of the single-site charge-conjugation operator given in (21),
and

p
Z =

N−1
∑

j=0

ω j/2 | j〉 〈 j| , V = V † =
N−1
∑

j=0

| j〉 〈N − 1− j| , eiϕ =ω−
N−1

4 , (42)

where the bras and kets here are for the bond states. Note that this choice of V commutes
with the Λ matrix, and for both generators we have used the freedom to fix the phases to
make U(g)2 = 1. (The overall phase e−2iϕ does not enter into the representation matrices.)

Just as in the cluster model example, the non-trivial projective representation of Z2×ZCPT
2

on the bonds follows since the representation of these two generators does not commute:
�

eiϕ
p

ZV
�

ZN/2 = −ZN/2
�

eiϕ
p

ZV
�

. (43)
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The two-dimensional irreducible projective representations of the symmetry group on the
bonds requires the observed two-fold degeneracy in the entanglement spectrum. These prop-
erties are stable away from the fixed point, and cannot change without a bulk phase transition.
Since this SPT order is protected by a subgroup Z2×ZCPT

2 ≤ D2N , the SPT phase of A2 remains
stable under any perturbations preserving the subgroup, even if they break the full D2N .

Despite not having SPT order, we still have symmetry fractionalisation in the ground state
of A2 for odd N . Our analysis of the ZCPT

2 generator in Eq. (41) applies for odd N . For all N ,
the full ZN symmetry is implemented by

N−1
∑

b=0

Xa,b Γb = Z†ΓaZ , (44)

generalising (40). For N = 2p + 1 this action gives p irreducible two-dimensional linear rep-
resentations of DN , each of which acts on the basis {|b〉 , |N − 1− b}〉 as

r =

�

ωb 0
0 ωN−1−b

�

, s =

�

0 eiϕω
N−1−b

2

eiϕω
b
2 0

�

, (45)

for b = 0, . . . , p − 1. A single one-dimensional representation acts on |p〉 as r = ωp and
s = eiϕωp/2.

The singlet occurs for the space with the smallest Schmidt value. All of the others, including
the dominant ones, form two-dimensional irreducible representations of the non-Abelian D2N
symmetry group. This dimension of course cannot change continuously, so for small enough
symmetry-preserving perturbations it cannot change without the system undergoing some sort
of transition. This property therefore implies local stability of the phase. A phase with such
behavior was dubbed a “representation SPT” (RSPT) [23]. Similar physics appears in other
settings, including AKLT chains with even spin [73], quotient symmetry-protected topological
order [6] and boundary-obstructed topological phases [74]. A transition out of an SPT phase
must be a bulk one, as the representations are projective. The protection for the RSPT, however,
is not as strong. A sufficiently large perturbation can change the dimension of the dominant
Schmidt value without encountering a bulk phase transition, as shown in [25] for the model
of [23].

Thus for odd N the ground state of A2 can be deformed to that of A0 without encountering a
bulk phase transition or breaking the D2N symmetry, as one expects in the absence of non-trivial
SPT order. Before this transition, however, the phase exhibits SPT-like physical properties such
as symmetry fractionalisation.

4.4 String order

String order parameters can be used to identify an SPT phase without explicitly calculating
the symmetry fractionalisation considered above [69]. Indeed, we will use them to this effect
in Section 5.3. In this section we identify the relevant string order parameter for the symetry
group D2N = ZN ⋊ZCPT

2 .
As above, there is a key distinction between even and odd N . Namely, the ZN symmetry

of the chiral-clock family possesses a Z2 subgroup for even N . We then can define a Z2 string
operator using the “disorder” operator

µk =
k−1
∏

j=1

X N/2
j ,

�

µk

�2
= 1 , (46)

familiar from the Ising chain [75]. The limiting two-point function limM ,L→∞〈µkµk+M 〉 has a
non-zero value only in the trivial phase. More generally we can dress µk with a local end-point
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operator Ok (which is supported on some finite region to the right of site k−1). The key idea
is that we will see long-range order in 〈µ1O1 µkOk〉 only when Ok has symmetry properties
that are consistent with the SPT phase [69]. This notion can be generalised also to critical
points and gapless phases [6,60,76],

In our particular D2N setting, endpoint operators should have simple properties under con-
jugation by the CPT symmetry defined in Section 3.2. This symmetry is unusual since it com-
bines an on-site unitary (charge conjugation), parity symmetry and anti-unitary time reversal.
The ensuing complications require us to generalise the approach of [69] to such symmetries.
In Appendix B we do so. Namely, we consider two-site Hermitian endpoint operators Ok,k+1
satisfying

C PKOk,k+1 C PK = sc Ok̂,k̂+1X N/2
k̂

X N/2
k̂+1

, sc = ±1 . (47)

There are two unusual aspects of this definition of the “charge” sc , both due to applying the
parity transformation P. First, the transformed operator is supported on the sites k̂, k̂ + 1,
where bk is determined by which points are chosen to remain fixed under spatial inversion.
Second, the charge is defined relative to multiplying by X N/2

k̂
X N/2

k̂+1
. The reason is that P inverts

the string µk as well as the end-point operator, and the former needs to be multiplied by the
global Z2 = µL to return it to a left-pointing string. Since we consider operators µkOk, the

extra factors can be absorbed into the end-point operator by multiplying it by X N/2
k̂

X N/2
k̂+1

. An
MPS-based derivation allowing for a general end-point operator supported on more than two
sites is given in Appendix B.

The charge sc of the end-point of a string with long-range order reveals the SPT phase. In
particular, for an end-point with sc = −1, the asymptotic two-point function for µkOk,k+1 is
finite only in the SPT phase. (Recall there is only one non-trivial SPT phase for our symmetry
group.) On the other hand, long-range order with sc = 1 corresponds to the trivial phase.

The pivot procedure allows to find an end-point operator with sc = −1 easily. Pivoting by
the SPT entangler gives

U1(π)X
N/2
k U1(π) =

� N−1
∑

m=1

1− (−1)m

1−ωm
Z−m

k−1Zm
k

�

X N/2
k

� N−1
∑

m=1

1− (−1)m

1−ωm
Z−m

k Zm
k+1

�

, (48)

where the dressing term squares to one (see Appendix A). The string therefore pivots to

µkµk+M →
� N−1
∑

m=1

1− (−1)m

1−ωm
Z−m

k−1Zm
k

�

µkµk+M

� N−1
∑

m=1

1− (−1)m

1−ωm
Z−m

k+M−1Zm
k+M

�

. (49)

The end-point operators and the string overlap, and absorbing the ends of the former into the
latter gives

Ok,k+1 = iX N/2
k

� N−1
∑

m=1

1− (−1)m

1−ωm
Z−m

k Zm
k+1

�

=⇒ µkµk+M → µkOk−1,k µk+M−1Ok+M−1,k+M . (50)

The factor of i ensures Ok,k+1 is Hermitian and that it transforms under CPT as in (47) with
sc = −1. For N = 2 it reduces to iσx

kσ
z
kσ

z
k+1 = σ

y
kσ

z
k+1, the usual cluster-state end-point

operator [46].
The ground state of A0 is a product state and hence obviously in a trivial phase. Indeed,

the disorder operator itself has long-range order:
¬

v(0)1 v(0)2 · · · v
(0)
L

�

�

�µk µk+M

�

�

�v(0)1 v(0)2 · · · v
(0)
L

¶

= 1 . (51)

We then exploit µk+1 = µkX N/2
k and note that X N/2

k transforms under CPT as in (47) with
sc = 1. Thus our approach reproduces the trivality of the ground state of A0.
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Pivoting using (32) and (49) we then see immediately that (51) requires

〈ψ2| Ok−1,k µk+1µk+M−1 Ok+M−1,k+M |ψ2〉= 1 . (52)

The ground state of A2 therefore has long-range order for a string operator with end-point
operator that obeys (47) with sc = −1. We conclude that A2 is in a non-trivial SPT phase,
distinct from A0, protected by Z2 × ZCPT

2 ≤ D2N for all even values of N . We thus recover
the result found using symmetry fractionalisation in the preceding Section 4.3. The approach
here emphasises the role of the Z2 symmetry present only at even N . Moreover, computing
the string order via the operators in (52) provides a useful diagnostic tool for detecting a
non-trivial phase away from the special points with an exact MPS ground state.

While the choice of end-point operator in Eq. (50) appears naturally by applying the SPT
entangler to the disorder operator, there exist simpler end-point operators with the correct
charge that may be useful in some situations:

O′k,k+1 =

¨

iX 2n−1
k Z2n−1

k Z2n−1
k+1 , N = 4n− 2 ,

iX 2k
k

�

Z−1
k Zk+1 + ZkZ−1

k+1

�

, N = 4n .
(53)

5 How the phases fit together

We have discussed in depth the three Hamiltonians A0, A1 and A2 for the chiral-clock family.
They respectively have no order, spontaneous symmetry breaking, and (R)SPT order. To probe
the physics further, we combine them and analyse the Hamiltonian

H(α,β ,γ) = αA0 + βA1 + γA2 . (54)

The Hamiltonian H(α,β ,γ) is integrable, as noted above in (18). However, deriving properties
for N > 2 is rather difficult not only because of the interactions, but also due to the presence of
level-crossing transitions in the ground state [35]. Nonetheless along certain lines we utilise
and obtain analytic results. We also utilise density matrix renormalisation group (DMRG)
[77, 78] numerics to understand the phase diagram for N = 3 and N = 4. We find that all
these orderings extend away from these special solvable points, occupying regions of the phase
diagram. For N = 2, the transitions between phases are direct, but for larger N intermediate
gapless regions typically appear.

5.1 Special lines

Three special lines of couplings give useful insight into the phase diagram.

5.1.1 The Onsager-integrable chiral Potts line

The line A1+λA0 is the canonical Onsager-integrable chiral Potts chain. Much is known from
extensive work some decades ago [17, 20, 22, 34, 35, 53, 54, 79, 80], but many puzzles re-
main. The main difficulty is that the lack of a U(1) symmetry makes a traditional Bethe-
ansatz analysis impractical. The ground-state phase diagram for N = 3 was analysed carefully
in [35, 79, 81]. Along with the symmetry-breaking phase at λ = 0 and trivial phase for large
λ, for λ > 0 there are two intermediate gapless phases for λc < λ < 1 and 1 < λ < 1/λc ,
where λc ≃ 0.901 [35]. More recently, DMRG calculations at λ= 1 [82] found oscillations in
the scaling of entanglement entropy for open boundaries. This behaviour is consistent with
previous results for Lifshitz transitions [83]. The case of λ < 0 is equivalent, as follows from
the results of Section 3.3.
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Moreover, considering the energy of unit-charge excitations, long-range spin order occurs
for all λ < 1 [35], including the intermediate gapless phase λc < λ < 1. We have not been
able to observe the latter feature in our numerical studies below, and think that this long-range
order in the gapless region is worth a deeper investigation. This intermediate region is further
studied in Ref. [84], where scaling exponents for the order parameter are found; note that
this gapless region is not described by a conformal field theory as the left- and right-moving
excitations have different velocities [34,84,85]. These results can be summarised in the phase
diagram

λ .
−1
×

−λ−1
c

×
−λc

×
1
×
λ−1

cλc

××•
A1

ferromagnetic order
disorder disorder

(55)

For N > 3 we are not aware of similar results for the phase diagram, although there are
general formulae for structure of the spectrum [17,21,79,80] and both numerical and analytic
studies of the spectrum for small system sizes [35,80]. For general N the ground state in the
zero-momentum sector has a transition at λ = 1 [80, 85]. This is not necessarily the ground
state of the Hamiltonian because there may be a level crossing to a different momentum sector.
In such a case, translation symmetry breaking [86] and/or an intermediate gapless phase or
phases must occur. Our numerical studies described below in Section 5.3 indicate a similar
structure for N = 4, including a first-order transition into an intermediate gapless phase.

A remarkable formula for the symmetry-breaking order parameter in the ferromagnetic
phase was conjectured in [80] and proved (subject to certain analyticity assumptions) in [87,
88]. It is

lim
M ,L→∞




Z−k
1 Zk

M

�

= (1−λ2)
k(N−k)

N2 , |λ|< λ0 , (56)

where λ0 indicates the first ground state phase transition we encounter beyond λ= 0 (more-
over, for N = 3 we have a non-zero expectation for all |λ| < 1, based on the analysis of
Ref. [35]). Duality yields

lim
M ,L→∞

� M
∏

j=1

X k
j

�

= (1−λ−2)
k(N−k)

N2 , |λ|> λ−1
0 . (57)

The (trivial) string-order parameter thus takes the N -independent value

lim
M ,L→∞




µ1µM

�

= (1−λ−2)
1
4 , |λ|> λ−1

0 . (58)

5.1.2 The line A1 +λA2

Pivoting the preceding Hamiltonian with U1(π) means that the Hamiltonian A1 + λA2 is uni-
tarily equivalent. The transitions must therefore occur at the same values of λc . However,
the physical interpretation of the phases is rather different. We saw already that A2 possesses
(R)SPT order. Transforming the trivial string order from (58) immediately shows the SPT
order exists away from A2. Namely, using (49) yields exact topological string order at even N :

lim
M ,L→∞

〈µ1O1,2 µMOM ,M+1〉= (1−λ−2)
1
4 , |λ|> λ−1

0 . (59)
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The SPT order therefore persists at least until λ= λ−1
c (as it must on general stability grounds),

and likely all the way until λ= 1, as summarized in the diagram

λ .
−1
×

−λ−1
c

×
−λc

×
1
×
λ−1

cλc

××•
A1

ferromagnetic order
(R)SPT (R)SPT

(60)

Subtleties with SPT physics arise in gapless models [6], but resolving them requires a deeper
understanding of the nature of the gapless phase realised here. Moreover, we cannot prove
that the RSPT phase at odd N persists, even in the gapped region, but we expect that the
dominant Schmidt value remains doubly degenerate throughout. Below we give numerics in
support of this contention.

5.1.3 The U(1) line and the exact ferromagnetic ground state

Setting α = γ in (54) yields a rather special line of Hamiltonians. Namely, it follows immedi-
ately from (4) that A1 commutes with A0 + A2:

�

A1,αA0 + βA1 +αA2

�

= 0 . (61)

Since NA1 has integer eigenvalues, it generates a U(1) symmetry along this line. An explicit
expression for the KW dual Hamiltonian in terms of the usual SU(2) operators S±, Sz can be
found in [38].

This U(1) symmetry allows the coordinate Bethe ansatz to be used, as described in depth
in [38] for a closely related U(1)-invariant model. Acting with the Onsager generators turns
out to correspond to adding or removing “exact strings” within the Bethe ansatz. A conjecture
was made there that the ground state of the model A1+A−1 (the dual of A0+A2) is comprised
solely of such exact strings. Our detailed calculations show however that this property holds
true only for L ≤ 12. Thus the analysis, while tractable, is still rather difficult. We defer a full
accounting to a separate paper [37].

However, the U(1) symmetry does result in an exact ground state over a range of α/β
when α= γ. When H = A1, the N ground states are given by all spins equal in the Z-basis, as
shown in (29). Each such state is annihilated by A0 + A2. Moving away from A1 by allowing
α= γ ̸= 0, the different ground states do not mix in perturbation theory until order L, and the
exact ferromagnetic ground states persist until theα= γ is of order β . For N = 2, this transition
occurs exactly at α = γ = β/2. This value is recovered by a simple first-order perturbation
theory in the one-particle sector [89], giving a transition at α/β = γ/β = sin(π/N)/2. For
N = 3,4, and for α = γ = 1/2, this predicts β ≃ 1.15,1.41 respectively. These values are
consistent with the numerics in Fig. 4, though the transition appears to occur for a larger
value of β in the N = 4 case.

5.2 Phase diagram for N = 2

We first consider the full phase diagram in the N = 2 free-fermion case, where it is known
exactly. This case is KW dual to the usual quantum XY model [90], and so phase transitions
occur at the same places. The results are displayed in Fig. 3(a), with the trivial, SPT and
ferromagnetic phases readily apparent.

The line from Section 5.1.1 with γ= 0 corresponds at N = 2 to the usual transverse-field
Ising model, while pivoting with A1 yields the line with α = 0 described in (5.1.2). Onsager’s
results show that these models have Ising critical points at α = β and γ = β respectively.
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Ising+

c = 1

Ising−

×

×z = 2

A0
×
A2

×A1

Trivial SPT

FM

(a) N = 2.

×
A0

×
A2

×A1

Trivial RSPT

FM

Gapless

(b) N = 3.

■

×
A0

×
A2

×A1

Trivial SPT

FM

Gapless

Gapless

(c) N = 4.

Figure 3: Schematic phase diagrams for N = 2,3, 4 for the Hamiltonian H(α,β ,γ)
parameterised as α+ β + γ = 1. FM indicates the ferromagnetic phase. The N = 2
phase diagram is known exactly and features direct transitions. An exact MPS ground
state occurs on the dotted line. For N = 3, 4 the transitions typically spread out
into gapless regions. Within the achieved numerical resolution, we cannot ascertain
whether we have a narrow gapless region or a direct transition between the trivial
and SPT phases for a certain range along the α = γ line for N = 4 (indicated by ■).
The grey dotted lines are discussed in Section 5.1.

The latter criticality is enriched by Z2 × ZCPT
2 [6], as confirmed by our analysis of the string

order in Section 4.4 for all even N . Since the disorder operator has charge sc = 1 and sc = −1
under CPT for trivial and SPT phases respectively, the corresponding critical points are labelled
Ising±.

The transition between the trivial and SPT phases along the β = 0 line occurs at the
U(1) invariant value α = γ for N = 2. Its continuum limit is described by a single free-
boson field theory, a conformal field theory with central charge c= 1. The type of criticality
is invariant (and the c = 1 remains at the free-fermion radius) up to the multicritical point
at α = γ = β/2. The multicritical point has dynamical critical exponent z = 2, and the
charge of the disorder operator changes sign along the Ising CFT line here. This point also
has an exact MPS ground state, as does the model along the dotted line [91–94] with cou-
plings α = (1 − λ)2,β = 2λ(1 − λ),γ = λ2. This line is dual to the disorder line in the XY
model [95–97].

5.3 Phase diagram for N = 3, 4

To determine the full phase diagrams H(α,β ,γ) for N = 3, 4, we need to distinguish the three
phases: trivial, symmetry breaking and (R)SPT dominated by A0, A1, A2 respectively. Here we
use the density matrix renormalization group (DMRG) [98] to go beyond the above analytic
results. All following numerical calculations were performed using the ITensor library [77,78]
for finite systems with open boundary conditions. We summarise our results in Fig. 3, showing
that the critical lines seen in the N = 2 case broaden out to gapless regions. A key result is
that the RSPT order at N = 3 remains throughout a region.

We use a variety of probes to determine the phase diagrams. For example, we give re-
sults from entanglement entropy in Fig. 4. The probes are discussed in each of the following
subsections.

5.3.1 Local and string order parameters

A non-vanishing value of the two-point correlation function

OZ =
�

�

�




Z j Z
−1
k

�

�

�

� (62)

19

https://scipost.org
https://scipost.org/SciPostPhys.18.3.094


SciPost Phys. 18, 094 (2025)

(a) N = 3. (b) N = 4.

Figure 4: The effective central charge c for H(α,β ,γ) with α = 1− γ for (a) N = 3
and L= 100, (b) N = 4 and L= 40. The value is extracted by fitting the entanglement
entropy to the CFT formula Eq. (66). A zero value indicates an area-law ground state.
Values of c at the boundary of the gapless region are not meaningful. A unitary
transformation relates Hamiltonians with γ and 1− γ, and so the data for N = 4 for
γ > 0.5 is that for γ≤ 0.5.

at large | j − k| indicates ferromagnetic order. As seen in Fig. 5(b) and (d), such order occurs
at large β where A1 dominates the Hamiltonian.

The string operators discussed in Section 4.4 provide a convenient way to distinguish the
SPT phase and trivial phases at even N . The trivial phase at even N is detected by the two-point
function of disorder operators, namely

S0 = |〈µ jµk〉| . (63)

The SPT phase, on the other hand, is detected by pivoting Eq. (63) using the SPT entangler as
discussed in Section 4.4. For N = 4, we show in Appendix B.2, that the relevant string order
(50) takes on the form

S1 =

�

�

�

�

­

i
2

�

S−1,−1 − S1,1

�

+ S−1,1
·

�

�

�

�

, Sa,b ≡ Za
j−1Z−a

j µ jµk+1Z b
k Z−b

k+1 . (64)

Non-vanishing values of these two-point functions (Equations (63) and (64) for large values
of | j− k|) are good order parameters for the trivial and SPT phases respectively. We plot these
values in Fig. 5(c,d) for j = L/4 and k = 3L/4, indicating the presence of these phases when
A0 and A2 respectively dominate.

5.3.2 Entanglement spectrum

The bipartite entanglement spectrum of the ground states provides a useful probe for detecting
the SPT and RSPT phases. The values are Λ2

α, where the Λα are the usual Schmidt coefficients
of the ground state [24,69,71]. The entanglement spectrum of SPT phases is characterized by
the presence of robust degeneracies for all Λα and the total absence of non-degenerate values,
shown in Fig. 6(b). The trivial and RSPT phases contain non-degenerate entanglement levels
along with degenerate ones. These two phases are distinguished by the nature of the dominant
Schmidt value. In the trivial phase it is unique, whereas in the RSPT phase it is degenerate, as
shown in Fig. 6(a). These results confirm the stability of our analytic results in Section 4.2 away
from the fixed point model A2 for both even and odd N . By tracking the gap ∆Λ = Λ2

1 − Λ
2
2

between the leading entanglement values, we can distinguish the trivial from the RSPT. As
apparent in Fig. 5, ∆Λ vanishes for the former but not the latter.

20

https://scipost.org
https://scipost.org/SciPostPhys.18.3.094


SciPost Phys. 18, 094 (2025)

Figure 5: DMRG calculations for the N = 3 (a,b) and N = 4 (c,d) versions of the
Hamiltonian (54) with α= 1−γ and with system sizes L = 200 and L = 100 respec-
tively. OZ is the local order parameter shown in Eq. (62), S0 and S1 are the trivial
and non-trivial string order parameters defined in Eqs. (63) and (64) respectively,
while c comes from fitting the entanglement entropy to Eq. (66). The Schmidt value
Λα comes from the mid-chain bipartite Schmidt decomposition of the ground state,
and the difference between the largest two values ∆Λ = Λ2

1 −Λ
2
2. Dotted lines con-

necting data points are provided as a guide to the eye.

In a general context, the entanglement spectrum is known to be an indirect probe of the
edge modes in a topological phase [99]. Similarly, the degeneracy of the largest entanglement
levels in the RSPT is expected to result in parametrically stable edge modes, despite lacking in
topological protection [23,25,30,31]. A simple pivoting calculation reveals that the fixed-point
A2 with open boundaries has N2 ground states. However, the relation between entanglement
spectrum and edge modes is known to break down when parity symmetry is involved [73],
and indeed one can find symmetric boundary terms that gap out these edge modes for any
non-zero coupling. Thus, the entanglement spectrum is the most relevant probe of the (R)SPT
physics.

5.3.3 Entanglement entropy

The von Neumann entanglement entropy provides a good way to distinguish the gapless phases
from the gapped ones. It is defined as

S(lA) = −tr(ρA logρA) , (65)

where ρA is the reduced density matrix with support on the Hilbert space A, taken to be a
contiguous interval length l on the chain. For ground states of one-dimensional gapped phases,
S(l) ∼ const., an area law. Critical gapless phases that are described by a 1+1-dimensional
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Figure 6: The entanglement spectrum for the ground state of (54) with α = 1 − γ
and system size L = 200. All levels are doubly degenerate in the SPT phase, while
both degenerate and non-degenerate values occur in the RSPT and trivial phases.
The latter two phases are distinguished by the dominant entanglement level, which
is unique for the trivial phase but degenerate for the RSPT.

conformal field theory obey a universal form [100] of entanglement scaling in the large-L
limit. For a finite system of size L with open boundary conditions,

S(l) =
c
6

log
�

L
π

sin
�

πl
L

��

+ const. , (66)

where c is the central charge that characterizes the CFT. Entanglement entropy obeying the
form Eq. (66) thus indicates gapless behaviour, with c ̸= 0 providing a measure of entangle-
ment.

As seen in Fig. 5, this fit can be used effectively to distinguish the gapless phases from the
surrounding gapped ones. We apply this procedure to locate the gapless regions in Figs. 3 and
4. We find that the data fits well to Eq. (66) with c= 1, as shown in Fig. 7, suggesting that the
gapless states are described by a compact boson CFT or its orbifold [101]. However, as shown
in Fig. 7(b), we observe oscillations in certain ranges of parameter values. As discussed in
Section 5.1.1, these are also consistent with Lifshitz transitions [83] and have been observed
in numerical investigations of similar models [82]. Similar results are seen for the gapless
states appearing in the phase diagram of the N = 4 Hamiltonian. The precise nature of the
gapless states appearing in our phase diagrams is an interesting question, which we leave for
upcoming work.

6 Outlook

In this paper we showed how the Onsager algebra naturally gives rise to a pivot procedure
useful for constructing SPT phases. We applied this result to a family of N -state chiral clock
Hamiltonians constructed with this algebra. We found an SPT phase for even N and an RSPT
phase for odd N , protected by the dihedral group D2N comprised of the clock and CPT sym-
metries.

We analysed in depth the Hamiltonian A2, the N -state analog of the cluster-model SPT.
We found an analytic expression for the entanglement spectrum in its MPS ground state, and
showed it has dominant, degenerate Schmidt values in the entanglement spectrum. For even
N , the ground state has non-trivial SPT order characterised by a projective representation of
D2N on the bond Hilbert space. We showed that this SPT phase can be detected by a string
order parameter with an end-point charged under ZCPT

2 . For odd N , however, every Schmidt
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Figure 7: Von Neumann entanglement entropy computed for representative gapless
ground states of the N = 3 Hamiltonian (54) with α= 1−γ and system size L = 200,
(datapoints) compared with the best fit to the CFT formula Eq. (66). Both have a
best fit of c ≈ 1 (solid line), with oscillations observed for some parameters (b) but
absent for others (a).

value of the ground state of A2 is degenerate apart from the smallest one. This entanglement
spectrum is inconsistent with any projective representation on the bonds, and thus corresponds
to a trivial SPT phase (for any protecting symmetry group). However, the system has dominant
degenerate Schmidt values corresponding to higher-dimensional irreducible representations of
D2N and we conclude that A2 represents an RSPT phase for D2N .

The phase diagram interpolating between A0, A1 and A2 is rich, and based on analytic
and numerical results we conjectured its form for N =3, 4. For even N the three fixed-point
Hamiltonians represent distinct phases of matter, and thus are separated by bulk transitions.
We demonstrated that the RSPT phase in the case N = 3 does extend away from the fixed-point
A2 by numerically calculating the entanglement gap using DMRG [77, 78]. We moreover see
a critical phase separating this RSPT from the trivial phase, which is “unnecessary” from the
SPT point of view [28–32].

A key topic for future work is to better understand the phase diagrams outlined in Section
5.3. Particularly interesting would be substructure within the gapless regions, and possible
symmetry enrichment. Indeed, our numerical investigations leave open the possibility that
the N = 4 phase diagram contains two separate gapless regions meeting at a direct transition
between the trivial and SPT phases [31, 76]. In a companion work, we consider the U(1)
invariant line A0+A2+hA1, along with the KW dual A1+A−1+hA0 (where the U(1) symmetry
is on-site); note that this line includes the possible direct transition. This symmetry lends
itself to a coordinate Bethe Ansatz approach. We have left the wider phase diagram for the
chiral clock family H =

∑

tαAα unexplored. While there is only one non-trivial SPT phase for
our symmetry group, we may see combined symmetry-breaking and SPT physics in the higher
Hamiltonians [5]. Identifying the gapless regions in this larger phase diagram would also be
interesting.

Our results are not restricted to the Onsager-integrable chiral-clock family we have
studied. The D2N symmetry identified here occurs in more general chiral clock mod-
els. The ZCPT

2 symmetry takes, for example, γXn → γX †
n. It follows that any Hermitian

H =
∑

j

∑N−1
m=1

�

γmhm
2 j−1 +δmhm

2 j

�

has this symmetry, along with the standard clock symmetry.
Hence, the SPT phase (and possibly the RSPT phase) will extend into the wider phase diagram
of the chiral clock models [82].

A natural next step is to look for SPT physics and interesting phase diagrams in other fami-
lies of spin chains that generate an Onsager algebra, such as those in Refs. [102–104]. Further
examples can be found in the setting of generalised Onsager algebras; there we have mul-
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tiple generators each satisfying a mutual Dolan-Grady relation [105, 106]. A fundamentally
different model to those considered in this paper is the “free fermions in disguise” Hamilto-
nian [107], which can be written as a sum of terms satisfying a generalised Onsager alge-
bra [106]. It would be most interesting to uncover a new family in this class.

One final outstanding question is to find which subspace of the phase diagram has an exact
MPS ground state, generalising the line in Fig. 3(a). The solution to this problem for N = 2
utilises imaginary time evolution with fixed-point Hamiltonians [93], and the Onsager algebra
may allow for a generalisation of this approach.
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A Derivation of the Hamiltonian A2

In this appendix we derive the closed-form expression for A2 given in the main text (17). There
are two paths one can take

A2 = U1A0U†
1 , and A2 = A0 +

1
8

�

A1, [A0, A1]
�

. (A.1)

We give both the pivot and commutator approaches for the Kramers-Wannier dual operator
A−1, and then connect the two to reach our preferred representation for A2.

A.1 Pivoting A1 with A0 to find A−1

We first use the pivot procedure to find A−1 = U0(π)A1U0(π)†. We can write U0(π) as a product
of single-site terms, so that its action on the single-site operator Z is

bZ = ei πN
∑N−1

m=1 αmX m
Z e−i πN

∑N−1
m=1 αmX m

. (A.2)

In the X basis, X =
∑

aω
−a
�

�v(a)
� 


v(a)
�

� and Z =
∑

a

�

�v(a−1)
� 


v(a)
�

�, so

bZ =
N−1
∑

a=0

ei πN
∑N−1

m=1(αmω
−m(a−1)−αmω

−ma)
�

�v(a−1)
� 


v(a)
�

�

= ei πN

N−1
∑

a=0

(−1)δa,0
�

�v(a−1)
� 


v(a)
�

�= eiπ/N ZΦ̂(0) ,

(A.3)

where
bΦ
(r)
j ≡

∑

a

(−1)δr−a,0

�

�

�v(a)j

¶¬

v(a)j

�

�

� , bΦ
(r)
j Z j = Z j

bΦ
(r+1)
j . (A.4)
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Obviously,
�

bΦ
(r)
j

�2
= 1 so that

U0(π)Z
k
j U0(π)

† =ωk/2Zk
j

k−1
∏

r=0

bΦ
(r)
j , (A.5)

A−1 = U0(π)A1U0(π)
† = −

4
N

L
∑

j=1

N−1
∑

m=1

αm

�m−1
∏

r=0

bΦ
(r)
j

�

Z−m
j Zm

j+1

�m−1
∏

r=0

bΦ
(r)
j+1

�

. (A.6)

A.2 Pivoting A0 with A1 to find A2

One can find A2 by exchanging A0 and A1 in the preceding pivot, as follows from (11). The
calculation then proceeds identically if one utilises the operators hk from (15). One then finds

A2 = −
4
N

L
∑

j=1

N−1
∑

m=1

αm

�m−1
∏

r=0

Φ
(r)
j−1, j

�

X m
j

�m−1
∏

r=0

Φ
(r)
j, j+1

�

, (A.7)

where
Φ
(r)
j, j+1 =

∑

a1,a2

(−1)δa2−a1+r,0 |a1〉 j 〈a1| j |a2〉 j+1 〈a2| j+1 . (A.8)

We show in Appendix A.4 how to rewrite this product of signs in terms of Z j operators.

A byproduct of this calculation is that U1(π)X jU1(π)† = Φ
(0)
j−1, jX jΦ

(0)
j, j+1. Since X acts as a

shift in the Z-basis, we have

Φ
(r)
j, j+1X j = X jΦ

(r+1)
j, j+1 , Φ

(r)
j, j+1X j+1 = X j+1Φ

(r−1)
j, j+1 , (A.9)

yielding (48) and the resulting transformed string operator.

A.3 Commutator calculation

In this section we derive a closed-form expression for A−1 using commutation relations directly.
Using the definitions of A0 and A1 from (15,16) gives

�

A0, A1

�

=
�

4
N

�2 L
∑

j=1

N−1
∑

a,â=1

αaαâ (1−ωaâ)
�

ha
2 j−1hâ

2 j − hâ
2 jh

a
2 j+1

�

. (A.10)

A useful identity proved below is

N−1
∑

a,b=1

αa,âαb,âha+b
2 j−1 = â(N − â) + (N − 2â)

N−1
∑

s=1

αs,âhs
2 j−1 , (A.11)

where we define αa,â = αa(1−ωaâ). Commuting A0 with (A.10) and using this identity yields

�

A0,
�

A0, A1

�

�

= −
�

4
N

�3 L
∑

j=1

�

− 2
N−1
∑

a,â,b=1

αa,âαâαb,â ha
2 j−1hâ

2 jh
b
2 j+1 (A.12)

+
N−1
∑

a,â=1

αa,âαâ (N − 2â)
�

ha
2 j−1hâ

2 j + hâ
2 jh

a
2 j+1

�

+ 2
N−1
∑

â=1

â(N − â)αâhâ
2 j

�

.

The Onsager algebra requires

A−1 = A1 −
1
8

�

A0,
�

A0, A1

�

�

, (A.13)
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so that

A−1 = −
4

N3

L
∑

j=1

�

4
N−1
∑

a,â,b=1

αaαâαb (1−ωaâ)(1−ωbâ)ha
2 j−1hâ

2 jh
b
2 j+1

− 2
N−1
∑

a,â=1

αaαâ (N − 2â)(1−ωaâ)
�

ha
2 j−1hâ

2 j + hâ
2 jh

a
2 j+1

�

+
N−1
∑

â=1

(N − 2â)2αâhâ
2 j

�

= −
4
N

∑

j

N−1
∑

â=1

αâ

�

1−
2â
N
−

2
N

N−1
∑

a=1

αa,âha
2 j−1

�

hâ
2 j

�

1−
2â
N
−

2
N

N−1
∑

b=1

αb,âhb
2 j+1

�

. (A.14)

Finally, note that taking (A.12) and doing another commutator gives the Dolan-Grady re-
lation:

�

A0,
�

A0, [A0, A1]
�

�

=
�

4
N

�4
�

2â(N − â) + (N − 2â)2 + 2â(N − â)
�

×
L
∑

j=1

N−1
∑

a,â=1

αa,âαâ

�

ha
2 j−1hâ

2 j − hâ
2 jh

a
2 j+1

�

= 16
�

A0, A1

�

. (A.15)

A.3.1 Proof of (A.11)

Consider the following action:

N−1
∑

a,b=0

ωkaωl bX a+b
�

�v( j)
�

=
N−1
∑

a,b=0

ωka+l b− ja− j b
�

�v( j)
�

= N2δk, jδl, j

�

�v( j)
�

. (A.16)

Using geometric series and the vanishing of the previous double sum for k ̸= l yields

N−1
∑

a,b=1

αa,âαb,âX a+b =
â−1
∑

k,l=0

N−1
∑

a,b=1

ωka+l bX a+b =
â−1
∑

k,l=0

N−1
∑

a,b=0

ωka+l bX a+b − 2â
N−1
∑

a=1

â−1
∑

k=0

ωkaX a − â2

= â(N − â) + (N − 2â)
N−1
∑

a=1

â−1
∑

k=0

ωkaX a . (A.17)

A.4 Connecting the two approaches

In this section we show that the formula for A−1 written in terms of bΦn is the same as the
expression (A.14). In particular, we show:

�m−1
∏

r=0

bΦ
(r)
j

�

= bS(m)j ≡ 1−
2m
N
−

2
N

N−1
∑

m′=1

1
1−ωm′

(1−ωmm′)X m′
j . (A.18)

First, notice that the identity (A.11) yields

�

S(m)j

�2
=
�

bS(m)j

�2
= 1 , (A.19)

for any m, j. Thus the dressing terms are operators squaring to a constant. Indeed,

�

1−
2
N

N−1
∑

m′=0

ω(r−a)m′
�

�

�

�v(a)j

¶

= (1− 2δr−a,0)
�

�

�v(a)j

¶

= (−1)δr−a,0

�

�

�v(a)j

¶

= bΦ(r)j

�

�

�v(a)j

¶

. (A.20)
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(a)
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•
Λ

= • Λ2 + . . . (b)
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•
Λ

• u
=

Γ

•
Λ

•
U

•
U

(c)

Γ

•
Λ

⋆ v
=

Γ

•
Λ

⋆

V

⋆

V

Figure 8: Graphical identities for an MPS tensor with Z2 × Z2 symmetry gener-
ated by

∏

k uk and
∏

k vk: (a) the transfer matrix in canonical form (b) symmetry
fractionalisation of u (c) symmetry fractionalisation of v. Recall that on the bonds
[U ,Λ] = [V,Λ] = 0.

Using the geometric series
∑m−1

r=0 ω
rm′ = 1−ωmm′

1−ωm′ yields

bS(m)j

�

�

�v(a)j

¶

=

�

1−
m−1
∑

r=0

2
N

N−1
∑

m′=0

ωrm′X m′
n

�

�

�

�v(a)j

¶

=

�

1− 2
m−1
∑

r=0

δr−a,0

�

�

�

�v(a)j

¶

. (A.21)

Comparing with (A.20) and noting that m < N yields (A.18). One can also derive the right-
hand-side of (A.18) from the left-hand-side by taking products of (A.20) for different values
of r and using (A.16).

Analogous identities hold with the replacement Xn→ Z−1
n Zn+1; the latter gives a sign, but

one that depends on the difference of the states on the two sites as in (A.8). In particular,

m−1
∏

r=0

Φ
(r)
j−1, j = S(m)j−1, j ≡

�

1−
2m
N
−

2
N

N−1
∑

m′=1

αm′
�

1−ωmm′
�

Z−m′
j−1 Zm′

j

�

, (A.22)

leading to (17).

B String order and parity transformations

In this appendix we will show, following Ref. [69], that the charge of endpoints of string
operators with long-range order reveals the SPT order for a Z2 × ZCPT

2 symmetry. The usual
arguments are modified due to the ZCPT

2 acting non-trivially on the lattice (through the parity
transformation). In Figs. 8 and 9 we review the usual argument for theZ2×Z2 case graphically.
Our analysis follows similar steps, but we use tensor notation to make the index transposition
explicit. In this appendix we allow a more general representation of Z2 × ZCPT

2 than needed
for the models in the main text. For technical reasons, we also assume translation invariance.

First, let us define a symmetry flux for the Z2 symmetry
∏

j u j by

Σn =
∏

j≤n

u jOn+1,...,n+k , (B.1)

where we require that the end-point O is Hermitian, and note that u2
n = 1 =⇒ u†

n = un.
The end-point is required to be Hermitian so that there is no remaining phase freedom that
would leave the charge under the anti-unitary CPT symmetry ill-defined [6]. The symmetry
flux for a particular ground state is the half-infinite symmetry string with end-point such that
the two-point function has the slowest possible decay—for gapped phases of matter this is the
case with long-range order.

For an end-point operator O supported on k sites, we require that Ou⊗k = u⊗kO(this
is the case in the main text, with k = 2). Note that this commutativity is equivalent to Σn
being neutral under the Z2 symmetry. Moreover, this is equivalent to Ou⊗k being Hermitian,
implying that the string-order Σ1Σn is Hermitian.
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Figure 9: Graphical proof, following [69], that long-range string order with a charged
end-point is non-vanishing only in the SPT phase for Z2 × Z2 symmetry. In the text
we generalise this to the Z2 × ZCPT

2 case. The • indicate the symmetry u, and the
⋆ indicate the symmetry v (in the appropriate representation for either physical or
bond indices). (a) The string order written as a tensor contraction using the MPS
ground state, we apply Fig. 8(a) to simplify this to two local tensor contractions
(the equality holds up to exponentially small corrections in the string length). Using
Fig. 8(b) these terms are identical. (b) Analysing the local tensor contraction using
the charge of the end-point vOv = scO and the SPT phase V UV = sr U . If the signs
do not match then the string-order must vanish.

We are interested in end-point operators with a charge under the other symmetry ZCPT
2 ,

where the charge is relative to multiplication by u⊗k. That is,

CPK O CPK = scu
⊗kO ≡ scÕ , sc = ±1 , (B.2)

where we define Õ = u⊗kO for convenience. As in the main text, we note that the parity
symmetry P will translate the support of the operator in general. We suppose C =

∏

j C j is a
product of an on-site unitary involution that is real in the Z-basis.5 This operation corresponds
to applying the symmetry and then multiplying the inverted (B.1) by the Z2 symmetry

∏

j u j
so that we can compare the end-point of the same half-infinite string. This multiplication by
u⊗k also arises naturally in the MPS formalism, as we demonstrate in the proof below.

The string order is the two-point correlator of the (Hermitian) symmetry flux (B.1)

〈Σ1ΣM 〉= 〈Õ1,2,...,k

 

M
∏

j=k+1

u j

!

OM+1,...,M+k〉 . (B.3)

Let sc be the charge of the end-point and let sr be the invariant charge of the projective repre-
sentation of Z2×ZCPT

2 on the virtual degrees of freedom (UV = srV U). Assuming a symmetric

5Without loss of generality we can take our inversion P to be real. We expect a similar argument to go through
if we consider the more general case CPK O CPK = ±Õ, since the Z2 implies (CP)† = CP . Moreover, an
analogous charge and selection rule applies in the case where we have a ZP

2 or ZC P
2 symmetry that includes a parity

transformation but does not include time-reversal.
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ground state, we have the selection rule:

lim
M ,L→∞

〈Σ1ΣM 〉= x2 , for x ∈ R ,

and x = scsr x . (B.4)

This means that the long-range string order is non-vanishing only if sc = sr, giving us a method
of detecting the SPT phase with a lattice observable.

B.1 Proof of string order selection rule

We derive (B.4) using the MPS formalism; using the area law for ground states of gapped
local Hamiltonians in 1D to justify using these results more generally [13, 108]. The outline
of the proof is roughly given in Fig. 9; the complication is the inclusion of the time-reversal
and parity transformations. Together, these act on the MPS tensors to take Γ → Γ †, allowing
us to use the symmetry fractionalisation of C as in Fig. 9(b). Our argument uses translation-
invariance, and we will use this translation symmetry when we act with the P symmetry on
the local tensor contraction (denoted x below)—in particular, we will choose P to invert about
the central bond (or site) of the support of Õ.

Take a (translation-invariant) MPS representation of the ground state, with tensors A j
in canonical form. We can write the correlator in terms of the generalised transfer matrix
EX =

∑N−1
j, j′=0 X j′ jA j⊗A†

j′ (with the natural generalisation to operators supported on multiple
sites). We then have

〈Σ1ΣM 〉= tr
�

E L−M−k
I EÕEM−k

u EO
�

, (B.5)

which can be simplified (up to exponentially small corrections) for large chain length, L, and
large string length, M , as

〈Σ1ΣM 〉 ≃



Λ2
�

� EÕ
�

�U
�

︸ ︷︷ ︸

x




Λ2U
�

� EO
�

�I
�

︸ ︷︷ ︸

y

. (B.6)

This follows from the implicit assumption that the unique dominant eigenvalue of EI is equal
to one, and that

∑

j′ u j j′A j′ fractionalises to UA jU on the bonds (we can fix the phase so that
U = U† since we have a representation of Z2). This can be seen graphically for k = 2 in
Fig. 9(a).

The non-vanishing of the string order means that neither of the two factors in (B.6) van-
ishes. We will show first that these factors are both equal to the same real number. That is,
x = y ∈ R (the equality is straightforward to see graphically, as in Fig. 9(a)). We then show
that a charged endpoint will cause x to vanish unless there is a non-trivial projective repre-
sentation of Z2×ZCPT

2 on the bonds. This is in line with the string order for an on-site Z2×Z2
symmetry [69].

Define the matrix M̃γδ =
�


Λ2
�

� EÕ
�γδ

, then

M̃γδ =
∑

Λ2
αA

αβ1
j1

Aαβ
′
1

j′1

� k−2
∏

m=1

Aβmβm+1
jm+1

Aβ
′
mβ
′
m+1

j′m+1

�

Aβkγ
jk

Aβkδ

j′k
Õ j1··· jk , j′1··· j

′
k

(B.7)

(where we sum over all indices except γ and δ). Then x =



Λ2
�

� EÕ
�

�U
�

= tr(M̃U). Now, we

have that x = 〈Λ2| EÕ |U 〉 = tr(M̃†U). Using that Õ = Õ† we have that that M̃† = M̃ and so
x ∈ R. We also have from symmetry fractionalisation that

∑

β A
αβ
j Uβγ =

∑

β , j̃ u j, j̃U
αβAβγ

j̃
.

We can then move the U to the left, at each step applying u to the physical index. This gives

us that x = tr(M̃U) = tr(M) where Mγδ =
�


Λ2U
�

� EO
�γδ

; i.e.

Mγδ =
∑

Λ2
αUαα

′Aα
′β1

j1
Aαβ

′
1

j′1

� k−2
∏

m=1

Aβmβm+1
jm+1

Aβ
′
mβ
′
m+1

j′m+1

�

Aβkγ
jk

Aβkδ

j′k
O j1··· jk , j′1··· j

′
k
. (B.8)
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We recognise the trace of M as y , and hence both factors in (B.6) are equal to x ∈ R.
The symmetry fractionalisation of ZCPT

2 is

N−1
∑

j′=0

C j, j′ (Γ
α,β
j′ )

† = V Γα,β
j V , (B.9)

where we decompose Aα,β
j = Γα,β

j Λβ . Again, since C2 = I we can fix the phase so that V = V †.
Just as in the on-site Z2 ×Z2 case, UV = srV U is a gauge invariant phase that determines the
SPT order.

Now, using x = x = tr(M) and U = U† we have

x =
∑

Λ2
αUα

′αAα
′β1

j1
Aαβ

′
1

j′1

� k−2
∏

m=1

Aβmβm+1

jm+1
Aβ
′
mβ
′
m+1

j′m+1

�

Aβkγ

jk
Aβkγ

j′k
O j1··· jk , j′1··· j

′
k
. (B.10)

Inserting I= P2 on the physical indices we have:

x =
∑

A†αβ1

j1
ATαβ

′
1

j′1

� k−2
∏

m=1

A†βmβm+1

jm+1
AT β

′
mβ
′
m+1

j′m+1

�

A†βkγ

jk
AT βkγ

′

j′k
Uγγ

′
Λ2
γ (POP) j1··· jk , j′1··· j

′
k
. (B.11)

Finally inserting I= C2 gives

x =
∑

Λ2
αA

αβ1
j1

Aαβ
′
1

j′1

� k−2
∏

m=1

Aβmβm+1
jm+1

Aβ
′
mβ
′
m+1

j′m+1

�

Aβkγ
jk

Aβkγ
′

j′k
(V UV )γγ

′
(CPOPC) j1··· jk , j′1··· j

′
k
. (B.12)

Comparing this expression to x = tr(M̃U) we see that x = scsr x as claimed.

B.2 String order for N = 4

In Section 5.3 we write the string order (50) in terms of the simple string correlators:

Sa,b = lim
M ,L→∞

〈Za
1 Z−a

2 X 2
2 · · ·X

2
M Z b

M Z−b
M+1〉 . (B.13)

Multiplying out the terms that appear for N = 4, the string order (50) is equal to

lim
M ,L→∞

〈Õ0,1

�M−1
∏

j=2

X N/2
j

�

OM ,M+1〉=
i
2

�

S−1,−1 − S1,1

�

+
1
2

�

S−1,1 + S1,−1

�

. (B.14)

Using the same MPS transfer matrix arguments as in the previous subsection we have that
Sa,b is equal to M (a)M̃ (b), where

M (a) =
∑

Λ2
αA

αβ1
j1

Aαβ
′
1

j′1
Aβ1γ

j2
Aβ
′
1δ

j′2
Za

j1, j′1
(Z−aX 2) j2, j′2

Uγδ , (B.15)

M̃ (b) =
∑

Λ2
αUαα

′Aαβ1
j1

Aα
′β ′1

j′1
Aβ1γ

j2
Aβ
′
1δ

j′2
(X 2Z b) j1, j′1

Z−b
j2, j′2

. (B.16)

U is the fractionalised Z2 symmetry that acts as X 2 on physical indices. Using symmetry
fractionalisation and that X 2Z±1 = −Z±1X 2 we have that M (a) = −M̃ (a).

Conjugating M (a) amounts to taking the Hermitian conjugate of the physical operator.

Since we have (Za
1 Z−a

2 X 2
2)

† = −Z−a
1 Za

2 X 2
2 , we conclude that M

(a)
= −M (−a). Putting this

together

lim
R→∞
〈Õ0,1

� R−1
∏

j=2

X N/2
j

�

OR,R+1〉= − Im(M (−1)M
(1)
) +

1
2

�

|M (−1)|2 + |M (1)|2
�

=
i
2

�

S−1,−1 − S1,1

�

+ S−1,1 . (B.17)
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Using the fixed-point MPS (37), one can show explicitly that Re(M (1)) = − Im(M (1)). At the
fixed-point this means that the string correlator

1= lim
R→∞
〈Õ0,1

� R−1
∏

j=2

X N/2
j

�

OR,R+1〉= 2S−1,1 .

According to our numerics, this relationship continues to hold away from the fixed point. It
would be interesting to establish this analytically using the projective representations.
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