
SciPost Phys. 18, 104 (2025)

Learning tensor networks with tensor cross
interpolation: New algorithms and libraries

Yuriel Núñez Fernández1,2⋆, Marc K. Ritter3,4, Matthieu Jeannin2, Jheng-Wei Li2,
Thomas Kloss1, Thibaud Louvet2, Satoshi Terasaki5, Olivier Parcollet4,6,

Jan von Delft3, Hiroshi Shinaoka7 and Xavier Waintal2†

1 Université Grenoble Alpes, Neel Institute CNRS, F-38000 Grenoble, France
2 Université Grenoble Alpes, CEA, Grenoble INP, IRIG, Pheliqs, F-38000 Grenoble, France

3 Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience,
and Munich Center for Quantum Science and Technology,

Ludwig-Maximilians-Universität München, 80333 Munich, Germany
4 Center for Computational Quantum Physics, Flatiron Institute,

162 5th Avenue, New York, NY 10010, USA
5 AtelierArith, 980-0004, Miyagi, Japan

6 Université Paris-Saclay, CNRS, CEA, Institut de physique théorique,
91191, Gif-sur-Yvette, France

7 Department of Physics, Saitama University, Saitama 338-8570, Japan

⋆ yurielnf@gmail.com , † xavier.waintal@cea.fr

Abstract

The tensor cross interpolation (TCI) algorithm is a rank-revealing algorithm for de-
composing low-rank, high-dimensional tensors into tensor trains/matrix product states
(MPS). TCI learns a compact MPS representation of the entire object from a tiny train-
ing data set. Once obtained, the large existing MPS toolbox provides exponentially fast
algorithms for performing a large set of operations. We discuss several improvements
and variants of TCI. In particular, we show that replacing the cross interpolation by the
partially rank-revealing LU decomposition yields a more stable and more flexible algo-
rithm than the original algorithm. We also present two open source libraries, xfac in
Python/C++ and TensorCrossInterpolation.jl in Julia, that implement these im-
proved algorithms, and illustrate them on several applications. These include sign-
problem-free integration in large dimension, the “superhigh-resolution” quantics repre-
sentation of functions, the solution of partial differential equations, the superfast Fourier
transform, the computation of partition functions, and the construction of matrix prod-
uct operators.

Copyright Y. Núñez Fernández et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-07-23
2025-01-20
2025-03-20

Check for
updates

doi:10.21468/SciPostPhys.18.3.104

Contents

1 Introduction 3

1

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104
mailto:yurielnf@gmail.com
mailto:xavier.waintal@cea.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.18.3.104&domain=pdf&date_stamp=2025-03-20
https://doi.org/10.21468/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

2 An introduction to tensor cross interpolation (TCI) 6
2.1 The input and output of TCI 6
2.2 An illustrative application: Integration in large dimension 7

3 Mathematical preliminaries: Low-rank decomposition of matrices from a few
rows and columns 8
3.1 Matrix cross interpolation (CI) 8
3.2 A few properties of Schur complements 9

3.2.1 Definitions and basic properties 10
3.2.2 The quotient property 10
3.2.3 Relation with CI 11
3.2.4 Relation with self-energy 11
3.2.5 Restriction of the Schur complement 11

3.3 Partial rank-revealing LU decomposition 12
3.3.1 Default full search prrLU algorithm 12
3.3.2 Alternative pivot search methods: Full, rook or block rook 14

4 Tensor cross interpolation 15
4.1 TCI form of tensor trains 15
4.2 Nesting conditions 16
4.3 2-site TCI algorithms 17

4.3.1 Basic algorithm 17
4.3.2 CI vs prrLU 18
4.3.3 Pivot update method: Reset vs accumulative 19
4.3.4 Pivot search method: Full, rook or block rook 19
4.3.5 Proposing pivots from outside of TCI 20
4.3.6 Ergodicity 20
4.3.7 Error estimation: Bare vs. environment 21

4.4 The 1-site and 0-site TCI algorithms 21
4.4.1 The 1-site TCI algorithm 22
4.4.2 The 0-site TCI algorithm 22

4.5 CI- and LU-canonicalization 22
4.5.1 CI-canonicalization. 23
4.5.2 LU-canonicalization 26

4.6 High-level algorithms 26
4.7 Operations on tensor trains 27
4.8 Relation to machine learning 28

5 Application: Computing integrals and sums 28
5.1 Quadratures for multivariate integrals 28
5.2 Example code for integrating multivariate functions 29
5.3 Example of computation of partition functions 31

6 Application: Quantics representation of functions 33
6.1 Definition 33
6.2 Operating on quantics tensor trains 34
6.3 Example: High-resolution compression of functions 36

6.3.1 Oscillating functions in 1, 2 and 3 dimensions 37
6.3.2 Quantics for multi-dimensional integration 39

6.4 Example: Heat equation using superfast Fourier transforms 40

2

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

7 Application: Matrix product operators (MPOs) 41
7.1 Formulation of the problem 42
7.2 MPO algorithm for quantum many-body problems 44
7.3 Illustration on Heisenberg and generic chemistry Hamiltonians 44

8 API and implementation details 47
8.1 Implementation 47
8.2 C++ API (xfac) 48
8.3 Julia libraries 50

8.3.1 TensorCrossInterpolation.jl 50
8.3.2 Quantics grids and QTCI 52

9 Perspectives 53

A Proofs of statements in the main text 54
A.1 Proof of the quotient identity for the Schur complement 54
A.2 Convergence and rook conditions in block rook search 55
A.3 Nesting properties 56
A.4 TCI in the continuum 57
A.5 Small rank of the quantics Fourier transform 58

B Code listings of examples discussed in the text 59
B.1 Python scripts 59

B.1.1 Integration of multivariate functions in environment mode 59
B.1.2 Quantics for 2-dimensional integration 59
B.1.3 Quantics for multi-dimensional integration 60
B.1.4 Heat equation using superfast Fourier transforms 61

B.2 C++ code 64
B.2.1 Computation of partition functions 64

B.3 Julia scripts 66
B.3.1 TCI for high-dimensional Gauss–Kronrod quadrature 66
B.3.2 Quantics TCI for 2-dimensional integration 66
B.3.3 Quantics TCI for multi-dimensional integration 67
B.3.4 Compressing existing data with TCI 67
B.3.5 Adding global pivots 68

References 70

1 Introduction

Tensor networks, widely used in quantum physics, are increasingly being used also in other
areas of science. They offer compressed representations of functions of one or more variables.
A priori, a tensor of degree L, Fσ1···σL

, with indices σℓ = 1, . . . , d, requires exponential re-
sources in memory and computation time to be stored and manipulated, since it contains dL

elements—a manifestation of the well-known curse of dimensionality. However, just as a ma-
trix (a tensor of degree 2) can be compressed if it has low rank, a tensor of higher degree
can be strongly compressed if it has a low-rank structure. Then, exponential reductions in
computational costs for performing standard linear algebra operations are possible, allowing
the curse of dimensionality to be evaded.

3

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

=

=

= = λ

 λ

H

H

H
=

)(

Tensors:(a)

(b)

(c)

(d)

(e)

(f)

Tensor networks:

Tensors viewed as large vectors or large
matrices in higher-dimensional spaces:

Common operations
involving large vectors
and large matrices:

TT unfolding:

TT toolbox:

inner product matrix times vector eigenvalue equation

inner product

large vectors

vectors

inner product matrix times vector Tr tensor train

tensor train (TT) TT operator (TTO)

tree tensor network

matrix 3-leg tensor 4-leg tensor

large matrix

matrix times vector eigenvalue equation

h

ψh φ

†φ ψ 2h

Ψ

Ψ

Ψ HΨ ΨΦ

Φ

Ψ†
Φ

Ψ̃ H̃

Ψ̃†
Φ̃

Ψ̃H̃ Φ̃ Ψ̃H̃ Ψ̃

φ,ψ

,

,

Figure 1: Schematic depiction of key ingredients of the standard MPS toolbox. (a)
Colored shapes with legs represent tensors with indices. (b) Tensors connected by
bonds, representing sums over shared indices, form tensor networks. (c) Tensors
and linear operators acting on them represent large vectors (green, red) and large
matrices (yellow) in higher-dimensional vector spaces. (d) Common calculations in
these spaces include computing inner productsΦ†Ψ, solving linear problems HΨ = Φ,
computing a few eigenvalues HΨ = λΨ, and more. (e) Tensors representing large
vectors or linear operators can be unfolded into MPS or tensor train operators (MPO),
respectively. (f) The standard MPS toolbox includes algorithms for performing cal-
culations with MPS and MPO. If these have have low rank, such calculations can be
performed in polynomial time, even for exponentially large vector spaces. The xfac
and TCI.jl libraries expand the MPS toolbox by providing tools for unfolding ten-
sors into MPS using exponentially fast tensor cross interpolation (TCI) algorithms,
for expressing functions as MPO, and for manipulating the latter.

In physics, functions describing physical quantities and the tensors representing them in-
deed often do have a hidden structure. A prominent example is the density matrix renormal-
ization group (DMRG), the method of choice for treating one-dimensional quantum lattice
models [1]. There, quantum wavefunctions and operators are expressed as tensor networks
that in the physics community are called matrix product states (MPSs) and matrix product op-
erators (MPOs), respectively, or tensor trains in the applied mathematics community. (In this
work, “MPS” and “tensor train” will be used interchangeably.) Many algorithms for manipulat-
ing such objects have been developed in the quantum information and many-body communi-
ties [2–5]. We collectively refer to them as the “standard MPS toolbox” [6,7]; Figure 1 depicts
some of its ingredients using tensor network diagrams. These algorithms achieve exponential
speedup for linear algebra operations (computing scalar products, solving linear systems, diag-
onalization, ...) with large but compressible vectors and matrices. Although initially developed
for many-body physics, the MPS toolbox is increasingly being used in other, seemingly unre-
lated, domains of application. It appears, indeed, that many common mathematical objects
are in fact of low rank.

4

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

A crucial recent development is the emergence of a new category of algorithms that allow
one to detect low-rank properties and automatically construct the associated low rank tensor
representations. They are collectively called tensor cross interpolation (TCI) algorithms [8–
12], the subject of this article. Based on the cross interpolation (CI) decomposition of matrices
instead of the singular value decomposition (SVD) widely used in standard tensor network
techniques, TCI algorithms construct low-rank decompositions of a given tensor. Their main
characteristic is that they do not take the entire tensor as input (in contrast to SVD-based
decompositions) but request only a small number of tensor elements (the “pivots”). Their
costs thus scale linearly with L, even though the tensor has exponentially many elements. In
this sense, TCI algorithms are akin to machine learning: they seek compact representations
of a large dataset (the tensor) based on a small subset (the pivots). Moreover, they are rank-
revealing: for low-rank tensors they rapidly find accurate low-rank decompositions (in most
cases, see discussions below); for high-rank tensors they exhibit slow convergence rather than
giving bad decompositions. TCI has been used recently, e.g., as an efficient (sign-problem-
free) alternative to Monte Carlo sampling for calculating high-dimensional integrals arising
in Feynman diagrams for the quantum many-body problem [13]; to find minima of functions
[14]; to calculate topological invariants [15]; to calculate overlaps between atomic orbitals
[16]; to solve the Schrödinger equation of the H+2 ion [16]; and, in mathematical finance, to
speed up Fourier-transform-based option pricing [17].

Among the many applications of tensor networks, the so-called quantics [18–20] repre-
sentation of functions of one or more variables has recently gained interest in various fields,
including many-body field theory [21–25], turbulence [26–28], plasma physics [29], quantum
chemistry [16], and denoising in quantum simulation [30]. Quantics tensor representations
yield exponentially high resolution, and often have low-rank, even for functions exhibiting
scale separation between large- and small-scale features. Such representation can be effi-
ciently revealed using TCI [21]. Moreover, it can be exploited to perform many standard
operation on functions (e.g. integration, multiplication, convolution, Fourier transform, ...)
exponentially faster than when using naive brute-force discretizations. For example, quantics
yields a compact basis for solving partial differential equations, similar to a basis of orthogonal
(e.g. Chebyshev) polynomials.

This article has three main goals:

• We present new variants of TCI algorithms that are more robust and/or faster than pre-
vious ones. They are based on rank-revealing partial LU (prrLU) decomposition, which is
equivalent to but more flexible and stable than traditional CI. The new variants offer useful
new functionality beyond proposing new pivots, such as the ability to remove bad pivots,
to add global pivots, to compress an existing MPS.

• We showcase various TCI applications (both with and without quantics), such as integrat-
ing multivariate functions, computing partition functions, integrating partial differential
equations, constructing complex MPOs for many-body physics.

• We present the API of two open source libraries that implement TCI and quantics al-
gorithms as well as related tools: xfac, written in C++ with python bindings; and
TensorCrossInterpolation.jl (or TCI.jl for short), written in Julia.

Below, Sec. 2 very briefly describes and illustrates the capabilities of TCI, serving as a
minimal primer for starting to use the libraries. Readers interested mainly in trying out TCI
(or learning what it can do) may subsequently proceed directly to Secs. 5–7, which present
several illustrative applications. Sec. 3 describes the formal relation between CI and prrLU
at the matrix level, Sec. 4 presents our prrLU-based algorithms for tensors of higher degree.
Finally Sec. 8 discusses the API of the xfac and TCI.jl libraries. Several appendices are
devoted to technical details.

5

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

2 An introduction to tensor cross interpolation (TCI)

In this section, we present a quick primer on TCI algorithms without details, to set the scene
for exploring our libraries and studying the examples in Section 5 and beyond.

2.1 The input and output of TCI

Consider a tensor F of degree L, with elements Fσ labeled by indices σ = (σ1, . . . ,σL), with
1 ≤ σℓ ≤ dℓ. For simplicity, we will denote the dimension d = dℓ if all the dimensions dℓ are
equal. Our goal is to obtain an approximate factorization of F as a matrix product state (MPS),
that we denote eFσ. An MPS has the following form and graphical representation:

Fσ ≈ eFσ =
L
∏

ℓ=1

Mσℓ
ℓ
= [M1]

σ1
1a1
[M2]

σ2
a1a2
· · · [ML]

σL
aL−11 , (1)

. Lσ1σ 2σ �σ

F
≈

.1σ 2σ
σ

�σ

1 11χ 2χ �χ

1a 2a �a
Lσ

0a La

1M 2M �M LM
.

Implicit summation over repeated indices (Einstein convention) is understood and depicted
graphically by connecting tensors by bonds. Each three-leg tensor Mℓ has elements [Mℓ]

σℓ
aℓ−1aℓ ,

and can also be viewed as a matrix Mσℓ
ℓ

with indices aℓ−1, aℓ. The external indices σℓ have
dimensions dℓ. The internal (or bond) indices aℓ have dimensions χℓ, called the bond dimen-
sions of the tensor. By convention, we use χ0=χL=1 to preserve a matrix product structure.
We define χ ≡maxℓχℓ as the rank of the tensor.

The approximation (1) can be made arbitrarily accurate by increasing χℓ, potentially ex-
ponentially with L like χℓ ∼ min{dℓ, dL−ℓ}. A tensor is said to be compressible or low-rank if
it can be approximated by a MPS form with a small rank χ.

TCI algorithms aim to construct low-rank MPS approximations (actually interpolations)
for a given tensor F using a minimal number of its elements. They are high-dimensional gen-
eralizations of matrix decomposition methods, like the cross interpolation (CI) decomposition
or the partially rank-revealing LU decomposition (prrLU) [31]. Indeed, they progressively
refine the eF approximation, increasing the ranks, by searching for pivots (high-dimensional
generalizations of Gaussian elimination pivots), using CI or prrLU on two-dimensional slices
of the tensor. TCI algorithms come with an error estimate ε(χℓ), which can be reduced be-
low a specified tolerance τ by suitably increasing χℓ. Moreover, they are rank-revealing: if a
given tensor F admits a low-rank MPS approximation, the algorithms will almost always find
it; if the tensor is not of low rank (e.g. a tensor with random entries), the algorithms fail to
converge and the computed error remains large.

Concretely, TCI algorithms take as input a tensor F in the form of a function returning the
value Fσ for any σ; they explore its structure by sampling (in a deterministic way) some of its
elements; and they return as output a list of tensors M1, . . . , ML for the MPS approximation eF .
Importantly, TCI algorithms do not require all dL tensor elements of F but can construct eF by
calling Fσ only O(Ldχ2) times. The TCI algorithms have a time complexity O(Ldχ3) [12],
that is exponentially smaller than the total number of elements. The TCI form is fully specified
by O(Lχ2) pivot indices, which are sufficient to reconstruct the whole tensor at the specified
tolerance. Furthermore, the TCI form allows an efficient evaluation of any tensor element.

Since TCI algorithms sample a given tensor F in a deterministic manner to construct a
compressed representation eF , they can be viewed as machine learning algorithms. We will
discuss the analogy with neural networks learning techniques in Section 4.8.

6

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

2.2 An illustrative application: Integration in large dimension

TCI algorithms allow new usages of the MPS tensor representation not contained in other ten-
sor toolkits, for example integration or summation in large dimensions [8,12]. Consider a func-
tion f (x), with x = (x1, . . . , xL). We wish to calculate the L-dimensional integral

∫

dLx f (x).
We map f onto a tensor F by discretizing each variable xℓ onto a grid of d distinct points
{p1, p2, . . . , pd}, e.g. the points of a Gauss quadrature or the Chebyshev points. Then, the
natural tensor representation F of f on this grid is defined as

Fσ = f (pσ1
, pσ2

, . . . , pσL
) =

. . .1σ 2σ

=
Lσ

, (2)

with σℓ = 1, . . . , d. This can be given as input to TCI. The resulting eF yields a factorized
approximation for f when all its arguments lie on the grid,

f (x1, . . . , xL)≈ M1(x1)M2(x2) · · ·ML(xL) =
. . .

1M 2M LM

L1 2x x x

, (3)

for xℓ ∈ {p1, p2, . . . , pd}, with Mℓ(pσℓ) ≡ Mσℓ
ℓ

. The notation Mℓ(x) reflects the fact that the
approximation can be extended to the continuum, i.e. for all x (see the discussion in App. A.4,
as well as Eqs. (7–9) of Ref. [13]). When eF is low rank, f is almost separable (it would be
separable if the rank χ = 1). The integral of the factorized f is straightforward to compute
as [8,12,13]

∫

dLx f (x)≈
∫

d x1 M1(x1)

∫

d x2 M2(x2) · · ·
∫

d xL ML(xL) , (4)

i.e. one-dimensional integrals followed by a sequence of matrix-vector multiplications. Since
TCI algorithms can compute the compressed MPS form with a “small” number of evalua-
tions of f (one for each requested tensor element), the integral computation is performed
in O(Ldχ2)≪ O(dL) calls to the function f (x). In practice, this method has been shown to
be very successful, even when the function f is highly oscillatory. For example, it was recently
shown to outperform traditional approaches for computing high-order perturbative expan-
sions in the quantum many-body problem [13,32]. Quite generally, TCI can be considered as
a possible alternative to Monte Carlo sampling, particularly attractive if a sign problem (rapid
oscillations of the integrand) makes Monte Carlo fail.

As an illustration, we compute a 10-dimensional integral with an oscillatory argument,

I = 103

∫

[−1,+1]10

d10x cos
�

10
∑10
ℓ=1 x2

ℓ

�

exp
h

−10−3
�

∑10
ℓ=1 xℓ
�4i

, (5)

using TCI with Gauss–Kronrod quadrature rules. As shown in Fig. 2, TCI converges approxi-
mately as 1/N4

eval, where Neval is the number of evaluations of the integrand. For comparison,
Monte Carlo integration would converge as O(1/

p

Neval) and encounter a sign problem due
to the cosine term in the integrand.

In practice, our xfac/TCI.jl libraries take a user-defined, real- or complex-valued func-
tion f (x) as input and construct a tensor train representation eFσ with a user-specified tolerance
τ or rank χ. Our TCI toolbox contains algorithms to decompose a tensor F or to recompress
a given MPS decomposition. After a MPS form of F has been obtained, it can be used directly
or transformed into one of several canonical forms (cf. Sec. 4.5) and used with other standard
tensor toolkits such as ITensor [33]. In Sections 5 and beyond, we present various examples
of applications. Readers interested mainly in these may prefer to the upcoming two Sections
3 and 4, which are devoted to the details of the algorithms.

7

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

number of evaluations Neval

104 105 106 107 108

in
te

gr
at

io
n
 e

rr
or

 |
I(

N e
v
al
)

−
I|

10−8

10−6

10−4

10−2

100

1/�Neval

1/Neval
2

1/Neval
4

GK15

GK21

GK41

GK61

Figure 2: Convergence of the 10-dimensional integral I of Eq. (5). I(Neval) is com-
puted using TCI with 15, 21, 41 and 61-point Gauss–Kronrod quadrature in each
dimension, and Neval is the number of evaluations of the integrand. With 41- and
61-point quadrature, the value converges to I = −5.4960415218049. Convergence
of the lower-order quadrature rules is limited by the number of discretization points.

3 Mathematical preliminaries: Low-rank decomposition of matri-
ces from a few rows and columns

The original TCI algorithm [8–10] is based on the matrix cross interpolation (CI) formula,
which constructs low rank approximations of matrices from crosses formed by subsets of their
rows and columns. In this paper, we focus on a different but mathematically equivalent strat-
egy for constructing cross interpolations, based on partial rank-revealing LU (prrLU) decom-
positions. This offers several advantages, in particular in term of stability.

A low-rank matrix is strongly compressible. Indeed, if A= (a1, . . . ,an) is an m×n matrix with
column vectors a j and (low) rank χ, each column can be expressed as a linear combination of
a subset of χ of them (a j =

∑χ
i=1 biCi j). Denoting the m×χ submatrix B = (b1, . . . ,bχ), we

have A= BC . It is sufficient to store B and C , i.e. χ(m+ n) elements instead of mn, which is
a large reduction when the rank is small (χ ≪min(m, n)).

The compressibility extends to matrices which are approximately of low rank. Using the
SVD decomposition, a matrix A is rewritten as A= U DV † with D a diagonal matrix of singular
values, which can be truncated at some tolerance to yield a low-rank approximation eA of A.
While SVD is optimal (it minimizes the error ∥A− eA∥F in the Frobenius norm), this comes at
a cost: the entire matrix A is required for the decomposition. Here, we are interested in CI
and prrLU, two low-rank approximations techniques which require only a subset of rows and
columns of the matrix. Both are well-known and in fact intimately related [34].

This section is organized as follows: after recalling CI in Section 3.1, we review some
standard material on Schur complements, prrLU and its relationship with CI. This section
focuses exclusively on matrices; we generalize to tensors in the next section.

3.1 Matrix cross interpolation (CI)

Let us first recall the matrix cross interpolation (CI) formula [11, 35–42], cf. section III of
Ref. [13] for an introduction.

8

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Let A be a m×n matrix of rank χ. We write I= {1, . . . , m} and J= {1, . . . , n} for the ordered
sets of all row or column indices, respectively, and I = {i1, . . . , i

eχ} ⊂ I and J = { j1, . . . , j
eχ} ⊂ J

for subsets of eχ row and column indices. Following a standard MATLAB convention, we write
A(I,J) for the submatrix or slice containing all intersections of I-rows and J -columns (i.e.
rows and columns labeled by indices in I and J , respectively), with elements

[A(I,J)]αβ ≡ Aiα, jβ , (6)

∀α,β ∈ {1, . . . , eχ}. In particular, A(I,J) = A. In the following, we assume eχ ≤ χ, with I and
J chosen such that the matrix A(I,J) is non-singular. We define the following slices of A:

P = A(I,J) , C = A(I,J) , R= A(I,J) . (7)

P = A(I,J) is the pivot matrix. Its elements are called pivots, labeled by index pairs
(i, j) ∈ I ×J . These index pairs are called pivots, too (a common abuse of terminology), and
the index sets I, J specifying them are called pivot lists. In other words, the slice C = A(I,J)
gathers all columns containing pivots, the slice R= A(I,J) gathers all rows containing pivots,
and P contains their intersections (thus it is a subslice of both).

The CI formula gives a rank-eχ approximation eA of A [38] that can be expressed in the
following equivalent forms:

A ≈ C P−1R= eA , (8)

A(I,J) ≈ A(I,J) P−1A(I,J) = eA(I,J) , (9)

.

,
II JJ

≈
IJ

I I JJ
i′i′i ′j′j j

=′j′iA

The third line depicts this factorization diagrammatically through the insertion of two pivot
bonds. There, the external indices i′ ∈ I and j′ ∈ J are fixed, represents P−1, and the two
internal bonds represent sums

∑

j∈J
∑

i∈I over the pivot lists I, J . The fourth line visualizes
this for eχ = 3, with J -columns colored red, I-rows blue, and pivots purple.

The CI formula (9) has two important properties: (i) For eχ = χ, Eq. (9) exactly reproduces
the entire matrix, eA = A (as explained below). (ii) For any eχ ≤ χ it yields an interpolation,
i.e. it exactly reproduces all I-rows and J -columns of A. Indeed, when considering only the
I-rows or J -columns of eA(I,J) in Eq. (9), we obtain

: eA(I,J) = A(I,J) , since A(I,J)P−1 = 1 , (10a)

: eA(I,J) = A(I,J) , since P−1A(I,J) = 1 , (10b)

where 1 denotes a eχ × eχ unit matrix.
The accuracy of a CI interpolation depends on the choice of pivots. Efficient heuristic strate-

gies for finding good pivots are thus of key importance. They will be discussed in Sec. 3.3.2.

3.2 A few properties of Schur complements

This section discusses an important object of linear algebra, the Schur complement. Of primary
importance to us are two facts that allow us to make the connection between CI and prrLU.

9

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

First, the Schur complement is essentially the error of the CI approximation. Second, the Schur
complement can be obtained iteratively by eliminating (in the sense of Gaussian elimination)
rows and columns of the initial matrix one after the other and in any order. With these two
properties, we will be able to prove that the prrLU algorithm discussed in the next section
actually yields a CI approximation.

3.2.1 Definitions and basic properties

Let us consider a matrix A made of 4 blocks

A=

�

A11 A12
A21 A22

�

, (11)

with A11 assumed square and invertible. The Schur complement [A/A11] is defined by

[A/A11]≡ A22 − A21(A11)
−1A12 . (12)

The matrix A can be factorized as
�

A11 A12
A21 A22

�

=

�

111 0
A21A−1

11 122

��

A11 0
0 [A/A11]

��

111 A−1
11 A12

0 122

�

. (13)

This leads to the Schur determinant identity

det A= det A11 det[A/A11] , (14)

and (by inverting (13), see also Appendix A.1) to the relation
�

A−1
�

22= [A/A11]
−1 . (15)

3.2.2 The quotient property

When used for successively eliminating blocks, the Schur complement does not depend on the
order in which the different blocks are eliminated. This is expressed by the quotient property
of the Schur complement [43]. We illustrate this property on a 3× 3 block matrix,

A=





A11 A12 A13
A21 A22 A23
A31 A32 A33



 , B ≡
�

A11 A12
A21 A22

�

, (16)

where B is a submatrix of A. We assume that A11 and A22 are square and invertible. Then the
quotient formula reads

�

[A/A11]/[B/A11]
�

=
�

A/B
�

=
�

[A/A22]/[B/A22]
�

. (17)

A simple explicit proof of this property is provided in Appendix A.1, see also [44].
As the order of block elimination does not matter, we will use a simpler notation

�

[A/1]/2
�

=
�

[A/2]/1
�

=
�

A/(1, 2)
�

, (18)

where /1 or /2 denotes the elimination of the 11- or 22 block, and /(1,2) the elimination of
the square matrix containing both. Let us also note that permutations of rows and columns
in the 11- and 22-blocks can be taken before or after taking the Schur complement [A/(1,2)]
without affecting the result [44]. For matrices involving a larger number of blocks, iterative
application of the Schur quotient rule to successively eliminate blocks 11 to x x reads

�

�

�

[A/1]/2
�

. . .
�

/x
�

=
�

A/(1,2, . . . , x)
�

. (19)

10

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

3.2.3 Relation with CI

The error in the matrix cross interpolation formula is directly given by the Schur complement
to the pivot matrix.

To see this, let us permute the rows and columns of A such that all pivots lie in the first eχ
rows and columns, labeled I1 = J1 = {1, . . . , eχ}, with I2 = I \I1 and J2 = J \J1 labeling the
remaining rows and columns, respectively. Then, the permuted matrix (again denoted A for
simplicity) has the block form

A(I,J) =

�

A(I1,J1) A(I1,J2)
A(I2,J1) A(I2,J2)

�

=

�

A11 A12
A21 A22

�

, (20)

and the pivot matrix is P = A11 = A(I1,J1). The CI formula (9) now takes the form

eA=

�

A11
A21

�

(A11)
−1
�

A11 A12
�

=

�

A11 A12
A21 A21(A11)−1A12

�

, (21)

A− eA=
�

0 0
0 [A/A11]

�

. (22)

The interpolation is exact for the 11-, 21- and 12-blocks, but not for the 22-block where the
error is the Schur complement [A/A11]. Since the latter depends on the inverse of the pivot
matrix, a strategy for reducing the error is to choose the pivots such that |det A11| is maximal
—a criterion known as the maximum volume principle [35,41]. Finding the pivots that satisfy
the maximum volume principle is in general exponentially difficult but, as we shall see, there
exist good heuristics that get close to this optimum in practice.

3.2.4 Relation with self-energy

In physics context, the Schur complement is closely related to the notion of self-energy, which
appears in a non-interacting model by integrating out some degrees of freedom. Consider a
Hamiltonian matrix

H = H0 + V =

�

H11 0
0 H22

�

+

�

0 H12
H21 0

�

. (23)

The Green’s function at energy E is defined as G(E) = (E−H)−1. Its restriction to the 22-block
is given by the Dyson equation,

[G(E)]22 = (E −H22 −Σ)−1 , (24)

where Σ= H21(E −H11)−1H12 is the so-called self-energy. The Dyson equation can be proven
by applying Eq. (15) to [G(E)]22 = [(E − H)−1]22 and inserting the definition of the Schur
complement, Eq. (12):

[G(E)]22 = [(E −H)−1]22 = [(E −H)/(E −H)11]
−1

=
�

(E −H)22 −H21[(E −H)11]
−1H12

︸ ︷︷ ︸

Σ

�−1
. (25)

3.2.5 Restriction of the Schur complement

A trivial, yet important, property of the Schur complement is that the restriction of the Schur
complement to a limited numbers of rows and columns is equal to the Schur complement of
the full matrix restricted to those rows and columns (plus the pivots). More precisely, if I1

11

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

and J1 are the lists of pivots specifying the Schur complement and I2 and J2 are lists of rows
and columns of interest, one has

[A(I,J)/A(I1,J1)](I2,J2) = [A(I1 ∪ I2,J1 ∪J2)/A(I1,J1)] , (26)

where I1,I2 ⊆ I and J1,J2 ⊆ J . This property follows directly from the definition of the
Schur complement.

3.3 Partial rank-revealing LU decomposition

In this section, we discuss partial rank-revealing LU (prrLU) decomposition. While mathemat-
ically equivalent to the CI decomposition, it is numerically more stable as the pivot matrices
are never constructed nor inverted explicitly.

A matrix decomposition is rank-revealing when it allows the determination of the rank of
the matrix: the decomposition A= X DY is rank-revealing if both X and Y are well-conditioned
and D is diagonal. The rank is given by the number of non-zero entries on the diagonal of D.
A well-known rank-revealing decomposition is SVD.

3.3.1 Default full search prrLU algorithm

The standard LU decomposition factorizes a matrix as A= LDU , where L is lower-triangular,
D diagonal and U upper-triangular [31]. It implements the Gaussian elimination algorithm for
inverting matrices or solving linear systems of equations. The prrLU decomposition is an LU
variant with two particular features: (i) It is rank-revealing: the largest remaining element,
found by pivoting on both rows and columns, is used for the next pivot. (ii) It is partial:
Gaussian elimination is stopped after constructing the first eχ columns of L and rows of U ,
such that LDU is a rank-eχ factorization of A.

The prrLU decomposition is computed using a fully-pivoted Gaussian elimination scheme,
based on Eq. (13), which we reproduce here for convenience.
�

A11 A12
A21 A22

�

=

�

111 0
A21A−1

11 122

��

A11 0
0 [A/A11]

��

111 A−1
11 A12

0 122

�

. (27)

Note that the right side has a block LDU structure. The algorithm utilizes this as follows. First,
we permute the rows and columns of A such that its largest element (in modulus) is positioned
into the top left 11-position, then apply the above identity with a 11-block of size 1×1. Next,
we repeat this procedure on the lower-right block of the second matrix on the right of Eq. (27)
(hereafter, the “central” matrix), i.e. on [A/1]. We continue iteratively, yielding [A/(1,2)],
[A/(1,2, 3)], etc., thereby progressively diagonalizing the central matrix while maintaining
the lower- and upper-triangular form of L and U . Before each application of Eq. (27) we
choose the largest element of the previous Schur complement as new pivot and permute it
to the top left position of that submatrix. This strategy of maximizing the pivot improves the
algorithm’s stability, since it minimizes the inverse of the new pivot, which enters the left and
right matrices [35,41] and corresponds to the maximum volume strategy over the new pivot,
see Appendix B2 of [13]. After eχ steps we obtain a prrLU decomposition of the form

A=

�

L11 0
L21 122

��

D 0
0 [A/(1, . . . , eχ)]

��

U11 U12
0 122

�

. (28)

Here, L11 and U11 have diagonal entries equal to 1 and are lower- or upper-triangular, re-
spectively, and D (shorthand for D11) is diagonal [31, 42]. The block subscripts 11, 12, 21,
22 label blocks with row and column indices given by I1 = J1 = {1, . . . , eχ}, I2 = I \ I1, and
J2 = J\J1, where these indices refer to the pivoted version of the original A. When the Schur

12

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

CI prrLU

Figure 3: Equivalence between CI and prrLU. The prrLU decomposition provides all
the matrices of the CI. Top: Eqs. (22) and (30); middle: Eqs. (32a-32c); bottom:
Eqs. (32d-32e). White portions of matrices are equal to 0.

complement becomes zero, after χ steps, the scheme terminates, identifying χ as the rank of
A.

Now, note that (for any eχ ≤ χ) Eq. (28) can be recast into the form

A= LDU +

�

0 0
0 [A/(1, . . . , eχ)]

�

, L =

�

L11
L21

�

, U =
�

U11 U12
�

. (29)

This precisely matches the CI formula (22). Again the Schur complement [A/(1, . . . , eχ)] is the
error in the factorization. Thus, prrLU actually yields an CI [34,42], given by

eA= LDU =

�

L11
L21

�

D
�

U11 U12
�

. (30)

Explicit relations between the CI and prrLU representations are obtained from Eq. (30):
�

A11
A21

�

(A11)
−1
�

A11 A12
�

=

�

L11DU11
L21DU11

�

(L11DU11)
−1
�

L11DU11 L11DU12
�

, (31)

where, abusing notation, Ax y = A(Ix ,Jy) now denote blocks of the pivoted version of the
original A. This yields the following identifications, depicted schematically in Fig. 3:

A11 = P = L11DU11 , (32a)

A21 = L21DU11 , (32b)

A12 = L11DU12 , (32c)
�

A11
A21

�

(A11)
−1 =

�

111
L21 L−1

11

�

, (32d)

(A11)
−1
�

A11 A12
�

=
�

111 U−1
11 U12
�

. (32e)

The main advantage of prrLU over a direct CI is numerical stability, as we avoid the con-
struction and inversion of ill-conditioned pivot matrices [31]. In our experience, prrLU is also
more stable than the QR-stabilization approach to CI used in [13]. Furthermore, prrLU is
updatable: new rows and columns can be added easily.

Let us note that the maximal pivot strategy of prrLU eliminates the largest contribution
to the next Schur complement, hence reducing the CI error. Hence, it is a simple, greedy
algorithm for constructing a near-maximum volume submatrix [42,45].

13

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

3.3.2 Alternative pivot search methods: Full, rook or block rook

The above algorithm uses a full search for the pivots, i.e. it uses the information of the entire
matrix A and scales as O(mn). It provides a quasi-optimal CI approximation but is expensive
computationally as each new pivot is searched on the entire Schur complement [A/(1, . . . , eχ)].

Rook search is a cheaper alternative, first proposed in [46, 47]. (See Algorithm 2 of [12]
and Ref. [13, Sec. III.B.3], where it was called alternating search). It explores the Schur com-
plement [A/(1, . . . , eχ)] by moving in alternating fashion along its rows and columns, similar
to a chess rook. It searches along a randomly chosen initial column for the row yielding the
maximum error, along that row for the column yielding the maximal error, and so on. The
process terminates when a “rook condition is established”, i.e. when an element is found that
maximizes the error along both its row and column; that element is selected as new pivot.
Compared to full pivoting, rook pivoting has the following useful properties: (i) computa-
tional cost reduced to O[max(m, n)] from O(mn); (ii) comparable robustness [48]; (iii) almost
as good convergence of the CI in practice.

Algorithm 1: Block rook pivoting search. Given pivot lists I, J , the algorithm up-
dates the lists I, J in place by alternating between searching for better pivots along
the rows and columns in even or odd iterations, respectively. In each iteration, the
pivot lists I, J are updated with new, improved pivots (the ‘rook move’) from a prrLU
decomposition with tolerance ε (line 8). The algorithm terminates when either the
rook condition is met, i.e. when there are no better pivots along the available rows
and columns, or when a maximum depth of nrook iterations has been reached (typi-
cally nrook ≤ 5). Upon exiting the algorithm, the updated lists I and J are of equal
size.

Input: A matrix function A with row indices I and column indices J, initial pivot lists
I ⊆ I,J ⊆ J with χ elements each, and tolerance τ.

Output: Updated pivot lists I,J for the prrLU of A with up to 2χ elements each.

1 J ′← J ∪ {χ new random column indices ∈ J \J }
2 for t ← 1 to nrook do
3 if t is odd then
4 search among the columns: set B← A(I,J ′)
5 else
6 search among the rows: set B← A(I ′,J)
7 end
8 find new pivots: (I ′,J ′)← pivots of prrLUε(B)
9 if I ′ = I and J ′ = J then rook condition has been established.

10 return I,J
11 else
12 update the pivots: (I,J)← (I ′,J ′)
13 end
14 end

We now introduce block rook search. It is a variant of rook search which searches for all
pivots simultaneously. It is useful in the common situation that a CI of a matrix A(I,J) has
been obtained and then this matrix is extended to a larger matrix A(I′,J′) by adding some
new rows and columns. One needs to construct a new set of pivots I ′ and J ′. The previous
set of pivots I and J is a very good starting point that one wishes to leverage on to construct
this new set. Block rook search is described in Algorithm 1.

14

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

To find pivots, the algorithm uses a series of prrLU, applied to a subset of rows and columns
in alternating fashion. It starts with a set of columns made of previously found pivots and some
random ones. It then LU factorizes the corresponding sub-matrix to yield new pivot rows and
columns. The algorithm is repeated, alternatingly on rows and columns, until convergence
(or up to nRook times). In practice, we observe that nRook = 3 is often sufficient to reach
convergence. At convergence, the pivots satisfy rook conditions as if they had been sequentially
found by rook search (see App. A.2 for a proof). The algorithm requires O(nRookχ

2 max(m, n))
to factorize the matrix A.

4 Tensor cross interpolation

We now turn to the tensor case. After introducing the TCI form of an MPS, we present the
TCI algorithm and its variants. Although this section is self-contained, it is somewhat compact
and we recommend users new to TCI to read a more pedagogical introduction first, such as
section III of [13]. Important proofs can also be found in the appendices of [13] and/or in the
mathematical literature [8–12,18,19,49,50].

The algorithm used by some of us previously (e.g. in [13,15,16]) will be referred to as the
2-site TCI algorithm in accumulative mode. Below, we introduce a number of new algorithms
that evolved from this original one. Our default TCI (discussed first, in section 4.3.1) is the 2-
site TCI algorithm in reset mode. We also introduce a 1-site TCI, a 0-site TCI and a CI-canonical
algorithm and explain their specific use cases.

4.1 TCI form of tensor trains

Tensor trains obtained from TCI decompositions of an input tensor Fσ have a very particular,
characteristic form, called TCI form. It is obtained, e.g., through repeated use of the CI ap-
proximation, as discussed informally in Sec. III.B.1 of [13]. Its defining characteristic is that
it is built only from one-dimensional slices of Fσ (on which all tensor indices σℓ but one are
fixed). Furthermore, TCI algorithms construct the TCI form using only local updates of these
slices, as discussed in later sections.

The most difficult part of implementing TCI algorithms lies in the book-keeping of various
lists of indices. This is facilitated by the introduction of the following notations.

• An external index σℓ (ℓ ∈ {1,2, . . . ,L}) takes dℓ different values from a set Sℓ.

• Iℓ = S1 × · · · × Sℓ denotes the set of row multi-indices up to site ℓ. An element i ∈ Iℓ is a
row multi-index taking the form i = (σ1, . . . ,σℓ).

• Jℓ = Sℓ× · · · × SL denotes the set of column multi-indices from site ℓ upwards. An element
j ∈ Jℓ is a column multi-index taking the form j = (σℓ, . . . ,σL).

• IL = J1 is the full configuration space. A full configuration σ ∈ IL takes the form
σ = (σ1, . . . ,σL).

• iℓ ⊕ jℓ+1 ≡ (σ1, . . . ,σL) denotes the concatenation of complementary multi-indices.

For each ℓ, we define a list of “pivot rows” Iℓ ⊆ Iℓ and a list of “pivot columns” Jℓ ⊆ Jℓ. We
also define I0 = JL+1 = {()}, where () is an empty tuple. Note that Iℓ and Jℓ are lists of
lists of external σ indices. Through the pivot rows and pivot columns, we define zero-, one-,
and two-dimensional slices of the tensor F , where a k-dimensional slice has k free indices, as
follows.

15

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

• A pivot matrix Pℓ is a zero-dimensional slice of the input tensor F :

[Pℓ]i j = Fi⊕ j =
F

i j
I J

(33a)

for i ∈ Iℓ and j ∈ Jℓ+1, or in Matlab notation, Pℓ = F(Iℓ,Jℓ+1). The two pivot lists have
the same number of elements; Pℓ is a square matrix of dimension χℓ = |Iℓ| = |Jℓ+1| and
we will choose the pivots such that det Pℓ ̸= 0.

• A 3-leg T-tensor Tℓ is a one-dimensional slice of F :

[Tℓ]iσ j ≡ Fi⊕(σ)⊕ j =
F

σi j
JSI

(33b)

for i ∈ Iℓ−1, σ ∈ Sℓ and j ∈ Jℓ+1, or Tℓ ≡ F(Iℓ−1,Sℓ,Jℓ+1). For specified σ, the matrix Tσ
ℓ

is defined as [Tσ
ℓ
]i j ≡ [Tℓ]iσ j .

• A 4-leg Π-tensor Πℓ is a two-dimensional slice of F :

[Πℓ]iσσ′ j ≡ Fi⊕(σ,σ′)⊕ j =
σi j

F

′σ
SSI J

(33c)

for i ∈ Iℓ−1, σ ∈ Sℓ, σ′ ∈ Sℓ+1 and j ∈ Jℓ+2, or Πℓ ≡ F(Iℓ−1,Sℓ,Sℓ+1,Jℓ+2).

With these definitions, the TCI approximation eF of F is defined as

Fσ ≈ eFσ = Tσ1
1 P−1

1 · · · Tσℓ
ℓ

P−1
ℓ Tσℓ+1

ℓ+1 · · · P−1
L−1TσL

L , (34)

Lσ1σ

F

˜

≈ eFσ =
L

L

σ1σ �σ

1L−�T �
1−P

II J

3J

JJ II I
1i �i1−�i2j +1�j

J
+2�j Lj 1L−i

=
+1�σ

+1�T

0i +1Lj

J

with independent summations over all iℓ ∈ Iℓ and all jℓ+1 ∈ Jℓ+1, for ℓ= 1, . . . ,L−1. Here,
represents P−1

ℓ
, the inverse of a pivot matrix, and represents a T -tensor Tℓ. Such a tensor

cross interpolation is entirely defined by the T and P tensors, i.e. by slices of F . In other
words, if one (i) knows the pivot lists {Iℓ,Jℓ+1|ℓ = 1, . . . ,L− 1} and (ii) can compute Fσ for
any given σ, then one can construct eF . Equation (34) defines a genuine tensor train with rank
χ =maxχℓ. Its form matches Eq. (1) with the identification TℓP

−1
ℓ
= Mℓ.

Equation (34) defines the TCI form, which is fully specified by two ingredients: (i) the sets
of rows Iℓ and columns Jℓ, and (ii) the corresponding values (slices) Tℓ and Pℓ of the input
tensor Fσ. Any tensor train can be converted exactly to a TCI form (see Sec. 4.5.1).

4.2 Nesting conditions

TCI algorithm relies on an important property of the pivot lists Iℓ and Jℓ that we now discuss,
the nesting conditions. By definition, for any ℓ:

• Iℓ is nested with respect to Iℓ−1, denoted by Iℓ−1 < Iℓ, if Iℓ ⊆ Iℓ−1 × Sℓ, or equivalently, if
removing the last index of any element of Iℓ yields an element of Iℓ−1. Iℓ−1 < Iℓ implies
that the pivot matrix Pℓ is a slice of Tℓ.

• Jℓ is nested with respect to Jℓ+1, denoted by Jℓ > Jℓ+1, if Jℓ ⊆ Sℓ×Jℓ+1, or equivalently, if
removing the first index of any element of Jℓ yields an element of Jℓ+1. Jℓ > Jℓ+1 implies
that the pivot matrix Pℓ−1 is a slice of Tℓ.

16

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Table 1: Example for a fully nested configuration of the pivot lists Iℓ and Jℓ for a
TCI with 5 local indices σ1, . . . ,σ5 ∈ {0,1}. Pivot lists that belong to the same bond
are shown in the same row.

ℓ Iℓ Jℓ+1

1 I1 = ((1)) J2 = ((1, 0,0, 1))
2 I2 = ((1, 0), (1, 1)) J3 = ((0, 0,1), (1, 0,1))
3 I3 = ((1, 1,0), (1,0, 1)) J4 = ((0, 1), (1, 1))
4 I4 = ((1, 1,0, 0)) J5 = ((1))

We say that the pivots are:

• left-nested up to ℓ if
I0 < I1 < · · ·< Iℓ , (35)

• right-nested up to ℓ if
Jℓ > Jℓ+1 > · · ·> JL+1 , (36)

• fully left-nested if they are left-nested up to L−1, fully right-nested if they are right-nested
up to 2. When the pivots are both fully left- and right-nested they are said to be fully nested,
i.e. one has

I0 < I1 < · · ·< IL−1 , J2 > Jℓ+2 > · · ·> JL+1 . (37)

The importance of nesting conditions stems from the fact that they provides some interpo-
lation properties. We refer to Ref. [13] or Appendix A.3 for the associated proofs. In particular,
if the pivots are left-nested up to ℓ− 1 and right-nested up to ℓ+ 1 (we say nested w.r.t. Tℓ)
then the TCI form is exact on the one-dimensional slice Tℓ:

eFi⊕(σ)⊕ j = [Tℓ]iσ j = Fi⊕(σ)⊕ j , ∀i ∈ Iℓ−1 , σ ∈ Sℓ , j ∈ Jℓ+1 . (38)

It follows that if the pivots are fully nested, then the TCI form is exact on every Tℓ and Pℓ, i.e.
on all slices used to construct it. Hence, it is an interpolation.

An example for a fully nested configuration of the pivot lists Iℓ and Jℓ for a TCI with 5
local indices σ1, . . . ,σ5 ∈ {0, 1} is shown in Table 1. Full nesting could be broken for example
by adding (0,0) to I2, or by adding (1,1, 0) to J3.

4.3 2-site TCI algorithms

The goal of TCI algorithms is to obtain a TCI approximation of a given tensor F at a specified
tolerance ∥F−eF∥∞ < τ (over the maximum norm), by finding a minimal set of suitable pivots.
In this section, we present various 2-site TCI algorithms and discuss their variants and options.
They are all based on the fact that the TCI form (34) (with fully nested pivots) is exact on all
one-dimensional slices Tℓ but not on the two-dimensional slices Πℓ. All 2-site TCI algorithms
thus aim to iteratively improve the representation of the Πℓ slices.

4.3.1 Basic algorithm

We start by presenting a TCI algorithm in a version based on LU factorization. In Sec. 4.3.2
we will describe its connection to the algorithm based on CI factorizations presented in prior
work [12,13]. The algorithm proceeds as follows:

(1) Start with an index σ̂ for which Fσ̂ ̸= 0, and construct initial pivots from it:
Iℓ = {(σ̂1, . . . , σ̂ℓ)} and Jℓ+1 = {(σ̂ℓ+1, . . . , σ̂L)} for all ℓ.

17

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

(2) Sweeping back and forth over ℓ= 1, . . . ,L−1, perform the following update at each ℓ:

– Construct the Πℓ tensor (33c).

– View the tensor Πℓ as a matrix F(Iℓ−1 × Sℓ,Sℓ+1 ×Jℓ+2) and perform its prrLU decom-
position which approximates it as Πℓ ≈ eΠℓ with

[Πℓ]iℓ−1σℓσℓ+1 jℓ+2
≈ [T ′σℓ

ℓ
]iℓ−1 j′

ℓ+1
(P ′ℓ)

−1
j′
ℓ+1 i′

ℓ

[T ′σℓ+1
ℓ
]i′
ℓ
jℓ+2

, (39)

+1�σ�σ
1−�i +2�j

I

=
�Π

≈

J I

≈
+1�σ�σ

1−�i +2�j

I

�
′T �

1′−P +1�
′T

�
′i+1�

′j
,

where i′
ℓ
∈ I ′

ℓ
⊂ Iℓ−1 × Sℓ and j′

ℓ+1 ∈ J ′
ℓ+1 ⊂ Sℓ+1 ×Jℓ+2 are the new pivots.

– Replace the old pivot lists Iℓ, Jℓ+1 by the new ones I ′
ℓ
, J ′
ℓ+1. By construction, the nesting

conditions Iℓ−1 < I ′
ℓ
, J ′

ℓ+1 > Jℓ+2 are satisfied. The matrices Pℓ, Tℓ and Tℓ+1 are also
updated along with the pivots, according to their definitions (33a, 33b). Note that this
step may break the full nesting condition: one may have Iℓ < Iℓ+1 but not I ′

ℓ
< Iℓ+1;

similarly, one may have Jℓ > Jℓ+1 but not Jℓ > J ′
ℓ+1.

(3) Iterate step (2) until the specified tolerance is reached, or a specified number of times.

When pivots are left-nested up to ℓ − 1 and right-nested up to ℓ + 2 — a property that
our algorithm actually preserves — (we say that the tensor train is nested w.r.t. Πℓ), then the
following crucial relation holds (for a proof, see [13, App. C.2], or our App. A.3):

�

Πℓ − eΠℓ
�

iℓ−1σℓσℓ+1 jℓ+2
=
�

F − eF
�

iℓ−1σℓσℓ+1 jℓ+2
, (40)

for allσℓ,σℓ+1. Thus, the error made by approximating the local tensorΠℓ by its prrLU decom-
position eΠℓ is also the error, on this two-dimensional slice, of approximating Fσ by the TCI de-
composition eFσ. By construction, the TCI form (34) (with fully nested pivots) is exact on one-
dimensional slices, Iℓ−1×Sℓ×Jℓ+1, but not on the two-dimensional slices Iℓ−1×Sℓ×Sℓ+1×Jℓ+2.
Hence, the algorithm chooses the pivots in order to minimize the error on the latter.

The algorithm presented in this section deviates significantly from the one used by some of
us in Ref. [12,13]: there, new pivots could be added but they were never removed in order to
maintain the full nesting condition. However, a close examination of [13, App. C.2] shows that
partial nesting is sufficient to ensure Eq. (40). We use this fact to use an update strategy where
the pivots I ′

ℓ
, J ′
ℓ+1 are reset at each step (2) of the algorithm. The ability to discard “bad” pivots

(e.g. ones found in early iterations that later turn out to be suboptimal) significantly improves
the numerical stability of the present TCI algorithm compared to the original one [12]. This
point will be discussed further in Sec. 4.3.3. If desired, full nesting can be restored at the end
using 1-site TCI, discussed in Sec. 4.4.

4.3.2 CI vs prrLU

The TCI algorithm as described in this paper is also different from the standard TCI algorithm
[12,13] in that it uses prrLU instead of the CI decomposition for the Πℓ tensor. While CI and
prrLU are equivalent, as shown in Sec. 3.3, the prrLU yields a more stable implementation, as it
avoids inverting the pivot matrices P, which may become ill-conditioned. We emphasize again
that we have found prrLU to be more efficient and stable than the alternative QR approach
used in Appendix B of [13] to address the conditioning issue of the pivot matrices.

18

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

For convenience, we explicitly rewrite the correspondence between CI and LU factorization
shown in Eqs. (32) as appropriate for the update of eΠℓ:

eΠℓ = Tℓ(Pℓ)
−1Tℓ+1 = LDU =

�

Pℓ L11DU12
L21DU11 L21DU12

�

, (41a)

Pℓ = L11DU11 , (41b)

Tℓ =

�

L11DU11
L21DU11

�

, TℓP
−1
ℓ =

�

1

L21 L−1
11

�

, (41c)

Tℓ+1 =
�

L11DU11 L11DU12
�

, P−1
ℓ Tℓ+1 =
�

1 U−1
11 U12
�

. (41d)

Since U11 and L11 are triangular matrices, the two terms involving a matrix inversion can be
computed in a stable manner using forward/backward substitution.

4.3.3 Pivot update method: Reset vs accumulative

In order to update the pivots in the TCI algorithm, we can use two different methods, which
we call reset and accumulative.

• In reset mode, we recompute the full prrLU decomposition of Πℓ at each ℓ, hence recon-
structing new pivots Iℓ, Jℓ+1. This version was presented in Sec. 4.3.1.

• In accumulative mode, we update the pivot lists Iℓ, Jℓ+1 by only adding pivots. Typically,
pivots are added one at a time, thereby increasing χℓ to χℓ+1. Once a pivot has been added,
it is never removed. This strategy preserves full nesting, thus ensuring the interpolation
property of the TCI approximation. This is the method presented in Ref. [12, algorithm
#5].

The main advantage of reset mode is that it eliminates bad pivots which are almost linearly
dependent, thereby leading to poorly conditioned P matrices. These occur when the algorithm
first explores configurations where Fσ is small and only later discovers other configurations
with larger values of Fσ′ . In such cases, the late pivots correspond to a much larger absolute
value of F than the first, leading to ill-conditioned Pℓ. Therefore, in accumulative mode, it
is crucial to choose as an initial pivot a point where F is of the same order of magnitude
as its maximum. In reset mode, the bad pivots are automatically eliminated, which yields
a better TCI approximation and very stable convergence. On the other hand, accumulative
mode requires a (slightly) smaller number of values of F , as the exploration of configurations
for finding pivots is kept to a minimum.

The runtime of both approaches scales as O(χ3). Accumulative mode requires O(χ2) per
update and χ updates to reach a rank of χ. Reset mode requires O(χ3) for each update, but
typically converges within a small number of updates independently of χ.

We note that the pioneering work of Ref. [10] used a method similar to reset mode, recal-
culating the pivots at each step. MPS recompression was performed very differently, however,
using a combination of SVD and the maximum volume principle, which led to slower scaling.
Here, pivot optimization is done entirely within the LU decomposition.

4.3.4 Pivot search method: Full, rook or block rook

A crucial component of 2-site TCI algorithms is the search for pivots, as the largest elements
of the error tensor |Πℓ − eΠℓ|. As discussed in Sec. 3.3.2, three different search modes are
available: Full search is the simplest and most stable mode, but also most expensive, scaling
as O(d2). Rook search is a cheaper alternative, scaling as O(d) (since rows and columns are

19

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

explored alternatingly), and is almost as good in practice. Rook search is well adapted to
accumulative mode [12] and is advantageous when the dimension d is large.

Block rook search is especially useful when used with reset pivot update mode. Indeed, it
allows reusing previously found pivots and therefore reusing previously computed values of F .
This is particularly useful when Fσ is an expensive function to evaluate on σ. The algorithm
requires O(nRookχ

2d) function evaluations to factorize a Π tensor.

4.3.5 Proposing pivots from outside of TCI

In its normal mode, TCI constructs new pivots by making local updates of existing pivots. In
several situations, it is desirable to enrich the pivot search by proposing a list of values of the
indices σ which the TCI algorithm is required to try as pivots. It is a way to incorporate prior
knowledge about F into TCI. We call such values of σ global pivots. This section discusses our
strategy to perform this operation in a stable way.

Given a list of global pivots, we split each index σ as σ = iℓ ⊕ jℓ+1 for all ℓ = 1, . . .L− 1,
and iℓ and jℓ+1 are added to the corresponding pivot lists Iℓ and Jℓ+1. This operation pre-
serves nesting conditions. Next, we perform a prrLU decomposition of the pivot matrices Pℓ
to remove possible spurious pivots. Last, we perform a few sweeps using 2-sites TCI in reset
mode to stabilize the pivots lists. We provide a simple example of global pivot addition in
Appendix B.3.5.

Global pivot proposals can be useful in several situations. First, the TCI algorithm can
experience some ergodicity issues as discussed in Sec. 4.3.6, which can be solved by adding
some pivots explicitly. The construction of the Matrix Product Operators discussed in Section 7
belongs to this category. Second, the TCI decomposition of a tensor F2 close to another F1 for
which the TCI is already known, e.g. due to an adiabatic change of some parameter, can benefit
from initialization with the pivots of eF1. Third, global pivot proposal can be used to separate
the exploration of the configuration space (the way these global pivots are constructed) from
the algorithm used to update the tensor train. For instance, one could use a separate algorithm
to globally look for pivots where the TCI error is large using a separate global optimizer; then
propose these pivots to TCI; and iteratively repeat the process until convergence.

The above algorithm, which we call StrictlyNested, works well but suffers from one (albeit
relatively rare) problem: it occasionally discards perfectly valid proposed global pivots. This
may happen when χℓ depends on ℓ in such a manner that the MPS has a “constriction”, i.e.
a bond with a smaller dimension χℓ than all others. Upon sweeping through this bond, some
pivots will be deleted (which is fine), but that deletion will propagate upon continuing to
sweep (which is a weakness of the algorithm).

A simple fix is to construct an enlarged tensor Π̄ℓ that extends Πℓ with additional rows and
columns containing deleted pivots, thus retaining these for consideration as potential pivots.
Concretely, denoting pivots obtained in a previous sweep by Īℓ and J̄ℓ, we define

Π̄ℓ = F([Iℓ−1 × Sℓ]∪ Īℓ , [Sℓ+1 ×Jℓ+2]∪ J̄ℓ+1) , (42)

and use Π̄ℓ instead of Πℓ for the prrLU decomposition. We note that such enlargements can
break nesting conditions, i.e. this is an UnStrictlyNested mode. However, we have not observed
this to cause any problems in our numerical experiments.

4.3.6 Ergodicity

The construction of tensor trains using TCI is based on the exploration of configuration space.
In analogy with what can happen with Monte Carlo techniques, this exploration may encounter
ergodicity problems, remaining stuck in a subpart of the configuration space and not visiting
other relevant parts. Examples where this may occur include: very sparse tensors Fσ, where

20

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

TCI might miss some nonzero entries (see the Matrix Product Operator construction section
7 for an example); tensors with discrete symmetries, where the exploration may remain in
one symmetry sector (relevant for the partition function of the Ising model, see Sec. 5.3); or
multivariate functions with very narrow peaks.

All ergodicity problems that we have encountered so far could be fixed by proposing global
pivots, as described in Sec. 4.3.5. For sparse tensors, one feeds the algorithm with a list of
nonzero entries. For discrete symmetries, one initializes the algorithm with one configuration
per symmetry sector. One could also consider more elaborate strategies that use a dedicated
algorithm to explore new configurations, in analogy to the construction of complex moves
when building a Monte Carlo algorithm. In fact, existing Monte Carlo algorithms could be
used directly as way to propose global pivots. Such an algorithm would separate entirely the
pivot exploration strategy from the way the tensor train is updated.

Let us illustrate the above ideas with a toy example. Consider a fermionic operator c (c†)
that destroys (creates) an electron on a unique site ({c, c}= {c†, c†}= 0; {c, c†}= 1). We want
to factorize

Fσ = 〈aσ1
· · · aσL

〉 , (43)

into a tensor train, where a0 = c and a1 = c† and the average is taken with respect to the state
1p
2
|0〉+ 1p

2
c†|0〉. For even L, this tensor has only two non-zero elements, namely Fσ = 1/2

for σ1 = (1, 0,1,0, . . . , 1, 0) and σ2 = (0,1, 0,1, . . . , 0, 1). This is due to the fermionic algebra,
which implies a0a0 = cc = 0 and a1a1 = c†c† = 0. Using TCI in a standard way with one
of the two elements as the starting pivot, TCI fails to find the second one. The reason is that
the TCI updates are local, thus TCI quickly (wrongly) concludes that it correctly describes all
configurations, whereas it correctly describes only the configurations that it has seen. A simple
cure is to propose bothσ1 andσ2 as global pivots. This works and is the easiest solution when
the important configurations are known. An alternative cure is to enlarge the configuration
space to obtain a larger but less sparse tensor. This idea is analogous to the concept of worms
in Monte Carlo, where the configuration space is enlarged to remove constrains and allow
for non-local updates. Here, we enlarge the local dimension from d = 2 to d = 3 by adding
identity as a third operator, a2 = 1. The new tensor is much less sparse and is correctly
reconstructed using TCI with (2, 2, . . . , 2) as initial pivot. Restricting the resulting tensor train
to σi ∈ {0,1} yields the correct factorization.

4.3.7 Error estimation: Bare vs. environment

In the prrLU decomposition of the Πℓ tensor described in Sec. 4.3.1 above, each new pivot is
chosen in order to minimize the bare error |Πℓ − eΠℓ|iℓ−1σℓσℓ+1 jℓ+2

. An alternative choice is to
define an environment error whose minimization aims to find the best approximation of the
“integrated” tensor

∑

σ Fσ, i.e. summed over all external indices (see Sec. III.B.4 of Ref. [13]).
The environment error has the form |Liℓ−1

R jℓ+2
||Πℓ − eΠℓ|iℓ−1σℓσℓ+1 jℓ+2

, with left and right envi-
ronment tensors defined as

Liℓ−1
=
∑

σ1, ...,σℓ−1

[Tσ1
1 P−1

1 · · · T
σℓ−1
ℓ−1 P−1

ℓ−1]1iℓ−1
, R jℓ+2

=
∑

σℓ+2,...,σL

[P−1
ℓ+1Tσℓ+2

ℓ+2 · · · P
−1
L−1TσL

L] jℓ+21 . (44)

Minimization of the environment error can be very efficient for the computation of integrals
involving integrands with long tails. An example of improved accuracy using this environment
mode is given in Fig. 7 of Ref. [13].

4.4 The 1-site and 0-site TCI algorithms

In this section, we propose two more algorithms complementing 2-site TCI: the 1-site and 0-
site TCI algorithms. The names reflect the number σ-indices of the objects decomposed with

21

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

LU: Π, T or P tensors with 2, 1 or 0 σ-indices, respectively. The 2-site algorithms described
above are more versatile, and only they can increase the bond dimension χℓ, so they are almost
always needed during the initial learning stage (unless global pivots are used to start with a
large enough rank). However, the 1-site and 0-site TCI algorithms are faster than 2-site TCI,
and the former can also be used to achieve full nesting.

4.4.1 The 1-site TCI algorithm

The 1-site TCI algorithm sweeps through the tensor train and compresses its T tensors using
prrLU. In a forward sweep we view Tℓ as a matrix with indices (Iℓ−1 × Sℓ,Jℓ+1), regrouping
the σℓ index with the left index iℓ−1. Using prrLU, we obtain new pivots I ′

ℓ
, J ′

ℓ+1 to replace
Iℓ, Jℓ+1, satisfying I ′

ℓ
> Iℓ−1 and J ′

ℓ+1 ⊆ Jℓ+1, and update Tℓ, Pℓ and Tℓ+1 accordingly. After
the forward sweep, the pivots are fully left-nested, i.e. I0 < · · ·< IL−1.

In a backward sweep, Tℓ is viewed as a matrix with indices (Iℓ−1,Sℓ × Jℓ+1), so prrLU
yields new pivots I ′

ℓ−1 ⊆ Iℓ−1, J ′
ℓ
> Jℓ+1, and corresponding updates of Tℓ, Pℓ−1 and Tℓ−1.

After the backward sweep, the pivots are fully right-nested, i.e. J2 > · · · > JL+1, and all
bond dimensions meet the tolerance (i.e. are suitable for achieving the specified tolerance).
However, the backward sweep preserves left-nesting only if taking the subset I ′

ℓ−1 ⊆ Iℓ−1 does
not remove any pivots, i.e. if actually I ′

ℓ−1 = Iℓ−1. To achieve full nesting, left nesting can be
restored by performing one more forward sweep at the same tolerance. This preserves right-
nesting, because all bond dimensions already meet the tolerance, thus the last forward sweep
removes no pivots from Jℓ+1 for ℓ= 1, . . . ,L−1. For a related discussion in a different context,
see Sec. 4.5.

1-site TCI can be used to (i) compress a TCI to a smaller rank; (ii) restore full nesting; (iii)
improve the pivots at lower computational cost than its 2-site counterpart.

4.4.2 The 0-site TCI algorithm

The 0-site TCI algorithm sweeps through the pivot matrices Pℓ, prrLU decomposing each to
yield updated pivot lists I ′

ℓ
, J ′

ℓ+1 that replace Iℓ, Jℓ+1. 0-site TCI breaks nesting conditions. Its
main usage is to improving the conditioning of Pℓ, by removing “spurious” pivots. For example,
if a very large list of global pivots has been proposed, 0-site TCI can be used as a first filter
to keep only the most relevant ones. It does not require new calls to F tensor elements and
hence can be used even when F is no longer available.

4.5 CI- and LU-canonicalization

The MPS form Fσ = Mσ1
1 Mσ2

2 · · ·M
σL
L of a tensor is not unique. Indeed one can always re-

place Mℓ ← MℓNℓ and Mℓ+1 ← N−1
ℓ

Mℓ+1 for any ℓ and invertible matrix Nℓ of appropriate
dimension (χℓ × χℓ). This is known as the gauge freedom. One can exploit this freedom
to write the MPS into canonical forms. A standard way is to express it as a product of left-
and right-unitary matrices around an orthogonality center, using the SVD decomposition [2]
(the SVD-canonical form). In this section, we show how an arbitrary MPS can be put in TCI
form, described uniquely in terms of pivot lists and corresponding slices of F . We call the
corresponding algorithm CI-canonicalization. LU-canonicalization is a variant thereof.

The different canonical forms offer different advantages for subsequent operations on the
tensor train. The SVD-canonical form is widely used in the tensor network community to
improve performance of certain contractions by exploiting the unitarity properties of the MPS
matrices. It is also very useful for algorithms such as DMRG as it provides a degree of non-
locality to an otherwise local optimization. The CI-canonical form, on the other hand, is made
up entirely of slices of the original MPS, i.e. a selection of values of the function through the

22

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

index sets Iℓ and Jℓ. These set of points may have a value by themselves, e.g. as the starting
point of a multi-variate optimization or to perform transformations (rotations, translations) in
the case of quantics. Bringing a tensor into CI-canonical form is also a necessary step to enable
the application of other TCI algorithms, such as TCI optimization (Sec. 4.3) or global pivot
insertion (Sec. 4.3.5), which rely on the property that all core tensors of the MPS are defined
through Iℓ and Jℓ. LU canonicalization is a minor modification of CI canonicalization, and
is mentioned here for completeness. The authors are not currently aware of any application
unique to the LU-canonical form.

A simple way to put the MPS in a TCI form would be to apply the 2-site TCI to Fσ, con-
sidered as a function of σ. However, we present here a specific and direct CI-canonicalization
algorithm to achieve this, based on the MPS structure. This algorithm has several advan-
tages over the 2-site TCI: first, it is faster, taking only O(χ3) operations (like the usual SVD-
canonicalization) instead of O(χ4);1 second, it bypasses all the potential issues of the 2-site TCI
algorithm discussed above, like ergodicity. Let us emphasize that while the CI-canonicalization
algorithm can seem similar to the 1-site TCI algorithm, the two algorithms are actually differ-
ent, as the former directly exploits the MPS structure of Fσ.

4.5.1 CI-canonicalization.

Let us consider a MPS of the form

Fσ = [M
σ1
1]1a1

[Mσ2
2]a1a2

· · · [MσL
L]aL−11 =

1M 2M LM
. . .

1σ Lσ
1a

2σ
2a 1L−a1 1

. (45)

Here, the indices aℓ are ordinary MPS indices, not multi-indices iℓ or jℓ from pivot lists. CI-
canonicalization is a sequence of exact transformations that convert the MPS to the TCI form
of Eq. (34), built from Tℓ and Pℓ tensors that are slices of F carrying multi-indices iℓ, jℓ and
that constitute full-rank matrices. We achieve this through three half-sweeps, involving exact
(i.e. at machine precision) CI decompositions. A first forward sweep introduces left-nested
lists bIℓ of row pivot multi-indices ı̂ℓ. Then, a backward sweep introduces right-nested lists Jℓ
of column pivot multi-indices jℓ and matching subsets Iℓ ⊂ bIℓ of row pivots iℓ (no longer left-
nested). Finally, a second forward sweep restores left-nesting of row pivots. Important here is
tracking the conversion from regular indices (aℓ) to row (iℓ, ı̂ℓ) and column (jℓ) multi-indices.
We thus display these indices explicitly below.

First forward sweep. We start with an exact CI decomposition (8) of M1:

[Mσ1
1]1a1

= [C1]σ1 â1
[bP−1

1]â1 ı̂1[R1]ı̂1a1
, =

1R1C1M

1 1a 1a
1σ 1σ

1 1â 1ı̂

1
1−P̂

. (46)

Here, ı̂1 ∈ bI1 ⊆ {σ1} are new multi-indices labeling pivot rows. The hat on bP1 emphasizes that
it is not a slice of F , since the â1 are not multi-indices. Defining matrices Cσ1

1 with elements
[Cσ1

1]1â1
≡ [C1]σ1 â1

we obtain

Fσ =
�

Cσ1
1
bP−1

1 R1Mσ2
2 Mσ3

3 · · · MσL
L
�

11 =
1C

1σ
1

2M LM

2σ Lσ
2a

3M
. . .

3σ
3a 1L−a 11a

1R

1â 1ı̂

1
1−P̂

. (47)

1The complexity of using TCI for this purpose splits into O(χ2) evaluations of the MPS which require O(χ2)
operations each. There is a possibility to cache the partial contractions of the MPS to bring the global cost down
to O(χ3) but the resulting algorithm is still inferior to the CI-canonicalization algorithm.

23

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

For ℓ ≥ 2 we iteratively define eMσℓ
ℓ
= Rℓ−1Mσℓ

ℓ
and group σℓ with ı̂ℓ−1 to reshape eMℓ into a

matrix which we factorize exactly with CI:

[Rℓ−1Mσℓ
ℓ
]ı̂ℓ−1aℓ = [eMℓ](̂ıℓ−1,σℓ)aℓ = [C

σℓ
ℓ
]ı̂ℓ−1 âℓ[bP

−1
ℓ]âℓ ı̂ℓ[Rℓ]ı̂ℓaℓ , (48)

�σ �σ �σ
�a �a

�C �R�M

�a
==

�M̃1−�R

1−�a �â1−�ı̂ 1−�ı̂ 1−�ı̂ �ı̂

�
1−P̂

.

The tensor Cℓ can be viewed as a matrix Cσℓ
ℓ

with elements [Cσℓ
ℓ
]ı̂ℓ−1 âℓ = [Cℓ](̂ıℓ−1,σℓ)âℓ . The

new row pivots are left-nested, ı̂ℓ ∈ bIℓ > bIℓ−1.
In practice, we do not calculate Cℓ and bPℓ separately. Instead, the prrLU decomposition

directly yields the combination Aσℓ
ℓ
= Cσℓ

ℓ
bP−1
ℓ

:

[Aσℓ
ℓ
]ı̂ℓ−1 ı̂ℓ = [C

σℓ
ℓ
]ı̂ℓ−1 âℓ[bP

−1
ℓ]âℓ ı̂ℓ , �A

�σ

�C

�σ

=
1−�ı̂ 1−�ı̂�ı̂ �ı̂�â

�
1−P̂

. (49)

By construction, see Eq. (10a), this product collapses to [Aσℓ
ℓ
]ı̂ℓ−1 ı̂ℓ = δı̂ℓ−1⊕(σℓ),̂ıℓ whenever

ı̂ℓ−1⊕(σℓ) ∈ bIℓ (see also App. A.3).
After a full forward sweep to the very right we arrive at a tensor train of the form

Fσ =
�

Aσ1
1 · · · A

σL−1
L−1
eMσL
L
�

11 =
LM

Lσ
1

˜
1A

. . .

1σ
1

1L−A

1L−σ

L−

1L−ı̂2L−ı̂1ı̂
. (50)

Here, the row pivots are by construction all left-nested as bI0 < · · · < bIL−1. This ensures the
following important property: for any ℓ ≤ L− 1, the product A1 · · ·Aℓ collapses telescopically
(starting from A1A2) if evaluated on any pivot ı̄ℓ = (σ̄1, . . . , σ̄ℓ) ∈ bIℓ (cf. Eq. (A.12)):

. . .
1A

1

2A

1σ̄ 2σ̄ �σ̄

�A

1ı̂ 2ı̂ 1−�ı̂ �ı̂
= [Aσ̄1

1 Aσ̄2
2 · · ·A

σ̄ℓ
ℓ
]1ı̂ℓ = δı̄ℓ ı̂ℓ if ı̂ℓ ∈ bIℓ . (51)

If Eq. (50) is evaluated on pivot configurations of eML, having ı̄L−1 ∈ bIL−1, we find via Eq. (51)
that Fı̄L−1⊕(σL) = [eM

σL
L]ı̄L−1,1. Thus, eML is a slice of F , namely eML = F(bIL−1,SL). All Cℓ and

bPℓ have full rank when viewed as matrices [Cℓ](̂ıℓ−1,σℓ)âℓ and bP̂ıℓ âℓ . However, Cℓ and eML may
still be rank-deficient when viewed as matrices [Cℓ]ı̂ℓ−1(σℓ,âℓ) or [eML]ı̂L−1σL

.

Backward sweep. Starting from Eq. (50), we sweep backward to generate right-nested col-
umn multi-indices jℓ. The CI factorizations are analogous to those of the forward sweep, with
two differences: they group σℓ with column (not row) indices prior to factorization; the re-
sulting Pℓ and Rℓ matrices are slices of F , thus revealing the bond dimensions of F .

We initialize the backward sweep by factorizing eMσL
L exactly as CL−1P−1

L−1RσL
L :

[eMσL
L]ı̂L−11 = [CL−1]ı̂L−1 jL[P

−1
L−1] jL iL−1

[RL]iL−1σL
, =

R

1

L

Lσ Lσ
1 Lj

1L−C 1L−
1−PLM̃

1L−ı̂ 1L−ı̂ 1L−i
. (52)

Here, jL ∈ JL ⊆ {σL} are multi-indices labeling pivot columns; iL−1 ∈ IL−1 ⊆ bIL−1 are row
pivots. Note that RL and PL−1, being subslices of eML, are slices of F , namely RL = F(IL−1,SL)
and PL = F(IL−1,JL). We thus make the identification TL = RL.

For ℓ≤ L− 1 we iteratively define eNσℓ
ℓ
= Aσℓ

ℓ
Cℓ and factorize it as Cℓ−1P−1

ℓ−1Rσℓ
ℓ

:

[Aσℓ
ℓ
]ı̂ℓ−1 ı̂ℓ[Cℓ]ı̂ℓ jℓ+1

= [eNℓ]ı̂ℓ−1(σℓ, jℓ+1) = [Cℓ−1]ı̂ℓ−1 jℓ[P
−1
ℓ−1] jℓ iℓ−1

[Rσℓ
ℓ
]iℓ−1 jℓ+1

, (53)

�σ �σ �σ

�C �R
==

+1�j+1�j +1�j�j

1−�C 1−�
1−P�A �Ñ

1−�i1−�ı̂ 1−�ı̂1−�ı̂ �ı̂
.

24

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Here, the new column multi-indices are right-nested, jℓ ∈ Jℓ > Jℓ+1, while the row multi-
indices are a subset of the previous ones, iL−1 ∈ IL−1 ⊆ bIL−1 (thus possibly breaking left-
nesting, Iℓ−1 ̸< Iℓ). We show below that Rℓ is a slice of F , thus we rename it Tℓ = Rℓ, and that
Pℓ−1, too, is a slice of F . We also define Bσℓ

ℓ
= P−1

ℓ−1Tσℓ
ℓ

,

[Bσℓ
ℓ
] jℓ jℓ+1

= [P−1
ℓ−1] jℓ iℓ−1

[Tσℓ
ℓ
]iℓ−1 jℓ+1

,
�σ

+1�j�j

�B

�σ
=

+1�j�j

1−�
1−P �T

1−�i
. (54)

Via Eq. (10b) it collapses to [Bσℓ
ℓ
] jℓ, jℓ+1

= δ jℓ,(σℓ)⊕ jℓ+1
if (σℓ)⊕ jℓ+1 ∈ Jℓ. Importantly, the inner

summation for Bℓ now involves multi-indices iℓ−1 (for Aℓ it still involved âℓ indices).
Sweeping backward up to site ℓ, and then all the way to the very left, we obtain

Fσ =
�

Aσ1
1 · · · A

σℓ−1
ℓ−1
eNσℓ
ℓ

Bσℓ+1
ℓ+1 · · · B

σL
L
�

11 =
.

1
1σ

1

LB

Lσ
Lj

�σ
+2�j+1�j

1A 1−�A +1�B

+1�σ

�Ñ

1−�σ
1−�ı̂2−�ı̂1ı̂

(55)

= [eNσ1
1 Bσ2

2 · · · B
σL
L]11 =

Lσ
Lj 1

. . .1σ 2σ
2j1

L−

. . .
2B LB1 1Ñ

. (56)

In Eq. (55), the column pivots are by construction all right-nested as Jℓ+1 > · · · > JL+1, and
in Eq. (56) they are fully right-nested, J2 > · · ·> JL+1. Importantly, this ensures that for any
ℓ≥ 2 the product Bℓ · · ·BL collapses telescopically (starting from BL−1BL) if it is evaluated on
any pivot ȷ̄ℓ = (σ̄ℓ, . . . , σ̄L) ∈ Jℓ (cf. Eq. (A.12b)):

...
1

Lσ̄

LB

Lj

1L−B

1L−j
1L−σ̄

�B

�j +1�j
�σ̄

= [Bσ̄ℓ
ℓ
· · ·Bσ̄L−1

L−1 Bσ̄L
L] jℓ1 = δ jℓ ȷ̄ℓ , ∀ ȷ̄ℓ ∈ Jℓ . (57)

Consider Eq. (55) with ℓ > 1. If evaluated on pivot configurations of eNℓ, having ı̄ℓ−1 ∈ bIℓ−1
and ȷ̄ℓ+1 ∈ Jℓ+1, it collapses telescopically via Eqs. (50) and (57) to Fı̄ℓ−1⊕σℓ⊕ ȷ̄ℓ+1

= [eNσℓ
ℓ
]ı̄ℓ−1 ȷ̄ℓ+1

.
Therefore, eNℓ is a slice of F , namely eNℓ = F(bIℓ−1,Sℓ,Jℓ+1). It follows that the same is
true for its subslices, Tℓ = Rℓ = F(Iℓ−1,Sℓ,Jℓ+1) and Pℓ−1(Iℓ−1,Jℓ), as announced above.
Therefore, the CI factorization of eNℓ reveals the bond dimension of F for bond ℓ−1, namely
χℓ−1 = |Iℓ−1|= |Jℓ|. The latter is an intrinsic property of F and will remain unchanged under
arbitrary gauge transformations (e.g. exact SVDs or CIs) on its bonds. A telescope argument
shows that eN1 in (56) is a slice of F , too, thus we identify T1 = eN1 = F(S1,J2).

Using Bσℓ
ℓ
= P−1

ℓ−1Tσℓ
ℓ

in Eq. (56), we obtain a tensor train in the TCI form of Eq. (34),
namely Fσ = [T

σ1
1 P−1

1 Tσ2
2 · · · P−1

L−1TσL
L]11. Here, all ingredients are slices of F , labeled by

multi-indices, and each Tℓ is full rank for both ways of viewing it as a matrix, [T](iℓ−1,σℓ) jℓ+1
or

[T]iℓ−1(σℓ, jℓ+1). The column pivots are fully right-nested. However, the row pivots are not fully
left-nested, since the backward sweep dropped some row pivots.

Second forward sweep. To obtain a tensor train in fully nested TCI form, we perform a
second exact forward sweep, using the 1-site TCI algorithm of Sec. 4.4.1. This generates fully
left-nested row pivots. Moreover, since all bond dimensions have already been revealed during
the backward sweep, no column pivots are lost during the second forward sweep, thus the
column pivots remain fully right-nested. More explicitly: during the second forward sweep,
the rank of [Tℓ](iℓ−1,σℓ)iℓ is equal to the number of its columns, χℓ = |Ii|, hence this matrix
has full rank. Therefore, its exact CI decomposition retains all columns, loosing none. The
resulting tensor train is fully nested, as desired.

25

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Table 2: Computational cost of the main TCI algorithms in xfac / tci.jl.

action variant calls to Fσ algebra cost

iterate

rook piv. 2-site O(χ2dnrookL) O(χ3dnrookL)
full piv. 2-site O(χ2d2L) O(χ3d2L)
full piv. 1-site O(χ2dL) O(χ3dL)
full piv. 0-site 0 O(χ3L)

achieve full nesting O(χ2dL) O(χ3dL)
add np global pivots O

�

(2χ + np)npL
�

O
�

(χ + np)3L
�

compress tensor train
SVD

0 O(χ3dL)LU
CI

CI-canonicalization with compression. CI-canonicalization can optionally be combined
with compression at the cost of an extra half-sweep. Then, the sequence becomes: (i) An
exact forward sweep builds row indices {̂ıℓ}. (ii) A backward sweep with compression builds
column indices { jℓ} according to a specified tolerance τ and/or rank χ, while possibly reduc-
ing row indices from {̂ıℓ} to {iℓ}. (iii) A forward sweep with compression finalizes row indices
according to the specifications while possibly further reducing column indices; this yields a
proper TCI form with the specified τ and/or χ. (iv) A final optional backward sweep without
compression restores full nesting.

4.5.2 LU-canonicalization

LU-canonicalization proceeds in a similar manner, but instead of the CI decomposition C P−1R
it iteratively uses the corresponding LU decomposition LDU , where L is lower-triangular, U
upper-triangular and D diagonal. Forward sweeps generate LLL · · · products while absorbing
DU factors rightwards; backward sweeps generate · · ·UUU products while absorbing LD fac-
tors leftwards. In this manner, one can express F in the form L1 · · · Lℓ−1 eNℓUℓ+1 · · ·UL, for any
ℓ= 1, . . . ,L, if desired.

4.6 High-level algorithms

We have now enlarged our toolbox with several flavors of TCI algorithms and canonical forms
with various options and variants. These algorithms can be combined in numerous ways to
provide more abstract, high-level algorithms for different tasks. The best combination will
depend on the intended application, and we provide some rough practical guidelines below.
The corresponding computational costs are listed in Table 2.

• 2-site TCI in accumulative plus rook pivoting mode is the fastest technique. It requires the
least pivot exploration and very often provides very good results on its own. The accuracy
can be improved, if desired, by following this with a few (cheap) 1-site TCI sweeps to reset
the pivots.

• 2-site TCI in reset plus rook pivoting mode is marginally more costly than the above but
more stable. It is a good default. For small d, one should use the full search, which is even
more stable and involves almost no additional cost if d ≤ 2nrook.

• If good heuristics for proposing pivots are available or ergodicity issues arise, one should
consider switching to global pivot proposal followed by 2-site TCI.

• To obtain the best final accuracy at fixed χ, one can build a TCI with a higher rank χ ′ > χ,
then compress it using either SVD or CI recompression.

26

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

• For calculations of integrals or sums, we recommend the environment mode. In some
calculations, we have observed it to increase the accuracy by two digits for the same com-
putational cost.

4.7 Operations on tensor trains

The various TCI algorithms can be combined with other MPS algorithms [2,9] in various ways.
Let us mention a few examples.

Function composition. Given a TCI eFσ approximating a function f , its composition with
another function g(f (x)), can be performed by constructing another TCI, eGσ ≈ g(eFσ). The
repeated evaluations of eFσ required for this can be accelerated by caching partial contractions
of the tensor train. This gives a runtime complexity of O(χ

eFχ
3
eG
dL), where χ

eF and χ
eG are

the ranks of eF and eG. Since the tensors Tℓ are slices of eF , the new TCI eG can be initialized
by applying g to each element of Tℓ. For simple, monotonically increasing functions g, the
subsequent optimization typically converges very quickly.

Element-wise tensor addition. Given two tensor trains, eF = M1M2 · · ·ML and
eF ′ = M ′1M ′2 · · ·M

′
L, their element-wise sum eF ′′σ = eFσ + eF

′
σ can be computed by creating block

matrices,

M ′′σℓ
ℓ
=

�

Mσℓ
ℓ

0
0 M ′σℓ

ℓ

�

, (58)

and recompressing the resulting tensor train eF ′′σ = Tr(M ′′σ1
1 M ′′σ2

2 · · ·M ′′σL
L) using the CI-

canonicalization algorithm. The total runtime complexity is dominated by that of the recom-
pression, namely O

�

(χ + χ ′)3dL
�

, where χ and χ ′ are the ranks of eF and eF ′. An advantage
over the conventional SVD-based recompression is that the resulting MPS is truncated in terms
of the maximum norm rather than the Frobenius norm, which can be more accurate for certain
applications (see Sec. 7 for an example).

Matrix-vector contractions. Consider the contraction Gσ′σFσ in a dL-dimensional space.
If G and F are compressible tensors, TCI can be used to approximate them by an MPO and
MPS, respectively, where the former is of the form

Gσ′σ ≈ eGσ′σ = [W1]
σ′1σ1

1i1
[W2]

σ′2σ2

i1 i2
· · · [WL]

σ′LσL

iL−11 =
1σ 2σ Lσ...

...
1
′σ 2

′σ L
′σ

1i 2i 1L−i . (59)

Their contraction yields another MPS:

Gσ′σFσ ≈ eGσ′σ eFσ = 1σ 2σ Lσ =

...
1
′σ 2

′σ L
′σ

1
′σ 2

′σ L
′σ...

. (60)

The MPO-MPS contraction can be computed exactly by performing the sum
∑

σ, yielding an
MPS with bond dimensions χℓ,eGχℓ,eF . The standard, SVD-based MPS toolbox offers two ways to
obtain a compressed version of this result: (i) Fitting the exact result to an MPS with reduced
bond dimensions; or (ii) zip-up compression, where the MPO-MPS contraction is performed
one site at a time, followed by a local compression before proceeding to the next site [51–53].
TCI in principle offers further options, e.g. zip-up compression as in (ii), but performing all
compressions using CI instead of SVD. The computational times of all these options areO(χ4L)
for χ
eG = χeF = χeGeF = χ. The potential advantages of TCI- or CI-based contractions are two-

fold: the resulting MPS is truncated in terms of the maximum norm; and we can use the rook
search, which can be efficient for large local dimensions d. To what extent TCI-based MPO-
MPS contraction schemes have a chance of outperforming SVD-based ones will depend on
context and is a question to be explored in future work.

27

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

4.8 Relation to machine learning

In this section we briefly compare and contrast TCI with other learning approaches such as
deep neural network approaches.

TCI unfolding algorithms construct MPS representations eF for F by systematically learning
its structure. Learning the tensor F in the traditional machine learning sense would amount to
the following sequence: (1) draw a training set of configurations/values {σ, Fσ}; (2) design a
model eFσ (typically a deep neural network); (3) fit the model to the training set by minimizing
the error ∥F−eF∥, measured w.r.t. to some norm (typically using a variant of stochastic gradient
descent); and (4) use the model to evaluate eFσ for new configurations. TCI implements this
program with a few very important differences:

(1) TCI does not work with a given data set; instead, it actively requests the configurations
that are likely to bring the most new information on the tensor (active learning).

(2) The model is not a neural network but a tensor train, i.e. a tensor network (a highly
structured model). If F has a low-rank structure it can be accurately approximated by
a low-rank tensor train eF , with an exponentially smaller memory footprint. For TCI to
learn eF , the number of samples of Fσ requested by TCI will be≪ dL.

(3) The actual TCI algorithm used to minimize the error ∥F − eF∥ is conceptually very different
from gradient descent. It guarantees that the error is smaller than a specified tolerance τ
for all known samples.

(4) Once eF has been found, its elements eFσ can be computed for all configurations σ. This
by itself may not seem like progress, since we had assumed that one could call any Fσ to
begin with. Nevertheless, access to any eFσ may be useful in cases where accessing Fσ is
computationally expensive (e.g. the result of a complex simulation), or possible only in a
limited time window (e.g. while collecting experimental data). Much more importantly,
the tensor train structure of eF permits subsequent operations (such as computing

∑

σ Fσ
over all configurations) to be performed exponentially faster.

5 Application: Computing integrals and sums

We now turn to practical illustrations of TCI in action. The following three sections give exam-
ples of various TCI applications, together with code listings illustrating how they can be coded
using xfac or TCI.jl libraries.

The present section deals with the most obvious application of TCI: computing large in-
tegrals and sums. The basic idea has already been briefly introduced in Sec. 2.2. Here, we
provide more details, a further example and the code listing used to compute it.

For historical reasons the xfac library implements two sets of algorithms corresponding
to two classes TensorCI1 and TensorCI2. The former is based on CI in accumulative mode and
will eventually be deprecated while the latter is based on prrLU and supports many different
modes. The Julia package TCI.jl follows closely the implementation of TensorCI2.

5.1 Quadratures for multivariate integrals

Consider a multi-dimensional integral,
∫

D dNx f (x), with x = (x1, . . . , xN), over a domain
D = D1× · · ·×DN . (We here denote the number of variables by N (not L), for notational
consistency with Sec. 6 and Refs. [13, 15].) For each variable xℓ ∈ Dℓ we choose a grid of
discretization points {xℓ(σℓ)}, enumerated by an index σℓ = 1, . . . , dℓ, and an associated grid
of quadrature weights {wℓ(σℓ)}, such that its 1D integral is represented by the quadrature

28

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

rule
∫

Dℓ
d xℓ f (xℓ) ≈
∑dℓ
σℓ=1 wℓ(σℓ) f
�

xℓ(σℓ)
�

. A typical choice would be the Gauss–Kronrod
or Gauss–Legendre quadrature. Then, we use the natural tensor representation F (Eq. (2)) of
f and its TCI unfolding eF to obtain a factorized representation of the function,

f
�

x(σ)
�

= Fσ ≃ eFσ =
N
∏

ℓ=1

Mσℓ
ℓ

. (61)

Since eF does not incorporate quadrature weights, this is called an unweighted unfolding. The
N -fold integral over f can thus be computed as [8,12,13]

∫

D
dNx f (x)≈
∑

σ

�

N
∏

ℓ=1

wℓ(σℓ)
�

f
�

x(σ)
�

≈
N
∏

ℓ=1

�

dℓ
∑

σℓ=1

wℓ(σℓ)M
σℓ
ℓ

�

. (62)

The first approximation ≈ refers to the error of the quadrature rule (controlled by the num-
ber of points dℓ in the discretization of each variable). The second ≈ is the factorization error
(controlled by the rank χ) of the unfolding (61). Thus, the computation of one N -dimensional
integral has been replaced by Nχ2 exponentially easier problems, namely 1-dimensional in-
tegrals that each amount to performing a sum

∑

σℓ
.

An alternative to unweighted unfolding is weighted unfolding, which unfolds the weighted
tensor
�

∏N
ℓ=1 wℓ(σℓ)
�

f
�

x(σ)
�

= Fσ ≃ eFσ =
∏N
ℓ=1 Mσℓ

ℓ
. Then, the integral is given by

∫

D
dNx f (x)≈
∑

σ

�

N
∏

ℓ=1

wℓ(σℓ)
�

f
�

x(σ)
�

≈
N
∏

ℓ=1

�

dℓ
∑

σℓ=1

Mσℓ
ℓ

�

. (63)

The weighted tensor has the same rank as the unweighted one since the weights form a rank-1
MPS. The weighted unfolding can sometimes be more efficient than unweighted unfolding—
achieving higher accuracy for a givenχ—since the error estimation during the TCI construction
includes information about the weights. The weighted unfolding is typically combined with the
use of the environment error that directly targets the best error for the calculation of integrals.

5.2 Example code for integrating multivariate functions

Next, we illustrate how TCI computations of multivariate integrals can be performed using the
xfac toolbox. For definiteness, we consider a toy example from Ref. [54] for which the result
is known analytically: the computation of the following integral over a hypercube:

I (N) =

∫

[0,1]N
d x1 · · · d xN f (x) , f (x) =

2N

1+ 2
∑N
ℓ=1 xℓ

. (64)

For N = 5, the analytical solution of above integral is

I (5) = [−65205 log(3)− 6250 log(5) + 24010 log(7) + 14641 log(11)]/24 . (65)

1 import xfacpy
2 from math import log
3

4 N = 5 # Number of dimensions
5

6

7 def f(x): # Integrand function
8 f.neval += 1
9 return 2**N / (1 + 2 * sum(x))

29

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

10

11

12 f.neval = 0
13

14 # Exact integral value in 5 dimensions
15 i5 = (- 65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
16

17 # Gauss-Kronrod abscissas (xell) and weights (well)
18 xell, well = xfacpy.GK15(0, 1)
19

20 # TCI1 Tensor factorization, no environment
21 tci = xfacpy.CTensorCI1(f, [xell] * N)
22

23 # Estimate integral and error
24 for hsweep in range(14):
25 tci.iterate()
26 # calculate the integal over the hypercube
27 itci = tci.get_TensorTrain().sum([well] * N)
28 print("hsweep= {}, neval= {}, I_tci= {:e}, |I_tci - I_exact|= {:e}, in-sample err= {:e}"
29 .format(hsweep+1, f.neval, itci, abs(itci - i5), tci.pivotError[-1]))

Listing 1: Python code to numerically compute the integral I (N=5) (Eq. (64)) using
the xfac package with TensorCI1. The script performs 14 half-sweeps using continuous
TCI on a 15 point Gauss–Kronrod grid. For each half-sweep (hsweep), the number of
function evaluations (neval), the approximate integral value (itci), the absolute error
with respect to the exact integral value (i5) from Eq. (65) and the in-sample error
(insample err) is printed. These values are shown in Figs. 4(a-c).

The Python script to perform the integration numerically using the Python bindings of
xfac (package xfacpy) is shown in code Listing 1; see Listing 11 for an equivalent Julia code
using TCI.jl. Both codes can be trivially adapted to compute the integral of any function
which is known explicitly by just modifying the definition of f (x).

In the Python code, lines 1 and 2 import the packages xfacpy and the log function (needed
for comparison with Eq. (65)). Lines 7–9 define the user-supplied function f ; line 8 defines
an (optional) attribute of f , neval, counting the number of times the integrand is called; line 9
defines the integrand. Here x is a list of floats or a numpy array. For each argument xℓ, the
user specifies a grid {xℓ(σℓ)} of dℓ quadrature nodes, enumerated by an index σℓ, and an
associated grid of quadrature weights {wℓ(σℓ)} (cf. Sec. 5.1). Here, we use the nodes and
weights of the Gauss–Kronrod quadrature, with dℓ = 15 for all ℓ. For convenience, the Gauss–
Kronrod quadrature is included in xfac so that the GK15 function in line 18 returns two lists,
xell and well, containing the quadrature nodes {xℓ(σℓ)} and weights {wℓ(σℓ)}, respectively
(chosen the same for all ℓ).

The CTensorCI() object created in line 21 is the basic object used to perform TCI on a con-
tinuous function, discretized as Fσ = f

�

x(σ)
�

. This class performs the factorization in accu-
mulative mode. Note that CTensorCI() is a thin wrapper over the corresponding discrete class
TensorCI() that creates Fσ from f (x) and the grids xℓ(σℓ). To instantiate the class, two argu-
ments must be provided: the function f, and the grid on which the function will be called,
[xell] * N. For N = 5, the latter is equivalent to [xell, xell, xell, xell, xell], i.e. five copies
of the GK15 grid (a list of list of points).

The loop in lines 24–29 performs a series of half-sweeps, alternating left-to-right and
right-to-left, 14 in total (i.e. 7 full sweeps), to iteratively improve the TCI approximation
eFσ of the tensor Fσ. In line 25, tci.iterate() performs one half-sweep, and in line 27,
tci.get_TensorTrain().sum([well] * N) calculates the integral according to Eq. (62). Finally,
lines 28 and 29 print the results: the number of half-sweeps, hsweep; the number of calls to
f , neval; the calculated value of the integral, itci; its error with respect to the exact calcula-
tion, |I (N)−eI (N)|; and the “in-sample error”, in-sample err, defined as the maximum difference

30

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

10−14

10−9

10−4

er
ro

r

(a)

10−14

10−9

10−4

(b)

10−14

10−9

10−4

(c)

1 5 9 13

of half-sweeps

103

104

#
of

fu
n
ct

io
n

ca
lls

(d)

1 5 9 13

of half-sweeps

103

104

(e)

1 5 9 13

of half-sweeps

104

(f)= 10N

0 4 8 12 16
0

4

8

12

(g)

�

�
χ

= 5N

˜
|˜−|

no env
error in integral

in-sample error

env= 10N

10
= 20N

= 20N

N
20

= 5N

5

Figure 4: Performance metrics for the TCI computation of the N -dimensional inte-
gral I (N) =
∫

dNx f (x) of Eq. (64) using the natural tensor representation (2), for
N = 5,10, 20. (a–c) The relative error for the integral |1 − I (N)/eI (N)| (solid lines
with circles), the maximum (over all sampled pivots) of the relative in-sample error
|1 − Fσ/eFσ|∞ (dashed lines with crosses), and (d–f) the number of function calls,
all plotted versus the number of half-sweeps. The TCI computation of eI (N) has been
performed on a 15-point Gauss–Kronrod grid (i.e. dℓ = 15), either in the no envi-
ronment mode (“no env”, blue) or in the environment mode (“env”, orange). (g)
The final bond dimension χℓ plotted vs. ℓ ∈ [1,N], for N = 5,10, 20. The growth
of χℓ with increasing ℓ or N − ℓ flattens off at rather small values of χ = max{χℓ},
indicating that the function f (x) is strongly compressible. [Code: Listing 1 (Python),
11 (Julia)]

|Fσ − eFσ| during the half-sweep (a “training set error”, albeit a very conservative one because
the algorithm is actively looking for points with large errors). The code above performs the
bare variant (no environment) of the factorization of Fσ. For comparison, we have also com-
puted the factorisation in environment mode (see Sec. B.1.1 for the corresponding syntax).

Figure 4 shows the two errors (upper panel) and number of function calls (lower panel)
as a function of the number of half-sweeps for N = 5, 10, and 20. The convergence of the
integral is very fast and depends only weakly on the number of dimensions. It turns out that,
in this example, the environment mode (orange) does not bring much advantage over the
bare mode (blue). To highlight the strength of TCI we note that for N = 5 (or N = 20) the
14 half-sweeps needed to reach an absolute error below 10−10 (or 10−8) required roughly 104

(or 105) function calls, hence the ratio of the number of sampled points to all points of Fσ was
only 104/155 ≈ 10−2 (or 105/1520 ≈ 10−19). In general, if the rank of the MPS unfolding of
the integrand remains roughly constant as the number of dimensions increases, then the gain
in favor of TCI increases exponentially.

Finally, let us state that the method presented above only works if the chosen quadrature
model (e.g. the Gauss–Kronrod quadrature) is suitable for the integrand in question. A variant
of this method using the quantics representation is presented in section 6.3.2.

5.3 Example of computation of partition functions

Our second example is very similar to the previous one except that we now consider an object
that is already a (discrete) tensor, without any need to perform a discretization. This example
was implemented in C++, and the code used to generate all data can be found in Listing 10
in App. B.2.1.

31

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

2 6 10 14 18
102
104
106
108

2 6 10 14 18

10-14
10-10
10-6
10-2

2 6 10 14 18

10-14
10-10
10-6
10-2

0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Unfolding the Boltzmann distribution function for the inverse square Ising
chain via 2-site TCI in reset mode. The first three panels show the evolution of (a) the
number of function calls, (b) pivot errors, and (c) magnetization with TCI full-sweeps
for L= 64 for β = 0.1, 0.6 and 1.1. (d) The free energy density, (e) specific heat, and
(f) the second-order moment, for L = 16, 64 and 256, computed for temperatures
in the vicinity of the phase transition at βc ≈ 0.62. [Code: Listing 10 (C++)]

We consider the calculation of a classical partition function of the form Z =
∑

σWσ, where
Wσ = e−βEσ and Eσ are the Boltzmann weight and energy, respectively, of a configuration
σ = (σ1, . . . ,σL) and β = 1/T is the inverse temperature of the system. Once the Boltz-
mann weight has been put in TCI form, Wσ ≃fWσ =

∏L
ℓ=1 Mσℓ

ℓ
, the partition function can be

expressed in factorized form, allowing its evaluation in polynomial time:

Z =
∑

σ

Wσ ≈
∑

σ

fWσ =
∑

σ

L
∏

ℓ=1

Mσℓ
ℓ
=
L
∏

ℓ=1

∑

σℓ

Mσℓ
ℓ

. (66)

This direct access to Z stands in contrast to Monte Carlo approaches: these typically evaluate
ratios of sums, giving easy access only to observables such as magnetization but not directly to
the partition function itself. From Z , one can calculate the free energy per site, F = (βL)−1lnZ ,
and the specific heat, C = β2 ∂ ln Z

∂ β2 (evaluated through finite differences). Other quantities can
also be calculated directly using appropriate weights.

Our example is a ferromagnetic Ising chain with a long-range interaction decaying as the
inverse square of the distance. The energy of a configuration reads

Eσ = −
∑

ℓ<ℓ′

Jℓℓ′σℓσℓ′ , (67)

where σℓ = ±1 is a classical spin variable at site ℓ and Jℓℓ′ = |ℓ− ℓ′|−2 the coupling constant
between sites ℓ and ℓ′. This system is sufficiently complex to display a Kosterlitz-Thouless
transition [55–57] at βc ≈ 0.62. Beyond the free energy, we also calculate the magnetization
M =
∑L
ℓ=1σℓ/L and its variance, using suitably modified versions of Eq. (66).

In Figs. 5(a–c), we first inspect the accuracy of the TCI at three different temperatures with
L = 64. Fig. 5(a) shows the accumulated number of function calls to the Boltzmannn weight
Wσ over several sweeps. The total number of function calls initially grows exponentially, then
the growth slows down significantly once the TCI’s pivot error [Fig. 5(b)] approaches conver-
gence. In Fig. 5(c), we see that irrespective of β , the average of the on-site magnetization
reduces to almost zero (smaller than 10−8) when the TCI’s pivot error is sufficiently small.

32

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

This is due to symmetry since we did not use a (small) magnetic field to break the global Z2
symmetry of the problem. To preserve this symmetry during TCI, we start the algorithm with
two global pivots: σ = (1,1, . . . , 1) and (−1,−1, . . . ,−1). This is very important at low tem-
perature. Indeed, if we use only a single global pivot, then the pivot exploration gets stuck
in the corresponding sector and we obtain the same result as if we had broken the symmetry
with a small magnetic field. Even though the initial pivots correspond to fully polarized con-
figurations (β →∞), TCI converges well at all temperatures, including in the paramagnetic
phase. This is a indication of the robustness of the algorithm.

Figures 5(d–f) compare physical observables, such as the free energy, the specific heat,
and the second magnetic moment, for L= 16, 64 and 256. The smoothness of the free energy
curve versus β [Fig. 5(d)] rules out the possibility of a first-order transition. Yet a phase
transition is clearly seen in Fig. 5(e), as the specific heat develops an increasingly sharp peak
when increasing the system size. Figure 5(f), showing the second magnetic moment, likewise
indicates that a phase transition occurs at β ≈ 0.62, where the three sets of data points for
different system sizes intersect.

6 Application: Quantics representation of functions

When working with functions f (x) for which a very high resolution of the variables x is desired,
e.g. functions having structures with widely different length scales, using the quantics tensor
representation [18,19] can be advantageous. It achieves exponential resolution by representing
the function variables x through binary digits σ. The resulting binary representation of the
function can be viewed as a tensor, Fσ = f (x(σ)). Many functions are represented by a low-
rank tensor, including some functions involving vastly different scales [15,21,49]. This section
discusses various applications of quantics TCI.

6.1 Definition

We begin by discussing the quantics representation of a function of one variable, f (x). The
variable is rescaled such that x ∈ [0,1) and discretized on a uniform grid x(m) = m/M , with
M = 2R and m = 0,1, . . . , M − 1. We express the grid index m in binary form using R bits
σr ∈ {0,1} as follows (the second expression is standard binary notation)

m(σ1, . . . ,σR) = (σ1σ2 · · ·σR)2 ≡
R
∑

r=1

σr2
R−r . (68)

We define σ = (σ1, . . . ,σR) and x(σ) = x(m(σ)). Bit σr now resolves x at the scale 2−r .
Thus, the discretized function f is a tensor Fσ = f (x(σ)), the quantics representation of f . It
has L=R indices, each of dimension d = 2.

For a function of N variables, f (x) = f (x1, . . . , xN), we rescale and discretize each variable
as xn(mn) = mn/M = mn/2

R, then express mn through R bits σnr ∈ {0,1} as

mn(σn1, . . . ,σnR) = (σn1σn2 · · ·σnR)2 =
R
∑

r=1

σnr2
R−r . (69)

The vector x is represented by a tuple of L = NR bits, where bit σnr resolves xn at the scale
2−r . The rank of the tensor train eFσ obtained by unfolding Fσ can strongly depend on the way
we order the different bits. In the interleaved quantics representation, we group all the bits that
address the same scale together and relabel the bits as σ = (σ1, . . . ,σL), with σℓ(n,r) = σnr

33

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

and ℓ= n+(r−1)N = 1, . . . ,L, such that

.11σ 12σ

.1σ 2σ
σ

�σ

= =σ

= .

1Nσ 2Nσ 1Rσ RNσ

Lσ

)
)σ(xfF

(70)

If the variables at the same scale are strongly entangled, which is the case in many physical
applications, using the interleaved quantics representation can lead to a more compressible
tensor [15, 18, 19, 21]. An alternative is the fused quantics representation, Fσ̃ = f

�

x(σ̃)
�

,
where we “fuse” all bits for scale 2−r into a single variable

σ̃r = (σN r · · ·σ2rσ1r)2 =
N
∑

n=1

2n−1σnr , (71)

taking the values 0, . . . , 2N−1, and arrange these variables as σ̃ = (σ̃1, . . . , σ̃R). One can also
group together all bits addressing a given variable xn, as done in the natural representation.

Once a quantics representation F of f has been defined, TCI can be applied to F to obtain
a tensor train eF interpolating f with exponential resolution. We dub this algorithm quantics
TCI (QTCI), and the resulting tensor train a quantics tensor train (QTT) [18–20].

Some simple analytic functions are approximated well as a QTT with χ < 10. For instance,
a pure exponential, f (x) = eλx , has χ = 1, since its quantics tensor factorizes completely,
Fσ =
∏R

r=1 eλσr 2R−r
. Similarly, sine and cosine functions have χ = 2, since they can be

expressed as sums of two exponentials, i.e. sums of two rank-1 tensors. Some discontinuous
functions likewise have low-rank in quantics representations, such as the Dirac delta (χ = 1)
and Heaviside step function (χ = 2) [19]. By contrast, random noise is incompressible and
leads to χ ∼ dL/2. More generally, if a function has low quantics rank χ, the sites representing
different scales are not strongly “entangled”. In this sense, the quantics rank of a function
quantifies the degree of scale separation inherent in the function [15,21].

An interesting example of low-rank analytic functions of two variables is the Kronecker
delta function f (m1, m2) = δm1m2

defined on a discrete 2D grid. Its matrix representation, the
2R×2R unit matrix, is incompressible (in the sense of SVD) because all its singular values are
1. In the quantics representation, f (m1, m2) = δσ11σ21

· · · δσ1rσ2r
· · · δσ1R,σ2R

, which can be
regarded as a rank-1 MPS by fusing σ1r and σ2r .

Other examples for functions of multiple variables that can be approximated as a low-rank
QTT are multivariate analogues of the 1D examples above, with x ∈ RN : a single exponential
f (x) = exp(v · x) with arbitrary v has bond dimension χ = 1; a Dirac delta δ(x) reduces to
the Kronecker delta above and therefore has bond dimension χ = 1 as well; a step function
f (x) = θ (v · x− b) for given v and b has bond dimension χ = 2. In all examples mentioned
here, the small bond dimension is due to separability of length scales. An example where
length scales are not separable is the function f (x) = θ (1− ∥x∥2), which is equal to 1 inside
the unit sphere and 0 outside. Since the surface of the sphere is curved, the maximum bond
dimension, χmax, needed to represent this function with a QTT will depend on the resolution
with which the surface is resolved, increasing as the resolution is refined. This is illustrated in
Fig. 6 for the case N = 2.

6.2 Operating on quantics tensor trains

Given a function represented by a quantics tensor train, various operations on these functions
can be performed within the tensor train form. In the following, we describe how to calculate
integrals, convolutions and symmetry transforms within the quantics representation; quantics

34

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

x
−1 10

y

−1

1

0

f(x,y)

(a)

0.0

0.5

1.0

ℓ
0 10 20

𝜒
ℓ

101

102

103

104

2ℓ/2 + 2

(b)

𝓡
4 6 8 10 12 14

𝜒
m

ax

101

102

103

22(𝓡 + 1)/3

(c)
𝓡

4

6

8

10

12

14

Figure 6: (a) The function f (x) = θ (1− ∥x∥2), in N = 2 dimensions. (b) The bond
dimension χℓ of a QTT representation of f with interleaved index ordering, plotted
for several values of R. Along the chain, the bond dimension scales as χℓ ∼ 2ℓ/2.
Intuitively, this is because each additional pair of bits σ1r ,σ2r doubles the number of
points close to the circle, which are those that contain additional information. (c) The
maximal bond dimension, χmax, increases exponentially with R, as χmax ≈ 22(R+1)/3.
This behavior is independent of the specified tolerance, because the step function
changes abruptly. If the step function is broadened, the maximum bond dimension
decreases significantly, in a manner depending on the tolerance.

Fourier transforms are described in detail in Sec. 6.2. In addition, the methods for element-
wise operations and addition of tensor trains that have already been introduced in Sec. 4.7
work just as well here. These basic ‘building blocks’ can be combined to formulate more
complicated algorithms entirely within the quantics tensor train form.

Integrals are approximated as Riemann sums, then factorized over the quantics bits as

∫

[0,1]N
dNx f (x)≈

1
2L

∑

σ

f
�

x(σ)
�

=
1

2L

∑

σ

Fσ ≈
1

2L

∑

σ

eFσ =
1

2L

L
∏

ℓ=1

� 2
∑

σℓ=1

Mσℓ
ℓ

�

, (72)

where 1/2L is the integration volume element. Since the number of discretization points is
exponential in L, the discretization error of this integral decreases as O(1/2L), whereas the
cost of the factorized sum is O(χ2dL), i.e. linear in L.

Matrix products of the form f (x,z) =
∫

D dNyg(x,y)h(y,z) can be performed as follows.
We use quantics representations for each of the variables x, y and z, e.g. x = x(σx) with
σx = (σ1x , . . . ,σLx) and L=NR. We unfold the tensors for g and h as MPOs,

eGσxσ y
=

x1σ x2σ

y1σ y2σ

xLσ

yLσ

...

...
, eHσ yσz

=
y1σ y2σ yLσ

z1σ z2σ zLσ

...

...
, (73)

with indices at matching scales, (σℓx ,σℓy) or (σℓy ,σℓz), assigned to the same site ℓ.
We then approximate the integral

∫

dNy by a factorized sum over each σℓy , cf. (72),
f (x,y) ≈ 2−L
∑

σ y
eGσxσ y
eHσ yσz

, which can be computed and compressed in several ways,
see Sec. 4.7.

Quantics Fourier transform can be performed using a simple MPO-MPS contraction, where
the MPO is of surprisingly low rank (χ ≈ 11 for machine precision in one dimension) [21,
58]. This means that taking the Fourier transform of a function that has a low-rank quantics
tensor train can be done exponentially faster than with FFT. Calculating f̂ (k) =

∫

dx f (x)e−ik·x

35

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

on a quantics tensor train representing f (x) is equivalent to the quantum Fourier transform
algorithm ubiquitous in quantum computing [18].

Consider a discrete function fm ∈ CM , e.g. the discretization, fm = f (x(m)), of a one-
dimensional function f (x) on a grid x(m). Its discrete Fourier transform (DFT) is

f̂k =
M−1
∑

m=0

Tkm fm , Tkm =
1p
M

e−i2πk·m/M . (74)

For a quantics grid, M = 2R is exponentially large and the DFT exponentially expensive to
evaluate. We seek a quantics tensor train representing T , because then f̂ = T f can be com-
puted by simply contracting the tensor trains for T and f and recompressing [18,19,21].

We start by expressing m and k in their quantics form

m(σ) = (σ1σ2 · · · σR)2 =
R
∑

ℓ=1

σℓ2
R−ℓ , k(σ′) = (σ′1σ

′
2 · · · σ

′
R)2 =

R
∑

ℓ′=1

σℓ′2
R−ℓ′ . (75)

Then, T has the quantics representation

Tµ = Tσ′σ = Tk(σ′)m(σ) =
1p
M

exp
�

−i2π
∑

ℓℓ′

2R−ℓ
′−ℓσ′ℓ′σℓ

�

, (76)

where we introduced the fused index µ = (µ1, . . .µR), with µℓ = (σ′R−ℓ+1,σ
ℓ
). We thereby

arrangeσ′ andσ indices in scale-reversed order [21], so that σ′R−ℓ+1, describing the scale 2ℓ−1

in the k domain, is fused with σℓ, describing the scale 2R−ℓ in the m domain, in accordance
with Fourier reciprocity (small k scales match large m scales and vice versa):

.

=

1µ 2µ 1R−µ Rµ�µ

µT . . .1σ 2σ . . . Rσ1R−σ�σ

.
1R−

′σR
′σ 1

′σ2
′σ+1�R−

′σ

. (77a)

The tensor Tµ turns out to have a remarkably low rank [21,58]: when unfolded as a MPO eTµ,

.

=

1µ 2µ 1R−µ Rµ�µ

. . .1σ 2σ . . . Rσ1R−σ�σ
µT̃

.
1R−

′σR
′σ 1

′σ2
′σ+1�R−

′σ

, (77b)

a rank of χ = 11 suffices to yield machine precision, i.e. errors |Tµ − eTµ|∞/|Tµ|∞ < 10−10,
irrespective of R [21,58]. By contrast, if a scale-reversed order is not used (i.e., µℓ = (σ′ℓ,σℓ)),
the resulting tensor Tµ has exponentially large rank [59]. An intuitive explanation for the scale-
reversed order is given in Appendix A.5, which also verifies through numerical experiment that
the small-rank representation is found by TCI.

It follows that for a 1D function with rank χ ′ in quantics representation, the DFT can be
obtained in O(χ2χ ′2R) = O(χ2χ ′2 log M) operations, where M = 2R is the number of points
in the grid. This is exponentially faster than the O(M log M) of the fast Fourier transform [21,
58,60].

6.3 Example: High-resolution compression of functions

In this section we illustrate the use of quantics TCI for representing functions in 1, 2 and 3
dimensions, and for computing multi-dimensional integrals.

36

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

−10 −5 0 5 10
x

−6

−4

−2

0

2

f
(x

)

(a)

χ = 1, R = 40

exact

QTCI

−10 −5 0 5 10
x

−6

−4

−2

0

2 (b)

χ = 5, R = 40

exact

QTCI

−10 −5 0 5 10
x

−6

−4

−2

0

2 (c)

χ = 12, R = 40

exact

QTCI

0 10 20 30 40
`

0

2

4

6

8

10

12

χ
`

(d) R = 40

χ = 1

χ = 5

χ = 12

2 4 6 8 10 12 14 16
χ

10−11

10−9

10−7

10−5

10−3

10−1
ε I

(e)

R = 10

R = 20

R = 30

R = 40

Figure 7: (a-c) The function f (x) of Eq. (78) (solid blue) and its quantics repre-
sentation (orange dashed) with R = 40 for χ = 1, 5 and 12. Although the TCI is
performed on 240 ≈ 1012 points, only a small fraction are actually shown in the plot.
(d) Bond dimension χℓ as a function of ℓ, for χ = 1, 5,12. (e) Error on the integral
I =
∫ 10
−10 dx f (x) calculated from its QTCI approximation, eI . The plot shows the rel-

ative error εI = |eI/I − 1|, plotted versus the rank χ of the QTCI approximation, for
R= 10, 20, 30, 40. [Code: Listing 2 (Python), 3 (Julia)]

6.3.1 Oscillating functions in 1, 2 and 3 dimensions

1d oscillating function As a first example, we consider a simple function with large oscilla-
tions:

f (x) = sinc(x) + 3e−0.3(x−4)2 sinc(x − 4)− cos(4x)2 − 2sinc(x + 10)e−0.6(x+9)

+ 4cos(2x)e−|x+5| +
6

x − 11
+
Æ

(|x |)arctan(x/15) , (78)

where sinc(x) = sin x/x is the sinus cardinal and x ∈ [−10,10].
The code of Listing 2 discretizes the function on a quantics grid of 240 points {x(σ)}, de-

fines the tensor Fσ = f
�

x(σ)
�

and uses xfac to TCI it, eFσ ≈ Fσ. Listing 3 shows TCI.jl code
performing the same task. Figs. 7(a–c) show the resulting QTCI approximation: it converges
very quickly with increasing χ. Fig. 7(d) shows the bond dimension χℓ as a function of ℓ. It
remains small (≤ 10), hence the function is strongly compressible. Figure 7(e) shows that
the integral I =

∫ +10
−10 dx f (x) converges rapidly with increasing χ even though the function is

highly oscillatory.

1 import xfacpy
2 import numpy as np
3

4 # Grid parameters
5 R = 40 # Number of bits <@\cR@>
6 M = 2**R # Number of grid points <@M@>

37

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

7 xmin, xmax = -10.0, +10.0 # Domain of function <@f@>
8

9

10 def m_to_sigma(m): # Convert grid index <@m@> to quantics multi-index
<@$\bsigma(m)$@>

11 return [int(k) for k in np.binary_repr(m, width=R)]
12

13

14 def sigma_to_x(sigma): # Convert quantics multi-index <@\bsigma@> to grid point
<@$x(\bsigma)$@>

15 ind = int(''.join(map(str, sigma)), 2)
16 return xmin + (xmax-xmin)*ind/M
17

18

19 def f(x): # Function of interest <@$f(x)$@>
20 return (np.sinc(x)+3*np.exp(-0.3*(x-4)**2)*np.sinc(x-4)-np.cos(4*x)**2 -
21 2*np.sinc(x+10)*np.exp(-0.6*(x+9))+4*np.cos(2*x)*np.exp(-abs(x+5)) +
22 6*1/(x-11)+abs(x)**0.5*np.arctan(x/15))
23

24

25 def f_tensor(sigma): # Quantics tensor <@F_\bsigma@>
26 return f(sigma_to_x(sigma))
27

28

29 # Set first pivot to <@$\bar\bsigma=(0, \ldots, 0)$@> and initialize TCI <@$\tF_\bsigma$@>
30 p = xfacpy.TensorCI1Param()
31 p.pivot1 = [0 for ind in range(R)]
32 f_tci = xfacpy.TensorCI1(f_tensor, [2]*R, p)
33

34 # Optimize <@\tF_\bsigma@>
35 for sweep in range(12):
36 f_tci.iterate() # Perform a half sweep
37

38 f_tt = f_tci.get_TensorTrain() # Obtain the TT <@$M_1 M_2 \ldots M_\scR$@>
39 # Print a table to compare <@$f(x)$@> and <@\tF_\bsigma@> on some regularly spaced

points
40 print("x\t f(x)\t f_tt(x)")
41 for m in range(0, M, 2**(R-5)):
42 sigma = m_to_sigma(m)
43 x = xmin + (xmax-xmin)*m/M
44 print(f"{x}\t{f(x)}\t{f_tt.eval(sigma)}")

Listing 2: Python code using xfac to compute construct a quantics tensor train for
the function f (x) of Eq. (78), shown in Fig. 7, using 240 grid points. Note that this
code could also have used pre-defined functions that are part of xfac to generate
quantics grids x(σ) and convert between x , m, and σ, see App. B.1.3.

2d oscillating function The above construction generalizes straightforwardly to more than
one dimension. Let us consider the following simple 2d function with features at vastly differ-
ent scales:

f (x , y) = 1+ e−0.4(x2+y2) + sin (x y) e−x2
+ cos (3x y) e−y2

+ cos (x + y) (79)

+ 0.05 cos
�

102 · (2x − 4y)
�

+ 5 · 10−4 cos
�

103 · (−2x + 7y)
�

+ 10−5 cos
�

2 · 108 x
�

.

We use a quantics unfolding of f (x , y) with R = 40, which discretizes f on a 1012 × 1012

grid. The corresponding quantics tensor Fσ has L = 2R indices, interleaved so that even
indices σ2ℓ encode x and odd indices σ2ℓ+1 encode y . A tensor train approximation is then
obtained using standard TCI, which yields an efficient low-rank representation that rapidly
converges, as shown in Fig. 8 (a–d). At rank χ ≈ 110, the MPS becomes a numerically exact
(within machine precision) representation of the original function at all scales. It requires
only 105 numbers (∼ 1 MB of RAM), which is trivial to store in memory, and 19 orders of
magnitude smaller than needed for a naive regular grid (∼ 1013 TB of RAM). Furthermore,

38

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

1 using QuanticsTCI
2 import QuanticsGrids as QG
3

4 R = 40 # Number of bits <@\cR@>
5 M = 2ˆR # Number of discretization points <@M@>
6 xgrid = QG.DiscretizedGrid{1}(R, -10, 10) # Discretization grid <@$x(\bsigma)$@>
7

8 function f(x) # Function of interest <@$f(x)$@>
9 return (

10 sinc(x) + 3 * exp(-0.3 * (x - 4)ˆ2) * sinc(x - 4) - cos(4 * x)ˆ2 -
11 2 * sinc(x + 10) * exp(-0.6 * (x + 9)) + 4 * cos(2 * x) * exp(-abs(x + 5)) +
12 6 * 1 / (x - 11) + sqrt(abs(x)) * atan(x / 15))
13 end
14

15 # Construct and optimize quantics TCI <@\tF_\bsigma@>
16 f_tci, ranks, errors = quanticscrossinterpolate(Float64, f, xgrid; maxbonddim=12)
17 # Print a table to compare <@$f(x)$@> and <@\tF_\bsigma@> on some regularly spaced

points
18 println("x\t f(x)\t\t\t f_tt(x)")
19 for m in 1:2ˆ(R-5):M
20 x = QG.grididx_to_origcoord(xgrid, m)
21 println("$x\t$(f(x))\t$(f_tci(m))")
22 end

Listing 3: Julia code using TCI.jl to construct a quantics tensor train for f (x) of
Eq. (78), plotted in Fig. 7. The function quanticscrossinterpolate includes code to
convert f to quantics form, see Sec. 8.3. The xgrid object constructed on line 6 is a
lazy object that does not create an exponentially large object.

it can be manipulated exponentially faster than for the regular grid, including most common
operations such as Fourier transform, convolution or integration.

3d integral Figure 9 shows the last example of this series: the computation of the 3D integral

I =
∫

R3 d3xe−
p

x2+y2+z2 using the quantics representation. TCI in both accumulative and reset
mode converges exponentially fast towards the exact integral I = 8π, almost reaching machine
precision, an indication of excellent numerical stability.

6.3.2 Quantics for multi-dimensional integration

Let us return in this section to the example of the multi-dimensional integral from Sec. 5.2.
In the initial approach, a quadrature has been choosen in order to factorize the function on
the quadrature grid, and then, in a second step, to perform the one-dimensional integrations.
Here, we consider the interleaved quantics representation described in Sec. 6.1, with L=NR
legs of dimension d = 2. After obtaining the QTT from TCI, the integral can be evaluated
efficiently by a factorized sum over the MPS tensors, as shown in Eq. (72). This corresponds
to a Riemann sum with exponentially many discretization points. The results are shown in
Fig. 10. In this example, we observe a fast convergence of the results. Note that using the
fused instead of interleaved representation here would lead to d = 2N , which quickly becomes
prohibitive for large N .

Listing 8 in App. B.1.3 contains the python code (using xfac) yielding the results shownin
Fig. 10. The code is very similar to Listing 1, but replaces the Gauss–Kronrod helper functions
with corresponding functions for a quantics grid. A more detailed discussion can be found in
App. B.1.3. Listing 13 contains an equivalent code using TCI.jl.

39

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

5.0 2.5 0.0 2.5 5.0
x

4

2

0

2

4

y

=1

5.0 2.5 0.0 2.5 5.0
x

4

2

0

2

4

=5

5.0 2.5 0.0 2.5 5.0
x

4

2

0

2

4

=20

5.0 2.5 0.0 2.5 5.0
x

4

2

0

2

4

=50

1

0

1

2

3

4

5.0 2.5 0.0 2.5 5.0
x

4

2

0

2

4

y

0.5 1.0 1.5
x

1.5

1.75

2

2.25

2.5

0.94 0.96 0.98 1.00
x

1.85

1.86

1.87

1.88

1.89

0.97 0.97+1e-6
x

1.88

1.88
+1e-6

0 1 2 3 4 0.5 1.0 1.5 2.0 0.55 0.60 0.65 0.70 0.62492 0.62495

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 8: Quantics TCI (QTCI) representation of the function f (x , y) defined in
Eq. (79). (a–d) Approximations obtained for 4 different values of the MPS rank
χ using R = 40 plotted on a coarse grid of 300 × 300 points. (e–h) From left to
right, the panels show different levels of zoom into the QTCI at χ = 50 from coarse
to very fine. At this rank, the compressed representation is numerically exact at all
scales. [Code: Listing 7 (Python), 12 (Julia)]

6.4 Example: Heat equation using superfast Fourier transforms

In this section, we show how the different operations described earlier can be combined for
a nontrivial application: solving a partial differential equation on a grid with exponentially
many grid points [20].

Our example is the solution of the heat equation in 1D,

∂tu(x , t) = ∂ 2
x u(x , t) , (80)

with a billion grid points and a complex initial condition with features at different scales. Since
its solution is trivial in Fourier space, u(k, t) = e−k2 tu(k, 0), our strategy is simple: put u(x , 0)
in quantics form using TCI, Fourier transform it (in ultrafast way), evolve it up to time t and
Fourier transform back to real space.

We discretize the spatial variable as x(m) = xmin+mδ with δ = (xmax− xmin)/M , M = 2R.
Then, we view u as a vector with components um(t) = u(x(m), t), satisfying the equation

∂tum(t) =
�

um−1 − 2um + um+1

�

/δ2 . (81)

Taking the discrete Fourier transform of this equation using uFT = Tu one obtains

∂tu
FT
k (t) = −(2/δ)

2 sin2(πk/M)uFT
k (t) . (82)

For a given initial condition um(0), with Fourier transform uFT
k (0), this can be solved as

uFT
k (t) = gk(t)u

FT
k (0) , gk(t) = exp

�

−(2/δ)2 sin2(πk/M)t
�

. (83)

The algorithm to solve the heat equation using the quantics representation is now straightfor-
ward. It is summarized through the following mappings:

um(0)
QTCI
−−→ eUσ(0) , gk(t)

QTCI
−−→ eGσ′(t) , Tkm

QTCI
−−→ eTσ′σ , (84a)

eUσ(0)
×eTσ′σ−−−→ eU FT

σ′(0)
×eGσ′ (t)−−−−→ eU FT

σ′(t)
×eT−1
σσ′−−−→ eUσ(t) . (84b)

40

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

0 50 100 150 200 250 300 350 400
rank

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

er
ro

r

|integral/exact-1| for tci1
pivot error for tci1
|integral/exact-1| for tci2
pivot error for tci2

Figure 9: Consider the 3D integral I =
∫

R3 d3x e−
p

x2+y2+z2 = 8π. We use xfac to
compute its QTCI approximation, eI , on a uniform grid of 23R points with R= 30 in
the cube [−40, 40]3. The plot shows the error εI = |eI/I−1| (solid lines with symbols)
and the pivot error (dashed lines) as function of the MPS rank χ, computed using
accumulative mode (blue) and reset mode (orange).

By Eq. (84a), we first QTCI all relevant objects; by Eq. (84b), we then Fourier transform the
initial condition, time-evolve it in momentum space, and then Fourier transform it back to
position space. The third step of Eq. (84b) involves element-wise multiplication of two tensor
trains, eU FT

σ′(t) = eGσ′(t)eU
FT
σ′(0), performed separately for every σ′. Note that the application of

the tensor train operators eT and eT−1 are understood to each be followed by TCI recompres-
sions.

We consider an initial condition with tiny, rapid oscillations added to a large, box-shaped
background described by Heaviside θ -functions:

u(x , 0) = 1
100 [1+ cos(120x) sin(180x)] + θ

�

x − 7
2

� �

1− θ
�

x − 13
2

��

. (85)

Figure 11 shows the subsequent solution u(x , t) at several different times. With increasing
time, the initial oscillations die out (see inset) and in the long-time limit diffusive spreading is
observed, as expected. The computation was performed forR= 30, implying a very dense grid
with M = 230 points, beyond the reach of usual numerical simulation techniques. Remarkably,
however, the computational costs scale only linearly (not exponentially!) withR. Indeed, even
though the grid has around one billion points, obtaining the solution for one value of the time
takes about one second on a single computing core.

The python code used to produce the data for Fig. 11 is shown in listing 9, App. B.1.4.

7 Application: Matrix product operators (MPOs)

A linear tensor operator Hσ′σ can be unfolded into a matrix product operator (MPO) (also
known as tensor train operator) using TCI. This is done by grouping the input and output
indices together, µℓ = (σ′ℓ,σℓ), and performing TCI on the resulting tensor train Fµ ≡ Hσ′σ.

41

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

103 104

of function calls

10−11

10−8

10−5

10−2

er
ro

r

N = 5

in-sample error

104

of function calls

10−9

10−6

10−3

100

N = 10

104 105

of function calls

10−10

10−7

10−4

10−1

N = 20

∣∣NĨ/NI−1∣
∣

Figure 10: Performance metrics for the TCI2 computation of the integral I (N) of
Eq. (64), for N = 5, 10,20, (left, middle, right). In all panels, the relative error
|1− I (N)/eI (N)| (straight lines with circles) and the relative in-sample error |1−Fσ/eFσ|
(dashed lines with crosses) is plotted versus the number of function evaluations.
The TCI2 computation of eI (N) has been obtained using R = 40 quantics bits per
variable in interleaved representation and a maximal bond dimensionχ = 30. [Code:
Listing 8 (Python), 13 (Julia)]

One obtains an MPO, H ≈ eH =
∏L
ℓ=1 Wℓ, with tensor elements of the form

[H]σ′σ ≈
�

L
∏

ℓ=1

Wℓ

�

σ′σ
= [W1]

σ′1σ1

1i1
[W2]

σ′2σ2

i1 i2
· · · [WL]

σ′LσL

iL−11 =
1σ 2σ Lσ...

... L
′σ1

′σ 2
′σ

1i 2i 1L−i . (86)

In this section, we discuss a specific algorithm to perform this unfolding for the construction
of the Hamiltonian MPO for quantum many-body problems. This construction is the first step
of a DMRG many-body calculation. For this application, the Hamiltonian H is very sparse
and a naive usage of TCI may fail there due to the ergodicity problem discussed in section
4.3.6. To avoid this issue, the algorithm and associated code (C++ header autompo.h) discussed
below generates a MPO representation from a sum of rank-1 terms using element-wise tensor
addition.

7.1 Formulation of the problem

Consider an L-site quantum system whose many-body Hamiltonian is the sum of NH rank-1
MPOs Ha,

H =
NH
∑

a=1

Ha , Ha =
L
∏

ℓ=1

Haℓ , (87)

where each Haℓ is a local operator acting non-trivially only on site ℓ (see Eqs. (91) or (93)
below for examples). Each term Ha in the sum is, by construction, a MPO of rank 1, but their
sum
∑

a Ha is not. The number of terms in the sum typically is exponentially smaller than
the size of the Hilbert space in which the Hamiltonian lives, hence the operator of interest is
very sparse. For instance, in quantum chemistry applications involving, say, L spin-orbitals,
the number of terms is O(L4) while the size of the Hilbert space is 2L. Naively, H is an MPO

42

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

2 3 4 5 6 7 8
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x,

t)

4.9100 5.0975
x

1.00

1.01

1.02

t=0
t=5e-06
t=0.0001
t=0.01
t=0.25
t=1

Figure 11: Solution of the heat equation (80) using quantics TCI. The plot shows
u(x , t) versus x for different times. We used a 1D grid with M = 2R points and
R= 30, at a computational cost of O(R). The inset shows a zoom close to x = 5.

of rank NH as one may express it as
∏L
ℓ=1 Wℓ, with

W1 = (H1L, . . . , HNHL) , W1<ℓ<L =







H1ℓ 0
0 H2ℓ 0 . . .

.

. 0 HNHℓ






, WL =







H1L
H2L
. . .

HNHL






. (88)

However, in many situation the actual rank is much smaller.
The problem of generating a compressed MPO from a sum of products of local operators

is as old as the field of tensor networks itself. There are essentially three standard approaches
to perform this task (see [61–64] for an in-depth discussion):

• Manual construction of the MPO, in particular using complementary operators. This
method, pioneered in DMRG, is suitable for simple problems but not for general ones.

• Symbolic compression of the naive-sum MPO, in particular using bipartite graph theory.
This powerful, automatic approach is exact. However, this approach makes implementing
approximate compression (within a certain tolerance) rather complex and does not exploit
specific relations between the values of matrix elements (all that matters is whether a term
is present or not).

• Compression of the naive-sum MPO using SVD. This approach is widely used but has a
well-known stability issue for large systems due to a numerical truncation error.2

The stability issue of the SVD compression can be understood as arising from the fact that
SVD finds the best low-rank approximation of an N ×N matrix A with respect to the Frobenius
norm |A|F = (
∑

i j |Ai j|2)1/2. When A is the sum of terms having very different Frobenius norms,
numerical truncation errors may lead the algorithm to wrongly discard those with small norms.
As an illustration, consider A = 1+ψψ† where 1 is the identity matrix and ψ a normalized
vector (ψ†ψ = 1). Here, we have |A|F = N + 3. When N is very large (as in many-body
problems, where N ≈ 2L), the O(1) contribution from ψψ† may be lost in numerical noise.
By contrast, the prrLU does not suffer from this problem since it optimizes a different target
norm (the maximum norm of the Schur complement).

2In Ref. [64], it is shown that this issue can be resolved for certain local Hamiltonians in the DMRG context by
exploiting their specific structure.

43

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

7.2 MPO algorithm for quantum many-body problems

We propose to compress the naive-sum MPO using prrLU instead of SVD. Very importantly,
in this approach, the full naive-sum MPO is never built. Our auto-MPO algorithm follows a
divide-and-conquer strategy:

(1) Collect a fixed number Na≪ NH of terms Ha.

(2) Construct the naive MPO of their sum using Eq. (88).

(3) Compress the resulting tensor train using CI canonicalization.

(4) Repeat steps (1-3) until all NH terms have been processed.

(5) Sum and pairwise compress (formally in a binary tree) the NH/Na partial sums from (4).

The validity of the final MPO can be checked explicitly making use of the fact that H is a
sparse matrix. Considering Fµ = Hσ′σ as a large vector, the tensor eFµ is a correct unfolding of
Fµ if and only if

∑

µ

F∗µeFµ =
∑

µ

|Fµ|2 =
∑

µ

|eFµ|2 (89)

(this guarantees that |F − eF |F = 0 hence F = eF). This translates into

NH
∑

a=1

�

∑

µ

[Ha]
∗
µ
eFµ

�

=
NH
∑

a,a′=1

�

∑

µ

[H∗a′]µ[Ha]µ

�

=
∑

µ

|eFµ|2 . (90)

Computing these expressions involves O(NH) MPS contractions for the left side, enumerating
the nonzero elements of the sparse matrices for the central part, and taking the trace of an
MPO-MPO product for the right side. The same approach can be applied to the compression
obtained by SVD or to compare the results of SVD and prrLU compressions.

We have tested the above algorithm against the same divide-and-conquer approach but
with prrLU replaced by SVD, for the example A = Id + ψψ† where ψ is the rank-1 MPS
ψσ1···σL

=
∏

ℓδσℓ,1. We found that SVD yields the correct rank-2 MPO for L < 103 but
fails for larger values of L, incorrectly yielding a rank-1 MPO (the identity MPO). By contrast,
the prrLU variant is stable for all values of L (up to 1000) that we have tested.

7.3 Illustration on Heisenberg and generic chemistry Hamiltonians

We illustrate the auto-MPO algorithm with two iconic Hamiltonian examples here: the Heisen-
berg Hamiltonian for a spin chain and a generic quantum chemistry Hamiltonian. The full code
can be found in the folder example/autoMPO/autoMPO.cpp of the xfac library.

We start with the spin-1
2 Heisenberg Hamiltonian for an L-site ring of spins:

H =
L
∑

ℓ=1

Sz
ℓS

z
ℓ+1 +

1
2

L
∑

ℓ=1

�

S+ℓ S−ℓ+1 + S−ℓ S+ℓ+1

�

, (91)

Sαℓ = 1⊗1⊗ · · · ⊗1
︸ ︷︷ ︸

ℓ−1 times

⊗sα ⊗1⊗ · · · ⊗1
︸ ︷︷ ︸

L−ℓ times

. (92)

Here, the matrices 1=
�1 0

0 1

�

, sz = 1
2

�1 0
0 −1

�

, s+ =
�0 1

0 0

�

, s− =
�0 0

1 0

�

represent the single-site identity
and spin operators for a spin-1

2 Hilbert space, while Sα=z,±
ℓ

represent site-ℓ spin operators for
the full Hilbert space of the L-site chain, acting non-trivially only on site ℓ. We use periodic
boundary conditions, defining SαL+1 = Sα1 . Listing 4 shows a C++ code that first constructs the

44

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Hamiltonian as a sum of local operators (an instance of the polyOp class), then generates the
MPO (using the to_tensorTrain() method).

Our second example is a fully general quantum chemistry Hamiltonian of the form

H =
∑

ℓ1ℓ2

Kℓ1ℓ2
c†
ℓ1

c
ℓ2
+
∑

ℓ1<ℓ2,ℓ3<ℓ4

Vℓ1ℓ2ℓ3ℓ4
c†
ℓ1

c†
ℓ2

c
ℓ3

c
ℓ4

. (93)

The fermionic operators c†
ℓ

(c
ℓ
) create (destroy) an electron at spin-orbital ℓ. They satisfy stan-

dard anti-commutation relations, which we implement using a Jordan-Wigner transformation.
We take all the coefficients Kℓ1ℓ2

and Vℓ1ℓ2ℓ3ℓ4
as random numbers for our benchmark (in a real

application, the number of significant Coulomb elements would be smaller, typically L3 in-
stead of L4 here). The example code is given in Listing 5 below. Table 3 shows the obtained
ranks for up to L= 50 orbitals which match the theoretical expectation. Note that the number
of terms NH for the larger size is greater than 106, hence a naive approach would fail here.

1 #include <xfac/tensor/auto_mpo.h>
2

3

4 using namespace std;
5 using namespace xfac;
6 using namespace xfac::autompo;
7

8

9 /// Heisenberg Hamiltonian (periodic boundary condition)
10 polyOp HeisenbergHam(int L)
11 {
12 auto Sz=[=](int i) { return prodOp {{ i%L, locOp {{-0.5,0},{0,0.5}} }}; };
13 auto Sp=[=](int i) { return prodOp {{ i%L, locOp {{0 ,0},{1,0}} }}; };
14 auto Sm=[=](int i) { return prodOp {{ i%L, locOp {{0 ,1},{0,0}} }}; };
15

16 polyOp H;
17 for(int i=0; i<L; i++) {
18 H += Sz(i)*Sz(i+1) ;
19 H += Sp(i)*Sm(i+1)*0.5 ;
20 H += Sm(i)*Sp(i+1)*0.5;
21 }
22 return H;
23 }
24

25

26 int main() {
27 int len=50;
28 auto H=HeisenbergHam(len);
29 TensorTrain mpo=H.to_tensorTrain();
30

31 cout<< "|1-<mpo|H>/<mpo|mpo>|=" << abs(1-H.overlap(mpo)/mpo.norm2()) << endl;
32

33 return 0;
34 }

Listing 4: C++ code to generate the MPO of the periodic Heisenberg Hamiltonian
of Eq. (91). Lines 1–6 load the xfac library and namespaces. Lines 12–14 construct
the spin operators of Eq. (92); note that only the single-site 2×2 matrices need to
be specified explicitly. Lines 16–20 construct the sum

∑L
ℓ=1 over all chain sites of

the Hamiltonian Eq. (91). The maximun bond dimension obtained is 8 as it should
be. This listing showcases the close similarity between formulae and corresponding
code, which was one of the design goals of the xfac library.

45

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Our C++ implementation is found in the namespace xfac::autompo. We define three classes:
locOp, prodOp, and polyOp, corresponding to a local operator (i.e. a 2×2 matrix), a direct prod-
uct of locOp, and a sum of prodOp, respectively. Our prodOp is a std::map going from int to
locOp, while polyOp contains a std::vector of prodOp. The operators * and += are conveniently
overloaded. Each of the classes prodOp and polyOp possesses the methods to_tensorTrain() (the
actual algorithm to construct the MPO) and overlap(mpo) (to compute the left hand side of
Eq. (89)).

1 polyOp ChemistryHam(arma::mat const& K, arma::mat const& Vijkl)
2 {
3 auto Fermi=[=](int i, bool dagger)
4 {
5 locOp create={{0,1},{0,0}};
6 auto ci=prodOp {{ i, dagger ? create : create.t() }};
7 for(auto j=0; j<i; j++) ci[j]=locOp {{1,0},{0,-1}}; // fermionic sign
8 return ci;
9 };

10

11 auto L=K.n_rows;
12 polyOp H;
13

14 for(auto i=0u; i<L; i++)
15 for(auto j=0u; j<L; j++)
16 if (fabs(K(i,j))>1e-14)
17 H += Fermi(i,true)*Fermi(j,false)*K(i,j); // kinetic energy
18

19 for(auto i=0; i<L; i++)
20 for(auto j=i+1; j<L; j++)
21 for(auto k=0; k<L; k++)
22 for(auto l=k+1; l<L; l++)
23 if (fabs(Vijkl(i+j*L,k+l*L))>1e-14)
24 H += Fermi(i,true)*Fermi(j,true)*Fermi(k,false)*
25 Fermi(l,false)*Vijkl(i+j*L,k+l*L);
26 return H;
27 }

Listing 5: C++ code to generate the MPO of the quantum chemistry Hamiltonian of
Eq. (93).

Table 3: Performance of our Auto-MPO construction for the quantum chemistry
Hamiltonian of Eq. (93), for L orbitals, computed with an error tolerance of
τ = 10−9. The third column is the bond dimension found with our approach. As
a check, the fourth column gives the expected bond dimension obtained via the
complementary-operator approach [63]. A naively constructed MPO would have
bond dimension equal to the number of terms (2nd column), making it practically
impossible to compress using SVD for L= 50. [Code: Listing 5 (C++)]

L number of terms bond dimension L2/2+ 3L/2+ 2

10 2125 67 67
30 190125 497 497
50 1503125 1327 1327

46

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Table 4: Features supported by the main algorithms in xfac/TCI.jl.

TensorCI1 TensorCI2
feature 0-site 1-site 2-site
update mode accumulative accumulative & reset
pivot search full & rook full full full & rook
nesting condition full no full partial
environment error supported no no planned support
recompression not supported supported supported supported
global pivots not supported supported supported supported

8 API and implementation details

We have presented a variety of use cases for our libraries xfac/TCI.jl in the examples above.
After reading the present section, prospective users should be able to use our libraries in their
own applications. In Sec. 8.1, we overview common features of the xfac/TCI.jl libraries.
In Secs. 8.2 and 8.3 we provide language-specific information for C++ and Julia, respectively.
We refer the reader to the tensor4all website [65] for the full documentation of the libraries.

Code for most examples contained in this paper is shown in Appendix B, and can be used
as a starting point for implementations of new use cases. For more advanced use cases, it may
be necessary to refer to the online documentation. We also encourage the readers to directly
read the code of the library, in either language. It is indeed rather compact and often conveys
the algorithms more transparently than lenghty explanations.

8.1 Implementation

For legacy reasons, xfac/TCI.jl contain two main classes for computing TCIs: TensorCI1

and TensorCI2. TensorCI1 is a variation of algorithm 5 of Ref. [12] and has been discussed in
great detail in Ref. [13, Sec. III] (for a summary, see Sec. S-2 of the supplemental material of
Ref. [15]). It is based on the conventional CI formula [38] and iteratively adds pivots one by
one without ever removing any pivots (accumulative mode). TensorCI2 is based on the more
stable prrLU decomposition and implements 2-, 1- and 0-site TCI as described in this paper.

The numerical stability of the prrLU decomposition is inherited by TensorCI2, which often
shows more reliable convergence. It is therefore used as a default in our codes. Neverthe-
less, since all TCI algorithms involve sampling, none of them is fully immune against missing
some features of the tensor of interest, as already discussed above. Therefore, it may be nec-
essary to enrich the sampling by proposing relevant global pivots before or during iteration
(see Sec. 4.3.5). For instance, for the results shown in Fig. 9, we proposed 8 initial pivots ac-
cording to the symmetry of the problem. Because of their different sampling patterns, it may
also happen that TensorCI1 finds much better approximations than TensorCI2. We have found
at least one example where this was the case, and manual addition of some global pivots dur-
ing initialization of TensorCI2 solved the issue. There are minor differences in other features
supported by TensorCI1 and TensorCI2, which are summarized in Table 4. Most importantly,
0-site and 1-site optimization is only available in TensorCI2. Therefore, we offer convenient
conversion between both classes.

General tensor trains, possibly obtained from an external source, are represented by a class
TensorTrain. It supports related algorithms that are agnostic to the specific index structure of
a TCI, such as evaluation, summation or compression using LU, CI or SVD. It also serves as an
interface to other tensor network algorithms, such as those implemented in ITensor [33], to al-
low for quick incorporation of the TCI libraries into existing code. A TensorCI1/TensorCI2 object

47

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Table 5: Features supported by the main TCI algorithms in xfac. In the code, ci1 is a
TensorCI1, ci2 is a TensorCI2, p is a TensorCIParam used to build a TensorCI, and tt is a
TensorTrain. The method iterate(nIter, nSite) receives the number of iterations nIter
to perform and the number of physical sites nSite to use for the matrix CI (can be 0,
1, or 2).

Section feature variant example C++ code

4.2 nesting
no ci2.iterate()

full
ci1.iterate()

ci2.makeCanonical()

4.3.3 pivot update
accumulative ci1.iterate()

reset ci2.iterate()
4.3.7 environment active if p.weight=...

4.3.4 pivot search
rook p.fullPiv=false
full p.fullPiv=true

4.3.5 global pivots ci2.addGlobalPivots(...)

4.4
0-site ci2.iterate(1,0)
1-site ci2.iterate(1,1)

4.5 compression
SVD tt.compressSVD()
LU tt.compressLU()
CI tt.compressCI()

4.5 conversion
tci1→ tci2 to_tci2(tci1)
tci2→ tci1 to_tci1(tci2)

can be trivially converted to a TensorTrain object. Conversion in the inverse direction is done
by making the TensorTrain CI-canonical using the algorithm described in Sec. 4.5, resulting in
a TensorCI2 object.

8.2 C++ API (xfac)

The file “readme.txt” explains the installation procedure and how to generate the detailed doc-
umentation. The main components of the library are represented in Figure 12. As mentioned
above, the classes TensorCI1 and TensorCI2 build a TCI of an input function. The main output
is the tensor train, stored in the class TensorTrain, which represents a list of 3-leg tensors.

Below, we summarize the C++ API especially focusing on TensorCI2; the API for TensorCI1 is
similar and can be found in the documentation. A TensorCI2 can be constructed from a tensor
function f : (x1, x2, . . . , xL)→C and its local dimensions {dℓ}where the index xℓ ∈ {1, . . . , dℓ}
with ℓ= 1,2, . . . ,L. This is the main constructor:

1 TensorCI2(
2 function<T(vector<int>)> f,
3 vector<int> localDim,
4 TensorCI2Param param={}
5);

48

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

TensorCI1
param
pivotError
iterate(nIter)

TensorCI2
param
pivotError
iterate(nIter, ...)
addPivotsAllBonds()

TensorTrain
eval()
integral(), sum1()
save(filename)
load(filename)
compressSVD(,)
compressLU(,)
compressCI(,)
norm2()
overlap(tt)
operator+(tt1, tt2)

.get_TensorTrain()

to_
tci2(tci1)to

_
tc
i1
(t
ci
2)

(constructor)

(constructor)

(constructor) .tt

Figure 12: Scheme of the main conversions implemented in xfac.

The parameters of the cross interpolation can be set in the constructor by the class
TensorCI2Param:

1 struct TensorCI2Param {
2 int bondDim=30; ///< max bond dimension of tensor train
3 double reltol=1e-12; ///< expected relative tolerance of CI
4 vector<int> pivot1; ///< first pivot (optional)
5 bool fullPiv=false; ///< whether to use full pivoting
6 int nRookIter=3; ///< number of rook pivoting iterations
7 vector<vector<double>> weight; ///< activates the ENV learning
8 function<bool(vector<int>)> cond; ///< cond(x)=false when x should not be a pivot
9 bool useCachedFunction=true; ///< whether to use internal caching

10 };

For TensorCI1, TensorCI1Param is used to set the parameters. We refer to the documentation for
more details.

To factorize a continuous function f : RL → R, xfac introduces the class CTensorCI2 (or
CTensorCI1). CTensorCI2 is a TensorCI2 that can be constructed from a multidimensional function
f by providing also the grid of points for each component:

1 CTensorCI2(
2 function<T(vector<double>)> f,
3 vector<vector<double>> const& xi,
4 TensorCI2Param param={}
5);

The main output of CTensorCI2 is a continuous tensor train CTensorTrain, which can be evaluated
at any point in RL, including those outside the original grid (cf. App. A.4).

As discussed in Sec. 6.1, functions of continuous variables can also be discretized using
the quantics representation. For that, xfac introduces the helper class QTensorCI2, currently
available only for TensorCI2. It can be constructed from a multidimensional function f by
providing the quantics grid in addition to the parameters required for TensorCI2:

1 QTensorCI2(
2 function<T(vector<double>)> f,
3 grid::Quantics const& qgrid,
4 TensorCI2Param param={}
5);

49

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Specifically, the grid::Quantics type represents an uniform grid on the hypercube [a, b)N

with 2RN points:

1 struct Quantics {
2 double a=0, b=1; ///< start and end points of interval
3 int nBit=10; ///< number of bits for each variable
4 int dim=1; ///< dimension of hypercube
5 bool fused=false; ///< whether to fuse the bits for the same scale (default:

false)
6 }

The main output of QTensorCI2 is a quantics tensor train QTensorTrain, which is a cheap
representation of the function that can be evaluated, and saved/loaded to file.

8.3 Julia libraries

The Julia implementation of TCI is subdivided into several parts:

• TensorCrossInterpolation.jl (referred to as TCI.jl) contains only TCI and associated
algorithms for tensor cross interpolation.

• QuanticsGrids.jl contains functionality to construct quantics grids, and to convert indices
between direct and quantics representations.

• QuanticsTCI.jl is a thin wrapper around TCI.jl and QuanticsGrids.jl to allow for conve-
nient quantics tensor cross interpolation in the most common use cases.

• TCIITensorConversion.jl is a small helper library to convert between tensor train objects
and MPS/MPO objects of the ITensors.jl library.

All four libraries are available through Julia’s general registry and can thus be installed by

1 import Pkg; Pkg.install("TensorCrossInterpolation")

and analogous commands. Below, we present only the main functionalities that were used for
the examples in this paper. A complete documentation can be found online [65].

8.3.1 TensorCrossInterpolation.jl

Similar to xfac, TCI.jl has classes TensorCI1 and TensorCI2 that build a TCI of an input func-
tion, as well as a general-purpose TensorTrain class. These three classes and their main func-
tions are shown in Fig. 13. Given a function of interest, f : (x1, x2, . . . , xL) → C and its
local dimensions {dℓ}, the most convenient way to obtain a TensorCI1/TensorCI2 is by calling
crossinterpolate1/crossinterpolate2. Since the algorithm based on prrLU is usually more stable,
we recommend using crossinterpolate2 as a default.

1 function crossinterpolate2(
2 ::Type{ValueType}, # Return type of f, usually Float64 or ComplexF64
3 f, # Function of interest: <@f_\bsigma@>
4 localdims::Union{Vector{Int},NTuple{N,Int}}, # Local dimensions <@$(d_1, \ldots,

d_\scL)$@>
5 initialpivots::Vector{MultiIndex}; # List of initial pivots <@$\{\hat\bsigma\}$@>.

Default: <@$\{(1, \ldots, 1)\}$@>
6 tolerance::Float64, # Global error tolerance <@τ@> for TCI. Default:

<@10^{-8}@>

50

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

7 pivottolerance::Float64, # Local error tolerance <@τ_{loc}@> for prrLU.
Default: <@τ@>

8 maxbonddim::Int, # Maximum bond dimension <@χ_{\max}@>. Default: no limit
9 maxiter::Int, # Maximum number of half-sweeps. Default: <@20@>

10 pivotsearch::Symbol, # Full or rook pivot search? Default: :full
11 normalizeerror::Bool, # Normalize <@ε@> by <@$\max_{\bsigma \in

\mathrm{samples}} F_\bsigma$@>? Default: true
12 ncheckhistory::Int # Convergence criterion: <@$\varepsilon < \tau$@> for how

many iterations? Default: 3
13) where {ValueType,N}

The three required positional arguments specify basic features of the tensor to be approxi-
mated. f is a function that produces tensor components when called with a vector of indices.
For instance, f([1, 2, 3, 4]) should return the value of f1234. If appropriate pivots are known
beforehand, they can be put in the list initialpivots, which is used to initialize the TCI. The
convergence of TCI is controlled by mainly by the arguments tolerance, which is the global
error tolerance τ of the TCI approximation, and pivottolerance, which determines the local
error tolerance during 2-site updates. Usually, it is best to set pivottolerance to tolerance or
slightly below tolerance. Both should be larger than the numerical accuracy, else the cross ap-
proximation may become numerically unstable. The maximum number of sweeps, controlled
by maxiter, can be chosen rather small in reset mode, as the algorithm requires only a few
sweeps.

After convergence, crossinterpolate2 returns an object of type TensorCI2 that represents
the tensor train, as well as two vectors: ranks contains the bond dimension χ, and errors

the error estimate ϵ, both as a function of iteration number. For example, a possible call to
crossinterpolate2 to approximate a complex tensor fσ1···σ4

with 4 indices σℓ ∈ {1, 2, . . . , 8} up
to tolerance 10−5 with TCI would be:

1 tci, ranks, errors = crossinterpolate2(ComplexF64, f, fill(8, 4); tolerance=1e-5)

TensorTrain{V, N}
N: number of local indices per site

TensorCI2{V}
crossinterpolate2(V, , , ...): tci2
optimize!(tt)
addglobalpivots!(tt,)

TensorCI1{V}
crossinterpolate(V, , , ...): tci1
addglobalpivot!(tt,)

AbstractTensorTrain{V}
V: type of tensor elements
sitedims(tt), sitedim(tt,):
linkdims(tt), linkdim(tt,):
rank(tt):

sitetensors(tt), sitetensor(tt,):
evaluate(tt,):
sum(tt):

Figure 13: Schematic of the relations between the most important types in
TensorCrossInterpolation.jl. Here, functions associated to types do not signify mem-
ber functions, but rather functions operating on these types. By convention, functions
ending with an exclamation mark ‘!’ modify the object, while all other functions leave
the object unchanged.

51

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Table 6: Features supported by the main TCI algorithms in TCI.jl. In the code, tci1
is a TensorCI1, tci2 is a TensorCI2, and tt is a TensorTrain.

Section feature variant example julia code

4.2 nesting
no crossinterpolate2(ValueType, f; ...)

full
crossinterpolate1(ValueType, f; ...)

makecanonical!(tci2, f; ...)

4.3.3 pivot update
accumulative crossinterpolate1(ValueType, f; ...)

reset crossinterpolate2(ValueType, f; ...)

4.3.4 pivot search
rook crossinterpolate2(..., pivotsearch=:rook, ...)
full crossinterpolate2(..., pivotsearch=:full, ...)

4.3.5 global pivots
addglobalpivot!(tci1, ...)
addglobalpivots!(tci2, ...)

4.4
0-site sweep0site!(tci2, ...)
1-site sweep1site!(tci2, ...)

4.5 compression
SVD compress!(tt, :SVD, ...)
LU compress!(tt, :LU, ...)
CI compress!(tt, :CI, ...)

4.5 conversion
tci1→ tci2 TensorCI1{ValueType}(tci2, f; ...)
tci2→ tci1 TensorCI2{ValueType}(tci1)

To evaluate the resulting TCI, call the object as a functor in the same way as the original func-
tion. For example, tci([1, 2, 3, 4]) should be approximately equal to f([1, 2, 3, 4]). This
is equivalent to a call evaluate(tci, [1, 2, 3, 4]). A sum over the TCI, e.g. to calculate an
integral, is obtained by calling sum(tci). If the only objective is to calculate an integral, it is
more convenient to use the function integrate(...), which calculates the integral of a func-
tion by building a weighted TCI on a Gauss–Kronrod grid and performing efficient weighted
summation. Alternatively, quantics schemes described in the next section can be used for this
task.

To apply more complicated tensor network algorithms to tci, it is useful to convert it into a
TensorTrain object, which gives access to functions that do not preserve the CI-canonical gauge,
such as SVD-based compression. With TCIITensorConversion.jl, all tensor train like objects can
also be converted to actual MPS and MPO objects of the ITensors.jl library, which contains much
more functionality [33].

8.3.2 Quantics grids and QTCI

Two associated libraries, QuanticsGrids.jl and QuanticsTCI.jl, offer convenient functionality to
perform computations in quantics representation. QuanticsGrids.jl offers conversion between
quantics indices, linear indices and function variables on (multidimensional) quantics grids.
For example, fused quantics indices for a R = 10 bit quantics grid on a hypercube [−1,+1]3

can be obtained using the following code:

1 import QuanticsGrids as QG
2 grid = QG.DiscretizedGrid{3}(10, (-1.0, -1.0, -1.0), (1.0, 1.0, 1.0);

unfoldingscheme=:fused)
3 sigma = QG.grididx_to_quantics(grid, (3, 4, 5)) # Translate <@$\vec{m} = (3, 4, 5)

\rightarrow \bsigma(\vec{m})$@>
4 m = QG.quantics_to_grididx(grid, sigma) # <@$\vec{m}(\bsigma)$@>
5 x = QG.quantics_to_origcoord(grid, sigma) # <@$\vec{x}(\bsigma)$@>

52

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

To create a quantics TCI of a user-supplied function, these grids can be used together
with quanticscrossinterpolate(...) from QuanticsTCI.jl, which translates a given function
f (x1, . . . , xN) to its quantics representation Fσ, and applies the crossinterpolate2 to Fσ in
a single call. The function signature is

1 function quanticscrossinterpolate(
2 ::Type{ValueType}, # Return type of f, usually Float64 or ComplexF64
3 f, # Function of interest <@$f(x)$@>
4 grid, # Discretization grid, as QuanticsGrids.Grid, Array, or Range
5 initialpivots::Vector{MultiIndex}; # List of initial pivots <@$\{\bar{\vec{m}}\}$@>.

Default: <@$\{(1, \ldots, 1)\}$@>
6 unfoldingscheme::Symbol, # Fused or interleaved representation? Default: :interleaved
7 kwargs... # All other arguments are forwarded to crossinterpolate2().
8) where {ValueType}

The vector initialpivots enumerates the pivots used to initialize the TCI, as indices into xvals

that are automatically translated to quantics form. Thus, this function takes care of all conver-
sions to quantics representation that the user would otherwise have to do manually. It returns
a QTCI, a vector of ranks, and a vector of errors, similar to crossinterpolate2, for example:

1 qtci, ranks, errors = quanticscrossinterpolate(Float64, f, grid, tolerance=1e-5)

Here, qtci is a QuanticsTensorCI2 object, a thin wrapper around TensorCI2 that translates between
regular indices and their quantics representation. Similar to TensorCI2, objects of this type can
be evaluated using function call syntax. For example, qtci(m) should be approximately equal to
f(QG.grididx_to_origcoord(grid, m)). The object’s components can be accessed as qtci.tci and
qtci.grid. For a complete documentation of all functionality, see the online documentation of
the respective libraries [65].

9 Perspectives

In this article, we have presented old and new variants of the tensor cross interpolation (TCI)
algorithm, their open source C++, python and Julia implementations as well as a wide range of
applications (integration in high dimension, solving partial differential equations, construction
of matrix product operators, . . .).

TCI has a very peculiar position among other tensor network algorithms: it provides an
automatic way to map a very large variety of physics and applied mathematics problems onto
the MPS toolbox. Of course not all mathematical objects admit a low-rank representation.
But some problems do, and those will strongly benefit from being mapped onto the tensor
network framework. Progress in computational sciences often corresponds to exploiting a
particular structure of the problem. TCI belongs to the rare class of algorithms capable of
discovering such structures for us. We surmise that TCI and related tools will play a major
role in extending the scope of the MPS toolbox to applications beyond its original purpose of
manipulating many-body wavefunctions.

An interesting side aspect of TCI is that offers a simple Go/No-Go test for the feasibility
of speeding up computations using the MPS toolbox. Suppose, e.g., that one is in possession
of a solver for a partial differential equation. One can feed some typical solutions into TCI to
check whether they are strongly compressible—if so, a faster solver can likely be built using
MPS tools. Using this very simple approach, the authors of this article have already identified
numerous compressible objects in a wide range of contexts.

53

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Acknowledgments

J.v.D., H.S. and M.R. thank Markus Wallerberger for very interesting discussions on a relation
between prrLU and CI decompositions. X.W. and O.P. thank Miles Stoudenmire for valuable
feedback on the manuscript. M.R. thanks the Center for Computational Quantum Physics at
the Flatiron Institute of the Simons Foundation for hospitality during an extended visit.

Author contributions Y.N.F. and X.W. initiated the project. Y.N.F. conceived the TCI-via-
prrLU algorithms with the help of X.W. and developed the xfac library. M.R., S.T. and H.S.
developed the TCI.jl library based on xfac. Y.N.F., M.R., M.J., J.W.L., T.L. and T.K. contributed
examples of applications of these libraries. X.W., M.R., O.P., J.v.D., Y.N.F. and H.S. wrote the
paper and contributed to the proofs. Y.N.F. and M.R. contributed comparable amounts of work.

Funding information H.S. was supported by JSPS KAKENHI Grants No. 21H01041, No.
21H01003, No. 22KK0226, and No. 23H03817, as well as JST PRESTO Grant No. JP-
MJPR2012 and JST FOREST Grant No. JPMJFR2232, Japan. This work was supported
by Institute of Mathematics for Industry, Joint Usage/Research Center in Kyushu University.
(FY2023 CATEGORY “IUse of Julia in Mathematics and Physics” (2023a015).) X.W. acknowl-
edges the funding of Plan France 2030 ANR-22-PETQ-0007 “EPIQ”, the PEPR “EQUBITFLY”,
the ANR “DADI” and the CEA-FZJ French-German project AIDAS for funding. J.v.D. acknowl-
edges funding from the Deutsche Forschungsgemeinschaft under grant INST 86/1885-1 FUGG
and under Germany’s Excellence Strategy EXC-2111 (Project No. 390814868), and the Munich
Quantum Valley, supported by the Bavarian state government with funds from the Hightech
Agenda Bayern Plus. The Flatiron Institute is a division of the Simons Foundation.

A Proofs of statements in the main text

A.1 Proof of the quotient identity for the Schur complement

Below, we give a simple proof of the quotient identity (17), i.e. that taking the Schur com-
plement with respect to multiple blocks either simultaneously or sequentially yields the same
result. Consider two block matrices

A=





A11 A12 A13
A21 A22 A23
A31 A32 A33



 , B ≡
�

A11 A12
A21 A22

�

, (A.1)

where A11 and B are invertible submatrices of A. From (13), we factorize the B matrix as

B =

�

111 0
A21A−1

11 122

��

A11 0
0 [B/A11]

��

111 A−1
11 A12

0 122

�

,

which is easy to invert as

B−1 =

�

111 −A−1
11 A12

0 122

��

A−1
11 0
0 [B/A11]−1

��

111 0
−A21A−1

11 122

�

.

This implies that
�

B−1
�

22= [B/A11]
−1 . (A.2)

54

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

We then form the Schur complement

[A/B] = A33 − (A31, A32)B
−1
�

A13

A23

�

(A.3)

= A33 − (A31, A32)

�

111 −A−1
11 A12

0 122

��

A−1
11 0
0 [B/A11]−1

��

111 0
−A21A−1

11 122

�

�

A13

A23

�

= A33 −
�

A31, (A32 − A31A−1
11 A12)
�

�

A−1
11 0
0 [B/A11]−1

�

�

A13

A23 − A21A−1
11 A13

�

= A33 − A31A−1
11 A13 − (A32 − A31A−1

11 A12)[B/A11]
−1(A23 − A21A−1

11 A13) .

On the other hand, the Schur complement [A/A11] has the explicit block form

[A/A11] =
�

A22 A23

A32 A33

�

−
�

A21

A31

�

(A11)−1(A12 A13)

=

�

[B/A11] A23 − A21A−1
11 A13

(A32 − A31A−1
11 A12) A33 − A31A−1

11 A13

�

. (A.4)

Taking the Schur complement of the above matrix with respect to its upper left block [B/A11]
yields an expression which we recognize as the last line of Eq.(A.3). This proves the Schur
quotient identity (17):

�

[A/A11]/[B/A11]
�

= [A/B] . (A.5)

A.2 Convergence and rook conditions in block rook search

This section proves that the block rook search Algorithm 1 (see p. 14) converges, and that
upon convergence, the pivots satisfy rook conditions.

Definition: Block rook conditions Given lists I = (i1, . . . , iχ) and J = (j1, . . . , jχ) of pivots,
the block rook search algorithm alternates between factorizing A(I,J) and A(I,J), updat-
ing I and J after each factorization. In odd iterations, the block rook search obtains lists
I ′ = (i′1, . . . , i′χ) and J ′ = (j′1, . . . , j′χ) from a prrLU factorization of A(I,J). Since the ma-
trix A(I,J) has more rows than columns, the new column indices J ′ are a permutation of
the old column indices J , whereas I ′ may contain new elements that are not in I. Dur-
ing a prrLU, we denote by Ar the pivot matrix after the inclusion of the first r pivots, i.e.
Ar = A((i′1, . . . , i′r), (j

′
1, . . . , j′r)). These pivots satisfy,

(i′r , j′r) = argmax[A(I,J)/Ar−1] . (A.6)

For even iterations, one factorizes A(I,J), the new pivots satisfy

(i′r , j′r) = argmax[A(I,J)/Ar−1] , (A.7)

and I ′ is a permuation of I. After each prrLU, the pivots lists are updated I ← I ′,J ← J ′.
The process ends when I ′ = I and J ′ = J .

Definition: Rook conditions. The pivots generated by sequential rook search (i.e. the stan-
dard rook search algorithm known from literature) fulfill the following set of rook conditions:

ir = argmax([A/Ar−1](I, jr)) , (A.8)

jr = argmax([A/Ar−1](ir ,J)) , (A.9)

where Ar = A((i1, . . . , ir), (j1, . . . , jr)).

55

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

Statement 1. The pivots (i1, j1), . . . , (iχ , jχ) found by a converged block rook search satisfy
the rook conditions (A.8),(A.9). The proof follows from the restriction property of the Schur
complement. At convergence, (i′r , j′r) = (ir , jr) for each r = 1, . . . ,χ. Applying Eq. (26) to the
Schur complement of Eq.(A.6), one immediately gets Eq. (A.8). Similarly, one gets Eq. (A.9)
from Eq. (A.7).

Statement 2. The block rook search must converge in a finite number of steps. The proof can
be done iteratively. The search of (i1, j1) correspond to looking for the maximum of A(I,J)
(odd iterations) or A(I,J) (even iterations). For odd iterations i′1 = i1 unless new columns
(that have never been seen by the algorithm) have been introduced in the previous even iter-
ation. Since there are only a finite number of columns, this process must terminate in a finite
number of iterations. The same argument works for j1 and the even iterations.

To show that the search for (i2, j2) must terminate, one applies the same reasoning to
[A/A1] after (i1, j1) has converged. One continues the proof iteratively for all (ir , jr). In case
the matrix [A/(1, . . . , r − 1)] has multiple entries with the same maximum value, the am-
biguity must be lifted to guarantee that the algorithm terminates. A solution is to choose
(i′r , j′r) = (ir , jr) whenever the previously seen pivot (ir , jr) is among the maximum elements
of that matrix.

A.3 Nesting properties

Consider a tensor train eF in TCI form (34). If its pivots satisfy nesting conditions, the Tσ
ℓ

and
Pℓ matrices have certain useful properties, derived in Ref. [13, App. C] and invoked in the
main text. Here, we summarize them and recapitulate their derivations.

For each ℓ we define the matrices Aσ
ℓ
= Tσ

ℓ
P−1
ℓ

and Bσ
ℓ
= P−1

ℓ−1Tσ
ℓ

, with elements

[Aσℓ]ii′ =
σ

�
1−P

i j
=

$i_{\ell-1} \oplus \sigma_\ell \in \mathcal{I}_{\ell} \quad \Rightarrow$i�−1⊕σ�∈ I�⇒i�−1⊕σ�∈ I�⇒i�−1⊕σ�∈ I�⇒
�T

σ
i

�A

′i ′i
, [Bσℓ] j′ j =

j
σ

=
1−�
1−P

i

�T

j
σ

�B

′j′j
, (A.10a)

for i ∈ Iℓ−1, i′ ∈ Iℓ, j′ ∈ Jℓ, j ∈ Jℓ+1, σ ∈ Sℓ. If the unprimed indices i ⊕(σ) or (σ)⊕ j are
restricted to Iℓ or Jℓ, respectively, we obtain Kronecker symbols, in analogy to Eq. (10):

[Aσℓ]ii′ = δi⊕(σ),i′ , ∀ i⊕(σ) ∈ Iℓ , [Bσℓ] j′ j = δ j′,(σ)⊕ j , ∀ (σ)⊕ j ∈ Jℓ . (A.11)

If the pivots are left-nested up to ℓ, and if ı̄ℓ = (σ̄1, . . . , σ̄ℓ) is an index from a row pivot list,
ı̄ℓ ∈ Iℓ, the same is true for any of its subindices, ı̄ℓ′ ∈ Iℓ′ for ℓ′ < ℓ. Hence, iterative use of
Eq. (A.11), starting from A1A2, yields a telescope collapse of the following product:

...
1

1σ̄

1A

�σ̄

�A

′i
= [Aσ̄1

1 · · ·A
σ̄ℓ
ℓ
]1i′ = δı̄ℓ,i′ , ∀ ı̄ℓ ∈ Iℓ if I0 < I1 < · · ·< Iℓ . (A.12a)

Similarly, if the pivots are right-nested up to ℓ, and ȷ̄ℓ = (σ̄ℓ, . . . , σ̄L) ∈ Jℓ, we obtain

...
1

Lσ̄

�B

�σ̄
′j

LB
= [Bσ̄ℓ

ℓ
· · ·Bσ̄L

L] j′1 = δ j′, ȷ̄ℓ , ∀ ȷ̄ℓ ∈ Jℓ if Jℓ > · · ·> JL > JL+1 . (A.12b)

We stress that such collapses do not apply for all configurations, only for pivots from left- or
right-nested lists, respectively. Thus, the As and Bs are not isometries:

∑

σ[A
σ†
ℓ

Aσ
ℓ
]ii′ ̸= δii′

and
∑

σ[B
σ
ℓ

Bσ†
ℓ
] j′ j ̸= δ j′ j , because the

∑

σ sums involve non-pivot configurations.

56

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

The above telescope collapses are invoked in the following arguments:

• 1-Site nesting w.r.t. Tℓ: We say that pivots are nested w.r.t. Tℓ if they are left-nested up to
ℓ−1 and right-nested up ℓ+1. Then, if σ̄ is a configuration from the 1d slice on which Tℓ is
built, σ̄ ∈ Iℓ−1×Sℓ×Jℓ+1, the tensor train can be collapsed telescopically using Eqs. (A.12):

eFσ̄ =
�

Aσ̄1
1 · · · A

σ̄ℓ−1
ℓ−1 T σ̄ℓ

ℓ
Bσ̄ℓ+1
ℓ+1 · · · B

σ̄L
L
�

11 =
�

T σ̄ℓ
ℓ

�

ı̄ℓ−1 ȷ̄ℓ+1
= Fσ̄ , (A.13)I JJ J

... ...

...

11

�T
=

1σ̄ �σ̄

�T

�σ̄Lσ̄

L←

L
1−�ı̄ +1�̄

B1A

1−�σ̄

+1�B

+1�σ̄

1−�A
.

This proves that if the pivots of eF are nested w.r.t. Tℓ, then eF is exact on the slice Tℓ. It
follows that if the pivots of eF are nested w.r.t. all Tℓ, i.e. if they are fully nested (cf. Eq. (37)),
then eF is exact on all slices Tℓ (and their sublices Pℓ), i.e. on all configurations σ̄ from which
it was built. Hence, a fully nested eF is an interpolation of F .

• 0-Site nesting w.r.t. Pℓ: We say that the pivots are nested w.r.t. Pℓ if they are left-nested
up to ℓ and right-nested up ℓ+1. Then, Pℓ is a subslice of both Tℓ (since Iℓ−1 < Iℓ) and
Tℓ+1 (since Jℓ+1 > Jℓ+2), and eF is exact on both (by Eq. (A.13)), hence eF is exact on Pℓ.
Moreover, if we view eFσ, with σ = (iℓ, jℓ+1), as a matrix with elements [eF]iℓ jℓ+1

, then its
rank, say rℓ, equals the dimension of Pℓ, i.e. rℓ = χℓ. This matrix rank rℓ is an intrinsic
property of eF : it will stay fixed under all exact manipulations on eF , i.e. ones that leave its
values on all configurations unchanged, e.g. exact SVDs or exact TCIs.

• 2-Site nesting w.r.t. Πℓ: We say that pivots are nested w.r.t. Πℓ if they are left-nested up to
ℓ− 1 and right-nested up to ℓ+ 2. Then, if σ̄ is a configuration from the 2d slice Πℓ, i.e.
σ̄ ∈ Iℓ−1×Sℓ×Sℓ+1×Jℓ+2 so that Fσ̄ = [Πℓ]σ̄, the tensor train can be collapsed telescop-
ically to yield eFσ̄ =

�

T σ̄ℓ
ℓ

P−1
ℓ

T σ̄ℓ+1
ℓ+1

�

ı̄ℓ−1, ȷ̄ℓ+2
. On this slice the local error,

�

Πℓ − TℓP
−1
ℓ

Tℓ+1

�

σ̄
,

is therefore equal to the global error,
�

F − eF]σ̄, of the TCI approximation. A local update
reducing the local error will thus also reduce the global error (cf. Eq. (40)).

A.4 TCI in the continuum

This entire article is based on the cross interpolation of discrete tensors Fσ. In this appendix,
we briefly discuss how this concept can be extended to continuum functions f (x), as alluded
to in Sec. 2.2.

Consider the natural TCI representation of a function f (x). Following the notations of
Sec. 5.1, we suppose that f (x) has been discretized on a grid {x(σ)} and is represented by a
tensor Fσ = f (x(σ)). Its TCI approximation eFσ is constructed from tensors Tℓ that are slices
of Fσ, i.e. with elements [Tσ

ℓ
]iℓ−1 jℓ+1

given by function values of f (x(σ)),

[Tσℓ]iℓ−1 jℓ+1
= f
�

x1(σ1), . . . , xℓ−1(σℓ−1), xℓ(σ), xℓ+1(σℓ+1), . . . , xL(σL)
�

. (A.14)

In order to extend the associated TCI form to the continuum, we can simply extend xℓ(σ) to
new values. In other words, one may perform the TCI on a grid and evaluate the obtained
MPS on another, larger, grid. Formally, one simply replaces the matrix Tσ

ℓ
by a matrix Tℓ(x)

defined as

[Tℓ(x)]iℓ−1 jℓ+1
= f
�

x1(σ1), . . . , xℓ−1(σℓ−1), x , xℓ+1(σℓ+1), . . . , xL(σL)
�

. (A.15)

The obtained MPS f̃ (x) = T1(x1)P−1
1 T2(x2)P−1

2 · · · Tn(xn) can be evaluated for any x in the
continuum. In practice, it may be convenient to write the matrices Tℓ(x) as an expansion over,
say, Chebychev polynomials. This can be readily done if the initial grid is constructed from the
corresponding Chebychev roots.

57

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

0 50 100 150 200

�

2

6

10

14

χ
�

(a)

10−210−410−610−810−10

Chen/Lindsey4− log() (b)10−= 10τ

τ

τ

R
10
30
100
200

Figure 14: Bond dimensions of the discrete Fourier transform in quantics representa-
tion. (a) Bond dimensionsχℓ along the MPS. Different colors signify different number
of bits 2R. Except at both ends of the MPS, the bond dimension χℓ is constant with
a value independent of R. (b) Dependence of the maximum bond dimension χ on
the tolerance τ. Bond dimensions increase logarithmically with decreasing tolerance
(gray curve), and are independent of R. The error bound from Ref. [66] is shown
for comparison (purple curve).

A.5 Small rank of the quantics Fourier transform

There is an intuitive explanation of the fact that we need to reverse the ordering of the indices
of k with respect to those of m: large-scale properties in real space (big shifts of m, associated
with changes of σℓ with ℓ≈ 1) correspond to the Fourier transform at small momentum k (i.e.
changes of σ′

ℓ
with ℓ≈R), and indices that relate to the same scales should be fused together.

More technically, the fact that the scale-reversed encodings (75) yield a tensor Tµ of low rank
stems from the factor 2R−ℓ

′−ℓ in its phase. This factor is an integer for R− ℓ′ ≥ ℓ and ≃ 0 for
R− ℓ′≪ ℓ, hence exp[−i2π2R−ℓ

′−ℓσ′
ℓ′
σ
ℓ
] = 1 or ≃ 1, respectively, irrespective of the values

of σ′
ℓ′

and σ
ℓ
. Therefore, Tσ′σ has a strong dependence on the index combinations (σ′

ℓ′
,σ
ℓ
)

only if neither of the above-mentioned inequalities apply, i.e. only if R− ℓ′ + 1 is equal to or
just slightly smaller than ℓ; in this sense, the dependence of Tσ′σ on |(R−ℓ′+1)−ℓ| is rather
short-ranged. This is illustrated in Figure 15 by the color-scale plot of (2R−ℓ

′−ℓ)mod 1 as a
function of ℓ and R− ℓ′ + 1: only a small set of coefficients is not close to an integer, namely
those on or slightly below the diagonal, where R− ℓ′ + 1 = ℓ or ≲ ℓ. This is the reason for
defining µℓ as (σ′R−ℓ+1,σ

ℓ
), not (σ′

ℓ
,σ
ℓ
). Then, tensor train unfoldings eTµ of Tµ involve, in

quantum information parlance, only short-range entanglement and have low rank [21,58].
To show explicitly that TCI is able to find this low-rank representation, numerical experi-

ments are shown in Fig. 14. The resulting tensor train has a rank of χ = 11 for a tolerance
of τ = 10−10, independent of R. With decreasing tolerance, we observe that the bond di-

1 15 30
1

15

30

0.0

0.5

1.0

�

+
1

′ �
R

−

)mod 1�−′�R−(2

Figure 15: Fractional part of the phase factor of the Fourier transform.

58

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

mension increases slightly slower than logarithmically. This is similar to the results found in
Refs. [21,58,59] for SVD-based truncation, and below the error bound obtained by Chen and
Lindsey in Ref. [66].

B Code listings of examples discussed in the text

All the examples discussed in the text are associated with a runnable script (in one or more lan-
guage) that can be found in the supplementary materials. Below, we show the most important
parts of these scripts.

B.1 Python scripts

B.1.1 Integration of multivariate functions in environment mode

In the environment mode discussed in section 4.3.7, the TCI factorization aims to minimize
the error of the integral (whereas with the usual bare mode, it aims to minimize the error on
the intergrand). In xfac, the environment mode is switched on when the CTensorCI() class is
instanciated with weights wℓ(σℓ). Providing these weights actually triggers two things: the
activation of the environment mode and the fact that one uses the weighted unfolding Eq. (63).
To perform the computation in environment mode, simply replace the call to CTensorCI() in line
19 of code Listing 1 by the lines of code in Listing 6.

1 # TCI1 Tensor factorization in "environment mode"
2 par = xfacpy.TensorCIParam()
3 par.weight = [well] * N
4 tci = xfacpy.CTensorCI(f, [xell] * N, par)

Listing 6: Python code snippet to perform a TCI factorization in environment
mode combined with weighted unfolding Eq. (63) with weights {wℓ(σℓ)}. To
activate environment mode, the weights are passed to the CTensorCI() class using
the attribute weights of the optional parameter par, which itself is an instance of class
xfacpy.TensorCIParam(). The weights well must be provided for each of the N legs of
the tensor. In this example we chose the weights to be identical for each leg (Gauss–
Kronrod weights) and use the shorthand notation [well] * N, to generate a list of N

lists of weights. Note that above code is generic and works similarly with all other
TCI classes.

B.1.2 Quantics for 2-dimensional integration

Listing 7 shows the quantics unfolding of the 2D function defined in Eq. (79) (see Fig. 8 in
Sec. 6.3.1). Here, the variables x and y are both discretized onto grids of M = 2R points each,
with R= 40. The corresponding MPS eFσ has L= 2R indices, interleaved so that even indices
σ2ℓ encode x and odd indices σ2ℓ+1 encode y . Lines 9–18 define conversions between grid
indices and interleaved quantics indices. Lines 21–28 then define the function from Eq. (79)
and the corresponding tensor in quantics representation, which is then TCI-unfolded using
xfac in lines 31–38.

1 import xfacpy
2 import numpy as np
3

4 R = 40 # number of bits

59

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

5 M = 2**R # number of grid points per variable
6 xmin, xmax, ymin, ymax = -5, +5, -5, +5 # domain of function f
7

8

9 def m_to_sigma(m_x, m_y): # convert grid index (m_x,m_y) to quantics multi-index sigma
10 b1, b2 = np.binary_repr(m_x, width=R), np.binary_repr(m_y, width=R)
11 return np.ravel(list(zip(b1, b2))).astype('int')
12

13

14 def sigma_to_xy(sigma): # convert quantics multi-index sigma to grid point (x,y)
15 m_x, m_y = int(''.join(map(str, sigma[0::2])), 2), int(
16 ''.join(map(str, sigma[1::2])), 2)
17 x, y = xmin + m_x*(xmax-xmin)/M, ymin + m_y*(ymax-ymin)/M
18 return x, y
19

20

21 def f(x, y):
22 return (np.exp(-0.4*(x**2+y**2))+1+np.sin(x*y)*np.exp(-x**2) +
23 np.cos(3*x*y)*np.exp(-y**2)+np.cos(x+y))
24

25

26 def f_tensor(sigma): # quantics tensor
27 x, y = sigma_to_xy(sigma)
28 return f(x, y)
29

30

31 # load default parameters for initializing tci object T(1/P)T(1/P)T...
32 p = xfacpy.TensorCI1Param()
33 p.pivot1 = [0 for ind in range(2*R)] # set first pivot to sigma=(0,0,...0)
34 # use first pivot to initialize tci
35 f_tci = xfacpy.TensorCI1(f_tensor, [2]*2*R, p)
36

37 for sweep in range(40):
38 f_tci.iterate() # perform half-sweep
39

40 f_tt = f_tci.get_TensorTrain() # get a TT object MMMM...
41 print("x\t f(x)\t f_tt(x)")
42

43 # evaluate the approximation on some regularly spaced points
44 for m_x in range(0, M, 2**(R-5)):
45 for m_y in range(0, M, 2**(R-5)):
46 sigma = m_to_sigma(m_x, m_y)
47 x, y = xmin + (xmax-xmin)*m_x/M, ymin + (ymax-ymin)*m_y/M
48 print(f"{x}\t{y}\t{f(x,y)}\t{f_tt.eval(sigma)}")

Listing 7: Python code, using xfac and TensorCI1 to compute the quantics
approximation of the 2D-function f (x , y) of Eq. (79) for x and y between −5 and 5
using 240 × 240 grid points, plotted in Fig. 8.

B.1.3 Quantics for multi-dimensional integration

1 import xfacpy
2 from math import log
3

4 N = 5
5 xmin, xmax = 0.0, 1.0
6 R = 40 # Number of bits
7

8

9 def f(x): # Integrand function
10 f.neval += 1
11 return 2**N / (1 + 2 * sum(x))
12

13

14 f.neval = 0
15

16 # Exact integral value in 5 dimensions
17 i5 = (- 65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24

60

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

18

19 # Define the multidim quantics grid
20 grid = xfacpy.QuanticsGrid(a=xmin, b=xmax, nBit=R, dim=N, fused=False)
21

22

23 def fq(sigma): # Integrand function on quatics grid
24 return f(grid.id_to_coord(sigma))
25

26

27 # TCI2 Tensor factorization
28 tci = xfacpy.TensorCI2(fq, [grid.tensorLocDim] * grid.tensorLen)
29

30 # Estimate integral and error
31 for hsweep in range(14):
32 tci.iterate()
33 # calculate the integal over the hypercube
34 itci = tci.tt.sum1()*grid.deltaVolume
35 print("hsweep= {}, neval= {}, I_tci= {:e}, |I_tci - I_exact|= {:e}, in-sample err=

{:e}"
36 .format(hsweep+1, f.neval, itci, abs(itci - i5), tci.pivotError[-1]))

Listing 8: Python code to compute the integral I (N=5) of Eq. (64) numerically
using the multi-dimensional quantics integration from section 6.3.2. The integrand
is formally discretized on 240 points per variable xn, while the factorization is
performed on a multi-dimensional quantics representation using a tensor of 25×40

legs holding 2 sites each. The mapping between the original coordinate space x and
the quantics representation is performed with the helper class xfacpy.QuanticsGrid().
The maximal bond dimension is 30 (default value of xfacpy.TensorCI2).

Listing 8 contains the code to compute the multi-dimensional integral Eq. (64) using quan-
tics. The code is very similar to Listing 1, but replaces the Gauss–Kronrod helper functions with
corresponding functions for a quantics grid. The helper class xfacpy.QuanticsGrid() in line 16
performs the mapping between the original coordinate space (x1, . . . , xN) and the quantics
representation. a=0 and b=1 specify the bounds of the integration interval, the dimension is
N = 5 and we have chosen R = 40 ≡ nBit. The last argument fused=False indicate that the
variable should not be fused, as described above.

The function fq(sigma) defined in line 18 and 19 evaluates the integrand function f(x) in
the quantics representation. The method QuanticsGrid.id_to_coord(sigma) provides the map-
ping from the index position σ in the interleaved representation, written in terms of a binary
number, onto the corresponding point (x1, . . . , xN) in the original argument space of the func-
tion f(x). In our implementation σ is a Python list consisting of 2RN binary elements, each
either 0 or 1. The first or last element of σ represents the left-most or right-most bit, respec-
tively. The tensor is instantiated in line 22. We have chosen TCI2 in this example as opposed
to TCI1 in Listing 1, to demonstrate that both implementations of TCI1 and TCI2 are easily
interchanged as their interfaces are similar. The overall result will be similar in both cases.
The second argument of TensorCI2, namely [grid.tensorLocDim] * grid.tensorLen, creates a list
[2, 2, 2, ...] with 200 elements, where each element is equal to 2 (our tensor has NR= 200
legs, with dimension 2 per leg). The rest of the script is similar to Listing 1, printing the result
and the error for each iteration of the TCI algorithm.

B.1.4 Heat equation using superfast Fourier transforms

1 import numpy as np
2 import xfacpy
3

4 # Grid parameters
5 R = 30
6 M = 2**R

61

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

7 xmin, xmax = 2., 8.
8

9 # Manipulation of indices and grid
10 def m_to_sigma(m): # convert grid index to quantics multi-index
11 return [int(k) for k in np.binary_repr(m, width=R)]
12

13 def sigma_to_m(sigma): # reversed transform
14 return int(''.join(map(str, sigma)), 2)
15

16 def sigma_to_x(sigma): # convert quantics multi-index to position
17 return xmin + (xmax-xmin) * sigma_to_m(sigma) / 2**R
18

19 # Contraction
20 def contract_tt_MPO_MPS(tt_mpo, tt_mps):
21 mpo = tt_mpo.core
22 mps = tt_mps.core
23 res = xfacpy.TensorTrain_complex(len(mpo))
24 for i in range(len(mpo)):
25 aux = np.reshape(mpo[i], (mpo[i].shape[0], 2, 2, mpo[i].shape[2]))
26 m = np.tensordot(mps[i], aux, axes=([1], [2]))
27 m = np.transpose(m, (0, 2, 3, 1, 4))
28 newshape = (mps[i].shape[0]*mpo[i].shape[0], 2,
29 mps[i].shape[2]*mpo[i].shape[2])
30 m = np.reshape(m, newshape)
31 res.setCoreAt(i, m)
32 res.compressSVD()
33 return res
34

35 # TCI
36 def build_TCI2_complex(fun, d, pivot1, pivots):
37 p = xfacpy.TensorCI2Param()
38 p.pivot1 = pivot1
39 p.useCachedFunction = True
40 p.fullPiv = True
41 ci = xfacpy.TensorCI2_complex(fun, [d]*R, p)
42 ci.addPivotsAllBonds(pivots)
43

44 nsweep = 3
45 for chi in [4,8,16,32,64]:
46 ci.param.bondDim = chi
47 for i in range(1, nsweep+1):
48 ci.iterate()
49 rank = np.max([x.shape[2] for x in ci.tt.core])
50 if (rank < chi) or (ci.pivotError[-1] < 1e-10):
51 break
52 return ci.tt
53

54

55 # Fourier transform MPOs
56 def qft(mu):
57 m1 = sigma_to_m([mu[i]%2 for i in range(R)])
58 m2_swapped = sigma_to_m(reversed([mu[i]//2 for i in range(R)]))
59 res = 1/(2**(R/2)) * np.exp(-1j * 2*np.pi * m1 * m2_swapped / 2**R)
60 return res
61 qft_mpo = build_TCI2_complex(qft, 4, pivot1=[3]*R, pivots=[])
62

63 def iqft(mu):
64 m1_swapped = sigma_to_m(reversed([mu[i]%2 for i in range(R)]))
65 m2 = sigma_to_m([mu[i]//2 for i in range(R)])
66 res = 1/(2**(R/2)) * np.exp(1j * 2*np.pi * m1_swapped * m2 / 2**R)
67 return res
68 iqft_mpo = build_TCI2_complex(iqft, 4, pivot1=[3]*R, pivots=[])
69

70

71 # Initial temperature distribution
72 def u0(x):
73 door = np.where(abs(x-5) <= 1.5, 1, 0)
74 oscillations = (1 + np.cos(120*x) * np.sin(180*x))
75 return door + 0.01 * oscillations
76

77 # Quantics representation of u0
78 def u0_tensor(sigma):

62

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

79 return u0(sigma_to_x(sigma))
80 pivot1= [np.random.randint(2) for i in range(R)]
81 while u0_tensor(pivot1) == 0:
82 pivot1 = [np.random.randint(2) for i in range(R)]
83 pivots = [m_to_sigma(m) for m in [0, M//4, M//2-2, M//2, 3*M//4, M-1]]
84 u0_mps = build_TCI2_complex(u0_tensor, 2, pivot1, pivots)
85

86

87 # Time propagator of the Heat equation in Fourier Space
88 def heat_kernel(sigma,t):
89 k = sigma_to_m(reversed(sigma)) # work with swapped bits in Fourier space
90 delta = (xmax - xmin) / M
91 g_k = np.exp(- (2/delta * np.sin(np.pi * k / M))**2 * t)
92 return g_k
93

94 # MPO representation of the Heat kernel
95 def build_mpo_heat_kernel(t):
96 # build a Quantics MPS
97 pivot1 = [0]*R
98 heat_kernel_t = lambda sigma : heat_kernel(sigma, t)
99 heat_mps = build_TCI2_complex(heat_kernel_t, 2, pivot1, pivots)

100 # convert to a diagonal MPO
101 heat_mps = heat_mps.core
102 res = xfacpy.TensorTrain_complex(R)
103 for i in range(R):
104 s = heat_mps[i].shape
105 aux = np.zeros((s[0],4,s[2]),dtype='complex')
106 aux[:,0,:] = heat_mps[i][:,0,:]
107 aux[:,3,:] = heat_mps[i][:,1,:]
108 res.setCoreAt(i,aux)
109 return res
110

111

112

113 # Time evolution
114 ft_u0 = contract_tt_MPO_MPS(qft_mpo,u0_mps)
115 ts = [5e-6, 0.0001, 0.01, 0.25, 1] # times list
116 samples_lists = []
117 m_list = [m for m in range(0,M,2**(R-4))]
118 x_list = [xmin + (xmax-xmin)/M * m for m in m_list]
119 for t in ts:
120 heat_k_mpo = build_mpo_heat_kernel(t)
121 ft_ut = contract_tt_MPO_MPS(heat_k_mpo, ft_u0)
122 ut = contract_tt_MPO_MPS(iqft_mpo, ft_ut)
123 samples_lists.append([np.real(ut.eval(m_to_sigma(m))) for m in m_list])
124

125 # print the evolution of temperature on some regularly spaced points
126 print(*(['x\t'] + [f'u(x,{t})' for t in ts]), sep='\t')
127 for i,x in enumerate(x_list):
128 print(*([f'{x:.3f}'] + [f'\t{samples_lists[j][i]:.3f}' for j in range(5)]),
129 sep='\t')

Listing 9: Python code using TensorCI2 and the quantics representation defined in
section 6 to build a superfast Fourier transform and solve the heat equation on a
billion points grid, as shown in Fig. 11.

Listing 9 shows the code to solve the heat equation (80) on a 230 points grid using quantics
and the ultrafast Fourier transform MPO representation, as described in section 6.2.

The contract_tt_MPO_MPS defined line 20 performs the contraction of an MPO with an MPS.
The build_TCI2_complex function defined line 36 calls TCI to build either a MPS when the second
argument is d = 2 or an MPO when d = 4. We define an MPO as a tensor with dimension 4
per leg by fusing the input an output indices σ,σ′ following: µ= 2σ′ +σ.

The Fourier and inverse Fourier transform MPO representations are defined line 56 and 63.
The initial temperature distribution (85) is defined line 72 and mapped to a quantics MPS. The
build_mpo_heat_kernel method line 95 builds the MPO representation of the heat kernel operator
(83) to perform time evolution in Fourier space for a given time t.

63

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

The final temperature distribution is then computed at 5 different times following (84a)
and (84b). The code prints a temperature values on some regularly spaced grid points for
visualization.

B.2 C++ code
B.2.1 Computation of partition functions

Listing 10 shows the C++ code to compute the partition function using TCI2 for classical
Ising model with |ℓ− ℓ′|−2 interaction detailed in Eq. (66). We increase the maximum bond
dimension by incD (=5) step by step until the error is below the tolerance (=10−10).

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 #include <cmath>
5 #include "xfac/tensor/tensor_ci_2.h"
6

7 using namespace std;
8 using namespace xfac;
9

10 // function for compute energy for given spin configuration
11 double energy(vector<double> const& spin, vector<double> const& cpln, vector<int> const&

config){
12 const int len= config.size();
13 vector<double> vecS(len);
14 transform(config.begin(), config.end(), vecS.begin(), [&spin](int i) {return

spin.at(i);});
15

16 double sum2 = 0;
17 for (int ii=0; ii<len; ii++) {
18 const double si = vecS.at(ii);
19 for (int jj=ii+1; jj<len; jj++) {
20 const double sj = vecS.at(jj);
21 sum2 += -(si*sj) * cpln.at(jj-ii-1);
22 }
23 }
24 return sum2;
25 }
26

27 int main(int argc, char *argv[]){
28 vector<double> spin = {-1,1}; // down:-1; up:+1
29 const double beta = 0.6; // inverse temperature
30 const double len = 32; // system size
31

32 // cpln: coupling constant is |i-j|ˆ(-2)
33 vector<double> cpln(len-1);
34 iota(cpln.begin(), cpln.end(), 1);
35 for_each(cpln.begin(), cpln.end(), [] (double& val) {
36 val = pow(val,-2);
37 });
38

39 // TT parameters
40 const int niter = 100; // # of tci sweeps
41 const int minD = 5; // minimal bond dimension
42 const int incD = 5; // increment of bond dimension
43 const int dim = spin.size(); //dim of the local space
44

45 // Define partition function
46 long count = 0;
47 auto prob=[=,&spin,&beta,&count](vector<int> const& config) {
48 count++;
49 return exp(-beta * energy(spin, cpln, config));
50 };
51

52 // Initialize TCI
53 TensorCI2Param pp;
54 pp.bondDim = minD;
55 auto tci = TensorCI2<double>(prob, vector(len,dim),pp);

64

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

56

57 // Initialize PIVOTS
58 auto init1 = vector(len, 1);
59 auto init2 = vector(len, 0);
60 vector<vector<int>> seed = {init1,init2};
61 tci.addPivotsAllBonds(seed);
62

63 // TCI sweep
64 for (int iter=0; iter<niter; iter++){
65 tci.iterate();
66 cout << setw(6) << fixed << iter << " "
67 << setw(6) << fixed << tci.param.bondDim << " "
68 << setw(12) << fixed << count << " "
69 << setw(20) << scientific << setprecision(4) <<

tci.pivotError.back()/tci.pivotError.front() << " "
70 << endl;
71 if (tci.pivotError.back() / tci.pivotError.front() <1e-10) {
72 break;
73 }
74 tci.pivotError.clear();
75 tci.param.bondDim += incD;
76 }
77

78 // Measure local moments
79 vector<vector<double>> ones = vector(len, vector(dim,1.0));
80 vector<double> m2(dim);
81 transform(spin.begin(), spin.end(), m2.begin(), [&len](double i) {return pow(i,2);});
82 const double norm = tci.tt.sum(ones);
83 // compute <M>
84 double aM1 = 0;
85 for (int ss=0; ss<len; ss++){
86 auto tmp = ones;
87 tmp.at(ss) = spin;
88 aM1 = aM1 + tci.tt.sum(tmp);
89 }
90 // compute <Mˆ2>
91 double aM2 = 0;
92 for (int s1=0; s1<len; s1++){
93 for (int s2=s1+1; s2<len; s2++){
94 auto tmp = ones;
95 tmp.at(s1) = spin;
96 tmp.at(s2) = spin;
97 aM2 = aM2 + 2*tci.tt.sum(tmp);
98 }
99 }

100 for (int ss=0; ss<len; ss++){
101 auto tmp = ones;
102 tmp.at(ss) = m2;
103 aM2 = aM2 + tci.tt.sum(tmp);
104 }
105

106 // Print resutls
107 const double FE = log(norm)/len; //free energy
108 const double M1 = aM1/norm/len;
109 const double M2 = aM2/norm/len/len;
110 cout << "Beta: "
111 << setw(6) << fixed << setprecision(2) << beta
112 << " | Free Energy: "
113 << setw(20) << fixed << setprecision(16) << FE
114 << " | M1: "
115 << setw(12) << fixed << setprecision(8) << M1
116 << " | M2: "
117 << setw(12) << fixed << setprecision(8) << M2
118 << " | # calls: " << setw(12) << fixed << count
119 << endl;
120 return 0;
121 }

Listing 10: C++ code to compute the partition function for classical Ising model with
|ℓ− ℓ′|−2 interactions; see Eq. (66).

65

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

B.3 Julia scripts

B.3.1 TCI for high-dimensional Gauss–Kronrod quadrature

Listing 11 contains the Julia script for numerical integration of Eq. (64) using TCI for N = 5
using bare error estimate (refer to Sec. 4.3.7).

1 import TensorCrossInterpolation as TCI
2

3 N = 5 # Number of dimensions <@\cN@>
4 tolerance = 1e-10 # Tolerance of the internal TCI
5 GKorder = 15 # Order of the Gauss-Kronrod rule to use
6

7 f(x) = 2ˆN / (1 + 2 * sum(x)) # Integrand
8 integralvalue = TCI.integrate(Float64, f, fill(0.0, N), fill(1.0, N); tolerance, GKorder)
9

10 # Exact value of integral for <@$\cN = 5$@>
11 i5 = (-65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
12 error = abs(integralvalue - i5)
13

14 @info "TCI integration with GK$GKorder: " integralvalue i5 error

Listing 11: Julia code to numerically compute the integral I (N=5) of Eq. (64) using
TCI.jl. Results are shown in Figs. 4.

B.3.2 Quantics TCI for 2-dimensional integration

Listing 12 shows the Julia script for the Julia code to compute a quantics TCI of the 2D-
function f (x , y) of Eq. (79) for x and y between −5 and 5 using R= 40. In practice, we use
QuanticsTCI.jl, which is a thin wrapper around TCI.jl that provides a more user-friendly
interface for quantics TCI.

1 using QuanticsTCI
2 import QuanticsGrids as QG
3

4 R = 40 # Number of bits <@\cR@>
5 xygrid = QG.DiscretizedGrid{2}(R, (-5.0, -5.0), (5.0, 5.0)) # Discretization grid

<@$\vec{x}(\bsigma)$@>
6

7 function f(x, y) # Function of interest <@$f(x)$@>
8 return exp(-0.4*(xˆ2 + yˆ2)) + 1 + sin(x * y) * exp(-xˆ2) +
9 cos(3*x*y) * exp(-y ˆ 2) + cos(x+y)

10 end
11

12 # Construct and optimize quantics TCI <@\tF_\bsigma@>
13 f_tci, ranks, errors = quanticscrossinterpolate(Float64, f, xygrid; tolerance=1e-10)
14

15 # Print a table to compare <@$f(x)$@> and <@\tF_\bsigma@> on some regularly spaced
points

16 println("x\t y\t f(x)\t\t\t f_tt(x)")
17 for index in CartesianIndices((10, 10))
18 m = Tuple(index) .* div(2ˆR, 10)
19 x, y = QG.grididx_to_origcoord(xygrid, m)
20 println("$x\t$y\t$(f(x, y))\t$(f_tci(m))")
21 end
22

23 println("Value of the integral: $(integral(f_tci))")

Listing 12: Julia code to compute a quantics TCI of the 2D-function f (x , y) of
Eq. (79) for x , y ∈ [−5, 5) using 240 × 240 grid points, plotted in Fig. 8.

66

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

B.3.3 Quantics TCI for multi-dimensional integration
Listing 13 shows the Julia script to compute the integral I (N=5) [Eq. (64)] numerically using
the multi-dimensional quantics integration from Sec. 6.3.2. The code is equivalent to the
Python script in Listing 8.

1 import QuanticsGrids as QG
2 import TensorCrossInterpolation as TCI
3

4 N = 5 # Number of dimensions <@\cN@>
5 tolerance = 1e-10 # Tolerance of the internal TCI
6 R = 40 # Number of bits <@\cR@>
7

8 f(x) = 2ˆN / (1 + 2 * sum(x)) # Integrand <@$f(\vec{x})$@>
9

10 # Discretization grid with <@$2^{\scN \scR}$@> points
11 grid = QG.DiscretizedGrid{N}(R, Tuple(fill(0.0, N)), Tuple(fill(1.0, N)),

unfoldingscheme=:interleaved)
12 quanticsf(sigma) = f(QG.quantics_to_origcoord(grid, sigma)) # <@$f(\vec{x}(\bsigma))$@>
13

14 # Obtain the QTCI representation and evaluate the integral via factorized sum
15 tci, ranks, errors = TCI.crossinterpolate2(Float64, quanticsf, QG.localdimensions(grid);

tolerance)
16

17 # Integral is sum multiplied with discretization volumne
18 integralvalue = TCI.sum(tci) * prod(QG.grid_step(grid))
19

20 # Exact value of integral for <@$\cN = 5$@>
21 i5 = (-65205 * log(3) - 6250 * log(5) + 24010 * log(7) + 14641 * log(11)) / 24
22 error = abs(integralvalue - i5) # Error for <@$\cN = 5$@>
23

24 @info "Quantics TCI integration with R=$R: " integralvalue i5 error

Listing 13: Julia code to compute the integral I (N=5) of Eq. (64) numerically using
the multi-dimensional quantics integration from Sec. 6.3.2. The integrand is formally
discretized on 240 points per variable xn, the factorization is performed on a multi-
dimensional quantics representation of a tensor of 25×40 elements.

B.3.4 Compressing existing data with TCI

In the example below, we illustrate how to apply (Q)TCI to some existing typical datasets. Let
dataset be some pre-generated dataset (e.g. read from a file) in the form of an N -dimensional
array. Listing 14 shows a test for TCI compressibility. Listing 15 shows a similar test for QTCI
compressibility.

1 import TensorCrossInterpolation as TCI
2

3 # Replace this line with the dataset to be tested for compressibility.
4 grid = range(-pi, pi; length=200)
5 dataset = [cos(x) + cos(y) + cos(z) for x in grid, y in grid, z in grid]
6

7 # Construct TCI
8 tolerance = 1e-5
9 tt, ranks, errors = TCI.crossinterpolate2(

10 Float64, i -> dataset[i...], collect(size(dataset)), tolerance=tolerance)
11

12 # Check error
13 ttdataset = [tt([i, j, k]) for i in axes(grid, 1), j in axes(grid, 1), k in axes(grid, 1)]
14 errors = abs.(ttdataset .- dataset)
15 println(
16 "TCI of the dataset with tolerance $tolerance has link dimensions

$(TCI.linkdims(tt)), "
17 * "for a max error of $(maximum(errors))."
18)

Listing 14: Julia code to test an existing dataset for TCI compressibility.

67

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

1 using QuanticsTCI
2 import TensorCrossInterpolation as TCI
3

4 # Number of bits
5 R = 8
6

7 # Replace with your dataset
8 grid = range(-pi, pi; length=2ˆR+1)[1:end-1] # exclude the end point
9 dataset = [cos(x) + cos(y) + cos(z) for x in grid, y in grid, z in grid]

10

11 # Perform QTCI
12 tolerance = 1e-5
13 qtt, ranks, errors = quanticscrossinterpolate(
14 dataset, tolerance=tolerance, unfoldingscheme=:fused)
15

16 # Check error
17 qttdataset = [qtt([i, j, k]) for i in axes(grid, 1), j in axes(grid, 1), k in axes(grid,

1)]
18 error = abs.(qttdataset .- dataset)
19 println(
20 "Quantics TCI compression of the dataset with tolerance $tolerance has " *
21 "link dimensions $(TCI.linkdims(qtt.tci)), for a max error of $(maximum(error))."
22)

Listing 15: Julia code to test an existing dataset for QTCI compressibility.

B.3.5 Adding global pivots

We provide a simple example demonstrating the ergodicity problem discussed in Sec. 4.3.5
and how to fix it by adding a global pivot. We consider a function that takes a finite value at
the first and last grid points, but is zero elsewhere (see Fig. 16):

fm = δm,0 +δm,M−1, (B.1)

where m= 0,1, · · · , M − 1 and M = 2R. When we interpolate this function using a 2-site TCI
in the quantics representation with an initial pivot σ = (0, 0, · · · , 0) (m= 0), the interpolation
fails to capture the function at the last grid point for R ≥ 3 [67]. We can fix this by adding a
global pivot at the last grid point. Listing 16 shows the Julia code to demonstrate this.

1 import TensorCrossInterpolation as TCI
2 import Random
3 import QuanticsGrids as QD
4 using PythonPlot: pyplot as plt
5 import PythonPlot
6 using LaTeXStrings
7

8 PythonPlot.matplotlib.rcParams["font.size"] = 15
9

10 # Number of bits
11 R = 4
12 tol = 1e-4
13

14 # f(q) = 1 if q = (1, 1, ..., 1) or q = (2, 2, ..., 2), 0 otherwise
15 f(q) = (all(q .== 1) || all(q .== 2)) ? 1.0 : 0.0
16

17 localdims = fill(2, R)
18

19 # Perform TCI with an initial pivot at (1, 1, ..., 1)
20 firstpivot = ones(Int, R)
21 tci, ranks, errors = TCI.crossinterpolate2(
22 Float64,
23 f,
24 localdims,
25 [firstpivot];

68

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

26 tolerance=tol,
27 nsearchglobalpivot=0 # Disable automatic global pivot search
28)
29

30 # TCI fails to capture the function at (2, 2, ..., 2)
31 globalpivot = fill(2, R)
32 @assert isapprox(TCI.evaluate(tci, globalpivot), 0.0)
33

34 # Add (2, 2, ..., 2) as a global pivot
35 tci_globalpivot = deepcopy(tci)
36 TCI.addglobalpivots2sitesweep!(
37 tci_globalpivot, f, [globalpivot],
38 tolerance=tol
39)
40 @assert isapprox(TCI.evaluate(tci_globalpivot, globalpivot), 1.0)
41

42 # Plot the function and the TCI reconstructions
43 grid = QD.InherentDiscreteGrid{1}(R)
44 ref = [f(QD.grididx_to_quantics(grid, i)) for i in 1:2ˆR]
45 reconst_tci = [tci(QD.grididx_to_quantics(grid, i)) for i in 1:2ˆR]
46 reconst_tci_globalpivot = [tci_globalpivot(QD.grididx_to_quantics(grid, i)) for i in

1:2ˆR]
47

48 fig, ax = plt.subplots(figsize=(6.4, 3.0))
49 ax.plot(ref, label="ref", marker="", linestyle="--")
50 ax.plot(reconst_tci, label="TCI without global pivot", marker="x", linestyle="")
51 ax.plot(reconst_tci_globalpivot, label="TCI with global pivot", marker="+", linestyle="")
52 ax.set_xlabel(L"Index m")
53 ax.set_ylabel(L"f_m")
54 ax.legend(frameon=false)
55 plt.tight_layout()
56 fig.savefig("global_pivot.pdf")

Listing 16: Julia code demonstrating how to add a global pivot. We first construct a
TCI object using 2-site TCI with an initial pivot at the first grid index. This fails to
interpolate the function at the last grid index due to the local nature of 2-site TCI.
This is fixed by adding a global pivot at the last grid index.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Index m

0.0

0.5

1.0

f m ref
TCI without global pivot
TCI with global pivot

Figure 16: Comparison of the reference function (B.1), the result of TCI without an
added global pivot, and the result of TCI with an added global pivot. The global pivot
was added at the last grid index.

69

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104

SciPost Phys. 18, 104 (2025)

References

[1] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[2] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[3] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Ann. Phys. 349, 117 (2014), doi:10.1016/j.aop.2014.06.013.

[4] S. Montangero, Introduction to tensor network methods: Numerical simulations of
low-dimensional many-body quantum systems, Springer, Cham, Switzerland, ISBN
9783030014087 (2018), doi:10.1007/978-3-030-01409-4.

[5] T. Xiang, Density matrix and tensor network renormalization, Cambridge University Press,
Cambridge, UK, ISBN 9781009398701 (2023), doi:10.1017/9781009398671.

[6] I. Oseledets, S. V. Dolgov, A. Boyko, D. Savostyanov, A. Novikov and T. Mach, TT-
toolbox: Matlab implementation of tensor train decomposition (2011), https://github.
com/oseledets/TT-Toolbox.

[7] I. Oseledets, ttpy: Python implementation of the TT-toolbox (2012), https://github.com/
oseledets/ttpy.

[8] I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Lin-
ear Algebra Appl. 432, 70 (2010), doi:10.1016/j.laa.2009.07.024.

[9] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295 (2011),
doi:10.1137/090752286.

[10] D. Savostyanov and I. Oseledets, Fast adaptive interpolation of multi-dimensional arrays
in tensor train format, International workshop on multidimensional (nD) systems, Poitiers,
France, doi:10.1109/nDS.2011.6076873.

[11] D. V. Savostyanov, Quasioptimality of maximum-volume cross interpolation of tensors, Lin-
ear Algebra Appl. 458, 217 (2014), doi:10.1016/j.laa.2014.06.006.

[12] S. Dolgov and D. Savostyanov, Parallel cross interpolation for high-precision calcu-
lation of high-dimensional integrals, Comput. Phys. Commun. 246, 106869 (2020),
doi:10.1016/j.cpc.2019.106869.

[13] Y. N. Fernández, M. Jeannin, P. T. Dumitrescu, T. Kloss, J. Kaye, O. Parcollet and X.
Waintal, Learning Feynman diagrams with tensor trains, Phys. Rev. X 12, 041018 (2022),
doi:10.1103/PhysRevX.12.041018.

[14] K. Sozykin, A. Chertkov, R. Schutski, A.-H. Phan, A. Cichocki and I. Oseledets, TTOpt:
A maximum volume quantized tensor train-based optimization and its application to re-
inforcement learning, in Advances in neural information processing systems 36, Curran
Associates, Red Hook, USA, ISBN 9781713871088 (2022).

[15] M. K. Ritter, Y. N. Fernández, M. Wallerberger, J. von Delft, H. Shinaoka and
X. Waintal, Quantics tensor cross interpolation for high-resolution parsimonious
representations of multivariate functions, Phys. Rev. Lett. 132, 056501 (2024),
doi:10.1103/PhysRevLett.132.056501.

70

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1007/978-3-030-01409-4
https://doi.org/10.1017/9781009398671
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/ttpy
https://github.com/oseledets/ttpy
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1137/090752286
https://doi.org/10.1109/nDS.2011.6076873
https://doi.org/10.1016/j.laa.2014.06.006
https://doi.org/10.1016/j.cpc.2019.106869
https://doi.org/10.1103/PhysRevX.12.041018
https://doi.org/10.1103/PhysRevLett.132.056501

SciPost Phys. 18, 104 (2025)

[16] N. Jolly, Y. N. Fernández and X. Waintal, Tensorized orbitals for computational chemistry,
(arXiv preprint) doi:10.48550/arXiv.2308.03508.

[17] R. Sakurai, H. Takahashi and K. Miyamoto, Learning parameter depen-
dence for Fourier-based option pricing with tensor networks, (arXiv preprint)
doi:10.48550/arXiv.2405.00701.

[18] I. V. Oseledets, Approximation of matrices with logarithmic number of parameters, Dokl.
Math. 80, 653 (2009), doi:10.1134/s1064562409050056.

[19] B. N. Khoromskij, O(d log N)-quantics approximation of N−d tensors in high-dimensional
numerical modeling, Constr. Approx. 34, 257 (2011), doi:10.1007/s00365-011-9131-1.

[20] B. N. Khoromskij, Tensor numerical methods in scientific computing, De Gruyter, Berlin,
Germany, ISBN 9783110370133 (2018), doi:10.1515/9783110365917.

[21] H. Shinaoka, M. Wallerberger, Y. Murakami, K. Nogaki, R. Sakurai, P. Werner
and A. Kauch, Multiscale space-time ansatz for correlation functions of quan-
tum systems based on quantics tensor trains, Phys. Rev. X 13, 021015 (2023),
doi:10.1103/PhysRevX.13.021015.

[22] H. Takahashi, R. Sakurai and H. Shinaoka, Compactness of quantics tensor train
representations of local imaginary-time propagators, SciPost Phys. 18, 007 (2025),
doi:10.21468/SciPostPhys.18.1.007.

[23] H. Ishida, N. Okada, S. Hoshino and H. Shinaoka, Low-rank quantics tensor train repre-
sentations of Feynman diagrams for multiorbital electron-phonon models, (arXiv preprint)
doi:10.48550/arXiv.2405.06440.

[24] M. Murray, H. Shinaoka and P. Werner, Nonequilibrium diagrammatic many-
body simulations with quantics tensor trains, Phys. Rev. B 109, 165135 (2024),
doi:10.1103/PhysRevB.109.165135.

[25] M. Środa, K. Inayoshi, H. Shinaoka and P. Werner, High-resolution nonequi-
librium GW calculations based on quantics tensor trains, (arXiv preprint)
doi:10.48550/arXiv.2412.14032.

[26] N. Gourianov, M. Lubasch, S. Dolgov, Q. Y. van den Berg, H. Babaee, P. Givi, M. Kiffner
and D. Jaksch, A quantum-inspired approach to exploit turbulence structures, Nat. Comput.
Sci. 2, 30 (2022), doi:10.1038/s43588-021-00181-1.

[27] N. Gourianov, Exploiting the structure of turbulence with tensor networks, PhD thesis, Uni-
versity of Oxford, Oxford, UK (2022).

[28] R. D. Peddinti, S. Pisoni, A. Marini, P. Lott, H. Argentieri, E. Tiunov and L. Aolita, Complete
quantum-inspired framework for computational fluid dynamics, Commun. Phys. 7, 135
(2024), doi:10.1038/s42005-024-01623-8.

[29] E. Ye and N. F. G. Loureiro, Quantum-inspired method for solving the Vlasov-Poisson equa-
tions, Phys. Rev. E 106, 035208 (2022), doi:10.1103/PhysRevE.106.035208.

[30] K. Sakaue, H. Shinaoka and R. Sakurai, Learning tensor trains from noisy functions with
application to quantum simulation, (arXiv preprint) doi:10.48550/arXiv.2405.12730.

[31] G. H. Golub and C. F. Van Loan, Matrix computations, John Hopkins University Press,
Baltimore, USA, ISBN 9780801854132 (1996).

71

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104
https://doi.org/10.48550/arXiv.2308.03508
https://doi.org/10.48550/arXiv.2405.00701
https://doi.org/10.1134/s1064562409050056
https://doi.org/10.1007/s00365-011-9131-1
https://doi.org/10.1515/9783110365917
https://doi.org/10.1103/PhysRevX.13.021015
https://doi.org/10.21468/SciPostPhys.18.1.007
https://doi.org/10.48550/arXiv.2405.06440
https://doi.org/10.1103/PhysRevB.109.165135
https://doi.org/10.48550/arXiv.2412.14032
https://doi.org/10.1038/s43588-021-00181-1
https://doi.org/10.1038/s42005-024-01623-8
https://doi.org/10.1103/PhysRevE.106.035208
https://doi.org/10.48550/arXiv.2405.12730

SciPost Phys. 18, 104 (2025)

[32] A. Erpenbeck et al., Tensor train continuous time solver for quantum impurity models, Phys.
Rev. B 107, 245135 (2023), doi:10.1103/PhysRevB.107.245135.

[33] M. Fishman, S. White and E. Stoudenmire, The ITensor software library for tensor network
calculations, SciPost Phys. Codebases 4 (2022), doi:10.21468/SciPostPhysCodeb.4.

M. Fishman, S. White and E. Stoudenmire, Codebase release 0.3 for ITensor, SciPost Phys.
Codebases 4-r0.3 (2022), doi:10.21468/SciPostPhysCodeb.4-r0.3.

[34] C.-T. Pan, On the existence and computation of rank-revealing LU factorizations, Linear
Algebra Appl. 316, 199 (2000), doi:10.1016/S0024-3795(00)00120-8.

[35] M. Bebendorf, Approximation of boundary element matrices, Numer. Math. 86, 565
(2000), doi:10.1007/PL00005410.

[36] M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices,
Computing 70, 1 (2003), doi:10.1007/s00607-002-1469-6.

[37] M. Bebendorf and R. Grzhibovskis, Accelerating Galerkin BEM for linear elasticity
using adaptive cross approximation, Math. Methods Appl. Sci. 29, 1721 (2006),
doi:10.1002/mma.759.

[38] M. Bebendorf, Adaptive cross approximation of multivariate functions, Constr. Approx. 34,
149 (2010), doi:10.1007/s00365-010-9103-x.

[39] S. A. Goreinov and E. E. Tyrtyshnikov, Quasioptimality of skeleton approxi-
mation of a matrix in the Chebyshev norm, Dokl. Math. 83, 374 (2011),
doi:10.1134/S1064562411030355.

[40] J. Schneider, Error estimates for two-dimensional cross approximation, J. Approx. Theory
162, 1685 (2010), doi:10.1016/j.jat.2010.04.012.

[41] E. Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton method, Comput-
ing 64, 367 (2000), doi:10.1007/s006070070031.

[42] A. Cortinovis, D. Kressner and S. Massei, On maximum volume submatrices and cross ap-
proximation for symmetric semidefinite and diagonally dominant matrices, Linear Algebra
Appl. 593, 251 (2020), doi:10.1016/j.laa.2020.02.010.

[43] D. E. Crabtree and E. V. Haynsworth, An identity for the Schur complement of a matrix,
Proc. Am. Math. Soc. 22, 364 (1969), doi:10.1090/S0002-9939-1969-0255573-1.

[44] C. Brezinski and M. R. Zaglia, A Schur complement approach to a general extrapolation
algorithm, Linear Algebra Appl. 368, 279 (2003), doi:10.1016/S0024-3795(02)00686-
9.

[45] L. Miranian and M. Gu, Strong rank revealing LU factorizations, Linear Algebra Appl. 367,
1 (2003), doi:10.1016/S0024-3795(02)00572-4.

[46] L. Neal and G. Poole, A geometric analysis of Gaussian elimination. II, Linear Algebra Appl.
173, 239 (1992), doi:10.1016/0024-3795(92)90432-A.

[47] I. V. Oseledets, D. V. Savostianov and E. E. Tyrtyshnikov, Tucker dimensionality reduction
of three-dimensional arrays in linear time, SIAM J. Matrix Anal. Appl. 30, 939 (2008),
doi:10.1137/060655894.

72

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104
https://doi.org/10.1103/PhysRevB.107.245135
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.1016/S0024-3795(00)00120-8
https://doi.org/10.1007/PL00005410
https://doi.org/10.1007/s00607-002-1469-6
https://doi.org/10.1002/mma.759
https://doi.org/10.1007/s00365-010-9103-x
https://doi.org/10.1134/S1064562411030355
https://doi.org/10.1016/j.jat.2010.04.012
https://doi.org/10.1007/s006070070031
https://doi.org/10.1016/j.laa.2020.02.010
https://doi.org/10.1090/S0002-9939-1969-0255573-1
https://doi.org/10.1016/S0024-3795(02)00686-9
https://doi.org/10.1016/S0024-3795(02)00686-9
https://doi.org/10.1016/S0024-3795(02)00572-4
https://doi.org/10.1016/0024-3795(92)90432-A
https://doi.org/10.1137/060655894

SciPost Phys. 18, 104 (2025)

[48] G. Poole and L. Neal, The Rook’s pivoting strategy, J. Comput. Appl. Math. 123, 353
(2000), doi:10.1016/S0377-0427(00)00406-4.

[49] I. V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J.
Matrix Anal. Appl. 31, 2130 (2010), doi:10.1137/090757861.

[50] L. Li, W. Yu and K. Batselier, Faster tensor train decomposition for sparse data, J. Comput.
Appl. Math. 405, 113972 (2022), doi:10.1016/j.cam.2021.113972.

[51] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems
in two and higher dimensions, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0407066.

[52] E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms,
New J. Phys. 12, 055026 (2010), doi:10.1088/1367-2630/12/5/055026.

[53] B.-B. Chen, L. Chen, Z. Chen, W. Li and A. Weichselbaum, Exponential thermal ten-
sor network approach for quantum lattice models, Phys. Rev. X 8, 031082 (2018),
doi:10.1103/PhysRevX.8.031082.

[54] J. Burkardt, Test_nint, multi-dimensional integration test functions (2012), https://
people.math.sc.edu/Burkardt/f_src/test_nint/test_nint.html.

[55] E. Bayong, H. T. Diep and V. Dotsenko, Potts model with long-range interactions in one
dimension, Phys. Rev. Lett. 83, 14 (1999), doi:10.1103/PhysRevLett.83.14.

[56] E. Luijten and H. Meßingfeld, Criticality in one dimension with inverse square-law poten-
tials, Phys. Rev. Lett. 86, 5305 (2001), doi:10.1103/PhysRevLett.86.5305.

[57] K. Fukui and S. Todo, Order-N cluster Monte Carlo method for spin systems with long-range
interactions, J. Comput. Phys. 228, 2629 (2009), doi:10.1016/j.jcp.2008.12.022.

[58] J. Chen, E. M. Stoudenmire and S. R. White, Quantum Fourier transform has small en-
tanglement, PRX Quantum 4, 040318 (2023), doi:10.1103/PRXQuantum.4.040318.

[59] K. J. Woolfe, C. D. Hill and L. C. L. Hollenberg, Scale invariance and efficient classical simu-
lation of the quantum Fourier transform, (arXiv preprint) doi:10.48550/arXiv.1406.0931.

[60] S. Dolgov, B. Khoromskij and D. Savostyanov, Superfast Fourier transform using QTT ap-
proximation, J. Fourier Anal. Appl. 18, 915 (2012), doi:10.1007/s00041-012-9227-4.

[61] G. K.-L. Chan, A. Keselman, N. Nakatani, Z. Li and S. R. White, Matrix product operators,
matrix product states, and ab initio density matrix renormalization group algorithms, J.
Chem. Phys. 145, 014102 (2016), doi:10.1063/1.4955108.

[62] C. Hubig, I. P. McCulloch and U. Schollwöck, Generic construction of efficient matrix prod-
uct operators, Phys. Rev. B 95, 035129 (2017), doi:10.1103/PhysRevB.95.035129.

[63] J. Ren, W. Li, T. Jiang and Z. Shuai, A general automatic method for optimal construction
of matrix product operators using bipartite graph theory, J. Chem. Phys. 153, 084118
(2020), doi:10.1063/5.0018149.

[64] D. E. Parker, X. Cao and M. P. Zaletel, Local matrix product operators: Canon-
ical form, compression, and control theory, Phys. Rev. B 102, 035147 (2020),
doi:10.1103/PhysRevB.102.035147.

[65] Y. N. Fernández et al., Tensor4all, https://tensor4all.org/.

73

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104
https://doi.org/10.1016/S0377-0427(00)00406-4
https://doi.org/10.1137/090757861
https://doi.org/10.1016/j.cam.2021.113972
https://doi.org/10.48550/arXiv.cond-mat/0407066
https://doi.org/10.1088/1367-2630/12/5/055026
https://doi.org/10.1103/PhysRevX.8.031082
https://people.math.sc.edu/Burkardt/f_src/test_nint/test_nint.html
https://people.math.sc.edu/Burkardt/f_src/test_nint/test_nint.html
https://doi.org/10.1103/PhysRevLett.83.14
https://doi.org/10.1103/PhysRevLett.86.5305
https://doi.org/10.1016/j.jcp.2008.12.022
https://doi.org/10.1103/PRXQuantum.4.040318
https://doi.org/10.48550/arXiv.1406.0931
https://doi.org/10.1007/s00041-012-9227-4
https://doi.org/10.1063/1.4955108
https://doi.org/10.1103/PhysRevB.95.035129
https://doi.org/10.1063/5.0018149
https://doi.org/10.1103/PhysRevB.102.035147
https://tensor4all.org/

SciPost Phys. 18, 104 (2025)

[66] J. Chen and M. Lindsey, Direct interpolative construction of the discrete Fourier transform
as a matrix product operator, (arXiv preprint) doi:10.48550/arXiv.2404.03182.

[67] Y. Yu, Private communication (2024).

74

https://scipost.org
https://scipost.org/SciPostPhys.18.3.104
https://doi.org/10.48550/arXiv.2404.03182

	Introduction
	An introduction to tensor cross interpolation (TCI)
	The input and output of TCI
	An illustrative application: Integration in large dimension

	Mathematical preliminaries: Low-rank decomposition of matrices from a few rows and columns
	Matrix cross interpolation (CI)
	A few properties of Schur complements
	Definitions and basic properties
	The quotient property
	Relation with CI
	Relation with self-energy
	Restriction of the Schur complement

	Partial rank-revealing LU decomposition
	Default full search prrLU algorithm
	Alternative pivot search methods: Full, rook or block rook

	Tensor cross interpolation
	TCI form of tensor trains
	Nesting conditions
	2-site TCI algorithms
	Basic algorithm
	CI vs prrLU
	Pivot update method: Reset vs accumulative
	Pivot search method: Full, rook or block rook
	Proposing pivots from outside of TCI
	Ergodicity
	Error estimation: Bare vs. environment

	The 1-site and 0-site TCI algorithms
	The 1-site TCI algorithm
	The 0-site TCI algorithm

	CI- and LU-canonicalization
	CI-canonicalization.
	LU-canonicalization

	High-level algorithms
	Operations on tensor trains
	Relation to machine learning

	Application: Computing integrals and sums
	Quadratures for multivariate integrals
	Example code for integrating multivariate functions
	Example of computation of partition functions

	Application: Quantics representation of functions
	Definition
	Operating on quantics tensor trains
	Example: High-resolution compression of functions
	Oscillating functions in 1, 2 and 3 dimensions
	Quantics for multi-dimensional integration

	Example: Heat equation using superfast Fourier transforms

	Application: Matrix product operators (MPOs)
	Formulation of the problem
	MPO algorithm for quantum many-body problems
	Illustration on Heisenberg and generic chemistry Hamiltonians

	API and implementation details
	Implementation
	C++ API (xfac)
	Julia libraries
	TensorCrossInterpolation.jl
	Quantics grids and QTCI

	Perspectives
	Proofs of statements in the main text
	Proof of the quotient identity for the Schur complement
	Convergence and rook conditions in block rook search
	Nesting properties
	TCI in the continuum
	Small rank of the quantics Fourier transform

	Code listings of examples discussed in the text
	Python scripts
	Integration of multivariate functions in environment mode
	Quantics for 2-dimensional integration
	Quantics for multi-dimensional integration
	Heat equation using superfast Fourier transforms

	C++ code
	Computation of partition functions

	Julia scripts
	TCI for high-dimensional Gauss–Kronrod quadrature
	Quantics TCI for 2-dimensional integration
	Quantics TCI for multi-dimensional integration
	Compressing existing data with TCI
	Adding global pivots

	References

