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Abstract

We investigate the use of a boundary time crystals (BTCs) as quantum sensors of AC
fields. Boundary time crystals are non-equilibrium phases of matter in contact to an en-
vironment, for which a macroscopic fraction of the many-body system breaks the time
translation symmetry. We find an enhanced sensitivity of the BTC when its spins are res-
onant with the applied AC field, as quantified by the quantum Fisher information (QFI).
The QFI dynamics in this regime is shown to be captured by a relatively simple Ansatz
consisting of an initial power-law growth and late-time exponential decay. We study the
scaling of the Ansatz parameters with resources (encoding time and number of spins)
and identify a moderate quantum enhancement in the sensor performance through com-
parison with classical QFI bounds. Investigating the precise source of this performance,
we find that despite of its long coherence time and multipartite correlations (advanta-
geous properties for quantum metrology), the entropic cost of the BTC (which grows
indefinitely in the thermodynamic limit) hinders an optimal decoding of the AC field in-
formation. This result has implications for future candidates of quantum sensors in open
system and we hope it will encourage future study into the role of entropy in quantum
metrology.
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1 Introduction

Time crystals are non-equilibrium states which arise when quantum many-body interactions
lead to the spontaneous breaking of a temporal symmetry present in the Hamiltonian. Such
a symmetry breaking was originally proposed by Wilzcek [1] and the field has since flour-
ished [2–5], beginning with an initial spate of theoretical studies on Floquet time crystals
(FTCs) [6–11], so named as they exhibit a spontaneous ordering in time at a frequency sub-
harmonic to a Floquet driving, which were soon followed by multiple experimental realiza-
tions [12–17].

The inclusion of dissipation opened an avenue of research into a class of time crystals
breaking a continuous time symmetry [18]. The first case of these theorized, and the focus of
this paper, is that of boundary time crystals (BTCs) [19]. Here the system lies on the boundary
of a much larger environment and in the thermodynamic limit forms a macroscopic fraction
of the total system plus environment constituents. Taking the environment to be Markovian
(i.e., stationary) allows the system dynamics to be captured by time-independent Liouvillian;
this dynamics exhibits a time-crystalline order. This order arises in the thermodynamic limit
where the real part of the Liouvillian gap vanishes while the imaginary part survives resulting
in persistent oscillations; there is no explicit frequency at which the system is driven.

Time crystals display robust coherence and correlations making them appealing candidates
for application in various quantum technologies. In particular there have been several recent
publications investigating their use in quantum metrology [20–24]. Generally, metrology seeks
to optimally estimate a parameter through observing the statistics of a system (the sensor) af-
fected by this parameter [25–28]. This parameter could be, for example, some intrinsic system
property or the strength of an external field incident on the sensor. For sensing AC external
fields in particular time crystals have been seen to be effective candidates. In Ref. [20] they
showed that the persistent oscillations of an FTC allowed significant quantum enhancement
in the sensing of an AC magnetic field incident on the system.

There is no direct connection that suggests that a BTC sensor has equal performance to an
FTC. Despite having a few similar properties, such as long-lived oscillations with a decay rate
that vanishes in the thermodynamic limit, they occur in rather different physical contexts and
classes of time symmetry breaking. Moreover, unlike the FTC, the frequency of the long-lived
oscillations in a BTC aren’t contingent on any explicit external driving of the system but rather
arise solely from the intrinsic energy scales present in the Liouvillian; this fact even increases
the appeal of using the BTC. To further this enthusiasm there are also clear results showing a
continual growth of genuine multipartite correlations as the BTC evolves [29,30], the presence
of these make the potential for quantum enhancement much more feasible. However, as we
shall show, the story is not so simple.
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We study the performance of the BTC by computing the quantum Fisher information
(QFI) [31] of the system in response to changes in the strength of the applied AC field; a
larger QFI implies an improved sensor performance. Here we consider solely the detection of
weak signals; specifically, we work in the linear response limit where the strength of the signal
to measured is vanishingly small. There are various bounds on the QFI depending on factors
such as the class of parameter being sensed [32,33], the structure of the Liouvillian [34–36],
and correlations, or lack thereof, within the system [37]. These bounds are expressed in terms
of the resources being utilised during the sensing protocol, in our case the relevant resources
are the number of spins N and the encoding time t. Given an open system sensing a time-
dependent field, we rely on quite general bounds contingent on simply the presence of coher-
ence and/or many-body correlations. For a classical system, with neither of these, the QFI is
bounded by N t; allowing for coherence increases this bound to N t2; and including many-body
correlations gives us the Heisenberg limit: N2 t2.

However, given that the bounds derived in presence of dissipation [34–36,38] are generally
more restrictive, it should not be surprising if achieving the Heisenberg limit is impossible. The
intuition behind this being that the entanglement and coherence necessary for quantum en-
hancement are famously fragile to dissipation; relatively simple examples can be constructed
to show how introducing dissipation completely erases any quantum advantage from entan-
glement [39]. The need of precise metrological bounds in the presence of dissipation is of
paramount importance, requiring deep numerical analysis such as the one presented here.

By computing the QFI of our protocol we find that its dynamics can be well-captured by a
relatively simple Ansatz consisting of competing power-law growth and an exponential decay.
In identifying this Ansatz we are able to better isolate the effects of any collective quantum
enhancement (as would be evident in the initial growth) from the inevitable loss of information
to the environment (as captured by the exponential decay). The timescale associated with this
decay is found to scale with 1/N , identical to the lifetime of the BTC itself, ensuring thus the
capability of the sensor in arbitrary long single-shot protocols, in stark contrast with the short
lifetime associated with typical open quantum systems. On the one hand, we observe that in
the case of no constraints over the sensing time of the protocol,i.e., allowing the entire sensing
period to be utilized, the maximum QFI scales with N2. On the other hand, if the sensing
time is fixed, the QFI scales superlinearly with the number of spins N , for large enough system
sizes.

In comparison to known bounds, these results show that the BTC sensor displays a mod-
erate quantum enhancement when detecting AC fields, exceeding the classical limit but, how-
ever, lying far from the Heisenberg limit. This implies that there is some hitherto unconsidered
property of the BTC suppressing its sensing capability; we identify this property as the entropy.
We observe that the entropy grows over the BTC lifetime, which diverges in the thermodynamic
limit. These results seem at odds with a mean-field (MF) picture, usually employed for such
classes of infinite-range interacting models. We recall, however, that the BTC sensor cannot
be captured by a MF approach since it relies on many-body properties at the density matrix
level, rather than simply the (one-body) magnetization.

The paper is structured as follows. In Section 2 we first introduce the model we consider,
namely the known BTC Liouvillian with a time-dependent AC field term, before introducing
the key quantity of interest of this paper, and quantum metrology in general, the quantum
Fisher information (QFI). In Section 2.1 we discuss the resonant properties and the set of field
parameters we will consider in our analysis of the sensor performance. The most relevant
parts of our studies are contained in Section 3, where we explore the dynamics of the QFI and
derive a proper Ansatz for it, and in Section 4 where we provide the explanation of the observed
behaviour linked to the dynamical properties of the BTC. We present our main conclusion in
Sec. 5.
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2 Model

We consider a system of N spin-1/2 particles that are evolving under a collective drive and
dissipation. The dynamics of this system is described by the permutation-symmetric master
equation:

∂t ρ̂(t) = L̂B[ρ̂(t)] = −iω0[Ŝ
x , ρ̂(t)] +

κ

(N/2)

�

Ŝ−ρ̂(t)Ŝ+ −
1
2
{Ŝ+Ŝ−, ρ̂(t)}
�

, (1)

where the N spins are driven coherently with strength ω0 and decay collectively with a rate
of κ rescaled by N/2. We have introduced collective spin operators Ŝα=x ,y,z =

∑

i σ̂
α
i /2 where

σ̂αi is the Pauli-α matrix acting on the i-th spin. These also describe a spin of length S with
raising/lowering operators Ŝ± = Ŝ x ± iŜ y

In the thermodynamic (N →∞) limit, this model undergoes a dynamical phase transition
as a function of ω0/κ: when ω0/κ < 1 the spins decay to a steady state but for ω0/κ > 1
they oscillate in perpetuity. This non-trivial phase corresponds to a breaking of the continuous
time-translation symmetry of Eq. (1), occurring only in the thermodynamic limit and, in this
way supporting a time crystal phase. Specifically this is known as a Boundary Time Crystal
(BTC), or alternatively as a dissipative time crystal, referring to the fact that the spins are only
a subsystem of the total system-environment Hilbert space. Despite being a portion of the
whole system, the boundary spins can be macroscopically large, and stabilise different phases
of matter. Importantly, although the total system-environment Hamiltonian is time-translation
invariant —consistent with various different derivations of the above effective master equation
(see, e.g., supplementary information of Ref. [19] or Refs. [40–42]) — the boundary spins can
still break this symmetry, leading to persistent oscillatory behaviour and thus supporting a time
crystal phase.

The goal of this work is to utilise the long-lived oscillations of the BTC to enhance the
sensing of an AC field. This is inspired by Ref. [20] where evidence of quantum-enhanced
sensing was seen in a FTC.

The full model of the BTC in the presence of AC field is given by

∂t ρ̂g(t) = L̂B[ρ̂g(t)]− i g[Ĥac(t), ρ̂g(t)] , (2)

where the AC Hamiltonian is

Ĥac(t) = Ŝz sin(ωac t +φ) . (3)

Here, the AC field is characterized by its frequency, ωac, and its phase shift, φ. We have also
introduced ρ̂g(t): the density matrix conditioned on the value of the field strength, g, evolved
to time t. Our observations indicate that choosing the external field along the z-direction leads
to higher values of sensor performance as compared to the x- or y-direction, making it a more
effective choice for the sensing protocol. Although we have no formal analytical proof that
this direction is always optimal, the key insight stems from the instability of the time crystal
phase - or its higher susceptibility - to perturbations along the z-direction. This instability has
been demonstrated in analytical studies within a mean-field treatment [43] and observed in
generalised versions of the model [44, 45]. As a consequence, the system exhibits a stronger
response to the applied AC field, thus allowing a greater precision in its estimation.

To determine the sensitivity of the BTC to variations in the strength of this field g we
compute the quantum Fisher information (QFI). The QFI bounds the uncertainty in estimating
the value of g, with ∆g ≥ 1/

Æ

M F(ρ̂g(t)), where F(ρ̂g(t) is the QFI of the sensor probe, and
M is the number of measurements performed in the system in order to extract and therefore
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Figure 1: The maximum QFI achieved during a single dynamics for various detunings
of both the phase, φ, and AC field frequency, ωac, with N = 128 (left) and N = 256
(right). For both of these plots we set ω0 = 4κ.

decode the information about g. Clearly, a larger QFI magnitude indicates an improved sensor
performance. This is given by [46,47]

Fg(ρ̂) = 2
∑

k,l

| 〈λk|∂g ρ̂g |λl〉 |2

λk +λl
, (4)

where we have introduced the density matrix ρ̂g , depending on a real parameter g and {λi}
are the eigenvalues of ρ̂g . Here we have suppressed the time dependence for simplicity.

Computing ∂gρ̂g can be done numerically by either a finite difference in terms of g or, as
we shall show, by computing a second master equation in conjunction with Eq. (2). We can
find the time evolution of ∂g ρ̂g by simply taking the time derivative of Eq. (2), this given by

∂t∂gρ̂g(t) = L̂B[∂gρ̂g(t)]− i[Ĥac(t), ρ̂g(t) + g∂gρ̂g(t)] . (5)

In this equation, notice that ∂gρ̂g(t) is dependent on ρ̂g(t), via the second term, but the
converse is not true. In the linear response limit, it is therefore possible to use this master
equation to compute ∂gρ̂g(t) for any Ĥac(t) with a single solution of ρ̂g→0(t). However,
although we remain in the linear response regime for all results presented here, we found it
more convenient to solve both Eqs. (2) and (5) simultaneously, as it is simpler to allow an
adaptive solver to pick the best timestep for the global problem as we vary Ĥac(t).

Some properties of the QFI are worth recalling. While for classical systems the QFI is
limited simply by number of repetitions in the estimation protocol, leading to a linear scaling
in time (one can think of partitioning the whole time into small time bins representing the
number of measurements), exploiting quantum coherence in the system allows a quadratic
improvement over time [48], extending the maximun of QFI to Fg(ρ̂) < t2. Furthermore,
since Fisher Information is additive, a sensor composed of N separable spins obeys the bound
Fg(ρ̂) < N t2. Surpassing this bound requires nonseparability, that is, harnessing quantum
correlations among the spins within the sensor. The ultimate quantum advantage emerges
when entanglement is fully exploited, allowing a quadratic gain in both the number of spins
and time, thus achieving the Heisenberg limit with Fg(ρ̂) = N2 t2.

2.1 Resonant fields

To sharpen the focus of this paper, we restrict the study to a particular set of AC field parame-
ters: those that result in optimal sensing in the N →∞ limit. We anticipate that the response
of the system at large N is maximal when the AC field is resonant to the internal dynamics
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Figure 2: Analysis of the sensor performance via the QFI dynamics. (a) Dynamics
of the rescaled QFI for various N at a fixed ω0 = 4κ, the dashed lines correspond to
a fit of the Ansatz C tαe−γt . The values of these fit parameters as a function of N are
plotted in (b)-(d) for various ω0 with dashed lines to help indicate the trends. (e)
Maximum of the QFI over the entire evolution as a function of N with a dashed line
again to indicate the scaling.

of the BTC spins. In the thermodynamic limit (N → ∞) this corresponds to a frequency
ωac = ωBTC ≡

q

ω2
0 − κ2 and phase φ = φBTC ≡ sin−1(κ/ω) [30]. In Figure 1 we plot, for

N = 128 and N = 256, the maximum of the QFI during its evolution, as a function of shifts
around these resonant values, i.e., ωac = ωBTC +∆ωac and φ = φBTC + π∆φ. We see that
on increasing N the overall maximum QFI approaches the point ∆φ =∆ωac = 0, apart from
finite size corrections of order O(1/N). Therefore, although these values will not be optimal
for all N , for simplicity we fix ωac and φ to their thermodynamic limit resonant values and
investigate the performance of the sensor as a function of the resources N and t.

3 QFI dynamics

In this section, we study the scaling of the QFI as a function of N and t. We use its scaling
behaviour to characterize the performance of the sensor and compare this performance with
the limits of a classical sensor as well as the fundamental “Heisenberg” quantum limit. These
limits are expressed in terms of the total resources used in the sensing protocol. Incorrect
characterization of the resources used or omitting a certain resource, such as sensing time,
can lead to results which seemingly surpass even the Heisenberg limit. We shall be careful to
state which resources we consider in each result. All results presented here correspond to an
initial state for which 〈Ŝz〉 = N/2, they were generated using QuantumOptics.jl [49] and
code adapted from this framework.

The dynamics of the QFI (scaled by N) for various N is plotted in Figure 2(a). These
dynamics follow the typical behaviour of the QFI for a Markovian open quantum system [39,
50]: it initially increases over time before reaching some peak value and decaying. This initial
growth arises from the coherence in the direction of the applied field accruing a phase. The
coherence, however, only survives for a finite time due to the system being open; as it decays, so
does the ability to encode information. Consequently the QFI ceases growth, reaching a peak
and subsequently decaying; we find that the time this peak occurs is related to the lifetime of
the underlying time crystal dynamics.

We find that the envelope of these dynamics can be captured by a relatively simple func-
tional form given by

F(t) = C tαe−γt . (6)

6
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This fit, again rescaled by N , is also shown in Figure 2(a). This Ansatz was inspired by previous
analytical results on quantum metrology in open quantum systems [39]. The parameters of
this Ansatz completely characterize the QFI dynamics. We study the scaling of the parameters
α, γ and C to better determine the performance of the sensor as a function of the resources N
and t.

First, in Figure 2(b), we study the scaling of α as a function of N for various ω0 and
obtain that the initial growth exponent decreases as the system size is increased; we are able
to capture the large N behaviour with an exponential decay to some asymptotic value that
we label α∞ = limN→∞α. So, while the overall performance of the sensor is clearly superior
for larger systems, as evidenced by Figure 2(a), the initial growth exponent is reduced. This
is of significance as the exponent with which the QFI grows has been shown to be linked
to the degree of enhancement due to quantum correlations; a classical system is limited to
grow linearly in time. The classical bound arises because over a single sensing run, the only
resource available is the sensing time. There is little dependence on the driving, ω0, except
in the region of small N and ω0. We attribute this effect to the shifting of the peak to shorter
times, combined with a decrease of oscillations’ frequency while their amplitude increases. As
such in this region we are attempting to fit a power-law to short times where the oscillations,
rather than the envelope, will dominate the value of α we extract. We also find a dependence
of α on κ, independent of ω0, which we discuss in Section 4.

The decay rate of the QFI, γ, scales like 1/N independent of ω0, as can be seen in Fig-
ure 2(c). This coincides with the rate at which the dissipative gap closes in the time crystal
phase [19] indicating that the ability to encode information on the time crystal depends on its
lifetime. This implies that increasing the size of the system not only improves its sensitivity
but also its sensing time, thus allowing for an arbitrarily long single shot run. This is in sharp
contrast with typical open systems sensors which can only work for a relatively short time.

In terms of the Ansatz parameters, the time taken for the QFI to reach its maximum during
the evolution is given by

t∗ =
α

γ
. (7)

Given that α ∼ aexp(−bN) +α∞ and γ ∼ N−1 we have that t∗ ∼ N for large N . This scaling
is also of relevance to the performance of the sensor in terms of α, in that while it is true that
decreasing system size improves the growth exponent at short times, the region in which this
growth occurs shrinks like 1/N .

The amplitude of the QFI, C , is plotted in Figure 2(d) and scales linearly with N at small
N but appears to become superlinear as N is increased. From the scaling behaviour of α and
γ, we see that at large N both tα and e−γt become independent of N . Therefore, in this limit
the scaling of C corresponds to the scaling of F at a fixed sensing time, i.e., our only resource
is N , indicating quantum enhancement.

We now study how the peak of the F , labelled F∗, scales with N . In doing so we are
disregarding time as a constraint in the sensing protocol; this is shown in Figure 2(d). Largely
we find that F∗ scales quadratically with N and at large N there is a suggestion that the scaling
even exceeds this. We recall that while the height of the peak may scale greater than N2, the
time to reach the peak, t∗, scales with N . And so in terms of total resources the Heisenberg
limit is not breached. This result is, nevertheless, of relevance to experiments where sensing
time can be freely varied.

Overall we see that while our BTC sensor exhibits a quantum-enhanced performance, it is
still far from the optimal Heisenberg limit. In the remainder of this paper we aim to understand
the physical mechanisms behind the BTC sensor performance. In particular, what are the
sources of its improvements? And what are the sources of its deficiencies?
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Figure 3: Dynamics of different BTC properties associated with its sensor perfor-
mance. (a) The rescaled variance of the magnetization driven by the AC-field, (b)
the coherence present in the z-basis, i.e. the direction of the applied field, and (c)
the dynamics of the von Neumann entropy. We set ω0 = 4κ for all these results.

4 Understanding the QFI scaling

We consider two quantities whose presence we expect to signify an enhanced sensitivity of the
BTC sensor to an applied AC field, namely the variance and coherence of the system in the
direction of this field. These can be directly related to the QFI for the case of time-independent
sensing with pure states. Pure states are known to be the optimal choice for probes [51], but
at finite N we don’t expect our state to remain pure. With this in mind we also compute the
entropy dynamics to detect the degree to which the BTC departs from this optimum. Finally,
we consider the behaviour of the exponent α in the thermodynamic limit to make a connection
with the non-interacting and closed system limit.

We first attempt to understand the QFI dynamics by studying the correlations within the
system, specifically in the form of the variance of the total spin operator in the direction of the
applied AC field. This quantity corresponds e.g., to the QFI of a closed system exposed to a DC
field acting in the z-direction [31]. We plot the variance, var(Ŝz) = 〈(Ŝz)2〉 − 〈Ŝz〉2, rescaled
by N in Figure 3(a). We also consider the coherence present in the eigenbasis of the applied
field. While a large variance generally corresponds to the ability to encode a greater degree of
phase information, the phase in the basis can only be affected if there is some coherence. We
show in Figure 3(b) the coherence in the z-basis, as captured by 〈Ŝ y〉. We observe that both
the variance growth rate and coherence amplitude at a given time increase with N , beneficial
properties for metrology and therefore related to sources of improvements for the BTC sensor.
Moreover, the lifetime of these quantities scale with N , making a direct correspondence to the
QFI decay rate γ. Despite such advantageous properties, these results seem to contradict the
decreasing scaling we observe of α with N . This contradiction can be resolved by considering
the relevant role of the entropy.

As we can see from Figure 3(c), the entropy grows at a rate which approaches some con-
stant, finite value in the thermodynamic (N →∞) limit, showing that the quantum state is
intrinsically mixed during its whole evolution. In other words, there is an entropic cost to-
wards the stabilization of the BTC phase. Given the concavity of the QFI [51], we can expect
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Figure 4: We show the thermodynamic limit (N →∞) value obtained for the ex-
ponent α, for varying decay rate, κ. This exponent tends to 2 in the closed system
limit (κ→ 0) and it is independent of ω0. The black line is there to guide the eye,
we were unable to find a good Ansatz for this dependence.

this increase in entropy to hinder the encoding of information on the system. This argument
is supported by considering how the growth exponent in the thermodynamic limit, α∞, varies
on reducing the dissipation rate κ, i.e., as we approach a closed system with entropy conser-
vation. We observe in Fig. 4 that upon reducing the dissipation and its detrimental entropic
costs for the QFI, α∞ indeed becomes larger. In the limit κ→ 0 the exponent approaches the
value of 2, i.e. the bound for closed non-interacting systems.

Failure of mean-field (MF) approach.– An α = 2 exponent is also what one would expect –
for any value of κ – by considering the MF approach in order to describe the system dynamics.
In this approach the spins are considered non-interacting and, moreover, with a conserved
entropy [45]. We recall that, although a MF approach is usually employed for such classes of
infinite-range interacting systems, its validity is restricted to which observables one aims to
describe. For example, while for magnetization observables (one-body observables) it gives
exact results in the thermodynamic limit [52–54], more complex observables at the level of the
density matrix cannot be captured by MF – such as the QFI. It is currently unclear, however,
how to distinguish this class of observables from those for which the MF approach fails. We
explore further these issues by computing the QFI of the MF density matrix and show explicitly
how the exact result diverges from the MF limit over time.

We first recall that the MF equations of motion for the BTC in the presence of an AC field
in the z-direction are obtained closing the second order cumulants, 〈ŜαŜβ〉 = 〈Ŝα〉〈Ŝβ〉, and
are given by

∂t〈Ŝ x〉=
κ

S
〈Ŝ x〉〈Ŝz〉 − g〈Ŝ y〉 sin(ωAC t +φ) ,

∂t〈Ŝ y〉= −ω0〈Ŝz〉+
κ

S
〈Ŝ y〉〈Ŝz〉+ g〈Ŝ x〉 sin(ωAC t +φ) , (8)

∂t〈Ŝz〉=ω0〈Ŝ y〉 −
κ

S
(〈Ŝ x〉2 + 〈Ŝ y〉2) ,

where we neglect terms of order smaller than O(N). The total density matrix in this limit can
be described by the factorized Ansatz as

ρ̂MF,g =
N
⊗

i=1

ρ̂i,g , (9)
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Figure 5: Comparison of exact QFI dynamics for finite system sizes N with the one
obtained by the MF approach in the thermodynamic limit (N →∞), both in linear
response regime (g → 0). The AC-field is set in resonance to the BTC and ω0 = 4κ.
The MF results are computed from Eq.(12) with displacement d g = 0.01.

where ρ̂i,g is the reduced density matrix for the i-th spin given the AC field g. These reduced
states are equivalent for all spins and can be expressed in terms of the total spin observables,

ρ̂i,g = I2/2+ (〈Ŝ x〉σx + 〈Ŝ y〉σ y + 〈Ŝz〉σz)/N . (10)

In this way we compute the total QFI by using the identity for separable systems,
F(ρ̂A⊗ ρ̂B) = F(ρ̂A) + F(ρ̂B), which implies

F(ρ̂MF,g) = N F(ρ̂i,g) , (11)

and determine numerically the QFI of the reduced state in terms of the fidelity, namely,

F(ρ̂i,g) = lim
d g→0

8
�

1− Tr
�r

q

ρ̂i,g+d g ρ̂i,g

q

ρ̂i,g+d g

��

. (12)

In Figure 5 we compare this quantity in the linear response limit to the the exact QFI computed
for finite N , with the the AC-field parameters set to those resonant with the BTC. Up to times
t ∼ κ−1 both approaches yield similar results with small quantitative differences. Beyond this
point up to times t ∼ N−1 the exact QFI converge to a result distinct from the MF limit. The
MF result grows indefinitely like F ∼ t2 as is expected for coherent oscillations. These results
further substantiate the claim of the main text that the sensor performance is suppressed by
entropy growth as these approaches only begin to diverge on timescales on which entropy
begins to significantly grow.

5 Conclusions

We have studied the performance of a BTC functioning as a sensor of an external AC magnetic
field by computing the QFI dynamics. We were able to identify a simple Ansatz which captured
the essential features of these dynamics. This Ansatz consisted of three parameters: a power-
law growth exponent α, an exponential decay rate γ, and an overall scaling constant C . We
found that γ and C follow intuitive trends: γ vanishes like 1/N , while C grows linearly at small
N and superlinearly at large N . In comparison to known bounds, these results suggest that
the BTC sensor shows a moderate quantum enhancement over an arbitrarily long timescale,
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exceeding the classical limit, however lying far from the Heisenberg limit. Furthermore, αwas
shown to decrease with increasing system size and asymptote to a value less than that predicted
by the MF description expected to hold in the thermodynamic limit. To investigate the origin
of this performance we considered the dynamics of BTC properties relevant to metrology.

While a BTC supports long time coherence and variance correlations, leading to collective
enhancement, the sensor performance is hindered by the entropic cost of its dynamics. This
picture is evidenced by the entropy dynamics shown in Figure 3(c); and further substantiated
in Fig. 4 where by decreasing the dissipative rate κ, corresponding to a decrease in entropy
growth, we achieve an improved growth exponent for the QFI.

We also compare the exact QFI dynamics to the usually employed MF approach for such
classes of inifite-range systems, showing explicitly their non equivalence. While a MF Ansatz
predicts coherently oscillating spins, with a quadratic QFI growth (∼ t2) the exact dynamics
features a slower and quantitatively different dynamics. These results further substantiate the
claim of sensor performance suppression due to entropy production.

In future it would be interesting to investigate the performance of the BTC as an AC sensor
in the vicinity of its critical point; there are many examples of enhanced sensitivity near crit-
icality [23,55–59] and evidence that the associated scaling is robust to periodic driving [60].
Beyond this, we hope that our work encourages a deeper study into the role of entropy in
quantum metrology.
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[35] P. Sekatski, M. Skotiniotis, J. Kołodyński and W. Dür, Quantum metrology with full and
fast quantum control, Quantum 1, 27 (2017), doi:10.22331/q-2017-09-06-27.

[36] S. Zhou, M. Zhang, J. Preskill and L. Jiang, Achieving the Heisenberg limit in
quantum metrology using quantum error correction, Nat. Commun. 9, 78 (2018),
doi:10.1038/s41467-017-02510-3.

[37] V. Giovannetti, S. Lloyd and L. Maccone, Quantum-enhanced measurements: Beating the
standard quantum limit, Science 306, 1330 (2004), doi:10.1126/science.1104149.

[38] J. F. Haase, A. Smirne, S. F. Huelga, J. Kołodynski and R. Demkowicz-Dobrzanski, Preci-
sion limits in quantum metrology with open quantum systems, Quantum Meas. Quantum
Metrol. 5, 13 (2016), doi:10.1515/qmetro-2018-0002.

[39] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio and J. I. Cirac,
Improvement of frequency standards with quantum entanglement, Phys. Rev. Lett. 79, 3865
(1997), doi:10.1103/PhysRevLett.79.3865.

[40] M. Hajdušek, P. Solanki, R. Fazio and S. Vinjanampathy, Seeding crystallization in time,
Phys. Rev. Lett. 128, 080603 (2022), doi:10.1103/PhysRevLett.128.080603.

[41] R. Mattes, I. Lesanovsky and F. Carollo, Entangled time-crystal phase in
an open quantum light-matter system, Phys. Rev. A 108, 062216 (2023),
doi:10.1103/PhysRevA.108.062216.

[42] F. Carollo, I. Lesanovsky, M. Antezza and G. De Chiara, Quantum thermodynamics of
boundary time-crystals, Quantum Sci. Technol. 9, 035024 (2024), doi:10.1088/2058-
9565/ad3f42.

[43] L. F. Prazeres, L. S. Souza and F. Iemini, Boundary time crystals in collective d-level systems,
Phys. Rev. B 103, 184308 (2021), doi:10.1103/PhysRevB.103.184308.

[44] P. Wang and R. Fazio, Dissipative phase transitions in the fully connected Ising model with p-
spin interaction, Phys. Rev. A 103, 013306 (2021), doi:10.1103/PhysRevA.103.013306.

[45] G. Piccitto, M. Wauters, F. Nori and N. Shammah, Symmetries and conserved quantities
of boundary time crystals in generalized spin models, Phys. Rev. B 104, 014307 (2021),
doi:10.1103/PhysRevB.104.014307.

[46] S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states,
Phys. Rev. Lett. 72, 3439 (1994), doi:10.1103/PhysRevLett.72.3439.

[47] S. L. Braunstein, C. M. Caves and G. J. Milburn, Generalized uncertainty rela-
tions: Theory, examples, and Lorentz invariance, Ann. Phys. 247, 135 (1996),
doi:10.1006/aphy.1996.0040.

[48] S. Pang and A. N. Jordan, Optimal adaptive control for quantum metrology with time-
dependent Hamiltonians, Nat. Commun. 8, 14695 (2017), doi:10.1038/ncomms14695.

[49] S. Krämer, D. Plankensteiner, L. Ostermann and H. Ritsch, QuantumOptics.jl: A Julia
framework for simulating open quantum systems, Comput. Phys. Commun. 227, 109
(2018), doi:10.1016/j.cpc.2018.02.004.

14

https://scipost.org
https://scipost.org/SciPostPhys.18.3.100
https://doi.org/10.1103/PhysRevX.7.041009
https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.1038/s41467-017-02510-3
https://doi.org/10.1126/science.1104149
https://doi.org/10.1515/qmetro-2018-0002
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevLett.128.080603
https://doi.org/10.1103/PhysRevA.108.062216
https://doi.org/10.1088/2058-9565/ad3f42
https://doi.org/10.1088/2058-9565/ad3f42
https://doi.org/10.1103/PhysRevB.103.184308
https://doi.org/10.1103/PhysRevA.103.013306
https://doi.org/10.1103/PhysRevB.104.014307
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1038/ncomms14695
https://doi.org/10.1016/j.cpc.2018.02.004


SciPost Phys. 18, 100 (2025)

[50] Z. H. Saleem, A. Shaji and S. K. Gray, Optimal time for sensing in open quantum systems,
Phys. Rev. A 108, 022413 (2023), doi:10.1103/PhysRevA.108.022413.

[51] L. J. Fiderer, J. M. E. Fraïsse and D. Braun, Maximal quantum Fisher information for mixed
states, Phys. Rev. Lett. 123, 250502 (2019), doi:10.1103/PhysRevLett.123.250502.

[52] L. S. Souza, L. F. Prazeres and F. Iemini, Sufficient condition for gapless spin-boson Lindbla-
dians, and its connection to dissipative time crystals, Phys. Rev. Lett. 130, 180401 (2023),
doi:10.1103/PhysRevLett.130.180401.

[53] M. J. Bhaseen, J. Mayoh, B. D. Simons and J. Keeling, Dynamics of nonequilibrium Dicke
models, Phys. Rev. A 85, 013817 (2012), doi:10.1103/PhysRevA.85.013817.

[54] F. Carollo and I. Lesanovsky, Exactness of mean-field equations for open Dicke models
with an application to pattern retrieval dynamics, Phys. Rev. Lett. 126, 230601 (2021),
doi:10.1103/PhysRevLett.126.230601.

[55] R. Di Candia, F. Minganti, K. V. Petrovnin, G. S. Paraoanu and S. Felicetti, Critical paramet-
ric quantum sensing, npj Quantum Inf. 9, 23 (2023), doi:10.1038/s41534-023-00690-z.

[56] I. Frérot and T. Roscilde, Quantum critical metrology, Phys. Rev. Lett. 121, 020402 (2018),
doi:10.1103/PhysRevLett.121.020402.

[57] C. Hotter, H. Ritsch and K. Gietka, Combining critical and quantum metrology, Phys. Rev.
Lett. 132, 060801 (2024), doi:10.1103/PhysRevLett.132.060801.

[58] L. Garbe, M. Bina, A. Keller, M. G. A. Paris and S. Felicetti, Critical quantum metrology
with a finite-component quantum phase transition, Phys. Rev. Lett. 124, 120504 (2020),
doi:10.1103/PhysRevLett.124.120504.

[59] Y. Chu, S. Zhang, B. Yu and J. Cai, Dynamic framework for criticality-enhanced quantum
sensing, Phys. Rev. Lett. 126, 010502 (2021), doi:10.1103/PhysRevLett.126.010502.

[60] S. Lorenzo, J. Marino, F. Plastina, G. M. Palma and T. J. G. Apollaro, Quantum critical
scaling under periodic driving, Sci. Rep. 7, 5672 (2017), doi:10.1038/s41598-017-06025-
1.

15

https://scipost.org
https://scipost.org/SciPostPhys.18.3.100
https://doi.org/10.1103/PhysRevA.108.022413
https://doi.org/10.1103/PhysRevLett.123.250502
https://doi.org/10.1103/PhysRevLett.130.180401
https://doi.org/10.1103/PhysRevA.85.013817
https://doi.org/10.1103/PhysRevLett.126.230601
https://doi.org/10.1038/s41534-023-00690-z
https://doi.org/10.1103/PhysRevLett.121.020402
https://doi.org/10.1103/PhysRevLett.132.060801
https://doi.org/10.1103/PhysRevLett.124.120504
https://doi.org/10.1103/PhysRevLett.126.010502
https://doi.org/10.1038/s41598-017-06025-1
https://doi.org/10.1038/s41598-017-06025-1

	Introduction
	Model
	Resonant fields

	QFI dynamics
	Understanding the QFI scaling
	Conclusions
	References

