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Abstract

We investigate the gauging of higher-form finite Abelian symmetries and their sub-groups
in quantum spin models in spatial dimensions d = 2 and 3. Doing so, we naturally un-
cover gauged models with dual higher-group symmetries and potential mixed ‘t Hooft
anomalies. We demonstrate that the mixed anomalies manifest as the symmetry frac-
tionalization of higher-form symmetries participating in the mixed anomaly. Gauging
is realized as an isomorphism or duality between the bond algebras that generate the
space of quantum spin models with the dual generalized symmetry structures. We ex-
plore the mapping of gapped phases under such gauging related dualities for 0-form
and 1-form symmetries in spatial dimension d = 2 and 3. In d = 2, these include
several non-trivial dualities between short-range entangled gapped phases with 0-form
symmetries and O-form symmetry enriched Higgs and (twisted) deconfined phases of
the gauged theory with possible symmetry fractionalizations. Such dualities also imply
strong constraints on several unconventional, i.e., deconfined or topological transitions.
In d = 3, among others, we find, dualities between topological orders via gauging of
1-form symmetries. Hamiltonians self-dual under gauging of 1-form symmetries host
emergent non-invertible symmetries, realizing higher-categorical generalizations of the
Tambara-Yamagami fusion category.
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1 Introduction

Global symmetries play a fundamental role in understanding many aspects of quantum physics.
The existence of symmetries aids in the organization of states and operators into representa-
tions of the global symmetry and imposes non-perturbative constraints on the dynamics and
low-energy phases and phase transitions realized in a quantum system. Applications of sym-
metry are at the heart of much of modern physics. For instance, global symmetries constrain
the particle content of the Standard Model of particle physics and provide the basis for Lan-
dau’s classification scheme of phases of matter.

In the past decade, there has been a paradigm shift in the understanding of global symme-
tries in quantum field theory, based on the insight that any topological sub-sector of operators
in a quantum field theory embodies a symmetry [1]. This has led to vast generalizations
beyond the conventional notion of symmetry, which relied on the existence of global symme-
try operators defined on all of space, or more generally on co-dimension-1 hypersurfaces in
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spacetime, which satisfy group composition rules and commute with the Hamiltonian. The
operators charged under such conventional symmetries are point-like or zero-dimensional and
transform in representations of the global symmetry. Such symmetries have been general-
ized in two broad directions, corresponding to identifying two classes of topological operators
as symmetries. Namely, allowing symmetry operators (i) to be defined on sub-manifolds of
spacetime that have co-dimension higher than one has led to so-called higher-group symme-
tries [1-15], and (ii) to satisfy more general composition rules than those of a group has lead to
non-invertible symmetries [ 16-52]. Within the domain of higher-group symmetries, a p-form
symmetry is generated by a codimension-(p + 1) dimensional operator and operators charged
under such symmetries have dimension greater than or equal to p [1,47,49].! Non-invertible
symmetries, instead, as the name suggests, involve symmetry operators that do not have any
inverse. Composition rules for non-invertible symmetry operators correspond to an algebra
rather than a group. All these generalizations, encompassing higher-group and non-invertible
symmetries, collectively fall under the umbrella of global categorical symmetries. This name
owes itself to the significant role played by higher fusion categories [53,54] in describing such
symmetries and their charges. Just as group theory and group representation theory provide
the mathematical language for conventional symmetries, fusion categories organize the com-
position rules of topological operators across all (co)-dimensions. Moreover, fusion categories
also capture intricate topological information, including quantum anomalies and other refined
features such as symmetry fractionalization patterns.

In a short span of time, global categorical symmetries have already made numerous im-
portant contributions in advancing our understanding of fundamental problems in physics.
Key accomplishments include resolving the phase diagram of pure non-Abelian gauge theo-
ries [4], elucidating the phase diagram of adjoint quantum chromodynamics in 1+1 dimen-
sions [55] and expanding Landau’s paradigm to incorporate topologically ordered phases of
matter [56,57]. Global categorical symmetries also played a central role in recent construc-
tions that organize the symmetry aspects of a quantum system into a topological order in one
dimension higher. These go under the name of symmetry topological field theories [20,58-60]
in the high-energy physics community and topological holography [57] or holographic or cat-
egorical symmetry [61-64] in the condensed-matter community. Such constructions are an
efficient way to unravel large webs of dualities, related to topologically manipulating the sym-
metry aspects of the system while leaving the local physics unchanged. Constructions appli-
cable to quantum lattice models have also been used to unify Landau and beyond Landau
physics [57] in d = 1 and in the domain of finite Abelian symmetries.

Gauging a global symmetry is a well-understood method to manipulate the symmetry struc-
ture of a system in a controlled yet nontrivial way. It provides insights into subtle aspects of
global categorical symmetries and facilitates an efficient search for quantum theories exhibit-
ing diverse symmetries. Gauging involves transforming a theory with a global symmetry into
a theory with a local symmetry or redundancy, achieved by coupling the theory to a back-
ground gauge field and summing over its realizations. The resulting gauged theory possesses
global symmetries that extend beyond conventional O-form global symmetries and can be de-
duced in full generality, allowing for the construction of models with potentially novel sym-
metries [18, 27, 30, 44, 45, 65,66]. As an example gauging a p-form finite Abelian group G
in d + 1 dimensions, delivers a theory which has a (d — p — 1)-form symmetry corresponding
to the Pontrjagin dual GY, the group of homomorphisms from G to U(1).2 When the total
p-form group is a central extension of K by N determined by an extenstion class x, gauging

Here codimension is defined relative to the spacetime dimension. In d + 1 spacetime dimensions, a p-form
symmetry is a topological defect defined on (d + 1) —(p + 1) = d — p dimensional submanifolds.

2More precisely, this is the invertible sub-category inside the category of d-representations of a p-form group
G. We will however only describe the invertible component. The rest of the symmetry category can be obtained
by considering all possible condensation defects.
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N c G produces a gauged theory with a p-form symmetry K, a (d — p — 1)-form symmetry
NV and a mixed anomaly between them, which depends on k [65]. Similarly, theories with
non-invertible symmetries can be obtained by gauging subgroups that act via outer automor-
phisms on [27], or have a mixed anomaly with the remaining symmetry structure [24]. An-
other avenue for non-invertible symmetries is gauging invertible symmetries on sub-manifolds
of spacetime [26,35,67]. The symmetry defects thus obtained are referred to as condensation
defects. To summarize, many of the constructions of models with exotic global categorical
symmetries employ some kind of generalized gauging procedure. Gauging provides a system-
atic playground to start with a theory that has a familiar symmetry structure and ‘discover’
quantum systems with novel symmetry structures. In this early stage in the study of global
categorical symmetries this contributes to a systematic understanding of these novel symmetry
structures.

Yet another reason to study gauging of finite global symmetries is that such gaugings are
realized as dualities in quantum systems. For example, the well-known Kramers-Wannier and
Jordan-Wigner dualities are essentially gaugings of the Z, internal and Z, fermion-parity sym-
metry in 1d lattice models [68]. Dualities can be used to provide profound non-perturbative
insights into quantum systems and are therefore very valuable. Furthermore, gauging related
dualities in dimensions higher than d = 1 map short-range entangled states to long-range en-
tangled or topologically ordered states. For instance gauging a Z, symmetric paramagnet in
d = 2 gives the Z, topological order [69]. Recently, it has been appreciated that gauging can
be implemented in quantum circuits via measurements [70-72] and since it is desirable for
quantum computation platforms to prepare such states [ 73], understanding such dualities is
a pre-requisite.

While much of the impetus driving the understanding of global categorical symmetries
comes from quantum field theoretic studies, our work takes a distinct approach by examining
various aspects of global categorical symmetries in the lattice setting. We mostly restrict our-
selves to higher-group symmetries with possible 't Hooft anomalies. A theory has an 't Hooft
anomaly with respect to a global symmetry if the partition function of the theory coupled to
background symmetry gauge fields is not gauge invariant. Instead the partition function trans-
forms under background gauge transformations by a U(1) phase which cannot be absorbed by
any local counter-terms, but can however be absorbed by an invertible topological field theory
in one higher dimension [74,75]. A related consequence is that such a symmetry cannot be
promoted to a gauge symmetry. However, certain so called mixed 't Hooft anomalies involve
more than one symmetry group such that when restricted to any single symmetry group, the
anomaly is nullified or trivialized. In such cases, it is possible to gauge any single symme-
try group but not the full symmetry structure. The anomalies we encounter in this paper are
mixed 't Hooft anomalies involving higher groups.

We study spin systems defined on a d-spatial dimensional lattice with each p-dimensional
cell (i.e., vertices for p = 0, edges for p = 1 etc.) equipped with a finite dimensional Hilbert
space, typically the group algebra of a finite Abelian group G. In more conventional condensed
matter physics language, these are nothing but spin degrees of freedom (for example, single
species of standard spin—% d.o.f. for G = Z,).2 Within such a setup, a p-form symmetry corre-
sponding to the group G is generated by operators defined on any closed (d — p)-dimensional
sub-lattice (see Fig. 1). We organize the space of p-form symmetric quantum Hamiltonians as
an algebra B, of operators that commute with the p-form symmetry. Such a bond algebra has
already been useful in understanding dualities and systematizing the space of quantum sys-
tems with fixed global symmetries [76-79]. Gauging the p-form symmetry amounts to making

3In this paper we employ lattice gauge theory and simplicial calculus language, as it makes many aspects of the
construction more transparent. But note that underlying everything is nothing but spin models.
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Figure 1: The action of symmetry operators via conjugation can be understood as
topological linking in spacetime. 0-form symmetry operators act on all of space there-
fore, conjugating a local operator with the symmetry operators amounts to linking a
point with a co-dimension-1 sphere in the spacetime picture. Similarly 1-form sym-
metries are generated by co-dimension-1 operators in space. These act on lines by
conjugation. Intersection on a time slice becomes linking in the spacetime picture.

the symmetry local.* This is done by introducing G-valued gauge degrees of freedom on the
(p + 1)-cells and demanding local gauge invariance by requiring that a collection of Gauss
operators act as the identity on the gauged system. Doing so, one obtains a dual bond alge-
bra %g_p_l, isomorphic to B,. We analyze the symmetries of %g_p_l and recover the dual
(d —p —1)-form GY symmetries one expects upon gauging a finite Abelian 0-form symmetry.
We carry out an analogous procedure for gauging subgroups of p-form finite Abelian groups.
Therefore one finds the following gauging-related isomorphism of bond-algebras

ga“g'mg G p-form Sub'symmetry

By By, - M

8augy
g G (d—p=T) -form sub-symmety

In the case of gauging finite subgroups, this allows us to pinpoint lattice manifestations of
mixed quantum anomalies. Quantum anomalies in lattice systems are much less understood
[80-83] as compared with their field theoretic counterparts. In particular there has been an
effort towards understanding mixed anomalies involving crystalline symmetries on the lattice
due to their expected connection with Lieb-Schultz-Mattis constraints [83-101]. In this regard,
we hope that our work will shed light on how to diagnose mixed anomalies in lattice models.
Specifically, we find that a mixed anomaly between a p-form symmetry K and a (d—p—1)-form
symmetry NV manifests as the fractionalization involving the two symmetries K and NV that
participate in the anomaly. See [45], for a higher-categorical discussion of such anomalies.
Symmetry fractionalization is well-studied in topological orders [7,102,103], with fractional
quantum Hall (FQH) systems providing the paradigmatic examples where anyons display U(1)
symmetry fractionalization by carrying a fractional U(1) charge. Recently the role of symmetry
fractionalization in understanding quantum anomalies has also been emphasized [45, 104,

“The meaning of making a symmetry local requires clarification for higher-form symmetries. For conventional
0-form symmetries, a symmetry is parameterized by a O-form A,: ¢ — ¢ + A, such that dA, = 0 (i.e. A, is
constant). Making it local means we want it to be invariant even when dA, # 0. This is done by introducing
a 1-form gauge field a with transformation a — a + dA, and constructing minimal couplings to ¢ (covariant
derivatives in the continuum). For more general p-form symmetries, the symmetry is parameterized by p-forms 4,
such that dA, =0, i.e. co-cycles. Making it local means it should be invariant under any co-chain, i.e. even when
d2, # 0. This requires the introduction of a (p + 1)-form gauge field a,,; with a,; = a,,; +dA,.
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Figure 2: The gauging-related duality realized as an isomorphism of bond algebras,
furnishes a mapping of order parameters. The figure depicts a mapping of operators
between a bond algebra B with 0-form symmetry Gy and a gauged bond algebra
B" with a (d — 1)-form symmetry G". A O-form symmetry operator restricted to an
open ball-like region S maps to an operator charged under the dual (d — 1)-form
symmetry at the boundary of S{~1. A 0-form charge bilinear located at points x;
and x; maps to (d — 1)-form symmetry operator, i.e., a non-unique line connecting
the x; and x;.

105] however a lattice study remains missing. In this work, we detail such a relation between
symmetry fractionalization patterns and mixed anomalies in lattice spin models.

The fact that gauging is realized as an isomorphism of bond algebras implies a duality be-
tween the pre-gauged system T and gauged system T". Strictly speaking, such dualities are
invertible only when one considers all the symmetry sectors of T and T¥ [106], where a sym-
metry sector is specified by symmetry twisted boundary conditions and symmetry eigenspaces.
More precisely, the duality implies that the spectrum of a Hamiltonian in a certain symmetry
sector and its dual gauged Hamiltonian in a dual symmetry sector are the same. Another
consequence is the equality of correlation functions

(O1(x1,t1) - Op(X > ta))e = (OY(XI ) O,\—{(Xn tn))ev (2)

where ® collectively denotes the symmetry sector and twisted boundary condition labels of
theory T and O; are operators in the bond algebra 8. " and O}’ are the images of & and
O; under the gauging map. This in turn implies that the phase diagrams of T and TV are
isomorphic. Therefore such dualities can be used to read off many non-perturbative constraints
on the phase diagrams of the systems being investigated. Gapped phases on either side of the
duality, as well as universality classes of phases transitions, can be mapped. Knowing the
order parameters of a certain ordered phase in T can be used to immediately furnish the order
parameters for the dual phase in TV (see Fig. 2). See also [57] for a detailed holographic
perspective in 2+ 1/1 + 1 dimensions.

Recently, dualities in spin models related to partial gauging of finite Abelian symmetry
have been studied [107-109]. In [107], the mapping of transitions under such dualities in 1d
was emphasized and it was pointed out that deconfined quantum critical [110-113] transi-
tions realized in the model after partial gauging are dual to conventional Landau transitions
in the model before partial gauging. Therefore such dualities provide a promising avenue
to bootstrap the understanding of conventional transitions to explore unconventional transi-
tions. In this work, we harness this methodology to explore several unconventional transitions
in d = 2 and 3 dimensional models with mixed anomalies involving higher group symmetries.
For instance, in d = 2 the Landau symmetry-breaking transition map models with Z, 0-form
symmetry map to anyon condensation transitions [114,115] between topological orders after
partial-gauging. Similarly, transitions between symmetry protected topological phases (SPTs)
map to transitions between distinct symmetry enriched topological orders after partial gaug-

6
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ing. In d = 3, among others, we find dualities between topological orders via gauging of 1-form
symmetries. Although in this paper we confine ourselves to studying dualities from (partial)
gauging of (higher) symmetries, other types of dualities exist related to automorphism group
or cohomology group of global symmetries [57], for example by stacking SPT phases. Gauging
dualities map p-form symmetries to (d —p —1)-form symmetries and thus there are usually no
self-dualities. Few exceptions are in even spacetime dimensions (0-form symmetries in 1+ 1
dimensions or 1-form symmetries in 3+1 dimensions). However, by combining gauging with
these other dualities, such as SPT stacking, it is possible to find dualities between phases of
the same type of symmetry in any dimension. Self-dual points of such dualities will give rise to
exotic non-invertible symmetries. For example, a duality between 241 dimensional toric code
and double semion model can be constructed by gauging a 1-form symmetry, stacking with a
0-form SPT phase and then gauge the O-form symmetry. There will exist a phase-transition
between these topological orders that is self-dual under this mapping.

Summary of results: In this work, we study the gauging of finite Abelian higher-form sym-
metries and their subgroups in quantum spin models. Along the way we clarify various no-
tions related to mixed anomalies and symmetry fractionalization patterns, as well as detail
how gaugings of finite generalized symmetries are realized as dualities between classes of
quantum spin models with certain dual global symmetries. We discuss the mapping of gapped
phases under such gauging-related dualities and also discuss more general consequences for
the structure of the phase diagrams of the dual quantum systems. Below is a summary of the
main results:

1. We describe the gauging of higher-form finite Abelian symmetries and sub-symmetries
on the lattice.

2. We study the mapping of the energy spectrum under gauging dualities. In particular of
symmetry sectors, i.e., symmetry eigen-sectors and symmetry twisted boundary condi-
tions, under dualities related to partial gauging of higher-form symmetries.

3. We clarify how mixed-anomalies involving higher-form global symmetries manifest on
the lattice. For instance, we investigate the higher-group with a Z, p-form and Z,
(d —p —1)-form symmetry and a mixed anomaly given by

Sanom =in f Ap+1 U BOCk(Ad—p): 3)

where A, ,; and A;_,, are the background gauge field for the p-form and (d —p—1)-form
symmetry. The anomaly manifests as a symmetry fractionalization pattern such that the
Z, p-form (respectively (d — p — 1)-form) symmetry fractionalizes to Z, depending on
the symmetry twisted boundary condition of the (d — p — 1)-form (respectively p-form)
symmetry. More precisely

U = Ty s (59 = exp {in jé Ad_p} ,
»(d—p) (4)
ug_p_l(Z(PH)) — 7;(2(1)-#1)) = exp {iTC jgz(pﬂ) Ap+1} ,

where U, and 7, are the operators that implement the g-form symmetry and measure
the q-form symmetry twisted boundary conditions respectively.
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4,

5.

7.

We study how gapped phases dualize in d = 2 and 3 dimensions under (partial) gaug-
ing of global O-form and 1-form symmetries and point out symmetry fractionalization
patterns that distinguish certain gapped phases. For example, this leads to interesting
concrete spin models with anyonic excitations that carry a fractional charge of a global
symmetry, reminiscent of the FQHE.

We describe how the order parameters of all gapped phases map under gauging and
partial gauging related dualities (see Fig. 2). These can be used to compute non-trivial
phase-diagrams and study phase-transitions in higher-dimensions, similar to [57] in 1+1
dimensions.

. Describe a Z, 1-form generalization of Kramer’s Wannier duality in d = 3. Amongst

many things, this enables us to show a certain duality between Z; and Z, ;. topological
orders in d = 3. Furthermore it also allows us to construct spin models in 3+1 dimen-
sions with non-invertible symmetries, for example at phase-transitions between certain
topological ordered phases.

Along the way we connect various field-theoretic aspects of gauge models, parallel trans-
port as well as notions from differential and simplicial geometry to the context of quan-
tum spin models.

Organization of the paper

The paper is organized as follows. In Sec. 2, we describe dualities obtained by gauging finite
Abelian O-form (sub-)symmetries as bond algebra isomorphisms. Section 3 describes such
dualities from a quantum field theory point of view. In Secs. 4 and 5, we explore how the
dualities act on the phase diagrams of two and three dimensional spin models, respectively.
Section 6 focuses on gauging finite Abelian 1-form global symmetries and the corresponding
dualities in two- and three-dimensional space. Section 7 concludes.

Notation and conventions

Here we briefly summarize the notation and conventions adopted in this paper.

We denote by d the spatial dimensions while spacetime dimension is denoted by (d +1).

We denote by M the (d + 1)-dimensional spacetime manifold and often assume that
M=M, xS ! where M 4 is a d-dimensional spatial manifold. We use a triangulation of
M, denoted by M dA" In Sec. 6, we use a square or cubic lattice, but with slight abuse
of notation, we continue to denote it as M dA"

We denote by Greek letters =) and y non-contractible p and 1-cycles on M. S®) and L
are used for general p-chains and 1-chains on M respectively.

On the triangulation M 4> We denote bye e M 4A andpe M 4N the oriented edges and
plaquettes, respectively. We denote by o(e, p) = 1 the relative orientation between the
edge e and plaquette p such that e C p, i.e., we assign o(e,p) = +1 or o(e, p) = —1 if
orientation of edge e aligns or anti-aligns with that of plaquette p, respectively. Similarly,
given any 1-chain L, we denote by o(e, L) and o(p, S® )) the relative orientations between
1-chain L and the edge e C L and between p-chain S and the plaquette p c S,
respectively.

We denote by G(p) a p-form symmetry group G.
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We denote by Gfo,d—l) = [K(O), N(d_l)]e a d-group with 0-form symmetry K, (d —1)-
form symmetry N(4_;) and a mixed anomaly which depends on €. Other higher groups
are denoted in a similar fashion.

We denote by A%H) the p-form background gauge field associated with group H. We

denote by lowercase a') the dynamical p-form gauge fields associated with group H.
We drop the superscript H when the group corresponding to p-form gauge fields A a,
is clear from the context.

B (V) denotes the bond algebra of G symmetric operators on the Hilbert space V.

We make extensive use of simplicial calculus notation to discuss spin models. For a quick
review of simplicial calculus, we refer the reader to Appendix E of Ref. [57]. For more
details, see the standard texts [116,117] on algebraic topology.

For readers that are interested in spin models but unfamiliar with algebraic topology, we
will briefly define the minimal set of objects and their relation to spin model language.
A triangulation My A is a decomposition of a manifold M into n-simplices [v,...,v,].
A O-simplex v is a vertex, 1-simplex e = [vg,v;] is an edge, a 2-simplex p = [vg, V;, V]
is a plaquette and so on. The ordering of the vertices in [vy,..., Vv, ] defines an orienta-
tion. We denote by C"(M, G), the set of G-valued n-cochains. In words, ¢ € C"(M, G)
is a spin configuration (a map) that assigns to each simplex [vy,...,v,] a G-calued spin.
For example, a 0-cochain ¢ € C°(M,G) is a spin configuration of G-valued spins, i.e.,
an assignment of a value ¢, € G to each vertex v. For G = Z,, ¢ is just a spin con-
figuration of a quantum spin-1/2 model and whereby [¢) = |¢,, ¢,,,...) denotes the
spin-1/2 basis.> Similarly, a 1-cochain a € C!'(M,G) is a spin configuration living on
each edge a. = ay .7, @ 2-cochain b € C?(M, G) is a spin configuration on each pla-
quette b, = by, v, v,] and so on.

Next we need the so-called coboundary map d : C*(M,G) — C""Y(M,G).
If ¢ is a O-simplex, then d¢ is a 1-simplex and on edges it evaluates to
d¢([vo,v1]) = ¢, — ¢,,. For example for G = Z,, this measures whether two neigh-
bouring spins point the same direction or not. Similarly for 1-simplices it is defined as
da([vo, v1,Val) = [y, v,] ~ fvevs] T v I+

Finally we need the cup product, which from a p-cochain a, and a g-cochain b,
define s a p + g cochain ¢, ; = a, U b;. This acts on a p + q simplex as
ap Ubgy([vo,---5Vpiql) = ap([vo, .-, vp Db ([vp, -5 Vpig D)

Cochains, coboundary maps and cup products are the discrete versions of differential
forms, exterior derivatives and wedge products from differential geometry, respectively,
and they satisfy similar properties.

2 Gauging as bond algebra isomorphisms

2.1

Gauging Abelian finite symmetry

In this section we review the gauging of finite 0-form symmetries G in quantum spin models.
To simplify our presentation, we focus on the case where G = Z,,. However, the concepts and
arguments can be readily extended to encompass any finite Abelian group.

>For clock model type spins we need G = Z,, for k-layers of spins G = Z, x - -+ x Z, and so on.
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Consider a d dimensional quantum spin model defined on the triangulation of an oriented
manifold M, denoted as My 5. Let each vertex v of My o be endowed with a local n dimen-
sional complex Hilbert space V, = C". The total Hilbert space is a tensor product

v=QQV,. (5)

There is an action of Z, clock and shift operators {X,, Z, }, on V such that

ZXy = 0oVX,Z,,  Z'=X"=1, VvV, (6)

where w,, := exp {27i/n}. We are interested in the space of Hamiltonians which are symmetric
with respect to the Z, symmetry generated by

u=[1x.. (7)

The space of linear local operators at each vertex v is spanned by (’)\(/h’a) = X\'/‘ZV_ %, where

h,a € {0,...,n—1}. Here a € Rep(Z,) = Z, labels the representation the operator (’)\(/h’“)
transforms in under a global symmetry transformation

UBOT U8 = Ry () O, ©)

where R,(g) = wy®. This decomposes the space of linear operators acting on V, into irre-
ducible representations of Z,. We will use the terminology that operators with non-trivial a
are charged under Z,,. Now, the space of Z,, symmetric Hamiltonians is isomorphic to the bond
algebra

_ T
BZn,(o)(V) - <XV ’ Zs(e)Zt(e)

where s(e) and t(e) are the source and target vertex of the oriented edge e

Vv.e), ©)

\
7
s(e) e t(e) -

Said differently any Z,, symmetric Hamiltonian on V can be expressed as a sum of products of
the generators X, , Zs(e)Z &e) and is therefore an element of the algebra ’BZH’(O)(V). Note that
the generators only act on a single vertex or edge, but products and sums of these generate any
other operator that commutes with (7). As written in (9), the bond algebra has no restrictions
related to locality. However when constructing physical Hamiltonians, one typically imposes
locality-related constraints such that the Hamiltonian is a sum of operators that each have
support within some open ball-like region in My ». We will not attempt to formalize such

constraints. Instead, we will put them in by hand when studying models in later sections.

2.1.1 Twisted boundary conditions: Gauge connections and parallel transport

Gauging, and dualities in general, act non-trivially on symmetry-twisted boundary conditions
and symmetry sectors [57,68]. Therefore it is insightful to define symmetry-twisted bond-
algebras to keep track of how various symmetry sectors map under gauging-related dualities.
Implementing a symmetry-twisted boundary-condition g € Z,, along a non-contractible cycle
v® means that any charged local operator (’)\(/h’a) transforms as

Ot B OhDY 8 = BN 10)

%We denote the non-contractible 1-cycles by y and more general paths or cycles by L.

10
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§ A=g()

\ [
\\’\’

Kz

Figure 3: Symmetry-twisted boundary conditions with g € G are implemented by
inserting a symmetry defect /,[>] on a non-contractible cycle along time. Above
illustrates a spacetime M = S! x T2 = T3 (opposite sides of the cube are identified)
and the symmetry defect wraps the x—t cycle. Any bond-operator crossing the defect,
will be transformed by g. An equivalent way to achieve this is to couple the symmetry
G to a background connection A, with a holonomy ﬁyA = g(y) along the cycle y dual
to 2. Any operator parallel transported along y will experience a symmetry-twist.

when the operator is transported along y. From the space-time point of view such symmetry-
twisted boundary conditions correspond to inserting a symmetry defect the extends along
the time-direction, such that operators which cross the symmetry defect transform via the
symmetry action (see figure 3). For example in the transverse field Ising model, anti-periodic
boundary conditions are implemented this way by flipping the sign of the bond that crosses
the symmetry defect: o5 o7 — o7 Uoil/l_l =—0% 0%, where i =[ [, o7 is the Z, symmetry.

An alternative point of view, that is more in the spirit of this paper, is to couple the Z,
symmetric theory to a background gauge field (also called a connection). For translation sym-

metric theories on tori, this leads to symmetry-twisted translation operators with the property

Tév " =Ug, where N, is the number of sites along the y cycle. This naturally implements (10),
and corresponds to a group extension of the translation group with Z, leading to fractional-
ized momenta. See appendix D of [57] for more details. Here we are interested in general
triangulations of general manifolds, where the notion of translation symmetry might not be
present. Consider a background gauge field A € Z 1(Md, r»Zy,) (@ Z, connection) with non-
trivial holonomy along non-trivial 1-cycles. Practically this means that we assign an element
A, € Z, on each edge such that dA =0 and

§A=awezm an
Y

where g(y) is the holonomy around y sometimes also referred to, somewhat misleadingly
as the flux through the loop y. The holonomy only depends on the homology class of v, in
particular g(y) = 0 when v is contractible. Therefore, the background gauge-field assigns a
g € Z, for each non-contractible cycle [y], corresponding to the symmetry-twisted boundary
condition on that cycle. We can use the Z, connection to define a form of parallel transport

11


https://scipost.org
https://scipost.org/SciPostPhys.18.3.097

e SciPost Phys. 18, 097 (2025)

Figure 4: Parallel transport along a curve L from v, to vi on My  of the Z, connection
a.

along any curve L. First on each edge e consider the T, operator
Oy, ifv=s(e),

T.O, T, =1 Oy, ifv=t(e), (12)
O,, ifv#s(e),t(e),

which permutes operators and states between vertices connected to the edge e. Here O, is
any local operator acting the vertex v. The T, operator can be constructed explicitly as

n—1
— ayP 79 P =4
Te= D, WX Zio X2y (13)
p,q=0
see appendix B for details. For any curve L = {eq,..., e} from vertex v; to v (see Fig. 4), the

parallel transport operator is defined as

— A " "
r]=[Jr[xgg ] = ro[xsen ™ om [ 14

s(e)
ecl

where the arrow in ﬁeeL indicates the direction of the product, and o(e, L) = +1 if the ori-
entation of the edge e aligns with L and o(e, L) = —1 if not. Note that we have labeled T4[L]
using the holonomies g in (11), instead of the background gauge field A since the former is the
gauge-invariant content of A. One can readily check that for the local operator C’)\(,h"") = X\t‘Z\‘j‘
transforming in the a representation of Z, we have

— A
To[LIOPOT,[L] ! = ol o, (15)

where fLA = >.c; 0(e,L)A.. The parallel transport of the charged operator accrues a U(1)
phase corresponding to the Wilson line along L with charge a. In particular, for closed loops
we get

T[L]ONA T, [L]7! = w:fﬁ LAOQ"“) = weotha) (16)

which is the holonomy associated to the background connection A, (11). With this, given any
Hamiltonian constructed with the above bond-algebra we can define the symmetry twisted

12
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Hamiltonian through the substitution of bond operators’

A

_ -1 T -1
@ Zt(e) —Zs(e)TO[e]Zs'(e)TO[e] —>Zs(e)Tg[e]Zs(e)Tg[e] . a7

Essentially, defining bond operators on an edge e using parallel transport from its source to its
target vertex. The X, operators are unaffected by this as they are not charged. Note that the
product of bond-operators along a curve from v; to v, becomes

T ofe.L) _ T o(e,L)
l_[ I:ZS(G)Zt(e)] B ZV1 ZVk - Zs(e) Tg

e€L ecl

_ _ A .
[e]Z_ 21 T [e]™ =zvlw,{L z, s

s(e)

where conLA is the Wilson line between charged operators which is the expected minimal
coupling for a background gauge field. For non-contractible loops along homology cycles
vy € Hi(My p,Z,) we find

; o(e,y) f A _ )
l_[ [ZS(e)Zt(e)] — . =R, (19)

ecy

which correspond to the twisted boundary condition along that cycle. Operators that cross
the symmetry operator insertion along the time direction, transform accordingly. With a slight
abuse of notation, we will define the symmetry-twisted bond-algebra as

l_[ [Zs(e)zj(e)]O(e’Y) = wﬁm Vv, e>. (20)

e€y

. —_ T
BZn)(O)(V 5 g) - <Xv ) Zs(e)Zt(e)

A common way to implement this in spin-chain models is if there are L sites along a cycle v,
define Z , | = ¥z 1.8 It is convenient to define the operator

T= l_[ [ZS(e)ZS‘(e)]O(e’Y) ’ @D

ey

as a way of ‘measuring’ the twisted boundary condition, or equivalently the holonomy of
the background connection A. Since all the operators in %Zn’(o)(V) (by definition) commute
with U, we can simultaneously block-diagonalize %Zn’(o)(V) into eigensectors of U/ labelled by
a € Rep(Z, (¢)). Doing so, the bond algebra decomposes as

By, o, (V;8) =D Bz, (V;(a,8),
* (22)

B, Vilae)=(x,, z, 2

2 RIIN-(09)
s %t(e) U=w), T=cuwsY \7’v,e>.

! . . .
The notation U/ = w;; means that we are restricting to the corresponding eigenspace of U/.

2.1.2 Gauging Z, symmetry and the dual bond-algebra

Next, consider gauging the global Z,, symmetry which effectively amounts to turning the back-
ground gauge-field into a dynamical quantum field and make the theory invariant under local

"Note that in the absence of translation symmetry, the definition of twisted boundary condition is relative to
another Hamiltonian. Given the Hamiltonian H, we can twist the boundary condition to obtain H, by inserting
symmetry operators in the time-direction or equivalently coupling to a background gauge field/connection. We
can only talk about H, as twisted, relative to H.

8Using parallel transport and the background gauge field A is a more precise way to do this, we will however
abuse the notation somewhat for simplicity.
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xT xt xt }./

X X xT X xt
— 00— ——— v —0— ——— 00—
X X t X
X X
X X
X

Figure 5: The figure depicts the operators that are used to define the Gauss operators
in (a) d=1, (b) d=2 and (c¢) d=3 dimensions.

Z, transformations. In order to do so, we first introduce gauge degrees of freedom (Z,, spins)
on each link e, living in the Hilbert space V, = C". The edge Hilbert space also admits an ac-
tion of clock and shift operators X, Z, analogous to (6). We thus obtain the extended Hilbert
space

Veu =R Ve @V, = spanc { 0,9} | ¢ € C1My .20, ¢ €Oz}, 23)
e v

where CP(My a,Z,) denotes the set of Z,-valued p-cochains on M 4, i.e., an assignment of
Z, elements to the p-cells of M; A. The clock and shift operators act on the basis states as

Zla,¢) =owPa,¢), Xl ¢)=la,¢+5Y),

. © (24)
Zela,¢) = wiela, @),  Xela, @) =la+6,¢),
where 6™, 5 are 7 -valued 0 and 1-cochains such that
[69], =6,v, [6©], =6ce- (25)

The original spin degrees of freedoms on each vertex ¢, can be thought of as a matter field
while the newly introduced spins on each edge a. can be thought of as a Z,, gauge field. The
physical Hilbert space Vppys C Ve is defined as the eigenvalue +1 subspace of the collection
of Gauss operators (see Fig. 5)

G=x, [] xI [] x.=x.41, (26)
els(e)=v elt(e)=v

here e|s(e) and e|t(e) mean all edges e such that v is their source and target, respectively. The
Gauss operator is defined such that the global Z,, transformation of charged operators

zZ,—UZU = w'Z,, 27)

become local gauge transformations

Z,— GIAZGIA = ™2,  Ze—> GIANZGIAY = w, @ "9z, = wdhez,. (28)

Here we have defined a general combination of Gauss operators parameterized by a Z,-valued
0-cochain A as G[A]:=], (g\,)’l" that implements a Z,, gauge transformation. On the states,
the Gauss operators act as

GlAlla,¢) =la+dA, ¢ + 7). (29)
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In this representation, the operators X, and Z, are the Z, electric and gauge field respectively.
Since the operator Z,, is charged under the global symmetry which is being gauged, one needs

to minimally couple the Z_j(e)Z t(e) ©© the gauge field via the replacement

i

Zs(e)Zt'(e) - Zs(e)Ze Zt(e) > (30)
which is the quantum version of (18). One can readily see that this minimally coupled operator
is invariant under local gauge-transformations (28). Therefore the bond algebra after gauging

is?

Gy s L, l_[ [Zs(e)ZeZtT(e)]O(e’L) - 1v e’v>' )

e€EL

Bz (Ver) =B, 1Z0=(X,, 2, 2,2,

T ( ’L) i
Note that there is an additional constraint [ [, [Zs(e)Z . Zt'(e)]o "L for any cycle L (con-

tractible or not) on the lattice. This follows from the fact that this operator is the image of the
- ]o(e,L)

[

operator [ [.c; [Zs(e)Zt(e)
isomorphism of bond algebras, it maps the identity operator in V to the identity operator in
Vex- See Appendix A for an alternative formulation where this appears more naturally (see
Eq. (A.10)). A consequence of this is that in the physical Hilbert space'®

= 1 in the pre-gauged bond algebra (9). Since gauging is an

da =0, (32)

and therefore a € Z 1(Md’ A»>Z,) corresponds to a bonafide Z,, gauge field. When mapping the
symmetry twisted bond algebra (22) under the gauging-related bond algebra isomorphism,
one obtains

%Zn,(d—l)(VEXt 5 (a, g))

_ T
= <XV’ Zy(eyleZue)

| + 7o(eL) |
G, =1, [ [[222y] =i Uz Vev). 63

e€l

. 7ol v ) . . .
The constraints | [.; [Zs(e)Z Z t(e)] = w; ’, restrict the extended Hilbert space to a single

gauge class of Z,, gauge fields labelled by g € H 1(Md’ A»>Zy), which satisfies

da=0, jg a=g(L). (34)
L

Note that for contractible loops we have g(L) = 0. It is always more convenient to work
in a basis in which the Gauss constraint has been solved. To do so, we perform a unitary
transformation U such that the Gauss operator UG, U" only acts on the vertex Hilbert space
)V, [118]. More precisely, we require a unitary U such that

ug,ut=x,. (35)

In the basis (23), the unitary transformed Gauss operator is

UGIAIUT = la,¢ + A){a, $l. (36)
a,¢

“We use the notation B2, 41y Vext) for the gauged bond algebra B, (Vey)/Z,, since after gauging it is the bond
algebra of a (d — 1)-form symmetry Z, 4_1y as we will shortly see.

Note that [ [, Zla,¢) = wdia, ¢) = wlst q, ) by Stoke’s theorem where S, is a surface such that

0S8, = L. In particular for a loop L, around a plaquette p we have fL a = (da),.
p
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Such a unitary can be conveniently expressed in terms of controlled-X operators as

u=]1| TT@xe [] €X0e- (37)

v elt(e)=v els(e)=v

Here (CX),  and (CX "r)\,’e act on the edge e and vertex v such that

(CX)v,elae’ ¢V> = |ae + ¢VJ ¢V> >

. (38)
(CX )v,elae’ ¢v> = |ae - ¢v; ¢v> )
The various operators transform under this unitary transformation as
uz,U'=z,, UXJU'=X,,
i ‘g (39
ux,u'=Xx,A,, UZU'= Zs(e)ZeZt(e) .
One then obtains a bond algebra unitarily equivalent to (31) as
~ !
B2, 41y Vedge) = <AV’ Ze ’ l_lzg(e’L) =1V e,v>, (40)

ecl

where A, was defined in (26). In writing this expression, we have removed the vertex degrees

of freedom by implementing the unitary transformed Gauss constraint X, = 1. Therefore the
bond algebra is an algebra of operators on the edge Hilbert space V,gge = ®Ve. The symmetry
twisted bond algebra (33) has the following form in this basis

l_[Zg(e,y) L w%(r)’ l_[AV L Y e,v>. (41)

ecy v

EZn,(d—n(Vedge ;(a,8))= <AV s Ze

This bond algebra after gauging is symmetric with respect to a (d — 1)-form symmetry that
is dual to the O-form symmetry (7) and is generated by closed (Wilson) loops on L [see Eq.
(A.15) in Appendix A]

w, =] Jzeteb. 42)

e€l

Note that the symmetry twisted boundary conditions for a (d — 1)-form symmetry are defined
with respect to a non-contractible d-cycle, i.e. all of space. Therefore, we obtain that in the
bond-algebra %Zn,( 1y’ the role of a and g are swapped, i.e., g label the symmetry eigen-
sectors while a label the symmetry twisted boundary condition. In Sec. 3, we will describe the
mapping of symmetry twisted sectors after gauging in a more general setting.

2.1.3 Dual higher-symmetries and twist defects

Gauge theories are atypical in condensed matter, however they can emerge as low energy
descriptions of condensed matter models. It is often convenient to drop the constraint
Il Zg(e’L) = 1 for contractible loops L, and consider a larger Hilbert space f)edge with the
bond algebra

I‘%Zn,(d—n(vedge) = <Av s Ze |V e,v>. (43)
This bond algebra has a subalgebra
%[Zn,(dfl)’zn,(l)](Vedge) - <A° » By ‘ Vo, U> c %Zn,(d—l)(vedge) 5 44)
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which is the bond algebra of models with a Z,, (;) in addition to the Z, 41y (d —1) symmetry.
Here the plaquette operator is defined as

B, =] [zotP, 45)

ecp

which is the smallest contractible loop B, = W, around a plaquette p. The (d — 1)-form
symmetry is generated by lines (42), and the 1-form symmetry is generated by closed (d —1)-
dimensional manifolds S¢~2Y in the dual lattice

T (S(d—l),v) — l_[Xint(e’ S(d—l),v) , (46)
e

where Int (e, S(d_l)’v) denotes the intersection number of the surface S~V and the edge
e. Int (e, S(d_l)v) = 0 when the edge and surface do not intersect and +1 or -1 if the edge
is oriented along or against the outward normal of the surface (see Fig. 14). Compare these
to (A.17) and (A.18). The vertex operators A, are the smallest contractible sphere S\(,d_l)’v in
the dual lattice around the vertex v, i.e., A, = F(S\(,d_l)’v). The generators of the bond algebra
B, and A, all commute with each other and in fact %[ ](Vedge) is the commutant

Zn,(d—1)>Ln,1)
algebra of %Zn ) dil)(Vedge). The simplest Hamiltonian to write within this bond algebra is
H=-) A,— > B,+Hc, 47)
v P

which is nothing but the Z, toric code in d spatial dimensions. This model spontaneously
breaks the (d — 1) and 1-form symmetries and is topologically ordered. Ground-states of this

model satisfy B, = 1, which is the constraint for the gauge-invariant Hilbert-space. The gauge
theory therefore emerges dynamically at low energies. If we add a term A )., Z,, for small A,
the 1-form symmetry is explicitly broken. But the theory is still in the same topological phase,
as the 1-form symmetry emerges at low energy and is spontaneously broken. This is a general
property of topologically ordered phases where at low-energy it is described by a topologi-
cal quantum field theory (TQFT), which has higher-form symmetries that are spontaneously
broken.

We saw that the constraint B, = ]_[eep Z g(e’p) < 1 was necessary for the mapping between
(22) and (41) to be invertible. However, there is nothing inconsistent with the full uncon-
strained bond algebra (43). It is natural to wonder whether the duality holds on this larger
algebra. In order to see how that works, let us decompose the Hilbert space into simultaneous

eigenspaces of all plaquette operators B,

]A}edge = @ ]A)Sdge > (48)

cI)ecz(Md,Aﬂzn)
where each 2-cochain & = {¢,} is an assignment of ¢, € Z, values on each plaque-
. Aq) . . .
tte. All states in V] dge AT€ eigenstates of the plaquette operators with the eigenvalues

Byly)e = C()prl'l]b)q,. In particular, the space with all ¢, = 0 (denoted as & = 0), satisfies
the previous constraint B, = 1 for all p. We can similarly decompose the bond-algebra

%Zn,(d—l) (Vedge) = @ %Zn,(d—n(f}:dge) . (49)

®eC2(Mg a,Zn)

We have already seen that %Zn : dfl)(ﬁfdgg) is dual to the bond algebra (22). Gauging gives rise
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Figure 6: The bond algebra for the (d — 1)-form symmetry S%Zn “ U(f/‘I>

. dge), has the

constraint B, = cofp. This is dual to the bond algebra of 0-form symmetries %2’(0) V)

which is coupled to a background gauge-field a € C 1(Md, A»>Zy) such that (da), = ¢p,.
The picture shows an example where ¢, = a(5,,, —0pp,)- This leads to a that is
equal to zero on all edges, except the red edges. This is equivalent to the insertion
of a 0-form symmetry operator in spacetime that crosses the each time slice along
the green line, creating extrinsic twist defects at p; and p,. Since the symmetry
operator is topological, the green line can be deformed without changing anything.
This follows from the fact that da = & is invariant under a + dA.

to the following bond algebra duality

» i ~ po _ = Al
BZn,(d—l)(Vedge) - BZn,(O)(V) - <XV > Zs(e)Zt(e)

[T[Z07,] " Lol vv.e). 6o
eEp

In order to understand this better, let us consider ¢ such that ¢, = a(6,,, —Opp,) OF €quiv-
alently B, = 1 for all p # p;,py, while B, = w;“ and B,, = w,,. In the toric code, this
corresponds to the subspace with plaquette-like anyonic excitations on p; and p,. In order
to define Zs(e)Z 2-(6), we need to consider a line L on the dual lattice as in figure 6. We then
have!!

a T
N {wn zs(?)zt(e), ecl, 1)

VANANNE e
(&) t(e) i
s(e)t(e ARVARE edL,

where all the red bonds in figure 6 have a phase w). This guarantees the correct mapping

N e (e;p)
By = [Teep 257 Lol — [Lee, [Zs(e)ZtT(e)]o P L . This can be understood as the

insertion of an open O-form symmetry surface /*[S9] along time such that it crosses the
Hilbert space time-slice along the green curve in figure 6. Equation (51) can be understood as
every bond operator Z()Zy() that crosses the green line, get transformed by U*[sD]. This
creates two twist defects on the plaquettes p; and p,. Any Hamiltonian constructed from the
bond algebra ’B%n (O)(V), will have extrinsic twist defects on plaquettes where & is not zero.

This means that an invertible duality exists for the full uncontrained (d — 1)-form symmetric
bond algebra (43), but the dual algebra is a direct sum of O-form symmetric bond algebras
with all possible twist defect

s%Zn’(d,l)(vedge) = @ SBCP (V) . (52)

Zn(0)
®eC2(Mg,p,Zn)

This also makes sense as the dimension of the Hilbert space of spins on edges Veqg, is larger
than the spins on vertices V.

For general & € C*(My 4, Z,), we couple to a background gauge field A: ZS(Q)Z:@ = Zs(e)wﬁezt*(e) such that

(dA), = ¢,. Thus the presence of twist defects violate the 1-cocycle condition at the locations of the defects.
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The bond algebra (22) and (41), their duality to each other and their gapped phases can be
directly and systematically derived using a topological order in one higher dimensions using a
construction we call Topological Holography [57]. This is closely related to concepts in high-
energy physics and string theory, such as symmetry TFTs [20,58-60] or holographic symmetry
[61-64]. We will however not go pursue that approach in this paper.

Finally, it is worth mentioning that the full symmetry structure of %Zn,( - is a higher
representation category dRep(Z,) whose invertible subcategory is generated by W; for
L € Z;(Mg a,Z) [29, 30,44, 45,66]. The remaining higher dimensional symmetry opera-
tors are obtained via condensations of lines corresponding to subgroups of Rep(Z,) = Z, on
sub-manifolds of dimension greater that 1 [26,46]. In passing, we also comment that gaug-
ing non-Abelian (sub) symmetries lead to more interesting symmetry categories which are
necessarily non-invertible. In general, in d+1 spatial dimensions, gauging a non-Abelian G
0-form symmetry produces a dual quantum system with a dRep(G) symmetry. This contains a
non-invertible 1-form subsymmetry Rep(G) corresponding to topological Wilson lines obtained
after gauging G. As in the case for Abelian G, all other symmetry generators in dRep(G) are
obtainable as condensation defects of the Rep(G) lines [44,45].

2.2 Gauging finite Abelian sub-symmetry

In this section, we describe the gauging of a subgroup of Z,. In particular, if Z, C Z,, then
there is a short exact sequence
1—2—2,=2,;— L

wjq=12L,— 1. (53)

Such a sequence is determined by an extension class [e] € H 2(Zp, Zq) = Zged(p,q)- This means
we can think of Z,, as Z, x Z, as a set but with a e-twisted product

(a,b)x (d’,b)=(a+a" +e(b,b),b+b"), a,a’ €Z,,b,b' €Z,. (54)

We will often use the following notation for the e-twisted products: Z,q >~ Z; X, Z,. Note
that while (a, 0) corresponds to a subgroup Z; C Z,, (0, b) is not a Z, subgroup. We will
see that gauging Z, C Z, furnishes a theory with a Z,,, global 0-form symmetry, a (d —1)-
form Z, symmetry and a mixed anomaly between them that is determined by € [65]. Written

schematically

gauging Zq,(o) €
Zn (o) = Gy a1y = [ Znja 0 Zaa-1)] (55)

where Gfo, 1) = I:Zn/q,(o): Zq’(d_l)]e is a (higher) d-group consisting of 0-form and (d — 1)-
form symmetries with a mixed anomaly determined by e. It couples to background 1-form and
d-form gauge fields. In general, anomalies impose strong constraints on the low energy physics
realized in a quantum system. For instance, any gapped non-degenerate state can only preserve
a sub-symmetry that trivializes the anomaly. We will explore such aspects of anomalies in later
sections while studying phase diagrams of spin models with mixed anomalies.

Henceforth, we will use the simplest case with a non-trivial extension class which occurs
when p = g = 2 to pinpoint lattice manifestations of the mixed anomaly. Although this is the
simplest case that exemplifies these features, the lessons learnt can be generalized to any finite
Abelian group. Let us again consider the triangulation My o endowed with the tensor product
of local vector spaces V, = C* = C[Z,] assigned to each vertex v. The operator algebra acting
onV = ®,)), is generated by the operators X,, and Z, that satisfy the relations

zZX,=iX,Z,, Z'=X'=1. (56)
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We are interested in the space of Hamiltonians which are symmetric with respect to the Z,
symmetry generated by U = [ [, X,, which is contained within the bond algebra

_ T
By, (V)= (X, ZseyZ(e)

v v,e>. (57)

Similar to (22) in the case of gauging Z,,, we define the bond algebra in a definite symmetry
sector as

I + qoler) v,
u=i, l_[[zs(e)zt'(e)] = g Vv’e>’ (58)
ecy

BZ4’(O) (V 5 (a > g)) = <Xv ) Zs(e)Zt,(e)

where a and g are the symmetry eigen-sector and symmetry twisted boundary condition labels
respectively. In order to gauge the Z, subgroup of the global symmetry, we introduce Z, gauge
degrees of freedom on the edges such that the extended Hilbert space is

Ve = Q) C2X)CL . (59)
e v

There is an action of Pauli operators o (u = 0,x,y,2) on the edge Hilbert space V.. We
define a basis {|a, ¢)} that spans V., where ¢ € C°(My 4,Z4) and a € C' (Mg, Z,) such
that

Zla,¢) =i%la,¢), Xla,9) =la,¢ +5Y),

oila, @) =(=1)%la,¢),  olla,$)=la+5,9),

where 6 e CO(Md’A,ZA‘) and 6©) e Cl(Md,A,ZZ) are defined in (25) and the addition is
implicitly modulo 4 or modulo 2 depending on the group the cochains involved are valued
in. The physical Hilbert space is the gauge-invariant subspace of V... The notion of gauge
invariance follows from considering the local representative of the Z, symmetry being gauged
(generated by /%) and appending it with link operators, i.e.,

(60)

G, =x2| [or=:x2a,, (61)

edv

where [ [.-, denotes the product over edges which are connected to the vertex v. A general

Gauss operator G[A] = ]_[V g& v with A € CO(Md) A>Z5) acts on the above mentioned basis
spanning V., as a Z, gauge transformation

or on the level of operators
Z,— GIMZ,GIA] = (-2,  of— G[AloiGIA]T = (—1)PzZ,. (63)

To gauge the bond algebra, (57), we lift B4, (V) to the enlarged Vey, impose the Gauss con-
straint and consider gauge-invariant versions of each of the operators. Doing so, we find

pile (Vext) =~ %24/Z2

€
(0,d-1)

9y ; 1, l_[ [Zs(e)o-zzt-i‘(e)]O(e’L) ; 1,V V’e> ? o9

ecL

_ t
= <Xv’ Z )0 eZy(e)

where L are contractible loops on the direct lattice and we have defined the (higher) d-group

€
Geo.a-1) = [Za,0)» Za(a-1y] - (65)
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]o(e,L)

The constraint on [ [, [Z ozl descends from the fact that this operator is the

s(e) ~ e“'t(e)
]o(e,L)

image of [ [.c; [Zs(e)Z:(e) = 1 under the bond algebra isomorphism. We could impose

additional constraints
! .a 27T ofe,L) 1)
l_[XV =1 l_[ [Zs{e)aezt(e)] =1 > (66)

\% ecL

which allow us to track how the symmetry sectors map under partial gauging. To understand
this we need to ask, what these sectors mean in terms of the symmetry structure of the partially
gauged bond algebra.

Symmetries of the partially gauged bond algebra: There are two types of operators that
commute with the entire algebra (64). Firstly, since we have gauged Z, C Z,4, we expect there
to still be a residual Z, 0-form symmetry, which is generated by an operator which acts on all
of space My » simultaneously via the operator

u=[1x.. (67)

At first glance, this may look like a Z, symmetry generator as X\‘} = 1. However since the
Z-, subgroup has been gauged, U/ actually generates a Z, symmetry. Although, as is evident
from (66), U? is not always 1 as one would expect for a usual Z, symmetry. This peculiarity
is rooted in the fact that the Z, O-form symmetry participates in a mixed anomaly with the
second kind of symmetry, which is a Z, (d — 1)-form symmetry generated by the following
operator defined on a non-contractible 1-cycle y

w, = l_[ wg(e’” , We = Zs(e)a‘zZ tT(e) . (68)

ey

Notice that the local representative of the line operator cannot be the naive choice o since it
is not gauge invariant. Furthermore W;, for a contractible 1-cycle L, acts as the identity on the
constrained (flux-free) Hilbert space. Just like I/, it is unusual to think of the line operators
W, as (d —1)-form Z, generators since they do not square to the identity depending on g in
(66).

In order to clarify the mixed anomaly, we need to define operators that measure the
symmetry twisted boundary conditions for the O-form and (d — 1)-form symmetries. As dis-
cussed in Sec. 2.1, symmetry twisted boundary conditions with respect to the 0-form symme-
try (STBC®) are related to the holonomy g(y) of a 1-form Z, gauge field around any non-
contractible 1-cycle y. Likewise the symmetry twisted boundary conditions with respect to the
d — 1-form symmetry (STBCY™V) correspond to a holonomy a of a d-form Z, background
gauge field around the fundamental d-cycle, i.e. around all of space. These holonomies are
measured by the operators 7;(0) and 71D

0) _ 2 2 _ d-1) _ —
7;’( )= l_[Zs(e)Zt(e) - (_1)g(Y) > TUD = l_[Av =(—-1)%. (69)

eey v

A manifestation of the mixed-anomaly is that the 0-form Z, symmetry is fractionalized to Z,
in the symmetry twisted sector of the (d — 1)-form symmetry and conversely, the (d —1)-form
symmetry is fractionalized to a Z, symmetry in the symmetry twisted sector of the O-form
symmetry (see Fig. 7)

W=7, wr=T7O. (70)
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sTBC(0) sTBC(0)

sTBC(d—1)

— = (=1)x /( \M\ = (-1)x
W, 1

time

u

—

space

Figure 7: Figure (a) depicts the equation WY2 = 7;(0) in terms of symmetry de-

fects. The symmetry twisted boundary conditions for 71?) is implemented by a
codimension-1 operator (in green) that extends in the d — 1 homology dual to 7.
Figure (b) depicts the 242 = 7(@~1 in terms of symmetry defects.

Another related consequence of the mixed anomaly is the symmetry fractionalization on
the local representative of a (d — 1)-form symmetry generator. More precisely, the operator
W; defined on an open line L, takes the form

— T
Wy =2, []_[ og] i, (71)

e€l

Notice, that the end-points of the string are now appended with operators that are charged
under I/ and in fact carry a fractional charge, i.e., the 242 eigenvalue is —1 for such an operator
(see Fig. 9). This is the phenomena of symmetry fractionalization [7,102-105] and is related
to a mixed anomaly between the 0-form symmetry and (d — 1)-form symmetry as we will
describe in more detail in the next section.

Solving the Gauss constraint: Let us now try to find a unitary that disentangles the edge
degrees of freedom from the Gauss operator such that the Gauss constraint may be solved.
Specifically, we seek an operator U such that

Ug,ut=x2. (72)

We make an Ansatz that the action is a generalized controlled operation, i.e., it acts as

U= la+f($)d)a ¢l. (73)
a,¢

Inserting the Ansatz (73) into (72), one finds the constraint f (¢)+f (¢ +26™)) = d6™), which
can be solved by f = d| ¢ /2], where | -] denoted the floor function. Therefore the unitary is

U= la+dl¢/2],¢){a,¢l. (74)
a,¢

Using (74), the action on all the remaining operators in the bond algebra can be computed. For
instance o and Z, remain invariant under the action of U. Meanwhile X, and oZ transform
in a more involved way

UX,U' = |a+d( /2] + (¢ +5V)/2]), 6 +8Y)a, ¢ |
a,¢
=X, [P +A,PO],

vz, 0%z Ut =D lexp {in (a+dlé/2)), +
a,¢

1. ..,
= E (1 — IZS(e)

i 75
R T

Joz(1+iz2,).
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Figure 8: The operator u, acts in two steps. In the first step, it measures the spin at
vertex v and implements a gauge transformation (via A,) on the neighboring edges
depending on the measurement outcome. In the second step, it flips the spin at v.

where we have defined P = (1+22)/2. We are now in a position to write down the unitary
transformed bond algebra
1—iz2 | 1+iz2
s(e) 4 t(e) 9 ! 5 !

Xc=1, of2=1,Vv,e). (76)
1/5 e ‘/E \% !:L[ e >
Since the constraint has now been localized on the vertices, it can be readily solved. We define
a restricted basis on the vertex Hilbert space V'*" C V), spanned by

%G(Old,l)(vext) = <Xv [P\E+) +AvP\E_):| 5

1
|T) =E{|¢v=0>+|¢v=2)};
1 (77)
|~L) _E{|¢V_1>+|¢V_3>},

for which Xf = 1. The operators X,, and Z 3 acting on V), can be restricted to V'**" since these
operators commute with X\% and therefore leave the space spanned by 77 invariant. In this

basis,

X 2
~oy, Z

~ o%. (78)

\

Xy

rest. rest.
VV VV

Since only combinations of X,, and Zf appear in the bond algebra in (76), we can solve the
Gauss constraint and directly work in the restricted Hilbert space

1+io*

1—io*
s(e) 4 t(e) 5 !
o =1Vv,e), (79
/2 e /2 g e >

where V't = @, VIt @)V, € Vey, and PH) = (1£07)/2 on V'S,

By (V) = (03 [P +4,P0],

Symmetry and mixed anomaly for the transformed bond algebra: Since the bond alge-
liras (64) and (79) are isomorphic, they have identical symmetry structures. In the frame of
’BG(O 1) the Z, 0-form symmetry is generated by

u=[Juw., w=0f[PM+4a,], (80)
Vv
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Figure 9: The end-point of a 1-form symmetry W (L) traps an operator which carries
a fractional charge under the 0-form symmetry. This symmetry fractionalization is a
diagnostic of a mixed anomaly between the 0-form and 1-form symmetry.

L
LT
L
LT

<

\I/ RN

while the (d — 1)-form symmetry generated by the (closed) line operator

w,=[Twoen, .= %(1 ot )oi(1+i0%,) . (81)

e€y

These two symmetries have a mixed anomaly, which manifests as

— — -1
L1
= l_[ ol = 7;(0),

ecy

(82)

and reproduces (70). In the next sections, we will see that this anomaly has important conse-
quences for the phase realized in the partially gauged model.

3 Gauging as topological dualities

In this section, we describe a general procedure [65] to gauge a finite global symmetry and its
sub-groups from a space-time point of view deriving relations between partition functions and
energy spectra of dual theories. We will pay attention to the global symmetry of the gauged
theory thus obtained and to the mapping of the symmetry twisted sectors between the gauged
and original theory. As we described in Sec. 2, when gauging a finite subgroup of the full
symmetry group, the dual or gauged theory has a symmetry structure with a mixed anomaly.
In such cases, the mapping of symmetry sectors can be subtle. We detail how this works for
the simplest case of gauging Z, C Z,4, which contains the main new result of this section.
Although, we describe this specific simplest case, our analysis and approach generalize to
other finite Abelian groups.

3.1 Gauging finite Abelian symmetry

We begin by describing the gauging of a finite Abelian symmetry group in a d + 1 dimensional
quantum system ¥, before addressing its subgroups. Unlike the previous analysis working on
the level of Hilbert spaces of spin models, here we take a space-time point of view and work
on the level of partition functions.

3.1.1 Gauging, ungauging and dual symmetries

Let us consider a quantum system, denoted by ¥ in d + 1 spacetime dimensions and sym-
metric under a finite Abelian group G(). Such a theory can be defined in the presence of
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a background Gy gauge field A;, which can equivalently be understood as a network of
codimension-1 (in spacetime) symmetry defects. We denote the partition function of ¥ cou-
pled to a A; background by Z<[A;]. If the theory ¥ does not have any 't Hooft anomaly with
respect to the group G, then Gg can be gauged in T to obtain a new theory T". Gauging
the O-form symmetry amounts to summing over background gauge fields/symmetry defect
networks [18,26,119,120]. The partition function of the gauged theory has the form

1
Zgv = G oD ;Zz[aﬂ, (83)
1

where we have assumed that M is path connected and the sum is over gauge classes of G-
bundles, i.e., a; € H'(M,G). Here b,(M) is the n’th Betti number of M. The theory ¥V has
a (d — 1) form symmetry GY = hom(G,R/2nZ) = G [18,65,121], denoted by GE/d—l)' The
symmetry operator corresponding to an element g¥ € G defined on a 1-cycle y is

Wegv(r) = exp {igng al} . (84)
Y

We can couple T to a background d-form gauge field A", which corresponds to inserting a

. . .o, . . V . V
network of line-like symmetry operators. The partition function of T in the presence of a A}
is given by

a; UAZ} ) (85)
M

1 .
ZIV[A\C;] = WZZT[Q]_]QXP {lf

Gauge invariance of the partition function under background gauge transformations of A\é is

guaranteed by the fact that da; = 0. The GE’d_l) global symmetry of the gauged theory TV can

itself be gauged to deliver a theory T¥" which again has a symmetry G(o)

1 .
Z‘Zvv[Alj = WZZ@V[Q(\{]GXP{IJ‘M Cl(\i/ UAl} B (86)
4

where N,(M) = Z?:l (—1y*! b,—j(M). Note that N; = by(M), which recovers (85). Then
inserting (85) into (86), one obtains

Zew[A]=exp{—x(M)In(|G])} x Z:[(—1)9A], (87)

where y(M) = Zf:g (=1)Yb ;(M) is the Euler characteristic of the manifold M. Here we used

the relation
1 .
6(Ad+1—n) = W Z exp {IJ a, UAd+1_n} . (88)
a,€H"(M,G) M
Hence gauging twice acts as “charge conjugation” in odd spatial dimensions [122] upto a local
curvature counter term. In fact, the so-called Euler counterterm in (87) can be absorbed by

redefining the normalization as N »=V |G|bP(M) in (85) and (86). We will however work with
our initial choice of normalization as doing so simplifies the mapping of symmetry sectors
between the original ¥ and the gauged theory T".

3.1.2 Mapping of symmetry sectors

Using (85) and (86), one can see how the symmetry sectors on the different sides of the
gauging-related duality map into each other. Let us consider a d + 1 dimensional spacetime
manifold that decomposes as M = S x My, where M is the spatial d-manifold and S! is
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the circle in the time direction, such as to connect with the Hamiltonian description in the
rest of the paper. We work with imaginary time and will therefore be considering thermal
partition functions. A G background gauge field A; (upto gauge transformations) is valued in
HY(M,G), i.e., it is labelled by the holonomies of the gauge field A; along the homology cycles
of M. Using the Kiinneth theorem, the 1st homology group of M = S! x M; decomposes as

Hl(Sl x Md:Z) =Z 69I_Il(Md’Z) = SpanZ(?: Y1-725--- )Ybl(Md)> . (89)

Then the gauge field A; can be labelled by its holonomies around the homology cycles of M
as Al = (gta g) where g = (gl »825. .- :gbl(Md)) € Hl(Mda G) and g € G: i'e'z

nglzgj’ j(fh:gt- (90)
Yj ¥

The thermal partition function of a quantum system coupled to such a O-form background
gauge field is
Z:[A)] = Z4(g, 8] = Tr[Uy, e PHe], (91)

where U is the symmetry operator corresponding to g, and Hy is the Hamiltonian of interest
with g; twisted boundary conditions along the j™ homology cycle of M. In Sec. 2, we could
study the G symmetric bond-algebra in a definite symmetry sector labelled by a € Rep(G) and
g € H'(My,G) (see (22)). Physically the label a denoted the symmetry eigenspace we were
restricting to and g was a choice of symmetry twisted boundary conditions. In the spacetime
partition function, this amounts to inserting a (codimension-1) projection operator P, at a
fixed time, extending over all of M;, which has the form

1

Py = —
|G|

D Ralg) Uy, (92)

g:€G

where R, : G — U(1) is the representation corresponding to the label a. We define a symmetry
character y<[a,g] as the thermal trace in the sector transforming in the a representation and
with g twisted boundary conditions

2ela, 8] =Try, [P,e ], 93)

After gauging, we obtain a dual theory TV which can be coupled to a d-form gauge field
Ay € HY(M,G) =Hom(H,(M ,Z),G). Again, using the Kiinneth theorem,

Hy(S' xMy,Z)=Hy_1(My,Z) ® Hy(My , Z)

~H,(My,Z)®Z. o4

In the second line we have used the assumption that M, is closed and oriented which via the
Universal coefficient theorem and Poincaré duality implies H;_;(My,7Z) = H;(M,4,Z) and the
fact that My is path connected, which implies H;(My,Z) = Z. More precisely we can canon-
ically identify the generators Z}S.d_l) € Hy_1(My,Z) with the generators y; € H,(Mg,Z). The
d-form background gauge field A; can be labelled by its holonomies around the d-homology
cycles of M as Ay = (8",g/) such that g/ € GY and §¥ = (g7 ,..., g;)/l(Md)) such that

§ Ai=g/, jg Aqg = g}/ . (95)
M, wdDyg1
d j
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~

g
gauging Z,, .
7l

T T\/

Figure 10: The figure illustrates a spacetime M = S! x T2 = T3 where all space and
time directions are periodic. The left figure depicts the insertion of 0-form symmetry
operators (surfaces) in theory ¥. The red and blue surfaces along x-t and y-t planes
correspond to twisting the boundary conditions along the x and y direction. The
green surface on a time slice is the projection operator (92), projecting to the sym-
metry sector Y = w®. The insertion of these in the partition function gives rise to the
character y<[a,g] (see (93)). This contains the energy spectrum of the theory with
twisted boundary conditions g and in symmetry sector a. After gauging the 0-form
7, symmetry we obtain the theory T" and the relation (99) between the characters
of the two theories. Here T" has a (d — 1)-form symmetry (lines). The right-hand
side illustrates the dual characters after gauging. The characters are equal, but the
labels for twisted boundary conditions and symmetry sector has swapped.

The thermal partition function of the quantum system T coupled to A; background has the

form
b1 (Mg)

zolAl=r | [] watrpe P (96)
j=1

where W, v(}’ ;) is the (d —1)-form symmetry operator (84) defined on the homology 1-cycle v;
and H" is a Hamiltonian of interest with GE’d 1 -form global symmetry and g;/ twisted boundary

conditions. As before, we can project onto definite G¥ eigenspaces of each of the line operators
by using the projection operator

Pulr) =g 5 Rer(®) Wy ). 97)

VeGV

We define the symmetry character as a thermal trace in a definite symmetry sector with g;/ eGY
twisted boundary conditions and g; eigenvalues of the symmetry operator on the 1-cycle y;

by (My)
rel8.g)1=Tryy 1_[ (g e 98)

Using (85), (86), (93) and (98) it can be shown that

X‘I[a> g] = X‘IV[EJ a]: (99)
implying a duality between the corresponding sectors of the theory T with Gy and theory TV

with global symmetry G( 1) See figure 10 for more details.
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3.2 Gauging finite Abelian sub-symmetry

3.2.1 Dual symmetries and mixed anomaly

We now describe the more interesting case, where the full symmetry group G of ¥, is a central
extension of K by N [18,45,65]. More precisely, G sits in the short exact sequence

1—-N—>G—oK—1, (100)

whose extension class is € € H2(K, N). This implies that a G background gauge field A; can be
represented as a tuple (A(lN),A(lK)) € C'(M,N) x c}(M, K) which satisfy the modified cocyle
conditions [65]

dAV =e(al9),  aa9=o. (101)

Correspondingly, the partition function of ¥ coupled to a G gauge field is denoted by
Zs [A(lN),A(lK)]. Recall the notation G = N x,. K from section 2.2. Instead of gauging the
full group G, consider gauging N C G, using Eq. (85) to obtain the partially gauged theory T".
The gauged theory has a residual 0-form symmetry (G/N) ) = Kqy. Additionally, there is also
a dual (d —1)-form symmetry NE/d—1)' Hence after the partial gauging, the resulting symmetry

is a higher d-group G/,

(0,d-1)
gauging N g v €
Gioy = Nioy e Kioy = Gy g1y = [Kiop» NIy ] - (102)
The partition function of the gauged theory can be coupled to background gauge fields of
_ v €
G(eo,d—l) - [K(O)’ N(d—l):l as
NY) 407 1 (N) 4(K) : (N) || 4(NY)
2o [A7, 410 = ﬁZzg[al A ]exp{lf aMual } . (103)
M

(N)
4

Interestingly, the theory ¥V has a mixed ’t Hooft anomaly between Ky and NE’d_l) which
manifests in the lack of invariance of the partition function under background gauge transfor-
mations ) ) )

Ay T Ay THdAT, (104)
where Ag\lvl) € ¢471(M,NV) is a gauge transformation parameter. Under such a background
gauge transformation, the partition function (103) transforms as

d -1~ : (NY) (K)
=exp{1f Ad_ UelA } (105)
2o [AN), AR e (A7)

The lack of gauge invariance cannot be remedied by any choice of local counter-terms, however
it can be absorbed by coupling ¥ to an invertible topological field theory [74,75] known as
the anomaly theory with the action

2o [AN) L A0V A90]

NV K
Sanom :f AP ue(Al0). (106)
M2

Such an invertible field theory describes the ground state physics of a symmetry protected
€
topological phase of matter protected by G(eO 1 = [K(O), Nz/d—l)] . It is however crucial to

emphasize that there is no physical need to associate T" to a ‘bulk’. As described in Sec. 2, such
a theory can very well be described on an d-dimensional lattice model. Instead the bulk or
anomaly theory is a theoretical gadget to systematize our understanding of the anomaly, which
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has significant non-perturbative implications for the infra-red phases/ground states realized in
TV. Specifically, as we will demonstrate, a systems with such anomalies cannot have a gapped
and symmetric (disordered) ground state. Instead, any gapped ground state must break the
symmetry down to a subgroup that trivializes the anomaly. This is a consequence of anomaly
matching between the ultraviolet and infra-red physics.

For the remainder of this section, we specialize to the case G5y = Z4 and N(g) = Zy, in

which case the symmetry of TV is Gfo, -1 = [Zz,(o), Zz,(d_l)]e with the anomaly action having
the explicit form

Sanom = inf A4 UBock(4,), (107)
Mg+

where A, € H?(M, Z,) and Bock denotes the Bockstein homomorphism (see Appendix B of [3]
for details) which is a map of cohomology classes

BOCk:Hl(M,Z2)_)H2(M, ZZ), BOCk(Al) = %dgl, (108)

where A] is the lift of A; to a Z, gauge field.

3.2.2 Mapping of symmetry sectors

Under gauging of a subgroup, the symmetry sectors of the pre-gauged and gauged theories ¥
and T respectively, map into each other in a non-trivial way. In this section, we detail the map
of sectors for the case of N = Z, and G = Z,. However the analysis readily generalizes to any
finite Abelian group G with subgroup N. Since we want to gauge Z, C Z,, it will be convenient
to write a group element g € Z, = {0,1,2,3} as a tuple (n, k) such that n,k € Z, = {0,1},
with the identification g = 2n + k and the product rule in Z, given by

(n1,ky) - (ng, k) =(ny +ny+ky -k, kg +ky). (109)

A Z, gauge field A(lG) € HY(M,Z,) for M = M, x S! is labelled by its holonomies on the
homology 1-cycles of M and can correspondingly be expressed as a tuple of Z, gauge fields
(A(IN)A(IK)) with a modified cocycle condition (101) as

G -

A = (g1, 8n) = (80,B),
A(:[N):(ntﬁnl)"')nN):(nt’ﬁ)’ (110)
A(]_K) = (kta kl: cees kN) = (kt’E)’

where N = b;(M,), g € H'(My,7Z,) and A ke H'(My,Z,). The thermal partition function of
% coupled to the background Z, gauge field A(lc) has the form

Zz [A(IG)] =Z:[g,8l= 21 [nt ke, ﬁ’E] =Tr [uznn[Jrkt e_ﬁHﬁ’R:l ’ (11D

where U is the Z4 generator and H i is the Z4 symmetric Hamiltonian with g=(n, k) twisted
boundary conditions. With the purpose, of tracking how symmetry sectors map under partial-
gauging, we define Pag which is a projector onto the sub Hilbert space transforming in the a,
representation of Rep(Z,)

Puy= 5 DS UB = Y (CDER R, (112)

g
8 €24 N,k €Zy
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where we have used a, = 2ay + a,. Using (112) we may define a symmetry character
x[q, ag,g] as the thermal trace in a definite eigensector a, € Rep(Z,) and with symmetry

twisted boundary conditions g = 2 + k as

n-1 1 _ .
xslag, g]=Tr[ Py q¢ k] = 1 D (pymancrekgank z [ kK] (113)
ek,

The expression (113) can be readily inverted to express the partition function in terms of the
symmetry characters as

Ze[ng ke, i,k = Z (—1)nerarkejanke y [0y + ar,, 27 + K] . (114)

A A

Next, gauging the subgroup N C G simply corresponds to summing over the symmetry
background A(lN). The partition function of the partially gauged theory T has a d-group

Gfo, = [K(O), Nz/d_l)]e global symmetry and can therefore be coupled to a symmetry back-

(K) 4(NY) . (NY) 2V
ground (A;™,A;" 7). In particular, the symmetry background to A;" ~ are labelled by i* and
n/, see (95). The partition function of T coupled to (A; x,A4 Nv) is

2o [AN), AN ] = 25 [, Y ke K] = %Zzg[nt,kt,ﬁ,E](—l)”f"Hﬁ'ﬁv. (115)
ng,n

As a thermal partition function, this may be expressed as

- N V. —pHY
Ze[RY,nY k., k] =Tr L{ktl_[WYr;’e P || (116)
j=1

> o

where U and W,, are the Z, 0-form and (d — 1)-form symmetry generators in the theory "
respectively. Since we are interested in relating the symmetry-resolved energy spectra of the
two theories T and T, we need to define the character of the dual theory TV as well. How-
ever, due to the mixed anomaly in this theory, see equation (82) and figure 7, some slight care
is needed to define characters correctly. In particular, equation (82) implies that in twisted
sectors the Z, symmetry operators can square to —1 instead of +1 and thus have ’fraction-
alized’ symmetry eigenvalues =i instead of &1. The appropriate symmetry projector for the

= v ‘. 12
Gloa—1) = [K(o), N(d_l)] is thus

N 0)
N - w Uu 7-'((1—1) (7_( )
Play ,ai,ny K1 =] [P0, pLO AT 0P, 0, 117)
j=1 J

where the superscript of each projector denotes the operator whose eigenspace is being pro-
jected onto while the subscripts denote the eigenvalues. Explicitly, these projection operators
have the form

1+ (=1 iw, oy 1+ (_1)kj7;/(j(/))
— J —

w) Vj
k: — > k. - )
an}/’ ] 2 J 2 (118)
—nY \% _
pa _ 1+ (ED™TU pT) _ 1+ (DN T
ay,ny 2 ’ nY 2 ’

2Note that technically only P") and P are projectors to symmetry eigenspaces (for the (d — 1) and 0-form

. . s . , (-1 © .

symmetries, respectively). The ’twisted BC projectors’ P(7"" ) and P(7") are not real projectors, and somewhat
trivial. But we include these here to easier keep track of how symmetry sectors and boundary conditions swap
under gauging dualities.
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where U, WY],, TY(_O) and 7D are defined in (80), (81) and (82). Here the symmetry charac-
J
ters of the gauged theory are labelled by a representation o and @,v = (an¥ seees QY ), while

twisted boundary conditions are labeled by n}’ and k. Inserting this into the partition function,
the characters of TV take the form (see also [123] for a similar discussion in 1+ 1 dimensions)

__'._'V
2o [@nv, ag,nY K ZHNZZSV o0V ke, K] (= 1)kt B onlke—kd o (1q9)

k¢,

The appearance of i in the characters above, is a consequence of symmetry fractionalization
stemming from the mixed anomaly. The symmetry characters of " can be written in terms of
the characters of ¥ by using (115) and (114). However, let us instead derive this relation using
the lattice realization of the symmetry structures of T and ¥ described in Sec. 2. To extract
the mapping of sectors, we note that a sector in the theory T labelled as (&,v,ax,n), k) is
the sub-Hilbert space of Vz\\j[d in the simultaneous image of the projection operators (117). The
gauging map in Sec. 2.2 relates Z, (g) X Zy (4—1) Symmetric operators on V]\\fld to Z, symmetric
operators on V), . In particular there is the following mapping of operators

_ d-1) 2
UVVHU‘V_HXV’ T vv'_)u ’v’
(120)
0) (0) 072
Wy W — T ‘ l_[Zs(e) t(e)’ TyJ — [T] ‘v

Using these operator isomorphisms, the product of projectors in (117) in the theory ¥ maps

to a product of projectors in the theory TV. More precisely, one obtains a projector onto the

2ay — n;/ € Rep(Z,) eigensector of U and the sector with 2a,v —k; € Z, symmetry twisted
J

boundary conditions along the cycle y;. Which implies the following map of symmetry sectors

x20[q, v, ap,nY K] = x<lq, 204 +nY , 2,0 +k]. (121)

4 Phase diagrams and dualities in d = 2

Having detailed the gauging of finite Abelian symmetries and their subgroups both in the lat-
tice setting in Sec. 2 and more generally in a space-time approach in Sec. 3, we now turn
our attention to the action of gauging-related dualities on phase diagrams in two-dimensional
space. More precisely, let us again consider a theory ¥ with global symmetry G by which we
mean a parameter space of G-symmetric Hamiltonians. This space of local Hamiltonians is
contained within the bond algebra Bg()’). Upon gauging either the full group G or a certain
subgroup, we obtain a new theory ¥V, i.e., a parameter space of models in the bond algebra
Bev(VY), where GV is typically a higher group, potentially with mixed anomalies. Since the
gauging map is an isomorphism between the bond algebras, the physics before and after gaug-
ing is intimately related, or more precisely dual. This duality is evident in several aspects. For
instance, the spectrum of a G symmetric Hamiltonian A and its GY-symmetric image H" under
(partial) gauging have the same spectrum in ‘dual’ symmetry sectors, in the sense detailed in
Sec. 3. Another consequence is the equality of correlation functions

(O1(x1,t1) - Oy, t))e = (O (1, 11) -+ O} (X, ) gy » (122)

where & collectively denotes the symmetry sector labels of theory T and O; are operators in
the bond algebra B¢. " and (’)}’ are the images of ® and O; under the gauging map.
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4.1 Gauging finite Abelian symmetry

In this section, we describe how the phase diagrams of a theory with O-form and 1-form Z,
symmetry are related. Our analysis generalizes to any finite Abelian group G with a few caveats
which we will elucidate as we go along. To organize the mapping of phase diagrams under
(partial) gauging, we seek to enumerate G-symmetric gapped phases in two dimensions. Do-
ing so, one immediately encounters a complication in the fact that there are infinitely many
G-symmetric gapped phases of matter if one includes phases with long range entanglement.
This should not come as a surprise as the set of gapped phases (which admit a lattice Hamil-
tonian description) without any symmetry enrichment is already infinitely large and contains
all topological orders with gapped boundaries. This set is at least as rich as fusion categories
since a topological order (with a gappable boundary) can be constructed from a given fusion
category as input [112,124,125]. Here, we content ourselves by investigating the parameter
space of G(g) symmetric short range entangled (SRE) systems.

SRE gapped phases are classified by tuples [H, ] where H € G and v € H3(H, U(1)). A
phase thus labelled spontaneously breaks the global symmetry down to H. Therefore, such
a phase possesses |G/H| ground states that form an orbit under the action of G. Further-
more, each such ground state is a symmetry protected topological (SPT) phase labelled by
y € H3(H, U(1)) of the unbroken H subgroup [126]. We consider the following G-symmetric
Hamiltonians which can access all SRE gapped phases

H[)L] = Z A[H,v] H[H,V] ) (123)
H,»

where the parameters Ary ,) € R and H[H . is a fixed-point Hamiltonian for each gapped

phase. Setting all Ary ,; = O except for one pair [H’, '] selects a fixed-point Hamiltonian

My, realizing the gapped phase labelled by [H,].

Upon gauging G(g), one realizes a model with a dual GY

1)
v

1
label [H, v]¥. A natural question then is where does [H, v]V (ﬁi into the classification of GE/I)
symmetric gapped phases? We will see that the data [H, v] correspond to information per-
taining to (i) the 1-form symmetry that is preserved in the dual model and (ii) the topological
properties of certain emergent 1-form symmetries that arise in phases with spontaneously bro-
ken 1-form symmetry. To dissect these statements let us first describe what is meant by 1-form

symmetry breaking?

global symmetry. Correspond-

ingly, each G(g) symmetric gapped phase [H, v] maps to a G/}, symmetric gapped phase we

1-form symmetry breaking: Similar to conventional O-form symmetry breaking, 1-form
symmetry breaking is also signalled by long-range order of an operator which is charged un-
der the relevant symmetry. In the case of O-form symmetry, the charged local operator is the
local order parameter. In contrast, 1-form symmetry breaking is diagnosed by a perimeter
law expectation value of a closed line operator which is charged under the 1-form symmetry
in question [56,67,127,128]. In the parlance of gauge theory, the charged line operator is
deconfined in the 1-form symmetry broken phase. In the infra-red/low-energy limit, such a
charged line operator becomes topological, i.e., its expectation value is invariant under topo-
logical deformations. Furthermore, tautologically, there is a non-trivial linking between the
charged line and 1-form symmetry generator (see fig 11). Therefore the low energy theory
contains topological line operators that braid non-trivially and is topologically ordered [10].
These phases are paradigmatic examples of models with long-range entanglement and there-
fore one observes that gauging maps short range entangled phases to long range entangled
phases in 2 + 1 dimensions [69,71,129].
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Figure 11: 1-form symmetry breaking is signalled by the deconfinement of a line
operator which is charged under the 1-form symmetry generator. In the infra-red/low
energy limit, such an operator becomes topological.

Let us consider the case where G = Z,. The gapped phases are labelled by the pair [Z,, {]
with p a divisor of n and £ € H 3(Zp, U(1)) = Z,. Before analyzing the dualities on the lattice,
let us first get some intuition about how the gapped phases are mapped under gauging. To
do so we turn to topological partition functions, which encode the low energy physics within
a given gapped phase. For G = Z,, the topological partition function for the gapped phase
labelled by [Z,, £] has the form

i
Z(I[M ’Al] = §6PA1’O exp {%MJ A]. U BOCk(Al)} , (124)
M

where the Bockstein homomorphism Bock : H'(M, Zp) — H*(M, Zp) is implemented by
1 ~
Bock(A;) = ~dA,, (125)
pP

and Kl is a lift of A} to sz. The factor of 5,4 o implies that the theory cannot be coupled to
a Zy;, C Z, as it is broken in this phase. Meanwhile the topological action in the exponent
of (124) is the SPT response theory/effective action of the Z, global symmetry which remains
unbroken. Then the low-energy or ground state physics of the dual gapped phase obtained
after gauging, can be extracted using (85). The topological partition function corresponding
to this dual gapped phase has the form

1 2mil
- expy — | a; UBock(a )}
p Z p{ p JM ' '

a,€H(M,Z,)

i d
:1 E exp{?J [bluda1+£alu%]}.
M

P o bectm,z,)

Zev[M] =
(126)

This theory is a Z, Dijkgraaf-Witten theory [130] with the topological action labelled with
leH 3(Zp, U(1)) [129,131]. In the second line, we have simply re-formulated the Dijkgraaf-
Witten theory in terms of 1-cochains a, , b; € C1(M, Z,), which is the quantum double formu-
lation (see [129] and references therein). The additional field b, serves to parametrize/probe
the aforementioned emergent 1-form symmetry and can be summed over to go back to the
first line. By inspecting the equations of motion, the most general topological operator can be
read off to be

W(q,m)(L)=eXp{%§(qa1+mb1)}, (127)
L
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where q,m € Z,. We note that W(O’l)(L) generates an emergent 1-form symmetry. Notice that
due to the delta function 6,4, ¢ in (124), the following holds true

<exp{ip§ a1}>:1, (128)
L

for any 1-cycle L. Since the operator exp {ip SGL al} generates a Zy, (1) C Zy (1) symmetry,
(128) implies that all lines charged under Z,,, are confined and do not appear in the infra-red
fixed point. This is equivalent to the fact that Z,/, (1) C Z, (1) remains unbroken.

Next let us inspect the fate of the remaining Z, () generated by W(; (). To do so, we turn
on sources for the Z, 1-form symmetry as well as the emergent 1-form symmetry. This can be
done by introducing two 2-form background gauge fields A, ,B, € Z2(M,Z,) that enter the
partition function as

1 2mi d
ZSV[M’AZ,BZ]:_ZeXP{EJ [bludal +€aluﬁ+A2Ua1 +Bzub1]} . (129)
b b Ju b

al’bl

The correlation functions of the topological line operators can be computed straightforwardly
using standard methods [131, 132]. For instance consider two 1-cycles y; and y, embedded
in M = S3 such that they form a Hopf-link. The correlation function of two line operators with
support on L, and L, is

2mi 4mil
<W(q1,m1)(L1)W(qz,mz)(L2)> = exp {7@11112 +qomy) + p—2m1m2} . (130)

Hence, the parameter { € H 3(Zp, U(1)) changes the self-braiding and topological spin of the
emergent 1-form symmetry generators.

4.1.1 SPT Hamiltonians on the lattice

We now turn to how these features manifest on the lattice. As before we consider a triangulated
manifold M, o with each vertex endowed with a local Hilbert space V, = C". We investigate
how fixed-point Hamiltonians dualize under gauging. A fixed point Hamiltonian in the phase
labelled as [Z,, £] has the form

2mil b o—p
Hiz, 0=~ D X2/P exp {p_z > Be} -7k Z P +He., (131)
(S

v eCdHex,

where Hex,, denotes the smallest hexagon in the direct lattice enclosing vertex v and dHex, is
the set of six edges at the boundary of this hexagon (see Fig. 12). B, is defined as

p—1 n—1
1 2mita -
_ () () — = - i T
Be=> aP®, P —pz e (ZyZh )" (132)
a=0 7=0

We are interested in the groundstate symmetry properties of (131). Since X\',l/ P and Z? com-

mute, (131) is a commuting projector Hamiltonian and the ground states lie in Z ;e)Z t_(g )= 1

subspace of the Hilbert space. It follows that in this subspace Z have eigenvalues that

ZT
s(e)t(e)
are the p™ roots of unity and consequently Pé“) is a projector onto the exp {2mia/p} eigenspace
of this operator. The Hilbert space splits in n/p super-selection sectors, that are dynamically
disconnected in the thermodynamic (infinite size) limit as

V=P V,, Vy=Spanc{lp)g|¢ € CO(Mn,2Z,)}, (133)
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Figure 12: (a) Hex, denotes the smallest hexagon (in red) on the direct lattice en-
closing vertex v and dHezx, is the set of six edges (in green) on the boundary of this
hexagon. The triangular lattice is dual to the hexagonal lattice such that each edge
e of the triangular lattice is associated to an edge e" of the dual lattice. We denote
a unit cell of the dual lattice that links with the vertex v of the direct lattice as S\}.
(b) The Hamiltonian (143) is sum of framed ribbon operators linking each vertex v
of the triangular lattice. The figure (b) also depicts a twisted ribbon operator.

such that

N
Z19), = exp {00+ T 1), (134

Note that the sub-Hilbert spaces V, are distinct eigenspaces of 7Y which is the order parameter
of spontaneously breaking of Z, symmetry to Z, C Z,. Since the different super-selection
sectors are dynamically disconnected, we may look at the Hamiltonian (131) in a specific
subspace Vg, which we denote by

(&) _
HE = Hiz, - (135)
g

Since, Z,X"'? = exp {2mi/p} X™V? Z,,, the operators {X\'}/p , ZV} restricted to V, generate a Z,
clock and shift algebra, i.e.,

. 2mi
VARYA =ex {— do) } ;
s(e) t(e)|¢>g p D ( o e |¢>g (136)
Xv|¢>g = |¢ + 5v>g'
We define effective Z, degrees of freedom in V, as
X\’/l/p =, Z,| =, (137)
Vg Vg

which satisfy the commutation relations [©, ,®,/] = 27i6, ,,/p. In terms of these effective Z,
degrees of freedom, we have

& _ _ i, 2mif
HE == exp{ = ﬁHex d<1>}. (138)

This is nothing but a fixed point Hamiltonian for the Z,-SPT labelled by £ € H 3(Zp, U(1)) [69].
Therefore, we have demonstrated that the ground states of the Hamiltonian (131) break the
global symmetry down to Z, C Z, and furthermore, each symmetry broken ground state
realizes an SPT of the unbroken symmetry.

4.1.2 Dual Hamiltonian with higher-form symmetry

Now we turn to gauging the global Z,, 0-form symmetry. The model after gauging is defined
on M, a with the degrees of freedom defined on the edges instead of the vertices. The dual
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Table 1: Summary of dualities between Z, 4(0) -symmetric SRE gapped phases and
-symmetric models with gapped phases in d = 2 spatial dimensions. The SRE

ground states of Z, 4.0) -symmetric Hamiltonians are described by the pair [Z (O),B 1.

Here, the subgroup Z 0.(0) © Z, 4.0) with p =1, 2,4 denotes the symmetry preserved by
the 4/p-fold degenerate ground states. We refer to the case p = 1 as spontaneously
symmetry broken (SSB), while the case of p = 2 is referred to as partial symmetry
broken (PSB). The index {,, € Z, labels the SPT phase supported by each of the 4/p-
fold degenerate ground states, which we refer to as SPT({,,). The dual models are
obtained by gauging the Z, (o) global symmetry. On the dual side, a phase preserving
Zy (o) Symmetry maps to a phase preserving Z4,, (1) C Z4 (1) subgroup. In this case,
the ground state has an emergent Z, (1) symmetry whose generator carries topolog-
ical spin 0 = m { o We denote such dual ground states by [Z,, (1), £ p]. By “Triv.” we
mean the trivial symmetry group.

4 €Y

Zy 0y SRE Phases Dual Z 4.(1) Gapped Phases
Symmetry of GS | Description | Symmetry of GS Description
[Z4’(0), 64] SPT({4) [Triv., 64] Emergent Z, ), byw/0=mt,
[Z4,0), £ ] SPT({,) x PSB [Z2,1), £ ] Emergent Z, ;) w/ 0 = n{,
[Triv., 0] SSB [24,(1), 0] Symmetry preserving

Hamiltonians can be obtained by using the bond algebra isomorphsim between (20) and (40).
The Z, 0-form symmetric fixed point Hamiltonian (131) in the phase [Z,,{] maps to the
following dual Hamiltonian

e]_—ZAn/p exp {2n1€ > BV}—Zzg+H.c., (139)
(S

eCdHex,
where
p—1 v v 1 n—1 2nita
BV — Z aVrPéa ), Péa ) — Z e »p ZeT . (140)
avV=0 p =0

Since the different terms in the Hamiltonian commute, it immediately follows that the ground-
state is in the Z) = 1 subspace of the Hilbert space. As a straightforward consequence, we
have that
[ Jzoyet =1, (141)
ecl
for any closed loop L. Since this line operator is the generator of Z,,,, 1y 1-form symmetry, this
implies that the ground state is invariant under this 1-form symmetry. Let us now investigate

the fate of the remaining Z, C Z,,. As before, we note that in a definite eigenspace of ZE, the

n/p

operators X,'* and Z, generate a clock and shift algebra. We use the representation

= elbev (142)
z’=1

— Lia n
Zq =el%,  x1/P

zk=1

where we have used the convention that the b,, operators are defined on the links of the dual
lattice. They satisfy the algebra [bev ,a. ] = 2milntey o /p, where Int.v o, denotes the intersec-
tion number of edge eV and e’. Using this representation, we may express the Hamiltonian
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(139) in the restricted Zé’ = 1 subspace as

:—Zexp{i% b+g§ a} . (143)
Z.=1 v S! p JHex,

e

Vv
Hiz, 0

This is nothing but the Z, twisted quantum double Hamiltonian. The Hamiltonian is a sum
over framed ribbon operators linking with the vertices of the direct lattice (see Fig. 12). More

generally, the line
W(F)zexp{i} b+gj€ a} , (144)
v P JL

commutes with the Hamiltonian and is therefore topological, i.e., an emergent 1 form symme-
try generator. Note that on the lattice one needs to provide two curves—L and L" since W (T') is
a framed line operator. In terms of the Wilson operators defined in (127), this topological line
operator is Wy ;(T') with T' = (L, LY). Table 1 summarizes the dualities between Hamiltonians
(131) and (143), whenn=4and p=1,2,4.

The discussion in this section generalizes to any finite Abelian group G. Similar to the case
of Z,, the gapped phases are labelled [H, v], labelling the symmetry H that is preserved by
the ground state and the SPT class v € H3(H,U(1)) of each symmetry broken ground state.
There are three possible types of cocycles for any finite Abelian group which are denoted
as type-I, type-II and type-III cocycles [133]. The physics of type-I and type-II cocycles is a
straightforward generalization of the case of Z, presented in this section, however the physics
of type-IIl is different. In particular after gauging an SPT labelled by a type-III cocycle v, one
obtains a topological order with emergent non-invertible symmetries [129,133,134].

4.2 Gauging finite Abelian sub-symmetry

In this section, we study the dualities between two theories related by the partial gauging of
Zy C Z4 O-form symmetry. Concretely, we gauge the Z, subgroup of a Z, symmetric system
that can access all SRE gapped phases, i.e., combinations of SPT and symmetry broken phases.
Such phases are labelled by H C Z, and a 3-cocycle (SPT action) v € H3(H, U(1)). There are
a total of seven such gapped phases since there are three subgroups (Z4, Z, and Z,) of Z, and
H3(Z,,U(1)) = Z,. We follow two complimentary strategies (i) partially gauge the topological
(fixed-point) partition functions of each of the gapped phases in the Z, model as in Sec. 3.2
and (ii) carry out a partial gauging of a specific lattice spin model using the bond algebra
isomorphism described in Sec. 2.2. We summarize the results in Table 2.

4.2.1 Dualizing topological partition functions

As in the Sec. 3.2, it is useful to define a Z, gauge field, A; € Z'(M, Z,) as a tuple of Z, fields
(A(IN),A(lK)) that satisfy the following modified cocycle conditions

1 ~
dA(lN) = Bock (A(lK)) = EdA(lK) , dA(lK) =0, (145)

where Bock denotes the Bockstein homomorphism (see for example App. B of [3] for details)
and ;X(lK) is the lift of A(lK) to a Z,4 gauge field. The expressions for the topological partition
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Table 2: Summary of dualities between two dimensional Z

4, (0)-symmetric SRE

gapped phases and [Zz ©)> Z3 (1)]6 -symmetric gapped phases. The Z 4(0) phases are
labelled by [Z (0),£ ], where Z, C Zy, is the symmetry preserved by the ground
state(s). We refer to the case p 1 and 2 as spontaneously symmetry broken
(SSB) and partial symmetry broken (PSB) respectively. The index £, € Z, labels
the SPT phase realized by the 4/p-fold degenerate ground states, which we refer
to as SPT(£,). The dual models are obtained by gauging the Z, C Z, and have a

[Zz,(o), Zz’(l)]e global 2-group symmetry with a mixed anomaly. Due to the anomaly,

there is no gapped phase that preserves the full [Zz,(o), Zz,(l)]e symmetry. When
p = 4, the dual Z, 1) symmetry is broken while Zz,(o) symmetry is preserved. The
emergent Z, ;) Symmetry generator carries topological spin 6 = m{,. The Z,
fractionalizes on the anyonic excitations of the Z, 2.(1) broken phase and the corre-
sponding symmetry fractionalization (SF) pattern is determined by £,. When p = 2,

full [Zz,(o), Zz,(l)] global symmetry is broken. Each degenerate ground state that

break Z, (0) SYmmetry supports Z, topological order with an emergent Z, (1) Symme-

try carrying topological spin 6 = 7 {,. By “Triv.”, we mean the trivial group.

Z 40) SRE Phases Dual [Zz,(o), Zz,(l)]e Gapped Phases
Symmetry of GS | Description | Symmetry of GS Description
[Z4,(o): €4] SPT(£4) [Zz,(0)> 64] Emergent Z, ) w/ 0 = m{,, SF=(,
[Zz,(o), 62] SPT(¢,)+ PSB [Triv., £5] Emergent (ZZ,(l)’ éz) + SSB
[Triv., 0] SSB [Z5,1, 0] PSB

functions for the seven gapped phases labelled by [Z,,{] with p € {1,2,4} and { € Z, are
Zézl’o] [ A(lN)’ A(lK)] — 46A(1N),05A(1K),0’
Zézz’“ [A(lN),A(lK)] = 25A(1K),O exp {inﬁ J;w A(lN) U Bock (A&N))} s (146)
ZZ 4 400 =exp{% f (ZAgNuAgK))UBock(AgM)} .
M

The gapped phases dual to each of these phases, i.e., related via gauging of Z, C Z, can be
obtained by mapping the topological partition functions using

v (N), | 4(NV)
Z(E:V ] [A(NV) A(K)] ZZ[Z e]l: (N) A(K)]( l)f a; "UA, (147)
(N)
a4

The topological partition function dual to the fully symmetry broken phase [Z,,0] is
[Z1,01V [ A(NY) A(K)T _
2T [AD, AP ] =250, (148)
The factor 6 A0 signals that the theory ¥ cannot be coupled to the background A( ) since

the O-form K(O) = Z, symmetry is spontaneously broken. The prefactor of 2 corresponds
to the ground state degeneracy owing to this spontaneous symmetry breaking. Furthermore
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since there is no constraint on A(ZNV), the dual phase trivially preserves the 1-form NE’D =7,
symmetry.

The partition function of the gapped phase dual to the partial symmetry broken phases
takes the form

Dijkgraaf-Witten (1-form SSB)

0-form SSB
Zo TV T A(NY) (K ~— 1 ta™uBock(a™)+aMualM"
212 [N AR = 35 g0 > w1 Sl el APAT] g4

(N)
4

The expression in the first brace corresponds to the fact that the O-form symmetry K is bro-
ken in the gapped phase [Z,,£]" in T¥. The expression in the second brace corresponds to
the Dijkgraaf-Witten partition function for a topological Z, gauge theory with the topological
action given by

ng)v[agN)] =inl f agN) UBock (agN)) . (150)
M

Equivalently, this is the deconfined phase of the (twisted) Z,, gauge theory which has an emer-
gent 1-form symmetry. The emergent 1-form symmetry is manifest in the quantum double
presentation of the theory in terms of cochains ng)
is described by the action

and agN). In this presentation, the theory

da™
sZt = inJ [bg'\') Uda™ +a™Mu—=2— + AN U™+ BNV UMV | (151)
M 2
The most general topological line operator has the form

Wiqm)(L) = exp {irc§ (qagN) +m ng))} ) (152)
L

with the emergent Z, 1-form symmetry generated by Wy ;(L). There is a non-trivial braiding
between lines which is captured by the correlation function

<W(q1’ml)(L1)W(qz’mZ)(L2)> = €exp {171' Link(Ll, Lz)(qlmz + Jom, + emlmz)} B (153)

where Link(Lq, L,) is the linking number between the 1-cycles L; and L,. By inspecting this
topological correlation function we learn two important things. Firstly, the fact that the line
W(0,1) which is charged under the NE/l = Z, 1-form symmetry is topological signals the spon-
taneous breaking of this 1-form symmetry. Secondly, the self-braiding of the emergent 1-form
symmetry depends on the choice of £ and therefore distinguishes the two gapped phases that
are dual to the two Z, SPTs labelled by £. To summarize, the gapped phase [Z,,£]" in T¥ spon-
taneously breaks the 0-form symmetry K ) = Z, as well as the 1-form symmetry NE/O) = Zs.
There are two ways of breaking the 1-form symmetry that are distinguished by the choice of ¢
and, equivalently, by the self-braiding of the emergent 1-form symmetry generated by W(g 1).

Next, let us move on to the phases that are dual to [Z4,{] under Z, gauging of the Z,
symmetry. Under the gauging of N, a gapped phase which preserves Ky) maps to a dual
phase which also preserves K. Conversely, a phase that preserves N5y maps to a dual phase

which breaks the dual symmetry NE’D. 1-form symmetry breaking phases are topologically

ordered and it can be shown using (146) that the phase [Z4,£]", has the following quantum
double action

14
Sé%“’ﬂ =in J [ng) U dagN) +3 agN) U dagN)}
M

il
+in f [ A+ 500 ]+ 128 f AV Ud™, s
M M
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We note that this is again simply a Z,, Dijkgraaf-Witten theory with a topological action labelled
by £ mod 2 € H3(Z,,U(1)), therefore the topological line operators have the form (152) and
the topological correlations functions are given by (153). There is however an additional
subtlety due to the O-form symmetry. Summing over b( ) i imposes that da(N) = B(N). We
obtain a new term in the response theory of the form

4 M

This term signals that the emergent 1-form symmetry carries a fractional charge under K
with the fractionalization labelled by £ € Z,. Concretely this means that the Z, eigenvalue
of the Ky symmetry operator squares to exp {27if/4} on the emergent 1-form symmetry
generator.

AN 40 g

TV resp[ 1 °72 ] (155)

4.2.2 Dualizing fixed-point Hamiltonians

We now describe how fixed point Hamiltonians in each gapped phase transform under gauging
Zy C Zy4. The fixed-point Hamiltonians have the form (131) with n = 4, p € {1,2,4} and
{ € Z,. The dual Hamiltonians after gauging Z, C Z, can be directly obtained by noting that
the bond algebra of Z, symmetric quantum systems (57) transforms into an isomorphic bond
algebra in (79). Using this bond algebra isomorphsim, any Z, symmetric Hamiltonian can be
mapped to its dual counterpart under the partial gauging.

Under the bond-algebra isomorphism, the fully symmetry breaking fixed point Hamiltonian

1
Hiz01 == Dl ZyeZaie TH ] (156)
(S

maps into the dual Hamiltonian

1 1— iai(e) i 1+io? () .
- - _ (+)
H oy =5 2. O tHe|= Ze:oepe , (157)

e

where P = (1 + o2 /2. This Hamiltonian has two ground states

GS); = Q) loZ =1) ® |o% =1),

s(e) t(e))

(158)
Gs); = Q) loZ =1) ® 0% =|),

which spontaneously break the Z, 0-form symmetry (80) and preserve the Z, 1-form symmetry
(81). Similarly, the fixed point Hamiltonian describing partial symmetry breaking from Z, to

Z,
2mil 1
[Z E] X { B }—5 s(e) t(e)+Hc (159)
e

eCOHex,

maps into the dual Hamiltonian

: 1+io* 1—io*
il s(e) t(e)
”Hvzevz— A, exp{ — [1— o? — o® . o% .. (160)
[2;] Z v 4 Z /2 € /2 ; s(e) 7 t(e)

eCJHex,

The ground state properties of this Hamiltonian can be obtained by first, minimizing the term
ai(e) O"tz(e) by setting o, = +£1. This amounts to studying the model in either of the two super-
selection sectors that break the Z, 0-form symmetry

414
iz, 0|y = — DA exp {7(1 —02)} : (161)
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We note that this projected Hamiltonian corresponds to the Z, Toric code and double semion
topological order for £ = 0 and £ = 1 respectively [69,135]. We thus conclude that upon
partial gauging of the phase labelled as [Z,,{], the dual Hamiltonian realizes 200(M2)+1(Mz)
ground states such that the contributions of 2202) and 2012) are due to 0-form and 1-form
symmetry breaking respectively. Lastly, as was demonstrated by Levin and Gu [69], £ can be
diagnosed by the self-braiding of the emergent topological line operator in the ground state
subspace. Finally, we describe the duality of the fixed-point Hamiltonian [Z,, £]. For simplicity,
we restrict to the case £ = 0, in which case the fixed-point Hamiltonian has the form

1
Hiz,00 == >olx, +x1]. (162)

Under the bond-algebra isomorphism, (162) maps into the dual Hamiltonian

1+A
H o =—Za\’f[ > ] (163)

\Y

which realizes ground states which are disordered product state in the vertex degrees of free-
dom while the edge degrees of freedom realize the Toric code or Z, topological order ground
state. There are a total of 221 ground states labelled by elements in a € H'(M, Z,). Explic-
itly, the ground states have the form

1+A
6sla) = @0 =) @ | =5 |la) a64)
where |a) is a reference state in the o basis such that
Wla) =(-1)Pla),  wn =] Joz. (165)

ecy

Such ground states preserve Ky = Z, and spontaneously break NE/l) = Z,. Therefore, the
symmetry breaking transition between the Z, symmetric and fully symmetry broken phases
realized by the minimal model H;z, o] + H(z, 0] maps to the dual model HE/Z4,O]V + Hf/zl,o]v’
which realizes a topological deconfined transition between a Z, topological order (Toric code)
and a Z, () symmetry broken phase. While the Z, 0-form and 1-form symmetry groups appear
independent, they are related via the mixed anomaly, which is responsible for the direct uncon-
ventional transition between these two phases. In fact, the phase diagram of the anomalous
[Zs,(0), Z2,(1y]¢ symmetric spin model after partial gauging realizes many interesting uncon-
ventional transitions that can be understood by studying the more conventional transitions
realized in the phase diagram of the Z, symmetric spin model.

5 Phase diagrams and dualities ind = 3

In this section, we extend our analysis in Sec. 4 to the case of three-dimensional space. For
the group G = Z,,, we describe how gapped phases realized in G-symmetric spin models are
mapped under dualities related to gauging either the full group G or a subgroup thereof. As in
Sec. 4, we restrict ourselves to short range entangled gapped phases. In three dimensions, such
phases are enumerated by tuples [H, ], where H is a subgroup of G and v € H*(H,U(1)). In a
gapped phase labelled by [H, v], the subgroup H remains unbroken in the |G/H| dimensional
ground-state manifold and each ground state realizes an H SPT labelled by ».
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It suffices to look at the simplest non-trivial case to illustrate the general features of
how phases map under such dualities. Therefore, in what follows, we consider models with

G(o) =7, ©) 0-form symmetry and relate them to models with 2-form dual symmetries. For

G(o) =17, 0y there are no non-trivial SPT phases in three dimensions since H*(Z 4 U(1)) is
trivial. This simplification allows us to limit the subsequent analysis to topologically trivial
gapped phases labelled by their symmetry breaking pattern. Such phases can be described by

Hamiltonians

_ IS 1IN0 S
Hip 1= =5 DX =2 D 20 2 +He., (166)
\ S

p =1,2,4. For a given p, the Hamiltonian ’H[Z ] has gapped ground states that are 4/p-fold
P
degenerate. The global O-form Z, symmetry is broken down to Z,, symmetry. This follows

from the fact that operators X\‘,1 /P and Z f(e) commute with each other and degenerate ground

states are characterized by the expectation value (Z ;e) V4 t_(f )) = 1. More generally one consider
a superposition of Hamiltonians
HUAN =D, A Hyy 5. (167)
2
p

A, € R, which can access all three gapped phases and transitions between them.

5.1 Gauging finite Abelian symmetry

As described in Sec. 2 and Sec. 3, upon gauging a Z (o) symmetry in d = 3, there is a Z, (y)
symmetry in the dual gauged model. Here we describe the mapping of short range entangled
phases under such a duality, which is summarized in Table 3. The ground state properties
of Hamiltonians in a gapped phase labelled as [Z, ] are captured by the topological partition
functions

Z n
zPla = B0 (168)

The dual partition function is obtained by inserting (168) in (85), which delivers

(z,lv 1 1 1 27i
B D Y SR SR CE D " ol TN B
a,€HY(M,Z,) a;€HY(M,Z,) palecl(M,Zp) P Jm
b,€C*(M,Z,)

The Z, 2-form symmetry is generated by exp {i 56}/ a; } In the last equality in (169), we have

used the quantum double formulation in terms of 1 and 2-cochains a; € C!(M,Z,) and
b, € C%(M,Z,) respectively. Summing over b, gives back the second equality. The merit
of the quantum double description is that it makes an emergent 1-form symmetry in [Zp]v
for p # 1 manifest. More precisely, in this formulation there are topological line and surface

operators
W, =exp {iqj( al} , Tl = exp {imj( bz} , (170)
L s

which have the correlation functions [131,132,136]

o )
2miLink(L , S )} (o), (171)

W ;22)--->=exp{ ¢
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Table 3: Summary of dualities between Z, © -symmetric models with short range en-
tangled (SRE) ground states (GS) and Z, 42) -symmetric models with gapped ground
states in d = 3 space dimensions. The SRE ground states of Z 4,(0)-symmetric Hamil-
tonians are described by the subgroup [Zp,(O)] with p = 1,2,4 which denotes the
symmetry preserved by the 4/p-fold degenerate ground states. We refer to the case
p = 1 as spontaneously symmetry broken (SSB), while the case of p = 2 is referred
to as partial symmetry broken (PSB). In space dimension d = 3, there are no SPT
phases protected by Z, 4(0) Symmetry. The dual models are obtained by gauging the
Z4,o) global symmetry. On the dual side, a phase preserving Z, (o) symmetry maps
to a phase preserving Zy,, (2) C Z4,(2) subgroup. In the topologically ordered ground
states (p = 2,4), there is an emergent Z, () symmetry. We refer by “Triv.” to trivial
symmetry group.

Z 4(0) SRE Phases Dual Z 4(2) Gapped Phases
Symmetry of GS Description Symmetry of GS Description
[Z4,(0):| Symmetry preserving Triv. Emergent Z, M
[Zs,0)] PSB [Z3,2)] Emergent Z, )
Triv. SSB [Z4,(2):| Symmetry preserving

where - - - denotes any other operators in the correlation function and we have assumed L and

S® do not link with any other operators in ---. In other words, Tsw is charged under the
2-form symmetry. Additionally since Ts(2) =1 and Ty is topological therefore T generates

an emergent 1-form symmetry. The existence of a topological charged operator signals that
the Z, (2) Symmetry is broken down to Z, Ip(2)
The fixed point Hamiltonians (166) are mapped to the following dual Hamiltonians under

the isomorphism between the bond algebras (31) and (40)

— 4
iy o = — D AP 7P +He. (172)
\" e
In the spin model the dual 2-form symmetry Z, @ is generated by
w, = JzeD, (173)
ecL

with L being any 1-cycle [recall Eq. (42)] and o(e, L) = +1 denotes the orientation of the edge

e relative to L. In the ground state manifold, Af,/ P have a unit expectation value. This defines
a topological surface operators in the low energy description. In comparison with (170), an
operator defined on 2-cycles S, a 2-cycle on the dual latice may be defined as

TSTZ) .= l_[ Ai/ pxLink(S@ v) ) (174)

v

Such an operator is charged under the 2-form symmetry. This is to say that 2-form Z, ()
symmetry is spontaneously broken down to Zy, (2).

43


https://scipost.org
https://scipost.org/SciPostPhys.18.3.097

e SciPost Phys. 18, 097 (2025)

When p = 1, the first term in (172) vanishes. The Hamiltonian then describes a “2-form
paramagnet” with a non-degenerate and gapped ground state. This is nothing but the Higgs
phase of the 1-form gauge theory [137]. This phase preserves the dual 2-form symmetry. As
we shall see, when p = 2,4, the dual 2-form symmetry is spontaneously broken because of
which the ground state manifold supports topological order.

When p = 2,4, the ground state of Hamiltonian (172) is obtained by simultaneously min-
imizing Z° and Af',/ P terms. Recall that the Hilbert space on which the Hamiltonian acts is

constrained by the condition
[ [z20 =1, (175)

eCL

where L is any contractible 1-cycle which is required such that the dimension of Hilbert space
is 4|M3’A|, the same as the dimension of pre-gauged Hilbert space. Minimizing the second term
restricts the ground state manifold to the subspace where Z. = +1 is satisfied. Let us denote
this restricted subspace by Y/

rest.> Le.,

View = Vet

rest.

(176)

zP=1"

On the Hilbert space Yy operators Af,/ Pand []

rest.’
4/p
Vrest. 2

ecr Zo act as Zp-valued variables. The con-

figurations in can be spanned by eigenstates |a) of Z, such that

2mia,

Z.|a) :exp{ }|a), aeCl(Mg,A,Zp). 77
The constraint (175) imposes that, in fact a € Z* (M3,Zp), i.e.,, da = 0. In turn, the the

operator A?,/ P acts on a configuration a as
4 —
A¥Pla) =|a +dsM), (178)

where 6V e CO(MB,ZP). Hence, the constraint A?,/ P = +1 together with Eq. (175) is satisfied
on the states

1
la]) = ——— la+dA), [al€ H'(Ms,Z,), (179)
|CO (MB: Zp)| AGCO(ZME;,ZP) ’ ?

where the states |[a]) are labeled by the cohomology group H 1(MB,ZP), i.e., set of all Z,-
valued 1-cycles [a € Z 1(MS,ZP)] up to 1-coboundaries [dA € Z 1(M:,),Zp)]. The topological
ground state degeneracy is then given by the cardinality of H'(Mj, Zp), i-e.,

[H (M3, Z,)| = p> M), (180)

where b,(M,) is the second Betti number of 3-manifold M,. The corresponding topological
order supported by the ground state manifold is the deconfined phase of the d = 3 Z, topolog-
ical gauge theory or equivalently, the Z, d = 3 Toric code. Table 3 gives a summary of phases
described by fixed-point Hamiltonians in d = 3 and their respective duals under gauging Z
symmetry.

4,(0)

5.2 Gauging finite Abelian sub-symmetry

We now describe the dualities related to gauging the Z () C Z4 () symmetry. We will focus on
Hamiltonians dual to the fixed-point Hamiltonians (166) for p = 1, 2,4. The phases described
by these Hamiltonians and their respective duals are summarized in Table 4. As described in
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Table 4: Summary of dualities between Z, (o)-symmetric models with SRE ground

states and [Zz 0y Z3 (2)]6 symmetric models with gapped ground states in d = 3
space dimensions. The SRE ground states of Z, 4,0) -symmetric Hamiltonians are de-
scribed by the subgroup [Z )] with p = 1,2,4 which denotes the symmetry pre-
served by the 4/p-fold degenerate ground states. We refer to the case p = 1 as
spontaneously symmetry broken (SSB), while the case of p = 2 is referred to as par-
tial symmetry broken (PSB). In space dimension d = 3, there are no SPT phases pro-
tected by Z 4,(0) Symmetry. The dual models are obtained by gauging the Z (o) C Z4 (¢
subgroup of the global symmetry. On the dual side, a phase preserving the Z, (o) sub-
group is mapped to a phase where dual Zz,(z) symmetry is broken, and the converse
also holds. The remaining Z, () global symmetry is either broken or preserved on
both sides of the duality. There is a mixed anomaly between the Z, .., dual symmetry
and the remaining Z, (o) global symmetry. Therefore, on the dual 51de a gapped phase

that is symmetric under [ZZ,(O): Zz,(z)] cannot be realized. Whenp =2,4,Z, @ dual

symmetry is broken in the ground state manifold which supports an emergent Z

symmetry. We refer by “Triv.” to trivial symmetry group. 0
Z 4/(0) SRE Phases Dual [ZZ,(O): Zz’(z)]e Gapped Phases
Symmetry of GS Description Symmetry of GS Description
[Z4,(O):| Symmetry preserving [ZZ,(O)] Emergent Zz,(l)
[Zz,(o)] PSB Triv. Emergent ZZ,(l) + SSB
Triv. SSB [Z4,9)] PSB

Sec. 3.2, the corresponding dual models are symmetric under a 2-form dual symmetry Z, (5
and a residual O-form symmetry Z, ). Using the isomorphism between the bond algebras
(31) and (79), we identify the generator of the remaining 0-form symmetry to be (recall Eq.
(80))

u=[lu,. w=0[PP+A,rO], (181)
\"
while the dual 2-form symmetry generator is (recall Eq. (81))
1
— (e,L) —
Wy = ]_!wg D w=2 (1-io%,) o2 (1+i07,) - (182)
eC

The fixed-point Hamiltonian (166) describes a phase where Z, ) symmetry is spontaneously
broken down to Z, (o) subgroup.

When p = 1, under the isomorphism between the bond algebras (31) and (79), the fixed
point Hamiltonian (166) is mapped to

1+0*
HYy o = Zo S(e) t(e’ (183)

There are two ground states of this Hamiltonian given by

GS); = Q) loZ =1) ® |o% =1),

(184)
GS); = Q) loZ =1) ® |0 =]).
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The two-dimensional ground state manifold is separated from excited states by a finite gap.
Since o = 1 in the ground states, the Z, ;) dual symmetry is unbroken in the ground state
manifold. In contrast, the twofold degeneracy of the ground states is due to spontaneous
breaking of the Z, oy symmetry that survives after gauging. One verifies that the two ground
states are mapped to each other under the generator of Z, ) symmetry, i.e.,

U|GS); =IGS);,  UIGS), =|GS);. (185)

When p = 2, under the isomorphism between the bond algebras (31) and (79), the fixed
point Hamiltonian (166) is mapped to

Vv _
Hiz,op = DAY, Tee) Te) - (186)
\% e

The degrees of freedom on vertices and on edges are decoupled. The ground state properties
can be obtained by minimizing each term separately. The second term acts only on the vertices
and imposes the constraint a':(e) af(e) = +1 which has two solutions o7 = £1. Therefore, the
vertex degrees of freedom are ferromagnetically ordered. The two ground states on the vertices
are

|GSvrt>T = ® |O-§ :T> >

(187)
1GSyr)y = Q) 0% =1).

The Z, (o) symmetry is clearly spontaneously broken by the ferromagnetically ordered ground
states. The first term acts only on the edge degrees of freedom. The bond algebra (79) requires

the condition
[[ozi=1 (188)

eCL

to hold on any contractible 1-cycle. Configurations of edge degrees of freedom that satisfy this
condition are one-to-one with 1-cocycles |b) such that b € Z! (Mj, Z,)

o%|b) = (—1)"|b). (189)
In turn, the configuration |b) is mapped to
A lb)=|b+ds™), (190)

under the action of A ,, where 6" € CO(M3, 7). Hence, the edge degrees of freedom support
the ground states

_ 1 1
59 = oz Aec%,%)'b +dA),  [bleH(Ms,Zy), (191)

where the states |[b]) are labeled by the cohomology group H'(Ms,Z,). The topological
ground state degeneracy is then given by the cardinality of H*(Ms, Z,), i.e.,

|HY (M3, Zy)| = 201(Ms) = 2b2(M5) (192)

where bp(Mg) is the p™ Betti number of 3-manifold M,. This is the ground state of three-
dimensional Toric code, on which Z; ) symmetry is spontaneously broken. The correspond-
ing order parameter is any products of A, which is supported on 2-cycles and has a non-
vanishing/topological ground state expectation value. Together the 2°2(M3)+1 dimensional to-
tal ground state manifold is spanned by the states

{IGSyre)r ® I[b]), IGSyr), ® I[b]) } - (193)
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When p = 4, under the isomorphism between the bond algebras (31) and (79), the fixed
point Hamiltonian (166) is mapped to

1+A
HE/Z4,O]V=—ZO'§ > (194)
\%

The ground state of Hamiltonian (194) is similar to that of Hamiltonian (186). Using the
same argument we observe that the condition A, = +1 must be satisfied and the ground state
of three-dimensional Toric code is stabilized on the edge degrees of freedom. However, as
opposed to Hamiltonian (186), there is no conventional order supported by the ground state
and the vertex degrees of freedom realize a paramagnet. Therefore, the ground state manifold
is spanned by the states

(@IGC‘ =—>))®I[b]), [ble H' (M, Z,), (195)

with the total degeneracy 2°2(Ms) that is only due to the topological order supported on the
edges. The dual Z, () symmetry is spontaneously broken while the remaining Z, ) symmetry
is preserved.

6 Gauging 1-form (sub) symmetry

In this section, we shift our attention to describing the gauging of 1-form finite Abelian (sub)-
symmetries in quantum spin models. We will closely follow the approach in Sec. 2 and Sec. 3
adapted to higher-form symmetries. Higher-form symmetries have been useful in providing
non-perturbative constraints that help solve the phase diagrams of quantum gauge theories
[55,56,67,137]. The goal of this section is to study how the phase diagrams of 1-form Z,
symmetric quantum spin models map under a duality related to gauging either the full or
partial Z,, 1-form symmetry.

6.1 Gauging finite Abelian 1-form symmetry

Let us consider a quantum spin system defined on a d = 2 or 3 dimensional oriented lattice
Mg . For concreteness, we work with a square and cubic lattice in d = 2 and 3 respectively,
with the orientation convention as in Fig. 13. However, the analysis in this section can be gen-
eralized straightforwardly to any other lattice and dimension. We are interested in describing
spin systems with 1-form symmetries, i.e., those that are implemented by co-dimension-2 op-
erators in spacetime and act on line operators [4], or more generally on operators defined on
loci of dimension greater than one [47]. In the Hamiltonian presentation of a quantum spin
model, 1-form symmetries are generated by co-dimension-1 operators in space that commute
with the Hamiltonian.

Let us restrict to Z, 1-form symmetries, for which we consider a Hilbert space V to be the
tensor product of Hilbert spaces V), assigned to each edge of the square or cubic lattice

v=QV., V.=cC" (196)
e

The algebra of operators acting on V, is generated by X, and Z, which satisfy the Z, clock
and shift algebra analogous to (6). The 1-form symmetry in d dimensions is generated by the
following operators defined on a closed and oriented (d — 1)-dimensional sub-lattice S(4—1-V
of the dual lattice “n
—1),v
US4 V)= [ xgeles™), (197)

eeS(d-1),v
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@d=2. (b) d =3.

Figure 13: We pick the orientation convention in which an edge along the
u € {x,y,z} direction is oriented in the positive u direction. In 3 dimensions, the
plaquettes in the xy, yz and zx planes are oriented in the positive z,x and y direc-
tions respectively.

\ \ \
7 7 7
f SV
A XJ\ ‘ XJ\ A
X
\ \ \
Lgwn —7 —7
Xt X1
g g g g
\ \ \
7 7 7
(ad=2.

Figure 14: The figure depicts a 1-form symmetry generator in (197) ind =2 and 3
dimensions defined on the line and surface S(V" and SV respectively.

where o(e, S~V denotes the orientation of e with respect to the orientation (outward nor-
mal) of S~V (see Fig. 14). The 1-form symmetry operators satisfy Z, composition rules
when defined on the same line or surface such that

Uy (S x Uy, (S DV) =y 10 (S9Y), g1,80 €7y, (198)

while more generally two co-dimension-1 operators fuse at codimension-2 junctions according
to the group composition in Z,, (see Fig. 15). The algebra of operators that commute with any
such network of symmetry defects is the bond algebra

Bz,,,(V) = <Xe,Bp ‘U(S(d_l)’v) =1, Ve, p> , (199)
where B, are operators defined on plaquettes or 2-cells of the lattice and have the form

B, =] [zot®. (200)

ecp

The product is over the edges on the boundary of p and o(e, p) is the orientation of e with
respect to the orientation of p. This operator may be familiar from the Toric code Hamilto-
nian [135] for the case of n = 2. See Fig. 16 for the explicit form of the B, operators in terms
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(@) d=2. (b) d =3.

Figure 15: The figure depicts the fusion of 1-form symmetry generators in d = 2
and 3 dimensions. Two codimension-1 surface operators corresponding to g;, g, € G
(in red an blue respectively) fuse to a codimension-1 surface operator corresponding
to g; + g, mod n (in purple) via a co-dimension-2 junction operator (depicted in
yellow).
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Figure 16: The figure depicts the plaquette operator B, in (200) in (a) d = 2 dimen-
sions and (b) d = 3 dimensions for the three types of plaquettes in the xy, yz and
zx planes depicted in pink, gray and green respectively.

of the Z, clock and shift operators. The bond algebra (199) is defined on a Hilbert space
with constraints on contractible (d — 1)-cycles on the dual lattice labelled as S@=1V_ guch
constraints are important for two reasons: (i) they ensure that the bond algebra isomorphism
related to gauging the Z,, () symmetry is invertible and (ii) after gauging Z,, (1), (199) maps to
a bond algebra which has a trivial background of symmetry twist defects of the dual symmetry.
Instead if one relaxes the constraints, and imposes some other fixed but non-trivial assignment
of symmetry eigenvalues of U/(S{4~1), after gauging Zy (1) this becomes a non-trivial back-
ground of symmetry twist defects of the dual symmetry.

Now, we gauge the Z, 1-form symmetry by introducing Z, gauge degrees of freedom on
the plaquettes of the lattice. We thus obtain the extended Hilbert space

Veu= Q) V. @V, = spanc { 1b,a) | be C*(My,2,), a€C' My, Z)}, (20D
e 3
such that the clock and shift operators act on the basis states as

ZJb,a)=w%|b,a), X]b,a) =|b,a+5®),

b (202)
Zylb,a) =w,flb,a),  X,lb,a)=|b+5P,a).
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Here, 6 is a Z,-valued 2-cochain such that

[6®], =65, (203)

and 6 was introduced in (25). Additionally, one needs to impose gauge invariance via the
Gauss operators (see Fig. 17)

Ge=X.AL,  AL=]]xctem, (204)

pDe

where the product is over plaquettes that contain the edge e on their boundary and o(e, p) =1
or —1 depending on whether the boundary of p is oriented along or against the edge e.
The most general Gauss operator can be parametrized by a 1-cochain A € C 1(Md’ A Zy) as

glal=11. gﬁ ¢. Such a Gauss operator implements the gauge transformation
G[A]:|b,a) — |b+dA,a+ A), (205)

where (dA), = Zecpo(e, p)A.. We note that the plaquette degrees of freedom Z, and X,
embody a Z, 2-form gauge field and “electric field” respectively, while the edge degrees of
freedom embody the Z,, 1-form charged matter. The physical space of states and operators are
invariant under the action of G[A] forall A € C 1(Md’ r>Zy).

In order to construct the gauged bond algebra, we need to consider operators that are
gauge invariant. In particular, the operators B, in the bond algebra (199) are not gauge
invariant and need to be minimally coupled to the 2-form gauge field Z, as B, — BPZ";.
The other generator, X, of (199) is gauge invariant as is and therefore the bond algebra after
gauging the Z, 1-form symmetry is

~ " _ ! ! .10(p.S@)
By Ve = (KB 2 (UGS D) 21,6, 21, [T] [B,2)]™ "2 1,ve,p), (206)

pcsS@

where S® is any contractible 2-cycle and we impose the constraint

[1[82]"" -1, (207)

pcS®@

. . - . @ .
since this operator is in the image of ]_[pcs(z) Bg(p’s ) = 1. As before, the Gauss constraints
can be removed via a unitary transformation that makes the Gauss operators local (on the
edge degrees of freedom). More precisely, the unitary acts as follows

UX., U =XA,, UZU' =2,

. . (208)
UZ,U'=2,B,, UX,U'=X

p-

Importantly, under the unitary action, the Gauss operator transforms as UG.,U" = X, and
therefore effectively freezes out the edge degrees of freedom. After the unitary transformation,
the bond algebra is represented on the Hilbert space built up of only the plaquette degrees of
freedom and has the form

%/Zn’(l)(vplaq) = U%Zn)(l)(vext) UT
@1y | @y ! 209
l_[ A‘e’(e,s )=1, l_[ Z;(p,S Y Vo), (209)

eeS(d-1),v pcsS@

= (Ae:Z;
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Figure 17: The figure depicts the Gauss operator G, associated to different kinds of
edges for (a) d = 2 and (b) d = 3 respectively.

where Vyjaq = ®,V), C Vey,- Note that the constraint

[T a0 =1, (210)

eeS(d-1),v

holds, unless we are working in a background of symmetry twist defects. We will hence-
forth leave this constraint implicit for brevity. Next, we implement a final isomorphism
to bring (209) into a conventient form. This isomorphism comprises (i) the rotation
(Z,,X,) = (X ;1 ,Z,) and (ii) the dualization of the square or cubic lattices. Recall that the
plaquettes of a square or cubic lattices become the vertices or edges of the dual square or cubic
lattices, respectively. Implementing this isomorphism we obtain the dual bond algebra, which
in d = 2 dimensions is

BY'™ (Vaua) = (Zy) 2l Xu [VeV)  (d=2). (211)

This is nothing but the bond algebra of Z,, 0-form symmetric operators on the dual square lat-
tice. Note that there is no constraint on contractible cycles S, since there are no contractible
cycles on a closed two dimensional manifold. Furthermore, since we already discussed the
mapping of sectors and the phases between O-form symmetric and 1-form symmetric alge-
bras/models in detail in Sec. 3 and Sec. 4, we will focus on the case of d = 3 in the remainder
of this section.

For d = 3, the dual bond algebra has the form

Ble:?(ll)(Vdual) = (Bp Xe |M(S(2)’V) ; 1, Ve, p> (d=3), (212)

where edge operators in the x-direction in the original bond algebra dualize to plaquette op-
erators in the yz plane, and so on. The converse also holds as illustrated in Fig. 18. This is
essentially a generalization of the Kramers-Wannier duality to 1-form Z,, symmetric models.

Just like the usual Kramers-Wannier duality, the symmetry sectors, i.e., symmetry
eigenspaces and symmetry twisted boundary conditions map non-trivially under this automor-
phism of the bond algebra. Let us consider the following symmetry twisted partition function
for a theory T with Z, (1) symmetry on a manifold M = M3 x S ! coupled to a background
gauge field A, € H*(M, Z,,)

by(Ms3)
Z:[A]= 258, 1 =Tr | | | th, (=) exp{-pH;} | . (213)
j=1

This equation needs some unpacking. Firstly, the gauge field A, can be labelled by its
holonomies around non-contractible cycles in H,(M,Z), which, using the Kiinneth theorem,
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Figure 18: The figure depicts the Gauss operator G, associated to different kinds of
edges for (a) d = 2 and (b) d = 3 respectively.

Hy(S' x My, Z) = Hy(M3, Z) ® H1 (M3, Z),
Hy(M3,Z) = Spany, {25-2)} ) (214)
H,(M5,Z) = Span,, {Zgl)} .

Therefore, we can label A, = (g,h) where § = (g,...,gy) and h = (hy,...,hy) and
N = bl(M3) = b2(M3), such that

n® §1xx)

J
With the purpose of tracking how the symmetry sectors map under gauging Z, (1), we define

a projector P, (=), that projects onto the sub-Hilbert space that transforms in the a repre-
sentation of the 1-form symmetry operator defined on the homology 2-cycle ().

Pz =1 > w0 Uy (5@). (216)
n

Using (216), we may define a symmetry character y[d,g] as the thermal trace in a definite

eigensector a; of the 1-form symmetry and symmetry twisted boundary condition g; on ZE.Z)
as
by(Ms)
. 2
zel@,gl=Tr | ] P (5P) exp{—pHz} | - (217)

j=1
In the canonical approach, the following operator identities hold in this symmetry sector

ha. )
U(E) =wn”,  TED) =[] By=wy. (218)
pCZE.Z)
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Table 5: Summary of Kramers-Wannier duality between gapped ground states of

z, (1)-symmetric models in d = 3 space dimensions. We consider gapped ground
] with

E ETp(1)

4/p,(2) Symmetry which is generated

by closed surface loop operators. The dual models are obtained by gauging the Z, (o)

global symmetry. On the dual side, a phase preserving Z, ;) symmetry maps to a

states of Z, ,,-symmetric Hamiltonians that preserve the subgroup [Z
p = 1,2,4. Such phases have an emergent Z

phase preserving Z, /p (1) € Zg1) subgroup with an emergent Zp @) symmetry. We
refer by “Triv.” to trivial symmetry group.
Z (1) Gapped Phases Dual Z a() Gapped Phases
Symmetry of GS Description Symmetry of GS Description
[Z4’(1):| Symmetry preserving Triv. Emergent Z, @
[ZZ,(I)] Emergent Zz,(z) [Zz,(l)] Emergent Zz,(z)
Triv. Emergent Z 4.(2) [Z4,(1):| Symmetry preserving
Since gauging Z, (1) has the effect
gauging Ly,
Up(P) ——5 ThE?), 219)
the symmetry sectors in the original and gauged theory ¥ and T map as
x<[ad,8] = x<v[8, al. (220)

This mapping of sectors can also be derived directly from topological gauging as described
in Sec. 3. There, we recall that the partition function of the gauged theory coupled to a
background Z, (;) gauge field A\z/ has the form

1 .
ZSV[A\Z/] = WZES[AZ]eXP {I,J< as UA\Z/} . (221)
as M

6.1.1 Phase diagrams and the 1-form Kramers-Wannier duality ind = 3

The automorphism of the bond algebra of Z, ;) symmetric operators under gauging of the
Zn (1) Symmetry imposes strong constraints on the phase diagram. In particular, the spectrum
of a Hamiltonian 7 in a symmetry sector (&, g) is the same as the spectrum of a dual Hamil-
tonian " obtained by acting with the bond-algebra automorphism on A, in the symmetry
sector (g,d). This has consequences for the both the Z,, () symmetric gapped phases as well
as the phase transitions.

Let us first focus on the gapped phase where the Z, 1-form symmetry is spontaneously
broken to a Z, subgroup in the ground state. The fixed point Hamiltonian for such a gapped
phase is

1 1
Hizy=—3 D X =5 D B +He (222)
e )

Clearly all the operators in the Hamiltonian commute with one another and therefore the
ground state(s) would be in the shared eigenvalue 1 subspace of all the operators appearing

in (222). First, we may restrict to the subspace of Vr(ens/f ) ¢ V on which Xe /P = 1 is satisfied.
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This effectively reduces the edge Hilbert space dimension to n/p. In this restricted Hilbert
space, the Hamiltonian has the form

H[Zp] V(n/p) =

rest.

1
il P
5 D Bb+Hec., (223)
p
which is an operator of order n/p, i.e.,
n/p
p —
(3] ‘Vgs/tm =1 (224)

The Hamiltonian (223) in fact describes a Z,;, C Z, topological gauge theory. One manifes-
tation of this is that the Hamiltonian has (n/ p)bZ(M3) ground states, which are locally indistin-
guishable but mapped into each other under the action of topological line or surface operators.
This can be seen by inspecting the ground state degeneracy on a spatial manifold M5 with
non-trivial topology.!® First note that the states (or spin configurations) are one-to-one with
1-cochains

la), aect (Mg,Zn/p) ) (225)

where a is nothing but an assignment of Z
the plaquette operators are

n/p Values on each edge (1-simplex). The action of

da
p _
Bfla) = wn/gla) . (226)

Therefore the subspace of states that satisfy Bg la) = |a) correspond to 1-cochains that satisfy

da = 0. In other words, states such that Bf; = 1 are labeled by 1-cocycles a € Z! (Mg,Zn /p).
Furthermore, we are working in a restricted space (see (212)) where

USAVy=1, (227)

where L{(S\(IZ)’V) is the 1-form symmetry generator defined on a minimal two sphere on the
dual lattice that links with the vertex v. The action of I/ (S\(Iz)’v) on a state |a) without such a
constraint is

U(SPY)]a) = la+ds™), (228)

where §) e ¢° (MB,ZH /p). Hence a general product of U (S\(/z),v) implements a gauge trans-
formation as N
[ [u (@) |a) =la+da). (229)
\%

States satisfying both Bg =1and U (S\(lz),v) = 1 are thus labeled by cohomology classes
H'(M3,Zy,) = Z' (M3, Zy,) /B (M3, Zy,). In particular

1
[al) = 7 la+da),  [a]l€H'(Ms5,Zy,). (230)
|C0 (MB: Zn/p)| AECO(MSsZn/p)
The ground-state degeneracy is thus
[H' (M5, Z,)| = (n/p)"1 ) = (n/p)20%). (231)

The last equality comes from H!(Ms, Znjp) = H?(Ms, Zyp) for 3-manifolds. Note that dA cor-
respond to contractible loop configurations in the dual lattice with Z, ;, branching rules while
a+dA are loop configurations that wrap around non-contractible cycles according to the coho-
mology class of a. In other words, the states (230) are nothing but string-net condensates. This

13For simplicity, we assume M, has no torsion.
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condensate of strings is another manifestation of spontaneous breaking of 1-form symmetry.
The ground-state degeneracy is due to existence of line operators for each y € H;(Ms,Z,,)
and surface operators for each =® € H;(Mj;,Z, /p) that commute with the Hamiltonian but
not each other [138]. Concretely, these line operators are

w) =] [z, (232)

ey

while the surface operators are the 1-form symmetry generators (197) defined on (®). These
operators generate an emergent 2-form symmetry and are charged under the Z,,, 1-form
symmetry. This signals a breaking of Z,;, 1-form symmetry and the ground state of (222)
only preserves Z, C Z,, spontaneously breaking the remaining group.
Under Z, 1-form Kramers-Wannier duality, one obtains a dual Hamiltonian to (222) which
Is 1 1 1
HE/ZP]V - _E ZXg o 5 ZB;/p o 5 ZU(S\(IZ)’V) +H.c = H[Zn/p] : (233)
e p v

We therefore learn that under such a duality,

. gauging Zn,(l) .
[Zy/p (1) symmetry breaking] «———— [Z,, () symmetry breaking]. (234)

The phases described by fixed-point Hamiltonians (222) and their duals (233) are summarized
in Table 5whenn=4and p =1,2,4.

Another interesting application of dualities is to the study of phase transitions. Dualities
are particularly useful when there are multiple symmetry breaking phases. In such cases,
dualities between different kinds of transitions can be used constrain the universality classes
of transitions, assuming knowledge about a subset of transitions. For instance, consider a
theory with Z, = Z, ,, , (1), 1-form symmetry with p;,p,,ps prime numbers. Then the 1-
form Kramer’s Wannier duality predicts:

1. The 1-form symmetry breaking transition between the fully symmetric phase [Z,, ,, ;. 1)]
and the partial symmetry broken phase [Z, p.(1)] is dual to the transition between the
fully-symmetry broken phase [Z; (1] and the partial symmetry broken phase [Z,, 1)].
There are two additional dualities obtained by cyclic permutations of (1,2, 3). Note that
these are dualities between transitions involving 341 dimensional topological orders and
are analogous to anyon condensation type transitions in 2 + 1 dimensional topological
orders [114,115,139].

2. The deconfined topological transitions between the partial symmetry broken phases
[Zy, p, 1] and [Zp,,, )] is dual to the deconfined topological transition between
[Z,,1)] and [Z,, (1)]. There are two additional dualities obtained by cyclic permuta-
tions of (1,2,3).

3. The 1-form partial symmetry breaking transition between the phases [Z, , (1)] and
[Z,, 1)] is dual to a similar transition between [Z,, ,, 1)] and [Z,, 1)]. Again, there
are two additional dualities obtained by cyclic permutations of (1,2, 3).

4. Additionally there are several transitions that are self-dual under gauging Z,, (1), These
are:

(a) The symmetry breaking transitions between the fully symmetry broken and the

fully symmetric phases [Z, (1)] and [Z, ,, 5, (1)] respectively.
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(b) The deconfined topological transition between [Z, , )] and [Z,, 1)]. Again,
there are two additional dualities obtained by cyclic permutations of (1,2, 3).
Since there are no 't Hooft anomalies constraining the phase diagram, one would
expect such transitions to be accidental.

In principle there are several other dualities related to partial gauging of some subgroup of Z,,.
We will describe these in some detail in the next section. Such dualities are powerful as they
constrain the spectra of transitions involving combinations of topologically ordered phases in
3 + 1 dimensions, a subject about which little is known.

The self-dual transitions are particularly interesting from a symmetry point of view. It was
recently appreciated [25], that theories that are self-dual under gauging a higher-form sym-
metry host non-invertible symmetries that are higher-dimensional higher-form generalizations
of the Tambara-Yamagami fusion category [140]. The simplest such self-dual Hamiltonian is
the transition between the symmetry breaking transition between the symmetric and fully
symmetry broken phases, described by the minimal Hamiltonian

1 1
H:—Eze:Xe—EZp:BP+H.C. (235)

Then it is expected that this Hamiltonian has an emergent non-invertible symmetry operator
D which acts on all of space and has the fusion rules

by(M3) n—1

DxD= [ D[t (=] (236)

j=1 g;=0

We leave a detailed study of non-invertible symmetry defects in 1-form Kramer’s Wannier self-
dual lattice models for future work.

6.2 Gauging finite Abelian 1-form sub-symmetry

In this section, we describe the gauging of a sub-symmetry of a finite Abelian 1-form symmetry.
As in earlier sections, we focus on the simplest non-trivial case, which corresponds to gauging
a Zy (1) subgroup of a Z, ;) 1-form symmetry. Our starting point is the bond algebra of Z, (1)
symmetric operators defined in (199) with n = 4.

A Z4 1y symmetry can be understood via the short exact sequence

1— N(l) = ZZ,(l) —_— Z4,(1) I K(l) = ZZ,(l) — 1. (237)

More precisely, Z,4 (1) should be understood as the second Eilenberg-Maclane space and the
short exact sequence as that between homotopy 2-types. However, we will suppress such
technicalities in our presentation. It suffices to note that such a sequence is captured by the
extension class €, € H B(Zz,(l), Zy, (1), where €, = Bock. Then a Z, (1) bundle can be expressed

as a tuple of 2-form gauge fields A(ZN) and A(ZK) which satisfy
1
a0 = Bock (41),  Bock (%) = LaAl. (238
Starting from a d + 1 dimensional theory T with Z,4 (1) symmetry, one may gauge to N,y to ob-

tain a dual theory ¥ with a symmetry group N(Vd_z) x K1) where NV = K = Z,. Furthermore,

there is a mixed anomaly between the two Z, symmetries captured by the d + 2 dimensional
invertible topological field theory

f AN U Bock(Al?). (239)
Mg
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Such an invertible field theory describes the ground state physics of a symmetry protected
topological phase of matter protected by

€
G} gg)=[Za1) Zoa2)] " - (240)

It is however crucial to emphasize that there is no physical need to associate T to a ‘bulk’. As
we will see, such a theory can well be described on an d-dimensional lattice model. Instead
the bulk or anomaly theory is a theoretical gadget to systematize our understanding of the
anomaly, which has significant non-perturbative implications for the infra-red phases/ground
states realized in TV.

Now, we describe the gauging of Z; (1) C Z, (1) on the lattice. Our starting point is the bond
algebra (199) with n = 4. In order to gauge the Z, (1) subgroup, we introduce Z, degrees of
freedom on each plaquette of the lattice. We thus obtain the extended Hilbert space

Veu= Q) Ve @V, = panc { 1b,a) | be C*(Mn,2,), a € C'MaZ9)}, 241
e p

such that
Z.|b,a) =i%|b,a), X.|b,a) =|b,a+86®),

(242
oilb,a) = (—)%lb,a),  o¥lb,a)=|b+5®,a), )

where, 5§ and 6 were introduced in (25) and (203), respectively. We impose the Gauss
constraint through the operator

Ge=X2A,, Ac=]]ox. (243)
pDe
The gauge-invariant bond algebra is obtained by minimally coupling the bond algebra (199)
as
’é/

€2
G(l,d—z)

Vext) = (Xe, By 02 | Uy (S9™DV) = 1,Upg(SP) =1,G. =1), (244)

where U (S(d_l)’v) and Ll(d_z)(S(z)) are the 1-form and d — 2-form symmetry generators
defined on contractible cycles S~V and S respectively. These take the following form

_ (d-1),v (2)
Uny (S4DV) = [T x2S, Upya(sP) = [ | Boo2 @™, (245)

ees@-1v pcs@

Importantly, there is a mixed anomaly between the 1-form and (d — 2)-form symmetry. This
mixed anomaly manifests itself in the symmetry fractionalization patterns of the two sym-
metries. More precisely, although the 1-form symmetry corresponds to the group Z, (y), it
fractionalizes into the group Z, (1) in the presence of a non-trivial background gauge field of
the (d —2)-symmetry. Conversely, the Z, (4_5) symmetry fractionalizes into the group Z, 4_)
in the presence of a non-trivial background of the Z, ;) symmetry. To see this, note that the
way background fields A, and Ay_; for the Z, (1) and Z, (4_p) symmetries appear in the bond
algebra is via the minimal coupling

B, — Bpei“AZ:P , Ay — Age™i-1e (246)

It is worth emphasizing, that A;_; . should be understood as the integral/evaluation of A;_;
on the (d — 1)-cell on the dual lattice, which is dual to e. Then one obtains the important

identities
_ 2 .
Uy (2@ D) = exp {m§ Ad_l} ,
»(d-1),v

Ug—2)(ZP) = exp {in § Az} :
»(2)
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where 2@V and 5(?) are non-contractible cycles. Having a non-trivial holonomy for A4_qor
A, on a given (d — 2)- or 2-cycle simply corresponds to imposing symmetry twisted boundary
conditions corresponding to Z; (4—o) Or Z, (1) on that cycle, respectively. This is to say that the
mixed anomaly manifest itself as the generators for Z, (4_s) or Z, (1) squaring to the operators
that detect the twisted boundary conditions for Zj (1) or Z, (4_5) Symmetries, respectively.

Next, as in Sec. 2.2, we solve the Gauss constraint by implementing a unitary transforma-
tion that localizes the Gauss operators onto the edges

UG U =x2, (248)

such that the unitary transformed Gauss constraint X g =1 can be readily solved. In the basis
(242), this unitary operator has the form

U=>|b+lda/2])(b,al, (249)
b,a

where |-] is the floor function. Note that this operator is different than the unitary operator
(74) since the coboundary operator d is inside the floor function |-]. The remaining operators
in the bond algebra transform as

UXU' =" |b+|da/2] +|d(a+5)/2],a)(b,al
b,a

=X [P} +P A],
UotU™ = (=1)%*19/2b|b a)(b, q|
b,a

1 . (250)
= 03[ -DB, + (1 + DB} ],

UozB,Ut = (—1)%*194/2hids b a) (b, al
b,a

= %G;[(l—i)Bﬁ+(1 +1)],

where Pe(i) =(1+z})/2and A, =[]
algebra (244) therefore has the form

poe Op- The unitarily transformed version of the bond

~v
B e,
(1,d—2)

_ 1 . ) _ ! ! !
= (X.[P? +PA, ] 5% [(1—DB2+(1+1)] )u(l)(s(d D)2 1, Uygogy(SP) =1, X2 =1),

(Vex) = UBg2 | Ver)U' (251)

where the constraints are on the unitary transformed versions of the contractible symmetry
operators defined in (245). The constraint X g =1 can be solved by projecting to the effective
two dimensional Hilbert space on each edge on which Xg = 1. The operators X, and Z(f
commute with Xg and therefore act within this restricted subspace V,.,.. We work in a basis
where X, ~ 0¥, Z2 ~ 0% and B§ = [ Jecp, 02 (see (78)) in Vyes,.. Therefore the bond algebra
in its final form is

%Ge2 )(Vrest.) (252)

(1,d—2

ecp

= = (— 1 5 . — ! !
= <U§ [PEY +PVA] ' 5% [(1—DB, +(1+1)] ‘Z’{(l)(s(d D) =1, Uao)(SP) = 1>,

where 1
PH= (140D, By= [ o (253)

We are now ready to use the isomorphism of bond algebras (199) and (253) to study dualities

between phase diagrams of quantum systems with Z, ;) symmetry and Gflz d_g) Symmetry.
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Table 6: Summary of dualities between Z

4 (1)-symmetric models with gapped ground

states and [Zz,(o), Zz,(d_zzl)]ez-symmetric models with gapped ground states in
d = 3 space dimensions. We consider gapped ground states of Z 4(1)-symmetric
Hamiltonians that preserve the subgroup [Zp (1)] with p = 1,2,4. Such phases have

an emergent Z symmetry which is generated by closed surface loop operators.

4/p,(2
The dual model/spegrza obtained by gauging the Z; 1y C Z4 1 subgroup of the global
symmetry. On the dual side, a phase preserving the Z, (;) subgroup is mapped to a
phase where dual Zz’( d—p=1) Symmetry is broken, and the converse also holds. The
remaining Z, (;) global symmetry is either broken or preserved on both sides of the
duality. There is a mixed anomaly between the Z, 2.(1) dual symmetry and the re-

maining Z, (1) global symmetry. Therefore, on the dual side a gapped phase that is

symmetric under I:Zz,(O), Zz’(d_2:1):| cannot be realized. When p = 2,4, the topo-

logically ordered ground state manifold supports emergent Z., @ and Z, @ % Zy ()

symmetries, respectively. We refer by “Triv.” to trivial symmetry group.

Z 4(1) Gapped Phases Dual I:ZZ,(O): Zz’(d_zzl)]ez Gapped Phases
Symmetry of GS Description Symmetry of GS Description
[Z4,(1):| Symmetry preserving [ZZ,(l)] Emergent Zz,(z)
[Zz,u)] Emergent Zz’(z) Triv. Emergent Zz,(z) X Zz,(z)
Triv. Emergent Z 4.2) [ZZ,(d—Z:l)] Emergent Zz,(z)

6.2.1 Phase diagrams and dualities

Let us study the duality in d = 2 or 3 dimensional spin models arising from partial gauging of
Zy1) C Z41)- After such a gauging, one obtains a spin model with a G(1 d—) Symmetry, ie.,
a Zy (1) X Ly 4—z) global symmetry with a mixed anomaly. For brevity, we only consider the
simplest gapped phases in the spin system with Z, ;) symmetry, i.e., those corresponding to
symmetry breaking of the 1-form symmetry to Z, 1) € Z4 (7). We simply consider the fixed-
point Hamiltonians in each gapped phase and obtain the dual partially gauged Hamiltonians
by isomorphism of bond algebras between (199) and (253). Such fixed-point Hamiltonians
are given in (222) for n =4 and p = 1,2,4. The results are summarized in Table 6 for d = 3
space dimensions. The Hamiltonian corresponding to no symmetry breaking and its dual under
partial gauging are

1+A,

1 \
Hizy=—5 D XetHe— MY 1 == (0] (254)
e e
The ground states of 7—[ 7, are eigenvalue +1 states of A, and o for all e. This implies that
the 1-form symmetry

U@V = [T of[B9+574,], (255)

ecT(@-1v

acts as the identity on the ground states and therefore it is preserved. Let us now consider
a product of A, operators taken along an open line L in d = 2 or along an open disc D, in
d = 3 on the dual lattice. In d = 2, such a product delivers a bi-local operator o 0 f( 1 with
i(L) and f(L) being the plaquettes at the two ends of L. Since O'P is charged under the O-form
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u i ol

Figure 19: Ind = 2, a product of A, operators along a line on the dual lattice furnishes
a bi-local operator with support on the two endpoints of the line. Similarly, in d = 3,
a product of A, operators on an open disc D;/ in the dual lattice furnishes a line
operator WV on the boundary of the disc.

dual symmetry U(4_5), this signals the spontaneous breaking of the 0-form dual symmetry.
Similarly, in d = 3, one obtains a line operator

w@py)=[]a.=[] o= (256)

eeD) pedD)

The line W is topological in the low energy subspace in the sense that it commutes with
the Hamiltonian and therefore does not cost any energy to deform and is charged under the
(d — 2 = 1)-form symmetry. Therefore, HE/Z4]V preserves Zj 1y while it breaks Z, 1y dual
symmetry.

Next, we consider the partial symmetry breaking Hamiltonian #[z,j which dualizes as

Hiz,) =—2X§_%ZPIB§‘_’H[VZZJV :_Z:Ae—zplép- (257)

\Y%
[(Z,]Y _
reasoning that Z, (4_,) dual symmetry is spontaneously broken. Similarly, the fact the B, has

eigenvalue +1 on the ground state subspace implies that one may consider an open disc on
the direct lattice, which furnishes a line of o operators on the boundary of this disc. This line
operator has a unit expectation value in the ground state of the fixed-point Hamiltonian but
more generally a non-vanishing expectation value anywhere in the gapped phase labelled as
[Z,]Y. Finally noting that this line operator is charged under Zy (1), implies that the 1-form
symmetry is spontaneously broken. To summarize, we find that in the gapped phase [Z,]" the
full symmetry [Zs (4_2), Z2,(1)] is broken.

Finally, we move onto the Z, ;) symmetric gapped phase labelled as Z, (;) where the 1-
form symmetry is completely broken. The fixed-point Hamiltonian and its dual under partial-
gauging have the form

Since the ground states of A are eigenvalue +1 states of A,, it follows due to the above

1 y 1+B,
H[Zl]z_EZBP+H'C._)H[Z1]VZ_ZG;T. (258)
) )

This Hamiltonian breaks Z, (;) since its ground states are in the Bp =1 eigenspace. It however
preserves the Z, (4_5) dual symmetry as can be readily confirmed.
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7 Conclusion

In this paper, we explored various symmetry aspects of quantum spin models models with
global higher-form finite Abelian symmetries on arbitrary d-dimensional lattices. Given a p-
form symmetry corresponding to a finite Abelian group G, we described (i) a systematic gaug-
ing of the group G or any subgroup H C G for p = 0,1, (ii) the gauging related duality maps
between models with a G p-form symmetry and G(,, 4_,—1) higher group symmetry which has a
G/H p-form symmetry, a H' (d —p—1)-form symmetry and a mixed ’t-Hooft anomaly between
these two higher-form symmetries and (iii) dualities between phase diagrams of spin models
with the corresponding symmetries.

In Sec. 2, we detailed how the gauging of finite Abelian 0-form (sub)-symmetries can be
understood as an isomorphism between a bond algebra symmetric with respect to G, and a
dual bond algebra symmetric under the dual G 4_1) symmetry. In particular, we described
how the symmetry sectors, i.e., twisted-boundary conditions and symmetry eigenvalue sectors,
map under such an isomorphism of bond algebras. For the case of gauging a subgroup, we
clarified how the mixed anomaly manifests in the symmetry structure of the dual bond algebra.
In doing so, we clarified some anomaly-related subtle symmetry fractionalization patterns of
higher-form symmetries in lattice spin models. In Sec. 3, we discussed these gauging-related
dualities from a quantum field theory perspective.

In Secs. 4 and 5, we explored consequences of such gauging related dualities to phase
diagrams of two and three dimensional spin models respectively. We specialized to Z, clock
models with Z, () Symmetry and studied a Hamiltonian built as a linear combination of fixed-
point Hamiltonians, one for each Zn,(O -symmetric short-range entangled gapped phase. By
dualizing such a Hamiltonian, using the bond algebra isomorphism obtained in Sec. 2, we
could study various aspects of the phase diagram. In particular, we could pin-point how all
these gapped phases dualize and how certain unconventional (beyond Landau) transitions are
dual to Landau transitions under such gaugings. These studies have potential applications in
understanding aspects of such exotic transitions in quantum spin models with global categor-
ical symmetries, a subject about which little is understood. In Sec. 6, we studied the gauging
of Z, (1) sub-symmetries in two and three spatial dimensions and applied the corresponding
gauging related isomorphisms to spin models with such symmetries. Among other findings, we
showed that in d = 3, a gauging of Z,, (1) symmetry is realized as an automorphism on the sym-
metric bond algebra. This automorphism implied dualities between three-dimensional Z; and
Zn i topological orders and Hamiltonians self-dual under such automorphisms host emergent
non-invertible symmetry structures [25].
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A BF type description of bond algebra

In this Appendix, we present an alternative description of the gauging procedure presented in
Sec. 2 as a BF-like theory of compact scalar fields. We may represent Z, clock operators as

Z, ~ e, X, ~ ei® , (A.1)

which satisfy the commutation relations [®,, ®,,] = 27i,,,/n mod 27. Here we can think of
@, as a compact scalar field and @, as its canonical momentum operator. Comparing with (7)
and (9), we may write the Z, symmetry operator as

u=[1e*, (A.2)
\%
and the bond algebra takes the form
_ [/, i®, _—i[ d®
BZn,(O) = <e‘ ,e ifo Y v,e>, (A.3)
where e /ed® = (i i®o — Z(e)Z:(e). The local Hilbert space on each vertex is

n-dimensional such that tensor product Hilbert space is spanned by states labelled by
¢ € CO(Md,A,Zn), where ¢ = {¢,}, with ¢, = 0,1,...,n— 1. We choose to work in the
eigenbasis of e!®v such that

e®p) = wllg),

eé™g) =14 +5V), -
where + denotes addition modulo n and §(*) is a 0-cochain which evaluates to 1 on the vertex
v and O elsewhere, i.e., 5\(/\,') =&y
In order to gauge the Z, global symmetry, we similarly introduce a Z,, degree of freedom
on each edge of the lattice. We denote the operators acting on the edges as e/ and e'?<" via
the identification
Zo~ele, X ~elBev, (A.5)

Note that the B operators are defined on e" which are (d — 1)-cells of the dual lattice. Since,
there is a canonical bijection between these (d — 1)-cells of the dual lattice and the 1-cells of
the direct lattice (see, for instance, Fig. 5) it is always possible to do so. These operators satisfy
the commutation relations

2Mi0ee  2milnte o

[Bov,Ay]= = , (A.6)
n n

where in the final expression, Int.v . is the intersection number of the (d —1)-cell " with the
edge ¢’. Upon introducing edge degrees of freedom, we span the Hilbert space by basis states
la, ¢), labelled by a € C*(My p,Z,) and ¢ € C°(My A,Z,). The vertex operators act on the
basis states as (A.4), while the edge operators act similarly as

e'ela, ¢) = wicla, d),

. A7
e/, ¢) = a+ 5, ¢, (A7)

where 6§ is a 1-cochain which evaluates to 1 on the edge e and 0 elsewhere, i.e., 5,(;) =0¢p-
After gauging, the physical Hilbert space is the gauge invariant subspace of the full Hilbert
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space spanned by {|a,¢)}. The gauge invariant subspace is obtained as the identity eigen-

sector of the Gauss operator
szexp{i5v+i§; B}, (A.8)
S\(,d_l)’v

where S\(/d_l)’v is a minimal (d — 1)-sphere on the dual lattice that links with the vertex v (see
Fig. 14). This a field theory notation version of equation (26), which was written in a more
spin-model language.

A general gauge transformation is implemented by the operator G[A] = [], g& v
parametrized by a 0-cochain A € CO(Md’ A»Z,) which acts on the basis states as

GlAlla,¢) =la+dA, ¢ +A). (A.9)

The bond algebra needs to be suitably modified post gauging such that all the operators are
gauge invariant. We can do so by minimal coupling d® — d® + A, such that bond algebra
becomes . .

By, = < ei® =i [(d0+A)

dfiAL1, G, E1Vv,e,L). (A.10)

There is an additional constraint exp {i §LA} = 1 for each loop L on the lattice. This follows

from the fact that this operator is the image of the operator exp {i 9§ L d<I>} = 1in the pre-gauged
algbera. Since gauging is a bond algebra isomorphism, it must map the identity operator to
the identity operator. Compare with (31). A consequence of this is the fact that da = 0 mod n
and therefore a € Z l(Md’ A»Z,) and corresponds to a Z,-valued field.
Next, we seek a unitary transformation that disentangles the edges from the Gauss con-
straint, i.e., ~
UGUT = e, (A.11)

Such a transformation is achieved by the unitary
LI=Z|a+d¢,¢)(a,q§|zl_[exp{i<I>V§ B}, (A.12)
a,d) v S\(/d—l),\/

which acts on the remaining operators as

Uexp {iA U = exp {i(A+ d®).},

L{exp{ijg B}Z/{"Lzexp{ijg B},
=D Sta-D

) ) (A.13)
Uexp{i®, }U" =exp{id,},
Uexp{i@v}u‘rzexp{@v—kif B} .
S\(,d_l)’v
The bond algebra (A.10) becomes the following after the action of the unitary U/
%Z :<e_iAE, exp{i%v—ijg B} ei‘f’vél, eiffLAél, Vv,e,L>
n(d-1) -1
v (A.14)

eiﬁLAél, Vv,e,L>.

= <exp {—A.}, exp{—i%(d , B}
s

63


https://scipost.org
https://scipost.org/SciPostPhys.18.3.097

e SciPost Phys. 18, 097 (2025)

In the second line we have solved the Gauss constraint and frozen out all scalar field d.o.f., the
dual bond algebra is organized by conjugate fields A and B reminiscent of BF-theories. This is
the bond algebra of a (d —1)-form Z, 4_;) symmetry generated by closed loops operators

W; =exp (—if A) , (A.15)
L

compare this to equation (42). Similar to the discussion in section 2.1.3, let us drop the
constraint on contractible loops and define the bond algebra

BZn,(d—]) = <exp {—A.}, exp {—i jiyl)’v B} ‘ Yv,e, L>. (A.16)

Similar to the discussion in section 2.1.3, we can extend the duality to this larger algebra but
the other side will contain algebras with twist defects. Consider the commutative subalgebra

%[Zn,(d—l)xzn,(l)] = <exp {—iﬁA} , €xXp {—i ﬁgde} ‘ Vo, e,L> C Bz, 4y (A.17)

This subalgebra has an extra emergent 1-form symmetry, generated by (d — 1)-dimensional

submanifolds
F(S(d_l)v) = exp (—i} B) . (A.18)
S(d-1)V

Compare these to (44) and (46). Similar to (47), we can write the Z, toric code Hamiltonian
as

H=- e TSt e
v

p

—i vH —i F
=— E e X — E e o, +H.c,,
\Y

p

(A.19)

V. . . . . .
where S\‘f 1" is a d — 1 dimensional sphere in the dual lattice wrapping around the vertex v,

L, is the curve around a plaquette p, and X d\\// is solid d-dim ball such that dX d:// = S\‘f_lv and
D, is a disk such that D, = L. In the second line we used Stokes theorem and defined the
2- and d-form Field strength operators

F=dA, H=dB. (A.20)
The ground state subspace of toric code requires
F=0, and B=0, (A.21)

in other words that we have flat A and B connections. This is exactly the Hilbert space of the
underlying TQFT, a BF -theory with the action

s:ﬁf B AdA. (A.22)
27 M
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B Parallel transport operator for Z, spin-chains

A Z,, symmetric spin chain can be coupled to a background gauge field, also called a Z, connec-
tion. This allows us to define parallel transport on the space of operators. In this appendix we
construct the parallel transport operator explicitly in terms of spin operators. This construction
works in any dimension and on any triangulation, no need for translation symmetry.

Consider a triangulation My A of an oriented d dimensional manifold M. There is a Hilbert
space V), =~ C" associated to each vertex v of My A, with the total Hilbert space V = @, V,.
All linear operators on V are generated by X, and Z, with the algebra

g _ Sywv8
ZIXE = 8OwxEZY (B.1)
We want to construct a permutation operator P,y with the property
PzO,P =0y, (B.2)

written in terms of the operators X,, and Z,. Here P, permutes local operators acting only
on the vertices v and v, while commuting with any other local operators. The space of linear
invertible operators at each vertex

GL(VV)zspanC{X\%'Z\f‘ g,a=0,...,n—1}, (B.3)
can be endowed with the inner product
1
(A,By=—1ry, [A'B], ABeGL),). (B.4)
n \"

A short calculation shows that with this inner product, the above chosen basis is orthonormal
(XEZ XEZT) = 545647 (B.5)

v©Tv?

We can extend this basis to all of GL(V) = L(V), by using the standard isomorphism

GL (@ V\,) ~XRGLYV,), (B.6)

where on V we normalize the inner product as

(A,B) = try[A'B], A BeL(V). (B.7)

n#vertices

Using the eigenbasis of the Z,, operators

Z,1¢) = 0P|$), (B.8)

we can explicitly construct the permutation operator as

Pi= Y 157" ¢)(¢l, (B.9)
¢

where S,y acting on the labels ¢ = {¢,}, swaps ¢, and ¢ V. One can easily see that following
properties
Pilooosusees @) =1, b5 bysen),  PL=1, (B.10)
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as wanted. In order to write this operator in terms of the aforementioned basis of £L(}), let us
consider a general superposition

n—1 n—1
Py= Y., >, MEIxEZIXEZE. (B.11)

g,a=0g,a=0

We are only expanding this in the subspace of £())) corresponding to operators that only act
on the vertices v and V, since it must commute with any operator O, such that v/ # v or v.
The coefficients can be computed using the inner product (B.7) and the orthonormality of our
basis
8/ 7y — vy _ _
<l_[XV, 78 ,va> =M% [ 84,5, (B.12)
v V£V

In particular, using (B.9) and only the basis vectors of the relevant two-body subspace, one
can show by a calculation that

MEedv = (X ZNXE 7Y, Pyg) (B.13)
1
= ;Cl)gvav 5av+aV’0 5gv+gv’0 . (B.14)

We can therefore write P,y in the form we wanted
1 n—1
Pg="= D Wt XEZEX EZ. (B.15)
g,a=0

One can readily check that this satisfies all the needed properties such as (B.2). For a standard
spin-model with n = 2 we get

1
Py= 5[1 +X, 8 X;—(X2), 8 (XZ);+Z, ® Z | (B.16)
1 y
=E[1+0\’f®0§+a{®av+ai®0§]. (B.17)
For each edge e, we can define

Te = Py(e) t(e) s (B.18)

where s(e) and t(e) is the source and target of e, respectively.
For regular lattices, this can be used to construct translation operators in terms of spin
operators. For example for a one-dimensional lattice of L sites, we have

11
T= l_[Pi,i+1 =P1oPy3- Py, (B.19)
i=1

which satisfies

T|¢p1 - ¢r) =lprP1d2- dr—1)- (B.20)

On general triangulations we can construct Parallel transport operators, when coupling the
global symmetry to a background connection (gauge field). See equation (14) and surrounding
discussion.
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