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Abstract

We study the role of global system topology in governing deep thermalization, the relax-
ation of a local subsystem towards a maximally-entropic, uniform distribution of post-
measurement states, upon observing the complementary subsystem in a local basis. Con-
cretely, we focus on a class of (1+1)d systems exhibiting ‘maximally-chaotic’ dynamics,
and consider how the rate of the formation of such a universal wavefunction distribu-
tion depends on boundary conditions of the system. We find that deep thermalization is
achieved exponentially quickly in the presence of either periodic or open boundary con-
ditions; however, the rate at which this occurs is twice as fast for the former than for the
latter. These results are attained analytically using the calculus of integration over uni-
tary groups, and supported by extensive numerical simulations. Our findings highlight
the nonlocal nature of deep thermalization, and clearly illustrates that the physics un-
derlying this phenomenon goes beyond that of standard quantum thermalization, which
only depends on the net build-up of entanglement between a subsystem and its comple-
ment.
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1 Introduction

Quantum thermalization refers to the relaxation of a quantum many-body system to a
maximally-entropic steady state — that is, a Gibbs state1 — over the course of time. This
irreversible behavior, which at first sight seems paradoxical to the fact that closed quantum
systems undergo unitary and hence reversible time-evolution, pertains more precisely to the
behavior of local subsystems: over time, there is a build-up of entanglement between a local
region and its complement, such that upon ignoring the state of the latter, the former acquires
a mixed (and universal) form. Intuitively, the role of the complementary subsystem, typically
assumed to be large compared to the subsystem of interest, is that of a ‘bath’ — it allows a
redistribution of energy, and more generally, any conserved charges. Whether or not a system
thermalizes [1–4], and if so, the timescales it takes, has been the subject of recent intense
studies in the quantum many-body dynamics community, and has given rise to novel discov-
eries like ergodicity-breaking mechanisms such as many-body localization [5,6] and quantum
many-body scars [7,8].

Recently, a new perspective to equilibration under closed quantum many-body dynamics
was put forth by Refs. [9, 10]. In this formulation, one is still interested in local properties
of a system, however, it is assumed that certain information about the bath is retained —
namely, its classical state as observed by an external agent. Note that such an assumption
is not at all unreasonable in light of current-generation quantum technologies in the form
of quantum simulators, which provide microscopically-resolved measurement data through
projective measurements of the global system. Thus, one can construct a hybrid quantum-
classical description of a local subsystem in terms of an ensemble of pure (quantum) states,
each of which is conditioned upon a particular (classical) measurement outcome of the bath.
This constitutes the so-called projected ensemble. Recent works have demonstrated, empirically
[9], experimentally [10] and then later rigorously in a number of exactly-solvable models [11,
12], that in certain cases, the distribution of the projected ensemble tends towards a universal
form in which the pure states are uniformly (and hence maximally-entropically) distributed
over the Hilbert space they live on. This phenomenon was dubbed deep thermalization, as
it is a form of equilibration more stringent than regular thermalization — it occurs at the
level of individual wavefunctions underlying the local subsystem, and not at the level of local
observables. This difference can be elucidated quantitatively by asking about the times it

1More generally, a generalized Gibbs state, if there are multiple conservation laws.

2

https://scipost.org
https://scipost.org/SciPostPhys.18.3.107


SciPost Phys. 18, 107 (2025)

takes to achieve regular (deep) thermalization, i.e., the time taken for a local subsystem to
reach a maximally-entropic mixed state (wavefunction distribution). In the exactly-solvable
models alluded to above, it was found that regular and deep thermalization times precisely
match [11,12]. However, in Ref. [12] it was argued that this was the result of the fine-tuned
nature of these models underpinning their exact-solvability; more generally, it is expected that
there will be a difference between these times, leveraging results of dynamical purification
in monitored quantum circuits for (1+1)d systems. Subsequent work [13] demonstrated a
model where it can be analytically shown that these times are indeed gapped.

In the present work, we investigate the role of topology of the global system in governing
regular and deep thermalization times. Precisely, we focus on a small, local region located
deep in the bulk of a thermodynamically large quantum many-body system, and investigate
the rate of how it equilibrates depending on the connectivity of the boundaries of the system.
For unitary dynamics generated by Hamiltonians with a sense of geometric locality, bounds on
information propagation bounds (à la Lieb and Robinson [14]) restrict the build-up of entan-
glement of a spatially local region to be with a region within a finite light-cone surrounding
it. Thus, dynamics of local observables and hence regular thermalization times are effectively
independent of the global topology of the rest of the system. In contrast, deep thermalization
entails a measurement of the bath, a dynamical process which evades information propaga-
tion bounds: thus, spatially distinct parts of the system, even those outside the light-cone, may
drastically affect each other. Studying different connectivities of a system therefore offers an
avenue to highlight the potentially distinct physics that underpin these two different notions
of local equilibration.

To make our investigations concrete, we focus on the emergence of deep thermalization in
a model describing a periodically-driven 1d array of spin-1/2s, the kicked Ising model (KIM).
The KIM constitutes one of the models where deep thermalization has been rigorously proven
to occur [11], wherein the region of interest constitutes a small subsystem of finite size NA lo-
cated at one end of a thermodynamically large chain. Our present work differs from Ref. [11]
by considering a region of interest located in the bulk of a large chain, with the left and right
ends of the system either connected with periodic boundary conditions (PBC) or with open
boundary conditions (OBC). We find, analytically using the calculus of integrals over the uni-
tary group as well as supporting numerics, that in both cases regular thermalization is achieved
in this model exactly at time t = ⌈NA/2⌉, while deep thermalization requires taking the ad-
ditional limit of large times t →∞ (this is in contrast to the set-up considered in Ref. [11],
where regular and deep thermalization both occur exactly at t = NA). Intriguingly, the rates of
deep thermalization depend crucially on the topology of the system: while in both cases the
convergence to a locally maximally-entropic wavefunction distribution is exponentially fast,
for a system with PBC, deep thermalization is achieved at a rate twice that in a system with
OBC. In other words, the deep thermalization time in a system with OBC is twice as long as in
a system with PBC.

Our findings illustrate unambiguously deep thermalization’s nonlocal nature, and show
that it is underpinned by novel physics beyond that of standard quantum thermalization. In-
deed, our results demonstrate that the projected ensemble is sensitive not only to the net
build-up of entanglement between a subsystem and its complement, but also to the internal
structure of how this entanglement is organized (probed by local measurements). Thus, the
projected ensemble and the emergence of deep thermalization possibly serves as a probe of
other interesting features of dynamics that are sensitive to the fine-grained details of entan-
glement generation, such as quantum information scrambling.

The rest of the paper is organized as follows. In Sec. 2 we quickly recap the framework of
projected ensembles and the physical phenomenon of deep thermalization. We explain how
deep thermalization can be quantitatively studied using the notion of quantum state-designs
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from quantum information theory, allowing us to define deep thermalization times. We then
introduce the kicked Ising model (KIM), the system studied in this work to understand the
role of different topologies in determining deep thermalization times. Sec. 3 presents our
analysis of the KIM, utilizing a tensor network representation of dynamics as well as integral
calculus over Haar random unitary matrices (i.e., Weingarten calculus). We show how the
rates of regular and deep thermalization depend sensitively on the connectivity of the system
considered. Sec. 4 supports our analytical findings with numerical simulations, where we
find very good agreement with our theoretical predictions. We conclude with a summary and
discussion of our findings in Sec. 5, and highlight some open directions for future work.

2 Setup

We first review the projected ensemble, referring the reader to the original works, Ref. [9–
11] for a more detailed exposition and motivation of its construction. We then describe the
nonequilibrium phenomenon that emerges within this setting known as deep thermalization,
before presenting the kicked Ising model (KIM), the system of interest considered in this paper.

2.1 Preliminaries

2.1.1 The projected ensemble

The projected ensemble is constructed as follows. Consider a pure quantum state |Ψ〉AB defined
on a bipartite many-body system A∪B. This could, for example, be an energy eigenstate of the
Hamiltonian or an entangled state arising in quench dynamics. For simplicity, we may assume
that we are considering a system of N = NA+ NB qubits, though this assumption can be lifted
to allow for systems of qudits or fermions of arbitrary (but finite) local dimension.

Suppose now we perform a projective measurement on B in a complete basis {|z〉}, with
measurement outcomes labeled by z. Then, the state on B will be updated to |z〉, while the
state on A will be in a definite pure state2 given by the Born update:

|ψ(z)〉A := (IA⊗ 〈z|B)|Ψ〉AB/
Æ

p(z) , (1)

where p(z) = 〈Ψ|AB(IA⊗ |z〉B〈z|)|Ψ〉AB is the probability that outcome state z is observed, see
Fig. 1(a). Motivated by experimental considerations (see [9,10]), we are typically interested
in the case where z ∈ {0,1}NB is a bit-string that represents a local ‘classical’ configuration
of the system, where each bit provides information, for example, of the position of a particle
in an optical lattice, or the internal spin state of an atom or ion in a given trap. In quantum
computing parlance, measuring in the basis {|z〉} thus corresponds to a ‘computational basis’
measurement, the natural way of extracting information in a many-body system. Considering
the conditional projected states |ψ(z)〉A and their respective probabilities p(z) over all possible
states of the bath z then yields an ensemble of pure states called the projected ensemble,

E = {(p(z), |ψ(z)〉A) : z ∈ {0, 1}NB} , (2)

which can be understood as a distribution of wavefunctions over the Hilbert space3 HA of A.
Information captured by the projected ensemble includes, for example, conditional 1-point

expectation values of local observables, 〈OA〉z ≡ TrA (OA|ψ(z)〉A〈ψ(z)|) = TrA (OAρA(z)) , i.e.,
the expectation value of a quantum observable OA on local region A conditioned upon the bath

2It is pure because we are assuming that the information obtained on the bath is complete, that is, {|z〉〈z|} are
orthogonal rank-1 projectors that span the Hilbert space of B.

3More precisely, the projected ensemble is a distribution over the complex projective space.
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Figure 1: (a) Construction of the projected ensemble. The ensemble consists of pure
projected states |ψ(z)〉 of a local subsystem A, which are post-measurement (con-
ditional) states upon measuring the complementary region (‘bath’) B in a complete
basis (e.g., the computational-z basis) and obtaining measurement outcome z. In
this work we are concerned with the projected ensemble arising from dynamics un-
der unitary time evolution Ut , with A being a small region located in the bulk, flanked
by ‘baths’ B1 and B2 on the left and right, and connected with either periodic bound-
ary conditions (PBC) or open boundary conditions (OBC). Thus, the measurement
outcome z is z = (z1, z2). (b) Cartoon of deep thermalization and difference with
regular thermalization. For a local region A being a single qubit, we can plot the dis-
tribution of projected states of the projected ensemble as points on the Bloch sphere.
Deep thermalization refers to the attainment of a uniform distribution over Hilbert
space over time. Note that regular thermalization does not distinguish between the
three distributions shown, even though the left-most distribution is clearly not uni-
form; in all cases, the barycenter (mean) of all the projected states is a point in the
middle of the Bloch sphere, which corresponds to regular quantum thermalization to
infinite temperature.

B being in state z. Averaged over all states of the ensemble, the mean conditional expectational
value is Ez[〈OA〉z] =

∑

z p(z)TrA (OA|ψ(z)〉A〈ψ(z)|) = TrA (OAρA), where ρA = TrB(|Ψ〉AB〈Ψ|AB)
is the reduced density matrix (RDM), which we recognize to be the standard expectation value
of the observable OA agnostic of the state of the bath. This thus shows that the projected
ensemble E can recover any information that the RDM ρA contains. Examples of information
captured by E but not ρA include conditional k-point functions Ez[〈O1,A〉z〈O2,A〉z · · · 〈Ok,A〉z] for
any k ≥ 2 (a subset of which has in fact been measured by [10]), which demonstrates that the
projected ensemble is a novel quantum-classical description of a local subregion of a quantum
many-body system which generalizes the reduced density matrix formalism as it retains, rather
than discards, certain correlations with its environment.

2.1.2 Deep thermalization

Consider now a global many-body state |Ψ〉AB which arises from quench dynamics under a
quantum chaotic Hamiltonian, beginning from a nonequilibrium initial configuration. Con-
ventional wisdom (specifically, the second law of thermodynamics) informs us that the re-
duced density matrix ρA(t) of a small system (NA ≪ NB) maximizes its entropy over time,
subject to conservation laws, which implies it relaxes to a universal mixed Gibbs state:
ρA(t) →≈ e−βHA/Z (β: inverse temperature, Z: normalization corresponding to the parti-
tion function) — i.e., the system quantum thermalizes. It is thus natural to inquire if the
projected ensemble E itself also relaxes towards a universal distribution.
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In the case of chaotic dynamics in the absence of any conservation laws where the reduced
density matrix is expected to tend towards a featureless maximally-mixed state ρA(t)→IA/2NA,
it seems reasonable to imagine that the projected ensemble similarly tends towards a feature-
less, maximally-entropic distribution in Hilbert space, a phenomenon that can be dubbed deep
thermalization. This was first conjectured by Refs. [9, 10]. Mathematically, this amounts to
asking if the projected ensemble E(t), generated by a time-evolving state |Ψ(t)〉AB, tends in
time to a limiting form given by an ensemble of uniformly distributed states

EHaar = {dUA, |UA〉} , (3)

where dUA is the Haar measure on the space of unitaries on A and |UA〉 := UA|φ0〉 for any
arbitrary but fixed generator state |φ0〉. For this reason we shall refer to the corresponding
collection of states EHaar as the Haar ensemble. Indeed, Refs. [9, 10] provided strong empir-
ical and experimental evidence that such universality arises; this was later substantiated by
rigorous results demonstrating its emergence in a family of exactly-solvable models [11, 12],
which includes the periodically-kicked Ising model, and quantum circuits made up of special
local quantum gates which possess a so-called dual-unitary property [15–18]. Such discover-
ies hint at a possible generalized guiding principle beyond the second law of thermodynamics
governing the ultimate fate of quantum many-body systems over time, wherein the notion
of an entropy that is maximized should be appropriately generalized (for example, from the
von Neumann entropy of the reduced density matrix to possibly the Shannon entropy of the
projected ensemble). For the special case of free-fermionic (and hence non-chaotic) systems
which possess infinitely many integrals of motion, recent work [19] has conjectured and shown
numerically that the limiting wavefunction distribution in dynamics is consistent with the pro-
jected ensemble obtained from a representative Gaussian state whose conserved charges match
those of the initial state. As this is a generalization of equilibration of the reduced density ma-
trix towards the (non-thermal) generalized Gibbs ensemble (GGE), the authors dubbed this
‘generalized deep thermalization’.

Returning to chaotic quantum many-body dynamics without conservation laws, the degree
of deep thermalization can be systematically quantified by probing whether the projected en-
semble E matches that of the uniform, Haar ensemble EHaar at moment k of the respective
distributions. Precisely, for the k-th moment we may form the following density operators on
the k-replicated Hilbert space H⊗k

A of A

ρ(k) :=
NB
∑

z=1

p(z)(|ψ(z)〉A〈ψ(z)|A)⊗k , (4)

ρ
(k)
Haar :=

∫

dUA(|UA〉〈UA|)⊗k . (5)

These operators neatly package any conditional k-point function O1⊗O2⊗ · · ·⊗Ok within the
corresponding ensemble:

EE[〈O1〉z〈O2〉z · · · 〈Ok〉z] = Tr
�

ρ(k)O1 ⊗O2 ⊗ · · · ⊗Ok

�

, (6)

EEHaar
[〈O1〉UA

〈O2〉UA
· · · 〈Ok〉UA

] = Tr
�

ρ
(k)
HaarO1 ⊗O2 ⊗ · · · ⊗Ok

�

. (7)

If all such expectation values agree between the ensembles up to some small precision ϵ > 0
(with operators appropriately normalized), or equivalently if the density operators’ trace dis-
tance obey

∆(k) :=
1
2
∥ρ(k) −ρ(k)Haar∥1 ≤ ϵ , (8)

then we say that the system has (approximately) deep thermalized at level k. Note that ap-
proximate deep thermalization at level k implies approximate deep thermalization at level
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k − 1 but not vice versa. In particular, a system thermalizing to infinite temperature at the
level of the reduced density matrix (∆(k=1) = 0) does not imply the projected states are uni-
formly distributed in Hilbert space (captured by k ≥ 2 moments), demonstrating that deep
thermalization is more stringent than regular thermalization, see Fig. 1b. The equivalence of
E to EHaar at the k-th moment is commonly referred to in quantum information theoretical
language as forming a quantum state k-design [20–22].

Using this notion of convergence, we can, in the case of a projected ensemble formed in
quench dynamics beginning from a nonequilibrium initial state, define a sequence of design
times tk, as the minimum time it takes for the projected ensemble to fall below some fixed
threshold, i.e.,

tk := t , s.t. ∆(k)(t)≤ ϵ . (9)

Note that these times are monotonic, tk+1 ≥ tk. The first design time t1 — the time for the RDM
to approximate the maximally mixed state, is nothing more than the regular thermalization
time, while higher design times tk≥2 correspond to progressive levels of deep thermalization;
we thus refer to the latter collectively as the deep thermalization times. Differences in tk for
different k can signal distinct physics at play, which prior works Refs. [12,13] have studied. In
this work, we shall be concerned with the differences between regular and deep thermalization
times that arise due to different topologies of a system.

2.2 Model

The system we consider consists of a periodically-kicked 1D chain of N spin-1/2 particles (i.e.,
qubits) called the kicked Ising model (KIM). Concretely, dynamics is generated by repeated
applications of the Floquet unitary operator

UF = Uhe−iHIsingτ , (10)

which entails periodic alternation between an entanglement-generating Ising Hamiltonian
HIsing applied for time τ = 1 and a transverse kick Uh = exp(−ih

∑N
i=1σ

y
i ) with transverse

field strength h. We shall be interested in chains defined with two different connectivities —
periodic boundary conditions (PBC) and open boundary conditions (OBC), so that the Ising
Hamiltonian reads:

HIsing =

¨

J
∑N

i=1σ
z
iσ

z
(i mod N)+1 + g
∑N

i=1σ
z
i , (PBC)

J
∑N−1

i=1 σ
z
iσ

z
i+1 + g
∑N

i=1σ
z
i + b1σ

z
1 + bNσ

z
N , (OBC)

(11)

where J is the strength of Ising interactions, g is the strength of a longitudinal field, and b1, bN
are boundary fields. We fix both to have value π/4; they are introduced solely to simplify
technical simplifications and are irrelevant for the ensuing physics.

For generic values of parameters (J , g, h) — specifically, avoiding the free fermionic and
Clifford points of the model, the KIM is believed to generate quantum chaotic dynamics. In-
deed, in the special case of (|J |, |h|) = (π/4,π/4), it has been shown that its spectral statistics
are exactly captured by predictions from random matrix theory [16]. For this reason the KIM
with these parameters is viewed as ‘maximally chaotic’. In the context of the projected ensem-
ble, for similar parameters (|J |, |h|) = (π/4,π/4) and any g excluding the points Zπ/8, and
beginning from the x-polarized initial state |+〉⊗N , both regular and deep thermalization (at
any k) were proven to exactly occur for a subsystem A defined to be a contiguous region of NA
spins located on one end of a thermodynamically large system with OBC, in time t = NA [11].
In other words, all design times collapse: tk = NA. The basic picture uncovered was that the
projected states can be viewed as arising from stochastic ‘quantum computations’ through the
bulk of the system with measurements indexing the computation, upon performing a space-
time duality transformation of the quantum circuit underlying the system. This is similar to the
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computation that arises through the entanglement present between different spatial regions
of resource states in measurement-based quantum computation (see [23]). Further, these
computations were shown to be universal, in the sense that they map to every point in Hilbert
space, hence leading to an emergent uniform distribution within the projected ensemble. More
details can be found in Ref. [11].

In our present work, we again consider the many-body state

|Ψ(t)〉= U t
F |+〉

⊗N , (12)

arising from t ∈ N applications of UF on the initial state |+〉⊗N with similar system parameters
as Refs. [11], but now construct the projected ensemble E on A consisting of NA contiguous
spins located in the middle of the system, namely centered around site ⌊N/2⌋, for both PBC and
OBC. The complementary subsystem B is thus such that B = B1∪B2, where B1(B2) are regions
to the left (right) of region A, see Fig. 1(a). The projected ensemble E , Eq. (2), is therefore
composed of projected states still given by Eq. (1), but now with the classical configuration of
the bath labeled by z = (z1, z2), where z1 = {0,1}NB1 and z2 = {0,1}NB2 , which represent the
bit-string outcomes of a joint projective measurement on regions B1 and B2 respectively.

In this scenario, prior work on entanglement growth has demonstrated that the von Neu-
mann entropy S(t) grows linearly at early times with a slope v = 2 (measured in log base 2),
and saturates at time t1 = ⌈NA/2⌉ [24] to S(t) = NA. Thus ρA becomes exactly equal to the
maximally mixed state IA/2NA at that time. This constitutes regular quantum thermalization to
infinite temperature. However, deep thermalization has not yet been established for this setup,
which we proceed to do next. As regular quantum thermalization is a necessary condition for
deep thermalization to occur, we henceforth concentrate on times t ≥ ⌈NA/2⌉.

3 Analytical solution

3.1 Projected ensemble in the thermodynamic limit

We start our analysis by recognizing that the dynamics under the Floquet unitary UF admits a
quantum circuit representation which can be cast as a tensor network diagram. This represen-
tation was already introduced and underlies the proof of the result of Ref. [11] (see also [23]
where it was used), so below we simply quickly summarize the relevant key basic tensors and
rules underlying the representation.4 By using such manipulations on the basic diagrams, we
will derive a simplified form of the projected ensembles for both the PBC and OBC cases in the
thermodynamic limit, Eqs. (21), (22), upon invoking a space-time duality transformation.

We first introduce the following elementary tensors

2 ×

𝜋/4

𝜋/4

𝑔

𝑧!

𝑧"
𝑧#

𝜋/2=
1
p

2

�

1 1
1 −1

�

,2 ×

𝜋/4

𝜋/4

𝑔

𝑧!

𝑧"
𝑧#

𝜋/2
= δz1z2z3

e−i g(1−2z1) , (13)

where each leg is labeled by an index zi ∈ {0,1}, which are tensor network representations of
the Hadamard gate H (whose action is H|0〉= |+〉 and H|1〉= |−〉), and a 3-legged tensor spec-
ified by parameter g, which consists of a 3-legged Kronecker delta (δz1z2z3

= 1 if z1 = z2 = z3

and 0 otherwise) together with a phase factor (e−i g(e+i g) if the inputs are 0(1)). Using these
we can, ignoring irrelevant global phases, cast evolution under the Ising interaction between

4These rules are reminiscent of so-called ZX calculus, a graphical language for reasoning about quantum com-
putation, see for example Ref. [25,26].
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two qubits and a local transverse kick (for the parameters chosen) respectively as,

e−i π4σ
z⊗σz

= 2 ×

𝜋/4

𝜋/4

𝑔

𝑧!

𝑧"
𝑧#

𝜋/2
, e−i π4σ

y
=2 ×

𝜋/4

𝜋/4

𝑔

𝑧!

𝑧"
𝑧#

𝜋/2
. (14)

Above, we read the action of the tensors from right (i.e., input) to left (i.e., output). Some
basic rules of the tensors include contraction of two Kronecker deltas and contraction with a
|+〉 state,

𝑔! 𝑔"
𝑔! + 𝑔"= 𝑔 |+⟩ =

1
2
× 𝑔 𝑔 |𝑧#!,%⟩

𝑔 |+⟩

𝑔 + &
"

|+⟩

,
𝑔! 𝑔"

𝑔! + 𝑔"= 𝑔 |+⟩ =
1
2
× 𝑔 𝑔 |𝑧#!,%⟩

𝑔 |+⟩

𝑔 + &
"

|+⟩

. (15)

Additionally, a measurement in the computational basis at site i in region B1 yields a contrac-
tion with state |zB1,i〉

𝑔! 𝑔"
𝑔! + 𝑔"= 𝑔 |+⟩ =

1
2
× 𝑔 𝑔 |𝑧#!,%⟩

𝑔 |+⟩

𝑔 + &
"

|+⟩

=















𝑔! 𝑔"
𝑔! + 𝑔"= 𝑔 |+⟩ =

1
2
× 𝑔 𝑔 |𝑧#!,%⟩

𝑔 |+⟩

𝑔 + &
"

|+⟩

, if zB1,i = 0 ,

𝑔! 𝑔"
𝑔! + 𝑔"= 𝑔 |+⟩ =

1
2
× 𝑔 𝑔 |𝑧#!,%⟩

𝑔 |+⟩

𝑔 + &
"

|+⟩ , if zB1,i = 1 ,
(16)

and similarly for sites in B2.
Therefore up to a common multiplicative factor, an unnormalized projected state

|ψ̃(z1, z2)〉 = 〈z1, z2|U t
F |+〉

⊗N on subsystem A can be diagrammatically depicted as shown in
Fig. 2a, where the horizontal direction represents space (precisely, of N qubits) and the ver-
tical direction represents time (precisely, of t applications of UF ). The left and right ends of
the diagram are terminated either by connecting the dangling legs together (PBC), or con-
tracted on the left and right with the states 〈+|⊗t and |0〉⊗t respectively (OBC). On the top of
the diagram, there is a partial contraction of the tensor network in the spatial region B1 with
the product state 〈z1| = ⊗sites i∈B1

〈zi|, and similarly in the region B2 with the product state
〈z2|= ⊗sites i∈B2

〈zi|, according to the measurement outcomes (z1, z2) on the bath B = B1 ∪ B2.
One sees from Fig. 2(a) that away from the boundaries, the bulk of the tensor network di-

agram looks identical when viewed from bottom to top or right to left. As the tensor network
describes unitary evolution vertically, this means it also describes unitary evolution horizon-
tally — this special property is known as dual-unitarity,5 and holds for the model dialled to
the special parameters values we are considering. Now, the partial contraction of the bulk
tensor network on the bottom boundary with the input state |+〉⊗N and the top boundaries
with the computational basis states 〈z1|B1

⊗ 〈z2|B2
respectively allows one to define two maps

U(z1), U(z2) acting on the space of t qubits (see blue boxes in Fig. 2a for their precise defini-
tions, reading their action from right to left), and it turns out that these are in fact unitaries.
That is, U(z1)†U(z1) = U(z2)†U(z2) = I. We refer the reader to Ref. [11] which contains more
details of the construction of such objects. Similarly, we may also define a multi-linear map
W ′ (orange box in Fig. 2(a)), which maps the space of two copies of t qubits (‘temporal slices’)
to the Hilbert space HA of NA qubits (‘spatial region’); this tensor has indices W ′σττ′ where the
spatial index σ ∈ {0,1}NA and temporal indices τ,τ′ ∈ {0,1}t .

Thus, one has a useful dual interpretation of a projected state as arising from ‘quantum
evolutions’ of t temporal qubits effected by U(z1) and U(z2), with the subsequent operation W ′

then mapping such information to the spatial region of NA qubits. Precisely, we may express a

5More specifically, the KIM is actually self-dual, since not only is it unitary in both the space and time directions,
the unitary evolution is the same.
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Figure 2

𝑊

𝑈

𝑡 −
𝑁!
2

𝑁!
2

PBC

𝑊

𝑡 −
𝑁!
2

𝑁!
2

OBC

(a)

(b)

(c)

𝑈

U
!

|+⟩|+⟩|+⟩ |+⟩

𝑊′ 𝑈(𝑧")𝑈(𝑧#)

𝑧"

PBC 
or 

OBC

|+⟩|+⟩ |+⟩ |+⟩|+⟩|+⟩ |+⟩

𝑧#

𝑡

𝑁!

𝑁!

𝑁!

| '(𝜓 𝑧", 𝑧# =

Figure 2: (a) Tensor network representation of the unnormalized projected state
|ψ̃(z1, z2)〉 on subsystem A, Eq. (17). The blue boxes define unitaries U(z1), U(z2)
up to a proportionality factor; while W ′ is defined by the tensors in the orange box
as a linear map from two temporal t slices to the spatial region A. (b,c) Simplified
tensor network representations of the state upon taking the thermodynamic limit
NB1
→∞ and NB2

→∞. (b) PBC case. Resulting tensor network representation
of an unnormalized projected state, where the map W ′ can be simplified to W (de-
fined by the orange triangle), and where the contributions of U(z1), U(z2) can be
combined into a single unitary U , which is traced over together with the inserton of
W . In the projected ensemble the corresponding normalized state is sampled with
probability proportional to the unnormalized state’s squared norm, where unitary U
is drawn randomly from the Haar measure dU on t qubits. (c) OBC case. Result-
ing tensor network representation an unnormalized projected state, where W is the
same as in the PBC case. However, now instead of a single random unitary which
is traced over, the unnormalized projected state involves contraction by two states
|U〉 and |U ′〉. The probability that the corresponding normalized state occurs in the
projected ensemble is proportional to the unnormalized state’s squared norm, where
|U〉 = U |+〉⊗t , |U ′〉 = U ′|0〉⊗t are random states drawn by sampling U , U ′ from the
Haar measure dU , dU ′ on t qubits, independently.

projected state |ψ̃(z1, z2)〉 as

|ψ̃(z1, z2)〉 ∝

¨
∑

σ∈{0,1}NA Tr
�

U(z1)W ′σU(z2)
�

|σ〉 , (PBC)
∑

σ∈{0,1}NA〈+|⊗t U(z1)W ′σU(z2)|0〉⊗t |σ〉 , (OBC)
(17)

where the trace is over the temporal space, whose indices we have suppressed. Note the proba-
bilities p(z1, z2) in the projected ensemble are proportional to the overlap 〈ψ̃(z1, z2)|ψ̃(z1, z2)〉
of the unnormalized projected states.

While the above diagrammatic manipulations are rather detailed, simplifications arise
upon taking the thermodynamic limit (TDL) NB1

, NB2
→ ∞. It was shown (Theorem 2) in

Ref. [11] that the unitary ensembles {U(z1)} and {U(z2)}, indexed by measurement outcomes
z1 and z2 respectively and with each element considered equally likely, are statistically indis-
tinguishable from Haar random unitaries over t qubits. Mathematically, this is captured by
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the following statements:

lim
NB1
→∞

∑

z1∈{0,1}NB1

1

2NB1
U(z1)

⊗k ⊗ U(z1)
∗⊗k =

∫

U∼Haar(2t )
dUU⊗k ⊗ U∗⊗k ,

lim
NB2
→∞

∑

z2∈{0,1}NB2

1

2NB2
U(z2)

⊗k ⊗ U(z2)
∗⊗k =

∫

U∼Haar(2t )
dUU⊗k ⊗ U∗⊗k . (18)

Therefore, we can replace every instance of U(z1)(U(z2)) with a Haar random unitary
U(U ′) on t qubits, so that the projected ensemble in the thermodynamic limit acquires the
following limiting form:

E =
�

dUdU ′p(U , U ′) , |ψ(U , U ′)〉=
|ψ̃(U , U ′)〉
∥|ψ̃(U , U ′)〉∥

�

, (19)

where p(U , U ′) ∝ ∥|ψ̃(U , U ′)〉∥2, normalized appropriately so that
∫ ∫

dUdU ′p(U , U ′) = 1
with dU , dU ′ the Haar measure on the space of unitaries acting on t qubits, and with the
unnormalized projected state given by

|ψ̃(U , U ′)〉 ∝

¨
∑

σ∈{0,1}NA Tr
�

UW ′σU ′
�

|σ〉 , (PBC)
∑

σ∈{0,1}NA〈+|⊗t UW ′σU ′|0〉⊗t |σ〉 . (OBC)
(20)

Finally, we perform one more round of simplifications, utilizing the left and right invari-
ance of the Haar measure. First, the tensor W ′ can be reduced to the triangular tensor W
(orange triangle of Fig. 2(b,c) for its pictorial definition; though there is a slight difference
in its construction for even versus odd NAs, see Appendix A for details) by pulling out two
unitaries on the left and right which can be absorbed into U and U ′ respectively. W is de-
fined to be a map from two temporal spaces of ⌈NA/2⌉ qubits to the Hilbert space HA of NA
qubits, with matrix elements Wσ

τ,τ′ , where σ ∈ {0,1}NA and τ,τ′ ∈ {0,1}⌈NA/2⌉ (recall we are
working at times t ≥ ⌈NA/2⌉). Straightforwardly, but importantly, one can also check from the
diagrammatic rules that this tensor is proportional to an isometry:

∑

ττ′(W
σ
ττ′W

∗σ′
ττ′ )∝ δσσ′ ,

see Appendix B. Second, we note that in the PBC case, the unitaries U and U ′ can in fact be
combined into a single unitary and one of the measures integrated over.

Therefore, we end up with the following final form of the projected ensemble in the TDL:

EPBC = {dU p(U) , |ψ(U)〉} ,

EOBC =
�

dUdU ′p(U , U ′) , |ψ(U , U ′)〉
	

(21)

(22)

(dU , dU ′ : independent Haar measures on t qubits). In both cases the projected states |ψ(U)〉
and |ψ(U , U ′)〉, which live on the Hilbert space HA, are given by |ψ〉= |ψ̃〉/∥|ψ̃〉∥ with

|ψ̃(U)〉 ≡
∑

σ∈{0,1}NA

Tr(WσU)|σ〉 , (23)

|ψ̃(U , U ′)〉 ≡
∑

σ∈{0,1}NA

〈U |Wσ|U ′〉|σ〉 , (24)

defining the t- qubit state 〈U | ≡ 〈+|⊗t U† and |U ′〉 ≡ U ′|0〉⊗t , and they occur with probability
densities p∝ ∥|ψ̃〉∥2. Figs. 2(b) and (c) give the diagrammatic representations of the states
|ψ̃(U)〉 and |ψ̃(U , U ′)〉 respectively.
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3.2 Replica trick

Having derived the projected ensembles that arise in the thermodynamic limit, our next step
is to calculate the k-th moment operator via Eq. (4). In the case of PBC, this reads

ρ
(k)
PBC∝
∫

dU

�

|ψ̃(U)〉〈ψ̃(U)|
�⊗k

〈ψ̃(U)|ψ̃(U)〉k−1
, (25)

while in the case of OBC,

ρ
(k)
OBC∝
∫ ∫

dUdU ′
�

|ψ̃(U , U ′)〉〈ψ̃(U , U ′)|
�⊗k

〈ψ̃(U , U ′)|ψ̃(U , U ′)〉k−1
(26)

(the normalization is fixed by enforcing unit trace). One sees in both cases that the k-th
moment operator involves integrals over the unitary group (of t qubits). Now, integrals of
polynomial functions of unitaries are typically handled by what is known as Weingarten cal-
culus [27, 28]; however, in our case, we have a rational function of unitaries, and we hence
cannot perform such integrals directly.

To circumvent this obstacle, we employ a replica trick, first introduced by [29]. We illus-
trate this for the case of PBC only; the case of OBC follows straightforwardly. Let us instead
consider an alternative k-moment density operator further indexed by a real number n:

ρ
(k,n)
PBC :=

∫

dU pk,n(U)(|ψ(U)〉〈ψ(U)|)⊗k , (27)

where we have modified the probability that each state |ψ(U)〉 occurs to

pk,n(U) =
1

Nk,n
〈ψ̃(U)|ψ̃(U)〉k+n , (28)

with the normalization constant Nk,n =
∫

dU〈ψ̃(U)|ψ̃(U)〉k+n. If we set n = 1 − k, then
pk,1−k(U) = p(U), or in other words

lim
n→1−k

ρ
(k,n)
PBC = ρ

(k)
PBC , (29)

i.e., we recover our desired k-moment operator.
The virtue of the introduction of the replica operators is that we can write ρ(k+n) in an

equivalent form:

ρ
(k,n)
PBC =

∫

dU〈ψ̃(U)|ψ̃(U)〉n
�

|ψ̃(U)〉〈ψ̃(U)|
�⊗k

∫

dU〈ψ̃(U)|ψ̃(U)〉k+n
, (30)

making manifest that the numerator and denominator involve separate independent integrals
over the unitary group (in contrast to Eq. (25), which involves a single integral of the ratio
over the numerator and denominator). At the special values n ∈ N, ρ(k,n) can thus be tackled
using Weingarten calculus as both the numerator and denominator are polynomial functions
of U . Our strategy is to thus evaluate ρ(k,n)

PBC at these integer values, and then formally take the
limit n → 1 − k using such information. We note that strictly speaking, taking a continuous
limit from a set of discrete points is a mathematically non-rigorous step.6 However, such
replica tricks are routinely used in many branches of physics, such as for calculation of average
of logarithm of partition functions in spin glass systems [30] and entanglement entropies in
quantum field theories and in context of holographic duality [31, 32], among others. We
therefore adopt a similar philosophy in our following analysis, later checking its validity with
(unbiased) numerics.

6Another way of putting this is that there are infinitely many ways of extending the domain of a function from
the integers to the reals.
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3.3 Periodic boundary conditions (PBC)

It suffices to evaluate the numerator ρ̃(k,n)
PBC of the expression Eq. (30), a linear operator which

acts on H⊗k
A , as the denominator of ρ(k,n)

PBC is just the trace of ρ̃(k,n)
PBC . For ease of computation,

we furthermore consider its vectorization into an element of (HA⊗H∗A)
⊗k,

|ρ̃(k,n)
PBC ) :=

∫

dU(Ik ⊗ 〈⊂n|)
�

|ψ̃(U)〉 ⊗ |ψ̃(U)〉∗
�⊗(k+n)

, (31)

obtained under the Choi-Jamiolkowski map. Above, the identity Ik is the identity map
on (HA ⊗H∗A)

⊗k, while 〈⊂n| =
⊗n

i=1

�

∑

σi∈{0,1}NA〈σi| ⊗ 〈σi|∗
�

is a n-fold tensor product of
maximally-entangled states, which lives in the dual space to (HA⊗H∗A)

⊗n. It is best to repre-
sent this expression pictorially; Eq. (32) shows the integrand:

𝑈
⊗
𝑈
∗
⊗
#$

%

𝑊⊗𝑊∗ ⊗#$%

2(𝑘 + 𝑛)

∗
𝑛

𝑘

∗
∗

𝑊

∗

∗

𝑊

∗∗
∗

(32)

We see that the diagram involves (k + n)-copies of the unitary pair U ⊗ U∗ (which will
be eventually integrated over the Haar measure), where U acts on t qubits. For each basic
unitary U (U∗) the inputs and outputs of ⌈NA/2⌉ legs are fed into the tensor W (W ∗); while
the remaining t − ⌈NA/2⌉ legs are traced over. The tensors (W ⊗W ∗)⊗(k+n) are terminated at
the top via a mixture of open legs and ‘caps’, which represent the action of (Ik⊗〈⊂n|), as seen
in the zoom-in, and in accordance with our explanation before.

We are now in a position to perform the integral. The theory of integration over the unitary
group tells us that
∫

U∼Haar(2t )
dU(U ⊗ U∗)⊗(k+n) =

∑

σ,τ∈Sk+n

Wg(στ−1, 2t)|Pt(τ)〉〈Pt(σ)| , (33)

where Sk+n is the symmetric group on k+n elements and Wg(σ, d) is the so-called Weingarten
function [27,28]. Here, |Pt(σ)〉 is the vectorization of the permutation operator Pt(σ) acting
on k+ n copies of a t-qubit space, i.e.,

Pt(σ) = |iσ(1)iσ(2) · · · iσ(k+n)〉〈i1i2 · · · ik+n| ,
|Pt(σ)〉= |i1iσ(1)i2iσ(2) · · · ik+niσ(k+n)〉 , (34)
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where i ∈ {0, 1}t . In pictures, this leads to the following diagram for |ρ̃(k,n)
PBC ):

𝑃 &
𝜏

𝑃
&
𝜎

𝑊 ⊗𝑊∗ ⊗#$%

!
!,#∈%'()

𝑊𝑔(𝜎𝜏&', 2()

𝑡 −
𝑁)
2

×2(𝑘 + 𝑛)

𝑁)
2

×2(𝑘 + 𝑛)

!
!,#∈%'()

𝑓*+,(𝜎, 𝜏)
𝑊⊗𝑊∗ ⊗#$%

𝑃
'
!
/)

𝜏

𝑃
'
! /)

𝜎

2(𝑘 + 𝑛)

𝑈
⊗
𝑈
∗
⊗
#$

%

𝑈
′⊗

𝑈
′ ∗

⊗
#$
%

𝑊⊗𝑊∗ ⊗#$%

𝑡 −
𝑁)
2

×2(𝑘 + 𝑛)

𝑁)
2

×2(𝑘 + 𝑛)

!
!,#∈%'()

𝑓-+,(𝜎, 𝜏)
𝑊⊗𝑊∗ ⊗#$%

𝑃
'
!
/)

𝜏

𝑃
'
! /)

𝜎

(35)

We can further simplify the figure noting that the contractions involving the part of the diagram
with (t −⌈NA/2⌉)× (2(k+ n)) qubits (i.e., where (W ⊗W ∗)⊗(k+n) does not directly act) simply
involves the inner product

〈Pt−⌈NA/2⌉(τ)|Pt−⌈NA/2⌉(σ)〉=
�

2t−⌈NA/2⌉
�#(στ−1)

, (36)

where |Pt−⌈NA/2⌉(σ)〉, |Pt−⌈NA/2⌉(τ)〉 are vectorizations of the permutation operator Pt−⌈NA/2⌉(σ),
Pt−⌈NA/2⌉(τ), which each act on k + n copies of t − ⌈NA/2⌉ qubits, according to permutation
elementsσ,τ ∈ Sk+n. This evaluates to Eq. (36), the dimension raised to #(σ−1τ), the number
of cycles of the permutation element στ−1.

This gives us Eq. (37) as our final simplified diagrammatic expression for |ρ̃(k,n)
PBC ):

𝑃 &
𝜏

𝑃
&
𝜎

𝑊 ⊗𝑊∗ ⊗#$%

!
!,#∈%'()

𝑊𝑔(𝜎𝜏&', 2()

𝑡 −
𝑁)
2

×2(𝑘 + 𝑛)

𝑁)
2

×2(𝑘 + 𝑛)

!
!,#∈%'()

𝑓*+,(𝜎, 𝜏)
𝑊⊗𝑊∗ ⊗#$%

𝑃
'
!
/)

𝜏

𝑃
'
! /)

𝜎

2(𝑘 + 𝑛)

𝑈
⊗
𝑈
∗
⊗
#$

%

𝑈
′⊗

𝑈
′ ∗

⊗
#$
%

𝑊⊗𝑊∗ ⊗#$%

𝑡 −
𝑁)
2

×2(𝑘 + 𝑛)

𝑁)
2

×2(𝑘 + 𝑛)

!
!,#∈%'()

𝑓-+,(𝜎, 𝜏)
𝑊⊗𝑊∗ ⊗#$%

𝑃
'
!
/)

𝜏

𝑃
'
! /)

𝜎

(37)

The important point of the calculation to be appreciated is that the pre-factor in front of the
diagrams under the sum,

fPBC(σ,τ) :=Wg(στ−1, 2t)
�

2t−⌈NA/2⌉
�#(στ−1)

, (38)

contains all time-dependency. In contrast, the diagrams that remain in Eq. (37), while de-
pending on NA, k and n, have no t-dependence.

Referring to Eq. (30) and Eq. (37), we see that the integral involved in the definition of
ρ̃
(k,n)
PBC has been converted to a double sum over permutation elements σ,τ in Sk+n. Our strat-

egy next is to consider separately the diagonal (σ = τ) and off-diagonal (σ ̸= τ) contributions.
What we will argue for, is that for any fixed k and fixed n (i) the diagonal contributions are
precisely proportional to |ρ(k)Haar), the vectorization of the k-the moment of the Haar ensemble

ρ
(k)
Haar; and (ii) the off-diagonal contributions are subleading, in a parameter that is exponen-

tially small in t, compared to diagonal contributions. Specifically, we will argue that any
off-diagonal term is at most 2−2t that of the diagonal contribution, asymptotically. Taken to-
gether, this will then give us our claim that the limiting distribution at late times is the Haar
ensemble, whose convergence in time goes asymptotically as ∼ 2−2t .
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To this end, we first consider the diagonal contributions σ = τ. In this case the pre-factor
is common to all σ:

fPBC(σ,σ) = fPBC(1,1) , (39)

while because (W ⊗W ∗) is proportional to an isometry from the temporal slice to the spatial
slice (as mentioned before in Sec. 3, and detailed in Appendix B)

∑

i∈{0,1}⌈NA/2⌉

〈i| ⊗ 〈i|∗(Wσ ⊗W ∗σ)
∑

j∈{0,1}⌈NA/2⌉

| j〉 ⊗ | j〉∗∝ |σ〉 ⊗ |σ〉∗ , (40)

it can be verified that

〈P⌈NA/2⌉(σ)|W ⊗W ∗|P⌈NA/2⌉(σ)〉= |PNA
(σ)〉 . (41)

Thus the diagonal contribution simplifies to
∑

σ∈Sn+k

(Ik ⊗ 〈⊂n|)|PNA
(σ)〉 ∝
∑

σ′∈Sk

|PNA
(σ′))∝ |ρ(k)Haar) , (42)

where PNA
(σ)(PNA

(σ′)) is the permutation operator acting on k + n (k) copies of NA qubits

according to σ ∈ Sk+n (σ′ ∈ Sk), and |ρ(k)Haar) is the vectorization of the k-th moment of the

Haar ensembleρ(k)Haar on NA qubits. Importantly, the constants of proportionality in the equation
above depend only on NA, k, n but not t. Thus, we have

Diagonal terms
�

|ρ̃(k,n)
PBC )
�

= CPBC(NA, k, n)× fPBC(1, 1)× |ρ(k)Haar) . (43)

Next, we move to off-diagonal contributions σ ̸= τ. In the limit of large t, one can show
that the Weingarten function has the following asymptotic behavior [27,33]

Wg(στ−1, 2t)∼
1

(2t)2(n+k)−#(στ−1)
, (44)

and noting that
#(στ−1)≤ n+ k− 1 , (45)

for σ ̸= τ, i.e., the number of cycles of a nontrivial permutation element is strictly less than
the number of cycles of the identity element, we necessarily have

fPBC(σ,τ ̸= σ)
fPBC(1, 1)

≲ 2−2t , (46)

that is, in the limit of large t, any off-diagonal pre-factor fPBC is at most 2−2t that of the
diagonal pre-factor.

Therefore, we can write ρ̃(k,n) as

ρ̃
(k,n)
PBC = CPBC(NA, k, n) fPBC(1,1)ρ(k)Haar +

∑

σ ̸=τ∈Sk+n

fPBC(σ,τ)ρ̃(k,n)
σ,τ;PBC , (47)

where ρ̃(k,n)
σ,τ;PBC is the (σ,τ) term appearing in the sum of Eq. (37), which we note again is

independent of t. We therefore see that the net contribution from all off-diagonal terms is
subleading to the diagonal contribution, asymptotically by 2−2t .

Upon taking the trace of ρ̃(k,n)
PBC and normalizing to construct ρ(k,n)

PBC , we can then straight-

forwardly express the replicated density operator ρ(k,n)
PBC as

ρ
(k,n)
PBC = ρ

(k)
Haar +δρ

(k,n)
PBC , (48)
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where δρ(k,n)
PBC is traceless and from our analysis, asymptotically ∥δρ(k,n)

PBC ∥ ∼ 2−2t (taken in any
norm). Since this is true for any k, n, upon taking the limit n→ 1− k, the k-th moment of the
Haar ensemble (at least within the replica trick), has the behavior

ρ
(k)
PBC = ρ

(k)
Haar +δρ

(k)
PBC , (49)

where δρ(k)PBC := limn→1−k δρ
(k,n)
PBC , and asymptotically ∥δρ(k)PBC∥ ∼ 2−2t . This is our first main

result. In particular, this implies that the projected ensemble of the KIM, under periodic bound-
ary conditions, deep thermalizes in the thermodynamic limit exponentially fast in time, at a
rate vPBC = − limt→∞

1
t log2 ∥δρ

(k)
PBC∥= 2.

3.4 Open boundary conditions (OBC)

The numerator from the expression Eq. (30), ρ̃(k,n)
OBC in the OBC case becomes (upon vectoriza-

tion),

|ρ̃(k,n)
OBC ) :=

∫

dU(Ik ⊗ 〈⊂n|)
�

|ψ̃(U , U ′)〉 ⊗ |ψ̃(U , U ′)〉∗
�⊗(k+n)

, (50)

where the identity Ik and 〈⊂n| are as defined for the PBC case. For the OBC case, we see that
the expression involves (k+n)-copies of the state pair |U〉⊗|U〉∗ and |U ′〉⊗|U ′〉∗ (which will be
eventually integrated over under the integral) on the two sides of the tensor (W ⊗W ∗)⊗(k+n).
For each basic state |U〉 (|U〉∗) and |U ′〉 (|U ′〉∗) its ⌈NA/2⌉ legs are fed into the tensor W (W ∗)
on the right and left respectively; while the remaining t−⌈NA/2⌉ legs are contracted with each
other. Again, the tensors (W ⊗W ∗)⊗(k+n) are terminated at the top via a mixture of open legs
and ‘caps’, which represent the action of (Ik ⊗〈⊂n|), similar to the PBC case. Pictorially this is
shown in Eq. (51),

𝑃 &
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2
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𝑊⊗𝑊∗ ⊗#$%

𝑃
'
!
/)

𝜏

𝑃
'
! /)

𝜎

(51)

The appropriate identity from the theory of integration over the unitary group relevant
here is now

�

�ρ
(k+n)
Haar(2t )

�

:=

∫

dU(|U〉 ⊗ |U〉∗)⊗k+n =

∑

σ∈Sk+n
|Pt(σ)〉

2t(2t + 1) · · · (2t + k+ n− 1)
, (52)

where Sk+n is the symmetric group on k + n elements and |Pt(σ)〉 is the vectorization of the
permutation operator Pt(σ) acting on k+ n copies of a t-qubit space as described in the PBC

16

https://scipost.org
https://scipost.org/SciPostPhys.18.3.107


SciPost Phys. 18, 107 (2025)

section. As in the PBC case, further simplification follows by noting that the contractions in-
volving the part of the diagram with k+n copies of t−⌈NA/2⌉ qubits (i.e., where (W⊗W ∗)⊗(k+n)

does not directly act) simply involves the inner product

〈Pt−⌈NA/2⌉(τ)|Pt−⌈NA/2⌉(σ)〉=
�

2t−⌈NA/2⌉
�#(στ−1)

, (53)

where |Pt−⌈NA/2⌉(σ)〉, |Pt−⌈NA/2⌉(τ)〉 are vectorizations of the permutation operator P(σ), P(τ)
which act on t − ⌈NA/2⌉ qubits, according to permutation elements σ,τ ∈ Sk+n.

This finally gives us the figure in Eq. (54),
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𝑃
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(54)

which we see is identical in form to the corresponding result in the PBC case, Eq. (37), except
that the pre-factor in front of the diagrams is

fOBC(σ,τ) :=
1

(2t(2t + 1) . . . (2t + k+ n− 1))2
�

2t−⌈NA/2⌉
�#(στ−1)

. (55)

Again, just like in the PBC case, the prefactors fOBC contain all time-dependency; in contrast,
the diagrams in Eq. (54) have no t-dependence.

We can thus employ similar logic as in PBC case to consider the relative contributions of
the diagonal terms (σ = τ) and off-diagonal-terms (σ ̸= τ). Again for diagonal terms the
pre-factor acquires a value that is is common to all σ:

fOBC(σ,σ) = fOBC(1,1) , (56)

and the diagrams simplify to
∑

σ∈Sn+k

(Ik ⊗ 〈⊂n|)|PNA
(σ)〉 ∝
∑

σ′∈Sk

|PNA
(σ′))∝ |ρ(k)Haar) , (57)

where PNA
(σ)(PNA

(σ′)) is the permutation operator acting on k + n (k) copies of NA qubits
according to σ ∈ Sk+n (σ′ ∈ Sk). Thus, we have

Diagonal terms
�

|ρ̃(k,n)
OBC )
�

= COBC(NA, k, n)× fOBC(1,1)× |ρ(k)Haar) . (58)

Next, moving to off-diagonal contributions σ ̸= τ, we have, again since
#(στ−1)≤ n+ k− 1, the result that asymptotically in large t,

fOBC(σ,τ ̸= σ)
fOBC(1, 1)

≲ 2−t . (59)

That is, in the limit of large t, any off-diagonal pre-factor fOBC is at most 2−t as large as a
diagonal pre-factor. This is to be directly contrasted to the PBC case, Eq. (46), where it was at
most twice as small, 2−2t .

Therefore, we can write ρ̃(k,n) in the OBC case as

ρ̃
(k,n)
OBC = COBC(NA, k, n) fOBC(1,1)ρ(k)Haar +

∑

σ ̸=τ∈Sk+n

fOBC(σ,τ)ρ̃(k,n)
σ,τ;OBC , (60)
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where ρ̃(k,n)
σ,τ;OBC is the (σ,τ) term appearing in the sum of Eq. (54), which is independent of

t. The replicated density operator ρ(k,n) can thus be expressed

ρ
(k,n)
OBC = ρ

(k)
Haar +δρ

(k,n)
OBC , (61)

where δρ(k,n)
OBC is traceless and asymptotically ∥δρ(k,n)

OBC ∥ ∼ 2−t . Since this is true for any k, n,
upon taking the limit n → 1 − k the k-th moment of the Haar ensemble (at least within the
replica trick), has the behavior

ρ
(k)
OBC = ρ

(k)
Haar +δρ

(k)
OBC , (62)

where δρ(k)OBC := limn→1−k δρ
(k,n)
OBC and ∥δρ(k)OBC∥ ∼ 2−t . In particular, this implies that the

projected ensemble of the KIM under open boundary conditions, deep thermalizes in the ther-
modynamic limit also exponentially quickly as in a system with periodic boundary conditions,
but with a rate vOBC = − limt→∞

1
t log2 ∥δρ

(k)
OBC∥ = 1 which is seen to be half as small as

vPBC = 2. This is our second main result.

4 Numerics

4.1 Replica trick based numerics

We support our main analytical results regarding the asymptotic approach to deep thermal-
ization, Eqs. (49) and (62), with numerics based on the replica operator ρ(k,n). Specifically,
we numerically construct, for both PBC and OBC, the unnormalized moment operator ρ̃(k,n)

following Eqs. (37) and (54), for subsystem size NA = 2, moments k = 2,3, 4, different times
t, and various n. ρ(k,n) is then obtained upon normalizing the resulting operator to have unit
trace. We then define δρ(k,n) := ρ(k,n) −ρ(k)Haar (for both PBC and OBC) as the deviation away
from the Haar ensemble, and plot, for a fixed k and t its trace norm ∥δρ(k,n)∥1 for various
values of n. Results for k = 4 and various t are shown in Fig. 3(a,b); similar trends are ob-
served for other moments k (not shown). We find that log2 ∥δρ(k,n)∥1 is always well fitted
by a simple exponential function ak + bke−ckn for some real numbers ak, bk, ck; from this fit
we extrapolate to find ∥δρ(k,1−k)∥1 which defines the deviations ∥δρ(k)PBC∥1 and ∥δρ(k)OBC∥1 at a
given k and t (red squares and circles in Fig. 3(a,b) respectively). Finally, for a given moment
k we plot these extrapolated values as a function of t, as shown in Fig. 3(c). One sees from
the figure that asymptotically ∥δρ(k)PBC∥1 and ∥δρ(k)OBC∥1 follow very well the trend 2−2t and 2−t

respectively, confirming our analysis of their asymptotic behavior in time.

4.2 Numerics based on Monte Carlo sampling

The numerics performed in the previous subsection involved simulations confirming our anal-
ysis within the replica trick. However, there is an ambiguity in the replica trick, as the fit used
to find ∥δρ(k)∥1 := ∥δρ(k,1−k)∥1 from the data ∥δρ(k,n)∥1 was not unique. To check the replica
method, we construct the moment operators of the projected ensembles from first principles,
i.e., from Eqs. (25) and (26) and the definition of the projected states Eq. (23), sampling the
unitaries U , U ′ from the Haar measure over t qubits independently. Precisely, we form the
unbiased estimators

ρ
′(k)
PBC =

1
M

M
∑

i=1

CPBC

�

|ψ̃(Ui)〉〈ψ̃(Ui)|
�⊗k

〈ψ̃(Ui)|ψ̃(Ui)〉k−1
, (63)
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Figure 3: Deviation away from the Haar ensemble, numerically computed within
the replica trick and Monte Carlo sampling. (a,b) Estimation of deviation ∥δρ(k)∥1
from replica trick by evaluating δρ(k,n) := ρ(k,n) − ρ(k)Haar using Eqs. (37) and (54)
and extrapolation of ∥δρ(k,n)∥1 to n = 1− k. Due to computational constraints, we
are limited up to n = 6 − k. Shown in both the (a) PBC case and (b) OBC case
are ∥δρ(k,n)∥1 for k = 4; other moments k behave similarly. In all cases, the data
for log2(∥δρ(k,n)∥1) is fitted well by a simple exponential ak + bke−ckn. Extrapolated
values are denoted by red hollow squares and circles respectively. (c,d) Deviation
∥δρ(k)∥1 from Haar ensemble as a function of time t, for the (c) PBC and (d) OBC
cases. Data come from both replica trick numerics as well as Monte Carlo numerics.
There is a very good match between these two methods; further, for all moments
shown, the deviation behaves asymptotically as 2−2t and 2−t respectively (also plot-
ted as solid black and brown lines as guides to the eye), in perfect agreement with
our analysis.

and

ρ
′(k)
OBC =

1
M

M
∑

i=1

COBC

�

|ψ̃(Ui , U ′i )〉〈ψ̃(Ui , U ′i )|
�⊗k

〈ψ̃(Ui , U ′i )|ψ̃(Ui , U ′i )〉k−1
, (64)

where i indexes a sample run, M represents the total number of samples simulated, and
CPBC/OBC is a constant of proportionality ensuring ρ(k)PBC/OBC in Eqs. (25) and (26) has unit

trace. In the limit of large M , ρ′(k)PBC/OBC will converge to ρ(k)PBC/OBC; we use the converged value

of ∥ρ′(k)PBC/OBC − ρ
(k)
Haar∥1 as an approximation for the true deviation ∥δρ(k)∥1 from the Haar

ensemble (see Appendix C for details on the numerics). For various t we plot the results on
Fig. 3(c). We see that the data from the replica numerics matches very well with the data from
the unbiased Monte Carlo numerics, validating the replica method.
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5 Discussion

In this work, we have investigated the role of global system topology in governing the rate
of deep thermalization in chaotic quantum many-body systems. Specifically, for dynamics
under the maximally-chaotic (1+1)d kicked Ising model, we find that while regular thermal-
ization of a small contiguous region located deep in the bulk to infinite temperature requires
time t1 = ⌈NA/2⌉, regardless of boundary conditions, the situation for deep thermalization is
rather different: we have derived that the deviation ∆(k) of the projected ensemble from the
maximally-entropic uniform wavefunction distribution behaves asymptotically in time as 2−2t

and 2−t , for a system with periodic and open boundary conditions respectively (up to multi-
plicative factors that may depend on the moment). This implies that the deep thermalization
times tk≥2 obey

tk,PBC

tk,OBC
=

1
2

(k ≥ 2) , (65)

as the precision ϵ → 0 (recall the meaning of ϵ in Eq. (9)). The distinct equilibration times
depending on boundary conditions highlights deep thermalization’s non-local nature, in con-
trast to regular thermalization, which only depends on the build-up of entanglement between
a local region and its surroundings, a physical process constrained by information propagation
bounds.

From a technical standpoint, we note that our results, Eqs. (49), (62) and (65), extend
straightforwardly to dynamics under generic dual-unitary circuits — that is, circuits comprised
of two-local elementary gates which are unitary under a space-time rotation. This is because
all steps involved in our derivation depend only on the KIM’s dual-unitary nature, and is thus
actually not specific to the KIM itself (see Ref. [13] for the precise conditions for which dual-
unitary circuits our results generalize to).

More broadly, one might wonder to what extent a separation of deep thermalization
timescales depending on boundary conditions persists in systems with more general dynam-
ics beyond dual-unitary circuits. For quantum circuit models which are still in (1+1)d, it has
been argued in Ref. [12] that dynamical purification — that is, the phenomenon of a mixed
state eventually purifying under monitored quantum dynamics (i.e., dynamics with entangling
gates and measurements), when applied to the space-time dual of the circuit, leads to an ef-
fective constrained size of the projected ensemble at finite time, even in the thermodynamic
limit. That is, even though the bath being measured is infinitely large leading in principle
to an infinite number of projected states, there are only so many non-degenerate states that
contribute: specifically, those states labeled by measurement outcomes within some large but
finite correlation length around the subregion A of interest (the measurement information out-
side is lost due to dynamical purification). In our context, this would translate to the fact that
at finite time, there is only a finite neighborhood surrounding region A which matter for the
purposes of the projected ensemble, thereby potentially washing out the effects of boundary
conditions. This is much like the ballistic light-cone outside of which correlations and quan-
tum entanglement cannot spread beyond, which constrains the regular thermalization time
and renders effects of boundary conditions on dynamics at any finite time irrelevant. How-
ever, we stress the physical origin of the two is distinctly different: the former arises from
purification dynamics, while the latter comes from the Lieb-Robinson velocity of information
propagation. In systems of higher dimensions though, the physics of dynamical purification is
not expected to be relevant (see [12] and [34]), such that it may be expected that once again
deep thermalization rates may depend distinctly on the boundary conditions of the system.
We leave the precise quantitative explorations of such interesting physics, to future work.
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A Construction of W tensor from W ′ tensor

We describe here how to obtain the W tensor from the W ′ tensor, which appear in the con-
struction of the unnormalized projected state for finite size systems and for thermodynamically
large systems respectively. We remind the reader these tensors are diagrammatically defined
in Fig. 2(a) and Fig. 2(b,c) of the main text.

As mentioned in the main text, U(z1) and U(z2) of Fig. 2(a), when considered over all
z1, z2, can in the thermodynamic limit be replaced by independent Haar random unitaries on
t qubits. Now the Haar measure has the following property of being left and right invariant:

∫

U∼Haar

dU f (U) =

∫

U∼Haar

dU f (UV ) =

∫

U∼Haar

dU f (V U) , (A.1)

and further the tensor W ′ can be decomposed as

W ′σ = U2WσU1 , with σ ∈ {0, 1}×NA , (A.2)

allowing us to ‘absorb’ the unitaries U1, U2 under the integral. Thus, the unnormalized pro-
jected states are given by Eq. (20) as stated in the main text.

The decomposition of W ′ as mentioned above is shown pictorially in Fig. 4 for two rep-
resentative subsystem sizes NA, showcasing the slight difference in construction of W for the
odd and even cases.

B Contraction of a (W, W ∗) pair

Using the rules of diagrammatic manipulations laid out in Sec. 3, the contraction of a single W
tensor with a single W ∗ tensor along the spatial direction can be easily seen to be proportional
to the identity matrix on the local subsystem A, as shown in Fig. 5. This demonstrates the
isometric condition

∑

ττ′W
σ
ττ′W

∗σ
ττ′∝ δσσ′ , as claimed in the main text. Though we show this

only for the odd NA case, it can be easily seen that the diagrams for the even NA case behave
similarly.
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Figure 4: Decomposition of tensor W ′ into unitaries U1, U2 (green boxes, up to pro-
portionality factors) as well as tensor W . This is shown for representative (a) odd NA
and (b) even NA cases. In both cases, W involves a ‘triangle’ of elementary tensors, but
the precise layout of these tensors differ slightly depending on the oddness/evenness
of the subsystem size. The unitaries U1, U2 can be absorbed by the Haar random
unitaries on the left and right of the figure (not shown).

C Additional details on Monte Carlo numerics

In Figs. 6 and 7 we plot the trace distance of the unbiased estimator to the Haar ensemble
∆(k) := ∥ρ′(k) −ρ(k)Haar∥ versus total sample number M , for the subsystem size NA = 2. We see
that for k = 1 and for t ≥ ⌈NA/2⌉, the distance decreases monotonically without bound, in
agreement with the fact the reduced density matrix is (provably) maximally mixed. For k ≥ 2,
the trace distance similarly decreases, but at large enough M , it is seen to converge. We extract
the converged values through the average of the last three points of the data series.

∝ ∝

Figure 5: Contraction of the tensor W contacted with W ∗ along the spatial direction
yields a term proportional to the identity tensor over NA qubits. This is denoted by the
‘cups’ (products of Bell pairs) in the right-most diagram, here illustrated for NA = 3.
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Figure 6: Trace distance ∆(k)PBC versus total number of samples M . The converged
values at a given t for k ≥ 2 are obtained by the average of the last three points of
any data series. Note that at M = 109 we have not obtained satisfactory convergence
of ∆(k)PBC for time t = 6.
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Figure 7: Trace distance ∆(k)OBC versus total number of samples M . The converged
values at a given t for k ≥ 2 are obtained by the average of the last three points of
any data series.
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