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Abstract

In a physical system with conformal symmetry, observables depend on cross-ratios, mea-
sures of distance invariant under global conformal transformations (conformal geometry
for short). We identify a quantum information-theoretic mechanism by which the con-
formal geometry emerges at the gapless edge of a 2+1D quantum many-body system
with a bulk energy gap. We introduce a novel pair of information-theoretic quantities
(ctot,η) that can be defined locally on the edge from the wavefunction of the many-
body system, without prior knowledge of any distance measure. We posit that, for a
topological groundstate, the quantity ctot is stationary under arbitrary variations of the
quantum state, and study the logical consequences. We show that stationarity, modulo
an entanglement-based assumption about the bulk, implies (i) ctot is a non-negative con-
stant that can be interpreted as the total central charge of the edge theory. (ii) η is a
cross-ratio, obeying the full set of mathematical consistency rules, which further indi-
cates the existence of a distance measure of the edge with global conformal invariance.
Thus, the conformal geometry emerges from a simple assumption on groundstate entan-
glement. We show that stationarity of ctot is equivalent to a vector fixed-point equation
involving η, making our assumption locally checkable. We also derive similar results for
1+1D systems under a suitable set of assumptions.
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1 Introduction

1.1 Philosophy of entanglement bootstrap and motivations of this work

In a many-body system consisting of a large number of microscopic degrees of freedom, a
new emergent phenomenon may arise at a macroscopic scale [1]. These phenomena form
a basis by which one can define a phase of matter, a central concept in condensed matter
physics. Intuitively, a phase of matter can be viewed as an equivalence class of renormalization
group (RG) flows with the same fixed point [2]. Under the RG flow, different theories at the
ultraviolet (UV) may flow to the same infrared (IR) fixed point. These IR fixed points serve as
the common route through which one can study universal properties of different phases.

At zero temperature, the theories at the IR fixed points may exhibit exotic emergent phe-
nomena, such as the emergence of anyons in two-dimensional gapped spin liquid systems
[3–6]. An important discovery is the fact that many universal properties of the fixed-point are
encoded in the entanglement structure of the underlying groundstates. The work of extracting
such universal properties from groundstates are numerous: In 2+1D gapped systems, exam-
ples of such work include the extraction of quantum dimensions of anyons [7,8], anyon types
and fusion rules [9], chiral central charge [10]. In critical systems, the central charge can be
extracted [11]. Since their discovery, these signatures have become useful tools to character-
ize phases of matter and transitions between them in numerical studies (for a small subset of
examples, see e.g. [12–21]).

Thus, we are invited to explore the possibility that all the universal properties of the phase
are encoded in the groundstate. This is surprising because the universal properties of the phase
can include data that is a priori independent of the groundstate. For instance, important data
that defines an anyon theory is the braiding and fusion rules of the anyons, which pertains to
the low-energy point-like excitations, and the chiral central charge, which pertains to the heat
transport at low but finite temperature.

A surprising aspect of these recent developments is that the universal properties follow
from some local conditions on the groundstate entanglement. The success of this approach
raises a fundamental question: how do the universal properties of the phase (or critical point)
emerge from groundstate entanglement? This question can be unpacked as the following
series of questions: Given a state, how can we tell, from some local conditions, whether it’s
a representative state of some phase of matter? If so, what phase does it represent? If not,
does it represent a phase boundary, i.e., a critical theory? In addressing these questions, we
shall not start from the IR theory in the first place but rather assume several locally-checkable
conditions on a given quantum state (we shall call it “a reference state”) and examine whether
some universal properties or even the whole IR theory is the logical consequence of these local
conditions.

Much progress has been recently made towards answering this question. A program called
“entanglement bootstrap” (EB) demonstrates that universal properties of 2+1D and 3+1D
topologically-ordered phases follow logically from locally-checkable assumptions about the
many-body entanglement of local regions on a reference quantum state [9,22–24]. A similar
approach has been advocated for 1+1D conformal field theory (CFT) [25].

In this work, we focus on the emergent phenomenon associated with gapless edges from
some 2+1D gapped states. Systems with an energy gap in the bulk1 can have gapless edges. In
some cases, the gapless edge is robust from being gapped out by local perturbations.2 Exam-
ples include edges of chiral gapped states [6] as well as non-chiral states with some non-zero
higher central charges [26, 27] or non-zero minimal total central charge [28]. In many ex-

1We will call them gapped systems for short.
2Such edge states are commonly called ungappable.
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Figure 1: Basic setups. (a) |Ψ〉 on a “coarse-grained” lattice. Each gray block stands
for a coarse-grained site, which is a group of many microscopic degrees of free-
dom [Section 2]. The regions colored are combinations of regions involved in the
three assumptions, which will be explicitly introduced in Section 3 and Section 4.
(b1) A “smooth” version. D = (A, A′, B, C , C ′) is a conformal ruler, where one can
compute ∆(D), I(D) defined in Eq. (16). (b2) 1+1D CFT groundstate stacked on
the edge of a round disk, with the bulk being a trivial product state. In this case,
∆(D) = ∆(a, b, c) = − ctot

6 ln(ηg), I(D) = I(a : c|b) = − ctot
6 ln(1− ηg). ηg is the ge-

ometric cross-ratio, computed using the chord distance (represented by the red and
blue lines) of these edge intervals.

amples, such as fractional quantum Hall systems, people have conjectured or verified that the
gapless edges are described by CFT at the IR limit [4,29,30]. The key question that motivates
this work is: What’s the mechanism that results in the emergence of conformal symmetry in
these gapless edges? Is the mechanism rooted from quantum entanglement properties of lo-
cal regions near the edge of a reference state? This question can be explicitly phrased as: Is
the emergence of conformal gapless edge a logical consequence of some quantum entanglement
properties of local regions near the edge of a reference state? Moreover, can we understand the
robustness of the ungappable edges in terms of this mechanism? To answer these questions,
we must first forgo the CFT assumption and try to identify several locally-checkable condi-
tions on a reference state, from which one can prove the emergence of conformal symmetry.
Furthermore, from the robustness of these local conditions, one can tell the robustness of the
emergent conformal symmetry. This paper makes the first step towards this goal.

1.2 A summary of this work

In this work, we shall study a quantum state |Ψ〉 on a two-dimensional lattice on a disk; see
Fig. 1 for an illustration. We assume that on the coarse-grained lattice in the bulk regions
[Fig. 1], the state satisfies one of the entanglement bootstrap axiom called A1 and has a non-
zero chiral central charge computed from modular commutators [Section 3]. These two as-
sumptions are borrowed from previous work [9, 10], and they effectively enforce the bulk
wavefunction to be a fixed-point wavefunction of some chiral gapped systems.

Our edge assumptions are defined on a collection of local edge regions D [Fig. 1(b1)],
called as conformal ruler for the reason that will be clear later. For each of those regions,
we introduce quantum information-theoretic quantities called (total) central charge candidate
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ctot(D)|Ψ〉 and quantum cross-ratio candidate η(D)|Ψ〉, defined as

e−6∆(D)/ctot + e−6I(D)/ctot = 1 , η≡ e−6∆(D)/ctot , (1)

where ∆(D) and I(D) are two certain linear combination of entanglement entropies in D
[Fig. 1(b1)]:

∆(D) =∆(AA′, B, CC ′) = SAA′B + SBCC ′ − SAA′ − SCC ′ ,

I(D) = I(A : C |B) = SAB + SBC − SB − SABC .
(2)

Here SX ≡ S(ρX )≡ −Tr(ρX lnρX ) is the entanglement entropy of a reduced density matrix on
region X , computed from the reference state |Ψ〉. These two particular entropy combinations
are designed in a way that UV contributions from these entanglement entropies are canceled.
The definition of ctot(D) andη(D) are motivated from 1+1D CFT. One can consider a 1+1D CFT
groundstate stacking on the edge of a regular disk, with the bulk being a trivial product state.
∆(D) and I(D) becomes a simple linear combination of entanglement entropies over three
contiguous intervals [Fig. 1(b2)]. Utilizing the formula of the entanglement entropy of an
interval of chord length ℓ on the CFT groundstate [11], S(ℓ) = ctot

6 ln(ℓ/ε), where ctot is the total
central charge of the CFT and ε is a UV cutoff, one can explicitly obtain ∆(D) = − ctot

6 ln(ηg)
and I(D) = − ctot

6 ln(1 − ηg). Therefore, the solution of Eq. (1) in this case is exactly the
total central charge ctot and the geometric cross-ratio ηg of the three contiguous intervals
[Fig. 1(b2)]. Our approach is to turn this table around and make ctot and η defined in Eq. (1)
as a candidate of central charge and cross-ratio over any quantum state without assuming
any symmetry beforehand. Remarkably, under the edge assumption we posit on ctot, η indeed
can be interpreted as a cross-ratio, which further indicates the existence of edge conformal
geometry. Explicitly, the assumption [Stationarity condition] states: For every D, under any
infinitesimal (norm-preserving) variation of the state |Ψ〉 → |Ψ〉+ ε

�

�Ψ′
�

, ctot(D) is stationary,
i.e.

δctot(D) = 0 , (3)

where δctot(D) denotes the resulting variation of ctot in linear order of ε.
We remark that our assumption is motivated by the speculation that ctot defined this way be-

haves as a c-function near the critical RG fixed point, analogous to the one defined by Zamolod-
chikov [31] or Casini-Huerta [32] in the context of 1+1D relativistic quantum field theory. One
evidence for this speculation is that ctot is indeed stationary if the edge physics is described by
a 1+1D CFT. This comes from the fact that the stationarity condition is equivalent to a vector
fixed-point equation in terms of η defined in Eq. (1):

�

η∆̂(D) + (1−η) Î(D)
�

|Ψ〉 ∝ |Ψ〉 , ∀D , (4)

where ∆̂(D), Î(D) are linear combinations of modular Hamiltonians,

∆̂(D) = ∆̂(AA′, B, CC ′) = KAA′B + KBCC ′ − KAA′ − KCC ′ ,

Î(D) = Î(A : C |B) = KAB + KBC − KB − KABC ,
(5)

with KX ≡ − ln(ρX ) denoting the modular Hamiltonian of a reduced density matrix on region
X . Eq. (4) generalizes the vector fixed-point equation derived in 1+1D CFT [25]. In particular,
since this equation is satisfied by 1+1D CFT [25], the stationarity condition holds true. We
will discuss the equivalence of the two conditions in more detail in Section 4.

Our approach to demonstrating the emergence of conformal geometry is to derive the
defining relations of cross-ratios. More precisely, on the physical setup described in [Sec-
tion 2], based on these three assumptions [Section 3 and 4] — (1) bulk A1, (2) non-zero
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chiral central charge from the bulk modular commutator, and (3) stationarity condition of
(ctot)|Ψ〉 — we prove that η satisfies certain consistency relations [Section 5]. These consis-
tency relations also appear in the mathematics literature, which axiomatically define a set of
cross-ratios [33,34]. Moreover, these relations enable us to map all the (coarse-grained) edge
intervals to a set of intervals on a circle, such that the quantum cross-ratios determined from
our method are precisely equal to the geometric cross-ratios computed on the circle. There-
fore, these consistency relations are enough to justify viewing ηs as legitimate cross-ratios.
We will explain this fact in detail in [Section 5.3]. In addition, under these three assumptions,
utilizing the cross-ratio relations, we show that ctot is the same for every region along the edge
[Section 5.4]. In [Section 6], replacing the non-zero chiral central charge assumption with
another assumption [genericity condition], we derive a similar set of results for non-chiral
states.

Let us remark on the significance of our main result, the emergence of cross-ratios on the
chiral edge. Firstly, cross-ratios provide a distance measure modulo global conformal transfor-
mation. The emergence of cross-ratios indicates the emergence of conformal geometry, whose
origin is purely quantum information-theoretic; the proper notion of distance for the cross-
ratios emerged from our approach, even without making any further assumptions! Secondly,
the emergence of conformal geometry is robust. Note that we did not assume any symmetry or
geometric property of the edge. Even if the actual edge can be irregular, in the sense that the
system does not have any translational symmetry around the edge, our approach continues
to work. We discuss a result of a simple numerical example that demonstrates this point in
Appendix G. This phenomenon is likely tied to the robustness of the gapless edge under local
perturbations.

What is more, the quantum cross-ratios enable us to construct approximate Virasoro gen-
erators in the purely chiral state, generalizing the ideas in [35]. Proving the full algebraic
relation is tangent to the future work. This work is the root of many future research direc-
tions, which will be discussed in Section 7.

2 Preliminaries

Throughout this paper, we shall study a many-body quantum state on a two dimensional disk,
referred to as the reference state. Physically, we can view the reference state as a groundstate of
some 2+1D local Hamiltonian with a bulk gap, though we do not make use of this fact. Below
we introduce our notations [Section 2.1] and the physical setup [Section 2.2] to describe this
state.

2.1 Notations

Unless specified otherwise, we shall refer to the reference state as |Ψ〉 throughout this paper.
We shall reserve the uppercase letters to denote subsystems (or equivalently, regions). The
complement of a subsystem will be denoted by placing a bar on top. For instance, for a sub-
system A, Ā is the complement of that region. For denoting the Hilbert space, the symbols
representing the subsystem will be placed in the subscript, e.g., HA.

We shall use the standard notation for the density matrix, using Greek letters such as
ρ,σ,λ, . . . For the reduced density matrix of a subsystem, we define ρA = TrĀ(ρ). Entangle-
ment entropy of a subsystem is defined as S(ρA) ≡ −Tr(ρA lnρA). We will often deal with
various linear combinations of entanglement entropies over different subsystems. When the
underlying global state is the same, we shall use the following short-hand notation. Without
loss of generality, suppose we are given an expression of the form

�∑

i αiSAi

�

ρ
, where αi ∈ R
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and {Ai} is a collection of subsystems. This expression is defined as
�

∑

i

αiSAi

�

ρ

=
∑

i

αiS(ρAi
) . (6)

There are two linear combinations of entanglement entropies which shall be used fre-
quently in this paper. The first is the conditional mutual information, defined as

I(A : C |B)ρ ≡ (SAB + SBC − SB − SABC)ρ . (7)

The strong subadditivity (SSA) of the von Neumann entropy [36] can be expressed as
I(A : C |B) ≥ 0. The other is a linear combination that appears in the weak monotonicity
inequality,3 which is

∆(A, B, C)ρ ≡ (SAB + SBC − SA− SC)ρ . (8)

We remark that both quantities are non-negative.
We shall also consider operator analogs of Eq. (7) and Eq. (8). Let KA ≡ − lnρA be the

modular Hamiltonian. These are defined as

Î(A : C |B)ρ ≡ KAB + KBC − KB − KABC ,

∆̂(A, B, C)ρ ≡ KAB + KBC − KA− KC .
(9)

We remark that Î(A : C |B) is not necessarily positive semi-definite. However, ∆̂(A, B, C) is
indeed positive semi-definite [37].

2.2 Physical setup

The reference state |Ψ〉 can be defined on any two-dimensional manifold with boundaries,
although we focus on a disk-like geometry for concreteness. More precisely, we envision a
two-dimensional disk consisting of microscopic degrees of freedom, each locally interacting
with each other. The reference state is a vector in a many-body Hilbert space that has a tensor
product structure (or a Z2-graded tensor product structure for fermions) over these micro-
scopic degrees of freedom.

Although the reference state is formally defined over these microscopic degrees of freedom,
we shall study the same state from a more coarse-grained point of view. By partitioning the
system into large disks and viewing each disk as a “supersite,” we obtain a state defined over a
coarse-grained lattice [Fig. 2]. Each site of the lattice now contains a large enough number of
degrees of freedom so as to satisfy the assumptions elucidated in Section 3 and 4. Although
there are more fine-grained spatial structures within each supersite, we will remain agnostic
about this internal structure, simply viewing each supersite as an indecomposable object.

At this point, a natural question is how large the supersite should be. From a RG point of
view, the disks ought to be large enough so that the physics at the scale of the supersites can
be accurately described by an effective theory in the IR. More specifically, in the IR we expect
the local reduced density matrices over a few supersites to satisfy certain nontrivial conditions.
(These conditions are the bulk assumptions and edge assumptions we describe in Section 3
and 4.) Furthermore, we expect the effective theory in the IR to emerge from these conditions.

We remark that such a coarse-graining isn’t part of the assumptions in the logical frame-
work in our work. As long as the local conditions describe in Section 3 and 4 are satisfied, we
can say the microscopic degrees of freedom has been coarse-grained enough.

3Weak monotonicity, ∆(A, B, C)≥ 0 is equivalent to the strong subadditivity of entropy by the trick of purifying
a quantum state, as is well known.
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Figure 2: A coarse-grained lattice with an edge. (a) Each coarse-grained site (super-
site) is a face that contains a set of sites contained within the face. (b) Coarse-grained
sites are connected to each other by an edge if their corresponding faces are adjacent
to each other.

3 Bulk assumptions

We now introduce the main assumptions about the reference state in the bulk, referred to as the
bulk assumptions. These are assumptions imposed on regions away from the edge, borrowed
from the recent developments in entanglement bootstrap [9,10]. The entanglement bootstrap
program rests on two basic axioms, referred to as A0 and A1. In this paper, we will only impose
A1 in the bulk, discussed in more detail in Section 3.1. (The reason for dropping A0 as well as
its potential usage in future works are discussed in Section 3.3.) In addition, we assume that
the bulk is chiral in the sense we make precise in Section 3.2.

We remark that we do not anticipate the assumptions presented below to hold on every
physical state. In fact, there are states that break our assumption in a robust manner, such
as highly-excited states, or even groundstates in the presence of defects [38, 39] and domain
walls [22,40,41]. Understanding the origin of such violations is of independent interest.

3.1 Bulk A1

The first bulk assumption, which we refer to as “bulk A1,” is one of the entanglement bootstrap
axioms [9]:

Assumption 3.1 (Bulk A1). We assume the reference state |Ψ〉 satisfies A1: for any disk-like
region of linear size O(1)4 in the bulk with partition BC D topologically equivalent to the one in
Fig. 3,

∆(B, C , D)|Ψ〉 ≡ (SBC + SC D − SB − SD)|Ψ〉 = 0 . (10)

One way to understand this assumption is to use the area law of entanglement entropy.
For any region A in the bulk, the entanglement entropy satisfies

S(A) = α|∂ A| − γ+ . . . , (11)

where α is a UV-dependent quantity, γ is the topological entanglement entropy [7,8], and the
ellipsis is the subleading term that vanishes in the limit of |∂ A| → ∞. Importantly, one can
verify that this form of the area law implies the bulk A1 assumption.

A1 is useful because one can deduce from it that certain density matrices are quantum
Markov chains. Generally speaking, a tripartite quantum state ρABC is a quantum Markov
chain if it satisfies I(A : C |B)ρ = 0. Assuming A1 holds for the subsystem BC D, for any A in
the complement of BC D, the strong subadditivity (SSA) of entropy implies the following:

I(A : C |B)ρ ≤∆(B, C , D)ρ = 0 . (12)

4i.e. order 1 of the coarse-grained lattice sites.

8

https://scipost.org
https://scipost.org/SciPostPhys.18.3.102


SciPost Phys. 18, 102 (2025)

Figure 3: Axiom A1: ∆(B, C , D)|Ψ〉 ≡ (SBC + SC D − SB − SD)|Ψ〉 = 0 for partition of a
bulk disk into B, C , D in a way topologically equivalent in the figure.

Because I(A : C |B) ≥ 0 again by SSA, we conclude that I(A : C |B)ρ = 0 and therefore ρABC is
a quantum Markov chain. Note that this argument is agnostic about the choice of A as long as
it is in the complement of BC D. In particular, A can include regions on the edge, even though
we made no assumption about the edge so far!

Throughout this paper, we will utilize the quantum Markov chain structure in two ways.
Firstly, although we only assumed A1 in every O(1)-sized regions, this assumption implies that
A1 holds at a larger scale. (This is referred to as “extension of axioms” in [9].) This allows
one to deform the regions used in certain linear combinations of entropies; see Appendix B for
details. Secondly, a quantum Markov chain enables us to decompose the modular Hamiltonian
of larger regions in terms of those on smaller regions [42]: for any state |ψ〉,

I(A : C |B) = 0 ⇔ KABC |ψ〉= (KAB + KBC − KB) |ψ〉 . (13)

We will apply this identity throughout this paper.
We note that in various lattice models, such as those with non-zero chiral central charge,

A1 can be satisfied only approximately, i.e., ∆(B, C , D)|Ψ〉 ≈ 0, if the dimension of the local
Hilbert space is finite (e.g. [43,44]). Thus our results would not directly apply to such lattice
models. Nevertheless, it has been observed in numerical studies that the violation decreases
as the subsystem size increases [35]. Therefore, we anticipate our results to be applicable in
the limit where the size of every considered subsystem becomes large. More generally, we
anticipate that if the quantum state is “close enough” to a zero-correlation length RG fixed-
point, then the violation of bulk A1 will decrease to zero as the state further approaches the
fixed-point. Proving such a statement on a rigorous footing is a subject for future work.

3.2 Non-zero chiral central charge

The second bulk assumption states that the bulk is chiral. Our assumption can be precisely
stated in terms of the modular commutator [10,45]. This is a quantity defined for any tripartite
quantum state ρABC , denoted as J(A, B, C)ρABC

:

J(A, B, C)ρABC
≡ iTr([KAB, KBC]ρABC) . (14)

Throughout this paper, we will define the chiral central charge as a constant c− appearing in
the following formula [10,45]:

J(A, B, C)|Ψ〉 =
π

3
c− , (15)

where ABC is a local disk with partition shown in Fig. 4. Due to A1, the value of c− obtained
from Eq. (15) is a constant everywhere in the bulk [10,45]. Now we can state the second bulk
assumption:

9
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Figure 4: Partition of a disk-shaped region ABC in the bulk. Each subsystem is as-
sumed to be sufficiently large compared to the correlation length.

Assumption 3.2 (Non-zero chiral central charge). We assume the state |Ψ〉 is chiral in the sense
that the chiral central charge c− computed from Eq. (15) is non-zero.

Throughout the rest of the paper, when we refer to the chiral central charge c−, we mean
the one computed from Eq. (15). There has been evidence [45, 46] on why this definition of
chiral central charge should match the traditional definition [6,47,48] on physical states. As
such, we shall call the state with c− ̸= 0 a chiral state.

3.3 A comment on the role of A0

There is another axiom of entanglement bootstrap, known as A0. It states that for any BC D
partition of a bulk disk of the topology shown in Fig. 3, SC + SBC D − SBD = 0 for the reference
state of interest. Because our results simply do not make use of this assumption, the conclu-
sions drawn in this work should apply regardless of A0. Nonetheless, A0 may play a nontrivial
role in the future. We briefly comment on that prospect below.

Assuming A1, the fact that c− attains a constant value everywhere in the bulk was proved
in Ref. [10]. However, without A0, it is not possible to conclude that c− is quantized. If we do
not demand A0, we can consider a reference state of the form of |Ψ〉=pp|Ψ1〉+

p

1− p|Ψ2〉,
where p ∈ (0,1) and |Ψ1〉 and |Ψ2〉 are two topologically ordered groundstates. Let us further
suppose that the two states are supported on orthogonal subspaces on each lattice site. The
chiral central charge (computed from the modular commutator) would be c− = pc1

−+(1−p)c2
−,

which can be continuously tuned between c1
− and c2

−. For the chiral central charge appearing in
the anyon theory, it is well-known that it must attain a quantized value related to the universal
properties of the anyons; see [6, Appendix E]. In order to rule out examples like this, we would
need to assume A0.

4 Edge assumption

The two bulk assumptions reviewed in Section 3 are the assumptions already used in the
existing literature [9, 10]. In this Section, we introduce a new assumption on the edge from
which certain features of the conformal symmetry emerge.

In order to state our assumption, we shall first define a pair of information-theoretic quan-
tities from a region adjacent to the edge [Fig. 5], denoted as ctot and η [Section 4.1]. These
quantities shall ultimately correspond to the central charge and the cross-ratio of a CFT under
our assumption, though at this point they are merely some information-theoretic quantities
definable over any quantum state. In Section 4.2, we put forward our main assumption —
formulated in terms of ctot and η — from which aspects of the conformal symmetry emerge.
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Figure 5: A conformal ruler near the edge. It is a disk-like region with a partition
D = (A, A′, B, C , C ′) with a topology as shown. The three contiguous edge intervals
a, b, c are obtained by the intersection of A, B, C with the edge.

4.1 Key concepts: Central charge and quantum cross-ratio candidates

In this Section, we introduce two information-theoretic quantities that will play a central role
in this paper. These quantities will ultimately correspond to the central charge and the cross-
ratio. However, without making any further assumptions (such as the ones in Section 4.2) such
an interpretation cannot be justified. Therefore, for now we simply refer to them as central
charge candidate and quantum cross-ratio candidate, denoted as ctot and η, respectively. Later
in Section 5 and 6, we will provide conditions under which these can be viewed as the central
charge and the cross-ratio. In that context, we will refer to them simply as central charge and
quantum cross-ratio.

Here are the main motivations behind our definitions. Our definitions of ctot and η are
aimed at identifying the central charge and the cross ratio near the edge of a 2+1D groundstate
with a gapped bulk, using entanglement entropies. In order to isolate the contribution to the
entanglement entropy from the edge, we need to ensure that the contributions from the bulk
cancel each other out in a judicious way. Furthermore, we want the definitions to be applicable
even without any prior knowledge of the distance metric (used in defining the cross-ratio) near
the edge.

Both of these challenges can be solved by using a 5-partite block D = (A, A′, B, C , C ′)
[Fig. 5]. Each such block allows us to compute a pair (ctot,η) [Definition 4.1]. Such pairs can
be used to (i) determine whether the underlying state allows a conformal distance measure
on its edge [Section 4.2], and (ii) assign such a conformal distance measure (i.e. a distance
measure modulo global conformal transformation) to the coarse-grained edge interval [Sec-
tion 5.3]. Because such a block D allows us to recover the conformal distance measure, we
refer to it as a conformal ruler.

For each such D = (A, A′, B, C , C ′), we put forward two linear combinations of entropies,
which carefully cancel out area law contribution from the bulk, namely

∆(D)≡∆(AA′, B, CC ′) = SAA′B + SCC ′B − SAA′ − SCC ′ ,

I(D)≡ I(A : C |B) = SAB + SBC − SB − SABC .
(16)

These quantities retain nontrivial information about the edge. For the physically interesting
case of gapless edges, we expect I ,∆> 0. For gapped edges, both I or ∆ become vanishingly
small, in the limit the size of each subsystem becomes large. Unless stated otherwise, for each
D, we will demand the following topological requirement on the underlying regions. Firstly,
AA′BCC ′ should be topologically a disk, and A, B, C should be anchored at three contiguous
coarse-grained intervals on the edge. Secondly, AA′CC ′ should completely cover B shielding it
from the complement of AA′BCC ′ [Fig. 5]. Lastly, A, C should not be adjacent to each other.
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Figure 6: Examples of bulk deformation of a D: (i) A→ A\ x , B→ Bx; (ii) A′→ A′w;
(iii) A′→ A′ y, C ′→ C ′ \ y; (iv) C ′→ C ′z, B→ B \ z.

We remark that ∆(D), I(D) defined in Eq. (16) is the “canonical” expression once a
conformal ruler D is specified. For example, in the same 5-partite region in Fig. 5,
D′ = (AA′,;, B, C , C ′) is also a conformal ruler, in which ∆(D′) = ∆(AA′, B, CC ′),
I(D′) = I(AA′ : C |B).

We now introduce the definition of ctot and η.

Definition 4.1 (ctot(D) and η(D)). Let |Ψ〉 be a state on a disk that satisfies bulk A1. Consider
a conformal ruler D = (A, A′, B, C , C ′). We define ctot(D)|Ψ〉 and η(D)|Ψ〉 as the solution to the
following equations:

e−6∆(D)/ctot(D) + e−6I(D)/ctot(D) = 1 ,

η(D)|Ψ〉 ≡ e−6∆(D)/ctot(D) .
(17)

A few remarks are in order. First, when I(D),∆(D) > 0, Eq. (17) has a unique solution,
where

ctot(D)|Ψ〉 > 0 , η(D)|Ψ〉 ∈ (0,1) . (18)

When I = 0 or ∆= 0, we can set ctot(D)|Ψ〉 = 0, which is the limit of ctot defined in Eq. (17) as
∆→ 0 or I → 0 [see Appendix C]. Secondly, while ctot and η become the central charge and
the cross ratio under some assumptions, more generally, one cannot interpret them in such a
way. We shall discuss the relevant examples in the latter part of this Section. Thirdly, ctot(D)|Ψ〉
and η(D)|Ψ〉 are invariant under the deformations of the conformal ruler in the bulk, such as
the one shown in Fig. 6. This is because both ∆ and I are invariant under such deformation,
a fact that follows straightforwardly from bulk A1 [Appendix B].

Continuing the last remark, due to the invariance under the deformation in the bulk, it
is sometimes more informative to specify the conformal ruler in terms of the edge intervals.
Without loss of generality, let a, b, and c be the edge intervals on which the subsystems A, B,
and C are anchored. We will sometimes refer to a conformal ruler of those regions asD(a, b, c).
While this notation hides the explicit choice of A, B, C , A′, and C ′, these details are irrelevant in
calculations involving I(D) and∆(D). Later in Section 5 and 6, we will use even more succinct
notations, such as ∆a,b,c and Ia,b,c for ∆(D(a, b, c)) and I(D(a, b, c).

We now provide examples for which ctot and η take a clear physical meaning.

Example 4.2 (1+1D CFT groundstate). The simplest example is a 1+1D CFT groundstate on
a circle. We identify the circle with the edge, and the bulk is left empty. The entanglement
entropy of an interval in the groundstate of a 1+1D CFT on a circle is S(ℓ) = ctot

6 ln(ℓ/ε) [11],
where ℓ is the chord length of the interval, ε is a cutoff, and ctot is the total central charge.
One can calculate

∆=∆(a, b, c) , I = I(a : c|b) . (19)
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Figure 7: The chord lengths used in defining the geometric cross-ratio on a circle.

Plugging them into Definition 4.1, one can see that indeed ctot equals the total central charge
of the CFT and η equals the geometric cross-ratio (ηg) for the interval (a, b, c) on a circle:

ctot = ctot , η= ηg ≡
ℓa · ℓc

ℓab · ℓbc
, (20)

where ℓa is the chord length associated with interval (or arc) a. See Fig. 7 for an illustration.

Example 4.3. There is a limit of our quantity ctot in which, when applied to the groundstate of
a relativistic 1+1D QFT, it is related to Casini and Huerta’s c-function cCH ≡ 6r∂rS(r), where
S(r) is the entanglement entropy of an interval of length r [49]. Using strong subadditivity
and Lorentz symmetry, Casini and Huerta showed that this quantity is monotonic under RG
flows of couplings in relativistic QFT.

Consider a translation-invariant state and suppose that η is equal to the geometrical cross-
ratio,5 so

ctot = 6
∆

ln1/η
. (21)

Take the regions to be as in the argument for constraints on derivatives of S(r) from
SSA in [50], so |ab| = |bc| = r, |a| = |c| = r − δr, and take δr infinitesimal. Then
η= (r −δr)2/r2= 1− 2δr, ln1/η= 2δr and

ctot = 6
∆

ln1/η
= 6

2S(r)− 2S(r −δr)
2δr

= 6r∂rS(r) = cCH , (22)

the RG monotone of Casini and Huerta. The relation (22) between cCH and ∆ is not entirely
a surprise since the fact that cCH can be related to the quantity appearing in the weak mono-
tonicity inequality is the crucial step of their proof of RG monotonicity [49].

Example 4.4 (Chiral gapped system on a disk). Another class of examples is chiral gapped
systems on a disk. Here, we assume that the bulk is gapped and satisfies the area law and
the edge is one that obeys Hypothesis 1 of [35], concerning the CFT behavior of the chiral
edge; as explained in the reference, one can conclude that ctot is the central charge and η is
the geometric cross-ratio. (For an alternative physical argument, see the “cylinder argument”
in the same reference.)

Example 4.5 (Chiral gapped system with an irregular edge). Here is an example from numer-
ical observation. On an irregular edge of p+ ip superconductor (detailed in Appendix G), we
computed ctot and η. The value ctot ≈ 1/2 matches the anticipated central charge of the edge.
The values of ηs computed from different choices of edge intervals satisfy the consistency rela-
tions one would expect for a set of cross-ratios with high precision. (See Section 5.2 for those
rules). Unlike the previous examples, in which the distance measure is given to us from the
beginning, this example does not begin with any preferred choice of distance measure.

5The reader will wonder how strong this assumption is. Indeed we should not expect it to hold for QFTs far
from a fixed point. However, it should hold for small deviations away from a CFT.
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4.2 Assumption: Stationarity condition

We now introduce our rather minimalistic edge assumption. The assumption we put forward
is the stationarity condition of ctot, which posits that ctot is invariant under infinitesimal norm-
preserving perturbations.

Without loss of generality, consider any norm-preserving perturbation of the state |Ψ〉 of
the form |Ψ〉 → |Ψ〉 + ε|Ψ′〉, where ε ∈ R is infinitesimal and |Ψ′〉 is a state orthogonal to
|Ψ〉. We use δctot to denote the resulting variation of ctot in linear order of ε. The stationarity
condition states:

Assumption 4.6 (Stationarity condition). We assume the state |Ψ〉 satisfies the following sta-
tionarity condition: for every conformal ruler D,

δctot(D)|Ψ〉 = 0 , (23)

for any norm-preserving perturbation of |Ψ〉.

Interestingly, the stationarity condition turns out to be equivalent to a seemingly unrelated
condition. This is the vector fixed-point equation involving η and the modular Hamiltonians,
similar to the one introduced in Ref. [25]. In order to describe this assumption, it will be
helpful to introduce the following notation. Given a conformal ruler D = (A, A′, B, C , C ′), we
can consider operator analogs of ∆(AA′, B, CC ′) and I(A : C |B):

∆̂(D)≡ ∆̂(AA′, B, CC ′) = KAA′B + KCC ′B − KAA′ − KCC ′ ,

Î(D)≡ Î(A : C |B) = KAB + KBC − KB − KABC .
(24)

As we show in Appendix B, when those operators act on |Ψ〉, one can deform their supports
in the bulk region. Therefore, for a D that anchors on the edge intervals a, b, c, we sometimes
denote ∆̂(D) = ∆̂a,b,c , and Î(D) = Îa,b,c , when they act on the reference state.

Now we can state our stationarity condition equivalently using the vector fixed-point equa-
tion:

Definition 4.7 (Vector fixed-point equation). A state |Ψ〉 satisfies the vector fixed-point equa-
tions if the following is true: For any conformal ruler D,

KD(η(D))|Ψ〉 ∝ |Ψ〉 , (25)

where
KD(x)≡ x∆̂(D) + (1− x) Î(D) . (26)

The equivalency relation between the stationarity condition and the vector fixed-point
equation [Definition 4.7] follows from the theorem stated below:

Theorem 4.8. Consider a conformal ruler D = (A, A′, B, C , C ′), with ctot(D)|Ψ〉 and η(D)|Ψ〉 de-
fined as in Definition 4.1. ctot(D)|Ψ〉 is stationary if and only if

KD(η) |Ψ〉 ∝ |Ψ〉 , (27)

where η is the solution of Eq. (17).

The proof of this theorem is given in Appendix D.
Following this theorem, one can conclude that the stationarity condition, namely ctot(D)|Ψ〉 is
stationary for every conformal ruler D, is equivalent to the vector fixed point equation condi-
tion [Definition 4.7].
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While the stationarity condition [Assumption 4.6] and the vector fixed-point equation con-
dition [Definition 4.7] are equivalent thanks to Theorem 4.8, the motivations behind them are
different. A motivation behind Assumption 4.6 is to define a c-function ctot that generalizes the
central charge of the 1+1D CFT, even for non-relativistic systems. For relativistic systems, there
are c-functions which monotonically decrease under RG flow [31,32,49]. In particular, at an
RG fixed point, the c-function ought to be stationary against perturbations of the Lagrangian.
Assumption 4.6 posits a condition in this spirit.6 A motivation behind the vector fixed-point
equation [Definition 4.7] is to define a proper notion of cross ratio η even without knowing
the distance measure. For a 2+1D gapped system on a disk whose edge is described by a CFT,
if the edge is known to have a translational symmetric geometry, then as argued in [35], it
is expected that the edge shall hold the vector fixed-point equation [Definition 4.7] with geo-
metric cross-ratio, which is a generalization of the vector fixed-point equation for 1+1D CFT
groundstate [25]. However, in systems in which the translational symmetric is not manifest
or even absent, e.g., the edge of a disordered quantum Hall system, it is less clear how to
define the cross ratio. Demanding the vector fixed-point equation is one viable approach. It is
remarkable that the two assumptions motivated from seemingly unrelated reasons are in fact
equivalent to each other.

Although the stationarity condition may appear to be a global condition, it is in fact locally
checkable due to its equivalence to the vector fixed-point equation. That is, one only needs to
work with the reduced density matrix (ρD) on the conformal ruler D:

δctot(D)|Ψ〉 = 0 ⇔ KD(η) |Ψ〉 ∝ |Ψ〉 ⇔ KD(η)ρD∝ ρD . (28)

The first ⇔ is the content of the Theorem 4.8. Now we explain the second ⇔. The ⇒
direction is simple as one can simply trace out the complement of AA′BCC ′ on both hand
side of KD(η) |Ψ〉 〈Ψ| ∝ |Ψ〉 〈Ψ|. To see the ⇐, one can first purify ρD →

�

�Ψ′
�

and obtain
KD(η)
�

�Ψ′
�

∝
�

�Ψ′
�

. Then by Uhlmann’s theorem [51], one can obtain |Ψ〉 from
�

�Ψ′
�

by a
unitary ID ⊗ UD whose support is only within D. As the unitary commutes with KD(η), one
obtains KD(η) |Ψ〉 ∝ |Ψ〉.

One particular usage of the edge assumption is to decompose the modular Hamiltonians
on a larger region in terms of the linear combinations of the modular Hamiltonians on smaller
regions, when they act on |Ψ〉. The reverse process also works, allowing us to glue the local
modular Hamiltonians to obtain modular Hamiltonian on larger regions. This resembles the
situation of quantum Markov chains, where if some state |ψ〉 satisfies I(A : C |B)|ψ〉 = 0, one
can decompose KABC |ψ〉= (KAB + KBC − KB) |ψ〉, and vice versa. In the context of 1+1D CFT,
this same decomposition idea is observed in [25].

One might wonder why we advocated using the stationarity condition instead of the vector
fixed-point equation, in spite of the fact that they are equivalent [Theorem 4.8]. While this
is of course a matter of taste, we have reasons to believe that the stationary condition has a
potential to be applicable in broader contexts. For one thing, the stationarity condition in its
formulation explicitly includes a set of states in a small neighborhood of the underlying state.
We can thus speculate that, near the RG-fixed point, ctot monotonically decreases under the
RG flow. It will be interesting to understand if our definition of ctot measures the “number
of degrees of freedom” in general quantum many-body systems, just like Zamolodchikov’s c-
function does for relativistic systems [31].

There is also numerical evidence for our perspective that these edge conditions hold at
fixed points of the RG, and that their violation decreases under coarse-graining. See, for ex-
ample, Fig. 19 of [35] where the violation of the vector fixed-point equation decreases as the
subsystem size increases.

6A difference is that we are directly perturbing a quantum state, whereas in Ref. [31,32,49], it is the Lagrangian
that is being perturbed.
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The relation between the stationarity condition and the vector fixed-point equation is
evocative of the relation between the action principle and the equation of motion. At a classical
level, they are equivalent formulations of the same physical laws. Often times, the equation
of motion is more practical. However, the action principle played a key role in going beyond
classical mechanics in terms of the path integral, thereby explaining the origin of the action
principle. This anecdote invites us to wonder if the stationarity condition has more to tell us
about the physics of quantum many-body systems in the future.

4.3 Examples of stationary states

In this section, we provide several examples of states that satisfy the stationarity condition.
This is done by verifying the vector fixed-point equation [Definition 4.7]. Then the claim
follows immediately from Theorem 4.8.

Example 4.9 (Gapped state with gapped boundaries). For a topological order with a gapped
boundary, the stationarity condition holds trivially. In the language of entanglement bootstrap,
for a gapped boundary, in addition to the bulk A1 described above, a boundary version of A1
is also satisfied; see [22]. This boundary axiom is precisely ∆ = 0 (defined in (16)) for each
choice of D. By strong subadditivity, I = 0. Thus

ctot = 0 , Î |Ψ〉= ∆̂|Ψ〉= 0 . (29)

The vector fixed-point equation holds trivially, and this also implies δctot = 0. One may also
derive δctot = 0 bypassing the vector fixed-point equation. Note that ctot ≥ 0 by definition.
Therefore, ctot = 0 is the absolute minimum, which implies the stationarity.

Example 4.10 (1+1D CFT on a circle). To fit our definition of ctot and η, one can regard the
1+1D CFT groundstate on a circle as the edge state of a 2+1D system on a disk with empty
bulk. As we showed before

∆(AA′, B, CC ′) =∆(a, b, c) , I(A : C |B) = I(a : c|b) , (30)

where a, b, c are the edge intervals associated with region A, B, C as in Fig. 5. Therefore,
η= ηg , the geometric cross-ratio computed from the circle (20), and

KD(η) |Ψ〉=
�

ηg∆̂(a, b, c) + (1−ηg) Î(a : c|b)
�

|Ψ〉

∝ |Ψ〉 ,
(31)

where the “∝” in the second line is by the vector fixed-point equation derived in [25]. By
Theorem 4.8, 1+1D CFT groundstates satisfy the stationarity condition δctot = 0.

Example 4.11 (Chiral states with a bulk energy gap). Consider a chiral state with a bulk
energy gap on a two-dimensional manifold with edges. As derived in [35] under some mild
hypothesis, for a local region near an edge, the vector fixed-point equation is satisfied:

KD(η) |Ψ〉 ∝ |Ψ〉 . (32)

Here η computed from I and∆ is identical to the geometric cross-ratio. Hence, the stationarity
condition is satisfied on the edges of such chiral states.

Example 4.12 (Chiral gapped system with an irregular edge). We numerically tested the ir-
regular edges of a p+ ip superconductor groundstate [Appendix G]. In this setup, a preferred
distance measure for the cross-ratio is unclear due to the irregularity. By computing the quan-
tum cross-ratio η from the groundstate (Definition 4.1) and checking the validity of the vector
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fixed-point equation for this η, we found a sharp verification of our assumption. More pre-
cisely, we have computed the error of vector equation KD(x)|Ψ〉 ∝ |Ψ〉 for x ∈ [0,1], where
KD(x) is that in Eq. (26). Here the error is defined asσ(KD(x)) =

p

〈KD(x)2〉 − 〈KD(x)〉2, ex-
pectation taken from |Ψ〉. The error reaches its minimum for x ≈ η. The smallness of the error,
σ(KD(η))≈ 10−3 suggests the validity of the vector fixed-point equation KD(η)|Ψ〉 ∝ |Ψ〉. It
follows that stationarity holds approximately on the edge.

Non-example 4.13 (Exotic non-CFT states that match CFT entropy). There are states that
match CFT entropy on each interval choice, which, nonetheless, violate the vector fixed-point
equation. Such states do not satisfy the stationarity condition, and they are not true CFT
groundstates. See Appendix H.1 for the construction of such wavefunctions. Note that these
exotic examples cannot be distinguished from CFT groundstates by the presence of a constant
ctot. (A constant ctot always implies that η is a cross ratio, as explained in Prop. 5.6 below.)

We remark on the importance of this non-example. During our search for a suitable local
edge condition, one failed attempt was to demand ctot(D) to be a constant, independent of
the choice of D. At first, this appears to be a reasonable candidate because ctot(D) being
constant is equivalent to the condition that η(D) is a cross-ratio [Section 5.4]. However, this
non-example shows that even a non-CFT state can satisfy these conditions, at least if we only
consider a finite subset of coarse-grained intervals. This example is ruled out by the vector
fixed-point equation, or equivalently, by the stationarity condition. While these conditions do
imply the constant ctot(D), the converse is not necessarily true.

5 Emergence of conformal geometry: Chiral edge

In this section, we will prove the emergence of conformal geometry based on the setups [Sec-
tion 2] and three assumptions [Section 3 and 4]. Namely, we shall assume bulk A1 [Assump-
tion 3.1], nonzero chiral central charge [Assumption 3.2], and stationarity [Assumption 4.6].
By conformal geometry, we mean the existence of a map from the chiral edge to a round cir-
cle, which allows us to define a distance modulo global conformal transformation on the chiral
edge [Prop. 5.4]. The existence of such a map follows from the relations between the quantum
cross ratio candidates [Prop. 5.2 and 5.3], which follow from our three assumptions.

We summarize the route towards the proof of this main result in Fig. 8. Also summarized
are the major results we derive along the way. Below is a summary of the content of the
subsections, with bracketed remarks pointing to their relation with Fig. 8. In Section 5.1, we
first identify two other quantum cross-ratio candidates ηJ and ηK which are a priori unre-
lated to the quantum cross-ratio candidate η [Section 4.1]. We prove that these alternative
candidates are equal to η. Then, in Section 5.2, we prove that η satisfies a set of relations
that define cross-ratios [Gray box]. In Section 5.3, we explain that our quantum cross-ratios
provide a distance measure modulo global conformal transformations [pink box]. Finally, we
show that ctot being constant is equivalent to η being a cross-ratio in Subsection 5.4 [purple
box]; importantly, stationarity implies that ctot is constant [Prop. 5.5], though the converse is
not necessarily true [Appendix H].

5.1 Three candidate cross-ratios

Recall that, given a conformal ruler D near the edge, we defined a quantum cross-ratio can-
didate η(D) by Eq. (17) from ∆ and I [Section 4.1]. We referred to η(D) as a quantum
cross-ratio candidate because it is computed from quantum information quantities without
the help of any distance measure, and it becomes the geometric cross-ratio when the state is
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Figure 8: A summary of the main results and the routes to prove them from the
assumptions.
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(a) some D= (A, A′B, C , C ′). (b) decomposition A= A1A2, B = B1B2, C = C1C2.

Figure 9: Diagrams for showing J(AA′, B, CC ′) = πc−
3 + J(A, B, C).

a 1+1D CFT (Example 4.2 and 4.10). Are there other ways to compute the CFT geometric
cross-ratio with quantum information quantities? Can they be similarly promoted to quantum
cross-ratio candidates in the broader setup of interest to us? Under what assumptions do they
agree? Here we discuss two more such candidates, ηJ and ηK .

In [52], it was argued based on CFT assumptions that cross-ratio shows up in the modular
commutator computed near a chiral edge. Motivated by this fact, one can formally define a
cross-ratio candidate ηJ according to

J(A, B, C) = −
πc−

3
ηJ , (33)

where A, B, C here belongs to some conformal ruler D = (A, A′, B, C , C ′) [Fig. 9(a)]. Note that
c− ̸= 0 is needed to define ηJ unambiguously, which is true because of Assumption 3.2.

Another setup in which geometric cross-ratios appear is the vector fixed-point equation
derived in [25] for 1+1D CFT groundstates. A direct way to generalize this is to formally
define ηK , such that there also exists a vector equation

KD(ηK) |Ψ〉 ∝ |Ψ〉 . (34)

Here KD(x) ≡ x∆̂(D) + (1 − x) Î(D). We emphasize that ηK is defined as the solution(s) to
Eq. (34). If the stationarity condition is satisfied, we already find a solution η(D) solved from
∆, I . The question is: Is it the only solution to Eq. (34)?

As it turns out, on a state |Ψ〉 satisfying our assumptions, these quantum cross-ratio can-
didates are the same as η(D):

η(D) = ηJ (D) = ηK(D) . (35)

This is true because of the following proposition.

Proposition 5.1 (Edge modular commutator and uniquness). Let |Ψ〉 be a state with bulk A1
and a non-zero chiral central charge. Suppose the stationarity condition is satisfied on a choice
of D near the edge, then

J(A, B, C)|Ψ〉 = −
πc−

3
η(D)|Ψ〉 , (36)

andη(D)|Ψ〉 is the only value of x that obeysKD(x) |Ψ〉 ∝ |Ψ〉, leading to a unique vector equation

KD(η(D)) |Ψ〉 ∝ |Ψ〉 . (37)

Remark. In Eq. (36), the chiral central charge c− is the one defined in terms of the bulk
modular commutator. If the state has zero bulk modular commutator then it immediately
follows that J(A, B, C)|Ψ〉 = 0.
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Proof. Without loss of generality, consider a conformal ruler D depicted in Fig. 9(a). We will
prove our claim for these regions. Because the conformal ruler we use in this proof shall
be always D, we will simplify our notation by writing η(D),ηJ (D),ηK(D) as η,ηJ , and ηK ,
respectively.

We now show that ηJ = η. To that end, we can first derive a formula for the modular
commutator for another choice of regions (AA′, B, CC ′).

J(AA′, B, CC ′) = i 〈Ψ| [KAA′B, KBCC ′] |Ψ〉=
πc−

3
(1−ηJ ) . (38)

The key to deriving this equation is the Markov decomposition. Let A = A1A2, B = B1B2,
C = C1C2, as shown in Fig. 9(b). Notice

I(A1B1 : A′|A2B2) = 0 ⇒ KAA′B |Ψ〉= (KA1A2B1B2
+ KA′A2B2

− KA2B2
) |Ψ〉 ,

I(C1B1 : C ′|C2B2) = 0 ⇒ KCC ′B |Ψ〉= (KC1C2B1B2
+ KC ′C2B2

− KC2B2
) |Ψ〉 .

(39)

Therefore
J(AA′, B, CC ′) = J(A1A2, B1B2, C1C2) + J(A2A′, B2, C2C ′)

= −
πc−

3
ηJ +

πc−
3

=
πc−

3
(1−ηJ ) .

(40)

In the first equality, we used the fact that I(A : C |B) = 0 ⇒ J(A, B, C) = 0 to show only two
out of nine terms survive. The second line follows from the definition of ηJ in Eq. (33) and
the bulk modular commutator formula.

With both J(A, B, C) and J(AA′, B, CC ′) written in terms of ηJ , we now use the vector
fixed-point equation to show ηJ = η. Since KD(η) |Ψ〉 ∝ |Ψ〉 [Theorem 4.8], we have

〈Ψ| [KD(η), KBCC ′] |Ψ〉= 0

⇒ η 〈Ψ| [KAA′B, KBCC ′] |Ψ〉+ (1−η) 〈Ψ| [KAB, KBCC ′] |Ψ〉= 0

⇒ η(1−ηJ )−ηJ (1−η) = 0

⇒ η= ηJ .

(41)

Therefore, we proved that η= ηJ .
The derivation above indicates the uniqueness of the solution to

KD(ηK) |Ψ〉 ∝ |Ψ〉 . (42)

One can simply repeat the steps in Eq. (41) with ηK replacing η, then

ηK = ηJ . (43)

Therefore,
η(D) = ηJ (D) = ηK(D) . (44)

Note that we only used a vector equation (alternatively stationarity) at a single D.

This result implies that, for a chiral state satisfying the stationarity condition near the edge,
the “correct” η that goes into the vector fixed-point condition

KD(η) |Ψ〉 ∝ |Ψ〉 , (45)

can be computed not only using ∆, I [Eq. (17)], but also using the edge modular commutator
formula [Eq. (36)]. This fact plays a key role in the proof of the consistency relations of cross-
ratios in the next subsection.
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Figure 10: A disk with an edge partitioned into four intervals a, b, c and d. The
partition of the disk into A, B, C , D, E is good enough for computing ctot and η
for any three successive intervals. Note that D(a, b, c) = (A, E, B, C ,;) makes a
legitimate conformal ruler. In the same way, we can identify conformal rulers
D(b, c, d),D(c, d, a),D(d, a, b) in this figure.

5.2 Consistency relations of cross-ratios

In this Section, we will derive a set of consistency relations for ηs for different conformal rulers,
taking advantage of the results in Section 5.1. These relations turn out to be the defining
properties of cross-ratios.

Throughout this derivation, we shall use the following simplified notation. Because objects
such as ∆(AA′, B, CC ′) and I(A : C |B), and their operator analogs acting on the global state
|Ψ〉 (∆̂(AA′, B, CC ′) and Î(A : C |B)), are invariant under the deformation of the bulk region, it
makes sense to specify the conformal ruler only in terms of the edge intervals. More precisely,
consider a contiguous set of intervals a, b, and c on the edge, on which the subsystems A, B,
and C are anchored. We shall denote such a conformal ruler as D(a, b, c). We can further
define the following short-hand notations:

∆̂a,b,c ≡ ∆̂(D(a, b, c)) , Îa,b,c ≡ Î(D(a, b, c)) , (46)

∆a,b,c ≡∆(D(a, b, c)) , Ia,b,c ≡ I(D(a, b, c)) , (47)

ctot(a, b, c)≡ ctot(D) , η(a, b, c) = η(D) . (48)

These are the conventions that we will use in this Section.
We identify two groups of consistency relations. The first group relates η(a, b, c) to ηs

that involve the complement of abc on the physical edge. We call it complement relations
(Prop. 5.2). The second group of relations enables us to decompose ηs on larger intervals in
terms of those on smaller intervals. We refer to these as decomposition relations (Prop. 5.3).

Proposition 5.2 (Complement relation). Consider a conformal ruler D that intersects with the
physical edge at (a, b, c). Let d be the complement of abc on the edge (see Fig. 10). If |Ψ〉 satisfies
bulk A1, then

η(a, b, c) = 1−η(b, c, d) = η(a, d, c) = 1−η(d, a, b) , (49)

and
ctot(a, b, c) = ctot(b, c, d) = ctot(a, d, c) = ctot(d, a, b) . (50)

Proof. The proof only requires bulk A1 and the pure state condition. Due to the bulk A1
condition, (ctot,η) depends only on the edge intervals. Pure state condition enables us to
identify the entanglement entropy of a region X with that of its complement, i.e., X : SX = SX .
This lets us relate D(a, b, c) to the other conformal rulers containing the complement of abc,
namely D(b, c, d),D(c, d, a),D(d, a, b), d = abc.
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Consider the partition of the system shown in Fig. 10. We take D(a, b, c) = (A, E, B, C ,;)
and D(b, c, d) = (B,;, C , D, E) for an example:

Ia,b,c ≡ I(A : C |B)
= SAB + SBC − SB − SABC

= SC DE + SBC − SB − SDE

=∆(B, C , DE)

≡∆b,c,d ,

∆a,b,c ≡∆(AE, B, C)

= SABE + SBC − SAE − SC

= SC D + SBC − SBC D − SC

= I(B : D|C)
≡ Ib,c,d ,

(51)

where the third line in both columns follows from the pure state condition. To relate
(ctot,η) between these two conformal rulers: Recalling ∆a,b,c = −

ctot(a,b,c)
6 ln(η(a, b, c)) and

Ia,b,c = −
ctot(a,b,c)

6 ln(1−η(a, b, c)), we can obtain

∆a,b,c = Ib,c,d ⇒ ctot(a, b, c) ln(η(a, b, c)) = ctot(b, c, d) ln(1−η(b, c, d)) ,

Ia,b,c =∆b,c,d ⇒ ctot(a, b, c) ln(1−η(a, b, c)) = ctot(b, c, d) ln(η(b, c, d))

⇒
�

ctot(a, b, c) = ctot(b, c, d) ,

η(a, b, c) = 1−η(b, c, d) .

(52)

Similarly, we can obtain

∆a,b,c =∆c,d,a ,

Ia,d,c = Ic,b,a

�

⇒
�

ctot(a, b, c) = ctot(c, d, a) ,

η(a, b, c) = η(c, d, a) ,
(53)

∆a,b,c = Id,a,b ,

Ia,b,c = Id,a,b

�

⇒
�

ctot(a, b, c) = ctot(d, a, b) ,

η(a, b, c) = 1−η(d, a, b) .
(54)

We remark again that the above derivation only makes use of bulk A1 and the pure state
condition. The stationarity condition and the chiral state condition are not required. On the
other hand, the following part does rely on these extra assumptions.

Now we aim to derive relations that let us decompose η on an interval to the ηs on smaller
sub-intervals. Any such decomposition can be broken down into a set of more elementary
decompositions involving at most four intervals. More precisely, given four successive inter-
vals a, b, c, and d, we will be able to decompose η(ab, c, d),η(a, bc, d), and η(a, b, cd) into
η(a, b, c) and η(b, c, d) [Prop. 5.3]. This decomposition can be applied iteratively.

To compute the five aforementioned ηs defined over (a, b, c, d), we consider the regions
shown in Fig. 11. From these regions we can make five conformal rulers

D(a, b, c) , D(b, c, d) , D(ab, c, d) , D(a, b, cd) , D(a, bc, d) , (55)

from which we can compute five cross-ratio candidates

η(a, b, c) , η(b, c, d) , η(ab, c, d) , η(a, b, cd) , η(a, bc, d) , (56)

respectively.

Proposition 5.3 (Decomposition relations). Suppose |Ψ〉 satisfies the bulk A1 and ctot(D)|Ψ〉 > 0
is stationary for all five conformal rulers in Eq. (55) associated with Fig. 11. Then, the following
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Figure 11: An edge interval partitioned into a, b, c and d. Also shown is the associ-
ated 7-partite region (A, X , B, Y, C , Z , D) near the edge, which allows us to compute
various quantities and derive the decomposition relations [e.g., Prop. (59)].

relations hold:

η(ab, c, d) =
η(b, c, d)

1−η(a, b, c)
, (57)

η(a, b, cd) =
η(a, b, c)

1−η(b, c, d)
, (58)

η(a, bc, d) =
η(a, b, c)η(b, c, d)

(1−η(a, b, c))(1−η(b, c, d))
= η(ab, c, d)η(a, b, cd) . (59)

Proof. First of all, ctot > 0 indicates η ∈ (0, 1) for all the five conformal rulers. From the
stationarity conditions δctot(a, b, c) = 0 and δctot(b, c, d) = 0, one can obtain the following
two vector fixed-point equations [Theorem 4.8]:

KD(a,b,c)(η(a, b, c)) |Ψ〉 ∝ |Ψ〉 , (60)

KD(b,c,d)(η(b, c, d)) |Ψ〉 ∝ |Ψ〉 . (61)

We also know from Prop. 5.1 that7

J(AB, C , D) = i 〈Ψ| [KABC , KC D] |Ψ〉= −
π

3
c−η(ab, c, d) , (62)

J(A, B, C D) = i 〈Ψ| [KAB, KBC D] |Ψ〉= −
π

3
c−η(a, b, cd) , (63)

J(A, BC , D) = i 〈Ψ| [KABC , KBC D] |Ψ〉= −
π

3
c−η(a, bc, d) . (64)

Using these relations, we can prove our main claim.
The key idea is to use Eq. (60) and Eq. (61) to rewrite KABC |Ψ〉 and KBC D |Ψ〉 in terms of

a linear combination of modular Hamiltonians over smaller regions, acting on |Ψ〉. Plugging
in these expressions to Eq. (63), Eq. (62), and Eq. (64), the proof follows immediately. We
discuss these in more detail below.

Using Eq. (60) and Eq. (61), the following identities follow:

KABC |Ψ〉=
�

η(a, b, c)
1−η(a, b, c)

∆̂(AX , B, CY ) + KAB + KBC − KB +α
�

|Ψ〉 , (65)

KBC D |Ψ〉=
�

η(b, c, d)
1−η(b, c, d)

∆̂(BY, C , DZ) + KBC + KC D − KD + β
�

|Ψ〉 , (66)

where α,β are proportionality factors from Eq. (60) and Eq. (61), which are unimportant
for this argument. We now use these decompositions to eliminate KABC |Ψ〉 and KBC D |Ψ〉 in

7Here we utilize the stationarity conditions δctot(a, b, cd) = 0, δctot(ab, c, d) = 0 and δctot(a, bc, d) = 0.

23

https://scipost.org
https://scipost.org/SciPostPhys.18.3.102


SciPost Phys. 18, 102 (2025)

Eq. (62), Eq. (63), Eq. (64). The result is the three relations Eqs. (57), (58), (59). Take
Eq. (57) for an example. We obtain

i 〈Ψ| [KABC , KC D] |Ψ〉= −
πc−

3
η(ab, c, d)

= i
η(a, b, c)

1−η(a, b, c)
〈Ψ| [∆̂(AX , B, CY ), KC D] |Ψ〉+ i 〈Ψ| [KAB + KBC − KB, KC D] |Ψ〉

=
η(a, b, c)

1−η(a, b, c)
i 〈Ψ| [KCY B, KC D] |Ψ〉+ i 〈Ψ| [KBC , KC D] |Ψ〉 . (67)

Noticing that

i 〈Ψ| [KCY B, KC D] |Ψ〉= i 〈Ψ| [KBC , KC D] |Ψ〉= −
πc−

3
η(b, c, d) , (68)

one can obtain

η(ab, c, d) =
η(b, c, d)

1−η(a, b, c)
. (69)

The other two relations Eq. (58), Eq. (59) can be obtained similarly by plugging Eq. (65) and
Eq. (66) into Eq. (63) and Eq. (64).

Let us first make some remarks about the relations among Eq. (57), Eq. (58) and Eq. (59).
First, Eq. (57) can be derived from Eq. (58) and vice versa. This is due to the simple fact that
η(·, ·, ·) is invariant under the exchange of the first and the third argument. Second, in order
to obtain Eq. (59), one must make use of the complement relations [Prop. 5.2]. Let e be the
complement of abcd on the edge. Because our assumptions are also satisfied near e, we obtain

η(cd, e, a) =
η(d, e, a)

1−η(c, d, e)
⇒ η(a, bc, d) = η(ab, c, d)η(a, b, cd) , (70)

where the⇒ is due to the complement relations:

η(cd, e, a) = η(a, b, cd) , η(a, e, d) = η(a, bc, d) , 1−η(c, d, e) = η(ab, c, d) . (71)

What is the importance of these relations? The fact that they provide a way to relate ηs
among different regions is nice. However, more importantly, these relations turn out to be
the defining properties of cross-ratios. This statement is a nontrivial observation made in the
mathematics literature [33,34].8 We shall elucidate this in more detail in Section 5.3.

5.3 Emergence of conformal geometry

In Section 5.2, we derived two sets of relations among the quantum cross-ratios {η(a, b, c)}
computed for the coarse-grained intervals along the edge. Here we show that these relations
allow us to construct a map ϕ from the coarse-grained edge intervals to a set of intervals of a
round circle, such that the quantum cross-ratios are equal to the geometric cross-ratios on the
round circle [Prop. 5.4]. With this map ϕ, we can use the usual uniform metric on the circle
to measure the sizes of the coarse-grained edge intervals.

Let us make some remarks about the setup. Recall that we are starting with a decompo-
sition of the quantum many-body system into coarse-grained regions and intervals along the
edge. We envision partitioning the edge into a set of elementary (indecomposable) intervals.

8In the literature, the cross-ratio is often defined as a function on four points, which we regard as the endpoints
defining our three intervals. To make a complete specification of axioms for cross-ratio, beyond the decompo-
sition and complement relations, one has to add further (i) symmetric property η(a, b, c) = η(c, b, a), and (ii)
η(;, b, c) = 0,η(a, b, c) = 1 if a, b, c is the whole edge, both of which are indeed true for our η(a, b, c).
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Figure 12: Mapping a chiral edge to a circle according to the cross-ratios. The inter-
val associated with the yellow (blue) conformal ruler on the left figure measures a
[1,1, 2]-type ([1, 1,1]-type) cross-ratio.

The intervals we consider will be the union of these elementary intervals. Without loss of
generality, given three succesive intervals a, b, and c, we can assume that these intervals con-
tain na, nb, and nc elementary intervals. We shall refer to the cross-ratio defined over those
intervals as the [na, nb, nc]-type quantum cross-ratio. Similarly, we refer to the associated
conformal ruler as [na, nb, nc]-type conformal ruler; see Fig. 12 for an example.

An important point is that the cross-ratios of larger intervals are determined completely by
the smaller subintervals. Therefore, the [1,1, 1]-type quantum cross-ratios can be thought of
as the elementary cross-ratios from which all the other quantum cross-ratios are determined.
From this point of view, the map ϕ can be constructed by ensuring that ϕ maps the endpoints
of the intervals on the edge to a set of points on the circle in such a way that all the [1, 1,1]-type
quantum cross-ratios match the corresponding geometric cross-ratios of the mapped points on
the round circle. Ensuring the matching for [1,1, 1]-type quantum cross-ratios ensures the
matching of all possible cross-ratios, because those cross-ratios are determined solely from the
[1,1, 1]-type cross-ratios, using the same equation [Prop. 5.2, Prop. 5.3].

We now formally describe this statement. Without loss of generality, consider a set of el-
ementary intervals {a, b, . . .} on the edge. The endpoints of these intervals are denoted as
x1, x2, . . . in the counterclockwise order. Conversely, we may denote an interval by the end-
points. For instance, (x i , x j)would be an interval that starts at point x i , goes counterclockwise,
and ends at point x j .

Proposition 5.4. If the quantum cross-ratios η computed from the elementary intervals satisfy
(i) η ∈ (0, 1) and (ii) the relations in Prop. 5.2 and Prop. 5.3, then there exists a map ϕ from
the set of endpoints {x1, x2, . . .} to a set of points on a circle:

ϕ : x i → ϕ(x i) ∈ S1 , (72)

such that the following properties hold:

1. The set of points {ϕ(x1),ϕ(x2), . . .} on the circle has the same orientation (e.g., counter-
clockwise) as {x1, x2, . . .} along the physical edge.

2. For any three successive intervals (a, b, c), the quantum cross-ratio η(a, b, c) is equal to
the geometric cross-ratio associated with the successive intervals (ϕa,ϕb,ϕc) on the circle,
where ϕa denotes (ϕ(x i),ϕ(x j)) for an interval a = (x i , x j) under the map ϕ.

We defer the proof to Appendix E. We briefly remark that the condition η ∈ (0, 1) is equivalent
to the condition that ctot > 0 [Appendix C]. If ctot = 0, the mapping to the circle is still valid in
a topological sense. This point is also explained in Appendix C.
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The mapϕ provides a distance measure for the intervals modulo the orientation-preserving
global conformal transformation PSL(2,R). The global conformal symmetry is manifest be-
cause ϕ is constructed in terms of the cross-ratios, which are invariant under PSL(2,R).9

One may wonder if the more general class of transformations, such as the orientation-
preserving diffeomorphisms of S1 (denoted as Diff+(S1)) has any physical role. Formally, if
we apply such a transformation to a chiral CFT groundstate, we obtain a special type of excited
state: a coherent state [54]. The cross-ratios of these excited states will be still defined, but
deformed away from their values on the groundstate.

As such, it is natural to ask whether one can apply such a transformation to a micro-
scopic wavefunction. Because such transformations are generated by the generators of the
Virasoro algebra, our recent work that constructs such generators from the groundstate wave-
function [35] can be employed for this purpose.

An interesting possibility is to use conformal rulers to measure the cross-ratios of these
transformed states. More precisely, we will obtain two maps ϕ0 and ϕ1, each corresponding
to the map from the physical edge to S1, with and without the transformation. From these
maps, we can construct ϕ1 ◦ϕ−1

0 , which must be an element of Diff+(S1). Alternatively, one
may compute the expectation values of the commutators of the Virasoro generators constructed
via the scheme in Ref. [35], which would be a simple function of quantum cross-ratios.

5.4 Constant central charge and cross-ratios

By now, we have shown that a quantum state |Ψ〉 on a disk satisfying our three assumptions
(bulk A1 [Assumption 3.1], non-zero bulk modular commutator [Assumption 3.2], and station-
arity condition on the edge [Assumption 4.6]) yield a set of η(D)|Ψ〉 that defines a cross-ratio.
This is due to the consistency relations we proved [Prop. 5.2 and 5.3]. The main purpose of
this Section is to prove an interesting consequence of this result: that ctot(D)|Ψ〉 is a constant.

Here is the main result of this subsection.

Proposition 5.5 (constant ctot). If a state |Ψ〉 on a disk satisfies (i) bulk A1, (ii) non-zero bulk
modular commutator condition, (iii) stationarity condition on the edge, then ctot(D)|Ψ〉 takes the
same value for every conformal ruler D along the edge.

Prop. 5.5 follows immediately from the fact that ctot(D)|Ψ〉 is a constant for every D if and
only if the set of cross-ratios over every D is a valid set of cross-ratios (in the sense of obeying
the relations in Prop. 5.2 and 5.3).

Proposition 5.6. For a state |Ψ〉 with bulk A1 satisfied and ctot(D)> 0, ∀D,

ctot(D) = const. ⇔ {η(D)} is a valid set of cross-ratios. (73)

Proof. We first prove the ⇒ direction. First, we prove that the constant ctot implies the com-
plement relations [Prop. 5.2]. Consider a partition of the edge into four intervals, a, b, c, and
d [Fig. 10]. Due to the purity of the state, we get

∆a,b,c = Ib,c,d =∆c,d,a = Id,a,b . (74)

Applying

∆= −
ctot

6
ln(η) , I = −

ctot

6
ln(1−η) , (75)

for a constant ctot, one can obtain the complement relations:

η(a, b, c) = 1−η(b, c, d) = η(c, d, a) = 1−η(d, a, b) . (76)

9In general, cross-ratios are invariant under SL(2,R) transformations [53]. In our construction, we explicitly
fixed the orientation, therefore our ϕ is PSL(2,R) invariant.
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Figure 13: (Left) Five partition of the edge. We omit the conformal rulers an-
chored on these intervals. (Right) Choose (a1, a2, a3, a4) = (i − 1, i, i + 1, i + 2)
and a5 to be the complement of (i − 1) ∪ i ∪ (i + 1) ∪ (i + 2), to conclude
ctot(i − 1, i, i + 1) = ctot(i, i + 1, i + 2),∀i.

We now prove that the constant ctot implies the decomposition relations [Prop. 5.3]. Con-
sider a region shown in Fig. 11, which contains five conformal rulers:

D(a, b, c) , D(b, c, d) , D(ab, c, d) , D(a, b, cd) , D(a, bc, d) . (77)

Using bulk A1, by the standard regrouping of entropy terms, we get

∆a,b,cd =∆a,b,c − Ib,c,d ,

∆ab,c,d =∆b,c,d − Ia,b,c ,

∆a,bc,d =∆a,b,cd +∆ab,c,d .

(78)

Using Eq. (75) and the fact that ctot is a constant, one can immediately obtain the decomposi-
tion rules:

η(ab, c, d) =
η(b, c, d)

1−η(a, b, c)
, (79)

η(a, b, cd) =
η(a, b, c)

1−η(b, c, d)
, (80)

η(a, bc, d) =
η(a, b, c)η(b, c, d)

(1−η(a, b, c))(1−η(a, b, c))
= η(ab, c, d)η(a, b, cd) . (81)

We now prove the ⇐ direction. We first partition the whole edge into five intervals,
a1, a2, a3, a4, and a5 [Fig. 13 (Left)], each interval might contain more than one coarse-grained
interval. We use a short-hand notation

((ctot)ai
,ηai
)≡ (ctot(ai−1, ai , ai+1),η(ai−1, ai , ai+1)) ,

where the indices are taken over values modulo 5. We first show (ctot)ai
= (ctot)a j

,
i, j = 1,2, . . . , 5. By bulk A1 and purity of the state, we can first derive

Iai−2,ai−1,ai
+ Iai ,ai+1,ai+2

=∆ai−1,ai ,ai+1

⇒ (ctot)ai−1
ln(1−ηai−1

) + (ctot)ai+1
ln(1−ηai+1

) = (ctot)ai
lnηai

.
(82)

Then, applying complement relations and decomposition relations, we can obtain

ηai
= (1−ηai−1

)(1−ηai+1
) . (83)
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Therefore,
(ctot)ai

= pai
(ctot)ai−1

+ (1− pai
)(ctot)ai+1

, (84)

where

pai
=

ln(1−ηai−1
)

ln(1−ηai−1
) + ln(1−ηai+1

)
∈ (0, 1) , (85)

for all i = 1,2, 3,4, 5. This means

min{(ctot)ai−1
, (ctot)ai+1

} ≤ (ctot)ai
≤max{(ctot)ai−1

, (ctot)ai+1
} , ∀i , (86)

which constrains all (ctot)ai
to be the same.

We remind reader that the proofs above is applicable to any 5-partition of the edge in-
terval. Now we can apply it to specific cases. Let us consider the edge has n smallest
coarse-grained intervals, labeled by i = 1, 2,3, . . . , n. We can choose the 5-partition to be
a1 = i−1, a2 = i, a3 = i+1, a4 = i+2 and a5 be the complement of (i−1)∪ i∪ (i+1)∪ (i+2)
on the edge [Fig. 13 (Right)]. Applying the proof above, we can conclude

ctot(i − 1, i, i + 1) = ctot(i, i + 1, i + 2) , ∀i = 1, . . . , n . (87)

That is, all the ctot computed on the [1, 1,1]-type intervals are the same.
For ctot on general [na, nb, nc]-type intervals, it can be shown that they are equal to the

[1,1, 1]-type as follows. Let us consider a [2,1, 1]-type ctot(ab, c, d) for an example.10 By bulk
A1 and the definition of (ctot,η), we can obtain

∆ab,c,d =∆b,c,d − Ia,b,c (88)

⇒ctot(ab, c, d) ln(η(ab, c, d)) = ctot(b, c, d) ln(η(b, c, d))− ctot(a, b, c) ln(1−η(a, b, c)) .

Since we’ve shown ctot(a, b, c) = ctot(b, c, d) = ctot, then applying the cross-ratio decomposition
relation to the η(ab, c, d) on the LHS, we can see

ctot(ab, c, d) ln
η(b, c, d)

1−η(a, b, c)
= ctot ln

η(b, c, d)
1−η(a, b, c)

, (89)

which implies ctot(ab, c, d) = ctot. Applying this argument repeatedly, one can conclude ctot on
any three contiguous intervals must be the same.

One may ask: since the cross-ratio properties of ηs follow directly from ctot being con-
stant, why not simply use constant ctot condition as the edge assumption instead of using the
stationarity condition? The main reason is that the constant ctot condition is insufficient for
the emergence of conformal symmetry. We find a non-CFT example in Appendix H.1 which
satisfies the constant ctot condition and has a set of ηs that obey the relations of the geomet-
ric cross-ratios. Therefore, a stronger assumption, such as the stationarity condition or the
vector fixed-point equation, is needed. Indeed, the non-CFT example is ruled out by such
assumptions.

6 Emergence of conformal geometry: Non-chiral edge

In this section, we generalize our analysis to non-chiral edges. That is, we drop the assumption
that c− is nonzero and replace it with a different assumption [Assumption 6.1]. It should be
noted that a non-chiral state can have a gapless edge described by a non-chiral CFT. A simple

10(a, b, c, d) are four contiguous “elementary” coarse-grained intervals which can not be further divided into
smaller ones.
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Figure 14: A 7-partite disk-like region (A, X , B, Y, C , Z , D) near the edge.

example can be constructed by stacking a 1+1D non-chiral CFT on the edge of a 2+1D state
with gapped boundary. In examples like this, one can add some relevant perturbations on the
edge to gap out the CFT. However, there are other cases in which the non-chiral CFT at the
edge cannot be gapped out in such a way, such as in the ν = 2/3 fractional quantum Hall
state [55]. Besides the chiral edges, the argument we present is expected to be applicable to
all these cases with non-chiral gapless edges.

The main operating assumptions of this Section are the bulk A1 [Assumption 3.1], the
stationarity condition [Assumption 4.6], and an additional assumption we introduce below.

Assumption 6.1 (Genericity condition). For a 7-partite region (A, X , B, Y, C , Z , D) of any four
successive intervals (a, b, c, d), of the topology shown in Fig. 14, we say a reference state |Ψ〉
satisfies the genericity condition if the following three vectors

∆̂a,b,c |Ψ〉 , ∆̂b,c,d |Ψ〉 , |Ψ〉 , (90)

are linearly independent, where ∆̂a,b,c , ∆̂b,c,d denotes ∆̂(AX , B, CY ) and ∆̂(BY, C , DZ).

Let us make some remarks on the genericity condition: Firstly, because we are working
under the bulk A1 assumption, ∆̂(AX , B, CY ) |Ψ〉 and ∆̂(BY, C , DZ) |Ψ〉 are invariant under
the deformations of the subsystems in the bulk (acting on the global state |Ψ〉). Therefore,
we shall specify these operators in terms of the boundary intervals, i.e., ∆̂a,b,c |Ψ〉 , ∆̂b,c,d |Ψ〉.
Secondly, we note that a state that satisfies bulk A1 and stationarity condition, non-zero c−
from bulk modular commutators together with ctot(D) > 0,∀D implies that the state satisfies
the genericity condition [Assumption 6.1]; see Section 6.2. Because of this fact, the logical ma-
chinery we developed in this section is also applicable to the cases of chiral edges we discussed
previously.

With these assumptions, we first prove the uniqueness of the cross-ratio satisfying the
vector-fixed point equation.

Proposition 6.2. If ∆̂ |Ψ〉 is not proportional to |Ψ〉, and the solution to the equation

KD(x) |Ψ〉 ∝ |Ψ〉 (91)

exists, then the solution for x is unique.

Proof. Suppose there are two solutions, x and y and x ̸= y , s.t.
�

x∆̂+ (1− x) Î
�

|Ψ〉 ∝ |Ψ〉 ,
�

y∆̂+ (1− y) Î
�

|Ψ〉 ∝ |Ψ〉 . (92)

If x = 1 or y = 1, one can directly obtain ∆̂ |Ψ〉 ∝ |Ψ〉, which is a contradiction. If x ̸= 1 and
y ̸= 1, by subtraction (1− y)KD(x) |Ψ〉 − (1− x)KD(y) |Ψ〉, one can obtain

(x − y)∆̂ |Ψ〉 ∝ |Ψ〉 . (93)

As x − y ̸= 0, we obtain ∆̂ |Ψ〉 ∝ |Ψ〉, which is still a contradiction. Therefore, the solution
must be unique.

Therefore, if the reference state |Ψ〉 satisfies the stationarity condition and genericity con-
dition, there is a unique solution for x to the equation KD(x) |Ψ〉 ∝ |Ψ〉.
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6.1 Consistency relation of cross-ratios

We now derive the consistency relations of η(D). This extends the result of emergence of
conformal geometry and constant ctot to non-chiral cases, because the proofs of these results
below will not require any assumption on chirality. In fact, the original proof of complement
relations (Prop. 5.2) only requires bulk A1 and pure state condition, so it directly applies to
non-chiral cases. Therefore, to prove the consistency relations of η(D), we only need to derive
the decomposition relations.

Proposition 6.3 (Decomposition relations, non-chiral). Consider a 7-partite region shown
Fig. 14, which contains five conformal rulers

D(a, b, c) , D(b, c, d) , D(ab, c, d) , D(a, b, cd) , D(a, bc, d) . (94)

If |Ψ〉 with bulk A1 satisfies the stationarity condition and the genericity condition 6.1, then

η(ab, c, d) =
η(b, c, d)

1−η(a, b, c)
, (95)

η(a, b, cd) =
η(a, b, c)

1−η(b, c, d)
, (96)

η(a, bc, d) =
η(a, b, c)η(b, c, d)

(1−η(a, b, c))(1−η(a, b, c))
= η(ab, c, d)η(a, b, cd) . (97)

We sketch the main idea behind the proof of Prop. 6.3 below, leaving the detailed proof in
Appendix F. Our idea is to use the consistency of the decompositions derived from vector fixed-
point equations. Vector fixed-point equations allow one to decompose a modular Hamiltonian
that is anchored on a large edge interval to those on smaller edge intervals when they act on
the reference state. More explicitly, on a D(a, b, c) shown in Fig. 5, one can write

K̃ABC |Ψ〉=
�

η

1−η
∆̃a,b,c + K̃AB + K̃BC − K̃B

�

|Ψ〉 , (98)

where the “∼” above each operator stands for the operator with its expectation value under
|Ψ〉 subtracted: Õ = O − 〈Ψ|O |Ψ〉. For ∆̃a,b,c , we only specify the edge intervals because it
is invariant under the deformation of its support in the bulk [Appendix B]. Diagrammatically,
this decomposition can be represented as

=

η

1−η

+1 +1

−1

(99)

where the black line segments stand for the coarse-grained intervals, a single line that goes
above or below an interval stands for K̃X |Ψ〉 with X being a disk anchored at the interval, and
the combination of red lines stands for ∆̃ |Ψ〉. We shall also draw the lines below the black line
for; see Eq. (101) for an example. Each diagram represents the sum of all the terms appearing
in the diagram, with the coefficients specified nearby.

30

https://scipost.org
https://scipost.org/SciPostPhys.18.3.102


SciPost Phys. 18, 102 (2025)

a b c d

K̃ABC D

Decomp. 1 Decomp. 2 Decomp. 3
η3

1−η3

+1 +1

−1

η4

1−η4

+1+1

−1

η5

1−η5

+1 +1

−1

Figure 15: Decomposition of K̃ABC D |Ψ〉 in three ways.

We now sketch the proof using this diagrammatic notation: On the 7-partite region shown
in Fig. 14, one can write down three vector fixed-point equations on D(a, b, cd), D(ab, c, d),
D(a, bc, d) which all allow us to decompose K̃ABC D |Ψ〉 in multiple way, all of which ought to
be the same. The consistency of these three results imply the cross-ratio relations in Prop. 6.3.

The computation involved can be sketched as follows. For simplicity, we index the intervals
as

(a, b, c)→ 1 , (b, c, d)→ 2 , (a, b, cd)→ 3 , (ab, c, d)→ 4 , (a, bc, d)→ 5 . (100)

First, we use the vector fixed-point equations on D(a, b, cd),D(ab, c, d),D(a, bc, d) to decom-
pose K̃ABC D in three ways as shown in Fig. 15. Second, we decompose K̃ABC |Ψ〉 and K̃BC D |Ψ〉
(denoted by the blue and green lines above the three intervals abc and bcd) using the vector
fixed-point equations on D(a, b, c),D(b, c, d) as Eq. (99). Third, we decompose ∆̃ab,c,d |Ψ〉,
∆̃ab,c,d |Ψ〉 and ∆̃ab,c,d |Ψ〉 (denoted by the combinations of red lines in Fig. 15) into ∆̃a,b,c |Ψ〉
and ∆̃b,c,d |Ψ〉 using bulk A1 and vector fixed-point equation on D(a, b, c) and D(b, c, d). The
end result of this computation is the following [Eq. (101), (102), (103)].

=

+1

η2

1−η2

, (101)

=

η1

1−η1

+1

, (102)
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=

1
1−η1

1
1−η2

. (103)

Now, we successfully decompose K̃ABC D |Ψ〉 into a linear combination of ∆̃a,b,c |Ψ〉,
∆̃b,c,d |Ψ〉, and some extra terms which are the same for all three decompositions. Moving
these extra terms to one side of the equation, we obtain the following.

+1
+1 +1

−1 −1 −1

Decomp. 1 Decomp. 2 Decomp. 3

η3

1−η3

η2

(1−η3)(1−η2)

η1

(1−η4)(1−η1)

η4

1−η4

η5

1−η5
+

η1

(1−η5)(1−η1)

η5

1−η5
+

η2

(1−η5)(1−η2)
.

(104)

The three vectors in the second row in Eq. (104) shall equal to each other, as they are all equal
to the vector in the first row in Eq. (104). Since ∆̂a,b,c |Ψ〉, ∆̂b,c,d |Ψ〉 and |Ψ〉 are linearly inde-
pendent [Assumption 6.1], the two vectors ∆̃a,b,c |Ψ〉 and ∆̃b,c,d |Ψ〉 are linearly independent,
and therefore the coefficients for each of those vectors in the three decompositions should
equal to each other. This leads to the following identities:

η3

1−η3
=

η1

(1−η4)(1−η1)
=

η5

1−η5
+

η1

(1−η5)(1−η1)
, (105)

η2

(1−η3)(1−η2)
=

η4

1−η4
=

η5

1−η5
+

η2

(1−η5)(1−η2)
. (106)

We can then solve for η3,η4,η5:

η3 =
η1

1−η2
, η4 =

η2

1−η1
, η5 =

η1η2

(1−η1)(1−η2)
. (107)

These relations are precisely the decomposition relations in Prop. 5.3.
Thus we proved the decomposition rule of cross-ratios. Since the complement rule

[Prop. 5.2] is also satisfied, we can conclude the emergence of conformal geometry, even for
the non-chiral edge [Section 5.3]. In particular, the fact that ctot is a constant also follows.

6.2 Remarks on the genericity condition and nonzero ctot

In this Section, we make several remarks on the genericity condition. Firstly, the genericity
condition implies ctot(D) > 0,∀D. This is because if for a D that anchors at three successive

32

https://scipost.org
https://scipost.org/SciPostPhys.18.3.102


SciPost Phys. 18, 102 (2025)

intervals (a, b, c), ctot(D) = 0, then this implies ∆̂a,b,c |Ψ〉 = 0 or Îa,b,c |Ψ〉 = 0. Notice by bulk
A1 and pure state condition, Îa,b,c |Ψ〉= ∆̂b,c,d |Ψ〉, where d is the complement of the interval
abc on the edge. Therefore, ctot(a, b, c) = 0 implies ∆̂a,b,c |Ψ〉 = 0 or ∆̂b,c,d |Ψ〉 = 0, which
violates the genericity condition.

Secondly, for a state satisfying bulk A1 and the stationarity condition with ctot(D) > 0 for
all conformal rulers D, if c− ̸= 0 the genericity condition [Assumption 6.1] is satisfied. This
can be proved by first computing

i 〈Ψ| [∆̂a,b,c , ∆̂b,c,d] |Ψ〉=
πc−

3
(1−η(a, b, c)−η(b, c, d)) , (108)

via Prop. 5.1, where η(a, b, c),η(b, c, d) are quantum cross-ratios and in the range of (0,1).
Note the following fact:

η(a, b, c) +η(b, c, d) ̸= 1 . (109)

This must be true because otherwise the following equation holds:

η(b, c, d) = 1−η(a, b, c) = η(b, c, de) =
η(b, c, d)

1−η(c, d, e)
, (110)

where the second equal sign follows from the complement relation [Prop. 5.2] and the
third equal sign follows from the decomposition relations [Prop. 5.3]. Eq. (110) implies
η(c, d, e) = 0, which contradicts to ctot(c, d, e) > 0. Hence Eq. (109) is proved. Therefore,
if the genericity condition is violated on the region anchored at intervals (a, b, c, d) in Fig. 14,
the commutator in Eq. (108) should vanish, which subsequently implies that c− = 0.11 There-
fore, for any state that satisfies bulk A1, the stationarity condition, and ctot > 0, the genericity
condition is strictly weaker than the c− ̸= 0 condition.

We note that the we currently do not have a simple physical motivation for the generic-
ity condition. As such, we leave it as an open problem to provide a physical meaning to this
condition. One possible alternative is the following condition. For any two thickened succes-
sive interval (A, B), there exists an infinitesimal unitary transformation on AB, that changes
(SA−SB)|Ψ〉. This condition implies the genericity condition. (We omit the proof.) We mention
this particular condition because (i) it suggests that the genericity condition is not very strong;
(ii) it may be possible to relate this condition to a more physically reasonable condition.

7 Discussion

7.1 Summary

In this work, we derived the emergence of conformal geometry on gapless systems from a
few locally-checkable conditions on a quantum state |Ψ〉. The physical setups include 2+1D
chiral systems with an edge and also non-chiral counterparts, which can include 1+1D CFT.
This work generalizes the entanglement bootstrap approach to the context of gapless systems.
The bulk assumptions we took, such as bulk A1 and nonzero bulk modular commutator, are
already known [9,10]. Our main finding is an assumption about the edge from which the con-
formal geometry emerges: the stationarity condition (δctot|Ψ〉 = 0). We also showed that this
condition is equivalent to a locally-checkable vector fixed-point equation (KD(η)|Ψ〉 ∝ |Ψ〉),
similar to the one studied in [25].

What is perhaps most remarkable is that the conformal geometry emerged from these as-
sumptions, even without putting in the distance measure. Even without making any assump-
tions about the distance metric or the symmetry, we obtained the set of cross-ratios, which

11We note that c− here is computed from the bulk modular commutator in Prop. 5.1.
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further enable us to assign a distance measure to the physical edge up to global transforma-
tions. This was derived from our assumptions, phrased in terms of quantities that explicitly
cancel out the UV contribution, leaving only the contributions from the IR.

The main workhorse behind this derivation are the quantum information-theoretic quan-
tities we defined. We were able to define the quantum cross-ratio candidate η and the central
charge candidate ctot in terms of the linear combination of entanglement entropies [Eq. (1)].
Under the stationarity condition [Assumption 4.6] and the bulk assumptions [Assumption 3.1
and 3.2], we showed that three different reasonable choices of η from the CFT point of view
can be shown to be exactly the same, even without making any explicit assumption about the
underlying effective field theory [Prop. 5.1]. We thus found three different ways to certify if
the edge has a valid set of cross-ratios. One of these approaches, i.e., the vector fixed-point
equation, is particularly useful because it implies a locality property of modular Hamiltonians.
Namely, the modular Hamiltonian of a large disk that touches the edge can be decomposed
into smaller pieces (at least when acting on a certain low-energy subspace).

7.2 Further remarks and directions

An interesting object in our work is our quantum-information theoretic definition of the “cen-
tral charge” ctot. If the wavefunction is the fixed-point with respect to the variation of this
quantity (δ(ctot)|Ψ〉 = 0), the conformal geometry emerges. Moreover, precisely under the
same condition, ctot attains a constant value everywhere in the system. These results are
evocative of the properties of the famous c-functions [31, 32] in 1+1D relativistic quantum
field theories. On that ground, we may speculate that our ctot can provide further insight into
states near the fixed-point.

A natural question is whether ctot can be a meaningful quantity in the study of RG flows.
To that end, we speculate that our ctot is a c-function in a context to be made precise. If we
specialize to the groundstate of a relativistic CFT in 1+1D, there is a limiting choice of intervals
for which our quantity ctot is closely related to the RG monotone of Casini and Huerta [32]
[Example 4.3]. We may ask: is ctot(a, b, c) monotonic under RG if the state |Ψ〉 is a relativistic
QFT groundstate for every choice of a, b, c? How about contexts without Lorentz symmetry,
including contexts considered in [56]? Can we develop a well-defined notion of RG for an
edge without distance measure?

There is an intriguing analog between the equivalence between stationarity and vector
fixed-point equation

δctot|Ψ〉 = 0 ⇔ KD(η)|Ψ〉 ∝ |Ψ〉 , (111)

and the well-known fact in classical mechanics: stationarity of action is equivalent to the (often
vector or tensor) equation of motion associated with it. The stationarity of action was mys-
terious in classical mechanics (for example, it was initially motivated as “minimizing God’s
displeasure” [57]), but it is demystified in quantum theory: only the stationary path con-
tributes significantly to the path integral (in the ħh→ 0 limit). Can we hope for an analogous
next-level understanding12 on why δctot = 0 can be a robust phenomenon13 for chiral edges
in nature?

Furthermore, is it true that every gapped phase in 2+1D admits a conformal edge? Previ-
ously, it is believed by many [63–67] that chiral edge should be conformal, with connections

12In the context of 1+1D CFT, there are many speculations that such an equation should be the equation of
motion for string theory [58–62]. That is, since 2D CFTs (with appropriate values of the central charge, including
worldsheet ghosts) correspond to (perturbative) string vacua, perhaps the off-shell configuration space of (pertur-
bative) string theory is somehow related to a ‘space of quantum field theories’ on the worldsheet.

13For chiral theory, stationarity of ctot does appear to be robust from our numerical study; see Appendix G. We
admit that this is a puzzling surprise.
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between CFT and models of chiral gapped wavefunctions in explicit models [4, 30, 68, 69].14

Our study adds to this story by opening the door to a serious answer on how much nature likes
this design and if quantum entanglement gives rise to it.

Notably, two types of “central charges” are captured by our framework, which are com-
putable from a single wavefunction. One is the total central charge ctot computed from the
edge, and the other is the chiral central charge c− computed from the bulk. Based on physical
intuition, we would expect ctot ≥ |c−|. A special case of this problem is to show that if ctot = 0,
then c− = 0. It is desirable to prove this based on our formalism. A potential usage of ctot is
a criterion for an ungappable edge. If at a point in the space of states where ctot is minimized
and non-zero, this could possibly imply the edge is ungappable.

The bulk entanglement bootstrap axioms can be rephrased as the statement that the bulk
reaches the global minimum of a certain entropy combination ∆= 0. (Recall ∆≥ 0 by strong
subadditivity.) Relatedly, the stationarity condition says ctot defined using entropy combina-
tion near the edge is a critical point (such as a saddle point or a local extremum). This makes
us wonder if entanglement bootstrap assumptions should be thought of as assumptions about
critical points. Can this view suggest new generalizations to broader contexts, either gapped
or gapless? Can our approach work for higher-dimensional robust gapless edges protected by
a nontrivial bulk? How about finite temperature phase transitions? Generalizations to con-
texts with symmetries (such as charge conservation) are also foreseeable. Are there physical
systems where a set of generalized cross-ratios emerges, which violate one of the rules of ordi-
nary cross-ratio (see [34] for relaxed rules)? How about systems with a conformal boundary
condition [72–74]? What happens if a chiral edge passes through a domain wall between two
gapped chiral phases (such as that shown in Fig. 6 of Ref. [75])?

Deriving the emergence of conformal geometry is the first step in understanding the emer-
gence of conformal symmetry. For future work, we would like to make progress in understand-
ing the full dynamical structure of conformal symmetry. This includes the description of the
evolution of the modular flow. The simplest context of such investigation is a “purely chiral”
edge, which has only left-moving modes but not right-moving modes (phenomena related to
our companion paper [35]). There we expect |c−| = ctot. In that context, it is possible that
the edge is stationary even on coherent states obtained by applying good modular flows. We
also anticipate understanding the primary states of the edge CFT. This is closely related to the
consistency between the edge and the bulk. In what sense can we expect a bulk anyon to
correspond to a primary field of the emergent edge CFT? Can we constrain the value of chiral
central charge using bulk anyon data in our approach? We expect the other axiom A0 and
some of the machinery of bulk entanglement bootstrap to play a role in these further studies,
but this problem is largely open.
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A Table of notations

Notations Meanings

ρA Reduced density matrix on region A
S(ρA) −Tr(ρA lnρA), usually abbreviated as SA

KA Modular Hamiltonian, − lnρA
∆(A, B, C) SAB + SBC − SA− SC
∆̂(A, B, C) KAB + KBC − KA− KC
I(A : C |B) SAB + SBC − SABC − SB
Î(A : C |B) KAB + KBC − KB − KABC

J(A, B, C)ρ Modular commutator, defined as iTr
�

ρABC[KAB, KBC]
�

D Conformal ruler, combination of regions (A, A′, B, C , C ′)
D(a, b, c) Conformal ruler with A, B, C anchored at a, b, c on the edge
∆(D) ∆(AA′, B, CC ′) for D= (A, A′, B, C , C ′)
∆̂(D) ∆̂(AA′, B, CC ′) for D= (A, A′, B, C , C ′)

∆a,b,c , ∆̂a,b,c Short-hand notation for ∆(D(a, b, c)), ∆̂(D(a, b, c))
I(D) I(A : C |B) for D= (A, A′, B, C , C ′)
Î(D) Î(A : C |B) for D= (A, A′, B, C , C ′)

Ia,b,c , Îa,b,c Short-hand notation for I(D(a, b, c)), Î(D(a, b, c))
ctot(D) Total central charge (candidate), defined in Eq. (17)

ctot(a, b, c) Short-hand notation for ctot(D(a, b, c))
ctot Total central charge of a CFT
c− Chiral central charge, from the 2+1D bulk state or edge CFT
η(D) Quantum cross-ratio (candidate), defined in Eq. (17)

η(a, b, c) Short-hand notation for η(D(a, b, c))
ηJ Cross-ratio candidate from edge modular commutators Eq. (33)
ηK Cross-ratio candidate from solving a vector equation Eq. (34)
ηg Geometric cross-ratios, see Fig. 7

KD(x) x∆̂(D) + (1− x) Î(D) for a D
h(x) Binary entropy function: −x ln(x)− (1− x) ln(1− x), x ∈ [0,1]
ϕ A map from the physical edge to a circle in [Prop. 5.4]
ϕa Image of an edge interval a under ϕ in [Prop. 5.4]

B Consequences of bulk A1

In this Appendix, we first discuss invariance of the action of certain linear combinations of
modular Hamiltonians acting on the reference state, under subsystem deformation in the bulk.
Then we use this result to derive several vector equations which are utilized in the main text.

B.1 Deformation invariance

Before we introduce the deformation invariance, we first derive a vector version of bulk A1
from the usual bulk A1 condition, namely

∆(B, C , D)|Ψ〉 = 0 ⇒ ∆̂(B, C , D) |Ψ〉= 0 , (B.1)

where BC D is the region for bulk A1 Fig. 3. This result directly follows from the stationarity
property of∆(B, C , D)|Ψ〉. Consider a norm-preserving perturbation |Ψ〉+ε|Ψ′〉 for an infinites-
imal ε ∈ R. (The norm-preserving condition implies that 〈Ψ|Ψ′〉 = 0.) The linear-order varia-
tion in ∆(B, C , D)|Ψ〉 is ε〈Ψ′|∆̂(B, C , D)|Ψ〉+ h.c., which must be zero. (Otherwise ∆(B, C , D)
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Figure 16: A bulk deformation: A→ Ac, B → B \ c. Here we only require c to be a
small disk. A and B are not necessarily to be a disk.

may become negative, which is impossible due to SSA [36].) Choosing the perturbation as
iε|Ψ′〉 instead, we get i(ε〈Ψ′|∆̂(B, C , D)|Ψ〉 − h.c.) = 0. Therefore, 〈Ψ′|∆̂(B, C , D)|Ψ〉 = 0 for
any |Ψ′〉 orthogonal to |Ψ〉. We thus conclude ∆̂(B, C , D)|Ψ〉 ∝ |Ψ〉. Taking the inner product
with |Ψ〉, we conclude that the constant of proportionality is zero, proving Eq. (B.1).

With this vector version bulk A1 derived, one can derive the invariance of action of certain
linear combinations of modular Hamiltonians under bulk deformations. (These are called as
good modular flow generators in [35].)

We shall consider the following simplest setup to present the proof for the deformation
invariance. Applying this argument to other cases is straightforward. Consider a deformation
along the boundary A → Ac, B → B \ c. We show that (KA − KB) |Ψ〉 is invariant under this
deformation:

(KA− KB) |Ψ〉= (KAc − KB\c) |Ψ〉 . (B.2)

To show this, one can first partition the regions around c as in Fig. 16. Note that bcd is exactly
the region used in the formulation of bulk A1, therefore

∆(b, c, d) = Sbc + Scd − Sb − Sd = 0 . (B.3)

This implies the following Markov condition:

I(A\ d : c|d) = 0 , I(B \ (cb) : c|b) = 0 , (B.4)

which follows from SSA [36]; see [9]. With these Markov conditions, one can write

KAc|ψ〉= (KA+ Kdc − Kd)|ψ〉 , KB|ψ〉= (KB\c + Kcb − Kb)|ψ〉 . (B.5)

Using these expressions for KAc|ψ〉 and KB|ψ〉, one can see

(KAc − KB\c) |Ψ〉 − (KA− KB) |Ψ〉= ∆̂(b, c, d) |Ψ〉= 0 , (B.6)

For the last equal sign, we utilize the vector version of bulk A1, which, as we explained above,
is a consequence of bulk A1.

One can apply this argument to other cases as well. For example, in the main text,
we often aim to use the fact that ∆̂(AA′, B, CC ′) |Ψ〉 and Î(A : C |B) |Ψ〉 computed from a
D= (A, A′, B, C , C ′) is invariant under deformations of the subsystems in the bulk [Fig. 17].

The invariance is the reason why we can use the short-hand notation

∆̂a,b,c |Ψ〉 ≡ ∆̂(AA′, B, CC ′) |Ψ〉 , Îa,b,c |Ψ〉 ≡ Î(A : C |B) |Ψ〉 , (B.7)

for any conformal ruler (A, A′, B, C , C ′) anchored at three successive interval (a, b, c) on the
edge. The same conclusion holds true for the linear combinations of entanglement entropies
∆(AA′, B, CC ′), I(A : C |B) by taking an inner product with 〈Ψ|.
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Figure 17: Four examples of bulk deformation of a D: (i) A→ A \ x , B → Bx; (ii)
A′→ A′w; (iii) A′→ A′ y, C ′→ C ′ \ y; (iv) C ′→ C ′z, B→ B \ z.

Figure 18: A combination of regions near the edge.

B.2 Vector equations

In this Appendix, we make use of the deformation invariance property to derive several useful
vector equations. These equations are used in the proof of the decomposition relation of the
quantum cross-ratio [Prop. 6.3]. Their scalar versions are used in the proof of Prop. 5.6.

Consider the region shown in Fig. 18. We shall show

∆̂a,b,cd |Ψ〉= ∆̂a,b,c |Ψ〉 − Îb,c,d |Ψ〉 ,

∆̂a,b,cd |Ψ〉= ∆̂a,b,c |Ψ〉 − Îb,c,d |Ψ〉 ,

∆̂a,b,cd |Ψ〉= ∆̂ab,c,d |Ψ〉+ ∆̂a,b,cd |Ψ〉 ,

(B.8)

where the notation ∆̂a,b,c and Îb,c,d follow the convention in Eq. (B.7). This follows straight-
forwardly from the bulk A1. We will explicitly show the first equation in Eq. (B.8). The rest
follows from a similar calculation. For the first equation, we can write ∆̂a,b,cd explicitly from
the conformal ruler D= (A, X , B, C D, Y Z):

∆̂(AX , B, C DY Z) = ∆̂(AX , B, CY )− Î(B : Z D|CY ) . (B.9)

Note that this is an operator equation and follows from a rearrangement of the expansion of
the terms on the left hand side. The ∆̂(AX , B, CY ) is already in the standard form of ∆̂a,b,c in
D(A, X , B, C , Y ). With bulk A1, one can deform the action of Î(B : Z D|CY ) into

Î(B : Z D|CY ) |Ψ〉= Î(B : D|C) |Ψ〉 , (B.10)

which is Îb,c,d for D= (B, Y, C , D, Z).

C General properties of ctot and η

In this Appendix, we discuss some general properties about ctot and η, treating them as func-
tions of two non-negative numbers ∆, I ≥ 0. For ∆, I > 0, they are defined as the (unique)
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x

y

x∗

as ∆ decreases

f(x) = e−∆x + e−Ix

1

2

Figure 19: ctot = 6/x∗ from the intersection point of y = f (x) and y = 1. When ∆
decreases, the curve y = f (x) moves closer to the line y = 1, as illustrated by the
group of blue curves with decreasing opacity along the blue arrow. As a result, the
solution x∗, which is shown by the orange dot in the x-axis, is increasing.

solutions to the following equations

e−6∆/ctot + e−6I/ctot = 1 , (C.1)

∆

I
=

lnη
ln(1−η)

. (C.2)

We shall first discuss the properties of ctot,η for ∆ ̸= 0 and I ̸= 0, deferring the other cases to
Appendix C.2.

C.1 ∆, I > 0 case

Here we study several properties of ctot and η, assuming ∆ > 0 and I > 0. We first study the
solution ctot to Eq. (C.1). Define the following function.

f (x) = e−∆x + e−I x . (C.3)

Let x∗ be the intersection point of y = 1 and y = f (x) [Fig. 19]. This solution must be unique
because f (x) decreases monotonically [Fig. 19]. Moreover, a solution exists because f (0) = 2
and f (∞) = 0. Thus ctot =

6
x∗
> 0 is the unique solution.

We remark that, while I is fixed, ctot decreases as∆ increases [Fig. 19]. A similar conclusion
applies when I decreases while ∆ is being fixed.

We now discuss an alternative definition for ctot and η. The definitions Eq. (C.1) and
Eq. (C.2) can be restated as the solution of the following equations:

∆=
ctot

6
ln

1
η

, I =
ctot

6
ln

1
1−η

. (C.4)

This implies

(∆− I)η+ I =
ctot

6
h(η) , (C.5)

where h(η) is the binary entropy function h(η) = −η lnη− (1−η) ln(1−η). We also see that

∆− I =
ctot

6
[lnη− ln(1−η)] =

ctot

6
h′(η) , (C.6)

where h′(η) is the derivative of h(η) with respect to η.
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x

y

y = (∆− I)x+ I

y = α∗h(x)

y = αh(x)

η0 1 x

y

y = (∆− I)x+ I

y = α∗h(x)

η 1/2

α∗ ln(2)

(∆ + I)/2

0 1

I

∆

Figure 20: (Left) ctot andη from the tangent point of y = (∆−I)x+I and y = α∗h(x).
(Right) An upper bound of ctot can be inferred from the plot.

Eq. (C.5) and Eq. (C.6) together imply a diagrammatic interpretation of the definition of
ctot,η: Given a pair∆, I > 0 consider a line y = (∆− I)x+ I and a family of curves y = αh(x),
parameterized by α [Fig. 20]. One can tune α such that the line is tangent to the curve. When
this happens, denote the parameter as α∗. Then ctot is 6α∗, and η is the x-coordinate of the
tangent point.

As an application of this diagrammatic definition, one can see that ctot is upper bounded
[Fig. 20]

ctot ≤
∆+ I

2
. (C.7)

C.2 ∆= 0 or I = 0 case

We now focus on the cases where ∆ or I is zero. This can happen for gapped edges, such as
in [76]. First, we discuss the definition of ctot. We formally define

ctot = 0 , if I = 0 , or ∆= 0 , (C.8)

by taking the limit of the function ctot(∆, I).
More explicitly, when ∆= 0, I ̸= 0, ctot is defined as the following limit [Fig. 19]:

ctot(0, I)≡ lim
∆→0

ctot(∆, I) = 0 . (C.9)

As ∆ → 0, the solution x∗ to the equation f (x) = 1 goes to infinity and therefore ctot → 0.
When I = 0,∆ ̸= 0, ctot is also zero under the limit

ctot(∆, 0)≡ lim
I→0

ctot(∆, I) = 0 , (C.10)

for similar reasons. (Notice the function ctot(∆, I) is symmetric under the exchange of ∆ with
I in the argument.) When ∆, I both are zero, the limit of ctot is also zero:

ctot(0,0)≡ lim
(∆,I)→(0,0)

ctot(∆, I) = 0 . (C.11)

This limit can be proved by the upper bound Eq. (C.7).
We now discuss the values of the cross-ratio η. Here is the summary.

η(∆, I) =







1 , if ∆= 0 , I ̸= 0 ,
0 , if ∆ ̸= 0 , I = 0 ,
not uniquely determined, if ∆= 0 , I = 0 .

(C.12)
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We now discuss the limiting argument that leads to these equations.
When ∆= 0, I ̸= 0, η is defined as the limit:

η(0, I)≡ lim
∆→0

η(∆, I) = 1 . (C.13)

The result of the limit can be seen from the definition of η:

lim
∆→0

∆

I
=

ln(η)
ln(1−η)

= 0 ⇒ η= 1 . (C.14)

This also implies 1−η = e−6I/ctot = 0, from which we can see ctot = 0. This is consistent with
our conclusion about ctot. Similarly, when I = 0,∆ ̸= 0, η is defined as the limit:

η(∆, 0)≡ lim
I→0
η(∆, I) = 0 , (C.15)

which is also consistent with the result ctot = 0 because η = e−6∆/ctot = 0. When ∆, I are both
zero, the limit lim

(∆,I)→(0,0)
η(∆, I) does not exist, since its value depends on the path by which

(∆, I) reaches (0,0) in the ∆, I plane. For example, when the path is along the line (∆, 0),
η= 0; while along the line (0, I), η= 1. This happens if the edge is gapped, in which case the
cross-ratios are undecided in the first place.

Below we relate the case of ∆= 0 or I = 0 to physical contexts.
(i) When both ∆ = I = 0, the edge is gapped [22], and the cross-ratios are not uniquely

decided. The fact that when (∆, I)→ (0,0), η(∆, I) has no unique limit is consistent with this
physical scenario. In fact, for any three successive intervals (a, b, c), one can let η(a, b, c) take
an arbitrary value in [0, 1], such that the consistency rules of cross-ratios are satisfied. This
indicates that one can map the endpoints of the coarse-grained intervals to an arbitrary set of
points on the circle that preserve the orientation. This gives a class of ϕ from the edge to a
circle, analogous to what we discussed in Section 5.3 and Fig. 12. The difference here is that
this choice of points is arbitrary as long as the orientation is preserved.15 This flexibility fea-
tures a topological dependence rather than a geometrical dependence, and it is more flexible
than the PSL(2, R) in the case ctot > 0.

(ii) One may wonder if there is a physical example for which ∆ > 0 but I = 0. One
example is to consider the toric code on a square with alternating rough and smooth boundary
conditions. If the conformal ruler D contains a point where the boundary condition changes,
it gives a contribution of ln2 to ∆(D). This example further shows that ctot = 0 everywhere
on the edge does not imply the uniqueness of locally indistinguishable states on the physical
disk.

D Equivalence of the stationarity condition and the vector fixed-
point equation

In this Appendix, we prove that the stationarity condition and the vector fixed-point equation
are equivalent [Theorem 4.8]. We begin by defining our notation and terminology. We will
consider a norm-preserving perturbation of the state. We will denote objects that depend on
the state |ψ〉 in the form of A(|ψ〉). The linear-order variation of this quantity is denoted as
δA.

We first prove the following lemma.

15Because η= 0, 1 are allowed, we may have multiple points mapped to the same point of the circle.
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Lemma D.1. Let O(|ψ〉)≡ 〈ψ| Ô |ψ〉 be the expectation value of a Hermitian operator Ô.

Ô |ψ〉 ∝ |ψ〉 , (D.1)

if and only if δO = 0 for any norm-preserving perturbation of |ψ〉.

Proof. We first prove the ⇐ direction. Without loss of generality, consider a perturbation of
the state |ψ〉 → |ψ〉+ε|ψ′〉 for an infinitesimal ε ∈ R. The norm-preserving condition implies
that 〈ψ|ψ′〉= 0. Note that δO = ε〈ψ′|Ô|ψ〉+ h.c. We can also consider a perturbation of the
form of |ψ〉 → |ψ〉 + iε|ψ′〉. In this case, δO = iε(〈ψ′|Ô|ψ〉 − h.c.). The fact that both are
zero implies that

〈ψ′|Ô|ψ〉= 0 , (D.2)

for any
�

�ψ′
�

orthogonal to |ψ〉. This immediately proves the claim.
Next, we prove the⇒ direction. This follows straightforwardly from the following identity:

δO = ε〈ψ′|Ô|ψ〉+ h.c. (D.3)

Due to the norm-preserving condition, |ψ′〉 is orthogonal to |ψ〉. Therefore, δO = 0.

The second lemma is about the linear order variation of modular Hamiltonian.

Lemma D.2. Let |ψ〉 be a normalized state and KA be its modular Hamiltonian of a region A.
For any norm-preserving perturbation of |ψ〉,

〈ψ|δKA |ψ〉= 0 . (D.4)

The proof is given in Appendix A of [25], which follows from the general variation property
of density matrices: Tr

�

ρδ(lnρ)
�

= 0.
Proof of Theorem 4.8:

Now, we are in a position to prove Theorem 4.8. Consider a conformal ruler D and let
∆=∆(AA′, B, CC ′)|Ψ〉, I = I(A : C |B)|Ψ〉 defined in Eq. (16), and ∆̂, Î be their operator version
defined in Eq. (9). We remind the reader the definition of ctot, η which are the solutions to the
following equations.

e−6∆/ctot + e−6I/ctot = 1 , (D.5)

∆

I
=

lnη
ln(1−η)

. (D.6)

Let also recall that KD(η) = η∆̂+ (1−η) Î .
We first consider the physically most interesting case of ctot > 0, which implies η ∈ (0,1),

we shall prove δctot(D)|Ψ〉 = 0⇔KD(η) |Ψ〉 ∝ |Ψ〉. Under any norm-preserving perturbation
|Ψ〉 → |Ψ〉+ ε
�

�Ψ′
�

, we can obtain

δctot(D)|Ψ〉 =
6

h(η)
(ηδ∆+ (1−η)δI) , (D.7)

where

δ∆= ε(



Ψ′
�

� ∆̂ |Ψ〉+ 〈Ψ| ∆̂
�

�Ψ′
�

) + 〈Ψ|δ∆̂ |Ψ〉

= ε(



Ψ′
�

� ∆̂ |Ψ〉+ 〈Ψ| ∆̂
�

�Ψ′
�

) .
(D.8)

To obtain the second line, we note that the last term 〈Ψ|δ∆̂ |Ψ〉 in the first line vanishes
[Lemma D.2]. We also note that δI can be computed similarly. Therefore,

δctot∝ ε(



Ψ′
�

�KD(η) |Ψ〉+ 〈Ψ|KD(η)
�

�Ψ′
�

) . (D.9)
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By Lemma D.1, the right hand side of Eq. (D.9) being zero (i.e. δctot = 0) is equivalent to the
condition KD(η)|Ψ〉 ∝ |Ψ〉, proving the claim.

Now we discuss the ctot = 0 case. This can be divided into three cases: (i)∆= 0, I ̸= 0, (ii)
∆ ̸= 0, I = 0, and (iii) ∆ = I = 0 [Appendix C]. First of all, since ctot ≥ 0, ctot = 0 implies the
first order derivative of ctot must vanish, therefore δctot = 0. Moreover, the vector fixed-point
equation also holds: For case (i), one can obtain ∆̂ |Ψ〉 = 0 [Appendix B.1]. Moreover, from
the definition of η Eq. (D.6), one can see that η= 1. Therefore,

KD(η) |Ψ〉= ∆̂ |Ψ〉= 0 . (D.10)

For case (ii), it follows that Î = 0 [42]. Moreover, η= 0 from the definition of η. Therefore

KD(η) |Ψ〉= Î |Ψ〉= 0 . (D.11)

For case (iii), although η from Eq. (C.12) is not uniquely determined, both ∆̂ |Ψ〉 and Î |Ψ〉 are
zero. Therefore, we have a family of vector equations

KD(η) |Ψ〉= (η∆̂+ (1−η) Î) |Ψ〉= 0 , ∀η . (D.12)

E Mapping the physical edge to a circle

In this Appendix, we provide a constructive proof of Prop. 5.4.
We first specify the setup and the notation: Consider a state |Ψ〉 on a disk with a set of

coarse-grained intervals along the edge. Let x1, x2, . . . , xn be the endpoints of these intervals,
and they are labeled with a certain order. (We choose a convention where x1→ x2→ ·· · is in
the counterclockwise direction.) We will denote the map from the edge to the circle as ϕ, and
the images of the endpoints x i are denoted as ϕ(x i). For the coarse-grained intervals on the
edge, we will use the lower-case Roman letters to denote them, e.g., a = (x i , x j).16 We will
sometimes use a short-hand notation of ϕa to denote the interval (ϕ(x i),ϕ(x j)) on the circle.

In this setup, we prove the Prop. 5.4 by explicitly constructing the map ϕ.

Proof. The map can be constructed in the following steps:

• Step 1: On a round circle, choose three points arbitrarily, assign them as ϕ(x1),
ϕ(x2),ϕ(x3), such that ϕ(x1)→ ϕ(x2)→ ϕ(x3) follows counterclockwise direction.

• Step 2: Then, for i = 3 to i = n− 1, one can find ϕ(x i+1) on the circle one by one, by
requiring that the quantum cross-ratio matches the geometric cross-ratio:

η(i − 2, i − 1, i) = ηg(ϕi−2,ϕi−1,ϕi) . (E.1)

Moreover, the map has the properties

1. ϕ(x1),ϕ(x2),ϕ(x3), . . . ,ϕ(xn) on the circle follows the same order as x1, x2, x3, . . . , xn
on the physical edge.

2. For any three successive coarse-grained intervals (a, b, c), the quantum cross-ratio η is
equal to the geometric cross-ratio ηg of three successive (ϕa,ϕb,ϕc),

η(a, b, c) = ηg(ϕa,ϕb,ϕc) . (E.2)
16The interval starts at x i , goes counterclockwise and ends at x j .
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We now prove both steps are doable and indeed ϕ satisfies these properties:

1. Firstly, step 1 is obviously doable.

2. Then we show step 2 for i = 3, . . . , n − 1 is doable, which is to show one can in-
deed find ϕ(x i+1) on the counterclockwise direction to ϕ(x i), such that the length of
(ϕ(x1),ϕ(x i+1)) doesn’t exceed the circumference of the circle.17 The proof is done by
induction: (i) ϕ(x4) can be found on the circle without exceeding the circle because
ηg(ϕ1,ϕ2,ϕ3) = η(1, 2,3) ∈ (0,1). (ii) Now we show that suppose the ϕ(x i) can be put
on the circle without exceeding the circle, then ϕ(x i+1) can be put on the circle without
exceeding the circle, i = 4, . . . , n− 1. This is because

ηg(ϕ1,ϕ2 ∪ · · · ∪ϕi−1,ϕi ∪ϕi+1) = η(1,2∪ · · · ∪ i − 1, i ∪ i + 1) ∈ (0,1) . (E.3)

The equation above is true because both η,ηg follow the same decomposition
rules (Prop. 5.3), then ηg(ϕ1,ϕ2 ∪ · · · ∪ϕi−1,ϕi ∪ϕi+1) depends on ηg(ϕ j ,ϕ j+1,ϕ j+2)
in the same way as η(1,2 ∪ · · · ∪ i − 1, i ∪ i + 1) ∈ (0,1) depends on η( j, j + 1, j + 2),
j = 1, . . . , i − 1. Since ηg(ϕ j ,ϕ j+1,ϕ j+2) = η( j, j + 1, j + 2) by construction, therefore
Eq. (E.3) holds. Therefore, we finished the induction proof and show step 2 works for
i = 3, . . . , n−1. By now, we have shown that the construction steps are doable and have
proved Property 1 by construction.

3. Now we prove the matching of the cross-ratios. As a starter, for [1, 1,1]-type cross-ratio,
one only need to check

η(n− 2, n− 1, n) = ηg(ϕn−2,ϕn−1,ϕn) ,

η(n− 1, n, 1) = ηg(ϕn−1,ϕn,ϕ1) ,

η(n, 1, 2) = ηg(ϕn,ϕ1,ϕ2) ,
(E.4)

since the matching of other [1, 1,1]-type cross-ratios are guaranteed by construction.
To show these equations are satisfied, one can simply use the complement relation
[Prop. 5.2]. We take η(n − 2, n − 1, n) = ηg(ϕn−2,ϕn−1,ϕn) for an example, and the
rest follows from the same idea. With the complement relation, one can first write

η(n− 2, n− 1, n) = 1−η(1∪ · · · ∪ n− 3, n− 2, n− 1) ,

and
ηg(ϕn−2,ϕn−1,ϕn) = 1−ηg(ϕ1 ∪ · · · ∪ϕn−3,ϕn−2,ϕn−1) .

Then
η(1∪ · · · ∪ n− 3, n− 2, n− 1) = ηg(ϕ1 ∪ · · · ∪ϕn−3,ϕn−2,ϕn−1)

follows from the same decomposition argument as we used for showing Eq. (E.3). By
now we’ve shown all the [1, 1,1]-type cross-ratios are matched:

η(i − 2, i − 1, i) = ηg(ϕi−2,ϕi−1,ϕi) , ∀i = 1, . . . , n .18 (E.5)

As we emphasized before, once these [1, 1,1]-type cross-ratios are matched, then all the
others are automatically matched, as they can be decomposed into [1,1, 1]-type cross-
ratios by the decomposition relations. For example, consider a [2,1, 1]-type quantum

17We will abbreviate the sentence to a phrase “without exceeding the circle”.
18The labels should be understood as values modulo n.
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cross-ratio η(ab, c, d):

η(ab, c, d) =
η(b, c, d)

1−η(a, b, c)

=
ηg(ϕb,ϕc ,ϕd)

1−ηg(ϕa,ϕb,ϕc)

= ηg(ϕab,ϕc ,ϕd) .

(E.6)

Now we have finished the proof of property 2.

Remark. Once a map ϕ is obtained, it is easy to obtain a class of such maps related by
PSL(2,R) transformations of the circle. This is reflected in the first step of the construction:
one can arbitrarily choose the first three points. The three real degrees of freedom specifying
their three endpoints are precisely swept out by the PSL(2,R) orbits (see e.g. [53] for a nice
discussion).

F Decomposition relation of quantum cross-ratios for non-chiral
states: Proof

Here we provide an proof of Prop. 6.3 which is more explicit than the diagrammatical approach
in the main text. The main idea is to decompose KABC D into linear combinations of modular
Hamiltonians supported only on D(a, b, c) and D(b, c, d), when they are acting on |Ψ〉. There
are three different decompositions and the consistency of these decompositions lead us to our
results such as Eq. (95), Eq. (96) and Eq. (97).

For simplicity of the notation, we index the intervals as

(a, b, c)→ 1 , (b, c, d)→ 2 , (a, b, cd)→ 3 , (ab, c, d)→ 4 , (a, bc, d)→ 5 . (F.1)

First, note that KABC D appears in Î3 = Î(A : C D|B), Î4 = Î(AB : D|C), Î5 = Î(A : D|BC).
Therefore, the vector fixed-point equation on D(a, b, cd),D(ab, c, d),D(a, bc, d) yields the fol-
lowing:

KABC D |Ψ〉=
�

η3

1−η3
∆̂3 + KAB + KBC D − KB −

α3

1−η3

�

|Ψ〉 (F.2)

=

�

η4

1−η4
∆̂4 + KABC + KC D − KC −

α4

1−η4

�

|Ψ〉 (F.3)

=
�

η5

1−η5
∆̂5 + KABC + KBC D − KBC −

α5

1−η5

�

|Ψ〉 , (F.4)

where the first, second and third line follow from [ηi∆̂i + (1− ηi) Îi] |Ψ〉 = αi |Ψ〉 , i = 3,4, 5
respectively.

Second, using bulk A1, when the following operators act on |Ψ〉, they can be decomposed
as [Appendix B.2]

∆̂3 = ∆̂1 − Î2 , (F.5)

∆̂4 = ∆̂2 − Î1 , (F.6)

∆̂5 = ∆̂1 + ∆̂2 − Î1 − Î2 . (F.7)
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We can then use the relation KABC = − Î1+KAB +KBC −KB and KBC D = − Î2+KC D +KBC −KC ,
which yields

(KABC D − KAB − KBC − KC D + KB + KC) |Ψ〉=
�

η3

1−η3
∆̂1 −

1
1−η3

Î2 −
α3

1−η3

�

|Ψ〉 (F.8)

=
�

η4

1−η4
∆̂2 −

1
1−η4

Î1 −
α4

1−η4

�

|Ψ〉 (F.9)

=
�

η5

1−η5
(∆̂1 + ∆̂2)−

1
1−η5

( Î1 + Î2)−
α5

1−η5

�

|Ψ〉 .

(F.10)

Third, we can use the vector fixed-point equations on D(a, b, c) and D(b, c, d) to replace
Î1 and Î2 by the following:

Î1 |Ψ〉=
−η1∆̂1 +α1

1−η1
|Ψ〉 , Î2 |Ψ〉=

−η2∆̂2 +α2

1−η2
|Ψ〉 . (F.11)

Plugging these in, we get

(KABC D − KAB − KBC − KC D + KB + KC) |Ψ〉

=
η3

1−η3
∆̂1 |Ψ〉+

1
1−η3

η2

1−η2
∆̂2 |Ψ〉 − β3 |Ψ〉

=
1

1−η4

η1

1−η1
∆̂1 |Ψ〉+

η4

1−η4
∆̂2 |Ψ〉 − β4 |Ψ〉

=
1

1−η5

�

η5 +
η1

1−η1

�

∆̂1 |Ψ〉+
1

1−η5

�

η5 +
η2

1−η2

�

∆̂2 |Ψ〉 − β5 |Ψ〉 ,

(F.12)

where

β3 =
1

1−η3

�

α3 +
α2

1−η2

�

, (F.13)

β4 =
1

1−η4

�

α4 +
α1

1−η1

�

, (F.14)

β5 =
1

1−η5

�

α5 +
α1

1−η1
+

α2

1−η2

�

. (F.15)

Lastly, we note that ∆̂1 |Ψ〉 , ∆̂2 |Ψ〉 , |Ψ〉 are linearly independent [Assumption 6.1]. There-
fore, if two vectors expressed as linear combination of these vectors are the same, the coeffi-
cients in front of these vectors ought to be the same. This implies

η3

1−η3
=

1
1−η4

η1

1−η1
=

1
1−η5

�

η5 +
η1

1−η1

�

, (F.16)

1
1−η3

η2

1−η2
=

η4

1−η4
=

1
1−η5

�

η5 +
η2

1−η2

�

. (F.17)

We can then solve for η3,η4,η5:

η3 =
η1

1−η2
, η4 =

η2

1−η1
, η5 =

η1η2

(1−η1)(1−η2)
. (F.18)

We remark that the proof also implies β3 = β4 = β5, which is consistent with the fact that
the proportionality factor in KD(ηi) |Ψ〉 = αi |Ψ〉 is of the form αi =

ctot
6 h(ηi), where h(ηi)

being the binary entropy function. This fact might be potentially useful in studies in which
some of our assumptions are modified.
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G Numerical example: p+ ip superconductor with irregular edges

In this Appendix, we study the p + ip superconductor (SC) on a rectangle. The translation
symmetry along the edge is explicitly broken, and hence, the edge is irregular. We numerically
verify the assumptions and their logical consequences, namely the emergence of the notion of
cross-ratio.

G.1 Setup

Consider the Hamiltonian for a p+ ip SC on a square lattice:

H =
∑

r⃗,a⃗

�

−ta†
r⃗ ar⃗+a⃗ +∆a†

r⃗ a†
r⃗+a⃗eia⃗·A⃗+ h.c.
�

−
∑

r⃗

(µ− 4t)a†
r⃗ ar⃗ , (G.1)

where r⃗ = (x , y) represents a site on the lattice, and a⃗ ∈ {(1,0), (0,1)} is a generator of the
square lattice. We set A⃗= (0,π/2), so that eia⃗·A⃗ is either 1 or i. We choose t = 1.0,∆= 1.0, and
µ = 1.3, so that the groundstate of H has a small correlation length (which is approximately
1.2 lattice spacings). We employ the open boundary condition for both x , y direction, so that
the system is on a rectangle and the translation symmetry along the edge is explicitly broken.

With this choice of parameters, the groundstate |Ψ〉 of H satisfies our bulk assumptions
[Section 3]. For one thing, it has energy gap in the bulk and the entanglement entropy of a
region within the interior of the bulk satisfy an area law. Therefore, bulk A1 is expected to be
satisfied. Moreover, it has chiral central charge c− = 1/2 in the bulk and a gapless chiral edge,
which is robust from being gapped out by local perturbations. Therefore, the bulk modular
commutator is expected to give πc−

3 with c− = 1/2. Indeed, we verified that these two bulk
assumptions are satisfied with error decreasing with the subsystem size in our companion
paper [35].19

At the edge, provided that it has the translational symmetry, it is natural to expect the edge
to be described by a chiral CFT. However, whether the chiral CFT description remains valid in
the absence of translational symmetry is less clear. We will refer to such setups as irregular
edges. In this Appendix, we provide a strong numerical evidence that the global conformal
symmetry remains intact even in such cases.

Recall that one of the main premises of our work is the stationarity condition [Assump-
tion 4.6], which is equivalent to the vector fixed-point equation. From the vector fixed-point
equation, we were able to show that the fundamental relations that define the cross-ratios
emerge [Prop. 5.2 and 5.3]. Thus, we first verify that the vector fixed-point equation in Ap-
pendix G.2. In Appendix G.3, we numerically verify that the cross-ratios for irregular edges
indeed satisfy the relations, as we predicted.

G.2 Verification of the vector fixed-point equation

We first verify the edge assumption via the vector fixed-point equation

KD(η) |Ψ〉 ∝ |Ψ〉 , (G.2)

on the two conformal rulers shown in Fig. 21, where η is the quantum cross-ratio defined in
Eq. (17). We also compare the ctots from these two conformal rulers and compare ηJ (from
edge modular commutator), ηK (from solving vector equation) with η for each conformal
ruler. These are shown to be close to each other, as expected [Prop. 5.1].

Here are more details on our numerical experiment.

19More precisely, the tests in [35] is used the cylindrical boundary condition. However, as long as the regions
studied are deep inside the bulk, the results ought to be insensitive to the boundary condition.
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60

40 A

B C

D

Test 1

A B C

A′ C′

Test 2

Figure 21: Two conformal rulers D= (A, D, B, C ,;) and D(A, A′, B, C , C ′) on a square
lattice with open boundary condition on all four sides. Each dot in the background
stands for a block of 2×2 lattice sites so that the position and size of each subsystem
can be inferred.

We first test the stationarity condition utilizing the vector fixed-point equation [Defini-
tion 4.7]. On the two conformal rulers shown in Fig. 21, we computed ctot and η utilizing
the definition Eq. (17). To test the proportionality, we use the square root of the variance of
KD(η) as a measure of error:

σ(KD(η)) =
q

〈Ψ|KD(η)2 |Ψ〉 − 〈Ψ|KD(η) |Ψ〉2 , (G.3)

where
KD(η) = η∆̂(D) + (1−η) Î(D) . (G.4)

As shown in Table. 1, σ(KD) ≈ 0 in both tests, which suggests the Eq. (G.2) is approximately
satisfied.

In the meantime, we can also see ctot computed on the two conformal rulers are approxi-
mately equal to each other, satisfying our [Prop. 5.5]. Moreover, both ctot are approximately
1/2. This confirms our expectation that ctot shall be the total central charge of the edge CFT.
The p + ip SC groundstate in our test is known to have a “purely-chiral” CFT on the edge,
meaning the anti-holomophic central charge c̄ = 0, and therefore the total central charge of
the edge CFT is ctot = c+ c̄ = c = 1/2. The data in the third column of Table. 1 indeed verifies
ctot ≈ ctot.

The last test using this setup is the matching of η,ηJ ,ηK , where η is defined in Eq. (17),
ηJ is defined via edge modular commutator Eq. (33) and ηK is defined as the solution to the
vector equation Eq. (34). η (the quantity defined in Eq. (17)) is listed in the fourth column,
which has already been used to test the stationarity condition. To compute ηJ , we can solve
the following two systems of equations

Test 1: J(AD, B, C) =
πc−

3
(1−ηJ ) , J(A, B, C) = −

πc−
3
ηJ ,

Test 2: J(AA′, B, CC ′) =
πc−

3
(1−ηJ ) , J(A, B, C) = −

πc−
3
ηJ ,

(G.5)
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Table 1: Results of the errors of the vector fixed-point equations σ(KD(η)), total
central charge ctot and quantum cross-ratio η from the edge conformal rulers, ηJ
from the edge modular commutators and ηK by minimizing the errors of the vector
fixed-point equations in test 1 and 2.

Test σ(KD(η)) ctot η ηJ ηK

1 0.00046 0.500019 0.046344 0.046346 0.0463
2 0.00475 0.500079 0.254086 0.254078 0.2541

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(
(x

))

Test 1
Test 2

0.04 0.05 0.25 0.26

Figure 22: σ(KD(x)) as a function of x . One can find an approximate solution
of σ(KD(x)) = 0 by minimizing the function. The inset is the same plot near
the minima. The minima are achieved at ηK = 0.0463 ± 0.0002 (for Test 1) and
ηK = 0.2541± 0.0002 (for Test 2).

for test 1 and test 2 respectively.20 To compute ηK , we utilize the square root of the variance
of KD(x) with a series of x , to locate the x such that σ(KD(x)) is most close to zero [Fig. 22].
That particular minimal location is the ηK . The result is listed in the last column in Table. 1. By
comparing the last three columns in Table. 1, we can see the three cross-ratios are remarkably
close to each other! Thus, up to a small error, η = ηJ = ηK is satisfied, in agreement with
[Prop. 5.1].

G.3 Verification of the cross-ratio relations

In this Section, we verify the consistency relation of the quantum cross-ratios. We shall focus
on the decomposition relation [Prop. (5.3)].

There are two sets of subsystems we used for this purpose; see Fig. 23. The conformal ruler
for the cross-ratios in each test is listed in Table. 2. In each test, we first numerically compute
η(a, b, c),η(b, c, d). Then, applying the decomposition relation [Prop. (5.3)], we can predict

20Another way is to use J(A, B, C) = −πc−
3 ηJ with c− = 1/2. We choose not to use this way because we want

to compute ηJ merely from the wavefunction, not utilizing beforehand knowledge of the state, even though the
knowledge is well-known.
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Table 2: Conformal rulers for quantum cross-ratio computation in the two tests.

Test D(a, b, c) D(b, c, d) D(ab, c, d) D(a, b, cd) D(a, bc, d)
1 (A, X , B, C , Y ) (B, Y, C , D,;) (AB, X , C , D, Y ) (A, X , B, C D, Y ) (A, X , BC , D, Y )

2 (A, X , B, C , Y ) (B, Y, C , D, Z) (AB, X Y, C , D, Z) (A, X , B, C D, Y Z) (A, X Y, BC , D, Z)

80

40

A

B

C D

Y

X

A B C D

X Y Z

Test 1

Test 2

Figure 23: We consider two regions for testing the consistency relations of quantum
cross-ratio. Each dot in the background stands for a block of 2×2 lattice sites, similar
to Fig. 21.

η(ab, c, d), η(a, b, cd), and η(a, bc, d):

η(ab, c, d) =
η(b, c, d)

1−η(a, b, c)
,

η(a, b, cd) =
η(a, b, c)

1−η(b, c, d)
,

η(a, bc, d) =
η(a, b, c)η(b, c, d)

(1−η(a, b, c))(1−η(a, b, c))
.

(G.6)

Then we compare these predictions and the direct numerical calculations of η(ab, c, d),
η(a, b, cd), and η(a, bc, d).

The results are shown in Table. 3. One can see that the predictions agree with the direct
calculations with high accuracy. Note that this holds even for a highly irregular regions used
in Test 1. In Test 2, one may have naively expected that η(a, b, c) = η(b, c, d) using the
number of lattice sites as the distance measure. However, the quantum cross-ratios have a
small asymmetry [Table. 3]. Although this is small, it is still an order of magnitude larger than
the discrepancy between our prediction and the direct calculation of quantum cross-ratios.

Table 3: Tests of the consistency relation of quantum cross-ratio. For each cell of
η(ab, c, d),η(a, b, cd),η(a, bc, d), the first line is directly computed from the defini-
tion of η; the second line is computed using Eq. (G.6).

Test η(a, b, c) η(b, c, d) η(ab, c, d) η(a, b, cd) η(a, bc, d)

1 0.516753 0.044985
0.093090
0.093088

0.541094
0.541094

0.050371
0.050369

2 0.232726 0.232739
0.303330
0.303332

0.303319
0.303321

0.092003
0.092007
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�

Figure 24: A state on 6 sites, each containing 5 qubits. Two qubits connected by a
bond represents the specified entangled state.

This is a nontrivial evidence that supports the validity of the relations satisfied by the quantum
cross-ratios at the chiral edge.

H Exotic examples: Non-CFT states

The main edge assumption of the main text is the stationarity condition [Assumption 4.6].
However, one may wonder if there is a weaker assumption that serves the same purpose.
One example would be the assumption that ctot is a constant. In this Appendix, we provide
counterexamples which satisfy this assumption but cannot be interpreted as CFT groundstates.
In Appendix H.1, we provide such a counterexample. In Appendix H.2, we provide examples
which satisfy a vector equation (weaker than the vector fixed-point equation) but yields a
prediction of ηK that cannot correspond to the geometrical cross-ratio. Therefore, certain
naive attempts to formulate CFT in terms of conditions weaker than the stationarity condition
do not work.

H.1 Entropy of a state is insufficient

For a 1+1D CFT groundstate on a circle, the entanglement entropy of an interval of a chord
length ℓ is of the form

S(ℓ) =
ctot

6
ln
�

ℓ

ε

�

, (H.1)

where ctot is the total central charge and ε is the UV cutoff [11]. Conversely, we may ask the
following question. If the entanglement entropy of any interval takes the following form

S(ℓ) = α lnℓ+ β , (H.2)

where α,β are two positive constant and ℓ is the chord length of the interval, can we conclude
the state |ψ〉 is a CFT groundstate? We show that this is not necessarily the case.

Let us start with the following simple example.
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Figure 25: A state on 2N sites. Each site contains 2N − 1 qubits.

Example H.1 (six-site example). We put six sites on a circle, each containing five qubits
[Fig. 24]. Each white dot stands for a qubit and each colored link that connects two white
dots stands for an entangled state of the form

p
p |00〉+
p

1− p |11〉 , (H.3)

where the value of p depends on the color of the edge. We call the entanglement entropy of
one qubit in the entangled pair

χp = −p ln p− (1− p) ln(1− p) ∈ [0, ln 2] , (H.4)

the strength of the bond. There are three types of entangled pair of strengthχx ,χy ,χz [Fig. 24].

Due to the six-fold rotation symmetry, there are only three types of distinct intervals in this
example, consisting of one, two, or three contiguous sites. The chord length of these intervals
are ℓn = 2sin nπ

6 , where n = 1,2, 3 is the number of sites in the interval. We demand the
entanglement entropies of these intervals take the form of Eq. (H.2):

S(ℓ1) = 2χx + 2χy +χz = α ln(1) + β ,

S(ℓ2) = 2χx + 4χy + 2χz = α ln(
p

3) + β ,

S(ℓ3) = 2χx + 4χy + 3χz = α ln(2) + β .

(H.5)

The solutions to these equations are

χz = α ln
2
p

3
,

χx =
β −α ln

p
3

2
,

χy =
α

2
ln

3
2

.

(H.6)

Note that χx ,χy ,χz must be nonnegative, which can be satisfied for some values of α and β .
Thus we constructed a state |ψ〉whose entanglement entropies of intervals take the same form
as Eq. (H.1) in CFT groundstate, with ctot = 6α. In fact, this solution gives a tunable ctot > 0.

Lest the reader worry that Example H.1 above is special to six sites. We note that a gener-
alization exists; see Example H.2.

Example H.2. Consider the state in Fig. 25, where the circle has any even number 2N of sites,
with 2N −1 qubits at each site. Each qubit is entangled with a qubit in another site, indicated
by the bond in the figure. Let χk be the strength of the bond between sites i and i ± k, for
k = 1,2, . . . , N , which is the same for different i. Therefore, the state has translation symmetry
along the circle.
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For an interval of n sites with chord length ℓn = 2sin πn
N , we demand its entanglement

entropy to be

S(ℓn) = α ln
�

ℓn

ℓ1

�

+ β , n= 1, . . . , N . (H.7)

Moreover, these entanglement entropies can be explicitly computed from the entangled pair

S(ℓ1) =
N−1
∑

k=1

2χk +χN ,

S(ℓn) = nS(ℓ1)− 2
n−1
∑

k=1

(n− k)χk , n= 2, . . . , N .

(H.8)

Plugging Eq. (H.8) into Eq. (H.7), one obtains a system of N linear equations for the N variables
χ1, . . . ,χN . The solutions are

χk = α ln





sin kπ
2N

Ç

sin (k−1)π
2N · sin

(k+1)π
2N



 , k = 2, . . . , N ,

χ1 =
1
2

�

β − 2
N−1
∑

k=2

χk −χN

�

.

(H.9)

We see that there is a range of α,β > 0 where the strength of the bonds produces a valid state,
i.e., χk ∈ (0, ln2], ∀k. Again, for each given integer N ≥ 3, we have a class of models with
tunable ctot > 0. A straightforward computation shows that the vector fixed-point equation on
[1,1, 1]-type intervals cannot be true because χ2 and χN cannot reach ln2 at the same time.

These examples cannot be CFT groundstates; in the continuum CFT, the groundstate sat-
isfies the vector fixed-point equation [25] which these states violate. Of course, in practice,
any lattice regularization will exhibit some violation of this condition. However, the important
point is that we have exhibited a family of states in Example H.2 whose violation of the vector
fixed point equation remains finite even in a certain thermodynamic limit. Indeed, in the limit
N →∞, χk =

α
2 ln k2

k2−1 , k ≥ 2, therefore the vector fixed-point equation is still violated. One
could be concerned that our thermodynamic limit does not fix the size of the local Hilbert
space, and that including the assumption of fixed local Hilbert space, perhaps the form of the
entropy could be enough to guarantee a CFT groundstate. However, we observe that the states
constructed above also exhibit a continuously tunable value of the central charge, which may
be taken to be less than 1/2 (i.e., ctot/2 < 1/2). Thus, they cannot represent unitary CFT
groundstates.

Note that the states in Example H.1 and H.2 have zero modular commutator
J(A, B, C)|ψ〉 = 0. Thus, supplementing the correct CFT entropy with the requirement that
the modular commutator for any three contiguous intervals vanishes is also insufficient.

H.2 States with a vector equation such that ηK ̸= η

An important equation of this work is the vector fixed-point equation KD(η)|ψ〉 ∝ |ψ〉, where
η is the quantum cross-ratio computed from entropy combinations I(D) and ∆(D) associated
with a conformal ruler D. Its importance can be seen from its equivalence to the stationarity
condition (Theorem 4.8). In contexts related to chiral edges [Section 5.1] and non-chiral
setups [Section 6], we found a unique solution η= ηK of

KD(ηK)|ψ〉 ≡ ηK∆̂+ (1−ηK) Î |ψ〉 ∝ |ψ〉 . (H.10)
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In other words, the vector fixed-point equation is the unique “vector equation” of this form.
In this Appendix, we ask (1) if there are states with a vector equation Eq. (H.10), where

the value ηK ̸= η, and (2) what such state means physically. We provide two examples.
Example H.3 has a family of vector equations, while Example H.4 has a vector equation with
ηK ̸= η. We argue that they are not physical CFT groundstates.

Example H.3 (Flat entanglement spectrum states). Any state with a flat entanglement spec-
trum has

KA|λ〉 ∝ |λ〉 , (H.11)

for any subsystem A.

Such states include “absolutely maximally entangled states”, which are states constructed
from perfect tensor [77, 78], as well as stabilizer states [79]. Note that a state with a flat
entanglement spectrum has a vanishing modular commutator for any three regions that is,
J(X , Y, Z)|λ〉 = 0 identically. Suppose we arrange the qubits of such a state |λ〉 on a spin chain
and pick three contiguous intervals A, B, C from the chain. Then, the state satisfies the vector
equation

KD(ηK)|λ〉 ∝ |λ〉 , ∀ηK . (H.12)

Namely, there is a family of vector equations. Thus, one of the solutions is ηK = η, and thus the
stationarity condition holds. Nonetheless, the genericity condition [Assumption 6.1] breaks.
We argue, based on this, that such state |λ〉 are unrelated to CFT groundstates.

The next example is to attach a flat entanglement spectrum state to a CFT groundstate.

Example H.4 (States with ηK ̸= η). Suppose we have a state |λ〉, which has a flat entangle-
ment spectrum arranged on a spin chain. and let |ψ〉 be a CFT state on a circle. Consider the
tensering state state |ψ′〉= |ψ〉 ⊗ |λ〉, such that the qubits in the state |λ〉 are added on top of
the CFT circle. One immediately verifies that it satisfies

KD(η|ψ〉)|ψ′〉 ∝ |ψ′〉 , (H.13)

where η|ψ〉 is the quantum cross-ratio computed from the state |ψ〉. This follows from the
general properties of modular Hamiltonian on tensor states, KD(η|ψ〉)|ψ〉 ∝ |ψ〉 as well as
Eq. (H.12). In fact, η|ψ〉 is the only solution for vector equation. Generally, such a state |ψ′〉
does not satisfy the stationary condition. This is because η|ψ〉 ̸= η|ψ′〉 in general.
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