e SciPost Phys. 18, 096 (2025)

Generative learning of continuous data by tensor networks

Alex Meiburg!23, Jing Chen!*, Jacob Miller!’, Raphaélle Tihon#*,
Guillaume Rabusseau*° and Alejandro Perdomo-Ortiz®

1 Zapata Al, Boston, USA
2 Perimeter Institute for Theoretical Physics, Waterloo, Canada
3 Institute for Quantum Computing, University of Waterloo, Canada
4 Mila and DIRO, Université de Montréal, Montréal, Canada
5 CIFAR AI Chair, Canada
6 Zapata Al, Toronto, Canada

* yz¢jl05@gmail.com, T jmjacobmiller@gmail.com

Abstract

Beyond their origin in modeling many-body quantum systems, tensor networks have
emerged as a promising class of models for solving machine learning problems, notably
in unsupervised generative learning. While possessing many desirable features arising
from their quantum-inspired nature, tensor network generative models have previously
been largely restricted to binary or categorical data, limiting their utility in real-world
modeling problems. We overcome this by introducing a new family of tensor network
generative models for continuous data, which are capable of learning from distributions
containing continuous random variables. We develop our method in the setting of ma-
trix product states, first deriving a universal expressivity theorem proving the ability of
this model family to approximate any reasonably smooth probability density function
with arbitrary precision. We then benchmark the performance of this model on several
synthetic and real-world datasets, finding that the model learns and generalizes well on
distributions of continuous and discrete variables. We develop methods for modeling
different data domains, and introduce a trainable compression layer which is found to
increase model performance given limited memory or computational resources. Over-
all, our methods give important theoretical and empirical evidence of the efficacy of
quantum-inspired methods for the rapidly growing field of generative learning.
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1 Introduction

Although originally developed for the needs of quantum many-body physics [ 1-4], tensor net-
works (TNs) have rapidly expanded to a host of other areas, where their ability to model
correlations and reveal hidden structures within spaces of exponentially large dimension have
made them an invaluable tool in such domains as quantum computing [5-7], applied mathe-
matics [8-10], and machine learning (ML) [11-14]. In this last setting, TN models are taken
as parameterized models for approximating functions which solve real-world tasks, where TN
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Figure 1: Continuous-valued tensor network. The feature layer (magenta) is a tensor
product of feature map operators { defined on each site, with the thicker purple edges
denoting indices associated to continuous values. The feature layer is connected to
the site indices of a discrete-valued tensor network (blue). The specific network
above defines a function ®(x), where x = (x1, X5, ..., X90)-

optimization methods such as the density matrix renormalization group (DMRG) [15] can be
repurposed to formulate quantum-inspired approaches to learning the structure of naturally
occurring data. This approach has opened up a string of theoretical and empirical successes,
from theoretical results in previously intractable problems in learning theory [16,17], to prac-
tical high-performance compression methods for large ML models [18,19], to empirical suc-
cesses across such tasks as image classification [11,20], missing data imputation [21,22], and
unsupervised probabilistic modeling [12,23-26].

Generative modeling, where a parameterized model is trained to draw from an unknown
probability distribution based on a dataset of previous samples, represents a particularly
promising area for the use of TN models in ML [12,23-26]. Beyond the significant intrinsic
value of generative modeling for everyday applications (as evidenced by the recent explosion of
popular interest in generative Al), TN models using the Born machine (BM) formalism [12,27]
present several distinctive benefits within this domain that remain elusive with other classical
methods. Some of these benefits arise from the use of tools from entanglement theory, with
examples including powerful architecture design methods [28,29] and rigorous expressivity
relationships [30,31], while other benefits, such as perfect sampling [32] (and variable-length
generalizations [24]), follow from the distinctive mathematical composition of TN models.

TN generative models are not without their limitations however, the most significant of
which is their near-exclusive application to distributions of discrete random variables. This
restriction can be best understood within the BM formalism, which is often thought by physi-
cists as describing many-body wavefunctions. In this context, a TN model can be viewed as a
“synthetic” many-body wavefunction, with the number of possible values of each random vari-
able setting the dimension of the associated local spin. Because the BM formalism is primarily
used in many-body quantum physics, where a TN describes a discrete “orbital” or site space,
it seems natural from that standpoint to use them exclusively for discrete variables. Continu-
ous random variables would necessitate infinite-dimensional local spins, which have received
less attention in the many-body TN community. This restriction to discrete random variables
severely limits the applicability of TN models in real-world generative modeling, where the
majority of problems involve data with continuous features.

In this paper, we present a framework for employing TNs in generative modeling prob-
lems involving continuous variables. We make use of vector-valued feature maps as a means
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of mapping from the infinite-dimensional space associated with each continuous variable to
a finite-dimensional feature space associated with each core of a TN. Using the matrix prod-
uct state (MPS) ansatz for concreteness, we show how restricting these feature maps to be
isometries permits an extension of the standard MPS canonical form to the continuous-valued
setting, which in turn allows the use of DMRG update and sweep schemes and perfect sampling
algorithms within this new setting. We find that the choice of feature maps and the dimension
of the associated feature spaces have a large impact on the behavior of the associated genera-
tive model, and develop analytical methods to identify suitable choices of these parameters for
different input datasets. Despite the simplicity of this continuous-valued MPS model, which
contains the same variational parameters as a standard MPS, we nonetheless prove a universal
approximation theorem demonstrating that it can approximate any sufficiently smooth prob-
ability density function to arbitrary precision, given sufficiently large bond dimensions and
feature dimensions. On top of this basic model, we develop a novel compression layer that
permits the feature map itself to be learned from data, which we show gives significant im-
provements in the performance of the model for a given number of variational parameters.
These methods are empirically evaluated on various synthetic and real datasets containing
combinations of discrete and continuous variables, where they are found to reliably capture
the features of the dataset in each case.

2 Background

Before discussing the continuous case, we first give a brief overview of TNs and BM models in
the setting of probability distributions over discrete variables. For a more detailed introduction
to TNs and BMs, we refer the interested reader to [4,12].

2.1 Tensor networks

Tensor networks (TNs) are a general mathematical formalism for representing large multi-
dimensional arrays as the contraction of smaller tensor cores. The collection of the model’s
tensor cores comprise the parameters of the model, whose elements can be varied to achieve
high performance in optimization or learning tasks. Because much of the historical devel-
opment of TNs took place in the setting of condensed matter physics, the multidimensional
arrays in question are often thought of by physicists as describing many-body wavefunctions,
with the indices of these arrays corresponding to individual spins (e.g. bosons, fermions, or
qubits). In machine learning settings though, the tensors in question will describe multivari-
ate functions to be learned from data, in which case the indices will correspond to individual
variables, such as those of a multivariate probability distribution. Other use cases of TNs for
ML can be found in supervised learning [11,33], tensor regression [34,35], and combinatorial
optimization [36,37].

Typical TN models, including all those considered here, use N separate tensor cores
{A(i)}ll.\’: , to encode an Nth order tensor ¢ € K& *d2xxdy  where K refers to either the real
or complex numbers. Each core of the TN contains one site index of dimension d;, with the
other bond indices of A®) being associated to edges of a graph describing the network of ten-
sor contractions connecting the cores of the TN. Different graphs define different TN models,
and the graphical structure associated to a TN constrains the correlations achievable between
different regions of the model via area laws [3,38]. For a given TN structure, the dimensions
of the hidden indices are hyperparameters known as the bond dimensions of the model, which
determine a trade-off between the expressivity of the model (i.e. the range of tensors which
can be represented), and the computational cost of its operation.
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Our work utilizes the matrix product state (MPS) model, which is defined by a 1D line
graph connecting adjacent sites. The bond dimensions of an MPS can in principle vary for
each bond connecting adjacent sites, but here will be assumed to be some constant value
x = 1. In this case, the tensor ¢ encoded by the N cores of an MPS is defined by the relation

Ys =AD[1AD ] - ANy ], (@))

where s = (iy,1y, -+ ,iy) is the joint value of all site indices of the tensor, and the RHS of
Eq. 1 describes the multiplication of a y -dimensional row vector AV[i; ], N —2 different y x ¥
matrices A®[i,]---AN"D[iy_;], and a y-dimensional column vector AN)[iy]. This MPS can
therefore be completely described by 2 matrices of dimension y x d; and y x dy, along with
N — 2 third-order tensors of shape {y x y x d; f’z _21.

There are typically two different optimization and update strategies. One approach in-
volves updating all tensors incrementally using gradient-based algorithms, as is commonly
employed to train neural networks in machine learning settings. The other approach targets
one site or two adjacent sites, optimizing them fully before moving to the next target. This
method involves interactively sweeping and targeting tensors from left to right and then right
to left, inspired by DMRG sweeps used in calculating ground states. At each step for a given
target, we use gradient descent methods to update the bond tensors until convergence, thereby
avoiding the frequent recalculation of environment tensor contractions.

Similar to DMRG schemes, we can target one or two adjacent sites for optimization. In
the one-site update approach, the bond dimension is fixed and predetermined. For the two-
site update, the two tensors are contracted to form a bond tensor, which is then optimized
via gradient-based methods until convergence. The bond tensor can then be factorized back
into two adjacent tensors, with the dimension of the newly factorized bond dynamically ad-
justed based on the singular value spectra occurring in the decomposition. We will refer to
this approach as the DMRG two-site scheme in the following discussion. However, unlike tra-
ditional DMRG methods for ground state problems, this approach will not involve solving an
eigenvalue problem.

2.2 Discrete-valued Born machines

While TNs such as MPS allow the description of arbitrary tensors 1, in the context of proba-
bilistic modeling we would like our models to describe probability distributions, whose entries
are non-negative and sum to 1. The Born machine (BM) model represents a natural way of
doing so, which also permits the use of concepts from quantum information within the setting
of classical probabilistic modeling. A BM is parameterized by a TN describing a “synthetic
wavefunction” 1 over the values s = (i, iy, - ,iy) of the N discrete random variables, where
the elements 15 of ¢ can either be real or complex. In either case, the probability distribution
defined by the TN parameterization of v is taken to be that given by the Born rule of quantum
mechanics, namely

1
P(s)=~ psl?, 2

where the partition function Z is defined by

Z= Il (3)

Egs. 2 and 3 guarantee that P(s) > 0 for all s, and that Y, P(s) = 1, thus ensuring a valid
probability distribution. Although the naive summation in Eq. 3 is exponential in the number
of variables N, for BMs defined over MPS this can be carried out in time O(Nd )(3), where
d = max; d;. Alternately, TN canonical forms can be used to constrain the tensor cores of the
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MPS to always satisfy Z = 1, in which case the evaluation of probabilities in Eq. 2 only has
cost O(N y2).

BMs are often used in the context of density estimation, where the goal is to learn a
probability distribution P which approximates a target distribution Q using a finite data set
D= {sU )}J.T:1 of T samples from Q. A conventional approach for optimizing the TN cores of the
BM is by minimizing the Kullback-Liebler (KL) divergence KL(Q, P) = > Q(s)log (Q(s)/P(s))
between P and Q, which is equivalent to minimizing the cross-entropy loss

L@QP) == Q) log(P(s) ~ 7 3 ~log(P(s). @

se€D

Although the first summation in Eq. 4 ranges over all possible values of s, leading to an expo-
nential cost with increasing number of variables N, the second summation only depends on
the size of the dataset D, and can therefore be used to efficiently train the model to minimize
Eq. 4. In this form, we will refer to the finite sum on the right of Eq. 4 as the negative log like-
lihood (NLL) loss of the model on the dataset D. We note that the same functional definitions
as above will be used later for defining the KL divergence and NLL loss for probability den-
sity functions of continuous random variables x. While the NLL loss is always non-negative
for discrete-valued probabilistic models, in the continuous-valued case it is possible for this
quantity to become negative for a sufficiently peaked density P.

While BMs are trained in a similar manner to other classical probabilistic models, they pos-
sess several distinct advantages. Besides being efficient models for density estimation, BMs are
also generative models whose underlying TN factorization allows efficient sampling from the
exact distribution P, without the need for Monte Carlo or other approximate sampling meth-
ods. The existence of such perfect sampling [32] methods is closely linked to the efficient TN
computation of the partition function Z in Eq. 3, and extends to any BM whose underlying
TN has an acyclic graph structure [27]. Furthermore, the interpretation of samples from P as
outcomes of a projective measurement on the underlying wavefunction v permits the applica-
tion of tools from quantum information within the setting of classical probabilistic modeling,
something which has been used as a powerful theoretical tool for characterizing the expres-
sivity of different model families [30,31], as well as answering model design questions based
solely on the underlying dataset D [29].

2.3 Related work

The notion of feature functions has previously been used in tensor network models, primar-
ily in the context of classification tasks [11, 13, 39], although also with some applications in
function regression [40] and generative modeling [41]. As we discuss later, our interpretation
of the feature functions as isometric maps permits straightforward conditional generation and
training of the continuous-valued BM model. Refs. [42,43]look at the question of MPS approx-
imations of continuous functions, but where increasingly fine discretizations of the function
are approximated using discrete-valued MPS. Ref. [44] shows how to combine a similar style
of discretization with certain analytically tractable feature functions. Ref. [45] presents a uni-
versal approximation result for functional tensor trains that we use as an important building
block in the development of the universal approximation theorems of Sec. 5. Refs. [46,47]
present similar continuous generalizations of tensor train (TT) models, but whose optimization
is handled by very different algorithms.

The work of [48] studies density modeling of continuous data (phrased in terms of TTs
rather than MPS), with the “squared tensor train density estimation” variation of their model
having many similarities to ours. The distinct origin and focus of the TT and MPS communities
lead to several important differences between the model of [48] and the one introduced here.
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While the model of [48] is similarly capable of perfect conditional and unconditional sampling,
this requires the computation of explicit marginals that are trivial in our case owing to the use
of an MPS canonical form. This use of canonical forms also allows us to optimize the model
using a DMRG update and sweep approach, in contrast to updating all tensors simultaneously
by the gradient-based optimization used in [48]. Our compression layer architecture is novel,
as are the universal approximation results Theorems 2 and 3 proving that continuous-valued
MPS permit the approximation of any (sufficiently smooth) wave function or probability den-
sity function.

Our notion of “continuous-valued MPS” should not be confused with the continuous matrix
product states introduced in [49]. These models utilize a continuous spatial dimension, and
can be thought of as the limit of an infinite number of site indices, but with the site dimensions
remaining constant and discrete. This type of model has applications in quantum field theory,
and is not of interest in this context. The setting we consider here uses a fixed number of
indices, but with each index varying over a continuous domain.

3 Continuous-valued Born machine model

Despite the desirable properties of standard BMs, one obvious limitation is their restriction to
modeling discrete-valued probability distributions. While this is rarely an issue in the setting of
many-body physics, within classical machine learning such a restriction is extremely limiting,
as most datasets used in unsupervised learning contain continuous features described by a
probability density function (PDF).

To remedy this limitation, we show here how discrete-valued Born machines can be nat-
urally generalized to the setting of probability distributions over any combination of discrete
and continuous variables, as depicted in Fig. 2. This generalization is made possible by the use
of feature maps which convert points in the continuous domain into finite-dimensional vectors
which can be contracted with the underlying discrete-valued TN. We show in detail how this
generalization preserves all of the convenient properties and standard algorithms for BMs,
including perfect sampling, density evaluation at specific points in the domain, and efficient
computations of the partition functions and marginals. For convenience of presentation, in the
following we assume the use of identical feature maps for all N sites of the MPS, which are
assumed to possess a common feature dimension D, but the generalization to site-dependent
feature functions is straightforward.

3.1 Model

At a high level, the continuous-valued BM introduced here uses a feature map ¢ : 7 — K”
to convert variables x from a continuous domain Z to real or complex D-dimensional vectors
v = {(x) € KP. Once such a map has been defined for each site of a discrete-valued MPS, it
can be used to convert the MPS into a function of N continuous variables.

A more concrete manner of representing our mapping ¢ comes from picking a basis of D
feature functions F = {f; ?zl, with each f; : 7 — K equal to the projection of  onto one of the
D vectors {ei}?zl forming an orthonormal basis for K?, so that f;(x) = (e;, {(x)). We require

{ to be an isometry, meaning that the feature functions satisfy the relations

€My, = f FROf(x)dx =55,
e (5)

(D = DL HGOFF ) =T(x,x),
i=1
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Figure 2: Continuous-valued MPS. (a) For the feature layer, the input at each site
x € R is a continuous variable, after mapping, it outputs a discrete vector of feature
dimension D, which is directly connected to the tensor network layer (blue). y and
D are hyper parameters controlling the dimensions of different bonds. (b) Graphical
depiction of the continuous-valued function ¢ defined in Eq. 6.

x T (x, X)) IT (', )

I (x, x")

Figure 3: Graphical formulation of the isometric condition on the feature map ,
which is equivalent to the orthonormality requirement on feature functions expressed
in Eq. 5.

where I1(x, x’) is a kernel function satisfying fx, (o, x)(x’, x")dx’ = (x,x”) (see Fig. 3).
This isometry requirement is invaluable for extending the convenient properties of discrete-
valued MPS and BMs to the continuous-valued setting, and can be made without loss of gener-
ality, as any feature map can be converted into an isometric form (see Appendix A for details).

Given a mapping ( satisfying the above conditions, any tensor 1) containing N discrete
indices s = (iy,i,,...,1y) can be promoted into a continuous-valued function ® of N continu-
ous variables x = (x1, X5, ..., Xy ) by contracting each site index with the corresponding vector

{(x;), as described by
N
d(x) = Z (l—[fik(xk)) Vi igsoin * (6)
k=1

11,1950y Iy
A graphical representation of Eq. 6 is shown in Fig. 2, where the tensor v is taken to be given
by a discrete-valued MPS.
Just as with discrete-valued BMs in Eq. 2, the continuous-valued BM PDF P is given by the
elementwise norm squared of the underlying function ® : Q — K,

P(x) = (%)% . @)

P(x) is clearly non-negative everywhere in its domain of definition 2 = ZV and, owing
to the isometry conditions of Eq. 5, is guaranteed to satisfy the normalization condition
fxEQP(x)dx = 1 whenever the underlying discrete-valued MPS 1) satisfies the condition

> i ..i|> = 1. For the case of an unnormalized MPS 1), the normalization factor
1 N 1o--oIN

.....
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Figure 4: Continuous-valued MPS canonical form. (a) The underlying discrete-
valued MPS is required to be in canonical form with an orthogonality center (green
dot tensor). When the feature maps additionally satisfy the orthonormality relations
of Eq. 5, then the continuous-valued MPS is said to be in continuous-valued MPS
canonical form. (b-c) Graphical proof that the left (right) tensors constitute isome-
tries from the left (right) bond spaces to the space of square-integrable functions
acting on the left (right) set of continuous variables.

required to ensure the proper normalization of ® is precisely the squared norm of 1), which
can be efficiently computed using standard MPS methods. In contrast to the discrete-valued
case however, it is possible for the PDF P to take values P(x) > 1 at some points x € §2.

The standard canonical form for discrete-valued MPS can be straightforwardly generalized
(with the help of the isometric constraints of Eq. 5) to produce a notion of canonical form for
continuous-valued MPS, as shown in Fig. 4. Just as with the usual MPS canonical form, this
ensures the proper normalization of the BM distribution P throughout training, and simpli-
fies the computation of gradients and other quantities which typically require O(y3) time to
compute.

3.2 Sampling

Continuous-valued MPS BMs share the same perfect sampling capabilities as their discrete-
valued counterparts. Sampling proceeds site by site, with the continuous random variable at
each site i conditioned on those produced at previous sites 1,2,...,i — 1 via contraction of a
sample-dependent vector on the bond dimensions adjacent to site i.

For any site k, the conditional PDF of the random variable x; satisfies

P(xX1, X9,y Xk—15 X))
P(xlsXZ: .. -)Xk—l)

p(xk|x1:x2’ .. -:xk—l) =

; €y

where the marginal PDFs are defined for any k as

k k
P(x1,X3,...,X¢) = Z (l_[fij(xz)) Py oot e, (l_[fi;(xe)) - )
(=1

11,00l \L=
./ ./
L5l
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(a) P(x;, x5, x3)

X3 X3

(b)

X3

P(x3 | xl’ xZ) ~ X X = = 09 (x1, 1)

X3

X3 X3

Figure 5: Tensor network diagrams depicting how calculating the probabilities of
a continuous-valued MPS BM can be considerably simplified. The MPS is taken to
be in canonical form, with the orthonormal center (green dot tensor) on the left-
most site. (a) The marginal distribution P(x1, x4, Xx3) is given by integrating out the
continuous variables x4, x5, which is trivial when the MPS is in continuous-valued
canonical form. (b) The conditional probability P(x3|x;,X,) used in the sampling
process, which is facilitated by the computation of a D x D conditional density ma-
trix o®(xy, x,).

In the above, p; Dzl i i, TEPTESENLS the discrete reduced density matrix resulting from in-
tegrating over all remaining variables x; 1, ..., xy. Although the summation involved in Eq. 9,
as well as the integrations needed to compute the reduced density matrix, are prohibitively
expensive to implement directly, Fig. 5 shows how the tensor network representation of P can
be used to remedy this situation.

When the underlying MPS is in canonical form, tracing out the rightmost variables
Xk41,---,Xy can be performed efficiently, and computing value of the conditional probabil-
ity distribution P(xy|x7,Xs,...,Xr_1) can be accomplished with complexity O(D?y2). This
process is facilitated by a D x D conditional density matrix o (x, ..., x;_;) associated to site
k, shown in Fig. 5b. The conditional distribution in question is then given by

D
_ k
Pxelxs, o) = 20 D) )0y (e xien)fy (20, (10)
ik,iizl

where the normalization constant Z; is chosen such that ka o7 P(xiclx1, xg, . . xpq)d X = 1.

This in turn can be computed via numerical or closed-form integration over x;, to obtain a
cumulative distribution function F(x;) = fx, <x, P(x’)dx’. This permits a random sample to
be produced using inverse transform sampling, by sampling a uniformly random g ~ [0, 1]
and then applying the inverse of the cumulative distribution F to yield the random sample
xx = F71(z). Continuing this process for k = 1,2,...,N yields an exact sample from the BM
PDF P(x1, X, ...,Xy), with O (N()(ZD + )(Dz)) complexity.

10
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3.3 Training

In the simplest formulation of a continuous-valued MPS, the feature functions F = {f; }?:1 are
chosen in advance and unchanged throughout training. Only the core tensors of the discrete-
valued MPS representation of v are taken as tunable parameters, and are trained to minimize
the model’s NLL on a dataset of unlabeled samples.

Given a dataset with continuous data, each datum can be mapped to a tensor product
of vectors associated with the corresponding features at each site. For a dataset D with N

continuous features, the j’th sample x0) = (xgj ), xgj ), e, x](vj)) is mapped into
() () () S fl(x,ij))
(el e etgh=Q| : |, 11
k=1 j
Folx)

where { (x,({] )) is the vector representation of the k’th feature of the j’th sample of D.

Computing the NLL requires a summation over all data samples in D, in each of which the
site indices of 1) are contracted with the feature vectors given in Eq. 11. The MPS can then be
trained to learn this dataset by any conventional means, such as gradient descent on the NLL
of the distribution, or an adapted version of DMRG [12]. In this latter method, the cores for
a pair of sites (i,1 + 1) are trained by first contracting the tensor 1 with the feature vectors at
sites 1,2,...,i—1land i+2,i+3,...,n, then optimizing the remaining bond tensor to minimize
the NLL according to the procedure described in [12].

4 Feature functions

In a setting with discrete data, the possible values of the dataset’s categorical features deter-
mine the sizes of the site indices of the TN, so that a feature taking d possible values is always
associated with a site dimension of d. In the continuous-valued setting however, the feature
functions and feature dimension D represent new hyperparameters with a significant impact
on the inductive bias and expressiveness of the model. The following are all feature maps
we assess numerically in Sec. 7, which are natural choices for different types of continuous
domains. We describe the component functions of each map, along with their behavior under
isometrization (i.e. imposing the isometry conditions of Eq. 5).

Fourier The complex exponentials e/?™** for k = 0,1,... restricted to the compact interval
[0,1], which already satisfy Eq. 5.

Legendre Polynomials of degree k = 0,1,... restricted to the compact interval [—1,1].
Isometrization leads these to be proportional to the Legendre polynomials.

Laguerre Polynomials of degree k =0, 1,... multiplied by the exponential e /2, and defined
on the half interval {x € R|x > 0}. Isometrization leads these to be proportional to the
Laguerre polynomials multiplied by e™/2.

Hermite Polynomials of degree k = 0,1, ... multiplied by the Gaussian e’/ 2 and defined
on all of R. Isometrization leads these to be proportional to the Hermite polynomials
2
multiplied by e™"/2.

Beyond these particular cases, the framework we use permits many other possible feature
maps, including the discretization of continuous variables into categorical ones by binning.

11
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Consider the D feature functions f; defined as

fk(x):{l, kk_lﬁxﬁlk, (12)

0, otherwise.

These indicator functions serve as “one-hot” encodings of the categorical variable associated
to the placement of x into one of D separate bins with bin edges A; < A; < -+ < Ap, and
satisfy Eq. 5 up to normalization.

One important and obvious criterion when choosing a feature map is the domain of data
being studied. The Lagrange and Fourier feature maps can be used (with appropriate shifting
and scaling) to describe data in any connected compact interval [a, b], with the latter also
permitting features on a periodic domain (for example, angular data). The Laguerre feature
map is suitable for data taking nonnegative real values without an obvious upper limit, while
the Hermite feature map is suitable for data which can range over the whole real line.

4.1 Priors from feature maps

Beyond simply constraining the domain of input data, the choice of feature map for a given
continuous-valued BM sets the inductive bias of the model in a manner which can be pre-
cisely quantified, in the form of univariate marginal distributions at initialization. A common
initialization method for MPS BMs is to choose the elements of each MPS core to be indepen-
dent identically distributed (IID) random variables, and in this case the following Theorem
characterizes the single-site marginal distributions over each continuous random variable.

Theorem 1 Consider a continuous-valued MPS with feature dimension D and an isometric fea-
ture map { : T — KP at site i characterized by feature functions F = {fy, fa,..., fp}. Given an
initialization of all MPS core elements by IID random variables of zero mean and fixed variance,
the expected single-site marginal distribution P;,;(x;) of the randomly initialized MPS BM is given

by ;
1 1
Pinie(x;) = BHC(XJHZ =5 E ()2 (13)
k=1

287 ®

—D=2 10 — pa1

D=10 D=10

—D=2 25— D=5
0xp D=5 D=15
2.0
D=10
0.2 15
/ \ 1.0
01 \\/ \./
0.5

-4 -2 2 4 0.0 0.4 1.0

Figure 6: (a-c): The expected univariate distribution P,;, when a D-dimensional fea-
ture map is used. (a) Legendre polynomials, which converge to an arcsin distribution
in the limit of D — oo. (b) Laguerre functions, for which E[x] increases with in-
creasing D. (c) Hermite functions, which progressively broaden with increasing D.
(d) The expected distribution for Fourier functions is uniform for all D, but we in-
stead illustrate the univariate distributions associated with specific random MPS at
two values of D, for bond dimension y = 5.
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The proof of Theorem 1 is given in Appendix B, and is based on a simple characterization of
the expected density operator of the underlying discrete-valued relative to the IID initialization
method in question, which then permits a derivation of Eq. 13.

To illustrate this result, we consider the expected prior distributions associated with each
of the features maps considered above. The simplest is the Fourier case, where each complex
exponential fi(x;) = 2™ will have unit norm, and therefore yield an expected uniform
distribution over the interval Z = [0,1]. We note that even in this simple case though, indi-
vidual random MPS will generally have single-site marginal distributions that differ from this
expected distribution (Fig. 6d), which only characterizes the average with respect to many
different initializations.

More interesting is the Legendre case (Fig. 6a), where the initial distribution skews towards
the ends of the interval Z = [—1, 1]. In the limit of increasing D, the density of the univariate
PDF Pi(nl?t) diverges at the endpoints of the interval, yet the distribution as a whole converges
to an analytically tractable arcsin distribution [50], given by

1

Dlingo Pis,ﬁ)t)(X) = m . (14)
In practice this bias means the Legendre polynomials lead to significantly worse initialization
on most datasets, and we find better performance with other feature maps.

The Laguerre and Hermite cases (Fig. 6b and c) are both associated with a broadening of
the mass of the expected univariate distribution with increasing D, at a rate of O(+D).! In
this case, it is sensible to rescale the inputs to these feature maps as the feature dimension
is increased, i.e. using the new feature functions g;(x) = f,(¥/Dx). These rescaled feature
functions likely converge to exact analytic forms in the D — oo limit, but we leave this char-
acterization as an open question.

From a practical standpoint, Theorem 1 represents a useful tool for choosing feature maps
based on the marginal distributions associated with each feature of a dataset. Employing a
feature map whose expected prior distribution closely resembles the empirical marginal dis-
tribution for that feature leads to improved performance in training, in that regions of the
feature space which occur more often in the dataset are assigned higher probability at ini-
tialization. This could be compared to importance sampling in Monte Carlo methods, which
leaves the same asymptotic distribution in the high-capacity limit, but accelerates the rate of
convergence.

5 Universal approximation with continuous-valued MPS

It is well-known that discrete-valued MPS with sufficiently large bond dimensions can ex-
actly represent any space of Nth order tensors using the truncation-free version of the iter-
ated singular value decomposition (SVD) protocol of [5,9]. By extension, any discrete-valued
probability distribution can be exactly represented by an MPS BM whose underlying wave-
function is associated with the square root of the distribution. The corresponding questions
for continuous-valued MPS and square-integrable functions (or PDFs) of N continuous vari-
ables are considerably less straightforward. It is clear that the exact representation result from
the discrete case cannot be applied here, since the continuous-valued functions of interest live
in infinite-dimensional Hilbert spaces, while the functions describable by a continuous-valued
MPS with fixed bond dimension y and feature dimension D will necessarily occupy a finite-
dimensional manifold [53].

-1/2
'Hermite distributions have an asymptotic scaling in amplitude as (1 - #il) forlarge D and |x| < ¥2D +1,
with an exponentially small weight at |x| > +/2D + 1 [51]. A similar scaling holds for Laguerre distributions [52].
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We overcome this difficulty by proving universal approximation theorems, which bound
the worst-case error in encoding a sufficiently smooth wavefunction (resp. PDF) using a
continuous-valued MPS (resp. MPS BM), as a function of the bond dimension y and fea-
ture dimension D. These results show in particular that by increasing the values of y and D,
any sufficiently smooth wavefunction or PDF can be approximated to any desired precision
using a continuous-valued MPS.

Theorem 2 Consider a family of continuous-valued MPS with polynomial feature functions
F = {f1,fo,...} forming an orthonormal basis for [0,1], which is defined on the hypercube
Q=[0,11N CRN. Let k > N and let ® : Q — C be any square-integrable function with unit
norm ({®,®) = 1), whose partial derivatives of order 1,2,...,k all exist and are bounded. Then
for every positive y,D € N there exists a continuous-valued MPS of bond dimension y and feature

dimension D with unit norm, whose associated function @f\/)fr’,g) approximates ® with infidelity

,D _ _
1—(@,0%2) <y 4,072, (15)

where y1,75 > 0 depend on the target function ®, the assumed degree of smoothness k, and the
feature functions F.

The proof of Theorem 2, along with an overview of the functional analytic concepts used
in the proof and the precise definition of the constants y4, 74, are given in Appendix C. The
result makes heavy use of the work of [45], which generalizes the iterated SVD method for
computing discrete MPS representations of tensors to the setting of infinite-dimensional spaces
of real-valued functions.

We note that the restriction in Theorem 2, which applies to functions ® defined on the
unit hypercube Q = [0,1]" is primarily for ease of presentation, and can be easily relaxed to
functions on any product of compact intervals [a, b;] X --- X [ay, by ] (i.e. an N-dimensional
box). More generally, although a rigorous proof for the case of functions on non-compact
domains (e.g. ® : RY — C) is not possible with the methods of [45], we give a heuristic
argument in Appendix C for how Theorem 2 can be modified to bound the error involved in
approximating functions on non-compact domains using continuous-valued MPS.

The above theorem can be used to prove a similar approximation result for PDFs. In place
of infidelity between wavefunctions, we utilize the Jensen-Shannon (JS) divergence between
distributions, which is defined as JS(P,Q) = %(KL(P, M)+ KL(Q, M)) for M the equal-weight
mixture of P and Q taking values M(x) = %(P(x) + Q(x)). Besides being symmetric in the
input PDFs P and Q, JS divergence takes bounded values (in contrast to KL divergence), and
is zero only when P and Q are identical almost everywhere. The following Theorem therefore
guarantees that any sufficiently smooth PDF can be approximated to arbitrary accuracy using
a BM built from a continuous-valued MPS.

Theorem 3 Consider a family of continuous-valued MPS with polynomial feature functions
F = {f1,fo,...} forming an orthonormal basis for [0,1], which is defined on the hypercube
Q=1[0,11N CRN. Let k > N and let P : Q — R be any Probability Density Function (PDF)
bounded below as P;, = minycq P(x) > 0, whose partial derivatives of order 1,2,...,k all ex-
ist and are bounded. Then for every positive y,D € N there exists a continuous-valued MPS of
bond dimension y and feature dimension D with unit norm, whose associated Born machine PDF
Pl%;g )(X) = |¢1(V)f};§)|2 approximates P with Jensen-Shannon divergence

D k1 _
JS(PI\(Z%S),P)SHM 2 +m,D7F, (16)

where 11,m, > 0 depend on the target PDF P, the assumed degree of smoothness k, and the
feature functions F.
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Figure 7: Continuous-valued MPS with compression layer (green). (a) The input x
is converted to a vector of dimension D. Then the compression operator (green tri-
angular) is an isometry matrix, which rotate and truncate into a d dimensional site
index of the MPS. (b) From top to bottom is the feature mapping layer, compression
layer and MPS layer. Both the feature layer and the compression layer is direct prod-
uct of many local operators.

The proof of Theorem 3 applies Theorem 2 to the approximation of a naive target wave-
function given by ®,(x) = 4/P(x), and then uses standard tools from information theory to
translate bounds in infidelity into bounds in JS divergence. The key technical argument of this
proof is ensuring that the smoothness guarantees assumed of P yield similar smoothness guar-
antees for &, which is complicated by the fact that the derivative of 4/ P(x) becomes infinite
in the limit P(x) — 0. To avoid this pathological behavior, we require that P(x) be bounded
below by some P,;,, as explained in the proof in Appendix C.

Just as for Theorem 2, the domain in Theorem 3 can be replaced w.l.o.g. with any N-
dimensional box, and by a heuristic argument can be used to bound the error in approximating
PDFs defined on unbounded domains. We note also that different symmetric loss functions can
be used in place of JS divergence in Theorem 3, notably total variation distance.

As one final comment on Theorems 2 and 3, the attentive reader might wonder about the
case of smooth target functions, for which the value of k can be made arbitrarily large. While
the bounds in Egs. 15 and 16 might seem to become arbitrarily small, it is important to note
that the quantities y1, ¥, N1, N5 themselves depend on k, and generally grow very rapidly (e.g.
super-factorially) with increasing k. Consequently, even though smooth PDFs can technically
be approximated with error O( )f% + D7) for any positive value of k, in practice the large
prefactor in such bounds would make this increasingly favorable scaling only become apparent
at values of y and D which increase at an astronomical rate.

6 Compression layer

The feature dimension D plays a crucial role in determining the expressivity of the continuous-
valued model, as it determines the number of basis functions spanning the space of functions
on the continuous variable. This in turn determines the precision of the continuous variable
being modeled, with a dimension D limiting the precision to roughly O(D™!). While a larger
feature dimension enables the MPS to capture finer details of the distribution, it also comes at
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the cost of significantly increased computational complexity. As a concrete example, training
using two-site update scheme leads to a memory cost of O(¥2D) and a computational cost of
O(x3D?), making it impractical to increase the feature dimension beyond a certain limit.

To address this issue, we propose the addition of an intermediate compression layer that
connects the D-dimensional feature space to a smaller site space of dimension d in the under-
lying discrete-valued MPS. It may be the case in practice that the univariate functions needed
to describe each feature of a target distribution or function are easily describable in a low-
dimensional space, but where each basis function is more complex than a predetermined fea-
ture function. Our compression layer takes advantage of this possibility by storing a tunable
collection of d basis functions, which are each taken to be a superposition of D fixed feature
functions, where d < D. This allows us to take advantage of the expressive power of high
numbers of feature functions while minimizing computational costs, improving the efficiency
and performance of the continuous MPS model. While we have so far taken D = d, when
clarity is needed we will refer to D as the feature dimension of the model and d as the site
dimension.

Adding a compression layer results in a model that is a simple example of a tree tensor
network, as shown in Fig. 7. The compression layer consists of many different D x d matrices
{Ul-}f’: , satisfying the isometric condition Ul.TUl- = I;, which are tunable parameters of the
model. In the case of datasets possessing similar kinds of features (e.g. time series data), it
may be advantageous to choose all isometries U; to be equal.

Jointly training the compression layer with the MPS parameters can be done in either the
context of gradient-based optimization, or in an alternating manner in the context of DMRG.
The former case can be straightforwardly handled by the use of tools for gradient-based op-
timization on Stiefel manifolds (i.e. families of isometric matrices), so we describe here the
latter optimization process. The isometry U; at a site i is trained to maximize the NLL loss asso-
ciated to a training dataset D, where samples from the dataset are associated with continuous
features x = (xy, X9,...,Xxy). For a given sample from D, the N — 1 features at all other sites
X; = (x1,...,X_1,X41, .- -, Xy) are contracted with all cores of the underlying discrete-valued
MPS, giving a d dimensional vector v_; at site i, while the remaining feature x; is embedded
as a D dimensional vector {(x;). Given this information, the goal is to find the isometry which
minimizes the negative log-likelihood loss over the training dataset, or equivalently:

U; = argmax Y log (|{Z(x)|U; [v-;)1). a7

xeD

We can find a good U; by first linearizing the log(|-|) term, which turns Eq. 17 into a Procrustes
problem [54] of linear alignment under an isometric constraint. Procrustes problems can be
easily solved with a singular value decomposition on the effective matrix being contracted
with U; in Eq. 17 (after linearization), where setting all singular values to 1 gives the optimal
isometry. Upon reaching a candidate solution U;, the nonlinearity log(|-|) is linearized again
and the optimization process repeated until convergence, typically within a few iterations. Full
pseudocode for this training is presented in Appendix E.

We note that although computing a vector v_; for each sample x € D may appear expensive,
the use of cached environment tensors reduces the incremental cost of this computation to only
O(y2d) when carried out in the context of the adapted DMRG procedure of [12], making this
a very lightweight addition to the basic continuous-valued MPS model.

7 Numerical results

We test the continuous-valued MPS BM model on five distinct density estimation tasks. The
first is a rotated hypercube, a simple linearly transformed multidimensional uniform distri-
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bution, which we use this to explore the scaling of accuracy with increasing bond and fea-
ture dimensions. The second and third are the synthetic two moons dataset [55] and the
non-synthetic Iris dataset [56], both of which contain a mixture of continuous and discrete
variables. The fourth is a dataset of samples from the classical 2D XY model at nonzero tem-
perature, a statistical mechanical model whose partition function has previously been shown
amenable to TN methods [57,58]. Finally, we use a specifically designed synthetic dataset to
test the dynamic basis compression training algorithm.

In each setting the continuous-valued MPS BM is trained to minimize the NLL loss on the
target dataset using a two-site DMRG procedure. This is equivalent to minimizing the KL
divergence of the model’s learned PDF relative to the distribution which produced the target
dataset, and in cases where the entropy of the target distribution can be accurately estimated,
we will report the KL divergence of the model. Otherwise we report the raw values of the NLL
loss, which can be negative in the continuous-valued setting. Any experimental details not
specified below can be found in Appendix D.

7.1 Rotated hypercube

As a simple testbed, we used a distribution drawn uniformly from a rotated hypercube [—1, 1TV
for N = 5. This dataset has nontrivial correlations between each pair of variables and sharp
jumps in the overall density, yet still has continuously differentiable marginals.

For each feature dimension D and maximum bond dimension y, the MPS was trained from
an initial random state with 18 DMRG sweeps and a maximum bond dimension that increased
linearly up to y. The KL divergence of the model for different values of y and D make use of
the Fourier feature map, which was found to work best in this setting. The KL divergence of
the model for different bond and feature dimensions are plotted in Fig. 8. As expected, the
loss decreases as we improve either dimension, and saturates if one is increased without the
other.

We note that both real and complex tensor networks can be utilized for continuous-valued
BMs, and during this initial set of experiments, we quickly found that real-valued tensor net-
works empirically performed much worse, often failing to converge at all (see Appendix D.1).
We attribute this to large jumps in the MPS during the truncation process when using two-site
DMRG, and speculate that better behavior might be observed for real-valued models when
training using gradient descent. Because of this behavior though, all remaining experiments
were carried out using complex-valued tensor networks.

20 1.5
15
> 1.0
10
5
0.5
4 6 ] 10
D

Figure 8: KL divergence of continuous MPS on rotated hypercube dataset, trained
with different feature dimensions D and bond dimensions .
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Figure 10: The six different pairwise marginals between each pair of four continuous
variables associated to (a) the 150 samples in the Iris dataset, and (b) 150 samples
drawn from the continuous MPS model. The three class labels are indicated by color.

7.2 Two moons

The two moons dataset is a standard synthetic dataset available from scikit-learn [55], con-
taining two continuous features encoding the position on a 2D plane and one binary feature
indicating which “moon” the sample belongs to. We use a three-site MPS containing two con-
tinuous indices and one discrete index to learn the structure of the dataset in an unsupervised
manner, but note that the efficient conditional sampling permits the trained MPS BM model
to be immediately used as either a supervised classifier or a conditional generative model.

Hermite and Fourier feature maps were both tested on the dataset, with an identical train-
ing schedule used as for the rotated cube. We found the Fourier basis to give favorable perfor-
mance at all parameters, with a comparison of samples from the trained model with those from
the two moons distribution shown in Fig. 9. More information, including the KL divergence
at different values of D and y, can be found in Appendix D.2.

7.3 Iris dataset

The Iris dataset [59] has four continuous features and a three-class categorical feature. Be-
ing a small dataset of only 150 samples, we must pay attention to overfitting. For each bond
dimension and feature dimension under consideration, we use five-fold cross validation, and
report the mean of the NLL loss on the validation set in each of the five folds. The petal mea-
surements are strictly positive values, so the Legendre feature map seemed the most natural
in this regard. However, we again found that the Fourier feature map performed the best in
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practice. Although the Iris dataset was used here for an unsupervised density modeling task,
we note that as in the two moons task, the MPS BM can immediately be used to either pre-
dict the class label given the four continuous features, or conditionally generate continuous
samples given a specific class.

We found that overfitting did occur at higher dimensions, with higher losses being seen on
the held-out data fold (see Appendix D.3 for the NLL loss as a function of y and D). Optimal
performance was observed at y = 9 and D = 7, with a validation loss of —1.40 £ 0.01. The
samples in the Iris dataset are compared to a similar number of samples from the trained MPS
BM in Fig. 10, where the four continuous features are displayed as six pairwise marginals. The
trained model shows good agreement with the original Iris dataset, although some outliers are
visible.

7.4 XY model

The classical XY model [60,61] is a physical system of 2D unit vectors V;, with an interaction
energy E; ; = —V; - V; between adjacent sites. For an N site system, representing each vector
V; = (sin x;, cos x;) by its angle x; € [0,27] gives N continous features for each sample drawn
from the thermal ensemble associated to the interaction Hamiltonian. This feature space has
a natural periodic structure, allowing a further test of the Fourier feature map. We chose
N = 16, with the associated sites arranged in a 4 x 4 grid. To ensure a challenging long-range
correlation structure, we trained on a dataset of samples drawn from the model’s thermal
distribution at temperature T = 0.8 which was close to the model’s critical temperature of
T, ~ 0.882.

The MPS BM model for y =12 and D = 13 was able to reach a KL divergence of approx-
imately 0.52 relative to the true XY distribution, which was lower than the KL divergence of
0.6 found by a variational autoencoder (VAE) benchmark with hidden dimension of 512 and
10-dimensional latent space. The VAE benchmark additionally required careful hyperparame-
ter tuning and several attempts to reach this value, whereas the continuous-valued MPS was
able to reach a lower KL divergence without any modification. Other derived metrics were
used to further verify the performance of the MPS model, as reported in Appendix D.4.

7.5 Compression test

To verify that the performance of the compression layer, we created a synthetic dataset con-
taining several tightly-grouped variables (see Appendix D.5 for details). The dataset possesses
four continuous features with very different single-site marginals, which are shown in Fig. 11.
To assess the impact of the compression layer, we compared three continuous-valued MPS
models: (a) a larger MPS model with D = 16, (b) a smaller MPS model with D = 3, and (c) a
compression-enhanced MPS model with distinct feature dimension D = 16 and site dimension
d = 3. Although model (c) employs the same number of feature functions as the larger model
(a), its reduced site dimension makes its computational cost closer to the smaller model (b).

The single-site marginal distributions of the three trained models are shown in Fig. 11(a-
¢), where it is evident that models (a) and (c) give a more faithful reconstruction of the dataset
structure than model (b). This is supported by the final NLL loss of the trained models, with
model (a) attaining the best NLL loss of -2.17, followed by model (c) with a comparable loss
of -2.05, and finally model (b) with a much higher loss of 2.04. We therefore see that by
using compression layers, continuous-valued MPS with small site dimensions can deliver per-
formance that is nearly identical to much larger MPS, but without a significant increase in
computational cost or parameter count.
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Figure 11: Comparison of the single-feature marginal distributions for three repre-
sentative MPS models on the synthetic compression dataset, with bond dimension
x = 4. TL: True one-site marginals. TR: an MPS with D = 16 obtained the best
recovery of the target dataset. BL: The smaller MPS with D = 3 gave considerably
worse behavior. BT: Using a compression layer with site dimension d = 3 and fea-
ture D = 16 gave comparable performance to the larger model, while maintaining a
reduced computational cost.

8 Conclusions

We have introduced a family of continuous-valued TN generative models, which share the
perfect sampling and conditional generation properties of standard discrete-valued TN BMs,
while also permitting the use of arbitrary combinations of continuous and discrete data. The
generality of these models is proven by a pair of universal approximation theorems, which
ensure that any sufficiently smooth PDF or continuous-valued wavefunction can be efficiently
represented to arbitrary precision using continuous-valued MPS. Benchmarking this model on
a broad range of synthetic and real-world datasets with discrete and continuous variables, we
find it able to accurately learn the structure of each dataset, with a programmable compression
layer giving enhanced performance in the presence of limited computational resources.

A key ingredient in our continuous generalization is the notion of feature maps to embed
continuous data as finite-dimensional vectors. While feature maps have been used for super-
vised TN models since at least [11, 18], a major contribution of our work is the discovery of
much richer structure in feature maps within the context of generative modeling. We prove
a general characterization of the influence of feature maps on the marginal distributions of
continuous-valued MPS BMs at initialization, and investigate several concrete feature maps
in detail from a theoretical and empirical perspective. Our focus on isometric feature maps,
which we prove entails no loss of generality, lets us derive a canonical form for continuous-
valued MPS that preserves the convenient properties of discrete-valued MPS and permits the
use of powerful methods like DMRG for optimization.

While we have restricted to the use of MPS for convenience, in principle any discrete-
valued TN can be extended by our methods into a corresponding continuous-valued model,
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and benchmarking the performance of more sophisticated TNs (e.g. tree TNs, MERA, and
PEPS) in problems with continuous data is an obvious next step. A more open-ended direc-
tion is to develop methods for boosting the expressivity of feature maps, or choosing them
based on the structure of particular datasets. Our compression layer represents an important
contribution along these lines, but using neural networks or other ML models may boost ex-
pressivity yet further. Developing heuristics for better choosing the feature dimension D in
a given problem, analogous to how entanglement-based area laws guide the choice of bond
dimension y, is another problem deserving future attention. Along similar lines, we anticipate
generalizations of two-site update scheme that permit the dynamic variation of both D and y
to be a useful aid for optimizing continuous-valued TN models.
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A Generality of isometric feature map condition

Given an arbitrary feature map ¢ : 7 — KP? represented by a basis of feature functions given by
F ={f1,f2---,fp}, we present a general procedure to create new feature functions satisfying
Eq. 5, thereby giving an isometric map. We further show how this procedure can be applied
to any continuous-valued MPS without imposing any changes in the associated continuous-
valued function ® : ZV — K. We assume first that the functions are linearly independent, as
otherwise we can remove any linearly dependent basis functions without any impact on the
feature map’s expressive power.

First, we calculate a Hermitian “overlap matrix” M € KP*P whose elements M,; j give the
overlap between feature functions f; and f;, namely

Mij:<fi,fj>:J FO)f;(x)dx . (A.1)
xeZ

By the assumption of all functions in F being linearly independent, M is full-rank, which allows
1
its matrix inverse square root X = M~ 2 to be computed from the spectral decomposition of

M:
M =QAQ", (A2)
X=QA"2Q", (A3)
where Q is a D x D unitary and A2 denotes the elementwise inverse square root of the diagonal
matrix A containing strictly positive diagonal entries. X is itself an invertible Hermitian matrix,

and Eq. A.2 and Eq. A.3 can be used to verify that XMX =1
Using X we can generate a new isometric feature map, whose basis of feature functions

{1,82,...,8p} is given by .
8k(x) = ij(X)Xjk- (A4

j=1
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Figure 12: (a) Graphical illustration of Lemma 1, characterizing the covariance ten-
sor resulting from IID initialization of an MPS core tensor (blue circles). (b) Sim-
plified graphical proof of Theorem 1 for the case of N =5 and i = 3, with the first
equality being the definition of the expected marginal distribution P;;;(x3). The sec-
ond proportionality comes from applying Lemma 1 to all pairs of core tensors and
using the isometric nature of the feature maps (magenta trapezoids), with the result-
ing diagram giving the value ||{(x3)||2. The remaining proportionality factor % seen
in Theorem 1 arises from normalization considerations.

The isometric nature of the new feature map can be verified by the orthonormality of the
feature functions, concretely:

J g7(x)g;(x)dx = f (Zf;(x)xzi) (Zfb(x)xbj)dx
x€L X a b

€7

- ZX:;iij (J f;(x)fb(X)dx)
a,b

- ZX;kiijMab =(X"MX);; =65
a,b

Finally, we note that this transformation can be applied to an existing continuous-valued MPS
model without any change in the associated function ¢. The new feature map defined by
Eq. A.4 is equivalent to the composite function sending x — {(x)X, and applying the inverse
matrix X! to the corresponding site index of the underlying discrete-valued MPS 1) therefore
gives a new discrete-valued MPS which computes the same continuous-valued function ®, but
using an isometric feature map.

Those more familiar with TN methods will identify this procedure as a simple variation of
the standard procedure for converting TNs over acyclic graphs into canonical form, but with
the important caveat that some of the indices being traced over are associated with infinite-
dimensional spaces of functions.

B Proof of marginal distribution characterization

We prove the characterization of marginal distributions of randomly-initialized continuous-
valued MPS BMs given in Theorem 1 in the following, which is restated for ease of reference.
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Theorem 1 Consider a continuous-valued MPS with feature dimension D and an isometric fea-
ture map { : T — KP at site i characterized by feature functions F = {fy, f, ..., fp}. Given an
initialization of all MPS core elements by IID random variables of zero mean and fixed variance,
the expected single-site marginal distribution P;,;(x;) of the randomly initialized MPS BM is given

by

D
P = G = £ DAl a3
k=1

The above Theorem characterizes an initialization coming from choosing each entry of
the underlying discrete-valued MPS core tensors {A(")}f’: , to be IID random variables with
mean zero and identical variance. In this setting we assume each core tensor AY) has shape
Xi—1 % Xi x D;, and we begin by proving an important Lemma governing the expected behavior
of pairs of such tensors under this type of IID initialization.

Lemma 1 Consider a tensor A € K*i-1*2*Di whose elements have mean E[Ag)ﬁ k] = 0 and

(@
Aa,ﬁ,k

and averaging over all IID initializations is given by

2 . .
variance ]E[ ] = t,. The sixth-order variance tensor B® given by taking two copies of A®)

Bz(xl,)a’,ﬂ,/j’,k,k’ = E[(A(l));ﬁ,kAS’),ﬁ’,k':l =104,00p,p 0k - (B.1)

The proof of Lemma 1 is an immediate consequence of the IID nature of the different
elements of A). The elements of BY) are covariances between pairs of elements in A®), which
by assumption are O for different elements, and ¢; for identical elements. The result has a
convenient graphical form, shown in Fig. 12a, which facilitates many calculations involving
randomly-initialized MPS.

As a concrete example, we can compute the expected squared norm of a continuous-valued
MPS & whose underlying discrete-valued MPS 1) has been initialized using core tensors with
IID random elements with mean zero. The isometric nature of the model’s feature map leads
the squared norm of a continuous-valued MPS to be identical to that of its underlying discrete-
valued MPS, which with the use of Lemma 1 can be verified to equal the product of all feature
and bond dimensions in the model, namely

N
E[lIpI2]=] Je:Dixi, (B.2)
i=1

where we take yy to be yy = 1. In order to ensure proper normalization when the MPS
is used as a probabilistic BM, it is necessary to have the per-core variances t; to satisfy
]_[flzl ti= ]_[ivzl D, y;, which can be ensured by taking t; = (D; ;).

Given this, the proof of Theorem 1 reduces to taking the definition of the expected univari-
ate marginal distribution Py,;;(x;), wherein all other variables are traced out, and applying TN
identities to simplify the resultant expression to the form given in Eq. 13 (see Fig. 12b). Apply-
ing the isometric condition of Eq. 5 allows all pairs of traced-over feature maps to be removed
(see Fig. 3), with Lemma 1 permitting a comparable removal of all pairs of matched tensor
cores A The result is the simple diagram on the right side of Fig. 12b, with a proportionality
factor equal to the product of all t; with a term a; = ]—[f{:_ll %i | 1;4 Dj coming from tracing
over all bond dimensions, as well as all feature dimensions except for D;. The result is the
scalar factor Dl._l, which under the typical assumption of constant feature dimension D; = D,
gives the proportionality factor appearing in Eq. 13. This completes the proof of Theorem 1.
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C Proof of universal approximation results

We prove the universality approximation results of Theorems 2 and 3 in the following, which
are restated below for ease of reference. In order to prove these Theorems, we must first
introduce some concepts from functional analysis, which are used to introduce and prove
Theorem 4, which generalizes Theorem 2 to characterize a wider range of functions.

C.1 Functional analysis preliminaries

Our results concern the setting of spaces of scalar-valued functions f : Q@ — K de-
fined on the N-dimensional hypercube © = [0,1]¥ C RN equipped with L,-norm

|If ”Lﬁ = ( fxeﬂlf(x)lzdu)l/2 associated with a positive-valued finite measure u (i.e.

w(2) < 00). We use K to indicate one of either R or C, in the typical case where the choice

of field doesn’t change the validity of the definitions or results.

ak
axil axiz ~~axik
k’th-order partial derivative of the function f, with the usual caveat that such derivatives only
exist for sufficiently smooth functions. More generally, we use DVf to indicate a k’th-order

weak derivative of f, which is defined as a function satisfying the formula

Ifi= (i}, 1y,...,i;) for some k > 0, then we use oWf = to indicate a standard

f (D(i)f(x))go(x)d.u=(—1)kJ F@) (890 (x)du, (C.1)
XEN X0

for all infinite-differentiable functions ¢ : £ — K which vanish on the boundary of Q. The
usual integration by parts formula ensures that each partial derivative dWf is itself a weak
derivative of f, but the latter can also be defined for functions f whose k’th-order partial
derivatives don’t exist for all x € Q. A function can possess multiple different weak derivatives,
but these will agree almost everywhere in Q (i.e. everywhere but a measure zero subset of £2).

We are interested in functions that are “sufficiently nice” for proving universal approxima-
tion results, which leads to the concept of Sobolev spaces. The k’th order Sobolev space HHk(
on ( is defined as the collection of all functions f : & — K possessing all weak derivatives
DO f of order i| < k (i.e. i = (iy,is,...,i,) for £ < k), which each have finite L, norm. This is
equivalent to the condition

— )]
1 llz := D IDDf [ 2dp < oo, (C.2)
lil<k
where the quantity ||f ”Hﬁ( is referred to as the k’th-order Sobolev norm of f. For k = 0, the
Sobolev norm reduces to the usual L, norm on €2, and more generally ||f || 12 <|If ”ka , so that
every f € ’HH"( necessarily has bounded L, norm. We will also employ the so-called Sobolev
seminorm |f|H§( of a function f € HX, which is defined as IfIH% = Z|i|:k||D(i)f||Lg-
A final concept needed in the following is the notion of a-Hélder continuity, where a func-
tion f : Q — K is bounded in variation as

lf ) —fI < Clix—yll*, (C.3)

for C € R a constant holding for any pair of points x,y € Q. We can without loss of generality
take a to be in the range a € (0, 1], and note that when a = 1 the notion of a-Hoélder continuity

reduces to the more familiar definition of Lipschitz continuity. Any function f : @ — K whose
first derivatives exist at all points in  and are bounded as ‘%‘ < oo (fori=1,2,...,N) will

always be Lipschitz continuous, and therefore a-Holder continuous for any 0 < a < 1.
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C.2 Proof of theorem 2

Theorem 2 Consider a family of continuous-valued MPS with polynomial feature functions
F = {f1,f>,...} forming an orthonormal basis for [0,1], which is defined on the hypercube
Q=1[0,1N CRN. Let k > N and let ® : Q — C be any square-integrable function with unit
norm ((®,®) = 1), whose partial derivatives of order 1,2,...,k all exist and are bounded. Then

for every positive y,D € N there exists a continuous-valued MPS of bond dimension y and feature

@(X:D)

dimension D with unit norm, whose associated function &y ¢

approximates ® with infidelity

,D _ _
1— (&, 852)| < yy 7 *1 4,072k, (15)

where v1,79 > 0 depend on the target function ®, the assumed degree of smoothness k, and the
feature functions F.

Rather than proving Theorem 2 directly, we instead prove a more general Theorem 4, given
below. The fact that Theorem 4 implies Theorem 2 is immediate from the definitions and facts
above concerning Sobolev spaces and Holder continuity.

Theorem 4 Consider a family of continuous-valued MPS with polynomial feature functions
F = {f1,fs,...} forming an orthonormal basis for [0, 1], which is defined on the hypercube
Q=1[0,1]N CRN. Let k > N and let & : Q@ — C be any square-integrable function in the Sobolev
space Hfé with unit L, norm which is a-Hélder continuous for o > % Then for every positive
x,D €N there exists a continuous-valued MPS of bond dimension y and feature dimension D of

x,D

unit norm, whose associated function <I>1(V[ ) approximates ® with infidelity

PS

D - -
1— (@, 0% <y 4,07,

where y1,y5 > 0 depend on the target function ®, the assumed degree of smoothness k, and the
feature functions F.

This more general formulation allows us to make use of an invaluable result from [45],
which applies to functional tensor train (FTT) decompositions that are almost identical to the
continuous-valued MPS considered here. The result in question comes from the fundamental
FTT approximation characterization given in their Theorem 13 with a polynomial interpolation
method, as expressed in their Egs. 66, 70, and 73°. Rephrased in our terminology and notation,
this result takes the form of:

Lemma 2 ([45]) Let ® : Q > Rbea H]’f{ function on = [0,1]N € RN which is a-Hélder
continuous for a > *, and where k > N. Then for any collection F = {fy, f,,...} of polynomial
feature functions which form an orthonormal basis for [0,1], for every positive y,D € N there
exists a continuous-valued MPS with bond dimension y and feature dimension D which computes

a function @f\ffg,g) : Q — R satisfying

,D N-1 _ka ,D _
le—{fll; < \| T Il (x #1077 +CWOIES L D, (C4)

with C(k) depending on k and (implicitly) on the choice of F.

The RHS of Lemma 2 contains two polynomials of y and D whose dependence on k is
of the same order as the two polynomials on the RHS of the bound of Theorem 4. In order
to use the former result to prove the latter though, we must do several things: (a) Replace

2All equation and theorem references are relative to the published version of [45].

25


https://scipost.org
https://scipost.org/SciPostPhys.18.3.096

e SciPost Phys. 18, 096 (2025)

x + 1 by y in the RHS of Eq. C.4; (b) Generalize the setting of Lemma 2 from real-valued to
complex-valued functions; (c) Ensure that <I>1(V)f1;§) can be chosen to have unit L, norm whenever
@ does; (d) Bound the quantity |<I’1(v)[(1515))|?-£(’5 by a function of k and F alone; and (e) Convert the
L, bound derived from Lemma 2 into the infidelity bound appearing in Theorem 4. We will

proceed to do each of these in the following.

Replace y + 1 by ¥ This is straightforward, as for any positive values K > 0 and m > 1,
the inequality K(y + 1)™™ < 2Ky ™ holds for all bond dimensions y > 1. This replacment
therefore adds a factor of 2 to the first term on the RHS of Eq. C.4.

Complex-valued generalization Although Lemma 2 is phrased in terms of real-valued func-
tions, generalizing this result to complex-valued functions is straightforward. The target
function ®° : O — C can be represented as a weighted sum of two real-valued functions
3", d' : O — R via °(x) = ®"(x) + i®!(x), and each function approximated separately by
continuous MPS ¢;wps’q’§\4ps of bond dimension % (assuming wlog that y is even). The two
approximating MPS can be summed together as a single continuous MPS &, ,. of bond di-

mension y, giving

19 — @y pgllzz < N7 =Dy pgllzz + 19 — @y pgllr2

k=1

N-—1 . -5 , .

<2\-— (||¢rllﬂﬁ+||q>lllﬂﬁ)(§) +c(k)(|<1>;wps|%+|q>;wps|ﬂ§) D (C.5)
k N-—-1 k1 3

<2z o 1l + V2C(R)|®5pslyys D7F, (C.6)

where we have used the identity ||<I>r||H§ + ||<I>i||H§ < \/EII‘I’CHH{& (a basic consequence of
complex versus real L, norms) for the Sobolev norm and seminorm.

D . . . .
Ensure q’l(\fff)s) has unit norm Theorem 4 not only assumes a target function ¢ with unit

norm, but also ensures a continuous MPS approximation with unit norm. This guarantee is

D) .
(2:D) is not guaranteed to have

MPS
. D .
the same norm as the target ®. While we can always rescale <I>1(\fff,s) to have unit norm, we

must understand how this impacts the approximation error, something which can be done
through inequalities which hold in any normed vector space. Given a target vector u satisfying
||lul| = 1, suppose there exists a vector v which approximates u to within distance ||u—v||. The
unit vector ¥ = v/||v|| will then necessarily approximate u to within distance

not provided by Lemma 2, whose approximating function ®

lu=Vl=lu—v)+ =D <llu—=vl[+I[v—7
= lu—=vil+ 1=Vl = llu—=vIl + llful =]
<2|lu—v].

Bound |<I>1(V’I‘I’,[S))|Hk as a function of k and 7 We utilize the fact that the spatial dependence
C

of <I>§/ﬁ’,§) is entirely mediated by the first D polynomial embedding functions from F, which

form an orthonormal basis over the finite-dimensional vector space of polynomials with degree

less than D. This arrangment means that d)l(\fﬂ;g) has all partial derivatives of arbitrary order,

which can be used to directly compute its Sobolev seminorm |‘I’1(\/}1(15§)|H{(§ without invoking the

notion of weak derivative. Given the simple rules for taking partial derivatives of multivariate
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polynomials, we can see that any single spatial derivative % will preserve the space of poly-
nomials spanned by the D first embedding functions in F, and consequently be equivalent to

a D x D matrix acting on the i’th mode of the discrete MPS wg\jﬁg) underlying the continuous

MPS q’%ps) More generally, every partial derivative @ will be equivalently to a bounded

i . N

linear operator M® acting on the vector space of N’th order tensors C?***P ~ CP" where
(x,D) q;
Mps lives.

With these details in place, the seminorm can be explicitly bounded as

D D D
[0iee b = D 10D@ENLe = > IMPy 2]

lil=k lil=k
. b .
< D IMO- flypE2l = > IM O], (C.7)
lil=k lil=k

where in the second equality we have invoked the orthonormality of the feature functions and
the above-remarked equivalence between the action of ¥ on continuous MPS and a finite-

dimensional matrix M@ acting on the underlying discrete MPS 1/1%’31;). The notation |M®)|

refers to the spectral norm (i.e. the largest singular value) of M@, and the final equality uses
D

q)l(\fPS) “L2

|M®| will depend on the choice of ba51s functions F, it is clear that the RHS of Eq. C.7 is finite

and depends on nothing else besides k, giving us the desired bound on |‘b§v}fﬁls))|7{{é .

the unit norm assumption || ||1/J by PS) || = 1. Although the value of the spectral norms

Convert L, bound to infidelity bound Summarizing our results up to this point, we have
proved that for any unit-norm target function ® € 7—[{& and an orthonormal basis of polynomial
feature functions F, there exist quantities y7,y, > O depending only on &, k, and F for

which there exist unit-norm continuous MPS ®%:2) of arbitrary bond dimension y and feature

MPS
k=1
dimension D approximating ® with L, error || — @g,fﬁls))ll L2 <yix T+ }f’ZD_k. However

Theorem 4 requires a bound on the infidelity 1 — |(®, @%Pg))l. This can be achieved by the
straightforward inequality 1 — |(u, v)| < %Ilu —v||2, which holds for any u and v in a normed
vector space. Combining this with our L, bound gives

(x.D) 1 ,D)
1-1(@, 05} < 3lle - Il

_ka
2

2
<i (Y/1X + }f’zD_k)
<y 4 y,D 7 (C.8)

where we use the identity vy, x_% D™ < 1y, (x %" + D72k) to simplify the cross-terms
arising from the expansion of the square above to arrive at the constants y; := 37?2 + 17,
and y, = %y’zz + y,75. This gives us our desired infidelity bound, completing our proof of
Theorem 4, and by extension Theorem 2.

As a final note, we consider the case where the domain of the target function ¢ is un-
bounded (e.g. all of RN). Although the methods of [45] don’t apply in this setting (for rea-
sons related to certain functional analytic lemmas used in the proof of Lemma 2), we can
instead consider a sequence of approximations of ¢ by functions &, supported on boxes €2, of
increasing size, which each approximate ¢ to within a distance of €. By approximating this
sequence of functions of bounded domain using Theorem 2, we can approximate our target
to arbitrary precision, albeit at the cost of introducing another e-dependent term into the error
bound of Eq. 15. Although this argument leaves some technical details to be worked out, it is
clear that in practice this method offers a concrete means of using continuous-valued MPS as
universal function approximators for functions on unbounded domains.
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C.3 Proof of theorem 3

Theorem 3 Consider a family of continuous-valued MPS with polynomial feature functions
F = {f1,f>,...} forming an orthonormal basis for [0,1], which is defined on the hypercube
Q =1[0,1]N CRN. Let k > N and let P : Q — R be any Probability Density Function (PDF)
bounded below as P;, = minycq P(x) > 0, whose partial derivatives of order 1,2,...,k all ex-
ist and are bounded. Then for every positive y,D € N there exists a continuous-valued MPS of
bond dimension y and feature dimension D with unit norm, whose associated Born machine PDF

Pl\(/ﬁ,’g )(x) = |<I>1(v)f1;€)|2 approximates P with Jensen-Shannon divergence

k=t
pl

38(Ps’ P) < my~ T +mD7E, (16)

MPS >

where 1n1,m5 > 0 depend on the target PDF P, the assumed degree of smoothness k, and the
feature functions F.

The proof of Theorem 3 applies Theorem 2 to the artificial wavefunction ¢,(x) = 1/P(x),
which requires first proving that (a) The partial derivatives of ®p of orders 1,2,...,k (where
k > N) all exist and are bounded. With this established, Theorem 2 gives us an approximating

wavefunction @1(\2‘1;2) with a bounded infidelity relative to ®p, and we must (b) Convert the

(x.D)
Pyips

between P and Pl%;é) ). We tackle these issues in turn.

infidelity bound between &, and into a bound on the Jensen-Shannon (JS) divergence

Prove the partial derivatives of ®p of orders 1,2,...,k (where k > N) all exist and are
bounded. We employ the multivariate version of Faa di Bruno’s formula, which is a gener-
alization of the standard chain rule to higher-order partial derivatives, stated here as

Lemma 3 (Faa di Bruno) Consider a multivariate function g : Q — K for Q € RN whose partial
derivatives 8Wg up to order k exist and are bounded, as well as a univariate function h : K — K
which is k-times differentiable within the range of g (i.e. g(Q2) C K). Then the partial derivative
of the composite function hog : x — h(g(x)) wrt the £ variables i = (x; , X;,, ..., x;,) (With £ < k)
atapoint X € Qis

plr

'
@ - . (B)
dDh(gx) = 2y (80 [ 6P, (C.9)
nell Bem
where (i) T runs through the set I1 of all partitions of the set {i,is,...,1;}; (il) B € 1t denotes an
iteration over all “blocks” of the partition m; (iii) 8®) denotes the partial derivative with respect
to all of the variables x; with i € B; (iv) and |r| indicates the number of blocks in the partition
TT.

The details of Eq. C.9 are of little interest to us, as we only use it to bound the partial
derivatives d@®,. To this end, we first use the assumption P(x) > P,;, and chain rule for the
square root function h(y): y — ,/¥ to show that

D"h
dyn

(2n—3)(2n—5)---(—1)

1
n gx) ™2

(g(X))‘ =

=

SZ"( L )H_ =: Spax(n). (C.10)

Pmm
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The fact that S,,(n) is an increasing function of n tells us that S, := S,.x(k) is an upper
bound for every derivative of h up to order k. Denoting the largest partial derivative of P by
Gp := max;<i MaAXyeq |8(i)P(x) , which is finite by assumption (see Theorem 3), we can use
Eq. C.9 to give the bound

80, (x) = 3VR(P(X)) < D Smua | [0PP()
nell Bem

<> S [ [ G5 <D Sunan (G

nell Ben nell

< Spmax (kGp) (C.1D)

which suffices to prove the existence and boundedness of the partial derivatives of ®.

Convert the infidelity bound between ¢, and @1(\/’[‘1’,15)) into a bound on the Jensen-Shan-

non (JS) divergence between P and Pl%;g). We proceed in three steps, using the quan-
tum trace distance and the classical total variation (TV) distance as intermediate quan-
tities. The trace distance T(®,®’) between pure quantum states & and &’ takes the
form of T(®,®') := 4/1—|(®,®’)|2, which can be expressed in terms of the infidelity
I(®,9)=1—|(®,®')| as T(®,®") = v2Z + Z2. Thus, the infidelity bound of Eq. C.8 gives us
a bound on our quantum trace distance of interest.

A well-known interpretation of the quantum trace distance between states ®, ¢’ is a

bound on the classical TV distance TV (P, Pl%;g )) = SUPycq P(A)—Pl\(/ﬁ;g )(A). between any

classical distributions Py, P which arise from von Neumann measurements of the corre-
sponding quantum states [62]. Given that the Born machine distributions are precisely
those arising from von-Neumann measurements of the underlying wavefunctions, we have

TV(P, Pl\(,ﬁ,’é) )) < T(®p, <I>1(V)f1;§)), and thereby a bound on the TV distance,

MPS MPS
k—1
< \/é(m—v +75D7). (C.12)

Finally, the Jensen-Shannon divergence is known to be bounded by the TV distance, written
as JS(PQ) < @ TV (P,Q) which, combined with the above results, give

TV(BPyss)) = sup ‘P(A) - P("’D)(A)‘ < T(®p, %2)
ACQ

In(2 In(2
JS(RPED) < %TV(R P < %T(%,@ﬁi‘ﬁ?))
00 or ez < B0 7
k—
<3m@(vix~F +v;0). (C.13)

Taking 1, := \/g In(2)y] and 0, := \/g In(2)y’, completes the proof of Theorem 3.
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Comparison of real and complex MPS
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Figure 13: A comparison of real-entry and complex-entry matrix product state per-
formance on the rotated cube dataset. Bond dimension y and feature dimension D
were equal, and tried at 5 different values from 3 up to 19, with both real and com-
plex entries. The bond dimension was initially lower and increased at training epochs
9 and 22, leading to kinks in the loss curve. Complex-entry MPS trained smoothly,
while real-entry MPS did not, due to the sharp truncation of the SVD.

D Detailed methods

D.1 Rotated cube

The cube was rotated by a random orthogonal transformation, and then scaled per-axis to the
range [—1, 1] to standardize the range. This resulted in a linear transformation

1.33 0.155 0.074 0411 0.029
—0.072 1.181 0.029 0.375 —0.342

M= | 0306 0.303 0.862 —0.226 0.302
—0.363 0.217 —0.297 0.998  0.125

0.024 0.229 0.358 0.514 0.875

)

which acted on the set [—%, %]5 . The simple form allowed use to compute the exact entropy

as log(det(M)) = —0.4246.

The training set was 80k sampled points. No minibatching was used. Eighteen sweeps of
DMRG were performed. At each site, 4 steps of gradient descent were performed, each with a
learning rate of 0.05. The maximum bond dimension in the first sweep was max(yyax/2,5),
and increased in subsequent sweeps linearly up to y,.x Where it stayed for the last five sweeps.

In Fig. 13 we present a comparison of the training performance for MPSs with real and
complex entries on this specific data set.

D.2 Two moons

For a given noise parameter o < 1, the entropy of the two moons dataset can be approximated

as
S ny 3In(2m)+1

2
This approximation can be understood as In(2) for choosing a curve to lie on, log(7) for a
uniform distribution on a curve of length 7, and log(o v 2me) for a radial uncertainty o. The
final 1'—310 accounts for extending the curve of length 7 at the tips by a blur of o, where

1.81
+1In(o) + 780. (D.1)

1.81~ J —/2(1+ erf(x))log(HeTrf(x)) dx. (D.2)
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Figure 14: Excess loss (NLL minus distribution entropy) on Two Moons with o = 0.1,
trained with different embedding dimensions and bond dimensions. Left plot shows
a Hermite embedding. Right plot shows a Fourier embedding.
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Figure 15: NLL loss on Iris dataset at different bond dimensions and feature dimen-
sions. Each point is the mean of 5 values from a 5-fold cross validation.

For our experimental results, we used a value of o = 0.1, for which S ~ 0.96.

To use the Fourier basis, we first scaled the x and y values to the range [—0.9,0.9]. This
rescaling adds a small constant factor to the NLL, but this was corrected for when comparing
to the true entropy of the distribution. We used a training set of 10k sampled points. The
KL divergence as a function of y and D is presented in Fig. 14, where a minimum value of
0.022 was reached. It is apparent that for this dataset, the bond dimension quickly saturated
its usefulness past y =4 ~ 5, with the largest improvement coming from increasing D.

D.3 Iris

We used the Iris dataset available in the UCI Machine Learning Repository [59], consisting
of 150 points with four continuous features describing petal shapes of different Iris flowers,
supplemented with a categorical feature describing which of three varieties the flower belongs
to. The Iris dataset was normalized by rescaling each feature to lie in the range [—1, 1], before
applying a feature map to each. The NLL loss for different bond and feature dimensions is
shown in Fig. 15.

D.4 XY model

The continuous-valued MPS model was trained to minimize the NLL loss on a dataset of
samples drawn from the finite temperature XY model generated using Markov Chain Monte
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Carlo [63]. The conversion of this score to a KL divergence was made using the test of [64]
with 100k samples and a k = 10 neighborhood. To further examine the model’s behavior, we
also measured the KL divergence between the model and true marginal distributions of the
angle-invariant quantities Cpejgnh = €08(x7 1 — X12) and Cery = €0s(x1,7 — X44), Which mea-
sure the correlations between neighbors and opposite corners, respectively. These pairwise
correlations were both learned very well, with a KL divergence of 0.0027 for corner-to-corner
correlations (which are the hardest for the linear MPS to learn), and even lower values for
closer pairs of sites.

D.5 Compressable data

The deliberately compressible data for Sec. 7.5 was a 4-feature dataset generated by the fol-
lowing formulas from four samples x; from the uniform distribution on [0, 1]:

y1=—1+[0.6+2.2x],
Y3 =X3,

1
Ya=—5+ |1.4x4],
_Nnit2xt+ystys

4 b

where | x | denotes the largest integer k such that k < x. This produces a dataset where each
feature has a very different marginal (implying that each feature would make best use of a
different compression map), the features y; and y, are discrete with only three or two values

respectively, and y, is correlated with the other three (so that the MPS correlation structure is
not trivial). The single-site marginal distribution is shown in Fig. 11.

Y2

E Dynamic basis training

The following pseudocode details in more detail the process for optimizing the D x d isometric
compression matrices {Ul-}?’ , using a dataset of samples D = {x(J)}J.Tzl, where each sample

has features x/) = (xgj ), xgj ), . xl(vj)). In practice the steps in this process will be interspersed

with DMRG updates, in order to benefit from caching of intermediate hidden states.

Algorithm 1 Dynamic Basis Adjustment

€e<—0.5 > Controls stability
fori—1...N do > Loop over each site
forj—1...T do > Loop over each sample in batch
u ;¢ (xfl )) > D-dim embedding
v; j < MPSCONTRACT(X(jy, i) > d-dim embedding
¢j — ul'J U;v;
pj < lcjl > Loss probability
¢; < cj/p; > Current phase
end for
B < Zle(p;¢j)_lui:jvij > D x d matrix
By, Bg, By = SVD(B)
U; « BUBE," > Update isometric matrix U;
end for

Increase € towards 1. If loop is unstable, decrease € towards O.
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