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Fusion of low-entanglement excitations in 2D toric code
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Abstract

On top of a D-dimensional gapped bulk state, Low Entanglement Excitations (LEE) on
d(< D)-dimensional sub-manifolds can have extensive energy but preserves the entan-
glement area law of the ground state. Due to their multi-dimensional nature, the LEEs
embody a higher-category structure in quantum systems. They are the ground state of a
modified Hamiltonian and hence capture the notions of ‘defects’ of generalized symme-
tries. In previous works, we studied the low-entanglement excitations in a trivial phase
as well as those in invertible phases. We find that LEEs in these phases have the same
structure as lower-dimensional gapped phases and their defects within. In this paper,
we study the LEEs inside non-invertible topological phases. We focus on the simple ex-
ample of Z2 toric code and discuss how the fusion result of 1d LEEs with 0d morphisms
can depend on both the choice of fusion circuit and the ordering of the fused defects.
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1 Introduction

The notion of Low Entanglement Excitations (LEE) was introduced in Ref. [1,2] to describe en-
tanglement area law preserving d-dimensional excitations on top of a D-dimensional gapped
ground state, d < D. In quantum condensed matter systems, we are usually interested in low
energy excitations because they contribute to linear response of the system under external per-
turbation. The LEE, however, have extensive energy if they live on a submanifold of dimension
d > 1. While LEEs with d > 1 do not contribute to linear response of the system, they can be
interesting for the following reasons:

1. The LEEs are ground states of a modified Hamiltonian with terms on the d-dimensional
sub-manifold different from the original Hamiltonian. Therefore, they correspond to the
notion of ‘defects’ that plays a central role in the definition of generalized symmetries [3–
14]. Calling them ‘excitations’ rather than ‘defects’ puts emphasis on the dynamical
properties of these objects.

2. Higher-dimensional topoloigcal phases with D ≥ 3 contain elementary fractional excita-
tion like flux loops excitations with d = 1 or membrane excitations with d = 2. Nonele-
mentary LEEs of the same dimension can generically appear alongside such elementary
excitations, and in general it is impossible to completely separate them and identify the
‘pure’ elementary excitations without the accompanying non-elementary LEEs. An un-
derstanding of the structure of all LEEs is hence necessary for the proper description of
the bulk excitations in higher-dimensional topological phases.

3. Given their low entanglement, the LEEs are potentially ‘condensable’ such that their
condensation can still have low entanglement and potentially realize a different phase.
Therefore, we expect LEEs to play an important role in the description of zero-
temperature quantum phase transitions.

In Ref. [1], we studied the LEEs of a trivial phase where the ground state can be a prod-
uct state. The LEEs on top of a product state are not entangled with each other or with the
bulk, and hence correspond to lower-dimensional gapped phases. In particular, we focused
on one-dimensional gapped phases and the zero-dimensional domain walls (morphisms in
math language) within and studied their fusion using explicit lattice models and quantum
circuits. The fusion of one-dimensional phases is achieved with one-dimensional finite depth
quantum circuits while the fusion of the domain walls is achieved with zero-dimensional lo-
cal unitary transformations. The fusion pattern revealed in Ref. [1] is part of the 2-category
structure [7,11,12,14–17] formed by one-dimensional gapped phases.

In Ref. [2], we extended the discussion to invertible phaes, such as the symmetry-protected
topological phases and the p+ip superconductor. Using the idea of symmetric Quantum Cellu-
lar Automata, a ‘pumping’ process through higher dimensional bulk, as well as the Topological
Holography formalism, we showed that the d-dimensional LEEs in invertible phases have the
same structure as those in trivial phases and hence form the same higher-category structure
as d-dimensional gapped phases.

In this paper, we study the LEEs in non-invertible topological phases. We focus on simple
cases like the Z2 Toric Code in D = 2 and D = 3 dimensions and study LEEs of dimension
d ≤ 1. Our discussion is going to be based on the same quantum circuit principles as stated
above:

1. Two 1d LEEs are equivalence if they are connected by a 1d finite depth circuit.

2. 1d LEEs generated (from the ground state) by a 1d finite depth circuit are trivial; 1d LEEs
that can only be generated (from the ground state) with a 2d circuit or a 1d sequential
circuit are nontrivial.
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3. Fusion of two 1d LEEs is achieved with a 1d finite depth circuit.

4. Two 0d domain walls on top of a 1d LEE are equivalent if they are connected by a 0d
unitary transformation.

5. 0d domain walls that cannot be generated with a 0d unitary transformation are nontriv-
ial.

6. Fusion of two 0d domain walls on top of a 1d LEE is achieved with a 0d unitary.

7. Fusion of two 1d LEEs with nontrivial 0d domain walls on either (or both) is achieved
with the same 1d finite depth circuit as the no domain wall case except at the local
region near the domain walls. Extra 0d unitary transformations can be applied near the
domain walls.

Following these rules, we can get a complete list of 1d LEEs and their 0d domain walls. We
study their fusion by constructing explicit 1d circuits or 0d unitary transformations that realize
the fusion. We observe several interesting features in the process:

1. Different morphisms between two 1d LEEs can often be distinguished by the half-
braiding or full-braiding of bulk anyons around the morphism.

2. The 1d circuit used to fuse 1d LEEs (without morphisms) is not unique. Different cir-
cuits can lead to different fusion results when the 1d LEEs to be fused has nontrivial
morphisms on top.

3. The fusion of the Cheshire string with possible domain walls is not symmetric under the
exchange of the two strings. This is true not only in 2D Toric Code, but in 3D Toric Code
as well.

The paper is organized as follows: In Section 2, we review the 1d LEEs in the 2D Toric Code,
including their classification and fusion rules through quantum circuits. We also explore the
0d domain walls and endpoints associated with these 1d LEEs, along with their corresponding
fusion rules. Section 3 addresses the fusion of 1d LEEs with 0d domain walls or endpoints.
Making use of examples such as Cheshire strings and duality strings, we demonstrate how
different 1d fusion circuits can result in distinct fused 0d morphisms. In Section 4, we provide
a disscusion of the results by looking at the 3D Toric Code. Finally, in Section 5, we summarize
our conclusions and suggest potential directions for future research. While our discussion
is based on the exactly solvable model of Toric Code, our conclusions apply to all gapped
Hamiltonians in the same Z2 topological phase. The fact that the LEEs exist as gapped ground
states of defect Hamiltonians allows us to ‘quasi-adiabaticly continue’ [18] our construction
for the fixed-point models to generic non-fixed-point ones.

2 LEEs in 2D toric code

The classification of 1d LEEs within a 2D Toric Code is already discussed in Ref. [3, 19]. It
was further shown in [20] that all of these nontrivial 1d LEEs can be generated by sequential
quantum circuits [21]. In this section, we provide a brief review of the 1d LEEs in the 2D Toric
Code and their fusion rules in the language of quantum circuits. We also examine the domain
walls and boundaries (morphisms) of these 1d LEEs, as well as the fusion of these domain
walls and boundaries using local unitary transformations.
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Consider the Toric Code on a two-dimensional square lattice

H = −
∑

v

Av −
∑

p

Bp = −
∑

v

∏

v∈e

X e −
∑

p

∏

e∈p

Ze , (1)

where the summation runs over the vertices v and the plaquettes p of the square lattice. It is
well known that the Hamiltonian (1) hosts a Z2 topological order, with its anyon excitations
being the 0d LEEs on top of a trivial 1d LEE: the trivial excitation 1, the charge excitation
e that violates the vertex term Av , the magnetic flux m that violates the plaquette term Bp,
and the fermion excitation f that violates both Av and Bp. The topological nature of these 0d
anyons can be seen from their stability under local unitary transformations. For instance, the
−1 braiding sign between e and m remains invariant under any local unitary evolution around
the 0d LEEs. Therefore, we can define two 0d local excitations as equivalent if they can be con-
nected by some 0d local unitary transformation. This is exactly the notion of “superselection”
sector defined by Kitaev [22].

2.1 1d LEEs and their fusion rules

Making use of similar ideas, we can extend the classification of anyons to 1d LEEs according
to their behavior under 1d finite depth circuits. As already mentioned in the introduction, we
define two 1d LEEs as belonging to the same equivalent class if they can be connected by a 1d
finite depth local unitary quantum circuit. Historically, 1d LEEs are constructed by altering the
Hamiltonian along a string [23], and they are regarded as defects in the topologically ordered
states. It was shown in Ref. [20] that a linear depth sequential unitary circuits [21] also enable
the generation of nontrivial 1d LEEs.

In this paper, we mainly focus on deriving the fusion rules of 0d and 1d LEEs using local
unitaries and 1d circuits. Fig. 1 illustrates the Hamiltonian terms stabilizing different 1d LEEs
in 2D Toric Code. For instance, consider the Cheshire string r r where the charge e is condensed
along it. The condensation can be achieved by first removing the vertex terms Av along a string,
and then adding a polarization term −Z on every bond of the string, as shown in Fig. 1(b).
Every −Z term creates a pair of charge e at the two vertices of the bond. The fact that −Z is
enforced as a Hamiltonian term means that the charge e is condensed along the dashed line
in the ground state.

The six inequivalent types of 1d LEEs in the 2D Toric Code are, as originally outlined
in [19]:

1. The trivial string 1, which is the same as the bulk.

2. The Cheshire string r r, which can be achieved by condensing the charge e.

3. The flux version of the Cheshire string, denoted as ss, where the flux m is condensed.

4. Different anyons can condense on different sides of a string. Consequently, there is also
a 1d LEE denoted as rs, which means that the charge e is condensed on the upper side
of the string and the flux m is condensed on the lower side of the string.

5. Similarly there is sr, where the flux m is condensed on the upper side of the string and
the charge e is condensed on the lower side of the string.

6. Finally, here is a duality string dual, through which the charge e and flux m are ex-
changed.
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Z

Z
Z ZBp

(a) Trivial string 1 / Bulk.

Z

Z
Z Z

(b) Cheshire string r r.

X X

X

X X
X

X

(c) Flux condensation string ss.

Z

X X

X

X

Z
Z Z

(d) rs.

X X
X

Z
X

Z
Z Z

(e) sr.

X X
X

Z
X

X X

X

Z

(f) Duality string dual.

Figure 1: 1d LEEs of a 2D Toric Code.

r r

r r

Z Z Z Z Z Z Z Z = r r ⊕ r r

Figure 2: Fusion of two Cheshire strings r r.

Here, the first and the last 1d LEEs are invertible, in the sense that they can be fused back
uniquely to the trivial string 1, such as dual × dual = 1. The remaining four 1d LEEs are
non-invertible and cannot be fused uniquely back to the identity. Remarkably, all six distinct
types of 1d LEEs can be derived by using Cheshire string r r and duality strings dual as fusion
building blocks. For instance, fusing r r and dual yields the rs string, and fusing dual and rs
results in the flux condensation string ss. Detailed structure the 1d finite depth circuit used to
fuse these 1d LEEs, as well as the sequential quantum circuit to generate them, can be found
in Ref. [20].

A more nontrivial fusion process involves two non-invertible 1d LEEs, where the fusion re-
sults are generally not unique. In this sense, it is similar to fusing two 0d non-abelian anyons
in a non-abelian topological order. However, the distinction between fusing non-invertible
1d LEEs and 0d non-abelian anyons lies in the “coefficient”, which is no longer a mere num-
ber but a decoupled 1D theory [3, 24], with possibly degenerate ground states in one-to-one
correspondence with the fusion outcome.

For instance, consider fusing two Cheshire strings r r within a 2D Toric Code, as shown
in Fig. 2. Here, the vertex terms Av are removed along the two dashed r r strings, and a
polarization term −Z is added on every dashed bond. As a result, the edges between the
two r r strings are decoupled from the rest of the system. The plaquette terms Bp between
the two Cheshire strings become ferromagnetic Z Z couplings between neighboring edges, as
shown by the purple blocks in Fig. 2. Therefore, there is a two-fold degeneracy of the fusion
outcome, each labeled by the all-up or all-down ferromagnetic spins on the internal edges.
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Table 1: Fusion rules of 1d LEEs of 2D Toric Code. Here | ⇒〉 ≡ | + + · · ·+〉 and
| ⇐〉 ≡ | − −· · ·−〉 denote the ferromagnetic states with all the edges in the + or −
states.

1 r r ss rs sr dual
1 1 r r ss rs sr dual
r r r r (| ⇑〉 ⊕ | ⇓〉)r r rs (| ⇑〉 ⊕ | ⇓〉)rs r r rs
ss ss sr (| ⇒〉⊕ | ⇐〉)ss ss (| ⇒〉⊕ | ⇐〉)sr sr
rs rs r r (| ⇒〉⊕ | ⇐〉)rs rs (| ⇒〉⊕ | ⇐〉)r r r r
sr sr (| ⇑〉 ⊕ | ⇓〉)sr ss (| ⇑〉 ⊕ | ⇓〉)ss sr ss

dual dual sr rs ss r r 1

The corresponding fusion rule can be written as:

r r

r r
= r r ⊕ r r , (2)

where the Cheshire strings r r are shown by parallel solid lines, and the ferromagnetic states
are explicitly shown as the “coefficient” of the fusion outcome. We can also write the fusion rule
as r r ⊗ r r = (| ⇑〉⊕ | ⇓〉)r r, where we use | ⇑〉 ≡ |00 · · ·0〉 and | ⇓〉 ≡ |11 · · ·1〉 to represent the
ferromagnetic states. Later we will demonstrate the physical consequences of the “coefficient”
being a 1d phase rather than a number: it can host its own domain wall excitations, which
will couple to the 0d LEEs in the fusion outcome.

All other fusion rules can be obtained in a similar manner. Here the full set of fusion
rules of 1d LEEs of a 2D Toric Code are listed in Table. 1, as originally shown in Ref. [19]. The
difference is that here we explicitly denote the “coefficient” as ferromagnetic states rather than
some numbers. We use | ⇒〉 ≡ |++ · · ·+〉 and | ⇐〉 ≡ |−−· · ·−〉 to represent the ferromagnetic
states with all the internal edges in the |+〉 or |−〉 states, which appears when we try to fuse
two all flux condensation string ss together.

2.2 1d LEEs with domain walls or endpoints

The 1d LEEs can carry 0d point-like excitations along their length, such as domain walls be-
tween two 1d LEEs of the same type or boundaries between different 1d LEEs. To classify
the 0d point like excitations along 1d LEEs, we can again utilize the unitary transformations.
We consider two 0d point-like excitations to be equivalent if they can be connected through
a local unitary transformation. Mathematically, these 0d point-like excitations are referred
to as morphisms between the 1d LEEs. Combined with the 1d LEEs, they form a 2-category
mathematical structure [19, 25, 26]. In this section, we explore the types of domain walls
and boundaries between 1d LEEs of the 2D Toric Code and examine the fusion of these 0d
excitations along the 1d LEEs using 0d unitary transformations.

2.2.1 Chershire string r r with domain walls or endpoints

First, consider the domain walls of a Cheshire string r r, which is a morphism from the Cheshire
string to itself. Evidently, the charge e cannot generate any non-trivial 0d domain wall since
a local unitary circuit can be found to condense e onto the Cheshire string. As illustrated in
Fig. 3 (a), a charge excitation e trapped by a vertex −Av term near the Cheshire string r r can
be eliminated by a local unitary transformation Z , represented by the cyan diamond. On the
other hand, the magnetic flux m is confined on the Cheshire string r r, implying it cannot be
removed by any local transformation, as depicted in Fig. 3 (b).
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−X X
X

XZ
e

rr

(a)

−Z
Z Zm rr

(b)

Figure 3: Possible domain walls of a Chehsire string r r, with (a) a charge e or (b)
a flux m attached to it. The cyan diamond in (a) represents a local unitary transfor-
mation conjugated by a Z operator on that edge.

r r r r
M1

1 (r r, r r)
r r r rm

M m
1 (r r, r r)

r r r rm
M1

m(r r, r r)

r r r rm
m

M m
m (r r, r r)

Figure 4: Domain walls of a Cheshire string r r.

r r r r
m ee

Figure 5: Detection of domain wall along a Cheshire string r r.

Therefore, nontrivial excitations can be created by pulling the magnetic flux m onto the
Cheshire string r r from either side of the string. The four kinds of morphisms from a Cheshire
string r r to itself are shown in Fig. 4. We denote these four kinds of morphisms as M1

1 (r r, r r),
M m

1 (r r, r r), M1
m(r r, r r) and M m

m (r r, r r), where the r r in the brackets means it is a morphisms
from r r to r r, and the superscript and subscript labels the anyons pulled to the Cheshire string.

The topological nature of these domain walls or morphisms can be seen from its nontrivial
braiding with the non-confined particles on the 1d LEEs. In the present simple example, the
magnetic flux m confined on the Cheshire string has nontrivial braiding with the charge e that
is condensed. Therefore, we can create a condensed charge e from the Cheshire string r r, let
it wind around the given point and re-condense it on the string, as shown in Fig. 5. This is the
so-called half-braiding process discussed in Refs. [27, 28]. A minus sign is obtained if there
is a flux m, which is unchanged under any local unitary transformation around the flux m.
The minus sign can be used to detect whether there is a flux morphism m on either side of a
Cheshire string.

The anyon labels α and β in Mα
β
(r r, r r) are actually not unique for a given morphism. If

α and α′ are equivalent up to anyons that condense on the Cheshire string r r, they can be
connected by a local unitary transformation and therefore label the same morphism. A simple
example is M f

1 (r r, r) = M m
1 (r r, r r), where f is the fermion excitation in Toric Code:

r r r rm = r r r rf . (3)

Another interesting case is the Cheshire string r r endpoints, which can be seen as a mor-
phism from the trivial string 1 to the Cheshire string r r or vice versa. It is easy to see that
there are two different kinds of boundaries between the trivial and the Cheshire strings, as

7
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r r

−Z
Z Zm

(a)

1 r r
M1

1 (1, r)

1 r rm

M m
1 (1, r)

(b)

1 r rm e

e

(c)

Figure 6: Endpoints between trivial string 1 and Cheshire string r r. (a) and (b) show
the two possibilities by attaching a flux m at the endpoint. (c) shows how to detect
the endpoint morphisms through tunneling charge e.

X X
X

Z
Y

X X
X

Z
X X

X

Z

(a)

dual1 e
m

f

(b)

Figure 7: Endpoint between a trivial string 1 and a duality string dual, with (a)
showing its lattice realization and (b) illustrating the absorption of a fermion f at
the endpoint.

shown in Fig. 6. The two kinds of boundaries correspond to whether a flux m is attached to
the endpoint, and are denoted as M1

1 (1, r r) and M m
1 (1, r r), respectively.

Similar to the morphisms from Cheshire string r r to itself, the topological nature of the
two kinds of endpoints in Fig. 6 can be seen by its nontrivial braiding with the condensed e
particle. We can tunnel a condensed charge e out of the Cheshire string, let it wind around
the left endpoint, and retouch the bottom of the Cheshire string. We always get a minus sign
if there is a magnetic flux m at the endpoint, no matter what local unitary we apply around it.

2.2.2 e −m duality string with endpoints

As stated in 2.1, all the 1d LEEs in 2D Toric Code can be obtained by fusing the Cheshire string
r r with the duality string dual. In a similar manner, to get all the domain walls and boundaries
of 1d LEEs, we can first study the domain walls and boundaries of the Cheshire string r r and
the duality string dual, and then fuse them together. We already considered the domain walls
of a Cheshire string r r and now we turn to the duality string dual.

The number of distinct domain walls connecting a duality string to itself is identical to
those for a trivial string, as the duality string is an invertible 1d LEE. They can be labeled by
the anyons in the bulk 1, e, m, f on either the top side or bottom side of the string. The only
difference is that a charge e on top of the string will become a flux m after going through the
duality string, e.g. M e

1(dual, dual) = M1
m(dual, dual).

On the other hand, something nontrivial happens when the duality string has endpoints.
It is well know that there is a Majorana fermion at the endpoint of a duality string [19,29,30].
Fig. 7 (b) gives a simple picture of what happens at the endpoint of a duality string. A fermion
f can be annihilated or created at the boundary, by first creating a pair of charge e, moving
one of the e around the endpoint to become a flux m, and then fusing with the remaining
charge e. In this sense, the fermion f is condensed at the endpoint of a duality string.
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1 dual
M1

1 (1, dual)

1 dual
e

M e
1(1, dual)

(a)

1 dual
e

f

(b)

Figure 8: Boundaries between trivial string 1 and duality string dual, with (a) show-
ing the two possibilities by attaching a charge e at the endpoint, and (b) showing the
detection of the endpoint morphisms through tunneling a fermion f .

Table 2: Domain walls and boundaries (morphisms) between different kinds of 1d
LEEs in 2D Toric Code. Only the generating operations of pulling anyons are shown
here, as discussed in the main text.

1 r r ss rs sr dual

1
e
m

m e e

rr —
m

m
m

m

ss — —
e

e
e

e

rs — — —
m

e
m

sr — — — —
e

m
e

dual — — — — —
e
m

As a result, attaching a fermion f at the endpoint does not change its type and there are
only two kinds of morphisms between the trivial string and the duality string – those with or
without a charge e (or equivalently, a flux m) attached to it, as shown in Fig. 8 (a). The two
kinds of endpoint morphisms can be distinguished by winding a fermion string around the
endpoint, as also shown in Fig. 8 (b).

2.2.3 Other kinds of domain walls and boundaries

All other types of 1d LEEs, along with their domain walls or endpoints, can be obtained by
fusing Cheshire and duality strings, as summarized in Table 2. We note that different types of
morphisms between any two given 1d LEEs, A and B, can be connected by attaching anyons
from the bulk (e and m in the Toric Code) to the connection point between A and B, either from
the upper or lower side of the 1d LEEs. This idea is already demonstrated in earlier examples
in Figs. 4, 6 and 8. Therefore, Table 2 lists only the generating operations of these morphisms,
which involve pulling anyons from the bulk to the boundary from either the upper or lower
side of the strings. By composing the anyon configurations listed in the table, one can generate
the complete set of morphisms at the domain walls or boundaries between A and B.
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Here, we provide examples of how the results in Table 2 are derived. First, by fusing the
duality string dual from above onto the Cheshire string r r, we obtain the domain walls of the
sr 1d LEE:

dual

r r

dual

r r ma

mb

= srsr ea

mb , (4)

where a, b = 0 or 1 represent the possibilities of presence or absence of an anyon, indicated
by the shaded circles. Using the same idea, we derive the domain walls of rs and ss. These
morphisms can be detected using half braiding in a similar way as discussed for the domain
walls on the Cheshire string r r.

To get the endpoints of the 1d LEEs, we can fuse an open Cheshire string r r with an open
duality string dual, e.g.

1

dual

r r

1
ea

ma

= 1 rs . (5)

The m anyon at the endpoint of the r r string can wind around the endpoint of the dual string
and become an e anyon which can condense on r r. Therefore, when fused with an open dual
string, the different types of endpoints of r r become equivalent. Indeed, rs has only one kind
of endpoint morphisms as both charge e and flux m can condense on its boundary. As there is a
Majorana fermion at the endpoint of the duality string, there will also be an extra degeneracy
when fusing rs string with endpoints, as shown latter.

To get the endpoint morphisms of a magnetic flux condensation string ss, we can use a
closed duality loop to wrap a Cheshire string r r:

dual

dual

r r1 ma
= 1 ssea

. (6)

Finally, by fusing duality strings with endpoints and the Cheshire string r r without end-
points, we get all other kinds of morphisms between different types of 1d LEEs. For example,

1 dual

r rr r
ea

ma

mb

= r r sr
mb . (7)

The magnetic flux on top of the Cheshire string disappears after the fusion, because it can first
locally go through the duality defect to become a charge e, and then winds back to condense
on the Cheshire string. As a result, there are only two kinds of morphisms between r r and sr,
which corresponds to whether a magnetic flux m is attached from below or not. Similarly,

r rr r

1 dual

1 dual

ma

mb = r r ss , (8)

i.e., there is only one kind of morphism between the Cheshire string r r and its dual version ss.
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ZZ
ZZ

Z
Z Z

Z

r r r r =⇒

Z

Z Z
Z

Z Z
Zr r r r

Figure 9: Local unitary transformation to fuse endpoints M1
1 (r r, 1) and M1

1 (1, r r).
The blue arrows represent controlled-Not gates from the starting point to the end-
point of the arrows.

2.3 Fusion of domain walls and endpoints along 1d LEEs

Just like anyons and 1d LEEs can fuse with each other, 0d domain walls and endpoints can also
fuse along 1d LEEs. Similar to fusing two anyons in the bulk, fusing domain walls and bound-
aries can be achieved with local unitary transformations around the 0d excitations. Again we
mainly focus on fusing morphisms along the Cheshire strings r r and the duality strings dual.
Other fusions can be obtained by fusing r r and dual together with their domain walls and
endpoints.

Fusing the magnetic fluxes m morphism along a Cheshire string is trivial, which is exactly
the same as in the bulk where m×m= 1.

r r r rr r
m m = r rr r . (9)

On the other hand, fusing the endpoints of Cheshire strings r r is much more interesting.
First, consider fusing the endpoint from Cheshire string r r to trivial string 1 with the endpoint
from trivial string 1 to Cheshire string r r, as shown in Fig. 9.

A local unitary circuit is used to fuse the two endpoints together into a domain wall from r r
to r r, as shown by the blue arrows in Fig. 9. Here, every blue arrow represents a controlled-
Not gate |0〉〈0|c + |1〉〈1|cX t , whose control qubit (denoted by c) is the starting point of the
arrow and target qubit (denoted by t) is the endpoint of the arrow. After this local unitary
transformation, the two Bp stabilizers represented by the cyan and teal plaquettes on the left
hand side of Fig. 9 are transformed to the stabilizers of the Cheshire string r r, as shown on the
right hand side of Fig. 9. The cyan term becomes a single Z stabilizer and therefore turns the
trivial segment between the two Cheshire strings also into a charge e condensate. However,
the original teal plaquette term becomes the product of two plaquette terms, and therefore
allowing a two-fold degeneracy: no flux at all or two fluxes attached to the upper and lower
side of the fused domain walls. The fusion rule can be written as:

r r r r1 = r rr r + r rr r m
m . (10)

This fusion rule can also be easily verified as follows. Before the fusion, there is a two-fold
degeneracy between the two open Cheshire strings r r, which can be distinguished by a string
operator tunneling a charge e from left Cheshire r r to the right Cheshire r r. The value of
the string operator can be either +1 or −1 depending on which ground state is chosen, and is
independent of the local unitary transformation we used in Fig. 9 to fuse the endpoints. When
the value of the string operator is +1, the fused domain wall should to trivial; and when it
is −1, the fused domain wall should carry magnetic fluxes m on both sides of the string to
recover this −1 sign.

Another way to fuse the endpoints of the Cheshire strings is to reverse the order to consider
M1

1 (1, r r)×M1
1 (r r, 1), as shown in Fig. 10. This time, to fuse the two trivial strings together, we

need a two-step local unitary transformation. First we apply a Hadamard gate on the dashed
bond as shown by the yellow diamond, which is followed by the controlled-Not gates indicated
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Z Z
Z

Z Z
Z

Z
H

1 1 =⇒
ZZ Z
Z

Z
Z Z

Z

X X
X

X

1 1

Figure 10: Local unitary transformation to fuse endpoints M1
1 (1, r r) and M1

1 (r r, 1).
Here the blue arrows are still controlled-Not gates and the yellow diamond represents
a local unitary conjugated by Hadamard gate H.

X X
X

Z
Y

X X
X

Z
Ydual dual

S

=⇒

−Y X
X

X Y
X

Ydual dual

Figure 11: Circuit used to fusing the endpoints M1
1 (dual, 1) and M1

1 (1, dual), the
circuits are acted in the order of blue-cyan-red. Here the blue and cyan arrows rep-
resent controlled-Not gates and the red diamond represents the phase gate S.

by the blue arrows. After this local unitary transformation, the red Z term becomes the vertex
term Av′ =
∏

X to the right of the original dashed bond, and the two truncated plaquette
terms become full plaquette terms. However, the vertex term to the left of the dashed bond is
still absent, which means the fusion result is a 0d LEE of an equal weight superposition of a
charge and no charge, i.e.:

1 1
r r = 11 + 11

e . (11)

This result can be easily understood as the charge is condensed along the Cheshire segment
before fusion. When the Cheshire segment is shrunk to a point, it gives rise to the degeneracy
(not protected any more).

We call all of these morphisms, whose fusion outcomes are not unique, as non-invertible
morphisms. For abelian topological orders, all of the domain wall morphisms from a 1d LEE
to itself will be invertible. The non-invertible morphisms will only appear at the boundary
between different 1d LEEs.

Another interesting example is the fusion of the endpoints of a duality string, which is also
a non-invertible morphism as a result of the Majorana fermion at the endpoint. Fig. 11 shows
an explicit circuit used to fuse the boundaries M1

1 (dual, 1) and M1
1 (1, dual) into the domain

wall morphisms from dual to itself. A three-step local unitary transformation is used here.
The first step (blue) and the second step (cyan) of the circuit are again some controlled-Not

gates similar to those in Fig. 9. The third gate (red diamond) is the phase gate S =

�

1 0
0 i

�

which transforms X → Y , Y →−X , Z → Z .
After the action of the circuit, the yellow stabilizer becomes a single Y stabilizer and the

underlying edge is decoupled. On the other hand, the purple term becomes a complex new
term, which is the product of two kinds of stabilizers of the standard duality string as shown
in Fig. 1 (f) (yellow and purple). Physically, the anyon excitation corresponding to the yellow
term in Fig. 1 (f) can be either a charge on the upper side of the string or a flux on the lower
side of the string. Similarly, anyon excitations corresponding to the purple term in Fig. 1 (f)
can be either a flux on the upper side of the string or a charge on the lower side of the string.
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As a result, a fermion excitation on either side of the string will not violate the new purple
term in Fig. 11, which is a product of the above two terms. Therefore, the fusion rule reads
as:

dual dual
1 =

dual dual
+

dual dual
f . (12)

By fusing a duality string either above or below the expression above, we can get the fusion
rule of M1

1 (1, dual)×M1
1 (dual, 1):

1 1dual = 1 + 1
f . (13)

Other horizontal morphisms fusion rules along 1d LEEs can be obtained by fusing the
duality string dual and the Cheshire string r r together. For example, the fusion of a morphism
from r r to ss and another morphism from ss to r r can be derived as:

r r r rss =
1 1dual

1 1dual

r r

= r r + r rm

+ r rm + r rm
m .

(14)

Here we used the fact that a fermion f is equivalent to a magnetic flux m along a Cheshire
string r r. The results illustrates that there is an extra degeneracy at the interface between
rough and smooth boundary.

3 Fusing 1d LEEs with domain walls and endpoints

In the previous sections, we discussed the 1d LEEs (without 0d morphisms), the 0d mor-
phisms between the 1d LEEs, as well as their respective fusion rules. However, we haven’t yet
addressed the fusion of two 1d LEEs with possibly nontrivial 0d morphisms on top. This is the
topic of this section.

As was done in the previous sections, we use quantum circuit to give concrete meaning
to this type of fusion. As discussed previously, the fusion of 1d LEEs is achieved with 1d
finite depth circuits, and the fusion of 0d morphisms along a 1d LEE is achieved with 0d local
unitaries. To fuse 1d LEEs with 0d morphisms on top, we apply the finite depth circuit that
fuses 1d LEEs without morphisms on either side of the morphism and can add extra 0d unitaries
near the location of the morphism. But there is a complication. Since finite depth circuits can
be used to create /modify domain walls along 1d LEEs, different choices of fusion circuits can
result in different fusion outcome when the 1d LEEs carry domain walls / endpoints without
affecting the fusion result of 1d LEEs without morphisms. As we will see below, this is the case
not only for boundaries between different 1d LEEs where the fusion circuits on the two sides
can be independently chosen, but for domain walls on the same 1d LEEs as well where the
nontrivial coefficient in the fusion of non-invertible 1d LEEs can be used to control the fusion
outcome of the morphism.

In this section, with the 2D Toric Code as an example, we discuss how 1d LEEs with 0d
morphisms are fused with each other. In particular, we show that the 0d morphisms before
fusion will become the morphisms of the fused 1d LEEs as well as domain walls of the co-
efficient. We also discuss how the different choices of finite depth 1d circuits for fusing 1d
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r r

r r

Z Z Z Z Z ZZ Z−
m
m

= r r
m

⊕ r r
m

Figure 12: Fusing two Cheshire strings r r with domain walls.

LEEs leads to different fusion result of the morphisms. Specifically, we discuss two kinds of 1d
circuit for fusing Cheshire strings r r with or without domain walls. We discuss the physical
interpretation of the fusion result in these two cases and show that one of the 1d circuits can
be easily generalized to 3D Toric Code.

3.1 Fusing Cheshire strings r r with domain walls and endpoints

We first consider fusing two Cheshire strings r r with domain walls along them, e.g. fus-
ing a Cheshire r r with domain wall M1

1 (r r, r r) and another Cheshire r r with domain wall
M m

m (r r, r r) as shown in Eq. (15). We need to require that the fusion circuit in the bulk of the
1d LEEs be the same as that without any morphisms. According to 2.1, we are actually doing
nothing in the bulk of the Cheshire strings r r to fuse them together, as the edges between the
two Cheshire strings r r are already decoupled from the bulk. Therefore, the magnetic flux m
on top of the upper layer and below of the lower layer will remain invariant. On the other
hand, a magnetic flux between the two Cheshire strings r r will change a plaquette term from
Z Z to−Z Z , as illustrated by the red plaquette term in Fig. 12. As a result, it becomes a domain
wall of the “coefficient” after fusion. The fuse rule can be written as:

r r

r rr r

r r

m
m

=
m rrrr ⊕

m rrrr . (15)

Note that there is a magnetic domain wall in the “coefficient” of each of the fusion out-
comes. This example shows that the 0d morphisms before the fusion not only affect the 0d
morphisms of the fusion outcome, but also affect the domain walls of the “coefficient” 1d fer-
romagnetic phase. In this sense, the “coefficient” of the fusion rule in Eq. (2) is indeed not just
a number, but the ground space of a 1d ferromagnetic chain. The “coefficient” and its domain
walls can also have their own fusion rules, cf. Ref [1].

The next interesting example is to fuse Cheshire strings r r with endpoints, as shown in
Fig. 13 or Eq. (16). As stated in the last section, there are two different kinds of endpoint
morphisms, M1

1 (1, r r) and M1
m(1, r r). In Fig. 13, we consider fusing two open Cheshire strings

without magnetic flux M1
1 (1, r r). Different from fusing infinite long Cheshire string r r as in

Fig. 2, at the endpoints, the edges between two r r are still coupled to the bulk through a
plaquette term Bp.

To see the consequence of this remaining coupling, we can detect whether there is a mor-
phism at the left endpoint, as we did in Fig. 6. We first generate a charge from the upper side
of the upper Cheshire string r r, let it wind around the left endpoints and touch the bottom of
the lower Cheshire string r r. This operator should map the ground state to itself up to a ±1
sign as the charge is condensed on the string.

The value of such a charge string operator is equal to the truncated plaquette term B̄p = ±1,
as shown in Fig. 13. As a result, the two channels of the fused Cheshire strings carry different
kinds of endpoint morphisms M1

1 (r r, r r) and M m
1 (r r, r r), as shown in Eq. (16). Moreover,
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r r

r r

B̄p

Figure 13: Fusing Cheshire strings with endpoints. B̄p is the product of Z operators
of the cyan bonds.

r r

r r

Z Z Z Z Z Z Z Z = r r ⊕ r r

Figure 14: Fusing two Cheshire strings r r with a modified circuit. The blue arrows
represent controlled-Not gates.

since the un-truncated plaquette term takes eigenvalue +1, the morphism we get at the end-
point is entangled with the spins in the coefficient.

r r1

r r1
= r r1 ⊕ r r1

m . (16)

When the spins in the coefficient are in the up state, B̄p = 1 and the fusion outcome is a
Cheshire string r r with trivial endpoint morphism M1

1 (1, r r); when the spins in the coefficient
are in the down state, B̄p = −1 and the fusion outcome is a Cheshire charge r r with nontrivial
morphism M1

m(1, r r), which is attached with a flux m. Later we show that a different choice
of the finite-depth fusion circuit fully decouples the coefficient and the morphism of the fusion
result.

Finally, we can also fuse a shorter Cheshire string with a longer Cheshire string:

r r1

r rr r
= r rr r ⊕ r rr r m . (17)

3.2 Effect of different choices of fusion circuit on 0d morphisms

Choosing different 1d finite-depth circuits to fuse the 1d LEEs can result in different fusion rules
when they carry nontrivial 0d morphisms. As an example, we again consider the problem of
fusing two Cheshire strings r r. The circuit used in Fig. 2 and Fig. 12 is a trivial circuit. We can
add a finite depth circuit that tunnels an m anyon along the length of the Cheshire string. In
this simple case, the new circuit does not change the fusion result of two Cheshire strings with
no domain walls or the fusion result of two Cheshire strings with domain walls. It will change
the fusion result of Cheshire strings with endpoints by adding an m anyon to each endpoint.

A more interesting case is where the change in finite depth circuit changes the fusion
rule even when the fusion is between two Cheshire strings with only domain walls but no
endpoints. Readers referring to Ref. [20] may find that the circuit used there to fuse two
Cheshire strings r r together is different from the one used in Fig. 2 and Fig. 12. In Fig. 2 and
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Fig. 12, no non-trivial unitary action was needed to fuse the two strings together. In Ref. [20],
a finite depth circuit controlled by the internal legs is used, as shown in Fig. 14. Here, the
blue arrows in Eqs. (18) and Fig. 14 indicate controlled-Not gates controlled by the internal
legs |0〉〈0|c+ |1〉〈1|cX t . All the blue arrows commute with each other and this is a finite-depth
circuit. Physically, this circuit tunnels a magnetic flux m along the length of the string on top
of the upper Cheshire string, when the internal legs are in the down state. This is therefore
a controlled-tunneling circuit, controlled by the ferromagnetic state of the coefficient. (The
circuit in Fig. 14 is slightly different from that in Ref. [20] – the circuit in Ref. [20] has one
controlled-Not gate per unit cell while the circuit in Fig. 14 has three – but their actions are
equivalent.)

When there are no domain walls along the Cheshire strings before fusion, the fusion rule
is exactly the same as in Eq. (2):

r r

r r
= r r ⊕ r r . (18)

On the other hand, the fusion rules of Cheshire strings r r with 0d domain walls as shown
in Eqs. (15) will change now under the different circuit defined in Fig. 14:

r r

r r

r r

r r m
m

= m
m rrrr ⊕ m

m rrrr . (19)

The circuit will create a magnetic flux on top of the upper Cheshire string whenever there
is a magnetic domain wall on the coefficient. With this circuit, the magnetic flux between
two Cheshire strings r r in Eq. (19) will not only affect the domain walls of the ferromagnetic
“coefficient”, but also change the morphisms above the upper Cheshire string.

Similarly, the fusion result of the endpoint morphisms in Eq. (16) becomes

r r1

r r1
= r r1 ⊕ r r1 , (20)

where the endpoint morphisms are always trivial regardless of the “coefficient”.
To consistently understand both fusion results, we note that the circuit defined in Figs. 2

and 14 are different up to a finite depth circuit which creates a flux m above the fused Cheshire
string when there is a domain wall of the “coefficient”. It changes the fusion result as:

ma

mb

σ ρ ρσ ρ ρ

r rr r ⇒ ma+ρ−σ

mb

σ ρ ρσ ρ ρ

r rr r , (21)

and
ma

σ σ r r1 ⇒
ma+σ

σ σ r r1 , (22)

where σ,ρ = 0 or 1 represent the spins on the “coefficient” ferromagnetic state. This change
in the fusion rule of 1d LEEs is consistent with the fusion rule of 0d LEEs along the 1d LEEs,
as illustrated by the commutativity of the following diagrams,

ma

mb
mc

md

σ ρ δ δρ δ δσ ρ δ δρ δ δ

r rr r
r r

⇓

= ma+c

mb+d

σ δ δσ δ δ

r rr r

⇓

,

ma+ρ−σ

mb
mc+δ−ρ

md

σ ρ δ δρ δ δσ ρ δ δρ δ δ

r rr r r r = ma+c+δ−σ

mb+d

σ δ δσ δ δ

r rr r ,

(23)
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and

ma mb
σ ρ ρσ ρ ρ

1
r r r r

⇓

= ma+b
σ ρ ρσ ρ ρ

r rr r

⇓

+ ma+b+1

m

σ ρ ρσ ρ ρ

r rr r

⇓

,

ma−σ mb+ρ
σ ρ ρσ ρ ρ

1
r r r r = ma+b+ρ−σ

σ ρ ρσ ρ ρ

r rr r + ma+b+1+ρ−σ

m

σ ρ ρσ ρ ρ

r rr r .

We also note that the 0d domain walls on the “coefficient” are invariant regardless of the 1d
fusion circuits.

Which 1d circuit should we choose to fuse two Cheshire strings r r together? We note
that the two different choices of 1d circuits here have different merits in generalizing to more
general problems. Here we denote the circuit used in Fig. 2 as Circ1, and the circuit used in
Ref. [20] and Fig. 14 as Circ2. The difference between the two circuits can be summarized as
follows.

1. The fusion results of Circ1 are symmetric under horizontal reflection, whereas the fusion
results of Circ2 typically are not. This difference is evident when fusing two Cheshire
strings r r, with a flux m between them. In the case of Circ1, this flux m becomes a do-
main wall of the “coefficient” but does not affect the domain walls of the fused strings.
In contrast, under Circ2, the flux m between the two r r strings is tunneled to the up-
per side of the fused string, breaking the horizontal reflection symmetry of the original
configuration.

2. On the other hand, Circ2 has the advantage that the “coefficient” is completely decoupled
from the bulk and fused 1d LEE after fusion, even when the Cheshire strings r r have
endpoints, as shown in Eq. (20). This allows us to safely disregard the “coefficient”
ferromagnetic state after fusion. In contrast, under the action of Circ1, the endpoint
morphisms of the fused 1d LEE remain entangled with the “coefficient”, as shown in
Eq. 16.

3. Due to disentanglement of the “coefficient”, Circ2 can be easily generalized to higher
dimensions like the 3D Toric Code model, which is discussed in detail in the next sec-
tion 4.

4. The fusion rule under Circ2 can be ungauged to recover the fusion rule of the symmetry
breaking chains, which was derived in Ref. [1]. There, the fusion rule of two symmetry
breaking GHZ states (denoted as SB) can be written as

SB

SB

SB

SB
= SBSB ⊕ SBSB ,

(24)
where the blue arrows again represent controlled-Not gates. After the fusion circuit, the
upper SB state becomes a Z2 “coefficient” while the lower SB state remains invariant.
And when there is a domain wall before fusion on the lower SB state (denoted by the
red dot), it becomes a domain wall of both the Z2 “coefficient”and the fused SB string.

The fusion rule in Eq. (24) can be mapped to the fusion rule in Eq. (19) through a simple
gauge mapping. To see this, consider that gauging a 1d SB defect on a symmetric bulk
state results in the Cheshire string r r in a Toric Code [20]. Similarly, a domain wall
along an SB state corresponds to a −Z term along the Cheshire string r r, as shown in
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Z Z Z Z Z ZZ Z−

X

=⇒
Gauging

−ZZ Z Z

Z
Z Z

Z

X
X

X

X

Figure 15: Gauging of symmetry breaking phase with domain walls. Corresponding
operators before and after the gauge mapping are marked in the same color.

dual

dual

1

1

1

1

F2
F1 f

e
m

me

Figure 16: Two ribbon operators that commute with LEE stabilizers but anti-commute
with each other.

Fig. 15. If we conjugate the the −Z term with X , the two plaquette terms Bp on the
two sides of the −Z terms will be transformed to −Bp. It becomes clear that a −Z term
corresponds to a process of attaching two fluxes m on both upper and lower side, i.e.
M m

m (r r, r r).

SBSB =⇒ r rr r m
m . (25)

By applying this gauge mapping, it is straightforward to see that Eq. (24) maps directly
to Eq. (19). This outcome is expected, given that Circ2 is independent of dimension.

5. However, the disentangling feature of Circ2 cannot be naively generalized to more gen-
eral 2D string-net models. For example, to decouple the endpoint morphisms from the
“coefficient”, which corresponds to attaching a non-abelian anyon on the 1d LEEs, a
sequential quantum circuit is generally needed. Therefore, Circ1 seems easier to be gen-
eralized to 2D non-abelian topological orders.

3.3 Fusing duality strings with domain walls and endpoints

We now consider fusing duality strings with domain walls and boundaries. Unlike the Cheshire
strings r r, the duality string is an invertible 1d LEE, and fusing it with any other 1d LEEs gives
a single output channel. However, due to the noninvertible nature of the boundary of a duality
string, there can be extra degeneracy caused by morphisms.

Consider the fusion of two open duality strings with endpoints, as shown in Fig. 16. Unlike
the fusion of two closed duality strings, there is a two-fold degeneracy in the fusion result due
to the Majorina fermions at the endpoints. A direct way to see the two-fold degeneracy is
to construct two anti-commuting ribbon operators as shown in Fig. 16. F1 creates a pair of
fermions f and then condenses them at the endpoint of one of the open duality strings. It
anti-commutes with the F2 operator that creates a pair of charge e, winds one of them around
the endpoints and fuses the pair back to vacuum.
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(c)
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Z

Z

Z

Z

Z

X
X
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X X

X X
X

X

X

X X
X

X
X X

(d)

Figure 17: Lattice model of a pair of duality strings, with each stabilizer shown in
the same color. A 1d circuit used to fuse the two duality strings together as well as
the change of the stabilizers are shown step-by-step in the Figure. Here, the single-
pointed-arrows again represent the controlled-Not gate CX = |0〉〈0|c + |1〉〈1|cX t ,
while the double-pointed-arrows are controlled gates with the controlled-Not qubit
conjagated by the Hadamard gate X CX = HcCX Hc . The operations in (c) act in the
order of blue-red, and from (b) to (c), we drop the Z term in the purple stabilizer as
there is already a Z stabilizer represented by the yellow bond. The stabilizers in (d)
can be reorganized into those for the standard Toric Code.

As a result, the fusion of two duality strings with endpoints is an equal weight superposition
of a trivial string 1 with no morphism or a trivial string 1 with a fermion:

dual1

dual1
= 11 ⊕ 11

f . (26)

The two-fold degeneracy can be distinguished by whether there is a fermion at the fused
endpoints.

This degeneracy of fusion result can also be seen explicitly from the lattice model. To
do this, we first write down the 1d circuit which can be used to fuse two duality strings, as
derived in Ref. [20]. Fig. 17 (a) shows a set of stabilizers (and the translated copies of the
terms shown) that stabilize a pair of duality strings, which can be seen by moving a charge e or
flux m through the two strings. Here we choose a set of stabilizers such that the fusion result
will not cause translation of the lattice [20,31]. To fuse these two duality strings into a trivial
string, we need a finite depth circuit as discussed in Ref. [20]. Here we slightly reformulate
the 1d circuit such that the stabilizers after fusion become those of a standard Toric Code. The
step-by-step 1d fusion circuit are given in Fig. 17 (a)-(d).

Now, to fuse duality strings with endpoints, we can use the above circuit in the bulk of
the 1d LEEs, and only modify the 1d circuit locally around the endpoints. The new 1d circuit
with an endpoint, as well as the transformation of stabilizers at the endpoint, are shown step-
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−Z

Z
Z
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(c)
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Z

Z

Z

Z

X X

X

X

Y

X

Z
Z
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Figure 18: Lattice model of a pair of opened duality strings, with each stabilizer
shown in the same color. A 1d circuit used to fuse the two opened duality strings as
well as the change of the stabilizers are shown step-by-step in the Figure. Here, the
red two-arrow in (a) is control gates with the X-control gate gate X CY = HcCY Hc ,
where CY = |0〉〈0|c+ |1〉〈1|cYt . The yellow diamond in (b) is HY . The operations in
(c) act in the order of blue-red, and from (b) to (c), we drop the Z term in the teal
stabilizer as there is already a Z stabilizer represented by the pink bond.

by-step in Fig. 18 (a)-(d). The red term in Fig. 18 (d) is the product of a vertex term and a
plaquette term, and therefore allows either trivial anyon or a fermion f as shown in Eq. (26).

Again, there is some freedom in choosing the 1d fusion circuit. For example, we can
add a finite depth circuit to the circuit in Fig. 17, which tunnels a magnetic flux m from the
left endpoint to the right endpoint. After which the fusion rule of the endpoint morphisms
becomes:

dual1

dual1
= 11

m ⊕ 11
e . (27)

3.4 Fusing other 1d LEEs with domain walls or boundaries.

With the fusion rules of the Cheshire strings r r and the duality strings dual, it is in principle
easy to get all of the other fusion rules of 1d LEEs with domain walls or endpoints. Instead
of deriving the full set of fusion rules, here we show some examples with interesting features.
The fusion results are shown only for a specific fusion circuit.

For instance, fusing the duality string dual with endpoint and the rs string with endpoint
results in the ss string with multiple morphisms at the endpoint. This is because, similar to the
endpoint of a duality string, there is also a degeneracy associated with the endpoint of the rs
string, which can be seen from the ribbon operators shown in Fig. 19. We therefore obtain a
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dual

rs

1

1

1

1

F2
F1 f

e
m

me

Figure 19: Two ribbon operators that commute with LEE stabilizers but anti-commute
with each other.

similar fusion rule as fusing two duality strings with endpoints in Eq. (26):

dual1

rs1
= 1 ss ⊕ 1 sse . (28)

This is another example where the degeneracy of the fusion outcome is caused by the mor-
phisms – fusing closed duality and rs strings simply gives ss.

More interestingly, when fusing open rs and sr strings together, there will be degeneracy
caused by both the “coefficient” and the endpoint morphisms:

1 sr

1 rs
=

1 dual

1 dual
r r1 +

1 dual

1 dual
r r1 m

=
dual

dual
r r1 +

dual

dual
r r1 f

+
dual

dual
r r1 m +

dual

dual
r r1 e

= ss1 + ss1 e

+ ss1 e + ss1 .

(29)

In this example, the fusion outcome is four-fold degenerate: two of them are caused by the
“coefficient” and another two are caused by the morphisms.

And there are also cases where the “coefficient” is truly a number when fusing two sr
strings with endpoints:

1 sr

1 sr
= sr1 + sr1

f

=2× sr1 ,

(30)

where we use the knowledge that a fermion f at the endpoint of a sr string is equivalent to
trivial, as it can locally split to a charge e and flux m to condense on sr.

4 Discussion

The idea of fusing 1d LEEs as well as their 0d domain walls in 2D Toric code can be generalized
to 1d LEEs and morphisms in 3Dtopological orders. In this section, we generalize the result
by considering a 3D Toric Code model. Ref. [25] started the study of the 2-category structure
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Figure 20: Lattice model of the 3D Toric Code model.

=

Figure 21: Fusing two Cheshire strings r in 3D Toric Code.

r r r rm
1 r

Figure 22: Domain walls and endpoints of a Cheshire string r in 3D Toric Code.

of defects in 3D Toric Code. Working out all of the 1d LEEs and their fusion rules in 3D Toric
Code is beyond the scope of this work. Here we mostly focus on the fusion of the Cheshire
string, including those with domain walls and endpoints.

We start with the lattice realization of 3D Toric Code. The Z2 degrees of freedom are
defined on the edges of the cubic lattice, and the commuting Hamiltonian terms are defined
in Fig. 20. Different from 2D Toric Code, although the charge excitations e which violate
the vertex terms Av are still point-like excitations, the flux excitations m which violate the
plaquette terms Bp are now loop-like excitations. To put the charge and flux excitations on
the same ground, a 2-category structure of defects in 3D Toric Code was introduced [25]. The
fundamental objects in the 2-category are the magnetic flux loop m and the 1d Cheshire string
(denoted as r here). According to our definitions above, both the Cheshire string r and the
magnetic flux string m are 1d LEEs that are stable under 1d finite depth quantum circuits.
Here we focus on the fusion of 1d Cheshire strings together with their morphisms in the 3D
Toric Code.

To fuse infinitely long Cheshire strings without any morphisms, we need a 1d circuit to
decouple the edges connecting the two Cheshire strings from the rest of the system. This time,
we can no longer use the circuit in Fig. 2, as the edges between the Cheshire strings are coupled
to the bulk through the third dimension. Instead, we need to use a generalized version of the
circuit defined in Fig. 14. The fusion rule is exactly the same as in 2D Toric Code:

r

r

r

r
= r ⊕ r . (31)

The difference comes in when considering morphisms. In 3D Toric Code, there are only
two kinds of domain walls from a Cheshire string r to itself, and only a single kind of endpoint
between trivial string 1 and Cheshire string r. The nontrivial morphism between r and itself
is generated by winding a magnetic flux line around it, as shown in Fig. 22, which becomes
trivial at the endpoint of a Cheshire string r.
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Making use of the same procedure as in 2D, the fusion rule of 1d Cheshire strings with
morphisms can be derived as:

r

r

r

r
= rr ⊕ rr , (32)

r

r

r

r
= rr ⊕ rr . (33)

Similar to fusing Cheshire strings r r with magnetic flux m in 2D Toric Code as in Eq. (19),
there is an asymmetry of the fusion result coming from the 1d fusion circuit we choose. When
there is a magnetic flux loop around the upper Cheshire string r, it will become a domain wall
of the “coefficient” after the fusion. When there is a flux loop morphism around the lower
Cheshire string r, it will affect both the “coefficient” domain walls and the morphism of the
fusion result. Fusing Cheshire strings r with endpoints has no difference from fusing infinite
long strings:

r

r

1

1
= 1 r ⊕ 1 r . (34)

Interestingly, the fusion rules Eqs. (32),(33) and (34) are again consistent with the fusion
rule of symmetry breaking phases in Eq. (24) up to a gauging procedure, as alreadly mentioned
in Sec. 3. To see this, we can do a similar gauge mapping of the lattice model as we did in
Fig. 15. The only difference is that the domain wall on the SB state will no longer become a
pair of fluxes around the Cheshire, but now a ring of flux around the Cheshire, i.e.

SBSB =⇒ r rm . (35)

One can check accordind to this gauge mapping rule, the fusion rule in Eq. (24) again maps
to the fusion rule in Eq. (33). This is not surprising as fusing two SB strings together should
be independent of dimension, and so are its gauged versions.

5 Conclusion

In this paper, we study the fusion of low-entanglement excitations in 2D Toric Code using
quantum circuits. This includes the fusion of 1d LEEs, the fusion of 0d morphisms along a 1d
LEE and the fusion of 1d LEEs with nontrivial morphisms on top.

We observe some interesting features in the fusion of 1d LEEs with nontrivial morphisms.
First, since the 1d circuit used to fuse 1d LEEs without morphisms are not unique, when we
use different circuits to fuse 1d LEEs with nontrivial morphisms we can get different results,
as discussed in Section 3.2. Secondly, the fusion result of 1d LEEs with nontrivial morphisms
may not be commutative between the two 1d LEEs. We find this to be true not only in 2D
Toric Code but in 3D Toric Code as well. This is a bit surprising since in 3D, 1d LEEs can braid
around each other, so we might expect their fusion to be symmetric under their exchange. This
is the case for the fusion of anyons in 2D or higher dimensional topological phases. Anyons can
braid around each other in 2 and higher dimensions and naturally their fusion is commutative.
This is however no longer true for 1d LEEs. This feature already shows up in 1d LEEs in the
trivial phase when we try to fuse 1d symmetry breaking chains with domain walls on top [1].
Moreover, we see that the non-commutative fusions in the trivial phase can be mapped to that
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in the Toric Code through the gauging map. Therefore, if we try to define a braided-fusion
2-category structure for the 1d LEEs in 3D or higher, we need to be more careful. For anyons,
their fusion rule is automatically consistent with braiding. For 1d LEEs, to ensure the fusion is
consistent with braiding, more structures must be built in.
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