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Abstract

The Shifman–Vainshtein–Zakharov (SVZ) sum rules provide a method to obtain trans-
series expansions in many quantum field theories, in which exponentially small correc-
tions are calculated by combining the operator product expansion with the assumption
of vacuum condensates. In some solvable models, exact expressions for trans-series can
be obtained from non-perturbative results, and this makes it possible to test the SVZ
method by comparing its predictions to these exact trans-series. In this paper we per-
form such a precision test in the example of the fermion self-energy in the Gross–Neveu
model. Its exact trans-series expansion can be extracted from the large N solution, at the
first non-trivial order in 1/N. It is given by an infinite series of exponentially small cor-
rections involving factorially divergent power series in the ’t Hooft parameter. We show
that the first two corrections are associated to two-quark and four-quark condensates,
and we reproduce the corresponding power series exactly, and at all loops, by using the
SVZ method. In addition, the numerical values of the condensates can be extracted from
the exact result, up to order 1/N.
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1 Introduction

In quantum field theory (QFT), perturbative series give the asymptotic expansion of observ-
ables at small coupling. There are many indications that this expansion can be upgraded to
a trans-series, i.e. a generalization of the perturbative series which includes exponentially
small corrections, in such a way that the exact value of the observable can be obtained by an
appropriate resummation.

Examples in QFT where we know explicitly the detailed structure of the trans-series are
scarce. In some two-dimensional asymptotically free theories, one can compute certain ob-
servables exactly, and then show that this exact expression can be re-expressed or “decoded”
as a resummed trans-series. A beautiful realization of this idea was achieved in [1], building
on previous work [2, 3], in the case of the two-point function of the non-linear sigma model
at next-to-leading order in the 1/N expansion.1 More recently, the free energy of integrable
models coupled to a conserved charge was decoded as a resummed trans-series, even at finite
N [4–9].

In generic QFTs, in which no analytic answer is known for the observables, physicists have
devised two ways of upgrading the perturbative series to a trans-series. The first one is to add
instanton corrections, coming from non-trivial saddle-points of the path integral. Instanton
calculus is plagued with problems and it is fair to say that it is of limited use, except in super-
symmetric theories or in very simple models. The second method to obtain trans-series can be
applied to correlation functions in very general QFTs. It combines Wilson’s operator product
expansion (OPE) with some assumptions on the vacuum structure of the theory.2 More pre-
cisely, this method assumes the existence of condensates, or non-zero vacuum expectation val-
ues (vevs), for the operators appearing in the OPE. It was used by Politzer in [12] to calculate
the quark propagator in QCD beyond perturbation theory, and then extended and systematized
in the famous QCD sum rules of Shifman, Vainshtein and Zakharov (SVZ) in [13,14]

An obvious question is whether the method of OPE and vacuum condensates provides
the correct trans-series representation of correlation functions. Although this might be ob-
vious to most practitioners in the field, there are various reasons for a detailed inquiry. For
example, it could be the case that the OPE provides only an approximate parametrization of
non-perturbative corrections, rather than the real thing. There has also been some debate con-
cerning which form of the OPE should be used to calculate trans-series. Most of the sum rule
calculations done by physicists are based on a simplified or “practical” version of the OPE, in

1The 1/N expansion, when used appropriately, gives a power series in 1/N where each term is an exact, non-
perturbative function of the renormalized ’t Hooft coupling, and not just a formal power series thereof. Sometimes
we will use the expression “exact results at large N”, or similar ones, to refer to this type of non-perturbative
functions.

2The fact that the method of OPE with condensates leads to trans-series, in the sense of the theory of resurgence,
was pointed out some time ago in [10]. This was also observed more recently in [11].
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which the Wilson coefficients are calculated perturbatively, while the vevs of the operators con-
tain the non-perturbative information, but it has been suggested [15,16] that one might need
more complicated procedures. Another important motivation to revisit these questions are
the explicit results on non-perturbative corrections at finite N obtained recently in integrable
models [4–9], and whether condensate techniques can provide a first principle derivation of
these results.

It is a good idea to ask foundational questions in simpler, solvable models where they can be
answered with precision. In the case of the SVZ method this has been done in various papers,
starting in the 1980s [1–3,15–17]. These works usually focused on the two-dimensional non-
linear sigma model at large N , and they extracted trans-series from exact results at leading
and next-to-leading order in the 1/N expansion, as we mentioned above. Evidence was given
that these trans-series are in agreement with the structure of the OPE, and in [15–17] this was
verified in some cases by explicit calculations. However, in challenging examples like the one
studied in [1], in which the power corrections contain infinite, non-trivial perturbative series
in the ’t Hooft parameter, it was assumed that the OPE would reproduce these series, rather
than verified explicitly.

The goal of this paper is to provide a direct comparison between an exact trans-series and
a standard calculation of power corrections. The original example of the two-dimensional
non-linear sigma model is not the simplest one to perform such a comparison, and we focus
instead on a fermionic cousin, the Gross–Neveu (GN) model [18], where trans-series are of
comparable complexity. The self-energy of elementary fermions (or “quarks”) in this model
can be calculated at the first non-trivial order in the 1/N expansion, as an exact function of the
external momentum and the mass gap [19]. By using the Mellin transform techniques of [1]
one can obtain an explicit trans-series representation of this function, involving an infinite
series of power corrections. Schematically, we have

Σ(p) = /pΣ0(λ) +ΛΣ1(λ) + /p
Λ2

p2
Σ2(λ) + . . . , (1)

where Λ is the dynamically generated scale and λ is the ’t Hooft coupling. The series Σ0(λ) is
the perturbative series, but each power correction involves a factorially divergent seriesΣn(λ),
n = 1, 2, . . . If the OPE picture is correct, one should be able to reproduce these series by do-
ing perturbation theory in the background of the appropriate vacuum condensates. This is
precisely what we verify with complete success, and at all loops, for the first two power cor-
rections, which are associated to the two-quark condensate and to the four-quark condensate
(these are the terms with n = 1,2 in the equation above, respectively). Once this is done,
the values of the condensates at next-to-leading order (NLO) in 1/N , which are unknown
parameters in the sum rules, can be extracted from the large N result.

Our calculation provides a precise and direct test of the SVZ method in the GN model, at
the first non-trivial order in 1/N expansion, and it illustrates various conceptual and practical
issues of the method. For example, it shows that the four-quark condensate is not ambiguous
at leading order in the 1/N expansion, due to factorization, but it is indeed ambiguous at
subleading order, as expected from the results of [2, 3]. Our calculation is done with the
“practical” version of the OPE, which leads to the correct result in this example. An amusing
spin-off result of this work is a diagrammatic derivation of the beta function of the model,
at next-to-leading order in the 1/N , which seems to be simpler than the approach usually
followed in the literature [20,21].

We should mention that the paper [22] considered the chiral GN model, and compared the
exact 1/N result for the propagator of the sigma particle to an OPE calculation with conden-
sates, to leading order in the ’t Hooft coupling. The resulting trans-series is much simpler than
the ones considered here. We derive this result for the sigma propagator, in the GN model, at
the end of section 4.4.
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This paper is structured as follows. In section 2 we review or derive various basic results
for the GN model which will be needed for the paper. In section 3 we obtain the trans-series
expression for the exact two-point function at the first non-trivial order in the 1/N expan-
sion. In section 4 we calculate the two-point function in perturbation theory with condensates,
where we include the first two power corrections, and we reproduce exactly the trans-series
derived from the 1/N expansion. Finally, in 5 we conclude and present some questions and
open problems. The Appendix collects some diagrammatic tools. It summarizes an impor-
tant technique to calculate all-loop results in the 1/N expansion, due to Palanques-Mestre and
Pascual [20,23], which is used throughout the paper.

2 The Gross–Neveu model

The GN model is a two dimensional QFT, involving an N -uple of Dirac fermions with a quar-
tic interaction, which was introduced in [18] as a toy model for various important physical
phenomena. First of all, the GN model is asymptotically free.3 It can be solved in the large N
limit, where it can be shown that quantum effects lead to spontaneous symmetry breaking of
a discrete Z2 symmetry and the formation of a bilinear fermion condensate. For these reasons,
the GN model can be seen as a toy model for the quark sector of QCD. In addition, the model
is integrable at the quantum level, its exact S-matrix has been conjectured in [26], and its
spectrum is extremely rich. In this section we will review some aspects of the model which we
will need in our precision test of the SVZ method.

We will work in Minkowski space, and our choice of Dirac algebra in two dimensions is:

γ0 = σ2 , γ1 = iσ1 , γ5 = σ3 . (2)

The Lagrangian density describing the theory is

L= iψ · /∂ψ+
g0

2

�

ψ ·ψ
�2

, (3)

where ψ = (ψ1, . . . ,ψN ) is an N -uple of Dirac fermions. The model has a continuous U(N)
global symmetry, and a Z2 discrete symmetry

ψ→ γ5ψ . (4)

In order to keep track of large N counting, it is extremely useful to introduce an auxiliary
scalar field σ and write the GN Lagrangian as

Lσ = iψ · /∂ψ−
1
2
σ2 +

p

g0σψ ·ψ . (5)

The original Lagrangian is obtained by integrating out σ. The symmetry (4) reads now

ψ→ γ5ψ , σ→−σ . (6)

One can also add a bare mass term for the fermions of the form

Lm f
= −m0 fψψ , (7)

although we will consider the massless theory with m0 f = 0 (as is well-known [18], even
when m0 f = 0 a dynamical mass is generated at the quantum level and can be calculated in

3The first example of an asymptotically free theory is in fact a close cousin of the GN model which was studied
by Anselm in [24], see [25] for a historical appraisal.
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the 1/N expansion). From now one we will work with the Lagrangian (5). To write down the
Feynman diagrams, we represent fermions by continuous lines and sigma particles by dashed
lines. The fermion propagator in momentum space is given by

S0(p)
αβ
i j =

�

i

/p−m0 f

�αβ

δi j . (8)

(Latin sub-indices are U(N) indices, while Greek super-indices are spinor indices.) The prop-
agator of the σ field is −i, and there is a single interaction vertex i

p
g0.

The GN model is renormalizable and asymptotically free. We will almost always adopt the
MS scheme and mostly work with bare fields, which we will simply denote byψ. Renormalized
fields will be denoted by ψR. The renormalization constants are defined as usual by

ψ= Z1/2
ψ
ψR , g0 = (ν

2)ε/2Zg g , m0 f = Zmm f . (9)

Our convention for ε is
d = 2− ε , (10)

and
ν2 = µ2eγE−log(4π) , (11)

where d is the number of space-time dimensions in dimensional regularization and µ is the
scale parameter. The beta function is defined as

β(g;ε) = −
εg

1+ g∂g log Zg
= −εg + β(g) , (12)

with
β(g) = −

∑

k≥0

βk gk+2 , (13)

while

γ(g) = β(g;ε)
∂ log Zψ
∂ g

, γm(g) = β(g;ε)
∂ log Zm

∂ g
, (14)

are the anomalous dimension of the field and the mass, respectively. The renormalization
functions are known to four loops in conventional perturbation theory, see [27] for recent
results and references to the literature. However, we will work in the 1/N expansion. We
define the ’t Hooft parameter

λ=
gN
π

, (15)

whose beta function is
βλ(λ;ε) =

N
π
β(g;ε) = −ελ+ βλ(λ) . (16)

The function βλ(λ) has a 1/N expansion at fixed ’t Hooft coupling given by

βλ(λ) =
∑

j≥0

β
( j)
λ
(λ)N− j , (17)

and similarly for βλ(λ;ε). We note that

β
(0)
λ
(λ;ε) = −ελ−λ2 , β

( j)
λ
(λ;ε) = β ( j)

λ
(λ) , j ≥ 1 . (18)

The first correction β (1)
λ
(λ) is known in closed form [28] and is given by

β
(1)
λ
(λ) = λ2

�

1+

∫ λ

0

Γ (2+ u)

(2+ u)Γ 3
�

1+ u
2

�

Γ
�

1− u
2

�du

�

. (19)
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We have similar results for the anomalous dimensions. The mass anomalous dimension has a
1/N expansion of the form

γm(λ) =
∑

j≥0

γ( j)m (λ)N
− j , (20)

where
γ(0)m (λ) = λ , (21)

and the first non-trivial correction is given by [29]

γ(1)m (λ) = χ(λ)−
β
(1)
λ
(λ)

λ
, (22)

where

χ(λ) =
λΓ (2+λ)

(2+λ)Γ 3
�

1+ λ
2

�

Γ
�

1− λ2
� . (23)

Finally, the field anomalous dimension has the 1/N expansion

γ(λ) =
∑

j≥1

γ( j)(λ)N− j , (24)

where

γ(1)(λ) =
λ2

2
1

2+λ
Γ (1+λ)

Γ 3
�

1+ λ
2

�

Γ
�

1− λ2
� . (25)

As we will see, the functions (25), (23) and (19) will be obtained as spin-offs of our trans-
series calculation for the perturbative, the two-quark condensate, and the four-quark conden-
sate sectors, respectively. The renormalization constants in (9) can be recovered from the
renormalization functions. We have, for the coupling constant,

Zg = exp

�

−
∫ g

0

du
u
β(u)
β(u;ε)

�

, (26)

while, for the field and mass renormalization, one finds

Zψ = exp

�∫ g

0

du
γ(u)
β(u;ε)

�

, Zm = exp

�∫ g

0

du
γm(u)
β(u;ε)

�

. (27)

The renormalization constants can also be obtained in a 1/N expansion by simply re-expressing
everything in terms of the ’t Hooft coupling. In particular, this coupling renormalizes as

λ0 = (ν
2)ε/2Zλλ , (28)

where Zλ is the renormalization constant Zg expressed in terms of λ and organized in a 1/N
expansion. It is given explicitly as

Zλ = exp

�

−
∫ λ

0

du
u
βλ(u)
βλ(u;ε)

�

. (29)

We will also need to renormalize the composite operators appearing in the OPE. We will
denote renormalized composite operators by a bracket, [O]. The renormalization constants
are defined by

Oi = Zi j

�

O j

�

, (30)
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where repeated indices are summed, and we have assumed mixing between a set of operators
[Oi], i = 1, . . . , n. Our convention for the matrix of anomalous dimensions is

γ= −β(g;ε)
∂Z−1

∂ g
Z . (31)

We will consider the operator of dimension 1

ψ(x)ψ(x) , (32)

and the operators of dimension 2

K = iψ(x) · /∂ψ(x) , V = g0

�

ψ(x)ψ(x)
�2

, (33)

which appear in the Lagrangian. The renormalization of the fermion bilinear is straightfor-
ward, since it is the mass term appearing in the Lagrangian, and we have

ψ(x)ψ(x) = Zψψ[ψ(x)ψ(x)] , (34)

where (see e.g. [30])
Zψψ = Z−1

m . (35)

Let us now consider the operators K and V . They mix under renormalization, and we can
calculate the matrix Zi j very easily by following the method of [31, 32]. In this method one
starts with the bare and renormalized effective actions

Γ 0 =

∫

dd x
n

Aiψ · /∂ψ+ B
g0

2

�

ψ ·ψ
�2
+ . . .

o

,

Γ =

∫

dd x
n

AZψiψR · /∂ψR + BZg Z2
ψ

g
2

�

ψR ·ψR

�2
+ . . .

o

.

(36)

The renormalization constants Zψ and Zg are chosen so that divergences are reabsorbed, and
we will fix them in such a way that

AZψ = BZg Z2
ψ = 1 . (37)

Let us consider the generating functional of 1PI Green functions with insertions of the bare
operators K , V at zero momentum. It can be obtained by acting with appropriate (functional)
derivatives with respect to bare quantities on the bare effective action Γ 0:

Γ 0
K =

�

1
2

∫

dd x

�

ψαi
δ

δψαi (x)
+ψ†α

i
δ

δψ†α
i (x)

�

− 2g0
∂

∂ g0

�

Γ 0 ,

Γ 0
V = 2g0

∂

∂ g0
Γ 0 .

(38)

The renormalized generating functionals for operator insertions of [K] and [V ] can be similarly
obtained by taking derivatives of Γ with respect to renormalized quantities. The renormaliza-
tion matrix Z for the Lagrangian operators satisfies

�

Γ 0
K
Γ 0

V

�

= Z

�

ΓK
ΓV

�

, (39)

and a simple calculation shows that

Z=

�

1− 2A′ −B′

2A′ 1+ B′

�

, (40)
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where we have denoted

A′ = g0
∂ log A
∂ g0

, (41)

and similarly for B. Explicit expressions for these quantities can be obtained from (26), (27),
and one finds

A′ =
γ(g)
ε

, B′ =
1
ε

�

2γ(g)−
β(g)

g

�

. (42)

We conclude that
�

K
V

�

=





1− 2γ
ε

1
ε

�

β
g − 2γ

�

2γ
ε 1+ 1

ε

�

2γ− βg
�





�

[K]
[V ]

�

, (43)

and the matrix of anomalous dimensions is given by

γ=





2gγ′(g) 2gγ′(g)−
�

β ′(g)− β(g)g

�

−2gγ′(g) −2gγ′(g) + β ′(g)− β(g)g



 . (44)

One can verify explicitly from (43) that the operator K + V does not renormalize. This is
a consequence of the fact that K + V can be written as the product of an operator times an
equation of motion [30]. Indeed, we have

ψ
δS

δψ
= K + V , (45)

where S is the action.

3 Trans-series from the 1/N expansion

3.1 An exact result for the self-energy

The GN model can be solved exactly at large N , and this means that one can calculate corre-
lation functions as a systematic expansion in 1/N (see [33,34] for an excellent presentation).
In the large N formulation, one integrates out the fermions in the action (5) and writes down
the following effective action for the σ field:

Seff = −
∫

d2 x
σ2

2g0
− iNTr log(iS−1

0 ) , (46)

where we have rescaled σ→ σ/pg0 as compared to (5), and

S0(σ) = i
�

i /∂ −σ
�−1

, (47)

is the free propagator for a Dirac fermion. This action has two saddle points at large N in
which σ takes a constant value σc = ±m0, and the classical Z2 symmetry (6) is dynamically
broken. The value of m0 is determined by the gap equation

1
N g0

=
1

m0

∫

dd k
(2π)d

Tr
�

i
/k−m0

�

. (48)

The propagator for the fluctuations of the σ field is defined as

∆−1(x , y) = −
i
N

δ2Seff

δσ(x)δσ(y)
, (49)
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Figure 1: Fermion self-energy diagrams at large N . The wavy line corresponds to the
propagator of the σ field, defined in (50).

evaluated at the large N saddle point σc = m0. In momentum space it is given by

∆−1(p; m0) =
i

2π
ξ log

�

ξ+ 1
ξ− 1

�

, (50)

where

ξ=

√

√

√

1−
4m2

0

p2
. (51)

See Appendix A.1 for some ingredients in the derivation of this formula. The large N theory
describes σ particles interacting with fermions, the coupling is of order N−1/2, and correlation
functions can be computed in terms of large N Feynman diagrams. The fermion self-energy
has the following form:

Σ(p) = m0 +
1
N

�

/pΣp +m0Σm

�

, (52)

where Σp,m have a 1/N expansion

Σp,m =
∑

j≥1

Σ j
p,mN− j+1 . (53)

The leading order terms can be computed from the diagrams in Fig. 1, and they are given
by [19,33,35]

Σ1
p =

1
p2

∫

d2k
(2π)2

p2 + k · p
(p+ k)2 −m2

0

∆(k; m0) ,

Σ1
m =

∫

d2k
(2π)2

�

∆(k; m0)
(p+ k)2 −m2

0

−
2πi

k2 − 4m2
0

�

.

(54)

These integrals are divergent and they have to be regularized and renormalized. In [19],
Campostrini and Rossi found explicit, finite expressions for them by using a sharp momentum
cutoff (SM) regularization scheme. In the SM scheme, one first performs a Wick rotation to
Euclidean space and computes the angular integral. Then, the resulting integrand is Taylor
expanded at infinity. The terms which lead to a divergence are simply subtracted, but in order
to avoid IR divergences in the subtracted pieces one has to introduce an IR cutoff M which
plays the role of the renormalization scale µ in dimensional regularization, see [36, 37] for
more details. The renormalized self-energy in the SM scheme can be written in terms of the
functions

A(x) =
1

4x

∫ ∞

0

�

ξy log

�

ξy + 1

ξy − 1

��−1�

1−
1+ y − x

p

(x + y + 1)2 − 4x y

�

dy ,

B(x) =
1
2

∫ ∞

0

�

ξy log

�

ξy + 1

ξy − 1

��−1�
1

p

(x + y + 1)2 − 4x y
+

1− ξy

2

�

dy ,

(55)
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where

ξy =

√

√

1+
4
y

. (56)

Then the renormalized self-energy has the form,

ΣSM(p) = m+
1
N

�

/pΣSM
p +mΣSM

m

�

, (57)

where ΣSM
p,m are given, at leading order in the 1/N expansion,

ΣSM
p = −A

�

−
p2

m2

�

+O(N−1) , ΣSM
m = −B

�

−
p2

m2

�

+O(N−1) . (58)

In (57), m is the mass gap, which differs from m0 in 1/N corrections:

m= m0 +
m1

N
+O

�

N−2
�

. (59)

m1 can be calculated in terms of the ’t Hooft coupling in the SM scheme, see [19] for details.
It is also possible to calculate the beta function and the anomalous dimension of the field in
the SM scheme. They are given by [19]

βSM(λ) = −λ2 +
1

2N
(2+λ)λ2 +O

�

N−2
�

, γSM(λ) =O
�

N−2
�

. (60)

The result for the anomalous dimension follows immediately from the fact that Σ1
p in (54) is

finite.
The SM scheme is the most useful one to perform calculations in the exact 1/N expansion,

but in conventional perturbation theory we will use the MS scheme. We therefore have to com-
pare quantities computed in different schemes. Let us introduce the dynamically generated
scale in the MS scheme, Λ, in the conventions of [35,38]. It is given by

Λ= µ
�

β0 g
2

�−β1/β
2
0

e−1/(β0 g) exp

�

−
∫ g

0

�

1
β(x)

+
1
β0 x2
−
β1

β2
0 x

�

dx

�

, (61)

where β0, β1 are the first coefficients of the beta function in (13). By comparing calculations
in the SM scheme and in the MS scheme, [35, 38] were able to relate the mass gap m to Λ.
One finds:

m=
�

1+
1
N

�

log 2−
γE

2
+

1
2

�

+ . . .
�

Λ . (62)

For the purposes of this paper, we want to compare the self-energy computed in different
schemes. We first recall that, in a change of scheme characterized by a coupling g to a new
one characterized by g ′, ℓ-point Green functions pick a factor ζℓ(g), where ζ(g) = 1+O(g)
is determined by the equation (see e.g. [30])

γ′(g ′)− γ(g) = −2β(g)
∂

∂ g
logζ(g) , (63)

and γ′(g ′) is the anomalous dimension in the new scheme. In our case, using the SM anoma-
lous dimension in (60), we find that

ζ(λ) = 1+
1

2N

∫ λ

0

γ(1)(u)

β
(0)
λ
(u)

du+O
�

N−2
�

. (64)

This result will be crucial for the comparison of the two calculations.
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3.2 Trans-series expression

The functions A(x), B(x) give the exact, non-perturbative result for the self-energy of the GN
model up to order 1/N , in the SM scheme. We will now show that these functions can be
written as Borel-resummed trans-series, by following the method developed in [1] for the
self-energy of the non-linear sigma model (see also [39] for further details on the strategy
and results of [1]). For background on trans-series, Borel resummation, and the theory of
resurgence, we refer the reader to [40–43].

Let us first focus on A(x). The first step is to write
�

log

�

ξy + 1

ξy − 1

��−1

=

∫ ∞

0

dt

�

ξy − 1

ξy + 1

�t

. (65)

We define the following functions, given as Mellin transforms,

Ki(s, t) =

∫ ∞

0

ξi
y

�

ξy − 1

ξy + 1

�t

y s−1dy , i ∈ Z , (66)

which can be computed as quotients of Γ functions. We will use

K−1(s, t) =
Γ (2s+ 1)Γ (−s+ t)
Γ (s+ t + 1)

. (67)

We also define

M(s) =

∫ ∞

0

y2

p

(x + y + 1)2 − 4x y
y s−1dy

= (1+ x)s+1B(s+ 2,−1− s)2F1

�

s+ 2,−1− s; 1;
x

1+ x

�

.

(68)

Then, by using the properties of the Mellin transform and its inverse, we obtain the following
representation for the function A(x),

A(x) =
1

4x

∫ ∞

0

dt

�

−
∫

C1

ds
2πi

K−1(−s, t)M(s)+(x−1)

∫

C2

ds
2πi

K−1(−s, t)M(s−1)+K−1(1, t)

�

.

(69)
In this equation, C1 is the line c + iR with c ∈ (−2,−1). For C2, we must consider instead
c ∈ (−1, 0).4 We now expand the hypergeometric function in (68) at large x:

M(s) = x s+1
∑

k≥0

ak(s)x
−k , (70)

with coefficients

ak(s) =
(−1− s)kΓ (s+ 2)
k!2Γ (s+ 2− k)

�

log(x) + 2ψ(k+ 1)−ψ(−s+ k− 1)−ψ(s+ 2− k)
�

. (71)

We must also consider the combination

−M(s) + (x − 1)M(s− 1) = x s+1
∑

k≥0

�

−ak(s) + ak(s− 1)− ak−1(s− 1)
�

x−k

= x s+1
∑

k≥0

bk(s)x
−k ,

(72)

4For C1, the value of c has to be in the region of convergence of the integral M(s) appearing in the first line of
(68). For C2, we have to consider instead M(s − 1), so the region of convergence gets displaced by 1. The values
of c will be crucial to determine which singularities have to be included when we deform the contours to the left
of the complex plane.
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with the convention that a−1(s) = 0. Explicitly, the coefficients bk(s) are given by

b0(s) = 2/(1+ s) , (73)

bk(s) =
2kΓ (s+ 1)Γ (k− s− 1)
k!2Γ (−s)Γ (s+ 1− k)

�

log(x) + 2ψ(k) +
1
k
−ψ(−s+ k− 1)−ψ(s− k+ 1)

�

. (74)

Eq. (69) is then written as

A(x) =
1
4

∫ ∞

0

dt

�

∑

k≥0

∫

C2

ds
2πi

K−1(−s, t)bk(s)x
−k+s

+

∫

C−1

ds
2πi

K−1(−s, t)ak(s)x
−k+s +

K−1(1, t)
x

�

, (75)

where C−1 is a small circle around s = −1. We compute the integral in s by using the residue
theorem. Deforming the contour C2 to the left, we have contributions from:

1. Poles of K−1(−s, t) at s = −t − j, j ∈ Z≥0. We group the poles contributing with a factor
(−x)−n x−t , with fixed n = k + j (0 ≤ k ≤ n, 0 ≤ j ≤ n). In this way, we define the
functions

En(t) =
(−1)n

4

n
∑

j=0

bn− j(−t − j)Ress=−t− jK−1(−s, t) . (76)

2. Poles of bk(s) at s = − j−1, j ∈ Z≥0, coming from the last digamma function in (74).5 In
this case, we group the poles contributing with a factor −(−x)−n, with fixed n= k+ j+1
(0≤ k ≤ n, 0≤ j ≤ n− 1). In this way, we define

Hn(t) = −
(−1)n

4

�

K−1(1, t)Ress=−1

�

bn−1(s) + an−1(s)
�

+
n−1
∑

j=1

K−1( j + 1, t)Ress=− j−1 bn− j−1(s)
�

, n ̸= 1 , (77)

with the convention that a−1(s) = b−1(s) = 0.

For n= 1, we have to add the contribution from the term

1
4 K−1(1, t) =

1
2t(t2 − 1)

, (78)

in (75).

With these conventions, we obtain the final result

A(x) =
∑

n≥0

(−x)−n

∫ ∞

0

dt
�

x−tEn(t)−Hn(t)
�

. (79)

We now recall that, in order to obtain the self-energy ΣSM
p , we have to set x = −p2/m2. We

introduce the variable λ as

−
m2

p2
= e−2/λ , (80)

as well as the Borel variable y = 2t. Let us note the important fact that, at leading order in
the 1/N expansion, λ can be identified with the running ’t Hooft parameter λ(p) at the scale

5Naively, there are more poles coming from the digamma function in bk(s), but they have residue 0. The case
k = 0 is an exception in which we only have a single pole at s = −1.
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set by p in the MS scheme, since at this order one has m ≈ Λ. We also define the functions
En(y), Fn(y), Gn(y) and Hn(y) as

En(y) =
En(y/2)

2
=

1
λ

Fn(y) + Gn(y) ,

Hn(y) =
Hn(y/2)

2
.

(81)

We can then write

A

�

−
p2

m2

�

=
∑

n≥0

�

m2

p2

�n∫ ∞

0

dy
�

e−y/λEn(y)−Hn(y)
�

. (82)

One finds the explicit expressions, for n= 0,1,

E0(y) =
1
2

1
2− y

, H0(y) = 0 ,

E1(y) =
1
λ

y
4
−

1
y
−

1
2
+

y
8

h

1− 2γE −ψ
� y

2

�

−ψ
�

−
y
2

�i

, H1(y) =
4

y(y − 2)(y + 2)
,

(83)

where ψ(x) is the digamma function. It is possible to check, on a case by case basis, the
equalities

Resy=2kGn(y) = (−1)kResy=2kHn+k(y) , k, n ∈ Z≥0 , (84)

which are needed to have a complete cancellation of poles in the integral (82), after summing
over all n≥ 0. However, the integrand in (82) is singular for a fixed n. This allows us to write
a formal trans-series out of the above expression, as follows. Let us define

rn,k = Resy=2k Hn(y) . (85)

The first step is to rearrange the integral for fixed n as

∫ ∞eiθ

0

�

e−y/λ
�

Fn(y)
λ
+ bGn(y)

�

−
�

Hn(y)− rn,0
e−y/λ

y

��

dy , (86)

where we have introduced the function

bGn(y) = Gn(y)−
rn,0

y
, (87)

which is regular at the origin. Note that for fixed n the integrand has singularities for positive
values of y , and we have deformed the integration contour slightly above or below the positive
real axis with a small angle θ , to make sense of the integral. The integrand of (86)

Fn(y) +λbGn(y) =
∑

k≥0

yk

k!

�

F (k)n (0) +λbG
(k)
n (0)

�

, (88)

can be regarded as the Borel transform of the factorially divergent series (our convention for
the Borel transform is as in [41])

ϕn(λ) =
∑

k≥0

�

λkF (k)n (0) +λ
k+1

bG(k)n (0)
�

= Fn(0) +
∑

k≥0

�

F (k+1)
n (0) + bG(k)n (0)

�

λk+1 , (89)

and we can write
∫ ∞eiθ

0

e−y/λ
�

Fn(y)
λ
+ Gn(y)−

rn,0

y

�

dy = s±(ϕn)(λ) , (90)
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where s± are lateral Borel resummations (see e.g. [41] for a definition of these). In this and
similar expressions in the following, the ± sign is correlated with the sign of θ in the contour
deformation.

Let us now consider the second piece, involving Hn(t). A simple calculation shows that

−
∫ ∞eiθ

0

�

Hn(y)− rn,0
e−y/λ

y

�

dy = rn,0 log(λ) + cn ± iπ
n
∑

k=1

rn,k , (91)

where the constant cn is defined as the principal value integral

cn = −P

∫ ∞

0

�

Hn(y)− rn,0
e−y

y

�

dy . (92)

It is natural to include the logarithmic and constant pieces in the trans-series, so that the total,
factorially divergent series for each n is given by

Φ2n(λ) = rn,0 log(λ) + cn ± iπ
n
∑

k=1

rn,k +
∑

k≥0

�

λkF (k)n (0) +λ
k+1

bG(k)n (0)
�

, n≥ 0 . (93)

We have labelled these formal series in λ with an even index, 2n, since they multiply even
powers of m, m2n, in the trans-series, and as we will see the function mB(x) leads to odd
powers m2n+1. For n= 0,1 we use the expressions in (83) to obtain

Φ0(λ) =
∑

k≥1

(k− 1)!
2k+1

λk ,

Φ2(λ) = γE + log(2)±
iπ
2
− log(λ)−

λ

4
+
λ2

8
+
∑

k≥1

(2k+ 1)!
22k+2

ζ(2k+ 1)λ2k+2 .
(94)

The series Φ0(λ) corresponds to the perturbative sector of the self-energy. It has appeared
already in [19], since it gives the classical asymptotic expansion of the function A(x). On
the other hand, Φ2(λ) is the first trans-asymptotic correction to A(x) and multiplies a power
correction of order m2/p2. In addition, it is ambiguous. The ambiguity has a very simple
interpretation, in view of the above analysis. The Borel transform of the perturbative series
Φ0(λ) has a singularity at y = 2, therefore its two lateral Borel resummations are different.
However, the choice of the constant term in the trans-series Φ2(λ) can be correlated with the
choice of lateral resummation of Φ0(λ), so that the final result is the same for both choices.
This is an illustration of the general phenomenon noted by David in [2].

So far we have analyzed the trans-series expression for A(x). In the case of B(x), the
trans-series structure can be obtained from the observation that [19]

B(x) =
1

2(1+ 3/x)

�

4A(x) +
S(x)

x

�

, (95)

where

S(x) =

∫ ∞

0

dy

�

log

�

ξy + 1

ξy − 1

��−1� yξy
p

(x + y + 1)2 − 4x y
− 1+

x + 1
2

�

1
ξy
− 1

��

. (96)

The trans-series structure of S(x)/x is known from [1,39], and it involves corrections in even
powers of m. Therefore the trans-series structure for B(x) follows from the results for A(x)
and S(x)/x . For the purposes of this paper, only the classical asymptotic series of B(x) will be
needed. It is given by the formal series in the ’t Hooft parameter

Φ1(λ) =
1
2
−
γE

2
−

1
2

log(2) +
1
2

log(λ) +
∑

k≥1

(2k)!
22k+1

ζ(2k+ 1)λ2k+1 . (97)
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p + q

Figure 2: The 1/N correction to the fermion self-energy is given by a chain of n
bubbles.

Let us summarize the results in this section. The fermion self-energy Σ(p) in the SM
scheme, at order 1/N , is given by an exact expression which is a function of the external
momentum p and the mass gap m. By using the Mellin transform techniques of [1], this ex-
pression can be decoded as a trans-series. This involves a perturbative part, given by the series
Φ0(λ), a power correction proportional to m ∼ Λ and involving the series Φ1(λ) in (97), and
a power correction proportional to m2 ∼ Λ2 and involving the series Φ2(λ) in (94). More
precisely, we have

ΣSM(p)∼ −
1
N /

pΦ0(λ) +m
�

1−
1
N
Φ1(λ)

�

−
1
N /

p
m2

p2
Φ2(λ) + . . . (98)

We note that the l.h.s. of this equation is a well-defined function of p, while on the r.h.s. we
have a trans-series representation. The first term is the perturbative series, while the second
and the third term are non-perturbative power corrections. The dots refer to higher order
power corrections, and to higher order corrections in 1/N . Thanks to the exact large N analy-
sis, we have precise, all-loop predictions for the power series attached to each of these power
corrections.

We should be able to reproduce the first term in the r.h.s. of (98) from a conventional per-
turbative calculation in, say, the MS scheme. This was essentially verified in [19], although we
will present a more detailed calculation in the next section. In addition, if the method of OPE
with vacuum condensates proposed in [12–14] gives the correct trans-series representation
of observables, the power corrections in the r.h.s. of (98) should be calculable with the SVZ
approach, up to unknown overall constants related to the values of the vacuum condensates.
We will also verify this in the next section.

4 Trans-series from condensates

In this section we will calculate the series Φ0,1,2(λ) in perturbation theory with condensates.
We will always work in the MS scheme.

4.1 Perturbative series

The first step is to compute the leading 1/N correction to the fermion self-energy, at all orders
in the ’t Hooft coupling constant. This is a standard renormalon calculation, since the n-th
order correction is due to a chain of n fermion loops or “bubbles”, linked by σ propagators, as
shown in Fig. 2. Using the Feynman rules, one finds that the contribution of n loops is

(i
p

g0)
2n+2(−i)n+1N nΠn(q2) =

i
N

�

iΠ(q2)
�n
(πλ0)

n+1 , (99)

where we have introduced the bare ’t Hooft parameter λ0 as in (15), and Π(q2) is the fermion
polarization loop (A.5). We now express λ0 in terms of the renormalized coupling constant
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through (28), and we sum the geometric series of bubbles to

i
N

1

(πλ(ν2)ε/2)−1Z−1
λ
− iΠ(q2)

. (100)

If we now take into account that

−iΠ(q2) = −
1
πε
+ . . . , (101)

we deduce that the renormalization constant Zλ is given, at large N , by

Z−1
λ = 1+

λ

ε
+ . . . , (102)

in agreement with the result (18) for the beta function at leading order in the 1/N expansion.
We will write the (bare) self-energy as in (52),

Σ(p)∼
1
N /

pΣp , (103)

where the asymptotic sign ∼ emphasizes that our calculation will lead to a representation in
terms of formal power series. If we define

I0(n) =
1

/p
πn

∫

ddq
(2π)d

(/p+ /q)

(p+ q)2
(iΠ(q2))n−1 , (104)

it is easy to see that the leading term in the 1/N expansion of Σp is

ΣP,1
p =

∑

n≥2

iI0(n)λ
n
0 , (105)

where we have added a superscript P to indicate that this is the perturbative result, and the
superindex 1 means that, as in (53), this is the term of order 1/N in the 1/N expansion. We
can perform the integral (104) explicitly by using (A.3), and we find

I0(n) =
i
4

�

−
p2

4π

�−nε/2 Γ
�

1− ε2
�

Γ
� nε

2

�

Γ
�

1− nε
2

�

Γ
�

(n−1)ε
2

�

Γ
�

2− (n+1)ε
2

�

�

−
1
2

Γ
�

1− ε2
�

Γ
�

1+ ε
2

�

Γ
�

− ε2
�

Γ (1− ε)

�n−1

. (106)

We can now use the techniques of Appendix A.2 to write the sum (105) in terms of the structure
function

F(x , y) = −
1
2

�

−
p2

4πν2

�−y/2 Γ
�

1− x
2

�

Γ
�

1+ y
2

�

Γ
�

1− y
2

�

Γ
� y−x

2

�

Γ
�

2− y+x
2

�

�

Γ
�

1+ x
2

�

Γ 2
�

1− x
2

�

Γ (1− x)

�y/x−1

. (107)

This function contains both the divergent and the finite part of the bare self-energy. To renor-
malize the self-energy we need to introduce the renormalization of the field, which has the
1/N expansion

Zψ = 1+
1
N

Z (1)
ψ
+ . . . (108)

The renormalized self-energy is then given by

Σ
P,1
p,R = Σ

P,1
p − Z (1)

ψ
. (109)

By using the results of Appendix A.2 we find

Z (1)
ψ
=
�

ΣP,1
p

�

div
=
�

F0(ε) log
�

1+
λ

ε

��

div
, (110)
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where the function F0(ε) = F(ε, 0) is given by

F0(ε) =
ε

2
1

2− ε
Γ (1− ε)

Γ 3
�

1− ε2
�

Γ
�

1+ ε
2

� , (111)

and we have taken into account that F0,0 = F(0,0) = 0. We can now use (A.24) to obtain the
anomalous dimension of the field, at the first non-trivial order in 1/N , as

γ(1)(λ) = −λF0(−λ) , (112)

which reproduces the result (25).
Let us now compute the renormalized self-energy, given by the finite part as ε→ 0. The

finite part can also be computed in terms of the structure function by using the general formula
(A.23). We first note that, from (112) and β (0)

λ
(λ) = −λ2, we have

−
∫ λ

0

F0(−u)
u

du= −
∫ λ

0

γ(1)(u)

β
(0)
λ
(u)

du . (113)

Therefore, in this case, (A.23) reads

Σ
P,1
p,R = −

∫ λ

0

γ(1)(u)

β
(0)
λ
(u)

du− F0,1λ+
∑

m≥2

(m− 1)!Fm(0)λ
m . (114)

From the structure function (107), we find

−F0,1λ= −
λ

4
,

∑

m≥2

Fm(0)y
m = −

y
2(2− y)

+
y
4

, (115)

where we have set p2 = −µ2 in (107) and therefore the coupling constant appearing above is
λ= λ(p). Since F0,1 = −F1,0, we obtain

Σ
P,1
p,R = −

∫ λ(p)

0

γ(1)(u)

β
(0)
λ
(u)

du−
∑

m≥1

(m− 1)!
2m+1

(λ(p))m . (116)

To compare this result with (98) we have to take into account the change of scheme, from SM
to MS. The coupling constants λ appearing in both expressions are the same, up to this order
in 1/N . In addition we have to take into account the factor ζ(λ) determined in (64). By using
this result, we find that the relation between the self-energy ΣSM

p in the SM scheme and the

self-energy Σp,R in the MS scheme, at leading order in the 1/N expansion, is given by

ΣSM
p = Σp,R +

∫ λ

0

γ(1)(u)

β
(0)
λ
(u)

du+O
�

N−1
�

. (117)

Since the power series in the second term of the r.h.s. of (116) is nothing but −Φ0(λ), we
conclude that the perturbative calculation of the self-energy in the MS scheme gives precisely
the perturbative part of the trans-series (98), after taking into account the correction (117).

Let us mention that the factorially divergent perturbative series (116) is perhaps the sim-
plest example of an IR renormalon in an asymptotically free theory. As is well-known, IR
renormalons are smoking guns for non-perturbative corrections due to condensates. We will
see later on in this paper that in the case of the renormalon (116), the corresponding conden-
sate is the four-quark condensate.6

6In section IV of the original paper by Gross and Neveu [18] they consider the self-energy for the theory in
which fermions have a mass term of the form (7). They show that the perturbative expansion of this quantity is
factorially divergent, and this is the first appearance of a renormalon in the QFT literature. However their example
is not an IR renormalon, but an UV renormalon.
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4.2 General aspects of perturbation theory with condensates

We would like now to calculate the power corrections appearing in (98) within the SVZ ap-
proach. The basic idea in this approach is to use the OPE for the operators appearing in the
two-point function. In our case the OPE reads, schematically,

ψ(x)ψ(0) = C(x)1+ C
ψψ
(x)[ψ(0)ψ(0)] + CK(x)[K(0)] + CV (x)[V (0)] + . . . , (118)

where we have included the operators of dimension one and two. One further assumes that
the different operators appearing in the OPE have non-vanishing vevs, also called vacuum
condensates. In the GN model this is expected to be so, as it can seen for example in the large
N solution of the model. Indeed, it is elementary to show that, in the MS scheme, the solution
of the gap equation (48) for σc = m0 is

σ2
c = Λ

2 , (119)

where we used the normalization for this field in (46). On the other hand, σ can be integrated
out and is given by

σ = g0ψψ , (120)

therefore we have
〈[ψψ]〉c ≈ −

N
πλ
Λ , (121)

at large N . The operator [V ] appearing in the Lagrangian should also have a non-trivial vev,
by large N factorization, and we expect

〈[V ]〉c ≈
πλ

N
〈[ψψ]〉2c , (122)

at large N . In addition, due to (45), we also expect

〈[K]〉c = −〈[V ]〉c . (123)

Therefore, we will assume that all the operators appearing in the OPE (118) lead to non-trivial
vacuum condensates, and we will assume that these condensates satisfy the properties (122),
(123), as they follow from large N factorization and basic principles.

Although we have written the OPE (118) in position space for pedagogical purposes, we
will always work in momentum space, where the OPE is valid at large momentum. This is the
standard setting for QCD sum rule calculations. The relation between the OPE in momentum
and in position space is not completely straightforward, since some terms which appear in
position space do not appear in momentum space (see e.g. the discussion at the beginning
of [44]), but we will not deal with these issues in this paper.

In order to make contact with the trans-series (98) we need the precise relation between
vacuum condensates and the dynamically generated scale Λ, which can be in turn related to
the mass gap through (62). This relation follows from general principles, since the vevs of
composite operators have to satisfy the Callan–Symanzik equation

�

δi j

�

µ
∂

∂ µ
+ β(g)

∂

∂ g

�

+ γi j

�

〈[O j]〉c = 0 , (124)

in the general case of operator mixing. If there is a single operator O of dimension d, with
anomalous dimension γO, the solution of the equation (124) is

〈[O]〉c = ξΛd exp

�

−
∫ g(µ)

γO(u)
β(u)

du

�

, (125)
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where ξ is an overall constant which might depend on the parameters of the theory, like N .
Eq. (125) applies in particular to the operator ψψ, which does not mix. In this case we have
γ
ψψ
= −γm. By using the explicit expressions (21), (22) for the mass anomalous dimension,

one finds

〈[ψψ]〉c = −Nc(N)
Λ

πλ
exp

�

−
1
N

∫ λ
χ(u)
u2

du+O
�

N−2
�

�

, (126)

where χ(u) is given in (23). Its expansion around u= 0 has the form

χ(u) = χ1u+O(u2) , χ1 =
1
2

, (127)

and the integral appearing in (126) has to be understood as

∫ λ
χ(u)
u2

du= χ1 log(λ) +

∫ λ

0

χ(u)−χ1u
u2

du . (128)

If we compare (126) with the result at large N in (121) we find that c(N) has the 1/N expan-
sion

c(N) = 1+
c1

N
+O

�

N−2
�

. (129)

The choice of normalization in (126), with additional factors of π, N was made so that
c(N) ≈ 1 at large N , as shown in (129). The subleading terms in the expansion of c(N)
could be obtained by calculating 1/N corrections to the effective potential.

In the case of the operators K , V , there is operator mixing and the matrix of anomalous
dimensions is given in (44). We can reduce the system of equations to a single equation by
taking into account (123), and solve it in the 1/N expansion. A simple calculation gives

〈[V ]〉c = Nd(N)
Λ2

πλ
exp

�

1
N

�

β (1)(λ)
λ2
− 1

�

+O
�

N−2
�

�

, (130)

where

d(N) = 1+
d1

N
+O

�

N−2
�

. (131)

The fact that d(N)≈ 1 at large N is a consequence of the large N factorization (122).
With the above results, we can calculate the value of the condensates appearing in the

OPE (118), up to the non-perturbative functions c(N), d(N). The Wilson coefficients can
be determined in various ways. The most practical method is the following (see [45] for an
excellent exposition in the context of QCD): one expands in series the interaction terms in the
Lagrangian, as in standard perturbation theory. We then Wick-contract the elementary fields
with the usual rules, except for the fields that will enter into the condensate. For example,
to calculate C

ψψ
, corresponding to the two-quark condensate, two of the elementary fields

shouldn’t participate in the contraction, but form the vacuum condensate. The combinatorial
possibilities for doing this expansion can be represented by Feynman diagrams in which the
fields that form the condensate are represented by blobs. We will see plenty of examples of
this procedure in the next section.

In forming the condensates, we will encounter vevs of fermion operators which are not
Lorentz scalars or U(N) singlets. These vevs can be determined easily by imposing Lorentz
and U(N) invariance. For example, for a general bilinear in fermions, we have

〈ψµi (0)ψ
ν

j (0)〉c = −
δi jδ

µν

2N
〈ψψ〉c , (132)
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Figure 3: The two diagrams that contribute to the two-quark condensate correction
to the two-point function, at leading order in g0.

while for the operators related to the Lagrangian operators V , K we have

g0〈ψαi (0)ψ
β

j (0)ψ
µ

k (0)ψ
ν

l (0)〉c =
�

δαβδµνδi jδkl −δανδµβδilδ jk

� 〈V 〉c
2N(2N − 1)

,

〈∂µψαi (0)ψ
β

j (0)〉c =
i

2dN
(γµ)

αβδi j〈K〉c .
(133)

We note that we use a dimensional regularization in which the dimension of space-time is
d, but the dimension of the Dirac spinor space is 2⌊d/2⌋ = 2. To relate the vevs of the bare
operators to the finite vevs of the renormalized operators we use the renormalization constants
in (34), (43). For the operators K , V , using (45), we find

〈V 〉c = −〈K〉c =
�

1−
βλ(λ)
ελ

�

〈[V ]〉c . (134)

4.3 Trans-series for the two-quark condensate

Let us now calculate the contribution to the self-energy of the trans-series associated to the two-
quark condensate 〈ψψ〉c . Similar calculations in QCD can be found in [12,46,47]. To illustrate
the OPE method with condensates, we will first consider in some detail the contribution at
leading order in the coupling constant. A pedagogical exposition of the method in the case of
QCD can be found in [45].

It is convenient to start the calculation in position space, and only later Fourier transform
into momentum space. We recall the Wick contractions are defined as

σ(x)σ(y) = −iδ(x − y) , (135)

and
ψ
µ
i (x)ψ

ν
j (y) = δi jS

µν
0 (x − y) , (136)

where

Sµν0 (x) =

∫

dd k
(2π)d

e−ikx
�

i
/k

�µν

. (137)

To compute the two-point function at order g0, we bring down two factors of the interaction
term in the Lagrangian. This yields the following expression

−g0〈ψ
µ
i (x)ψ

ν

j (0)

∫

dd y1dd y2ψ
α

m(y1)ψ
α
m(y1)σ(y1)ψ

β

n (y2)ψ
β
n (y2)σ(y2)〉 , (138)

where we have to perform Wick contractions, but leaving a two-quark pair uncontracted to
form the condensate. There are two ways of doing this. In the first way, we contract both

20

https://scipost.org
https://scipost.org/SciPostPhys.18.3.101


SciPost Phys. 18, 101 (2025)

(a) (b)

Figure 4: These diagrams are of order 1/N , but they do not contribute to the
two-quark condensate trans-series. Diagram a vanishes since it is proportional to
Trγµ = 0, and b involves propagators at zero momentum.

external legs to the same vertex. One set of contractions is

〈ψµi (x)ψ
ν

j (0)ψ
α
m(y1)ψ

α
m(y1)σ(y1)ψ

ν

b(y2)ψ
ν
b(y2)σ(y2)〉 , (139)

and there is another, equivalent one obtained by exchange of the vertices y1 and y2. This type
of contractions can be represented by the diagram in Fig. 3a. Note that the two-quark pair
which leads to the vacuum condensate is traced over. After performing a Fourier transform
into momentum space and doing the integrals in the spacetime variables, we obtain

−
ig0

p2
〈ψψ〉c . (140)

This is a contribution of order one in the 1/N expansion and, after renormalization, it will
give the term m in the trans-series of the self-energy (98).

In the second type of contributions, we contract each external leg with a different vertex.
This leads to contractions of the form

〈ψµi (x)ψ
ν

j (0)ψ
α
m(y1)ψ

α
m(y1)σ(y1)ψ

β

b (y2)ψ
β

b (y2)σ(y2)〉 , (141)

as well as a similar one obtained by exchanging the vertices. They can be represented by the

diagram in Fig. 3b. The vev of the product ψαm(y1)ψ
β

b (y2) leads to a condensate and, due
to the delta function δ(y1 − y2) coming from (135), both fields are at the same point. After
using (132), we find that the contribution of the diagram in Fig. 3b to the two-point function
is simply

ig0

2N
1
p2
〈ψψ〉c . (142)

A general principle to retain from this calculation is that condensates in which both quarks
come from the same interaction vertex have a relative factor of N , as compared to condensates
where the fermions are from different vertices. This is important when taking into account
large N counting.

After multiplying the diagrams in Fig. 3 by i and removing their external legs, we find
that the total contribution of the two-quark trans-series to the self-energy, at first order in the
coupling, is

−g0

�

1−
1

2N

�

〈ψψ〉c . (143)

Let us mention that the diagram in Fig. 3b has a counterpart in the calculation of the two-quark
condensate correction to the quark propagator in QCD [12,46], in which the σ propagator is
replaced with a gluon.

After this pedagogical exercise, let us consider the diagrams which give the trans-series
Φ1(λ) in the self-energy (98). In order to proceed, we recall that in calculating the self-energy
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in conventional perturbation theory, one considers only one-particle irreducible diagrams, i.e.
diagrams that can not be divided into subdiagrams by cutting one fermionic internal line.
The underlying reason is that reducible diagrams factorize, therefore their contribution can be
obtained from their subdiagrams. In the presence of condensates one has to be careful, since
diagrams that look reducible in the conventional sense do not factorize. Let us then reconsider
the relationship between the two-point function and the self-energy when one includes non-
perturbative corrections coming from condensates.

As it is clear from (98), the self-energy up to order 1/N is a trans-series. The inverse,
renormalized two-point function can then be written as

iS−1
R (p) = /p−

1
N /

pΣP
p,R − CΣNP

m,R −
C2

N /
pΣNP

p,R +O
�

C3
�

. (144)

In this equation, we have introduced a trans-series parameter C to keep track of the powers
of m, the superscripts P, NP refer to perturbative and non-perturbative contributions, respec-
tively, and the subscript R stands for renormalized. The self-energies appearing in this equation
have 1/N expansions with the structure

ΣP
p,R =

∑

j≥1

Σ
P, j
p,RN− j+1 ,

ΣNP
m,R =

∑

j≥0

Σ
NP, j
m,R N− j ,

ΣNP
p,R =

∑

j≥1

Σ
NP, j
p,R N− j+1 .

(145)

An important remark is that, in doing the 1/N expansions of the self-energies computed diagra-
matically, we keep the condensates themselves fixed, i.e. we do not expand them as in (126)
or (130). This is the natural 1/N counting when working with diagrams with condensates.
We now expand SR(p) in C and 1/N to obtain

SR(p) =
i

/p

�

1+
1
N
Σ

P,1
p,R +

C
/p

�

Σ
NP,0
m,R +

1
N
Σ

NP,1
m,R

�

+
2C
N /p
Σ

NP,0
m,R Σ

P,1
p,R +O

�

C2, N−2
�

�

. (146)

The second term inside the brackets is the perturbative piece calculated in (116), andΣNP,0
m,R can

be obtained from (140). The fourth term appearing inside the brackets in the r.h.s. factorizes
into a perturbative piece and a non-perturbative piece, and as we will see it corresponds to a
reducible diagram.

Let us now consider the diagrams that contribute to (146). They have to be of order 1/N ,
but incorporate all loops. In conventional perturbation theory, such diagrams are obtained
by inserting chain bubbles, and the same principle holds in the case of perturbation theory
with condensates. There are however various diagrams that have the right 1/N counting but
vanish in dimensional regularization, or vanish because they involve a trace of an odd number
of gamma matrices. An example is the diagram in Fig. 4a. There is another type of diagrams
that do not contribute: condensates are essentially zero-momentum insertions and they can
lead to diagrams in which we have propagators at zero momentum. These diagrams have to
be discarded [45]. The diagram in Fig. 4b is an example of this. We note however that the
diagram in Fig. 4a turns out to contribute to the four-quark condensate correction, as we will
explain in section 4.4.

Among the non-vanishing diagrams, one finds Fig. 5. Its contribution factorizes into the
contribution of the perturbative diagram of Fig. 2, which is of order 1/N , and the contribution
of the diagram in Fig. 3a. This is the reducible diagram that corresponds to the fourth term
inside the bracket in (146), as we anticipated above. It does not contribute to the self-energy.
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Figure 5: A reducible diagram.

(a) (b)

Figure 6: Irreducible diagrams that contribute to the two-quark condensate trans-
series at order 1/N , and all loops.

Let us then consider diagrams which do not factorize. We will call such diagrams irre-
ducible. They are shown in Fig. 6 (in the drawings we show only insertions of two or three
bubbles, but of course one should consider insertions of an arbitrary number of bubbles). The
diagram in Fig. 6a is obtained by inserting the bubble chain (99) inside in Fig. 3b, and no
additional integration is needed. Its contribution to the self-energy is

πλ0

2N2
〈ψψ〉c

∑

n≥1

�

iΠ(p2)
�n
(πλ0)

n , (147)

where n is the number of polarization loops inserted.7 Notice that, when n ≥ 1, the fermion
and antifermion fields in the condensate are no longer at the same point. In this case, we have
to expand

〈ψαm(y1)ψ
β

n (y2)〉c = 〈ψαm(0)ψ
β

n (0)〉c + (y1 − y2)
µ〈∂µψαm(0)ψ

β

n (0)〉c + . . .

= −
1

2N
δmnδ

αβ〈ψψ〉c + . . .
(148)

In calculating the contribution to the two-quark condensate we only retain the first term in
the r.h.s. of the first line, but the derivative term will contribute to the four-quark condensate,
as we will see in the next section.

Let us now consider the diagram in Fig. 6b. A straightforward calculation gives the follow-
ing contribution to the self-energy:

πλ0

N2
〈ψψ〉c

∑

n≥1

iI1(n)λ
n
0 , (149)

where I1(n) is the loop integral

I1(n) = π
n

∫

ddq
(2π)d

�

iΠ(q2)
�n−1

(p+ q)2
. (150)

7In this equation, we start the sum at n = 1, since the term n = 0 will be already accounted for when we add
(143).
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This integral can be evaluated in dimensional regularization using (A.3):

I1(n) = −
i
4

�

−
p2

4π

�−εn/2 Γ
�

− ε2
�

Γ
� nε

2

�

Γ
�

1− nε
2

�

Γ
�

(n−1)ε
2

�

Γ
�

1− (n+1)ε
2

�

�

−
1
2

Γ
�

1− ε2
�

Γ
�

1+ ε
2

�

Γ
�

− ε2
�

Γ (1− ε)

�n−1

. (151)

We can now add the contributions of the two diagrams, together with (143), to obtain the
bare, non-perturbative correction to the term Σm in the self-energy:

ΣNP
m = −

πλ0

N
〈ψψ〉c

�

1−
1

2N
−

1
N

∑

n≥1

�

iI1(n) +
1
2
(iπΠ)n

�

λn
0 +O

�

N−2
�

�

. (152)

There are three sources of renormalization in this quantity: renormalization of the coupling
constant, renormalization of the self-energy, and renormalization of the composite operator
appearing in the condensate (see [48] for useful remarks on renormalization of fermion prop-
agators in perturbation theory with condensates). The renormalization of the self-energy is
done as in the perturbative case, and it just follows by multiplying the inverse two-point func-
tion by Zψ. The renormalization of the composite operator follows from (35):

〈ψψ〉c = Z−1
m 〈[ψψ]〉c . (153)

The renormalized result is

ΣNP
m,R = −

πλ

N
〈[ψψ]〉c

Zλ
Zm

�

1−
1

2N
+

1
N

Z (1)
ψ
−

1
N

∑

n≥1

�

iI1(n) +
1
2
(iπΠ)n

�

λn
0+O

�

N−2
�

�

. (154)

Let us note that the sign of the renormalization constant Z (1)
ψ

is the opposite one to what is
found for the perturbative part in (109). This can be seen by comparing (146) to the dia-
grammatic expansion, or simply by noting that /p and m have opposite signs in the inverse
propagator. The renormalization constants Zλ, Zm have a 1/N expansion

Zλ = Z (0)
λ

�

1+
1
N
bZ (1)
λ
+O

�

N−2
�

�

,

Zm = Z (0)m

�

1+
1
N
bZ (1)m +O

�

N−2
�

�

,
(155)

and their first terms are equal:
Z (0)
λ
= Z (0)m . (156)

A first consistency check of (154) is that it is finite, i.e. that the divergences in the diagrams of
Fig. 6 cancel against the renormalization constants. To verify that, and to calculate the finite
part, we will calculate the sum over n appearing here by using the formalism explained in
Appendix A.2. The structure function which calculates the sum

−
∑

n≥1

�

iI1(n) +
1
2
(iπΠ)n

�

λn
0 , (157)

is given by

H(x , y) = −
1
2

�

−
p2

4πν2

�−y/2�Γ
�

1+ x
2

�

Γ 2
�

1− x
2

�

Γ (1− x)

�y/x−1

×

�

Γ
�

1+ y
2

�

Γ
�

1− y
2

�

Γ
�

− x
2

�

Γ
� y−x

2

�

Γ
�

1− y+x
2

� − y
Γ
�

1+ x
2

�

Γ
�

1− x
2

�

Γ
�

− x
2

�

2Γ (1− x)

�

. (158)
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In particular, we have

H0(ε) = H(ε, 0) =
χ(−ε)
ε
− F0(ε) . (159)

In this expression, F0(ε) is the function defined in (111) and appearing in the calculation of
the perturbative self-energy, and χ(λ) is the function (23) in the mass anomalous dimension.
Moreover, the 1/N expansion of the renormalization constants gives

bZ (1)
λ
− bZ (1)m =

∫ λ

0

du
χ(u)

u(u+ ε)
. (160)

Using (A.19) and (110), we obtain
�

H0(ε) log
�

1+
λ

ε

��

div
= −bZ (1)

λ
+ bZ (1)m − Z (1)

ψ
. (161)

Now it is clear that all the divergent parts cancel in (154). In fact, one can use this calculation
to determine the function χ(u), which essentially gives the mass anomalous dimension at NLO
in the 1/N expansion.

Let us now evaluate the finite part of the sum. As shown in (A.23), it has two pieces. One
of them can be read from the structure function evaluated at x = 0:

H(0, y) =
y
4

�

2γE +ψ
�

1−
y
2

�

+ψ
� y

2

��

. (162)

After expanding the above expression in powers of y , we can extract the coefficients Hm(0)
and obtain

−
1
2
+
∑

m≥1

(m− 1)!Hm(0)λ
m = −

1
2
−
∑

k≥1

(2k)!
22k+1

ζ(2k+ 1)λ2k+1 , (163)

where we have included the term −1/2 originating from the diagram in Fig. 3b. The other
finite piece combines with the non-trivial power series in λ which appears in (126), when we
express the two-quark condensate in terms of Λ, to produce

−
∫ λ

χ(u)
u2

du−
∫ λ

0

H0(−u)−H0,0

u
du= −

1
2

log(λ) +

∫ λ

0

γ(1)(u)

β
(0)
λ
(u)

du . (164)

We finally obtain

ΣNP
m,R = c(N)Λ

�

1−
1
N

�

1
2
+

1
2

log(λ) +
∑

k≥1

(2k)!
22k+1

ζ(2k+ 1)λ2k+1

�

+
1
N

∫ λ

0

γ(1)(u)

β
(0)
λ
(λ)

du+O
�

N−2
�

�

.

(165)

The term in the second line is due to the change of scheme, since we have

m+
m
N
ΣSM

m = Σm,R

 

1−
1
N

∫ λ

0

γ(1)(u)

β
(0)
λ
(u)

du+O(N−2)

!

. (166)

Note that the correction involving the anomalous dimension of the field now comes with a
minus sign, as compared to (117). We remove this scheme dependent term, write Λ in terms
of m using the relation (62), and expand the factor c(N) using (129). We finally obtain, from
(165),

−ΣSM
m ∼ 1−

γE

2
+ log(2)− c1 +

1
2

log(λ) +
∑

k≥1

(2k)!
22k+1

ζ(2k+ 1)λ2k+1 +O
�

N−1
�

. (167)
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Figure 7: Diagram of order g2
0 and order 1 in the 1/N expansion that contributes to

the four-quark condensate correction to the two-point function.

Due to the second equation in (58), the series in the r.h.s. should be equal to the series Φ1(λ)
in (97). This is indeed the case for the λ-dependent terms. Equality of the constant term fixes
the value of c1:

c1 =
1
2
+

3
2

log(2) . (168)

The calculation above also fixes that c(N) ≈ 1 at large N . We have already incorporated this
information by using the large N calculation of the condensate, but we could have obtained it
from the comparison of our result (165) with the explicit result for the trans-series.

Let us note that our calculation of the two-quark condensate correction to the fermion self-
energy is conceptually very similar to what has been done for QCD in [12,46,47]. One of the
goals of such a calculation in QCD is to dynamically generate a mass for the quarks out of the
condensate. We know from the large N analysis of [18] that this is indeed the case in the GN
model: the non-zero vev of σ gives simultaneously a vev to the two-quark condensate and a
mass to the fermions. However, these two quantities are conceptually different (e.g. the first
one is not RG invariant, while the second one is), and this difference makes itself manifest at
next-to-leading order in the 1/N expansion. Our analysis of the self-energy shows in detail how
the contribution of the two-quark condensate to the OPE of the fermion propagator generates a
mass pole at large N and an additional power correction at order 1/N , in the manner intended
in QCD.

4.4 Trans-series for the four-quark condensate

We will now consider the contribution of the four-quark condensate to the trans-series. In the
calculation of the two-point function there are two possible sources for such condensate. First,
we can leave two pairs of fermions uncontracted when expanding the action. This leads to
factors of 〈V 〉c . Second, we can consider diagrams with a single pair of uncontracted fermions,
like the ones we studied in the previous section, but at different locations. When we expand
them as in (148) we will get factors of 〈K〉c . Although this operator is strictly speaking not a
four-quark operator, its vev gives the same contribution, but with an opposite sign, as we saw
in (123). We will then refer to these contributions as also due to a four-quark condensate, by
a slight abuse of language.

In order to proceed, we have to understand how to extract the self-energy from the two-
point function, as we did in the case of the two-quark condensate. To see how this goes, let us
consider the possible diagrams with a four-quark condensate which contribute to the two-point
function. It is easy to see that there is a diagram, and only one, which gives a contribution of
order one in the 1/N expansion, and shown in Fig. 7 (the condensates come from quark pairs
in the same vertices, so they give a factor of N2, and the diagram goes like g2

0 N2). A precise
evaluation of the diagram gives

g0〈V 〉c
p2

. (169)
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(a) (b)

(c) (d)

Figure 8: Diagrams with four-quark condensates that contribute to the two-point
function but not to the self-energy, at order 1/N . One should include as well the
diagrams obtained by left-right reflection.

Note that this does not factorize, so the diagram in Fig. 7 should not be regarded as a re-
ducible diagram. The factorization only takes place at large N . In order to do the precise large
N counting, let us already renormalize the contribution of this diagram. For the composite
operator V , we need the renormalization constant in (134):

ZV = 1−
βλ(λ)
λε

= Z (0)V

�

1+
1
N
bZ (1)V +O

�

N−2
�

�

, (170)

and we have

Z (0)V Z (0)
λ
= 1, bZ (1)V = −

β
(1)
λ
(λ)

λ(λ+ ε)
. (171)

Using in addition the renormalization constant of the coupling and its 1/N expansion in (155),
we find

ZλZV
πλ

N
〈[V ]〉c =

πλ

N
〈[V ]〉c

�

1+
1
N

�

bZ (1)
λ
+ bZ (1)V

�

+ . . .
�

. (172)

Note that we have the large N scaling 〈[V ]〉c ∼ N , so the front factor is of order 1. We will
denote the renormalized two-quark and four-quark condensates by

T = −πλ
N
〈[ψψ]〉c , F = πλ

N
〈[V ]〉c . (173)

By the large N factorization of (122), one has

F − T 2 =O
�

N−1
�

. (174)

We also note that
Σ

NP,0
m,R = T . (175)

In addition to the diagram of Fig. 7, which is of order one at large N , we find many other
diagrams of order 1/N in the calculation of the four-quark condensate corrections. Among
these, there are the diagrams shown in Fig. 8 (together with their right-left reflections). These
diagrams do not contribute to the self-energy, up to order 1/N . To see this, we note that the

27

https://scipost.org
https://scipost.org/SciPostPhys.18.3.101


SciPost Phys. 18, 101 (2025)

term of order C2 in the expansion of the renormalized two-point function (146) is, up to order
1/N ,

1
N
Σ

NP,1
p,R +

1
p2

�

T 2 +
2
N
T ΣNP,1

m,R

�

+
3

p2N
T 2Σ

P,1
p,R . (176)

To compare this expression with the diagrammtic computation, we still need to include the
field renormalization constant and write renormalized quantities together with their original
divergences. This yields

1
N
Σ

NP,1
p,R +

1
p2

T 2 +
2

p2N
T 2
�

bZ (1)
λ
− bZ (1)m

�

+
3

p2N
T 2
�

Σ
P,1
p,R + Z (1)

ψ

�

+
2

p2N
T
�

Σ
NP,1
m,R + T

�

−bZ (1)
λ
+ bZ (1)m − Z (1)

ψ

��

. (177)

Due to the factorization (174), the first term in the second line corresponds to the diagrams in
Fig. 8a–8b, while the second term in the second line corresponds to the diagrams in Fig. 8c–
8d (in both cases, up to this order in 1/N). Only the first line remains to be accounted for in
(177), which has to be given by the diagram in Fig. 7 plus irreducible diagrams of order 1/N ,
i.e. those that are not included in Fig. 8. Including the renormalization constants in (172), we
obtain

1
N
ΣNP

p,R =
F − T 2

p2
+

F
p2N

�

bZ (1)
λ
+ bZ (1)V − 2

�

bZ (1)
λ
− bZ (1)m

��

− i/p× irreducible+O
�

N−2
�

. (178)

The first term in (178) can be written more explicitly by reexpressing the condensates in terms
of Λ, through (126) and (130). We find

F − T 2 =
Λ2

N

 

d1 − 2c1 + log(λ)− 1+
β
(1)
λ
(λ)

λ2
+ 2

∫ λ

0

χ(u)−χ1u
u2

du

!

+O
�

N−2
�

, (179)

where the coefficients d1, c1 were introduced in (129), (131). Based on the general arguments
in [2,3], we expect d1, the 1/N correction to the four-quark condensate, to be ambiguous. We
will see that this is indeed the case.

Let us note that the second term in the r.h.s. of (178) should cancel the divergences ob-
tained from these diagrams. Let us find a more convenient form for this combination of renor-
malization constants. We first derive from (29) the integral form

bZ (1)
λ
=

∫ λ

0

εβ
(1)
λ
(u)

u2(u+ ε)2
du . (180)

After integration by parts we obtain the convenient expression

bZ (1)
λ
+ bZ (1)V =

∫ λ

0

ρ(u)
u(u+ ε)

du , (181)

where

ρ(λ) = −λ2 d
dλ

 

β
(1)
λ
(λ)

λ2

!

. (182)

The quantity bZ (1)
λ
− bZ (1)m is known from the calculation of the two-quark condensate (160).

Therefore, the singular part in the irreducible diagrams that contribute to the four-quark con-
densate determines the beta function at NLO in 1/N . As we will see, this calculation is simpler
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Figure 9: Irreducible diagram that contributes to the four-quark condensate.
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+

Figure 10: Two possible ways of inserting a four-quark condensate in a fermion po-
larization loop. The second diagram needs a symmetry factor 2.

than the one usually adopted for the calculation of the beta function at this order in [20,21].
By using the known value (19), we have

ρ(λ) = −
λ2Γ (2+λ)

(2+λ)Γ
�

1− λ2
�

Γ 3
�

1+ λ
2

� = −λχ(λ) . (183)

We can now write

bZ (1)
λ
+ bZ (1)V − 2

�

bZ (1)
λ
− bZ (1)m

�

=

∫ λ

0

υ(u)
u(u+ ε)

du , (184)

where

υ(u) = −
uΓ (2+ u)

Γ 3
�

1+ u
2

�

Γ
�

1− u
2

� . (185)

We have then to find the irreducible diagrams, to order 1/N and all loops. There are four
types of diagrams that contribute:

1. The first type of diagram is obtained by putting a four-quark condensate in the middle of
the internal propagator line of the bubble chain in Fig. 2. This gives the diagram shown
in Fig. 9.

2. The second type of diagram is obtained by noticing that one can insert a four-quark
condensate in a fermion polarization loop, in two different ways, to obtain a “decorated”
polarization loop, as shown in Fig. 10. This “decorated” loop can then be inserted at any
point inside a bubble chain, and leads to diagrams like the one in Fig. 11.

3. The third type of diagram is obtained by noticing that one can insert a four-quark con-
densate in the sigma propagator, which can then be inserted in a bubble chain, as shown
in Fig. 12.
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p + q

Figure 11: A chain of bubbles with an insertion of one of the “decorated” polarization
loops.
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p + q

Figure 12: A chain of bubbles with an insertion of a four-quark condensate in the
propagator of the sigma field.

4. Finally, there are contributions coming from diagrams involving a two-quark condensate,
in which the quark and antiquark are at different points, and one has to expand. The
diagrams that contribute to this are the diagram in Fig. 6a, and the diagram in Fig. 13.
Note that the latter gives a vanishing contribution to the two-quark condensate, but not
to the four-quark condensate.

Let us now compute the contribution of the irreducible diagrams. It will be convenient to
group them in appropriate ways.

We first consider the irreducible diagram in Fig. 9, which we will combine with the diagram
in Fig. 6a. The contribution of Fig. 9 to ΣNP

p is of the form

−
πλ0

N2

〈V 〉c
p2

∑

n≥1

iI2(n)λ
n
0 , (186)

where

I2(n) =
p2

/p
πn

∫

ddq
(2π)d

/p− /q
(p− q)4

�

iΠ(q2)
�n−1

. (187)

Let us now consider the diagram in Fig. 6a. In the previous section we calculated the first
term in the expansion in the first line of (148), and we have to consider now the second term,
which will produce a factor of 〈K〉c . Its contribution to the diagram in position space involves
an integral of the form

∫

dd y1dd y2(y1 − y2)
ρei(p−q)y1+i(q−k)y2

�

Π(q2)
�n

, (188)

where p is the external momentum, k and q are internal momenta to be integrated over, and
n is the number of inserted bubbles. To calculate this integral, we write

(y1 − y2)
ρeiq(y2−y1) = −

1
i
∂

∂ qρ
eiq(y2−y1) , (189)
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Figure 13: When we expand the two-quark condensate around the same point, this
diagram gives a contribution to the four-quark condensate.

and we integrate by parts (see e.g. [45, 47] for similar calculations). After taking everything
into account, we find that this diagram gives a contribution to ΣNP

p of the form

−
πλ0

dN2
〈K〉c

∑

n≥1

∂ (iπΠ(p2))n

∂ p2
λn

0 , (190)

which will combine with (186) into

πλ0

N2

〈V 〉c
p2

∑

n≥1

�

p2

d
∂ (iπΠ(p2))n

∂ p2
− iI2(n)

�

λn
0 , (191)

after using (123). The general formula (A.3) gives

I2(n) = i

�

−
p2

4π

�−nε/2 Γ
�

− ε2
�

Γ
�

1+ nε
2

�

Γ
�

1− nε
2

�

Γ
�

(n−1)ε
2

�

Γ
�

1− (n+1)ε
2

�

�

−
1
2

Γ
�

1+ ε
2

�

Γ
�

1− ε2
�

Γ
�

− ε2
�

Γ (1− ε)

�n−1

. (192)

On the other hand,

p2

d
∂ (iπΠ(p2))n

∂ p2
= −

1
4

�

−
p2

4π

�−nε/2
�

−
nε
2

�Γ
�

1+ ε
2

�

Γ
�

1− ε2
�

Γ
�

− ε2
�

�

1− ε2
�

Γ (1− ε)

×

�

−
1
2

Γ
�

1+ ε
2

�

Γ
�

1− ε2
�

Γ
�

− ε2
�

Γ (1− ε)

�n−1

. (193)

Combining both, and using the technique of Appendix A.2, we find that the sum in (191) is
governed by the structure function

M(x , y) = −
1
4

�

−
p2

4πν2

�−y/2�Γ
�

1+ x
2

�

Γ 2
�

1− x
2

�

Γ (1− x)

�y/x−1

× y

�

Γ
�

− x
2

�

Γ
�

1+ y
2

�

Γ
�

1− y
2

�

Γ
� y−x

2

�

Γ
�

1− y+x
2

� −
y
2

Γ
�

1+ x
2

�

Γ
�

1− x
2

�

Γ
�

− x
2

�

�

1− x
2

�

Γ (1− x)

�

. (194)

Note also that M0(x) = 0. This means that the sum (191) can be made finite simply by
renormalizing the coupling constant. We also find

M(0, y) =
y2

8

�

−1+ 2γE +ψ
�

1−
y
2

�

+ψ
� y

2

��

. (195)

We conclude that the contribution of these two classes of diagrams to ΣNP
p is

−
m2

p2

�

λ

4
+
λ2

8
+
∑

k≥1

(2k+ 1)!
22k+2

ζ(2k+ 1)λ2k+2

�

. (196)
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We will now consider the combination of the diagrams in Fig. 11 and Fig. 12. First of all,
we calculate the amplitude associated to the “decorated” loops in Fig. 10. We find

Π(ψψ)2(p
2) = 2

∫

ddq
(2π)d

�

3
q2(q− p)2

−
2q · p

q4(q− p)2

�

= −
2
p2
(1− ε)Π(p2) . (197)

Here we have included both the sign −1 due to the fermionic loop and the −1= (−i)2 coming
from the twoσ propagators. The symmetry factor of the diagram in Fig. 11, in which there are
n−2 conventional polarization loops and one decorated loop, is n−1. The diagram in Fig. 12,
in which there are n− 1 polarization bubbles, has a symmetry factor 2n. The contribution of
these two classes of diagrams to the self-energy is

πλ0

N2

〈V 〉c
p2

∑

n≥1

�

−2niI3(n)− (n− 1)iI4(n)
�

λn
0 , (198)

where

I3(n) =
p2

/p
πn

∫

ddq
(2π)d

/p− /q
q2(p− q)2

�

iΠ(q2)
�n−1

, (199)

is the integral associated to the diagram in Fig. 12, while

I4(n) =
p2

/p
πn

∫

ddq
(2π)d

/p− /q
(p− q)2

�

iΠ(q2)
�n−2�

iΠ(ψψ)2(q
2)
�

, (200)

is the integral associated to the diagram in Fig. 11. In view of (197), the two integrals are
related as

I4(n) = −2(1− ε)I3(n) . (201)

The integral I3(n) can be computed with the expression (A.3), and we find that the sum in
(198) is governed by the structure function

R(x , y) =

�

−
p2

4πν2

�−y/2

(1+ y − x)
Γ
�

1− x
2

�

Γ
�

1− y
2

�

Γ
�

1+ y
2

�

Γ
�

1+ y−x
2

�

Γ
�

1− y+x
2

�

�

Γ
�

1+ x
2

�

Γ 2
�

1− x
2

�

Γ (1− x)

�y/x−1

.

(202)
We note that

R0(x) =
Γ (2− x)

Γ 3
�

1− x
2

�

Γ
�

1+ x
2

� =
υ(−x)

x
, (203)

where υ(x) was introduced in (185). We also have

R(0, y) = 1+ y , (204)

for µ2 = −p2. Let us calculate the finite and divergent parts due to (203). We have

�

R0(ε) log
�

1+
λ

ε

��

div
=

∫ λ

0

R0(−u)
u+ ε

du= −
∫ λ

0

υ(u)
u(u+ ε)

du . (205)

This will cancel precisely the divergent part in (184). Therefore, the diagrams of Fig. 11 and
Fig. 12 are the relevant ones to compute the anomalous dimension of the operator (ψψ)2

and, therefore, of the beta function at NLO. A related calculation of this anomalous dimension
in [49] uses these diagrams in disguise.

The finite part due to R0(x) is given by

−
∫ λ

0

R0(−u)− 1
u

du= 1−
β
(1)
λ
(λ)

λ2
− 2

∫ λ

0

χ(u)−χ1u
u2

du , (206)
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and it cancels with part of the expression in (179), leaving us with the following contribution
to ΣNP

p,R:

m2

p2
(d1 − 2c1 + log(λ)) . (207)

This result combines with the finite part coming from (204), resulting in the contribution

m2

p2
(d1 − 2c1 + log(λ) +λ) . (208)

Let us finally consider the contribution of the family of diagrams in Fig. 13. When the two
quarks are at the same point, this diagram is proportional to Tr(γµ) and it vanishes. When we
expand the two quark fields around the same point, we find a contribution to the four-quark
condensate which involves an integral of the form

∫

dd y1dd y2 ei(p−k−q)y1−i(r−k−q)y2(y1 − y2)
ρ i
/k

qρ
q2

, (209)

where p is the external momentum and k, q, r are internal momenta to be integrated over. In
the integration by parts one obtains

∂

∂ qρ

�qρ
q2

�

=
d − 2

q2
. (210)

The contribution of the sum over all bubbles is

−
πλ0

N2

〈V 〉c
p2

∑

n≥1

d − 2
d

2niI3(n)λ
n
0 , (211)

which can be calculated in terms of the structure function

S(x , y) = −
�

−
p2

4πν2

�−y/2
y

2− x

Γ
�

1− x
2

�

Γ
�

1− y
2

�

Γ
�

1+ y
2

�

Γ
�

1− y+x
2

�

Γ
�

1+ y−x
2

�

�

Γ
�

1+ x
2

�

Γ 2
�

1− x
2

�

Γ (1− x)

�y/x−1

.

(212)
We find S0(x) = 0, and S(0, y) = − y

2 . Including the factors in front of the sum in (211), we
obtain a contribution to ΣNP

p,R of the form

−
m2

p2

λ

2
. (213)

The results in (196), (208) and (213) combine into

ΣNP
p,R = −

m2

p2

§

2c1 − d1 − log(λ)−
λ

4
+
λ2

8
+
∑

k≥1

(2k+ 1)!
22k+2

ζ(2k+ 1)λ2k+2
ª

+O
�

N−1
�

. (214)

This agrees precisely with the result in (98), involving the series Φ2(λ) of (94), except for
the constant terms, which depend on the values of the condensates. Moreover, by comparing
the two results we can read off the value of d1, giving the 1/N correction to the four-quark
condensate

d1 = 1− γE + 2 log(2)∓
iπ
2

. (215)

As advertised, this is ambiguous due to the renormalon in the perturbative series, and the
choice of sign in (215) should be correlated with a choice of resummation prescription for the
series Φ0(λ).
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Figure 14: The diagrams contributing to the four-quark condensate correction to the
sigma propagator, at order 1/N .

A simple corollary of this calculation is a determination of the four-quark condensate con-
tribution to the propagator of the sigma particle, at order 1/N . Diagrammatically it is given
by the sum of bubbles with condensate insertions shown in Fig. 14. By using the results (198)
and (211), one finds

−
2πi
N

2m2
0

p2

�

1

log
�

−p2/m2
0

� +
1

log2
�

−p2/m2
0

�

�

. (216)

It is easy to check that this agrees with the result of expanding (50) at large p2≫ m2
0.

5 Conclusions and open problems

The combination of the OPE with vacuum condensates, as developed in the SVZ sum rules,
produces formal trans-series for QFT observables, and it provides a method to systematically
calculate exponentially small corrections to perturbative quantities. In this paper we have
compared the result of an OPE calculation to an exact trans-series obtained in the 1/N expan-
sion, and we have found complete agreement between the two, up to the unknown values of
the condensates.

In our calculation we have used the “practical” version of the OPE. As we mentioned in the
Introduction, it has been suggested that one should use a more complicated version, based on
the introduction of an additional momentum scale. In this “Wilsonian” version, IR renormalons
are absent, since the additional scale provides an explicit IR cutoff for the Feynman integrals,
and the condensates are defined unambiguously. The prize to pay is that each series in the
trans-series depends on this scale, and the dependence only drops out in the total result. Our
study of the GN model seems to confirm that there is nothing wrong with the “practical” version
of the OPE, in agreement with the discussions in [3, 50]. The exact results for the two-point
function can be decoded in terms of a trans-series in which condensates are ambiguous, but this
ambiguity is due to the well-known Stokes phenomenon and does not lead to any inconsistency.
In addition, the series in the ’t Hooft parameter appearing in this trans-series can be reproduced
exactly, and rather non-trivially, with the “practical” OPE.

A nice outcome of our calculation is the following. In the exact large N answer, the trans-
series emerges as a formal, algebraic object. The OPE calculation gives a concrete picture of
this trans-series in terms of perturbation theory with condensates. In particular, the facto-
rial divergence of the perturbative series appearing in the trans-series is the manifestation of a
renormalon-like phenomenon, due to bubble chains attached to the condensates, as illustrated
in e.g. Fig. 6 or Fig. 9. Note that our calculation indicates that the only sources of exponen-
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tially small corrections in the exact trans-series are condensates, and in particular no instanton
effects have been found. This is expected since we are working in the 1/N expansion. There
are also indications that large N instantons are absent in this model [51,52].

Although this is probably well-known to many practitioners, it is worth noting that the OPE
calculation reconstructs the trans-series more efficiently than a resurgent/renormalon analysis
of the perturbative series. In particular, the two-quark condensate leads to a non-ambiguous
power correction which is completely invisible in a resurgent analysis. The Borel singularity
of the perturbative series detects the presence of a power correction in m2/p2 due to the four-
quark condensate, but since this singularity is essentially a simple pole it misses the full series
Φ2(λ). The OPE calculation is in contrast able to reproduce the series Φ1,2(λ) at all loops. It
was suggested in [52] that part of the “blindness” of resurgent analysis in this situation might
be due to the restriction to a given order in the 1/N expansion. It might happen that at finite
N one can have a better access to the four-quark condensate through the resurgent structure
of the perturbative series, but the two-quark condensate series will remain undetected, since
it transforms non-trivially under the Z2 chiral symmetry and does not mix with the identity
operator [2]. In the language of [52], the trans-series for the self-energy at order 1/N does
not satisfy the strong version of the resurgence program, since the resurgent analysis of the
perturbative series does not make it possible to reconstruct the full trans-series. It does satisfy
however the weak version of the program, since the exact result can be obtained by the (lateral)
Borel resummation of the trans-series.

Our calculation can be extended in many ways. As we mentioned in the Introduction,
the GN model turns out to be a simpler example to study than bosonic sigma models in two
dimensions, since in the latter the fields are constrained and in addition there is an infinite
number of operators with a fixed scaling dimension. It would be very interesting however
to reproduce the large N trans-series obtained in [1] (or the supersymmetric version studied
more recently in [17]) by an OPE calculation with condensates similar to the one done here.
The results of [16, 17] on non-linear sigma models might be a good starting point for this
calculation.

Although going beyond the 1/N expansion is analytically difficult, we note that two-point
functions can be computed non-perturbatively in integrable models by using form factors. In
the case of the non-linear sigma model, it has been checked numerically that the form factor
calculation reproduces asymptotically the perturbative series [53,54]. It would be very inter-
esting to see whether it is possible to detect as well condensate corrections to the perturbative
result through form factors.

Finally, although the results of this paper vindicate the idea that the OPE with vacuum
condensates leads to the correct exponentially small corrections to the perturbative series, it is
still not clear how the power corrections found in [4–9] can be reproduced by a first principles
calculation. This remains in our view a sharp open problem for our understanding of non-
perturbative effects in QFT.
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A Bubbles

A.1 The fermion polarization loop

The building block of a bubble chain is the fermion polarization loop, given by the following
diagram:

p p
(A.1)

We define the corresponding amplitude, with massless fermions, as

Π(p2) =

∫

ddq
(2π)d

Tr

�

1

/q(/p+ /q)

�

= 2

∫

ddq
(2π)d

q · p
q2(p+ q)2

, (A.2)

where we used dimensional regularization to drop a scale-less integral. This and other inte-
grals appearing in this paper can be computed with the master formula

∫

ddq
(2π)d

q(µ1µ2...µn)

(q2)r[(p− q)2]s
= −

i
4π

�

−
p2

4π

�−ε/2
1

(p2)r+s−1
p(µ1µ2...µn)

×
Γ (1+ n− r − ε/2)Γ (1− s− ε/2)Γ (r + s− 1+ ε/2)

Γ (r)Γ (s)Γ (2− r − s+ n− ε)
, (A.3)

where q(µ1µ2...µn) is the traceless symmetric tensor constructed from qµ1qµ2 . . . qµn , see Ap-
pendix C in [45] for more details. For example,

q(µ) = qµ, q(µ1µ2) = qµ1qµ2 −
1
d

gµ1µ2q2 , (A.4)

but we will only need to compute integrals with one index at most. Using (A.3), we find

Π(q2) =
i

2π

�

−
q2

4π

�−ε/2 Γ
�

1+ ε
2

�

Γ
�

1− ε2
�

Γ
�

− ε2
�

Γ (1− ε)
. (A.5)

Let us now briefly consider the massive case. The massive polarization loop is defined as

Πm0
(p2) =

∫

ddq
(2π)d

Tr

�

1
(/q−m0)(/p+ /q−m0)

�

. (A.6)

Using standard Feynman integral techniques, one finds in d = 2−ε dimensions the ε expansion
(see e.g. [55] for additional details)

Πm0
(p2) = −

i
πε
+

i
2π

log

�

m2
0

4πe−γE

�

+
i

2π
ξ log

�

ξ+ 1
ξ− 1

�

+O(ε) , (A.7)

where ξ was introduced in (51). The σ propagator in momentum space is closely related to
the massive polarization loop:

∆−1(p; m0) = Πm0
(p2)−

1
m0

∫

ddq
(2π)d

Tr

�

1

/q−m0

�

, (A.8)

and by using (A.7) one finds the expression (50).
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A.2 Summing over bubbles

In [20, 23], a powerful and simple technique was introduced to obtain the renormalized per-
turbative series associated to a chain of bubbles. We now summarize its main ingredients.

Let us consider a generic sum of corrections in the bare ’t Hooft coupling λ0, of order 1/N :

A=
∑

n≥n0

an(p
2)λn

0 , (A.9)

where n0 ≥ 1. The choice of λ0 is such that, at leading order in the 1/N expansion, the
renormalization function is given by (102). Since the quantity we are considering is already
of order 1/N , we only have to use the leading term Z (0)

λ
. Then the renormalized sum is of the

form
A=

∑

n≥n0

(ν2)nε/2an(p
2)
�

Z (0)
λ

�n
λn . (A.10)

Let us assume that one can find a “structure function” F(x , y), which is analytic in both argu-
ments at x = 0, y = 0, and satisfying

(ν2)nε/2an(p
2) =

F(ε, nε)
nεn

. (A.11)

Then the renormalized sum is of the form

A=
∑

n≥n0

fnλ
n
�

1+
λ

ε

�−n

, (A.12)

where we have abbreviated

fn =
F(ε, nε)

nεn
. (A.13)

We now expand the factor (1+ λ/ε)−n in powers of λ, using the binomial theorem, and we
get

A=
∑

n≥n0

fnλ
n
∑

s≥0

�

n+ s− 1
s

�

(−1)s
�

λ

ε

�s

=
∑

m≥n0

λm
m−1
∑

s=0

�

m− 1
s

�

(−1)s

εs
fm−s

=
∑

m≥n0

�

λ

ε

�m m−1
∑

s=0

�

m− 1
s

�

(−1)s
∑

j≥0

F j(ε)(m− s) j−1ε j

=
∑

m≥n0

λm
∑

j≥0

F j(ε)

εm− j

m−1
∑

s=0

�

m− 1
s

�

(−1)s(m− s) j−1 ,

(A.14)

where we set m= n+ s and we performed the following expansion of the structure function:

F(x , y) =
∑

j≥0

F j(x)y
j . (A.15)

We now use that

m−1
∑

s=0

�

m− 1
s

�

(−1)s(m− s) j−1 =











(−1)m−1

m , if j = 0 ,

0 , if 1≤ j ≤ m− 1 ,

(m− 1)! , if j = m ,

(A.16)

to write the renormalized sum as

A= F0(ε)
∑

m≥n0

(−1)m−1

m

�

λ

ε

�m

+
∑

m≥n0

(m− 1)!Fm(ε)λ
m +O(ε) . (A.17)
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The first series can also be expressed as

F0(ε)
∑

m≥n0

(−1)m−1

m

�

λ

ε

�m

= F0(ε) log
�

1+
λ

ε

�

− F0(ε)
n0−1
∑

m=1

(−1)m−1

m

�

λ

ε

�m

. (A.18)

We now consider the behavior as ε→ 0. There is a divergent part encoded in (A.18). We
note the useful formula

�

F0(ε) log
�

1+
λ

ε

��

div
=

∫ λ

0

F0(−u)
u+ ε

du , (A.19)

and we can write the total divergent part in (A.18) as

[A]div =

∫ λ

0

F0(−u)
u+ ε

du−
n0−1
∑

m=1

(−1)m−1

m
λm

m−1
∑

k=0

F0,kε
k−m , (A.20)

where the coefficients F0,k are defined by

F0(ε) =
∑

k≥0

F0,kε
k . (A.21)

The finite part of (A.17) arises from the second sum plus the terms of order ε0 in the first
sum:

[A]finite =
∑

m≥n0

(−1)m−1

m
F0,mλ

m +
∑

m≥n0

(m− 1)!Fm(ε)λ
m . (A.22)

It will be convenient to sum the first series into an integral, yielding

[A]finite = −
∫ λ

0

F0(−u)− F0,0

u
du−

n0−1
∑

m=1

(−1)m−1

m
F0,mλ

m +
∑

m≥n0

(m− 1)!Fm(0)λ
m . (A.23)

The last sum in the above expression has the form of an inverse Borel transform.
As we have seen, the structure function (A.11) is the relevant object in diagrammatic com-

putations, as it contains all the necessary information to extract both the divergent part (A.20)
and the finite part (A.23).

Another useful result for the calculation of renormalization functions is the following. Let
f (ε) be analytic at ε= 0. Then [19]

(λ+ ε)
∂

∂ λ

�

log
�

1+
λ

ε

�

f (ε)
�

div
= f (−λ) . (A.24)

This follows from a direct calculation:

(λ+ ε)
∂

∂ λ

�

log
�

1+
λ

ε

�

f (ε)
�

div
=
∑

m≥1

(−1)m−1(λm + ελm−1)
m−1
∑

k=0

fkε
k−m

=
∑

m≥0

(−1)m fmλ
m .

(A.25)
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