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Abstract

The spin point groups are finite groups whose elements act on both real space and spin
space. Among these groups are the magnetic point groups in the case where the real
and spin space operations are locked to one another. The magnetic point groups are
central to magnetic crystallography for strong spin-orbit coupled systems and the spin
point groups generalize these to the intermediate and weak spin-orbit coupled cases.
The spin point groups were introduced in the 1960’s in the context of condensed mat-
ter physics and enumerated shortly thereafter. In this paper, we complete the theory
ofcrystallographic spin point groups by presenting an account of these groups and their
representation theory. Our main findings are that the so-called nontrivial spin point
groups (numbering 598 groups) have co-irreps corresponding exactly to the (co-)-irreps
of regular or black and white groups and we tabulate this correspondence for each non-
trivial group. However a total spin group, comprising the product of a nontrivial group
and a spin-only group, has new co-irreps in cases where there is continuous rotational
freedom. We provide explicit co-irrep tables for all these instances. We also discuss new
forms of spin-only group extending the Litvin-Opechowski classes. To exhibit the useful-
ness of these groups to physically relevant problems we discuss a number of examples
from electronic band structures of altermagnets to magnons.

Copyright H. Schiff et al. Received 2023-08-14 ®)

This work is licensed under the Creative Commons Accepted 2025-03-10 —
Check for

Attribution 4.0 International License. Published 2025-03-24 updates
Published by the SciPost Foundation. doi:10.21468/SciPostPhys.18.3.109

Contents

1 Introduction 2
2 Introduction to the spin point groups 4
2.1 Definitions 4
2.2 Enumeration of the nontrivial spin point groups 4


https://scipost.org
https://scipost.org/SciPostPhys.18.3.109
mailto:hschiff@uci.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.18.3.109&amp;domain=pdf&amp;date_stamp=2025-03-24
https://doi.org/10.21468/SciPostPhys.18.3.109

e SciPost Phys. 18, 109 (2025)

2.3 The spin-only group 5
2.4 Pairing with a spin-only group 6
2.5 Guide to the tables of the nontrivial spin point groups 9

3 Representations of the spin point groups 10
3.1 Nontrivial spin point groups 10
3.1.1 Unitary nontrivial spin point groups 10

3.1.2 Non-unitary nontrivial spin point groups 11

3.2 Effect of the spin-only group 12
3.2.1 Non-magnetic spin arrangements 13

3.2.2 Spatial spin arrangements 14

3.2.3 Coplanar spin arrangements 14

3.2.4 Collinear spin arrangements 15

4 Applications 17
4.1 Rutile altermagnetism 17
4.2 MnTe 19
4.3 Magnons in Heisenberg-Kitaev model 20
4.3.1 Discrete spin-only groups 23

5 Discussion 24
A Review of magnetic representation theory 27
B Spin point group tables 30
C Isomorphism theorem for constructing spin groups 37
D Direct products of antiunitary groups 38
E Inducing co-irreps of collinear spin point groups 39
E.1 General technique B 39
E.2 Example: S= '4/'m'm'm 41

F Co-irreps for collinear total spin groups 43
E1 Collinear groups with unitary nontrivial group 47

E2 Collinear groups with non-unitary nontrivial group 60
References 94

1 Introduction

Much of condensed matter physics is concerned with phenomena in crystalline solids. With
discrete translation symmetry, physics happens within a periodic volume of crystal momentum
space whose residual symmetries place constraints on band structures [1] and their topology
[2-4] as well as static and dynamic correlation functions across a wide variety of systems
including electronic, photonic, phononic and magnonic degrees of freedom to name a few out
of many possibilities. The group theory of crystals is the foundation for understanding these
and other aspects of solid state physics [1,5-8].


https://scipost.org
https://scipost.org/SciPostPhys.18.3.109

e SciPost Phys. 18, 109 (2025)

The history of group theory in relation to solid state physics goes back around 200 years
with the realization from Hessel that 32 point groups are relevant to periodic crystals [9]. The
space groups — that include discrete translations and that classify all periodic crystal structures
— were classified towards the end of the 19th century [10].

Starting in the 20th century, magnetic crystals and their symmetries came under examina-
tion. Heesch [11], Tavger and Zaitsev [12] are associated with the discovery of the 122 mag-
netic point groups and Shubnikov [ 13] and Zamorzaev [ 14] with the magnetic space groups. In
these studies, spin-orbit coupling is considered to be strong so that crystallographic operations
such as rotations are locked to transformations of localized magnetic moments, meaning that
operations performed on the crystal lattice simultaneously transform the magnetic moments
according to the transformation properties of axial vectors. It was not until the 1960’s that
the weak spin-orbit coupling case was considered with the introduction of spin groups notably
by Kitz [15], Brinkman and Elliott [16,17] later systematized by Litvin and Opechowski [18].
These groups have the feature of having elements that act on both real space and spin space
but without locking the transformations to be the same in both. This work has been the subject
of renewed interest with the recognition of its role in band structure topology in magnons [19]
and electronic band structures [20-24] — the latter including anisotropic spin split Fermi sur-
faces enforced by spin group symmetries.

In this paper, we pick up the systematic exploration of these groups that has languished
for about a half century by laying out the representation theory of the spin point groups first
enumerated by Litvin [25] and more recently developed by Liu et al. [26]. While we focus on
the finite set of crystallographic spin point groups as these are relevant to condensed matter
physics, the same techniques discussed here are applicable to find the co-representations of all
spin point groups.

The organization of the paper is as follows. In an effort to be as self-contained as is prac-
ticable, we give a complete discussion of what the spin point groups are, introducing notions
of nontrivial spin point groups and spin-only groups and how to enumerate both (described
in the first three parts of Section 2). Once we have both nontrivial spin point groups and the
spin-only groups we may classify the total spin point groups (Section 2.4). A complete table of
the nontrivial spin point groups is given in Appendix B. This table distinguishes the collinear
and coplanar spin groups. These sections review material that can be found elsewhere in the
literature [6,8,15-18,25-28]. In particular, the nontrivial spin point groups were enumerated
by Litvin [25], the spin line groups by Lazi¢, Milivojevi¢ and Damnjanovic¢ [27] and the pair-
ing of spin groups with the nontrivial spin groups was investigated by Liu et al. [26]. We then
turn to the representation theory of these groups which had not previously been worked out.
Making use of the main isomorphism theorem of Litvin and Opechowski [ 18], we demonstrate
that the 598 nontrivial spin point groups have co-irreps corresponding to the regular or black
and white point groups (Section 3.1). In Sections 3.2, we describe the effect on the repre-
sentations of including the spin-only group to form the total spin group. We show that the
coplanar spin groups are isomorphic to paramagnetic spin groups. Of particular interest are
the spin groups corresponding to collinear magnetic structures with continuous spin rotation
symmetry. These have new co-irreps that we compute and tabulate. The computation method
is described in Section 3.2.4 with various technical results relegated to appendices. Complete
tables of the co-irreps of the collinear spin groups are listed in Appendix F. In Section 4, we
give some examples of how to put information about the representation theory to use in ap-
plications from band theory. In doing so, we remark on physically relevant extensions to the
Litvin-Opechowski spin-only groups. Finally, we conclude with a broader perspective on the
spin group representation theory including general results that may be inferred from the co-
irrep tables. As a guide to the reader who may not be familiar with the (co-)representation
theory of magnetic groups we review the relevant material in Appendix A.
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2 Introduction to the spin point groups

2.1 Definitions

We imagine a situation where localized moments M (R) are placed onto a finite number of sites
in real space. As mentioned above the spin point groups are finite groups with elements [S||R]
where R is an ordinary point group element acting in real space and S acts on spin space:*

[SIRIM*(r) = SusMP(R7'r). @)

A set of elements form a group if they leave the spin configuration on the real space sites
invariant, i.e. [S||R]M(r) = M(r) for all [S||R] in the set. We are interested in classifying spin
point groups that can be relevant in crystallography. Therefore we consider only the 32 point
groups relevant to crystals as candidates for the spatial point group elements, R.

Following Litvin and Opechowski [18], we distinguish between the spin point groups and
so-called nontrivial spin point groups. The former may be written in general as a direct product
b®S where b, known as the spin-only group, acts only on spin space (it contains only elements
of the form [S||E], where E is the identity element) while S, the non-trivial spin point group,
acts on both real space and spin space (and does not contain elements of the form [S||E] except
for the trivial element, [E||E]).

To enumerate the spin point groups we may proceed as follows [18,25]. We first focus
our attention on the nontrivial spin point groups defined above. Later we address the ways in
which these can be decorated with pure spin groups b. We choose one of the 32 point groups
— hereafter referred to as spatial parent groups G. Litvin and Opechowski explained [18,25]
that one first decomposes the group into a coset decomposition of a normal subgroup g

G=g+G,g+...+G,8. 2)

We may find a group B, referred to as the spin-space parent group, that is isomorphic to the
quotient group G/g. A spin group is then formed from a pairing of these elements

S = ([EIE]+[BallG2] + ... [B,lIG, D [Ellg] - €))

By finding all normal subgroups of G and all isomorphisms between G/g and point groups B
one may enumerate all nontrivial spin point groups (see Appendix C). Pairings leading to spin
groups conjugate in O(3) ® O(3) are considered equivalent. This program was accomplished
by Litvin [25]. See also discussions in Refs. [6, 8].

2.2 Enumeration of the nontrivial spin point groups

Here we check the enumeration proceeding in a different but ultimately equivalent way [27].
The isomorphism between G/g and B forms a homomorphism between G and B < O(3) with
kernel g. Thus, all three dimensional real representations of G with kernel g exhaust the
possible pairings between G/g and B. For a choice of G we have access to its irreducible
representations, and build all possible three dimensional representations from them.

First take the one-dimensional real irreps of G, I‘l(n)(Ga), with characters )((I“l(")(Ga)) for
element G, where n labels the irrep and the subscript 1 is the dimension of the irrep. We may
construct a real three-dimensional irrep by taking three copies of the same irrep

(TG @ x(T(G) & ¥ (TM(G,)), 4)

!These spin groups are not to be confused with the continuous groups of the same name Spin(N) defined as the
double cover of SO(N).
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by taking

2@TM(G)) @ x(T(GL) @ x(T(GL)), (5)

or, in case there are three or more 1D irreps, we may take

2@™G)) @ 1 (TG @ x(TP(GL)), (6)

where m # n # p.

Given pseudoreal or complex 1D irreps we are forced to pair them with their complex
conjugate perhaps performing a similarity transformation to ensure the reality of the resulting
irrep.

w (TG @ (TG | Wt @ 1 (T(G,)). %

We may also pair a 2D irrep with a real 1D irrep

I (G,) @ x(TV(Gy)), (8)

and, finally, if there is a 3D irrep of G, that is real, this itself suffices to supply a representation
for the spins:

I{™(Gy). 9

It is straightforward to construct all such combinations for all elements of all parent groups.
With the associated spin elements for each real space element we identify the nature of the
element. The reader may well have noticed that this process leads to improper elements which
are forbidden for magnetic moments as they are axial vectors. We interpret these elements
as antiunitary elements. For example, a pure inversion is identified with the time reversal
operation. All improper elements are products of inversion with a proper element and are
therefore identified with a proper element times time reversal.

This algorithm overcounts the possible groups. Fortunately all instances of overcounting
come from permutations of the Cartesian axes. Removing all of these cases one ends up with
598 crystallographic spin point groups, confirming previous results in detail including the
number of groups for each parent group and the nature of the spin and space generators [25].

2.3 The spin-only group

We now ask what constraints should be placed on the spin-only groups, b. To set the stage,
we could, in principle, consider any crystallographic subgroup of the paramagnetic group con-
sisting of SO(3) x {E, 7}. If the nontrivial spin point group is compatible with paramagnetism,
then b is precisely this group as any element leaves the zero net moments invariant. This is
the non-magnetic or paramagnetic case.

Now we consider the cases where there is a net magnetic moment. Following Litvin and
Opechowski we first distinguish three cases: spin textures that are (1) collinear, (2) coplanar
and (3) non-coplanar.

In the non-coplanar case there is no global spin-only transformation that will leave the
spin texture invariant. Therefore, in this case the only choice for b is the trivial group. In the
coplanar case, the spin texture can be left invariant by doing nothing or by rotating all the
moments about an axis perpendicular to the plane of the moments by = and then carrying out
a time reversal operation — then b = b%2 = {E, C,, T}. Finally, in the collinear case (ferromag-
netic, antiferromagnetic or ferrimagnetic), in general one can rotate by any angle ¢ around
the global moment direction. One can also rotate through 7 about any axis perpendicular to
the axis containing the moments and then carry out time reversal. So the spin-only group in
this case is b=b*° =S0(2) x {E,C, T}.
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2.4 Pairing with a spin-only group

As noted above the total spin group takes the form of a direct product of a spin-only part and
one of the nontrivial spin point groups. Here we describe what spin-only groups are possible
and the constraints on their pairing with the nontrivial spin point groups. By the end of this
section we will have a complete picture of the classification of the crystallographic spin point
groups. The observations in this section first appeared in Ref. [26].

The nature of the nontrivial spin point group contains information about the invariant
magnetic structure. As described in the previous section there is a discrete set of possibilities
for the spin-only group. For any given nontrivial group there are constraints on the possible
pairings. In Section 2.1, we outlined an enumeration procedure for the nontrivial spin point
groups that involved pairing spin-only elements from group B with elements of an isomorphic
quotient group acting on real space. Taking all the nontrivial point groups together, one finds
that B runs over all 32 crystallographic point groups with improper elements being a proxy
for antiunitary elements. From a group theoretic perspective, the constraints on the spin-only
group imposed by the nontrivial spin point group arise from the structure of a direct product
b x S. For direct product groups, both factors in the product must be normal subgroups of
the total group. Further constraints arise from eliminating redundancies where two different
nontrivial groups S give rise to the same total group X.

In the non-magnetic case, the spin-only group is b"™ = SO(3) x {E, t}. Consider a non-
trivial spin point group S with spin-space parent group B. Then, the total spin point group
X = b™ x S contains exactly the same elements as bNM x G. We can think of X containing
cosets resembling those of equation 3, except with the coset representatives multiplying the

group [b"M||E] x [E||g] (see Appendix D). Then, the coset [Bj||Gj]([bNM||E] X [E||g]) is equal

to the coset [E ||Gj]([bNM||E] x [E ||g]), since B"M contains Bj_1 by virtue of containing all
proper and improper rotations. As a result, all nontrivial S with the same spatial parent group
G will give rise to the same total group X. To prevent redundancies then, it is sufficient to
consider the paramagnetic groups formed from the direct product of b"M with each of the 32
crystallographic point groups.

Now suppose B is one of the cubic groups T, Ty, Ty, O or Oy,. This means that there are
rotations that forbid collinear and coplanar structures. As a result, wherever the nontrivial
spin group is built from one such B group, the spin-only part of the group must be trivial,
b™ = {[E||[E]}. We note that these groups all coincide exactly with magnetic point groups
(see table in Appendix B). In other words, the irreducibly non-coplanar groups are not true
spin groups but lie in the older magnetic point group classification.

Suppose we act with the elements of a nontrivial spin point group on a single site. Then,
if B is the trivial group, the elements of the group do nothing to the spin directions meaning
that the resulting spin structure is collinear and ferromagnetic. In this case we expect to
pair the group with b®°. For group B = C; — containing identity and time reversal — the
structure is collinear and antiferromagnetic leading again to b as the allowed spin-only
group. Conversely, we may ask which of the nontrivial spin groups may be paired with b>. The
answer is generally that only the C; and C; are allowed. Suppose we take for B another group
that is consistent with a collinear magnetic structure such as 222. This group is consistent with
an antiferromagnetic collinear structure for certain conditions on the coordinates. However,
the requirement of pairing with b® makes the C, around the moment direction redundant
since any rotation angle is now allowed. The remaining C, rotations are also contained in
the antiunitary coset of b>. This argument generalizes reducing the allowed B to C; and C;.
There are 32 of the former total spin groups — one for each of the parent point groups — and
58 of the latter which are non-unitary at the level of the nontrivial point group. We refer to
these groups as naturally collinear as they are compatible with collinear magnetic structures.
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However, one could obtain a magnetic structure symmetric under these groups starting from
inequivalent sites with non-collinear structures and applying group elements. These groups, as
we shall see, turn out to be of particular interest from the point of view of their representation
theory.

Now we consider coplanar spin configurations, giving rise to 252 coplanar spin groups.
At first it might appear that any of the 27 non-cubic groups B are compatible with a coplanar
structure, but this is not the case. Let us begin with groups C, for n > 2. These naturally
lead to coplanar structures whenever a moment is perpendicular to the rotation axis. If a
moment is parallel or antiparallel to the axis the elements generate a collinear configuration.
Otherwise a non-coplanar configuration will arise. Now suppose we add horizontal mirrors to
get C,;,. The combined constraints that the moments be coplanar and the b = b%2 = {E, C, | 7}
spin-only group “mod out” the horizontal mirrors so that the group is reduced to C,,. Suppose
instead we add vertical mirrors taking the group to C,,,. In this case, the coplanarity condition
takes the group to D,, since the composition of C,; and a two-fold rotation, Cy, whose axis
lies in the spin plane is another Cél parallel to the spin plane, perpendicular to the original
Cy|- Similarly groups S,,, with roto-reflections, reduce to C, for coplanar configurations. We
must now consider D,; and D,4. D, is obtained by including horizontal mirrors in D,,. As the
moments are assumed to be coplanar, horizontal mirrors in D, are essentially “modded out” by
the presence of C, 7 as the spin-only group as therefore they cannot arise as separate elements
in their own right in the nontrivial part of the spin group. The groups D,,; are obtained from D,,
by including diagonal reflections and, as a consequence, they also contain roto-reflections. But
for coplanar moments, the roto-reflections amount to simple rotations so imposing D,; and
then coplanarity reduces the effective symmetry to groups with pure rotations. The summary
of the coplanar case is that only the groups C, and D, need be considered. All other groups
have the non-C,, and D, elements rendered redundant by the action of the spin-only part.

We now work out what groups arise by taking the direct product of coplanar nontrivial
spin groups with the spin-only part {E, C, T}. We first dispense with simple cases. These
belong to D, with n > 2 and C,. Each of these groups has a principal rotation axis that
generates the plane of the moments. There is then one single choice of C,) 7. For C, this is
perpendicular to the C, axis and for the other groups it is parallel to the rotation axis. This
leaves us with D, as the only subtle case. This group has three perpendicular C, axes. These
may be paired with various real space group operations. Suppose the real space part is also
D,. Then the resulting coplanar structures in three perpendicular planes are related by a
coordinate redefinition so they are equivalent. Although there are three distinct Cy; T axes
these are therefore all equivalent. A similar argument can be made for the D,;,(mmm) group.

There are in total 26 groups with B = D, and we have dealt with two of them. For the rest
one must inspect the way that the 222 spin elements are paired with the real space elements.
We describe one case explicitly as it serves to illustrate how to handle all remaining cases. We
refer to the elements of group >’ m*m'm listed in Table 3. We observe that the C,, and C,,
spin elements are both paired with one real space mirror and one two-fold rotation whereas
C,, is paired with an inversion and a rotation. Now we make a choice of the spin-only group
assuming coplanarity of the moments. If the perpendicular axis to the plane of the moments is
z then the resulting group is distinct from the cases where the axis perpendicular to the plane
is x or y. For the latter cases, the groups are equivalent after a permutation of real space and
spin space axes. It follows that for spin group 2»m?m'm with the condition of coplanarity,
there are two inequivalent groups after pairing with the spin-only group.

There is therefore a mechanism to increase the number of groups by pairing with the
spin-only group. In Tables 1 and 2 we list all spin groups with 222 spin elements and the
inequivalent groups after pairing with the spin-only group.
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Table 1: Explicitly listing coplanar spin groups where the parent spin group was

B =222.
| Parent Group | Litvin Number | Litvin Symbol | Inequivalent C, | axis choices |
2/m 24 22/°m X
y
z
mm2 41 Zm?ym%2 X,y
z
222 51 2x22y2%2 X,V,Z
mmm 64 Zm%m?®m X
y
z
mmm 74 Zxm%m'm X,y
z
mmm 80 2m% m%m X,V,Z
4/m 116 %4/%m X
y
z
422 137 2:42%:2%2 X
Y, Z
4mm 153 2:4%ym%*m X
Y, Z
42m 172 24222 m X
y
z
4/mmm 202 24 />m%*m?m X
Y, Z
4/mmm 208 14/2m?’m?m X
y
z
4/mmm 218 24/Tm*>m?>m X,y
z
4/mmm 224 %4/2m'm%m X
y
z
4/mmm 234 24/ m*m?m y
y
z
3m 304 23%m X
y
z
622 345 262y 222 X
V,Z
6/m 368 26/%m X
y
z
6mm 400 %62 m%*m X
Y, Z
6m2 422 2.6 m?2 X
y
z
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Table 2: Explicitly listing coplanar spin groups where the parent spin group was
B =222,

| Parent Group | Litvin Number | Litvin Symbol | Inequivalent C,, axis choices |

6/mmm 456 %6/%m*>m%m X,y
z

6/mmm 462 26/'m*>m®>m X,y
z
6/mmm 468 16/%2m*m*m X
y
z
6/mmm 478 %6/%m'm%m X
y
z
6/mmm 488 %6/%m*> m%m X
y
z
m3m 577 24/2ym?y3%2/%m X
y
z

Table 3: Table of elements in 2»m?m!m with real space elements in the top row

and spin elements in the bottom row. The axis labels e means 1/+/2(0,1,1) and f is

1/4/2(0,1,-1).

| Real space | E | Coy | Coe | Coy | I | ICs, | IC,, | ICyf |
| Spinspace | E | Cy, | Coy | Cox [ Cos | Coy | Co | E |

Finally, we remark on all the remaining groups — that make up the majority of nontrivial
spin groups. Since, of the four classes, we have found all cases that can be collinear and co-
planar and since the nontrivial spin groups are magnetic (none is of the form G + 7G) all the
remaining groups are non-coplanar groups even though this is not manifest from the B group
as it is for the cubic groups discussed above.

2.5 Guide to the tables of the nontrivial spin point groups

In Appendix B we give a table with all 598 nontrivial spin point groups (Table 7). This table
is the original enumeration of Litvin using his notation to decorate the real space generators
with spin space elements. For example, nontrivial group '4/'m'm!m tells us that the parent
point group 4/mmm has the C,, and one out of the three mirrors paired with a time reversal
operation the other two mirrors being paired with a trivial operation on spin space. The table
is organized by parent crystallographic point group and contains various other useful facts.
First of all we highlight in boldface those groups that are exactly magnetic point groups by
which we mean those groups for which the real and spin space transformations are locked
together. As we show below the nontrivial point groups are all isomorphic to (but usually not
equal to) magnetic point groups. In the last column of each table we provide the matching
magnetic point group label. In addition, we color code the Litvin symbols to indicate the
constraints on the possible spin-only point groups coming from the nontrivial groups. We
color (in blue) those groups for which pairing with b is possible. These are the groups that
belong naturally to simple collinear spin textures. We color in orange the groups that can be
paired with the discrete b%2 spin-only group. All other groups can neither be paired with b
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nor the b%2 spin-only groups. We remind the reader that there are nontrivial spin groups that
necessarily belong to non-coplanar spin configurations and that, therefore, cannot be paired
with a nontrivial spin-only group. We do not distinguish these in the table as all the non-
highlighted groups are naturally non-coplanar once the collinear and coplanar constraints are
taken into account as explained in Section 2.4.

3 Representations of the spin point groups

In this section, we lay out the representation theory for the spin point groups. The repre-
sentation theory for the nontrivial spin point groups turns out to be simple: their (co-)irreps
can be matched with one of the ordinary or black and white point group (co-)irreps. The non-
magnetic and coplanar total spin groups also have (co-)irreps corresponding to some magnetic
point group, as we will show. However, collinear spin point groups have new co-irreps. In the
case of B = C;, the co-irreps can be easily found, whereas for B = C;, an additional step of in-
duction is required. As such, the co-irreps in these cases are calculated explicitly and included
in Appendix F. In this section, 7 refers to the time-reversal element, and the < symbol denotes
that the group on the left is a normal subgroup in the group on the right. It should be noted
that this work does not address the double spin point groups, which take point group elements
from SU(2) and therefore allow half-integral angular momentum irreps.

3.1 Nontrivial spin point groups

Recall that the nontrivial spin point do not contain any spin-only elements (aside from the
trivial element, [E||E]). That the nontrivial spin point groups are isomorphic to their parent
group G follows directly from the theorem Litvin & Opechowski used to construct the spin
groups [18] and which is explained in Appendix C. The relevant argument for our current
purposes is reproduced here. For spin group S with spatial parent group G and spin-space
parent group B and defining g = GN S and b = BN S, the central result, for our purposes, is
that S/b = G.

The spin group S is a subgroup of B x G, i.e. S < B x G. Furthermore B, G<B x G. We now
invoke Noether’s 2nd isomorphism theorem that we state without proof.

Theorem (Noether): Let H be a group, with J < H and K<H. Then, KNnJ<«J, and
J/(KNJ) = KJ/K, where JK = {jk|j € J,k € K}.

This result allows us to conclude that b,g <« S as well as S/b = BS/B and S/g = GS/G.

Next, given that, for example, g < S, we can express BS as

BS = B[E||g] + B[B,||G,g] + ... B[B,||G,g] = B[E||g] + B[E||G,8] +...B[E||G,g],

since BB; = B. So BS/B = [E||g] + [E||G,g] + ...[E||G,&] = G.
We have shown that
S/b~BS/BXG, (10)

as claimed above. Evidently, when the spin group is nontrivial, b is trivial so S = G demon-
strating that nontrivial spin groups are isomorphic to the spatial parent group.

3.1.1 Unitary nontrivial spin point groups

When the nontrivial spin (point) group S is unitary, an immediate result of the isomorphism
equation 10 is that the irreducible representations of S are the same as for G. However, this
will not be the case for the non-unitary nontrivial spin point groups, as we shall see in the
following section.
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3.1.2 Non-unitary nontrivial spin point groups

When the nontrivial spin point group S is such that B contains improper elements, we say
that S is non-unitary because inversion in spin-space is interpreted as time-reversal. For every
nontrivial spin point group, at the level of abstract groups, it still holds that S = G. However, the
fact that half of the elements in S contain time reversal means that half of the group elements
will be represented by antiunitary operators. As discussed in Appendix A, the representation
theory of non-unitary groups must be modified to accommodate antiunitary operators. As a
consequence, it does not follow that non-unitary nontrivial S will have the same irreps as G.
However, a related result holds: these groups have irreducible co-representations equivalent
to those of some black & white point group.

For convenience, we will call group elements with improper spin parts antiunitary as a
reminder of the implications for their representation theory; similarly, group elements with
proper spin parts will be called unitary. Recall that every non-unitary group can be expressed
as the union of a coset of unitary elements (the “unitary coset” or “unitary halving subgroup”)
and a coset of antiunitary elements.

Let our nontrivial non-unitary spin point group be expressed as S = S§* + aS*, with uni-
tary halving spin point group S$* and antiunitary coset representative a = [7u,l||u,] where
u = [u,||lu,] is unitary (i.e. u, is proper). Because [T||E] commutes with every element of S,
the group structure of § = §* + uS* is the same as that of S. As a result, it holds that S = §,
and we will choose an explicit isomorphism f3 : S — S* for later use, such that $(S*) = $* and
/5(a) = u. However, we have also seen in the previous section(s) that S = G, so we have three
group isomorphisms

s=8=aG.

Next, note that S* is a unitary nontrivial spin point group. Using the result of the previous
section, it follows that S* is isomorphic to its spatial parent group G* (the collection of elements
on the right-hand side of the [||x] in the elements of §*), which must be a halving subgroup of
G. As a result, we can conclude that S* = G* both have the same irreducible representations,
and G = G" +u,G*.

A black and white point group, , can be formed from G and G* via the group isomor-
phism B : G — GBY such that $(G*) = G* and B(u,) = 7u,, giving G® = G* + Tu,G*. The
choice of G and G* completely determines the black & white point group [28] and its co-irreps,
since they enforce a set of possible of coset representatives tu,, all of which give rise to the
same Dimmock indicators in equation A.20.

We would like to use the previous isomorphisms and construction algorithm for the black
and white point groups to demonstrate that S is not only isomorphic to the black and white
point group GBW on the level of abstract groups, but that S and G®Y must have equivalent
co-irreps.

Since § = G and S* = G*, there exists a group isomorphism ¢ : § — G such that ¢(S*) = G*
and ¢ (u) = u,. Then, we can compose the isomorphisms f3, ¢ and B to obtain an isomorphism
Bowof:S— GBY, as shown in Figure 1. This particular isomorphism will not only ensure
that S is isomorphic to GBW, but also that their co-irreps are equivalent based on their Dimmock
indicators.

We will now demonstrate that the co-irreps of S are equivalent to those of GBW. To begin,
recall that the Dimmock indicators of equation A.20 use the squares of group elements in the
antiunitary coset. For every antiunitary group element, its square is a unitary group element
from S* or G*, respectively. Further, the Dimmock indicator will use the characters y from
irreps of the unitary halving subgroups, d ¥ (8*) ~ d("(G*). Because ¢ is an isomorphism
that maps S* to G*, it will map conjugacy classes of $* to conjugacy classes of G*. Because
characters are functions on the conjugacy classes of a group, this also means that ¢ induces

GBW
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S — GBW
| Pewep
j| |s
s—? .¢

Figure 1: The isomorphisms between S, S, G and GBW that ensure the construction
of equivalent co-irreps.

a mapping on the characters ¥ )(8*) and y“(G*), and in particular, we are free to choose
¢ to be any isomorphism that maps elements in S* to those in G* with the same character.
Then, it is guaranteed that the characters {y*(aS)?*|S € S*} are equal to the characters
{x“(7u,G)*|G € G*}, implying that the Dimmock indicators for § will be the same as for
GBVW.

This procedure also provides a scheme for identifying which black and white point group
GBY has the co-irreps corresponding to our non-unitary nontrivial spin point group S: GEW
is the black and white point group whose unitary halving subgroup G* is the spatial parent
group for the unitary halving subgroup S* of S. It turns out that, conveniently, this process is
on a practical level the same as replacing the improper spin elements in the Herman-Maugin
notation of the spin point group with primes to obtain the name of the black and white point
group.

We can demonstrate this principle using as an example the non-unitary nontrivial spin
point groups isomorphic to spatial parent group 4mm (Cj,).2 Table 4 lists all such spin point
groups. Groups #160 and #161 exactly correspond to the black and white point groups 4m’m’
and 4’mm’, respectively. The unitary halving subgroups S* of all the S in table 4 are isomorphic
to either 4 (C4) or mm2 (C,,), the unitary halving subgroups G* of the corresponding black
and white point groups GBW.

3.2 Effect of the spin-only group

In Section 2.3 we described the possible spin-only groups that can be paired with a nontrivial
space group in general following [18]:

» Non-magnetic: B"M =8S0(3) x {[E||E],[ 7 || E ]}, (which is isomorphic to O(3)).

* Collinear: b* =SO(2) X {[E||E],[ 72, || E ]}, where n is the axis to which the spins
are aligned.

e Coplanar: b2 = {[E|E],[ ©2, || E ]}, where the plane in which the spins lie is denoted
by n.

 Non-coplanar: b™ = {[ E|| E ]}.

In Section 2.4 we presented constraints on the possible pairings of these spin-only groups with
nontrivial spin point groups S, confirming the results of [26]. Section 3.1 we demonstrated
that the (co-)irreps of S correspond to those of G (if S is unitary) or a black and white point
group derived from G (if S is non-unitary). In this section, we study the effect of the spin-only
group b on the (co-)representation theory of the spin point groups, in order to systematically
obtain the full (co-)representation theory of total spin point groups. We remind the reader

2Here we will use Hermann-Mauguin (HM) notation, as it is better suited for magnetic and spin point group
naming conventions.
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Table 4: Non-unitary, nontrivial spin point groups isomorphic to spatial parent group
4mm with Litvin number and adapted HM notation in the first and second columns.
The third column expresses S in terms of its unitary halving spin point group S*
and a choice of antiunitary coset representative a (in correspondence with the HM
notation). In the final column, the black & white point group G2V to which the
non-unitary spin point group corresponds. In this case, there are only two choices
of black and white point group: 4m’m’ and 4’mm’. The unitary halving subgroups
G* in these cases are 4 and mmz2, respectively. In each row, S* is isomorphic to the
appropriate G*.

# S S* +aS* GPW
148 | 4™m™m 14+ [m|lm,]'4 4m’'m’
149 | 14lm! '4+[1Im,]'4 4m’m’
151 | ™4'm™m 'mim'2+[m||4,]'m'm'2 4'mm’
152 I4lm! Im'm'2 4+ [1)|4,]'m'm'2 4'mm’
154 | 2:4™m™m 244 [m,|Im,]%4 4m’'m’
155 | M™<4%=m™m 2m?m'2 + [m,||4,1*>m?m'2 4'mm’
156 | 24'm™m 24+ [1||m, %4 4m’'m’
157 | 142m™m 2m?m'2 + [1)|4,1*°m?*m'2 4'mm’
158 m42mim 2m?2m'2+ [m||4,*m?m'2 4'mm’
160 | %4™m™ym 4+ [m,|m,]*4 4m’'m’
161 | %4mm2om | Zom2rm%2 + [4, |14, 120 m>m%2 | 4mm’

that supporting material reviewing the representation theory for non-unitary groups may be
found in Appendix A.

Both the spin-only group b and nontrivial spin point group S can be expressed as the union
of a unitary and an antiunitary coset. We would like to express the total group X = b x S in this
form as well in order to investigate and derive the co-irreps of X, because this form makes the
unitary halving subgroup of X explicit. In general, this can be achieved using the procedure
outlined in Appendix D. In the subsections that follow, we say that S is a spin group of spatial
parent group G and spin-space parent group B.

In the non-coplanar, non-magnetic, and coplanar cases, the co-irreps obtained for the to-
tal group X correspond trivially to existing magnetic group co-irreps. However, for collinear
arrangements new co-irreps can be obtained due to the interplay between b> and the non-
trivial spin point group S (which is a consequence of the semi-direct product structure of b°°).
In this section, we demonstrate these results for each of the four cases of spin arrangements,
depending on whether the nontrivial spin point group S is unitary or antiunitary.

3.2.1 Non-magnetic spin arrangements

In the non-magnetic case, the spin-only group is b"™ = SO(3) x {[E||E],[ 7 || E ]}. Since in
this case S is always one of the 32 crystallographic point groups (see Section 2.4),

X=b" x G =50(3) x G+7(S0(3) x G).

Because the antiunitary coset representative is simply time-reversal, the Dimmock test in equa-
tion A.20 corresponds exactly to the Frobenius-Schur indicator for the reality of the irreps of
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SO(3) x G. The irreps of SO(3) x G are the direct product of irreps d(SO(3)) (for I € N) and
d™(G), and the indicator will factor into an integral over the elements of SO(3) and a sum
over the elements of G:

v_1 0 () ( 2
X _de” (R6.9,20)) 1 > 2e),

g€G

where u is the Haar measure for SO(3), Q is an appropriate normalization constant, and
R(6,¢,v) € SO(3). In the irrep dV(SO(3)), the character of a rotation by angle 21 about
any axis (determined by 6 and ) is given by y O(R(0, ¢,2¢)) =1+ Z;:OZCOS(ZmIﬂ). In
the integral over 1), the cosine terms will always yield zero, ensuring that the irreps of SO(3)
are real. As a result, the Dimmock indicator for X will be the same as the Frobenius-Schur

reality indicator of G,
=i Z 2.
geiG

Therefore, the irreps of non-magnetic X will be constructed from the irreps d(¥(SO(3))xd")(G)
based on the reality of the v irrep of G.

3.2.2 Spatial spin arrangements

For spatial spin arrangements, the spin-only group is b™ = {[ E|| E ]}. Therefore, the total
spin point group is equal to a nontrivial spin point group, and the result of Section 3.1 apply.
We will reiterate the results here. If S is unitary, the irreps will simply correspond to the irreps
of G by virtue of the isomorphism theorem in Section 3.1.

If S = S*+aS* is antiunitary, then it is a nontrivial non-unitary spin point group, and as such
has co-irreps that correspond to a black and white point group. In particular, it corresponds to
the black and white point group where in the HM symbol, improper spin elements are replaced
by primes. This identification is explicitly tabulated in Table 7.

3.2.3 Coplanar spin arrangements

For coplanar spin arrangements, the spin-only group is b%2 = {[E || E ],[ 72, || E ]}, where n is
the normal vector to the plane of the spins. If S is unitary, then

X=bZ2xS={[E||E],[t2,/|E]} xS=S+[12,]|E]S.

The co-irreps for X will be formed from the irreps of S, which (as a unitary nontrivial SPG) are
the same as for the spatial parent group G. The Dimmock indicator (eq. A.20) for the u—th
irrep of S (with elements given by [s; || s, ]) will be given by

LS (20 1B s, 5, )2)—|S|Zx(’” [ 248 15 1%)

s€S sEeS

=5 21 (asP112))

sES

G

Note that the axis of s; must be parallel or perpendicular to the plane of the spins, otherwise
it will not map the spin plane back onto itself. If it is parallel to the spin plane then itis a 7
rotation about some axis perpendicular to n, and 2,2, , = 2,/ is a 7 rotation about another
axis perpendicular to n, and so (2,2,,)? = E. If s, is a rotation about n, then 2,, commutes
with s; and (2,s,)* = s2. So, the indicator for the u—th irrep of S becomes

ﬁ %X(“) ([ssllsy 1?), s axis parallel ton,
S

Xt =
ﬁ %X(“) ([ E|ls, ]2) , S axis perpendicular to n.
S
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Since S = G, we see explicitly that both of these cases correspond to the indicators of G for the
grey group G+ 7G.
If S =S*+ aS* is non-unitary and a = [7u,l|u, ], then (by Appendix D)

X=b% x § = {E, 12,} x (§* +aS*) = §* + [ 2,1, ||ty 18* + [ 72, | E 1(S* + [ 21 I 1y 1S¥).

In this case, the unitary halving subgroup is also a nontrivial SPG of the family G (although its
spin part may be smaller).® Using a similar analysis as for the unitary case, we find that the
co-irreps of X will also correspond to the co-irreps of G + 7G.

3.2.4 Collinear spin arrangements

For collinear spin arrangements with spins aligned along the n axis, the spin-only group is given
by b>* =S0(2) % {E, 72, ,}. In Section 2.4, we demonstrated that for X to have the structure
of a direct product and to avoid redundancy in identifying collinear spin point groups, the spin
elements of S can only come from one of two groups: B = 1 if S is unitary, and B =1 if S is
nonunitary.

If S is unitary, then each element of S has the identity in the spin part, so S is essentially
equal to the spatial parent group G. The total spin group is given by

X=b% xS =80(2) x S+[72,,||E](SO(2) x S)
= S0(2) x G+[ 72,4 E](SO(2) x G).

The co-irreps of X will be induced from the irreducible representations* of SO(2) x G
d®(80(2) x G) = 5M(s0(2)) ® AM(G),

where u € Z and » runs through the irreps of G. These irreps have Dimmock indicators (see
equation A.20) given by

1 27

1
X0 = | dp <3 ([7200Ra(9) 15, 12)
27 0 |S| seS

27
_ L 2 i 2
—(ML d (72 4Ry (1)) )(m'g;g )

due to the direct product structure of SO(2) x G, the spin elements s € S being of the form
s = [E|lg] (and g € G), and denoting an arbitrary element of SO(2) as a rotation R,(p)
where n is the axis of the spins. Notice that 2| ,R,(¢) is an m—rotation about a different axis
perpendicular to n, i.e. 2, R, = 2’L .- Since this is a two-fold rotation its square is the identity
element, and so the squared spin element in the argument of the Dimmock indicator is simply

(T21nRa(9))* = (2 ,)* =E.
As a result,” the Dimmock indicator becomes

(1 (7 1 , 1 ,
Xt = (EL dy x(‘”(E)) (HZX( )(gz)) = EZ% (g?).

g€G g€G

3If a was any reflection, the spin-space parent group B will either remain the same, or swap to an isomorphic B’.
However, if a was S,,,, for n = 1 or n = 3, B will have half as many elements, whereas n = 2 remains unchanged.
This covers all possible cases of index-two subgroup coset representatives (see [28]).

“The irreducible representations of SO(2) are given by §*(R(¢)) = e*#, where R(¢) € SO(2) is a rotation by
angle ¢, and u € Z.

>We also use the fact that the character of the identity element is the dimension of the representation, and that
the irreducible representations of SO(2) are one dimensional so y *(E) = 1.
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Table 5: Summarizing which spin point groups have new (co-)irrep content. For
those with existing (co-)irreps, the reader is referenced to the appropriate group’s
(co-)irreps. For the collinear groups, see Appendix F. Note that the collinear groups
with unitary (non-unitary) S have Dimmock indicators corresponding to the grey
point group G (Gy/5).

| Spin Point Group Type | New (Co-)irreps? | Group with Corresponding (Co)-irreps

Nontrivial No Black & White group (see table 7)
Non-magnetic No Grey group G+ 1G

Coplanar No Grey group G+ 1G

Collinear Yes N/A (see Appendix F).

This means that the irreps d*")(SO(2) x G) have types that depend only on the irrep of the
spatial parent group, A)(G). Further, the type of d*")(SO(2) x G) in X will be the same as for
AM)(G) in the grey point group G+ TG, and the tables of these co-irreps are given in Appendix
F.

If S is nonunitary with unitary halving subgroup S*, then the spin elements of S are taken
from the group B = 1, the inversion group. Now, S = S* + [1]ls,]S*, and S* is a unitary
nontrivial spin point group. The total group X can be expressed as

X=b" xS =(S0(2)+12,,50(2)) x (S*+[7]ls,1S*)
=50(2) x §* +[ 2, [I5,150(2) x §* + [12,,|[E](SO(2) x 8" + [ 2, |5, 1SO(2) x §*),

where we have used the result in Appendix D for the direct product of antiunitary groups.
The co-irreps of X must be induced from the irreps of

X1/ =50(2) x S* +[21,1ls,]S0(2) x 87,

but the irreps of X; , are not known a priori. Therefore, we must first find the irreps of X; /o,
and we do so using the irreps of SO(2) x §*. Since S* is a unitary nontrivial spin point group,
it is isomorphic to its parent spatial group; this spatial parent group will also be a halving
subgroup of G (the parent group of S) and so we call it G;/,. Then, the irreps of SO(2) x S*
will be equal to those of SO(2) X Gy /5. From here, to obtain there irreps of X /5, we use the
standard algorithm for induction from a subgroup of index two [8,29,30]. An explanation of
this procedure as well as an example are provided in Appendix E. With the irreps of X /5, we
derive the co-irreps of X using the procedure outlined in Appendix A and the resulting tables
are provided in Appendix F.

We comment on the Dimmock indicators in this case. The squared elements appearing
in the Dimmock indicator are [E||g?] with g € G, /2 for the first coset of SO(2) x S*, and
[R,(2¢)l|(s,g)?] for the second coset. Using results from Appendix E.1 one can see that the
latter contribute zero to the Dimmock indicator. This is because these group elements have
characters with a factor of e?*¥  which when integrated from 0 to 27 gives zero. The former
is the same as the indicator for the grey point group Gy 5 + TGy /5.

In contrast to the coplanar, spatial, and non-magnetic spin point groups, the co-irreps of
collinear spin point groups to not correspond to any of the well-known and tabulated magnetic
(point) group irreps. The maximal irrep dimension was found to be six. The conclusions
regarding existing versus new (co-)irreps are summarized in Table 5.

As an example of these nontrivially new co-irreps and the procedure used to induce them,

we take the non-unitary parent group S = '4/'m'm!m. In this case, the total spin point group
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is given by X =b*° x T4/ Im'mlm. In this case, X can be expressed as

X=Xy/5+[12],llE]Xy /2,

where
Xy /5 = 80(2) x Imimim+[2,,014,180(2) x 'mim'm,

by Appendix D, since
S=S"+[1]s,]S*

can be written as '4/'m'm'm = 'm'm'm +[1]|4,]'m*m'm. To find the co-irreps of the total

spin group, we must first find the irreducible represntations of X, /,, which is demonstrated
in Appendix E.2. From here, we determine the types of the irreps of X;, by Dimmock’s test
(A.20). In this case, all irreps of X; ;, belong to case (a), and so we use equation A.16 to find
the total co-irreps, to find the table on page 70.

4 Applications

4.1 Rautile altermagnetism

Altermagnetism in metals is the appearance of spin split electronic bands that are anisotropic
in momentum space in the absence of spin-orbit coupling [20,21,31]. A characteristic feature
of these systems as currently understood is the presence of collinear antiferromagnetic order
on a pair of sublattices with neither inversion nor translation connecting the sublattices. One
example of such magnetism is in rutiles with chemical formula MX, for example the metallic
antiferromagnet RuO, in which band structure calculations reveal a d wave pattern of spin
splitting greatly in excess of the splitting arising from spin-orbit coupling [31] which is con-
sistent with subsequent experimental findings [32-35]. As has been observed in the literature
on these systems, the absence of spin-orbit coupling calls for an understanding based on spin
groups. Therefore, in this section, we give a toy model of rutile altermagnetism and provide
an explanation of the salient features of the band structure from the point of view of symmetry.

We consider the lattice structure in Fig. 2. The magnetic ions live on a body-centred
tetragonal lattice. The space group of this structure is P4,/mnm #136 with magnetic ions
M on Wyckoff positions 2a and X ions on 2f. The two sublattices are connected by C4, and
a translation (1/2,1/2,1/2) and, notably, not by a pure inversion or translation. The lattice
symmetries are such that there are two inequivalent third neighbour hoppings and that on the
different magnetic sublattices the 11 and 11 hoppings are interchanged. These features are
indicated in Fig. 2.

We consider a model of non-interacting fermions with a Hund coupling to fixed classical
localized moments h in a Néel structure:

H=—t, chacja - Z tg Z ¢ cio —Jchahi O opCip s (11)
(.5 =12 (((i,iM)a L

where h; = (0,0,1) on (0,0,0) Wyckoff sites and (0,0,—1) on the (1/2,1/2,1/2) position.
Re-writing this in crystal momentum space, the Hamiltonian is block diagonal in spin space
with blocks

" - —J - tl'}/l — tz')/z —tl')/l Kk C
H (k) — Cl C! ( 3 3,k 3 3,1( > kAT , (12)
! (o ) —t171k J— 373~ 3735 )\ Gt
P J =373~ 1373 —t171k c
H (k) — Cr C-' ( 3713k 313k > kA| , (13)
109=( Gy i ) 0171k —J =373~ 3735 J\ Cunl
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where
Y=, cos(k-r,), (14)
u=1,4
Y;,k = cos(k, +ky), (15)
Y%,k = cos(k, —ky ), (16)

and r; = (1/2)(ax + ay + cz), ry = (1/2)(ax + ay — cz), r3 = (1/2)(ax — ay + cz),
r, = (1/2)(—ax + ay +cz).

The combination of the pattern of hoppings and the time-reversal breaking from the anti-
collinear moments leads to electronic bands with a characteristic d wave spin splitting as shown
in Fig. 3. As the magnetic order breaks the full rotational symmetry down to SO(2) that keeps
the spin projection as a good quantum number the spin up or down nature of the bands is
present across the zone. The d wave pattern originates from crossing of bands with well-
defined spin along the lines (H,0,0) and (0,H,0). Any symmetric hopping parameters pre-
serve this feature. The problem that faces us is to understand the origin of the band crossing
along these lines from the perspective of symmetry.

Let us focus on the zone centre where the total spin-space group reduces to a spin point
group. The identity of the nontrivial spin point group is *4/!m'm'm. In the tables, this is
group number 195. In short, the time-reversal operation is linked to real space operations
that take one magnetic sublattice into another. The representation theory of this group has
been worked out in Appendix E.2 with the full co-irrep tables given in Appendix F. The first
part of the calculation of these tables is to work out the irreps of the unitary halving subgroup
of 14/Ym'm!m times the collinear pure spin group. This is nontrivial as the direct product of
antiunitary groups leads to unitary part SO(2) ®' m*m'm +[2,,]/4]SO(2) ®' m'm'm. The
interpretation of this is that the !m'm'm coset contains elements that preserve the sublattice
and the spin while the second piece [2 ,]|4] ®! m'm'm reverses both spin and sublattice.

The eigenstates are organized with the first pair and last pair of components referring to
opposite spin orientations. Then the components of each of these pairs is resolved by magnetic
sublattice. Inspection of the eigenstates at the T' point reveals two doubly degenerate states
of the form {(a, f3,0,0),(0,0,,a)} and {(—f,a,0,0),(0,0,a,—f)}. The eigenstates within
each doubly degenerate pair are therefore related by sublattice (and spin) swaps. Within each
degenerate eigenspace, we therefore expect the halving subgroup elements that preserve the

sublattice to be of the form
el® 0
O e—id) ) (17)

where the diagonal nonzero elements indicate that the sublattice is preserved. The elements
that swap the sublattice and spin are
0 e @
( eiq) 0 ) ) (18)

where the phases are fixed by the fact that the perpendicular spin rotation reverses the SO(2)
rotation sense. The tables in Appendix F contain a 2D co-irrep of precisely this form: I3, of
14/ 'm'm'm. In the list of elements, the only swap of the spins and sublattices arises from the
element [2 (/4] and its partner after multiplication by [72|,[|E]. The element labelled C,,
in the table does not swap the sublattices as the y axis in the group convention corresponds
to the X — ¥ direction in the lattice convention of this section.
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Figure 2: Crystal structure of rutile MX, where the magnetic M ions (blue) are on
the tetragonal unit cell vertices and the X ions (translucent) crucially are arranged
so that the local environments around the two magnetic sublattices are related by a
C4, operation and a translation. The T / | sublattice structure is also shown, and the
left figure indicates the t; hopping, while the right figure shows two inequivalent t
hoppings.

Now we consider the (H, 0, 0) direction for points in the interior of the zone. We enumerate
all group elements including those obtained by multiplication by [ 72 ,,||E] and ask which leave
the momentum invariant. We find

SO(2)® ((EIIE]+ [t2 1D ® ((EIET+ [ENI2, ]+ [7l12, ]+ [T]I2,]) (19)

in the lattice convention of the toy model. This is isomorphic to the antiunitary collinear
spin point group b*®® ®! m!m!2 or Litvin number 40 with halving unitary subgroup
SO(2) ®' m+[2,,]121S0(2) ®' m. The co-irreps include a 2D irrep, Is, with matrices of the
same form as for the I' point case albeit with fewer elements. These matrices concord with the
transformation properties of the eigenstates along this line.

In contrast, for the (H, H,0) direction, the spin group that leaves the momentum invariant
is

SO(2) ® ([E|IE]+ [t21,/l1]) ® ([EIIE] + [EllI2110] + [ENI2,1+ [El12150]) . (20)

The nontrivial spin group is therefore unitary so there is no doubling of the irrep dimension
beyond that of the unitary point group. As the point group is isomorphic to mm2 which has
only 1D irreps so there is no symmetry enforced degeneracy along this line. This observation
is consistent with the band structure from the toy model. These degeneracies remain in the
presence of breaking down to the magnetic space group when the moment is pinned along the
crystal ¢ axis.

It is interesting to note that the SPGs listed above strictly do not fall into Litvin’s classifi-
cation [25]. The spin-only groups in each of these cases is reduced to SO(2), as opposed to
the collinear b®°. What previously was a spin-only element, [72 ,||E] is here paired with a
real-space inversion. The group SO(2) ® {[E||E],[t2,,||I]} is isomorphic to b®°, but it is not
conjugate to b in O(3) ® O(3). Generically, the study of reciprocal space symmetries may
give rise to SPGs beyond the Litvin classification.

4.2 MnTe

As another example, we consider the magnetic structure of MnTe which is also consistent
with altermagnetism. The underlying crystal structure has space group P65/mmc #194 with
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Figure 3: The two lowest energy bands of the toy model described in the main text.
The colours indicate the spin state. The total spin is a good quantum number and it
exhibits a d wave pattern in momentum space.

hexagonal crystal class. The magnetic ions live at Wyckoff position 2a: (0,0,0) and (0,0,1/2)
and the decorating Te ions live at Wyckoff position 2¢: (1/3,2/3,1/4) and (2/3,1/3,3/4).
One may build a toy model for the band structure of this material in the same way as for the
rutile case. Details may be found in Ref. [36]. One finds degeneracies along (k,,0, k,) and in
the (ky, k,,0) plane.

The spin point group for the magnetic order in this system is b® ® 16/'m*m'm or Litvin
number 443. We consider three planes in the Brillouin zone and determine the spin point
group for each. The first is the k, = 0 plane. We find

SO(2)® ([ElIE]+[v2.allID) ® ((ENE] + [7]12.]) - (21

This is isomorphic to b ®!2 which has 2D co-irrep I3 corresponding to the degenerate bands
in the toy model. Along (k,,0, k,) the spin point group is

SO(2) @ ([EIE]+ [v2 1D @ (LENE] + [7]12120]) (22)

which again is isomorphic to b*° ®!2. Finally, along (0, k.., k,) the spin point group is

y’
SO(2) ® ([ElIE]+ [v21allI]) ® ((E|IE]+ [Ellmy00]) (23)

or b® ®! m. As the nontrivial group is unitary with only 1D irreps there is no symmetry
enforced degeneracy along this line.

It is interesting to note that the material MnTe has a magnetic anisotropy pinning the
moment along six-fold axis in the ab plane. The magnetic space group is a type III group
63.462. This has only 1D irreps along the directions considered above. Therefore the spin
point group analysis reveals degeneracies at zero spin-orbit coupling that are not present in
the anisotropic case. This may be useful to assess the proximity of altermagnets to the limit
where the spin group is an exact description.

4.3 Magnons in Heisenberg-Kitaev model

Here we give an example of how spin point groups can be used to determine useful information
on the spectrum of magnetic excitations following a model studied in Ref. [19]. Additionally,
we discuss new forms of spin-only groups extending the Litvin-Opechowski classes when the
Hamiltonian has anisotropies which break full rotational symmetry.

We consider the Kitaev-Heisenberg model on a hyperhoneycomb lattice, a tri-coordinated
lattice in three-dimensions represented in Fig. 4. The space group of the structure is Fddd
#70 with magnetic ions on Wyckoff positions 16g. Such a lattice can be found for example

20


https://scipost.org
https://scipost.org/SciPostPhys.18.3.109

e SciPost Phys. 18, 109 (2025)

Figure 4: Plot of a unit cell of the hyperhoneycomb lattice with nearest neighbour
bonds coloured according to the Kitaev coupling on each bond.

in the iridium Ir** sublattice in -Li,IrO5. In the material, the magnetic ions live in cages
formed by edge-sharing octahedra of oxygen ions in such a way that the Ir-O-Ir bond angle is
90°. Such a configuration allows for a microscopic mechanism leading to Kitaev-Heisenberg
couplings [37,38].

The Hamiltonian reads

H=JY J;-J;+K Y JJT, 24)
(@) (i)

where J; are the magnetic moments. In the paramagnetic state, the Heisenberg model alone
has full spin rotational symmetry SO(3) plus time-reversal in addition to the space group sym-
metry. The presence of the Kitaev exchange coupling breaks SO(3) to three perpendicular C,
rotations forming the discrete group D, = 222. The onset of magnetic order further reduces
the symmetry to a subgroup mixing spin and space transformations. Magnon excitations prop-
agating on top of a particular magnetic order inherit those symmetries.

In this model there are four phases in zero external field: the collinear ferromagnet, a Néel
phase, and two further antiferromagnetic phases called skew-stripey and skew-zigzag [39,40].
These collinear phases lie along one of the Cartesian axes ([001] direction chosen here). A
large enough applied magnetic field can tune freely the direction of the ferromagnetic state,
allowing us to explore further ordered directions. The summary of these phases and their
relative spin point group at the zone center I' can be found in Table 6.

Let us start our discussion with the pure Heisenberg model, where two phases are possible:
Heisenberg ferromagnetic and Néel magnetic order. The Heisenberg model is rotationally
invariant so all spin ordering directions [ x yz] are equivalent. For both types of magnetic order,
the spin-only group is composed of a free axial rotation around the spin direction SO(2) and
a perpendicular C,, rotation coupled with time-reversal symmetry, giving the group indicated
as b*. B

The Heisenberg Néel state has symmetries captured by the total spin group b x 'm*m'm,
where the nontrivial spin point group is number 60 in the Litvin enumeration. The representa-
tion of the spin wave spectrum associated with this group can be obtained by the full co-irrep
tables given in Appendix F and gives

Preet = To(2) +T10(2), (25)

where the number in parentheses shows the dimensionality of the irreps. We expect therefore
two doubly degenerate magnon modes. Considering a general position GP in the zone the
spin point group is isomorphic to SO(2) x 11 with spin wave representation:

Pk = 2I5(2). (26)
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Table 6: Different collinear phases in the hyperhoneycomb lattice Heisenberg-Kitaev
model and relative spin point groups at Brillouin zone center I'. The ordering direc-
tion [xyz] is given in Kitaev coordinates and indicates a representative direction of
the phase among other equivalent. The last column specifies when a double degen-
eracy is predicted in the spin wave spectrum by the spin point group representation
theory.

Phase Spin Point Group | Degeneracy
Heisenberg FM [x yz] | b®° x 'm'm'm
Heisenberg Néel [x yz] | b® x 'm!mlm v
Néel [001] 2/2/2 x "m?’m'm NG
Skew-Stripy [001] | 2/2/2 x 2m2m! v
Skew-ZigZag [001] 2/2'2 x 2mim™m v
FM [001] 2/'2'2 x 'm™m™m
FM[1-10] 2’ x 'm?m?m
FM [11z] Im™m™m
FM [100] 2/2/2 x 12/1m
FM [x y 0] 2/ x 12/1m
FM [x y 2] 12/ m

Since both the zone centre, which is the highest symmetric position, and the general position,
the lowest symmetric one, predict double degenerate modes we expect two double degenerate
magnon bands everywhere inside the Brillouin zone. This consideration leaves out possible
extra degeneracy on the zone boundary due to non-symmorphic spin space symmetry as dis-
cussed in [19].

In contrast, the ferromagnetic state at zone center is described by the total spin group
b> x 'm'm'm, where the nontrivial spin point group is Litvin number 54. The spin wave
representation gives

Py = 11(1) + (1) + T3(1) + I,(1), (27)

while the general position GP in the zone has spin group SO(2) x '1 with representation
pay =20 (1) +20,(1). (28)

The ferromagnetic case therefore has four 1D bands everywhere inside the zone.

Following this example, we highlight a general mechanism that leads to degenerate vol-
umes in the magnon spectrum. In particular, we consider Heisenberg models with antiferro-
magnetic (AFM) sublattices when there is a symmetry that spatially maps up-spin sublattices
into down-spin sublattice together with a spin flip coming either from time-reversal or by a
perpendicular C,, spin rotation. When this symmetry also maps the reciprocal vector k to
itself then there is a double degeneracy everywhere in the Brillouin zone (general position
GP). Here we are dealing with point group operations and we do not consider case of black
and white translations which can satisfy this requirement. A point group symmetry which
conserves k is PT symmetry, inversion coupled with time-reversal symmetry. This symmetry,
if present alone without additional spin rotations, maps the AFM sublattices into one another
leading to a degenerate spectrum.

From the full co-irrep tables given in Appendix F we can shed some new light on this mech-
anism. First, we see that the group b is essential. At the general position this group, as in
the altermagnetic examples, contains also spatial inversion in order to leave the momentum
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invariant. In the case of simple antiferromagnets, the dispersion on one sublattice is repre-
sented by v and the other by —v (0 = 1 for magnons). Such irreps pair into a 2-dimensional

co-irrep under PT symmetry as we see in the spin point group table b x 17. In contrast the
pure nontrivial spin group 1 has only 1-D co-irreps. Similarly, the other collinear groups with
non-unitary nontrivial group always have a symmetry which couples the o = +v SO(2) ir-

reps into a 2-dimensional co-irrep. For example, in the Heisenberg Néel hyperhoneycomb the

group at zone center b x !m!'m!m has the symmetry 'm which couples the two sublattices.

Again, the pure nontrivial spin group 'm'm'm alone does not have 2-dimensional co-irreps.

Having considered magnon spectra for Heisenberg models, we now switch on the Kitaev
terms and we consider again table 6. The situation here is much richer and we arrive to a total
of 11 different spin point groups.

We take as an example the ferromagnetic [11z] state. This phase is described at the zone
center by the total spin group !m™m™m (Litvin number 56). As we see from Table 7, this
group is isomorphic to the magnetic point group mm’m’ and the spin wave representation in
the Cracknell, Davies, Miller and Love notation is

Py =T (D) +TI7 (D) + (1) + T, (1). (29)

On the basis of the representation theory, we therefore account for the lack of enforced degen-
eracy at I’ which has four symmetry distinct magnon modes.

4.3.1 Discrete spin-only groups

In Table 6 there are various spin groups of physical relevance that lie outside the Litvin-
Opechowski classification. In particular, we find listed spin groups with discrete spin-only
group 2’2’2 which is neither coplanar nor collinear. The Litvin-Opechowski classes categorize
the invariances of magnetic structures in spin space and real space without reference to the
Hamiltonian. Discrete spin-only groups may arise when there are anisotropies in the Hamil-
tonian originating from spin-orbit coupling.

It has been noted that spin point groups (and spin space groups in general) are relevant
to certain cases where spin-orbit coupling is significant. These include Heisenberg-Kitaev ex-
change and Dzyaloshinskii-Moriya coupling when the D vector is common to all bonds. Beside
exchange couplings, discrete anisotropies can also arise naturally from single-ion anisotropies.
Just as spin groups are expected to be approximate symmetries in real materials (albeit to an
excellent approximation in certain cases), so too the anisotropic terms mentioned above are
generally expected to appear with additional couplings that break down the spin symmetry. In
general, both the Hamiltonian symmetries and the symmetries of the magnetic structure are
relevant to determine the full symmetry of the system under consideration. For the case of
Kitaev-Heisenberg models, there are discrete anisotropies which limit the spin free rotation to
the discrete group D, = 222 of three perpendicular C, axes.

As discussed above, magnetic order reduces the “paramagnetic” spin-only group to a sub-
group. In the Heisenberg-Kitaev example there are three possible cases. Firstly, we have a
collinear order along one of the Kitaev axis (e.g. [001]). This the most symmetric scenario
since it preserves the spin-only group 2'2'2. Secondly, a collinear order perpendicular to a
Kitaev axis (e.g. [xy0]) has the spin-only group 2’. Such a group, identified in the paper with
the coplanar group b%2, can appear also in a collinear phase in the presence of anisotropies as
we see here. Finally, for a non-symmetric direction (e.g. [xyz]) there is no free spin rotation
as we expect in a strong spin-orbit scenario, but there is still a nontrivial spin point group
12/ m since the Kitaev axis is aligned to a crystallographic axis.
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It is natural to ask what discrete spin-only groups are possible. In other words, what is the
most general set of spin point groups? Since we limit ourselves to spin-orbit anisotropies which
couple the spin with the lattice, such anisotropies must respect crystallographic constraints and
therefore belong to one of the proper point groups.

For a paramagnetic phase, the relevant symmetries are those of the Hamiltonian. When the
Hamiltonian is spin rotation symmetric the spin-only group is b"M = SO(3) x {E, 7}. However,
when the Hamiltonian contains anisotropies, the allowed spin-only transformations — those

that leave the Hamiltonian invariant — is enlarged to 13 possible groups — all subgroups of
pNM:

bparamagnetic = {P ", b*Y, 11°,217,2221/,31/,321',41', 4221, 61/, 6221',231', 4321} . (30)

The group bX¥ = SO(2) x {E, 7} can be obtained for example in the XY model or with
Dzyaloshinskii-Moriya interaction with collinear D vector.

For a magnetically ordered phase, the spin-only groups must have an axial symmetry if they
are to respect the invariance of the magnetic structure. We therefore extend the classification
giving 12 possible spin-only groups for magnetically ordered systems:

bordered = {b™°,S0(2),1,2,2/(= b%2),22/2/,3,32,4,42'2',6,62'2} (31)

where b = SO(2) x {E,C,, 7} and b?2 = {E,C,, v} are the zero spin-orbit collinear and
coplanar case considered by Litvin and Opechowski.

These discrete spin-only groups lead to new total spin point groups when paired to the
598 nontrivial spin point groups. We leave for the future a calculation of the compatibility
conditions of the discrete spin-only groups with the nontrivial groups as well as a discussion
of their representation theory.

5 Discussion

In the foregoing we have described the theory of spin point groups that generalize the magnetic
point groups to the case where spin and space transformations are correlated but not locked.
These groups arise naturally in a condensed matter context in the zero spin-orbit coupled
limit of magnetic crystals and in some cases when spin-orbit coupling is significant such as
collinear structures with Kitaev-Heisenberg exchange. The existence of these groups and, to
some extent, their significance were recognized in the 1960’s. The first systematic studies, by
Litvin and Opechowski and later by Litvin, outlined a general theory for the spin point groups
introducing the spin-only groups and the nontrivial spin groups and enumerating the latter.
Much more recent work on the formal side has studied constraints on the inter-relation of the
spin-only part with the nontrivial group and calculated irreducible representations of certain
crystallographic spin groups. Other work has explored further connections to materials.

This paper completes the programme of Litvin and Opechowski by working out the rep-
resentation theory of the spin point groups. We have provided a self-contained description of
the groups, an independent enumeration of the nontrivial spin groups and a discussion of the
types of spin-only group that can arise in principle. One of the main results of this work is
the observation that nontrivial spin groups are isomorphic to magnetic point groups, as a con-
sequence of the main isomorphism theorem of Litvin and Opechowski, and we have worked
out all such isomorphisms. The precise magnetic point group isomorphic to a given spin point
group is not a priori obvious and the tabulation therefore has practical utility. For example,
one may work out the spin group of a given magnetic structure in a crystal and directly find
the possible irreducible representations corresponding to spin wave modes by translating to
the well-known magnetic point groups irreps.
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We then consider the total spin groups including the nontrivial group and the spin-only
part. We find the amusing result that coplanar spin groups correspond to grey groups. Grey
groups are usually to be found in the context of paramagnets where time reversal is unbroken.
Here, though, they arise as the natural symmetry groups for certain magnetically ordered
systems.

Even so, the grey groups are well known from traditional magnetic group theory. The
representation theory of spin groups is enriched, however, by the spin-only group when that
group has residual spin rotation symmetry. There are both unitary and non-unitary groups of
these types. We have identified these groups and we have calculated all the (co-)irreps for these
groups. An extensive set of tables for these new (co-)irreps may be found in Appendix F. One of
the main findings is the pairing of (co-)irreps coming from the spin rotation symmetry. These
findings systematize the possible enhanced degeneracies that can arise in band structures in
magnetic crystals with spin rotation symmetry (with and without time reversal symmetry).
We have given some examples of how this information can be useful in problems of interest
such as determining the electronic band degeneracies in d wave altermagnets and features of
magnon modes.

It is worth examining how doubling in the (co-)irrep dimension can arise in the (co-)irreps
of the total spin point groups. Generically, (co-)irreps double in size during the induction pro-
cedure. When dealing with the total spin point groups, there are at most two induction steps:
one to obtain the irreducible representations of the unitary halving subgroup (as described
in Section E.1), and one to obtain co-irreps for the total antiunitary group (as described in
Appendix A). Except in the case of total collinear groups with non-unitary S, the first induc-
tion step is unnecessary for the spin point groups, since the irreducible representations of the
unitary halving group are already known (and they correspond to a regular or magnetic point
group, or the direct product of the irreps of SO(2) with those of the parent point group). In
these cases, doubling (beyond the dimension of the point groups’ irreps) will only arise when
the unitary halving subgroup has irreps belonging to cases (b) or (c), as determined by Dim-
mock’s test (in equation A.20). As summarized in table 5, for the nontrivial, non-magnetic,
and coplanar groups these types are already known, since the co-irreps for the magnetic point
groups are known [6]; doubling in the collinear groups requires additional analysis.

For the collinear groups, there are no irreps belonging to case (b), meaning that for these
groups doubling in the co-irrep induction step can only occur via case (c). In collinear groups
with unitary S (i.e. S exactly corresponds to one of the regular point groups), there are ten
such instances.® Co-irreps of dimension larger than one in the remaining 22 collinear groups
with unitary S arise from the parent point group itself having larger irreps. Among the 32
collinear groups with unitary S, the largest co-irrep dimension is 3, indicating that only point
group irreps of dimension one get doubled in the co-irreps (otherwise, we would see co-irreps
of dimensions four or six).

For the 58 collinear groups with non-unitary S, we must check for doubling in both of the
induction steps. In inducing the irreps of the unitary halving subgroups X, /, (according to the
procedure laid out in Appendix E), every collinear group with non-unitary S possesses doubled
irreps, arising from the pairing of an irrep labelled by non-zero integer u (arising from SO(2))
with the irrep labelled by —u (giving rise to a new irrep labelled by positive non-zero integers
v in the tables of Appendix F). This is in addition to occasional doubling due to the point group
structure alone. In the co-irrep induction step (described in Appendix A), doubling can occur
for (1) irreps that were not doubled in the previous induction step, and (2) irreps that were
doubled in the previous induction step. There are thirteen groups in the former category,’

SWhere S is one of: 13, 14, 16, 16, 14/m, '6/'m, 14, 13, 1213, or 12/1m 3.
_ "Where S is one of: 4, 14, 14/'m, 4/ m, '4/'m, '4/*m'm'm, '3, 16/ 'm, '6/*m, 16/ m, 12/*m'3, 14_11?>1m,
14191
432,
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and twenty groups in the latter category.® Among these collinear groups with non-unitary S,
while double-doubling is possible, it only ever occurs starting from a one-dimensional irrep
of SO(2) x Gy,, giving a co-irrep of dimension four. The maximal co-irrep dimension is six,
occuring from the doubling of a three dimensional irrep in the first induction step.

That the total collinear groups are fundamentally different from standard groups, and that
their co-irreps are not known a priori is made clear by looking at even the simplest examples.
Let us compare the standard group

Cooy =SO(2) x{E, 12, .}

(where in this discussion we will assume that these elements act on both real and spin space,
as is standard under the assumption of strong spin-orbit coupling), with the simplest total
collinear spin group

b™ x '1=(S0(2) x {[E|IE],[T2 ,lIE]}) x '1.

From a geometric perspective, both of these groups include rotations about the axis n, as well
as all vertical reflections (i.e. those mirror planes containing the axis n). However, because
spins are axial vectors, the group C., acts effectively on spins as the group Co, = SO(2), as
improper elements derived from real-space cannot flip the orientation of an axial vector. Only
by including time-reversal can one achieve the effect of improper elements acting on the spins,
and in the weak spin-orbit coupling limit it is possible for the symmetry of the spins to extend
beyond the symmetry of the atomic arrangement. Further, while these groups are isomorphic
as abstract groups, due to the requirement that elements with time-reversal must be repre-
sented by antiunitary matrices, the (co-)representation theory for these two groups differs.
This is explicitly clear when one recognizes that the group C,, contains two-dimensional ir-
reducible representations, while b x '1 only contains one-dimensional co-irreps. Similarly,
one could compare the (co-)irrep tables between D.; and the simplest total collinear group
with non-unitary S, b x 11. Again, one notices that despite these groups containing elements
with similar geometric content and being isomorphic as abstract groups, they differ in their
irrep content (Do, has two additional one-dimensional irreps, for example). Finally, it is also
worth recognizing that the co-irreps of the total spin groups are not the direct product of the ir-
reps of b = b x 11 (which has only one-dimensional irreps labelled by any integer o) with
those of S. For example, we may examine the case S = 16/1m, which has the same co-irreps
as the black and white point group 6’/m’. This group has four co-irreps, two of dimension one
and two of dimension two. However, the total collinear group b® x 16/'m has co-irreps of
dimension four, and therefore these co-irreps could not have arisen from a direct product of
the irreps of b® and '6/1m.

These spin point groups are the foundations of magnetic crystallography. A natural future
direction is to explore the space groups built from these point groups - the so-called spin-space
groups. Our isomorphism result carries over to that case: spin-space groups with no pure spin
elements are necessarily isomorphic to a magnetic space group. The central problems to be
addressed therefore are to determine the pattern of isomorphisms, constraints on the possible
translation groups and the co-irreps at high symmetry momenta especially those at Brillouin
zone boundaries.

In addition to demonstrating by example the utility of the spin point groups from the
program of Litvin and Opechowski [25], we point out several contexts in which new spin
point groups arise. In the context of electron band degeneracies in reciprocal space, spin point
groups isomorphic but not conjugate to the collinear Litvin groups arise (in O(3) x O(3)).

8Where S is one of: '4/Tm, 14/ m, 41212, '4'm'm, 1é_}IZTm, 13, 1319, 131y, 1§1m, 16, 16, 161212, 16/1m,

16/'m, 16/1m, 16!m'm, 1glmTZ, 16/'m'm'm, '2/'m?3, 4/'m 312/ 'm.
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In studying magnon excitations, we have found entirely new discrete spin-only groups
describing Hamiltonian symmetries, further extending the classification of Litvin and Ope-
chowski. As discussed above there are consistent total spin groups with nontrivial discrete
spin-only groups that are not 2 ,, times time reversal. Another open problem is to explore the
representation theory of spin-only groups beyond the collinear, coplanar and trivial cases.

End note

Upon completion of this work, three independent groups posted preprints to the arXiv preprint
server that provide a discussion and enumeration of spin-space groups [41-43]. References
[41,42] contain discussions of the representation theory of these groups that has some overlap
with the results contained here.
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A Review of magnetic representation theory

The representation theory of finite unitary groups tends to be covered in most introductory

courses on group theory. The theory of the (co-)representation theory of magnetic groups [6,8]

is perhaps less widely known though it is central to our work as many of the spin point groups

have antiunitary elements. Therefore, we include here a self-contained review of the relevant

modifications to unitary representation theory when time reversal operations are included.
All magnetic groups including spin point groups may be written in the form

M =G +AG, (A.1)

where G is a group with only unitary elements while coset AG is obtained from the elements of
G by multiplying by antiunitary element A.° Following the notation of Bradley and Cracknell
[6] in this section, we denote unitary elements by R, S and antiunitary elements by B, C.

We suppose that the irreducible representations of the unitary part G are known. This
is reasonable because, for the magnetic point groups, G is one of the 32 crystallographic
point groups and, for the spin point groups, a similar result is true as will be shown in the
following section. This means that the central problem to tackle is to build the so-called co-
representations obtained by including the antiunitary part of M.

Suppose we have d-dimensional basis functions ¢, (a =1,...,d) for the unitary part of
the group such that element R € G acts like
Rwa = A(R)a[j¢/3 . (A.2)

We then need a basis for the antiunitary elements and we may choose Ay, = w,. It is then
straightforward to see that a unitary element acting on the antiunitary part of the basis gives

“We say that a group element is antiunitary if it must be represented by an antiunitary operator. This is the case
for any group element containing time-reversal. Recall that an antiunitary operator U acts like (U |U) = (1 |¢).
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Rw, = A*(A‘lRA)aﬁ wg. Itis natural to introduce a notation where we keep track of the action
of group on the entire basis Z = (1), w)’. In this notation

Y Y _ [ AR) 0 Yo\ -
R( o ) = ( 0 AARA) . |=D®E. (A.3)
The action of antiunitary elements on the basis is off-diagonal and of the form
Yo\ 0 A(BA) Yo _ -
B ( o )=\ aaB) o w |=DPEBE. a4

Therefore with knowledge of the group multiplication table and the representations of G one
may compute co-representations of M.

The problem of determining irreducible representations for magnetic groups is the prob-
lem of finding a unitary transformation acting on representations that reduce them as far as
possible to block diagonal form. For magnetic groups the precise statement is that, to reduce
a representation D, we look for U acting on D such that

U™'D(R)U = D(R), (A.5)
U~'D(B)U* = D(B), (A.6)

and where the barred representations are similarly block diagonal.

A key step is to ask whether A(R) and A*(A™'RA) are unitarily equivalent. As we shall
see, if they are then representations of unitary elements may (Case (a)) or may not (Case
(b)) be reducible to fully block diagonal form. In case A(R) and A*(A™'RA) are inequivalent
then generally these combine into a single co-representation (Case (c)). These three cases
categorize the possible irreducible co-representations starting from unitary irreps. Cases (b)
and (c) stand out in leading to irreps of doubled dimensions compared to the dimension of
unitary irreps of G. This means, in principle, that the dimensions 1, 2, 3 of unitary point groups
may be doubled to 2,4 and 6.

For cases (a) and (b) we assume that A(R) is an irreducible representation (irrep) of G.
We also suppose that it is unitarily equivalent to A*(A~'RA) so that there is a matrix P such
that

A(R) = PA*(A'RA)PL. A7)

It is straightforward to see that
AR) =P (P*AY(AHAR)IAAHP) P, (A.8)
from which the assumption of irreducibility combined with Schur’s lemma gives the condition
PP* = AA(A?), (A.9)

and identity A(A%) = PA*(A%2)P~! and unitarity of P and A(A?) combine to fix A to be real
and |[A] = 1. So
PP* = +A(A?). (A.10)

We now see that there are two distinct cases. To see what they imply for reducibility of the

co—representation we ﬁI'St use
1 0
( 0 p- ) (A.11)

to bring D(R) to the form D’(R) = A(R) ® A(R) appearing twice. The same transformation
leads to

2\yp—1x
0 AP ) . (A.12)

D/(A):(P 0
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We now try to reduce with unitary U. This should do nothing to the D’(R) which constrains

A1 Al
-1 _ 1 2
U —( Agl Ayl ) (A.13)
For D(A) we get
2yp—1x
A1 Ayl 0 A(A%)P Ml 2a1 ) A1)
231 A1 J\ P 0 2ol Ayl

where we highlight the transpose between the left and right matrices. The constraint that this
be block diagonal fixes A;A4 = A,A3. Going back to the condition

PP* =421, (A.15)

we see that reduction to block diagonal form is possible for the choice of positive sign.
Case (a) Where the reduction is possible we get

D(R)=A(R), D(B)==+A(BA )P, (A.16)

where the sign of D(B) is a matter of convention as these are equivalent.

Case (b) Here PP* = —A(A?) and, as we have discussed, it is then not possible to reduce
the two-by-two magnetic co-representations and so the dimension of the co-representation is
twice the dimension of the non-magnetic A(R). The co-representations take the form

AR - 0 0 —A@ATYP
( 0 A(R))’ (A(BA_l)P 0 ) (A.17)

Case (c) This case corresponds to the situation where two inequivalent unitary irreps A(R)
and A*(A"'RA) are combined into a single co-representation. The co-representations are

A(R) 0 0 A(BA)
( 0 A*(A'RA) ) (A*(A_lB) 0 ) (A-18)

Inspection of these cases reveals immediately that knowledge of the unitary irreps is suf-
ficient to compute the co-representations in case (c) and for one-dimensional irreps A(R) in
all three cases. For cases (a) and (b) for 2D and higher dimensional irreps of the unitary part
of the group, we must find a suitable P matrix. If this is not immediately evident one may

compute it from
1

P=—
|G|

D> IARXAATIRTA), (A.19)
ReG
where X is chosen so that P is unitary.

In summary, we have seen that in order to build irreducible co-representations from irreps
of the unitary part of the magnetic group three possible cases may arise and that there is
a relatively simple prescription to compute the irreps explicitly. So far, however, it is not
immediately evident what determines which case arises. We state a simple criterion known in
the literature as the Dimmock test,'? derived in Ref. [45] to make this determination from the
characters y(R):

+|G|, Case (a),
Z x(B*)={—|G, Case (b), (A.20)
beaG 0, Case (c).

ONotice that when the antiunitary coset representative A is equal to time reversal 7, the Dimmock test corre-
sponds exactly to the Frobenius-Schur indicator for the reality of our representation, with cases (a)-(c) correspond-
ing to real, pseudoreal, and complex representations respectively.
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When the group in question has uncountably many elements, as will be the case for collinear
groups (containing factors of SO(2)) the sum will be understood to sum over the discrete
point group elements and integrate over the rotation angle ¢. In this case, it is necessary to
normalize the left-hand side both by 27t and the size of the discrete factor.

B Spin point group tables

Table 7: Table of nontrivial spin groups and the matching magnetic point groups
organized by parent group (first column). The enumeration order and symbol for
each group coincides with the notation of Litvin [25]. The last column gives the
matching magnetic point group in standard notation. The Litvin symbols are color
coded according to whether the groups are naturally collinear (blue) with spin-only
group b® or coplanar (orange) with spin-only group b?2. When the Litvin number is
bolded, the group exactly corresponds to a regular or black & white point group [25].

Parent | Litvin | Litvin Sym- | B&W Parent | Litvin | Litvin B&W
Group | # bol Point Group | # Symbol Point
Group Group
1 1 3 1 39 1me7m2 m’'m2’
1 2 5] ) 40 Imim!2 m’'m2’
3 -1 41 mma2
4 my -1 42 Mem™y m? 2 m’'m’2
5 17 -1 43 M m?m™ 2 m'm2’
2 6 12 2 44 "m!m>2 m'm’2
7 2/ 45 Mm2m!2 m'm2’
o _
8 : 2 2/ 46 Im?mm2 m'm2’
9 2 2 222 47 T2T2T2 222
m 10 Tm m 48 222
E ] m 49 | 12m2m2 2/2'2
m m 19191
2/m 1‘51 2/ 'm g; m 52 | ma2m2x2 | 2272
m 2610m Y
16 12/™m 2/m’ mmm 22 1ilzmlzm inznil
17 | '2/'m 2/m’ 55
mmm
18 22/'m 2/m 56 Lpmpme m'm'm
19 "2/tm 2'/m 57 ImImim m'm'm
1 1 /
20 2/°m 2'/m 58 mmm
g; mg i 3,//”;1, 59 'm'm™m m’mm
. 60 Im'm'm m'mm
23 12/'m 2/ /m’ 61 mmm
24 2/m 62 MmMmmMm mm'm’
25 2/ m 2/m’ 63 Imimim m'm'm’
26 M2 /™y m 2/ /m’ 64
27 | ma2/2m 2/ /m 0 A I
28 22/mm 2/m’ 5 ymoymm mmm
- 66 mmMmm®m | m'm'm
29 22/'m 2/m’ 67 2mZ=Em™m m’'mm
30 | '2/™m 2/ /m’ 68 mpm T ' m'm’
31 12/°m 2'/m 69 mmmm%m m'm'm
32 m2/ m 2'/m’ 70 2m2mim m’'mm
33 m2/*m 2'/m 71 m®m™m m’'mm
mm2 | 34 'm'm'2 mm2 79 Tmim?m m'm’'m
35 2 1.1
36 mpm 1o g%,z 73 "m'm™m m'm'm’
7.1 1 ., 74 mmm
37 mm-2 mm'2 75 Me My mlm m'm'm
38 mm2 76 My 2 mlm m'mm
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Parent | Litvin| Litvin Sym- | B&W Parent | Litvin| Litvin B&W
Group | # bol Point Group | # Symbol Point
Group Group
77 "mim'm m'm’'m 115 | *4/'m 4'/m
78 Mm2mim m’'mm 116 4/m
79 Tm2mim m’'mm 117 | %4/™m 4/m’
80 mmm 118 | ™4/%m 4'/m
81 Mem™m?*m | m'm’'m 119 | ™4/™m 4 /m’
82 2mim™m m’m’'m 120 | 24/'m 4/m’
83 Mem™m™m | m'm'm’ 121 | 24/™m 4/m’
84 | ™m*m%m | m'mm 122 | '4/?m 4'/m
85 Mm?m%m | m'mm 123 | 14/™m 4 /m'
86 | Zm™m™m | m'm'm 124 | ™4/2m 4’ /m
87 | Zm!m™m | m'm'm 125 | m4/'m & m’
88 2mim2m m’mm 126 | “4/™m 4/m’
89 ImMm™m | m'm'm’ 127 | *4/'m 4/m’
4 90 |4 4 128 | *4/™m 4/m’
91 4 129 | *4/Im 4 Jm/
92 | "4 4 422 | 130 | 141212 422
93 |4 4 131 422
9 | 4 132 | 14m2m2 42'2
95 | %4 4 133 | lal2l2 42'2/
4 96 | 4 4 134 422
97 4 135 | m4m212 4'2'2
98 | ™3 7 136 | 141212 4'2'2
99 |17 7 137 422
100 4 138 | Z4m2m2 | 42/2
101 | %7 7 139 | ™« i@zzmyz 4'2/2
4/m | 102 | '4/'m 4/m 140 | 2412m2 42'2/
103 4/m 141 | 4%2m2 4'2'2
104 | ™4/'m 4'/m 142 | m41222 422
105 | 4/'m 4 /m 143 422
106 4/m 144 | %4™2Mom | 422/
107 | ™4/™m 4/m 145 | #420m02 | 4/2/2
108 | '4/'m 4 /m’ 4mm | 146 | '4'm'm 4mm
109 4/m 147 4mm
110 | '4/™m 4/m’ 148 | '4™"m™m 4m’'m’
111 | '4/'m 4/m’ 149 | '4'm! 4m’'m’
112 | %4/?m 4/m 150 4mm
113 Z4/2m 4 /m 151 T4_1mmm 4'm'm
114 | *4/'m 4/m 152 | '4'm'm 4m'm
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Parent Litvin | Litvin Symbol | B&W Parent | Litvin | Litvin B&W
Group # Point Group | # Symbol Point
Group Group
153 4mm 187 4/mmm
154 | 24mem™m am'm’ 188 M4 /mm™mim 4'/m'm'm
155 | ™4=m™m 4'm'm 189 | '4/'m'm'm 4 /m'm'm
156 24 mmm 4m’'m’ 190 4/mmm
157 T42mmm A'm'm 191 14/Tm1m1m 4/m'mm
158 m4Tm2m Am'm 192 4/'m'm'm 4/m’'mm
159 Amm 193 4/mmm
160 | %4mmmom am'm’ 194 | ™4/'m'm™m 4 /mmm’
161 | %4™m2om am'm’ 195 14/ mim! 4’ /mmm’
— =T = 196 4/mmm
42m 162 4 2'm 42m 197 14/ m™m™m 4/mm'm’
163 . 4_2m 198 14/1meTm 4/mm’'m’
164 | '4 2™m -42'm’ 199 4/mmm
165 | '3'2'm Z2'm’ 200 | '4/mmmmmm | 4/m'm'm’
166 42m 201 14/ m'm'm 4/m'm'm’
—— —_, 202 4/mmm
167 7—4T 2m 4_}/2 m 203 24/=m™m™m | 4/mm'm’
168 | '42'm 42'm 204 | ™4/MmZEmMm | 4 /m'm'm
169 42m 205 24/ m'm™m 4/mm’'m’
170 | "3'2mm Zom’ 206 | 14/Tm?m™m 4 /m'm'm
171 7'9'm 4 om’ 207 m4/Mmim2m 4 /m'm'm
172 42m 208 4/mmm
173 | 23™9mm 42'm’ 209 14;2’ m";* m;"xm 4;mzn’m’
m, 7% om -1, 210 4/Mm*=m=m 4/m'mm
3 N 212 14/2mim? 4/mm’'m’
176 24 2™m 42'm’ 213 14/2m™m™m 4/mm’'m’
177 | 24"2'm 42'm’ 214 | '4/Tm2m?m 4/m’'mm
178 2% omm Fom’ 215 14/Tm™mmm 4/m'm'm’
179 | I3"22m Z9'm 216 | '4/"m*m®*m 4/m'mm
180 | "%°2'm 7 om’ 217 | '4/mm'm'm 4/m'm'm’
iy — 218 4/mmm
181 | ™4 2°m 42'm 219 | Z4/tm™m™m | 4/mm'm’
182 42m 220 M4/t mEm™mm | 4 /mmm’
183 iz4;nx2mxym 4/2/”1/ 221 | 24/'m™m'm 4/mm’m’
184 i"”4 “2Mom 4/2m’ 222 | 14/'m™m®m 4 /mmm’
185 | %47 2%m 42'm 223 m4/ m2m" 4 /mmm’
4/mmm | 186 4/ mimim 4/mmm 224 4/mmm
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Parent | Litvin | Litvin Symbol B&W Parent] Licvin | Litvin B&W
Group | # (P}c;;r::p Group | # Symbol Point
225 %4/™m'm®m 4/m’'mm T 3 G/roup ;
296 Me g /2% mlm™Me m 4 [mmm’ 264 74/ *m*=m™m 4’ /mmm
227 | ma/mmimmeom | 4/m'm'm 265 | '4/"m™m%*m | 4/m'm'm
998 24 /Tm?mim 4/m'mm 266 | %4/"m™m™om | 4/m'm'm’
229 | 24/™m'm*m 4/m’'mm 267 | %4/'m™m™om | 4/m'm'm’
230 | '4/*m'm'm 4’ /mmm’ 268 | “4/Mmm*vm | 4/m'mm
231 T4/mme1m 4 /m'm'm 269 i24/1mzx m%ym 4/m’'mm
232 | ™4/2m'm™m 4’ /mmm’ 270 | “4/"mim*vm | 4 /m'm'm
233 | "4/Tm™m'm 4 /m'm'm 271 | #4/'m™mP*vm_ | 4/m'm'm
234 4/mmm 3 272 13 3
235 | Z4/"m™mm™m | 4/m'm'm’ | |__ 273 3 3
236 | ™4/=m=m™m | 4/mmm’ || 3 274 | '3 3
237 | ™4/"m™m%=m | 4/m'm'm 275 3
238 24/'m'm™m 4/m'm'm’ 276 m3 3
239 24/mmMmm? 4/m'm'm’ 277 13 3
240 14/2m?>m™m 4 /mmm’ 278 3
241 l4/m"m™m?m 4 /m'm'm 279 N 3
242 | ™4/*m2m! 4 [mmm’ 280 | °3 3
243 m4/Tmim2m 4 /m'm'm 281 °3 3
244 4/mmm 32 282 1312 32
245 | %4/'m™m™om | 4/mm'm’ 283 32
246 | %4/'m=m™m | 4/m'm'm 284 | '3m2 32
247 4/mmm 285 1312 32/
248 | %4/=m™m™om | 4/mm'm’ 286 32
249 | %4/2m™m2m | 4/mmm’ 287 | >3™2 32
250 | ™4/2m™m®m | 4/mmm’ | | 3m 288 131m 3m
251 | ™4/™m™m*m | 4 /m'm'm 289 3m
252 | 24/™m*>m>»m | 4/m'mm 290 | '3™m 3m’
253 m4/=mEm™m | 4 /mmm’ 291 13lm 3m’
254 | %24/™m?>m>m | 4/m'mm 292 3m
255 | Z4/m™m™m™m | 4/m'm'm’ 293 | %:3™m 3m’
256 | "™4/>m*m'm 4 /mmm’ | | 3m 294 | 3'm 3m
257 M4 M mim%*m | 4/m'm'm 205 3m
258 ’2"24/21 m’:lx mznylm 4//m/7l/’7 206 | 13"m 3m’
259 24/ *m™m™m 4/mm’'m 997 130, I/
260 24 />m'm™m 4/mm’'m’ -
261 24T m™m™m | 4/m'm'm’ 298 =1 E/m
262 Z4/mx mim™m 4/m'm'm’ 299 7_31 m E/m
263 2='/4/Tm2ymzxm 4/m’'mm 300 '3 m sm
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Parent | Litvin | Litvin Symbol | B&W
Group | # Point Parent | Litvin| Litvin B&W
?roup Group | # Symbol Point
301 3m Group
302 | "3"m 3'm’ 622 | 338 | 16212 622
303 | 13'm 3 339 622
- 340 | l6m2m2 62'2
204 5 =m, om 341 | l6'212 62'2/
05 =3 m o 342 622
306 mXEZ m im 343 mglomg 622/
307 mjg “m Em 344 T612T2 6’29/
308 23_ m 3m’ 345 622
309 | 23'm 3Im’ 346 | 26™2™2 62'2/
310 | 13"m 3 347 mx_62z2my2 6'22
311 | 132m 3m 348 5612'"2 622
312 | ™3l - 349 | 6?22 6'22/
) ~ 350 | m6%2!2 6'22
313 | ™3'm E m 351 622
314 3m 352 | 3:6Mx2Mxy 2 62'2/
315 | %3"m 3m’ 353 622
316 3m 354 | 3%62:2Mxy 2 6'22’
317 | #3™ 3m 355 | %:6mx2m2 62'2/
318 | ¥3%m 3'm 356 | %56™2%2 6'22
319 | 6:3™m Im’ 6/m |357 |'6/'m 6§/m
G = 358 6/m
< 307 178 A 360 | '6/'m 6'/m’
e 361 6/m
323 3 6 362 | ™6/'m 6'/m
324 | "6 6 363 | 16/1m 6'/m
325 | '6 6 364 6/m
326 6 365 | '6/™m 6/m’
327 6 366 | 16/ m 6/m’
328 | % 6 367 6/m
329 | 6 g 368 ) 6/m/
N A o s | o
331 6
332 | mg 6 371 mJ<6_/mym 6'/m’
— /
w6 | 7 e
334 6 _
335 6 374 | '6/°m 6'/m
336 | 36 6 375 | '6/™m 6'/m’
337 | % 6’
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Parent Litvin | Litvin B&W
Group # Symbol Point
Group
Parent | Litvin | Litvin Symbol B&W 6m2 412 161 m'2 6m2
Group # Point 413 6m2
Group 17m =z
376 6 m &/m 414 2 m:’12 ?mle
377 | m6/Tm 6 /m’ 415 | '6 m'2 6m’2’
378 6/m 416 6m2
— —1 —/
379 36/'m 6/m’ 417 | ™6 m™2 6 m2’
380 | °6/™m 6; m’ 418 | T6'mi2 6 m2’
381 6/m -
382 | 36/'m 6'/m mo o om2
383 | ®6/'m 6'/m 420 7_6T m2 E,m >
384 6/m 421 | '6 m'2 6 m’'2
385 | 36/Im 6'/m’ 422 6m2
386 | °6/™m 6 /m’ 423 | 26 m"2 6m’2’
— —/
387 | °6/™m 6/m’ 424 | ™6 m%2 6 m'2
388 | %6/"m 6/m’ 425 | ™ m™2 Em'2’
389 | 36/™m 6 /m’ 426 | 26" ml2 6m'2’
391 | °6/'m 6'/m’ 428 | T§"m22 & m'2
6¢ /2 / — Z
BT W
394 6mm 430 | "6 m?2 6 m'2
395 | 16™"m™m 6m'm’ 431 | "6’'ml2 & m2’
396 161mim 6m’'m’ 432 6m2
ggg melmmm ZTnnrln’ 433 | 36 “m™w2 6m’2’
399 | T6lm! 6'mm’ 434 om2
5 — —/
400 6mm 435 | %6 ‘m>v2 6 m'2
401 26™m™ym 6m’'m’ 436 | 26 mmw2 & m2’
402 M 62:m™ m 6'mm’ 437 | %6 *mm2 6m’2’
403 | 26'm™m 6m’'m’ 438 | 56 "m*2 6 m'2
404 | '6?m"m 6'mm’ 439 | 567 mm2 6 m2’
405 m62mim 6'mm’ 6/mmm | 440 16/Tm'm'm 6/mmm
406 6mm 441 6/mmm
407 3:6Mx m™Meym 6m’'m’ 442 me/mmim™m 6’ /m'mm’
408 | ° 6mm 443 | T6/Tm'm'm 6'/m'mm’
409 3:62mMym 6'mm’ 444 6/mmm
410 | %6™m™m 6m’'m’ 445 | "6/'m™m'm 6’ /mmm’
411 | 6™ m*m 6'mm’ 446 | '6/'m'm'm 6'/mmm’
447 6/mmm
448 16/1m’7"m7mm 6/mm’'m’
449 16/ mim? 6/mm’m’
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Parent | Litvin | Litvin Symbol B&W

Group | # Point

Group
450 6/mmm
451 6/mm'm'm 6/m’'mm
452 l6/tmimim 6/m’'mm
453 6/mmm
454 l6/mmmm™m 6/m'm'm’
455 6/'mimim 6/m'm'm’
456 6/mmm
457 26/Zm™m™m | 6/mm'm’
458 M6/ MemZEm™m | 6/ /m'mm’
459 26/?>m'm™m 6/mm’'m’
460 16/'m*m™m 6’ /m’'mm’
461 m6/mm?m'm 6/mm’m’
462 6/mmm
463 26/im™m™m | 6/mm'm’
464 6/ im2zm™m | 6//mmm’
465 26/'m'm™m 6/mm’'m’
466 16/ m?>m™m 6’ /mmm’
467 M6/ m2mim 6’ /mmm’
468 6/mmm
469 6/2m™m™m | 6/mm'm’
470 lo/mmmm™m | 6/m'm'm’
471 16/™m%m2m 6/m’'mm
472 6/2m™m™m 6/mm’m’
473 16/2mimim 6/mm’'m’
474 16/t m™m™m 6/m'm'm’
475 6/'m2m?m 6/m’'mm
476 l6/™mim'm 6/m'm'm’
477 16/mm?m%m 6/m’'mm
478 6/mmm
479 M6/ mim™m | 6 /m'mm’
480 me6/%=mimm™m 6’ /mmm’
481 26/™m'm%m 6/m’'mm
482 M6/ mtm™m 6'/m'mm’
483 l6/mmim! 6’'/m'mm’
484 m6/2mlmm™m 6’ /mmm’
485 26/™m'm?m 6/m'mm
486 16/2mim'm 6’/mmm’
487 26/ m'm?m 6/m’'mm

Parent | Litvin | Litvin B&W
Group | # Symbol Point
Group

488 6/mmm

489 ™6/%2m™m*m | 6//mmm’
490 My 6/ MemZEm™m | 6//m'mm’
491 Zo/Mm™m™m | 6/m'm'm’
492 m6/2mim%m 6’ /mmm’
493 16/2m™m?m 6’ /mmm’
494 m6/Tm2m? 6’'/m'mm’
495 26/Tm™m'm 6/m'm'm’
496 16/mm2m™m 6'/m'mm’
497 26/™"mm™m 6/m'm'm’
498 6/mmm

499 %6/'mmm™om | 6/mm’'m’
500 m6/2mMmPm | 6'/mmm’
501 Z6/M"m™m™m | 6/m'm'm’
502 Z6/"m>m>»m | 6/m'mm

503 M6 /MemZm™m | 6/ /m'mm’
504 m6/2m™m™m | 6 /mmm’
505 26/2m™mm™m | 6/mm'm’
506 26/MmZm*>m | 6/m'mm

507 m6/2mim%m 6’ /mmm’
508 m6/MemZmim | 6 /m'mm’
509 m6/im=m™m | 6 /m'mm’
510 2:6/MmM=m? 6/m'm'm’
511 2.6/2m™ mim 6/mm’'m’
512 26/Tm™m™m | 6/m'm'm’
513 2.6/Tm2m%m 6/m'mm

514 16 /Mm% m™m:m 6’'/m'mm’
515 16/2m™ m%m 6’ /mmm’
516 6/mmm

517 | %:6/"mxm™m | 6'/m'mm’
518 %:6/2m™m™m | 6/mm'm’
519 b6/mmmmim | 6 /m'mm’
520 6/mmm

521 56/im™m2om | 6 /mmm’
522 6:6/1m™ m™m 6/mm’m’
523 6.6/ m>m™m 6’'/mmm’
524 6/mmm

525 5:6/Tm™m™om | 6/m'm'm’
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Parent | Litvin | Litvin Symbol B&W
Group | # Point
Group
526 3.6 /Tmzx m2Zym 6/m’mm Parent | Litvin| Litvin B&W
527 3.6/2mMemM™ym | 6/mm'm’ Group | # Symbol Point
528 %6/"m™mmom | 6/m'm'm’ Group
529 %:6/Mm?>m?>m | 6/m’mm 564 | ™4%3%2 4’32/
530 | &6/Tm™m™m | 6/m'm'm’ 565 | *4%v:3%02 432
531 | &6/™m™m™m | 6/m'm'm’ 566 | *4%0:3Mw2 4'32'
539 6.6/Tm2m2m 6/m’'mm m3m | 567 | '4/'m'3'2/™m m3m
533 | %6/™m%*m%m | 6/m'mm 568 a e mgm/
534 | %6/™mZm™m | 6 /m'mm’ 569 4/ m 372/"m m?m/
535 %6/2m™m2m | 6 /mmm’ 270 | 14/m312/5m mam
b/ EmeEmeE 571 m3m
536 f26/1mzxmmlm 6'/m'mm’ 572 ’_”4/_’"n_1m;§m2/1m m’3'm
537 | %6/Zm™m?*m | 6//mmm’ 573 | '4/'m'3'2/'m m'3’'m
23 538 | '2'3 23 574 ! m3m
539 23 575 | '4/™m™312/™m m’3'm’
540 | %230:3 23 576 | 4/ 'm!3'2/im m'3'm’
2/m3 | 541 12/'m'3 m3 577 - m3m
542 m3 578 | %4/™ m’”X_SZZZ/my m m’_3’m’
543 19/Mmm3 m'3 579 | ™4/2m%3™2/™m | m3m’
i 1= = 580 | ™4/mm™3™2/%m | m'3'm
544 12/'m'3 m’_3 24711520 /m 1301
545 3 581 4/°m 3°2/™m m’3’'m
546 m3 582 | *4/™m™3%2/'m m'3'm’
547 | '2/Tm’3 m'3’ 583 | 4/°m’312/"m m3m’
—— o 584 | '4/™m™3'2/?m m'3’'m
548 12/mm®3 m’3 = =
_ i 585 | ™4/2m?3m2/'m m3m’
549 | %2/%m3:3 m3 my i iame 2 13/
550 2.9/m 303 T 586 4/°m 3m2/*m m’3’'m
e/ T 587 m3m
43m | 551 | '4'3'm 43m 588 | ™4/1m%3m2/™m | m3m/
552 43m 589 = m m3m
553 | "3'3™m 73m’ 590 | 24/im*3%2/™m | m'3m’
170,51 < 591 | ™4/'m33™2/%m m’3'm
554 4'3'm 43m’ Ty 412, 6. B =0
- 73 592 4/%m>3™2/M™m | m3m
s oo , 593 | M24/Mm%3™2/>m | m'3'm
53 | 4 3hm 43m 594 | 24/mmb322/™m | m'3m’
557 7“_13 3%rm i?m 595 i"z4/2zm3xy232xy2/2xym m3m
558 | %4 " 2mom 43m’ 596 | %4/%m3v:3mo2 /My m m3m’
432 [ 559 | '4'3'2 432 597 | %4/memw:320 2/ m'3'm’
560 432 598 | *4/Mm3:3Mw2/2ym m’3'm
561 | m4!3m2 4’32/
562 | '4'3'2 4’32/
563 432

C Isomorphism theorem for constructing spin groups

A general spin group S is constructed from a spatial parent group G and spin-space parent
group B where G, B are the collections (groups) of all the right, left components of the elements
[-]|- ] of S respectively. The spin group S is a subgroup of BXG, i.e. S < BxG. Defining g = GNS
and b =B NS, the isomorphism theorem of Litvin & Opechowski [18] states that G/g = B/b.
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To prove this, first note that B,G <B x G and use Noether’s 2nd isomorphism theorem!'! to
conclude that b, g<S as well as S/b = BS/B and S/g = GS/G. The second set of isomorphisms
can be understood in the following way. Given that, for example, g < S, we can express BS as

BS = B[E||lg] + B[B,||Gog] + ... B[B,|G,8] = B[El|g] + B[E||G,8] + ... B[E[|G,8],
since BB; = B. So BS/B = [E||g] + [E||G,g] + ... [E||G,g] = G. We have shown that
S/b~BS/BXG. .1

Using an analogous argument,
S/g=GS/G=B. (C.2)

Next, notice that since b, g<S with bn g =[E||E], it follows that b x g <S. Now we have, for
example, b<b x g<S. Using Noether’s third isomorphism theorem,'? we have that

(S/b)/(bxg/b)=S/bxg. (C.3)
On the other hand, using equation C.1 and b x g/b = g, we also have

(S/b)/(b x g/b) = G/g. (c.4

Using similar arguments and equation C.2 we have
(S/g)/(bxg/g)=S/bxg=B/b. (C.5)

Comparing equations C.3, C.4 and C.5 we find that
G/g=B/b. (C.6)

It can be shown that a general spin group S is of the form b x S* where S* contains no elements
of the form [B||E] (a nontrivial spin group), and b = S N B contains only elements of the form
[BJ|E] (a spin-only group). As a result, when searching for the nontrivial spin groups S* with
spatial parent group G and spin-space parent group B, it is evident that b* = S*NB = {E}, and
we have G/g = B as was the case in Section 2.

D Direct products of antiunitary groups

Assume we have two groups G and G’ expressable in the forms
G=H+sH, G =K+¢K,

where H and K are halving subgroups of G and G’ respectively, and s = tu and ¢ = tu’ where
7 will for us be time reversal. We would like to express the product M = G x G’ in terms of H,
K, u, u’, and 7. In particular, we would like to get it in the form of a two-coset decomposition
where the first coset is the unitary halving subgroup of the direct product.

For any m € M, we can express m as m = (g,g’) = (s*h, ¢’ k) where a, f = 0,1 and h € H
and k € K. Then, define H = {(h, E)|h € H} = H < G <M. In this case, we can express M via
the coset decomposition

M=H+ (s, E)H+ (E, k) )H+ (s, k) )H+ ...+ (E, k )H+ (s, k, )H
+(E,Q)H+ (s,q)H+ (E, gk )H+ (s,qk )H+ ... + (E, gk, )H + (5, gk, )H,

ULet H be a group, with J < H and K<H. Then, KNnJ<J, and J/(KNJ) = KJ/K, where JK = {jk|j € J,k € K}.
12Let K, J < H such that K < J < H. Then, (H/K)/(J/K) = H/J.
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where |K| = k. We can then group this decomposition into four cosets of

H+(E k))H+ ...+ (E, k)H
as follows:

M= (H+ (E,k)H+...+(E, k)A) + (5, E) (A+ (E,k H+ ... + (E, k,)H)
+(E, @) (A+ (B, kH+ ...+ (E,k)H) + (s,q) (A+ (E,k)H+... + (E, k)H) .

In our case, if G and G’ are spin groups, then u and u’ can be expressed in the forms [ug]||u, ]
and [u; ||ug] respectively, and the element (s, q) is in our case simply

sq = tlugllupJT[ulllu) ] = uu’ = (u,u’).

Further, note that the outer direct product of H and K is H x K = {(h, k)||h € H, k € K}, such
that H,K<H x K and HN K = (E, E), and this outer direct product can be expressed precisely
as the coset decomposition

HxK=H+(E,k))H+...+(E, k. )H.
As a result, we can express the direct product of G and G’ as
M =H x K+ (u,u)H x K+ 7(u, E)(H x K+ (u, ' )H X K)..

In the case that one of the two original groups is unitary, for example if G’ = K, then this
result reduces to M = H x K+ 7(u, E)H x K.

E Inducing co-irreps of collinear spin point groups

Here we explain how to derive the co-irreps of the collinear spin point groups. In particular,
we focus on those collinear groups X = b x S whose nontrivial part S is non-unitary. In
this case, we have first to find the irreps of the unitary halving group X, (as introduced in
Section 3.2.4). To find these, we use the method of induction from a subgroup of index two.
This method which is derived and discussed in references [6, 8,29, 30] is briefly reviewed in
Section E.1. Then, in Section E.2 we present a detailed example of the co-irrep derivation for
total collinear spin point group X = b® x '4/'m'm!m, which applies to the zone center in
the altermagnetic rutile system introduced in Section 4.1.

E.1 General technique

As explained in Appendix A, the irreducible co-representations of a non-unitary group can be
obtained algorithmically from the irreps of a unitary halving subgroup with the help of the
Dimmock test (equation A.20) and equations A.16, A.17 and A.18. In Section 3.2.4 we found
that the unitary halving subgroups X , for collinear spin point groups X = b x S with non-
unitary nontrivial part S have irreps that are a priori unknown. In this section, we describe
the method of induction from a subgroup of index two,'® which we use to induce the irreps of

Xp/2 =80(2) X 8" +[2,4[ls,]S0(2) x §*,

from its index-two subgroup SO(2) x S*, where S = S* + [ 7||s, ]S*. The technique we will
describe is general, and applies for any group and its subgroup(s) of index two. For derivations
and other descriptions of the technique, we refer the reader to references [6, 8,29, 30].

13The index of a subgroup H in G is the number of left cosets of H in G.
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Let the spatial parent group of S* be called G, /5, and note that it is the halving subgroup of
the parent spatial group of S, that is, G = Gy, +5,G; /2. Further, let the irreducible represen-
tations of our index-two subgroup SO(2) x S* be denoted by d*"), where integer u denotes
the irreps of SO(2) while v runs through the irreducible representations of §*. Since we are
considering spin groups with spin rotation symmetry SO(2), $* is a unitary spin point group
where each group element has trivial spin part (as explained in Section 2.4), i.e. s € S* are
of the form [E||g] for g € G;/,. Therefore S* is the ordinary point group Gy 5, and so v runs
through the irreps of G, /5 (this also follows directly from the isomorphism theorem introduced
by Litvin and Opechowski [18,25] and revisited in Section 3.1).

We induce the irreducible representations of X; /, from the irreps d )(80(2) x G, /2)- The
algorithm for induction from an index-two subgroup consists of two main steps:

1. Finding the orbits of the irreducible representations of the index-two subgroup under
conjugation by the elements of the total group. One finds that each orbit contains either
one irrep or two irreps.

2. To calculate the irreducible representations of the total group, there is an expression
corresponding to the orbits of size one (Eq. E.1 below) and another for the orbits of size
two (Eq. E.3).

For x € X; 5, an x—conjugated irrep d,(f ") is defined as follows:
d¥) = (¥ (xyx) |y € SO(2) X Gy} .

Because all index-two subgroups are also normal subgroups, it follows that

xyx~! € 8O(2) x Gy/,. The x—conjugated irrep can either be equivalent'* to the original

irrep d)(cM M~ @B or a different irrep, d,(c“ ")+ dP:9) We define the orbit 0" of the irrep
d®") to be the collection of distinct irreps that d,(c“ ) i equivalent to for any x € X, i.e.

o) — {d(p,ff) |Ix e Xy/5: d)(cliﬂ’) ~ d(pya)}.

For induction from an index-two subgroup, 0**) contains either one or two irreps, and it turns
out that it is sufficient to conjugate only by the coset representative [ 2, ||s, ] to determine
whether the orbit is of size one or two.

The first step of the algorithm is to determine the orbit for every irrep of SO(2) x G, /; under
x—conjugation. Because we have a partially specified form of X; /5, we can already make some
statements about the nature of these orbits. We know that

d#(80(2) x Gy /) = 51(0(2)) x AM(Gy ),
and more specifically d*")(SO(2) x G, /2) are of the form

d“I([Ry(p)llg D = a(g),

where R, (¢) € SO(2) is a rotation about the spin axis and g € G/, is a point group element.
Take y = [R, || g ] € SO(2) X Gy 5. If we conjugate y by x = [R,(y) || h ] € SO(2) x Gy,

xyx™h = [Ra(P) 1R I Ra(0) | M Ra(—¥) 1N 1= [ Ra(¥)Ra(¢)Ra(—) [ hgh™" ]
=[Ru(p) Ilhgh™ 1,

“Two representations of a unitary group are equivalent if they have equal characters.
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since rotations about the same axis commute with one another. If we conjugate by [ 2, || s, 1,
we find

(200 llso ey xT [ 21n 5,1 1= [ 210Ra(9)21n Isohgh™"s, " 1= [Ru(—¢) lIschgh™ s, ],

using an identity for conjugating rotations by rotations.!> Immediately we see that every irrep
d®") will be mapped to the irrep d*") when conjugated by any element in the second coset
of X;/,. As a result, all irreps with non-zero u have orbits of size two, regardless of what
happens to the point-group elements. Further, the only irreps with orbits of size one have
u = 0. The orbits are only known once the Gy, is specified. A detailed example is presented
in Section E.2.

The second step of the algorithm is to take each orbit, pick one representative irrep from
each orbit, and to them apply one of the following two formulae depending on the size of the
orbit. We denote by y the elements of SO(2) x Gy ,. If the orbit for d®") is of size one, then
we obtain two induced irreducible representations of X, /, that are given by

DI (y)=d®M(y), DI (21,5, 1y) =£2d*(y), (E.1)
where Z is the invertible matrix that imposes the similarity between d*”) and d(M ’ e that
is

d®" () =2zd®V(y)z7' Vy € SO(2) x G (E.2)
[2L ||S]y - Y y 1/2> .

while also satisfying the constraint that Z2 = d®"([2,,|Is,]%).
If the orbit for d**) is of size two, the induced irreducible representation of X; /2 1s given

by

a0y o 0 nd%” ()
D(M’v)(y)Z[ Wi o |s DEI2uals,ly) = sl
0 dia; 15,1 nlleo 407(y) b

where n = d®"([2,,|Is, ]2) It is important to note that for the orbits of size two, the irreps
induced from d®») and d 5 vﬂ g~ d(P9) are equivalent, and as a result if we select d**) as
the representative, the new 1l1'rlreps can no longer take on the labels given by p and o since they
would be redundant.

Choosing different coset representatives or orbit representatives gives rise to equivalent
irreducible representations, so these formulae completely determine the irreducible represen-
tations of X, /, in terms of the irreducible representations d®") of SO(2) x G, /2-

Once the irreducible representations of the unitary halving subgroup of our total collinear
spin point group are known, we follow the procedure for co-irrep induction as described in
Appendix A.

E.2 Example: S = 4/'m'm'm

In Section 4.1 we introduced a model for rutile altermagnetism, where the zone center has
symmetry corresponding to the collinear spin point group X = b°° T4/ Iml me whose
nontrivial spin point group is the non-unitary group S = 14/ !mmm. Here, we derive the
irreducible co-representations of this group as a demonstration of the technique used for all
collinear spin point groups with non-unitary nontrivial part. First we express X in the form of

a unitary halving subgroup joined with an antiunitary coset (following Appendix D). We can

express S as 14/1m1me = Im'm'm+[1]|4, ] 'm'm'm, and so the unitary halving subgroup

BRL, (YR, (@R (—y) = Rg_ (yn(¥), which can be demonstrated using Rodgrigues’ rotation formula.
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of Sis $* = 'm'm'm = Gy ,, which is precisely the ordinary point group Dy,.'® Now, the total
collinear spin point group is given by

X=X+ [ 72141 E]Xq)2,

where
X; /5 = 8S0(2) x Im'm'm+12,,114,1S0(2) x 'm'm'm.

In order to find the co-irreps of X, we must first find the irreps of X;,, via induc-
tion from an index-two subgroup, SO(2) x 'm!'m'm. The irreducible representations for
[R,(¢)]lg]€S0O(2) x 'm'm'm are given by

d*I([Ra(p) g = €™ Ty(g),

where the irreducible representations I, of Dy, = mmm are given below.

d2h [E [C,, | Cyy Coy |IC,, | T |IC,, |IC,,
Ty |1] 1 1 1 1 1 1 1
' |1] 1 1 1 -1 (-1 -1 -1
r's |11 |-1]|-1 1 1| -1 -1
T4 |11 |-1|-1| -1 |-1| 1 1
I's |1|-1|1 |-1 1 |-1] 1 -1
T'e |1|-1|1 |-1|-1|1]|-1 1
' |1}-1|-1]|1 1 |-1|-1 1
T'g |1(-1|-1]| 1 -1 (1 1 -1

Following the procedure in Section E.1, we first find the orbits of d(** under conjugation
by [2,,1l4,]. For y =[R,(¢)|lg] € SO(2) x 'm'm'm, we find that

(200114 1y[ 20 14,7 1= [Ra(—¢) 1484, 1.

If g = 1C,, then 4ZICZX4Z_1 = IC,, and vice versa. The remaining elements of mmm re-
main invariant under conjugation by 4,. By inspecting the IC,, and IC,, columns of the
mmm irreps, we see that I'-I; remain invariant under [ 2, || 4, ]—conjugation (thus having
orbits of size one), whereas the remaining four irreps must have orbits of size two. In par-
ticular, because characters are functions of the conjugacy classes, we can identify that the
[ 2, l4, ]—conjugated I5 irrep is equivalent to I, and I gets mapped to Iz under this conju-
gation. From Section E.1, we also know that the u—th irrep of SO(2) is mapped to the —u-th
irrep. So, we find that the orbits of the irreps d*® (where here u takes on all non-zero integer
values, and a runs through the irreps of mmm) are:

oD — {d(Oyl)} , 000,2) — {d(O,Z)} , 000:3) — {d(O,S)} , 004 — {d(0,4)} ,
owl) = {d(u,l)’ d(—u,l)} , ow2) — {d(u,Z), d(—u,Z)} , ow3) — {d(“’?’), d(—u,B)} ,
Ol = (b geudy 08 = (405 G0N} 06 — (4©06) OB}
o5 — {d(u,S)’ d(_“’7)} , ow6) — {d(u,G), d(—M,S)}_
Now, we simply apply equations E.1 and E.3 to the orbits we just found. In total, one should

find eight one-dimensional irreps (from the size-one orbits), and eight two-dimensional irreps
(from the size-two orbits). We will show one example of the calculation for each type of orbit.

1®Notice how the spatial parent group of S is G = 4/mmm, and the spatial parent group of S*, G, /2 = mmm, is
a halving subgroup of G.
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As an example of calculating the irreducible representation for an orbit of size one, let us
induce from d®?. Since [ 2, , || 4, ]—conjugation maps this irrep exactly onto itself, the matrix
Z appearing in equation E.1 is equal to one, the 1 x 1 identity matrix,'” which is consistent with
the constraint that Z2 = d(®?([2,14,]>) = d®?([E||2,]). The two irreducible representa-
tions induced from d(®? are D(®>%), The elements of SO(2) x 'm'm'm have the same matrix
representation in D(®>%) as in d®?). The irrep matrices for the second coset are completely
determined by the matrix for the coset representative D(®>%)([ 2, || 4, ]) by homomorphism,
so we only list this matrix here:

DO2D([2,,]14,]) = 1,

by equation E.1.

As an example of the size two orbits, let us induce from d*>). Note that inducing from
d®3 and d*7 will produce equivalent representations. We list the irrep matrices for each
of the generators of X; /5, which are [R,(¢) |E ], [E||ICy, ], [E||ICy, ], and [2),, (|4, ]. The
remaining group elements’ irrep matrices can be found by homomorphism. Using equation
E.3 the generators are represented by

ipg
D(“’S)([Rn(KP)HE]):[eO e—?W]’ D(“’S)([E”ICZZD:E (1)]

DS E|ICy, ] = [_01 (1’] , D[ 2,4114,]) = [‘1) _01] :

In this way, we can derive all of the irreducible representations of X; /5, and we are now
ready to induce the co-irreps of X = X; /5 +[72] ,||[E]X; /5, following the procedure laid out in

Appendix A. For this example of S = '4/m'm'm, it is the case that all irreps of X, ;, belong
to case (a).'® This can be seen by first examining the elements appearing in the (combination
integral and) sum of Dimmock’s test (A.20), which are the squares of the antiunitary elements.
If we let x = [R,(¢)|lg] € SO(2) x 'm'm'm, then the elements in question are either

([7210llE]x)* = [21aRn(#)21nRa(WIE] = [EIE],
or

[Ra(@IIIE], g €{2y,2),12,,12,},

2 __ 27
([721nllE][210l14:1x)" = [Ra(2¢)I(4,8)°] = {[Rn(ZLP)IIZz], g {E.2. 1,12},

In the second case, the integral over ¢ from O to 27 gives zero, meaning only the first case
contributes to the Dimmock indicator. Since the identity element is always represented by
an identity matrix of the appropriate dimension, this Dimmock indicator will never be zero or
negative, and so all irreps of X, /, belong to case (a) of the Dimmock test. Using Equation A.16,

one find the co-irreps for b x 14/ m'm!m listed on page 70.

F Co-irreps for collinear total spin groups

In the tables that follow, o € Z, u € Z \ {0}, and v € N\ {0}. An index of the co-irrep tables is
provided for both unitary and non-unitary cases.

7 An irrep in an orbit of size one will not generically be mapped exactly onto itself under conjugation by the
coset representative. In our own calculations, we have used Mathematica to solve the simultaneous set of linear
equations given by equation E.2.

18Generically, this is not the case for the total collinear spin point groups.
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Table 8: Index of the co-irrep tables for the 32 unitary nontrivial groups.

Type of S Group Page #
Unitary b x 11 47
b x 12 47
b x 'm 47
b x 11 47
b x 13 47
b x 14 47
b x 12/'m 48
b x 'm'm'2 48
b>® x 121212 48
b x 14 48
b x 16 49
b x 16 49
b™ x 13 49
b x 13m 50
b>® x 1312 50
b x 14/'m 51
b>® x 4lmim 51
b x 141212 52
b*® x 'mim'm 52
b x 17'21m 53
b x 16/'m 53
b>® x 161mim 54
b x 16!212 54
b x 16'm!2 55
b x 1§1m 55
b>® x 1213 56
b>® x '4/"m'm'm 56
b x 6/ m'm'm 57
b>® x 12/1m!3 57
b>® x 13'31m 58
b x 141312 58
b x 14/1m1§12/1m 59
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Table 9: Index of the co-irrep tables for the 58 non-unitary nontrivial spin groups.

Type of S Group Page #
Non-unitary b x 11 60
b x 12 60
b>® x I 60
b x 12/1m 60
b x 12/1m 60
b x 12/Tm 61
b x Imlm!2 61
b x 'miml2 61
b x 121212 61
b x 'mim'm 62
b x 'mlm'm 62
b x Imlm'm 63
b x 14 64
b x 14 64
b x T4/1m 65
b x 14/Tm 65
b x 14/Im 66
b x 141212 66
b x 141212 67
b x 14lmlm 67
b>® x 14 2lm 67
b x 14'21m 67
b x 14lmIm 68
b x 14 m'm 68
b x 4/ m'm'm 69
b x 14/Tm1m1m 69
b x T4/1m1me 70
b x 14/1meTm 71
b x 14/TmeTm 71
b x 13 72
b x 1312 73
b x '3'm 73
b x 13m 74
b x 13'm 74
b x 13'm 75
b x 13'm 76
b* x 16 76
b x 16 77
b x 61212 77
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Table 10: Index of the co-irrep tables for the 58 non-unitary nontrivial spin groups.

Type of S GrouE _ Page #
Non-Unitary b x 61212 78
b x i6/1m 79
b x 16/'m 80
b x 16/'m 81
b x 161mim 82
b x 16'mlm 82
b x 161m!2 82
b x 161m!2 83
b x 16'm!2 83
b x 16/'m'm'm 84
b x 16/'m'm'm 85
b x '6/'m'm'm 86
b x 16/Imimim 87
b x 16/Imimim 88
b x 12/'m3 89
b x 17'3Tm 90
b x 17312 90
b x '4/'m'3°2/'m 91
b x 14/Tm13'2/1m | 92
b x 14/1m1§12/1m 93
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E1 Collinear groups with unitary nontrivial group

b®x 1| {R,, E} |{t2, Ry, E}
Tl eiow eiow
b>x 12 | {R,, E} {Rw, czz} (t2, R,, E} {1:2L Ry, czz}
Fl e]’to(o eiow e]’la(p eiow
TZ eioq) 7@10(0 e]'loq) 7(91'10(9
b= x m | {R,, E} {Rw, ICZZ} {t2, R,, E} {zzL Ry, ICZZ}
Fl enow eJLC'(D eiow eiow
FZ ejow _eiotp eiow _eiaw
bx 1T [{R,, E} [{Ry, I} [{T2. Ry, E} |{T21 Ry, I}
Tl eiow eiow eiow ejaw
Y5 e]icw _ejcw eiow _eiow
i ) {Ry, E} {Rw, c3z} {t21 Ry, E} {7:2L Ry, c3z}
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