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Abstract

Some topological lattice models in two spatial dimensions exhibit intricate lattice size
dependence in their ground state degeneracy (GSD). This and other features such as
the position-dependent anyonic excitations are manifestations of UV/IR mixing. In the
first part of this paper, we perform an exact calculation of the topological entanglement
entropy (TEE) for a specific model, the rank-2 toric code. This analysis includes both con-
tractible and non-contractible boundaries, with the minimum entropy states identified
specifically for non-contractible boundaries. Our results show that TEE for a contractible
boundary remains independent of lattice size, whereas TEE for non-contractible bound-
aries, similarly to the GSD, shows intricate lattice-size dependence. In the latter part of
the paper we focus on the fact that the rank-2 toric code is an example of a translation
symmetry-enriched topological phase, and show that viewing distinct lattice size as a
consequence of different translation symmetry defects can explain both our TEE results
and the GSD of the rank-2 toric code. Our work establishes the translation symmetry
defect framework as a robust description of the UV/IR mixing in topological lattice mod-
els.
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1 Introduction

Topological order in two dimensions are characterized by the emergence of anyonic excita-
tions with fractional braiding statistics and the topology-dependent ground state degeneracy
(GSD) [1, 2]. In the presence of symmetry, the classification of topological order becomes
even richer as there can be multiple distinct “symmetry-enriched topological phases” (SETs)
with the same anyons and statistics [3–8]. SETs exhibit symmetry fractionalization [3, 9],
wherein the anyons transform projectively under the symmetry operations. Furthermore, the
symmetry may non-trivially permute the anyon types, a phenomenon known as anyonic sym-
metry [8,10,11].

Typically, the GSD of a topologically ordered system on a torus depends only on the number
of distinct anyon types and independent of the lattice size. However, several lattice models on a
torus in which the GSD depends sensitively on the lattice size have been discussed recently [12–
26]. For example, the ZN plaquette model [12,13] has GSD equal to N2 for even×even lattice
and N for other cases, while otherZN lattice models [17–26] on Lx×L y torus have the GSD that
depends on Lx , L y modulo N . This lattice size dependence has been viewed as a signature of
UV/IR mixing [16, 27] in which the microscopic information of the theory such as the lattice
size Lx , L y affects the low-energy, universal properties of the model such as the topological
degeneracy of the ground state. For these models, anyons of different types arise depending
on the positions at which they are located [19,21,26]. This follows in turn from the mobility
constraints imposed on anyons in these models.

Another powerful explanation for the UV/IR mixing in the GSD is that these systems are
translation SETs, which can be interpreted within the framework of the anyon condensation
web in spatially modulated gauge theories [21,22,28,29]. The translation SET nature of these
models is evident, as different anyon types emerge at distinct positions, indicating that trans-
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lation operations non-trivially permute the anyon types. Importantly, within the framework of
translation SET, the lattice size dependence arises from translation symmetry defects threading
non-contractible spatial cycles. This perspective has been employed to quantitatively explain
the system size dependence in the GSD of certain lattice anyon model [26]. In the same paper,
the topological entanglement entropy (TEE) for a contractible boundary was calculated and
shown to be independent of the lattice size, which can also be understood from the symme-
try defect picture. Another paper [25] computed the TEE for a contractible boundary in yet
another anyon model with UV/IR mixing and found no system size dependence. It remains
uncertain as to whether the UV/IR mixing is a special feature of GSD, or can be extended to
the consideration of TEE as well.

In this work we compute the TEE for non-contractible boundaries [30–32] in a lattice anyon
model with UV/IR mixing and show that lattice size dependence shows up in TEE for the non-
contractible boundary, but not for the contractible boundary. We do this for the rank-2 toric
code (R2TC) [17–21], known to show UV/IR mixing in the GSD. This is first shown through
explicit calculations invoking the technique developed in [33]. Moreover, we show that this
manifestation of lattice size dependence in TEE as well as GSD can be consistently understood
in the framework of translation SET and translation symmetry defects. This is accomplished
by matching formulas of TEE and GSD from explicit calculations with predictions based on
theories of symmetry defects in SETs [10, 11, 34, 35]. In essence, for the ZN ×ZN translation
SET phase, any deviation in the linear size of the lattice from multiples of N can be viewed as
a symmetry defect and the powerful machinery developed in the past can be applied to sort
out topological quantities in the presence of these defects. The same approach may be applied
to other topological models with UV/IR mixing.

In Sec. 2, we provide an overview of the rank-2 toric code and introduce the position-
dependent labels associated with anyonic excitations that are crucial for later understanding
of translation symmetry defects. We derive the entanglement entropy of R2TC for both con-
tractible and non-contractible boundaries in Sec. 3, and find in the latter case some lattice size
dependence in the TEE. In Sec. 4, we show that both TEE and GSD of R2TC can be understood
in the framework of translation SET and translation symmetry defects. Discussions are given
in Sec. 5.

2 Rank-2 toric code

The ZN R2TC [17–21], which can be obtained from the rank-2 lattice gauge theory through
Higgsing [36, 37], is a stabilizer model on a square lattice with three mutually commuting
stabilizers:

ai = Z0,i Z
−1
0,i− x̂ Z−1

0,i− ŷ Z0,i− x̂− ŷ Z2,i− ŷ Z−2
2,i Z2,i+ ŷ Z1,i− x̂ Z−2

1,i Z1,i+ x̂ ,

bx
i = X 1

2,iX
−1
2,i+ x̂ X0,iX

−1
0,i− ŷ ,

b y
i = X1,iX

−1
1,i+ ŷ X0,iX

−1
0,i− x̂ . (1)

At each site we have two ZN degrees of freedom, denoted by subscripts 1 and 2, with an addi-
tional ZN degree of freedom at the center of each plaquette denoted by the subscript 0. The ZN
Pauli operators X and Z form the algebra Zi,aX j,b =ωδi jδabX j,bZi,a, where a, b = 0,1, 2 and
ω = e2πi/N . The “electric” stabilizer ai is centered at the site i = (ix , iy); the two “magnetic”
stabilizer bx

i , b y
i are centered at the two links (i, i+ x̂) and (i, i+ ŷ), respectively, as shown in

Fig. 1.
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Figure 1: Three stabilizers ai , bx
i , and b y

i of R2TC are depicted as yellow, red, and
green symbols, respectively. The ai stabilizer is a product of ZN Pauli-Z operators,
while bx

i and b y
i consist of ZN Pauli-X operators. There are two ZN spins defined

at the vertices (represented by two adjacent squares) and one ZN spin (represented
by a single square) at the plaquette centers of the square lattice. The ‘2’ inside the
squares on the far left figure implies the action by (Z†)2 for both spins. The empty
square means there is no action by Pauli operators on that spin.

Excitations of this model are anyons carrying position-dependent labels [21]. We denote
the anyon excitations associated with ai , bx

i , and b y
i as [e]l1i , [mx]l2i , and [my]l3i , respectively.

For instance, [e]l1i is an eigenstate of ai with eigenvalue ωl1 . Similarly, [mx]l2i ([my]l3i ) is
an eigenstate of bx

i (b y
i ) with eigenvalue ωl2 (ωl3). The upper indices l1, l2, l3 ∈ ZN are the

charges of anyons. Unlike the ordinary anyons, explicit coordinate dependence implies that
anyons at different locations of the lattice correspond to different anyon types. For instance,
[e]l1i and [e]l1j may represent different anyon types when i ̸= j.

The coordinate dependence of the anyon types has been summarized in the formula [21]

[e]l1i = l1e+ (l1ix mod N)px + (l1iy mod N)p y ,

[mx]l2i = l2mx + (l2iy mod N)g ,

[my]l3i = l3my − (l3ix mod N)g . (2)

Here (e, px , p y , mx , my , g) are the six distinct Abelian anyon types, and the coefficients before
each anyon type in Eq. (2) refer to how many anyons of a given type exist at that site.1 Negative
coefficients refer to anti-anyons. The electric anyon excitation [e]10,0 corresponds to the anyon
type e. When it is created at i = (1,0), it becomes [e]11,0 = e+ px , a sum of e anyon type and

px anyon type. The px and p y anyons are electric anyon dipoles consisting of ([e]11,0, [e]−1
0,0)

pair and ([e]10,1, [e]−1
0,0) pair, respectively, as seen by directly calculating [e]−1

0,0+[e]
1
1,0 = px and

[e]−1
0,0+[e]

1
0,1 = p y using the first formula in Eq. (2). In a similar vein, mx and my refer to the

magnetic anyons [mx]10,0 and [my]10,0, respectively. The g anyon refers to a magnetic anyon

dipole, which is a composite of either the ([mx]10,1 , [mx]−1
0,0) pair or the ([my]10,0 , [my]−1

1,0)
pair [21]. The two definitions of the magnetic dipole are equivalent in the R2TC model. An
important feature of the anyon contents in this model is that anyonic dipoles ought to be
viewed as independent excitations rather than a mere composite of an anyon and an anti-
anyon.

1More rigorously, the right-hand sides of Eq. 2 represent the fusion of anyons. In the case of [e]l1i , it can be

expressed as [e]l1i = ⊗
l1
n=1e⊗l1 ix mod N

n=1 px ⊗l1 iy mod N
n=1 p y
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We can derive the following relations from Eq. (2):

[e]1ix ,iy
= [e]1ix+N ,iy

= [e]1ix ,iy+N ,

[mx]1ix ,iy
= [mx]1ix+1,iy

= [mx]1ix ,iy+N ,

[my]1ix ,iy
= [my]1ix+N ,iy

= [my]1ix ,iy+1 . (3)

It means that for an e anyon to preserve its anyon type, it must hop to a site N lattice spac-
ings away from the original one in either direction, resulting in mobility restriction on the e
anyon’s motion. Similarly, an elementary mx (my) anyon can only hop by N lattice spac-
ing along y- (x-) direction but can freely move in the other [17, 19, 21]. Other motions
at shorter lattice spacings are possible when the charge is greater than one. For example,
[e]2ix ,iy

= [e]2ix+2,iy
= [e]2ix ,iy+2 for Z4 R2TC.

Using the R2TC model one can explicitly show that (e, g), (px , my), and (p y , −mx) (minus
sign means anti-anyon) pairs obey the same braiding statistics as the (e, m) anyon pair in an
ordinaryZN toric code [17,18,21] and that one can view R2TC as three copies ofZN regularZN
toric codes. More precisely, theZN R2TC and the three copies of theZN toric code belong to the
same topological phase before the symmetry considerations are made. The position-dependent
anyon labels in Eq. (2) implies that R2TC is an SET with non-trivial anyonic symmetry under
translation while three copies of ZN toric codes have trivial anyonic symmetry under it.

The ground state(s) of R2TC is an eigenstate of all the stabilizers with the eigenvalue +1.
The GSD of this model on a torus, first worked out for prime N [17] and subsequently for
arbitrary N [21], is

GSD= N3gcd(Lx , N)gcd(L y , N)gcd(Lx , L y , N) , (4)

for Lx × L y torus. We will discuss an efficient way of deriving the GSD formula using stabilizer
identities in the following section.

2.1 Stabilizer identities in R2TC

The following three identities arise directly from the definition of stabilizers of R2TC:

I1 ≡
∏

i

ai = 1 , I2 ≡
∏

i

bx
i = 1 , I3 ≡

∏

i

b y
i = 1 . (5)

The product
∏

i runs over all the sites of the torus. The identity arises because the same X or
Z operator appears once as it is and once as its conjugate. They imply the conservation of the
total ZN electric (I1) and two magnetic (I2, I3) charges. The other three identities are

I4 ≡

�

∏

i

(ai)
ix

�cx

= 1 , I5 ≡

�

∏

i

(ai)
iy

�cy

= 1 , I6 ≡

�

∏

i

(bx
i )
−iy (b y

i )
ix

�cx y

= 1 . (6)

Each stabilizer is raised to a power of the coordinate, and the identities I4, I5, I6 refer to the
conservation of electric dipoles in both x and y directions, and the combined of magnetic
dipole moments we call the angular moment [17]. Importantly, the identities are obtained
when the products are raised to appropriate “winding numbers” cx , cy , cx y given by

cx = N/gcd(Lx , N) = lcm(Lx , N)/Lx ,

cy = N/gcd(L y , N) = lcm(L y , N)/L y ,

cx y = N/gcd(Lx , L y , N) . (7)
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The necessity to introduce nontrivial values of cx , cy , cx y > 1 arises from the fact that

∏

i

(ai)
ix =

∏

iy

Z Lx
1, x̂+iy ŷ Z−Lx

1,Lx x̂+iy ŷ ,

∏

i

(ai)
iy =

∏

ix

Z
L y

2,ix x̂+ ŷ Z
−L y

2,ix x̂+L y ŷ ,

∏

i

(bx
i )
−iy (b y

i )
ix =

∏

iy

X Lx
0,Lx x̂+iy ŷ

∏

ix

X
−L y

0,ix x̂+L y ŷ , (8)

are not equal to unity unless Lx , L y are multiples of N . To guarantee that the product becomes
equal to unity for arbitrary lattice size, we need to find the smallest positive integers cx , cy ,
and cx y satisfying

Lx cx mod N = 0 , L y cy mod N = 0 ,

Lx cx y mod N = 0 , & L y cx y mod N = 0 , (9)

which are given in Eq. (7). We refer to the six identities I1 through I6 as the stabilizer identities
of R2TC.

One can derive the GSD by comparing the number of stabilizer identities against the total
number of stabilizers in the model. Each of the three identities I1, I2, I3 generates N constraints
for the stabilizers since (I1)n1 = (I2)n2 = (I3)n3 = 1 for 1 ≤ n1, n2, n3 ≤ N . The GSD becomes
N × N × N = N3, but this is not all. From the three remaining identities we have (Iα)nα = 1
with 1 ≤ n4 ≤ gcd(Lx , N), 1 ≤ n5 ≤ gcd(L y , N), and 1 ≤ n6 ≤ gcd(Lx , L y , N), respectively.
The full GSD formula of Eq. (4) is recovered in this manner.

Among the six identities, {I2, I3, I6} come from taking the product of magnetic stabilizers
and {I1, I4, I5} from those of electric stabilizers. The fact that there are three identities for each
type of stabilizers will play a crucial role in the evaluation of TEE.

2.2 Wegner-Wilson operators in the X -basis

There are six WW operators W1 through W6, given as the product of X -operators [19]:

W1,iy
=

Lx
∏

ix=1

X0,i , W2,ix
=

L y
∏

iy=1

X2,i ,

W3,iy
=

Lx
∏

ix=1

X1,i , W4,ix
=

L y
∏

iy=1

X0,i ,

W5,iy
=

lcm(Lx ,N)
∏

ix=1

(X1,i)
ix (X0,i)

iy ,

W6,ix
=

lcm(L y ,N)
∏

iy=1

(X2,i)
iy (X0,i)

ix . (10)

They represent the creation and annihilation process (CAP) of a y-oriented electric dipole and
anti-dipole pair along the x- (W1) and y-axis (W2), of an x-oriented electric dipole and anti-
dipole pair along the x- (W3) and y-axis (W4), and of an electric monopole and anti-monopole
along the x- (W5) and y-axis (W6) as shown in Fig. 2 [19].

We note that W1, W3, and W5 are defined along the x-axis, while W2, W4, and W6 are
defined along the y-axis. The iy of W1, W3, and W5, as well as the ix of W2, W4, and W6, can
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Figure 2: The CAPs associated with anyons and their corresponding anti-anyon pairs
are illustrated for the respective WW operators.

be freely chosen due to their topological nature. In other words, two WW operators that only
differ in position are not independent and can be connected by the product of bx

i , b y
i , and WW

operators. Moreover, not all of WW operators are independent logical operators contributing
to the GSD. In other words, certain WW operators may be expressed as the product of bx

i , b y
i ,

and other WW operators, contingent upon the lattice size.
The WW operators can also be used to evaluate the GSD [19]. To quote the final re-

sult, we have degeneracy factors of N from W2 and W3 each, gcd(Lx , N) from W5, gcd(L y , N)
from W6, and the factor of Ngcd(Lx , L y , N) from W1 and W4 combined [19], for a total of
N3gcd(Lx , N)gcd(L y , N)gcd(Lx , L y , N) independent logical operators. These WW operators
are essential for constructing the minimum entropy states (MESs), which yields the maximum
TEE for the region with non-contractible boundaries by appropriately combining the ground
states.

3 Topological entanglement entropy of R2TC

We can calculate the TEE of the R2TC by adapting the method proposed in [25,33], which is
applicable when a state is expressed as

|ψ〉= |G|−1/2
∑

g∈G

g |0〉 . (11)

Here |0〉 is a product state satisfying Z |0〉 = |0〉 for all the Z-operators. The group G has ele-
ments that are products of X operators. In the case of stabilizer models, the ground state(s)
are generated by using g made out of products of stabilizers and WW operators. (Note, how-
ever, that the stabilizers of the plaquette model are constructed as a product of both X and Z
operators. This is why the method of [33] cannot be applied to compute the entanglement
entropy of the plaquette model.)

7
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Then, the reduced density matrix of the region A for |ψ〉 obtained after dividing the lattice
into two non-overlapping regions A and B is expressed as [33]:

ρA = |G|−1
∑

g∈G,g ′∈GA

gA |0〉A 〈0|A (gAg ′A)
† , (12)

and the entanglement entropy (EE) of a region A for the state |ψ〉 is [33]

SA = log
�

|G|
|GA||GB|

�

. (13)

We can separate each element g as g = gA⊗gB, where gA and gB act solely on the regions A and
B, respectively. Likewise, |0〉 = |0〉A⊗ |0〉B. We introduce two sets, GA = {g ∈ G|g = gA⊗ IB},
and GB = {g ∈ G|g = IA ⊗ gB}. Note that both Eqs. (12) and (13) remain valid for non-
contractible as well as contractible boundaries. We review the derivation of Eq. (13) in Ap-
pendix A.

The appropriate group G with which to construct the ground state of R2TC is generated
by bx

i , b y
i as well as a selection of WW operators from W1 through W6 given in Eq. (10). The

exact choice of WW operators depends on the boundary we choose to calculate the TEE being
contractible or not. Note that both stabilizers and WW operators are written in the X -basis
and mutually commute. The group cardinality |G| depends on how many WW operators we
include besides the bx

i , b y
i ’s.

3.1 Entanglement entropy: Contractible boundary

First, we consider the region A in the form of lx × l y rectangle. The spins lying on the bound-
ary are counted as living inside A. The ground state we use for the calculation of EE is
|ψ〉 = |G|−1/2

∑

g∈G g |0〉, where G is generated by two magnetic stabilizers bx
i , b y

i but none
of the WW operators. A naive estimate of |G| for the group spanned by (bx

i , b y
i ) on a Lx × L y

lattice is N2Lx L y , ignoring the constraint among the stabilizers. However, there are three iden-
tities I2, I3, I6 among the magnetic stabilizers that reduce the degrees of freedom by factors
of N , N , gcd(Lx , L y , N), respectively, and therefore

|G|=
N2Lx L y

N2 gcd(Lx , L y , N)
. (14)

We next compute |GA|. The number of bx
i ’s and b y

i ’s acting entirely within the region A is
N lx (l y−1) and N l y (lx−1), respectively, and the cardinality of GA follows

|GA|= N lx (l y−1) × N l y (lx−1)

= N lx (l y−1)+l y (lx−1) , (15)

before considering three stabilizer identities I2 = I3 = I6 = 1 in Eqs. (5) and (6). Because of
these constraints, some stabilizers are no longer independent. On the other hand, we may as
well choose those dependent stabilizers to lie entirely in the region B, then |GA| evaluated in
Eq. (15) will be valid without loss of generality.

Now we come to the cardinality |GB|. Since dependent stabilizer lie entirely in the re-
gion B, all bx

i , b y
i stabilizers such that bx

i /∈ GB and b y
i /∈ GB are independent. Here /∈

means the stabilizer does not lie entirely within B, and include stabilizers defined exclusively
in A as well as those defined across both regions A and B. Counting their numbers gives
(lx + 1)(l y + 2) and (lx + 2)(l y + 1) for bx

i and b y
i , respectively, leading to the naive count

|G′B| = |G|/N
(lx+1)(l y+2)+(lx+2)(l y+1). In arrivng at this conclusion we used the fact that all the

8
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Figure 3: Region A consists of spins on the blue boundary line and its interior. (a)
Product of stabilizers in the region A (left) is equal to the product of X (and X †)
operators along the boundary just outside of A (right). (b) Marginal stabilizers among
bx

i , b y
i ’s (left) and ai ’s (right) having support in both A and B regions are indicated

as colored circles.

dependent stabilizers are situated in B by assumption, and therefore one can treat those sta-
bilizers not entirely in B (i.e. bx

i , b y
i /∈ GB) as independent and contributing to the cardinality

count.
Note that in some cases an individual stabilizer does not lie fully inside B but their product

does, and qualifies as an element of GB. For example, the products
∏

bx
i /∈GB

bx
i ,

∏

b y
i /∈GB

b y
i ,

∏

bx
i ,b y

i /∈GB

(bx
i )
−iy (b y

i )
ix , (16)

span all the sites i for which the stabilizers bx
i and b y

i do not lie fully in the region B. Despite
the product covering a two-dimensional region, one can check that the X operators in the
interior of A cancel out, leaving only the product of X ’s and X †’s along the one-dimensional
loop lying just outside the boundary of A as illustrated in Fig. 3 (a). We refer to the three
operators in Eq. (16) as boundary operators. Importantly, all the boundary operators consist of
X operators that are located in the region B, and are thus elements of GB. Yet, the stabilizers
that enter in the definition of boundary operators qualify the condition bx

i , b y
i /∈ GB and have

been “counted out” in the previous estimation of the cardinality of GB. To correct for this
mistake, we need to multiply |G′B| by N3, as each boundary operator adds a factor N to the
cardinality:

|GB|= |G′B| × N3

= |G|N3−(lx+1)(l y+2)−(l y+1)(lx+2) . (17)

9
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Combining the results of |G|, |GA|, |GB| we arrive at the entanglement entropy of a disk-like
bi-partition for R2TC:

SA = log
�

|G|
|GA||GB|

�

= [4(lx + l y + 1)− 3] log N . (18)

The area law part of the entropy is proportional to 4(lx + l y + 1), equal to the number of
boundary stabilizers that refer to a collection of bx

i , b y
i stabilizers with support on both A and

B as shown in Fig. 3 (b). The important remaining factor is γ= 3 log N , which we associate as
the TEE of the R2TC. It shows no lattice size dependence, and a similar conclusion has been
shown before using a different topological model. [25].

This value is also related to the fact that only three boundary operators can be constructed
as in Eq. (16), regardless of the shape of the (contractible) boundary.

In hindsight, an independent calculation of the total cardinality |G| as given in Eq. (14)
was redundant, as it is only the ratio |G|/|GB| that is required for the calculation of EE. We will
take advantage of this feature also in calculations of EE for the non-contractible boundary.

All ground states of R2TC share the same TEE as long as the boundary is contractible. To
show this, we can derive the reduced density matrix of the region A for general ground state
of R2TC and show that it remains insensitive to the choice of ground states. The outline of the
proof goes as follows. As stated earlier, we take |ψ〉 as the ground state of R2TC generated
by the two stabilizers bx

i , b y
i and none of the WW operators. Such a state has the eigenvalue

+1 for all the logical operators written in the Z-basis. Other ground states of R2TC, which are
also the eigenstates of logical operators in the Z-basis, can be constructed by oα |ψ〉, where
oα =

∏6
i=1(Wi)αi with 1 ≤ αi ≤ N is the product of logical operators in the X -basis. There

are at most N6 such operators oα. Each oα|ψ〉 has different eigenvalues of Z-logical operators
but it still remains a ground state. The most general ground state of R2TC can be written as
a linear combination |ψgen〉 =

∑

α cαoα|ψ〉, with the coefficients cα’s satisfying
∑

α |cα|
2 = 1.

In Appendix B.1 we prove that the reduced density matrix ρgen
A = TrB [|ψgen〉〈ψgen|] is the

same regardless of the coefficients cα. Thus, as the entanglement entropy depends only on the
reduced matrix, both the EE and the TEE are same for all ground states.

3.2 Entanglement entropy: Non-contractible boundary

We now consider a pair of parallel and non-contractible boundaries along the x- or y-axis of
the torus and call them x-cut and y-cut, respectively. For non-contractible boundaries, MES
that are constructed as a simultaneous eigenstate of all logical operators running along the cut
plays a significant role in the consideration of TEE [30,38]. The choice of MES is not unique,
but as we prove in Appendix B.2, all those MES yield the same TEE. Therefore, it suffices to
construct the MES with eigenvalue +1 for all the logical operators running along the cut.

With that in mind, we construct the MES of R2TC for the x-cut as

|ψMES〉= |GMES|−1/2
∑

g∈GMES

g |0〉 , (19)

with the group GMES generated by bx
i , b y

i , W1, W3, and W5. The other three WW operators
W2, W4, W6 run along the y-axis and do not qualify as logical operators in the case of the x-
cut. The state in Eq. (19) is an eigenstate of W1, W3, W5, as well as all logical operators in the
Z-basis running along the x-axis with eigenvalue +1, and thus qualifies as MES regardless of
the lattice size [30].

Consider the region A of width l y bounded by two non-contractible boundaries running
along the x-axis. In computing the cardinality we assume, without loss of generality, that the
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dependent stabilizers are situated in the region B. Additionally, we assume that all logical
operators lie entirely in the region B and located as close as possible to the lower boundary of
region A. Both assumptions are useful in simplifying the cardinality calculations.

We first compute |GB|. Since by assumption all the dependent stabilizers and the logical
operators are in the region B, we arrive at the cardinality of GB by dividing the total cardinality
|GMES| by the the number of elements of GMES that do not belong to B. This is done, in turn, by
counting the number of independent bx

i and b y
i stabilizers such that bx

i /∈ GB and b y
i /∈ GB. By

assumption, all such stabilizers are independent. There are Lx(l y +2) and Lx(l y +1) of them,
respectively, and we get |G′B|= |GMES|/N Lx (l y+2)+Lx (l y+1). As in the case of contractible bound-
ary discussed before, however, additional considerations have to be made for the following
operators:

∏

bx
i /∈GB

bx
i ,

∏

b y
i /∈GB

b y
i ,





∏

bx
i ,b y

i /∈GB

(bx
i )
−iy (b y

i )
ix





cx

. (20)

The first two expressions are identical to those of Eq. (16). The third expression is that of
Eq. (16) raised to cx = N/gcd(Lx , N) to take account of the periodic boundary conditions.
They are made of stabilizers /∈ GB and have been taken into consideration when calculat-
ing |G′B|. However, as observed before, the product of stabilizers leaves a string of operators
within the region B and should count toward the elements of GB. Each operator in Eq. (20)
contributes a factor of N , N and gcd(Lx , N) to |GB| and therefore the correct cardinality is

|GB|= |GMES|N2 gcd(Lx , N)/N Lx (l y+2)+Lx (l y+1) . (21)

Note that only the knowledge of the ratio |GMES|/|GB|, not |GMES| itself, is required for the
calculation of entanglement entropy. No consideration is needed for the logical operators and
their contributions to the cardinality as they are, by assumption, all in the region B.

Now we compute |GA|. The number of independent bx
i ’s and b y

i ’s acting entirely in A is
Lx(l y − 1) and Lx l y , respectively, and the naive count is |G′A| = N Lx (2l y−1). There are some
additional operators in GA that can be expressed as the product of stabilizers not entirely in A.
We have identified four such operators, with three of them being:

W1,qy−1

Lx
∏

ix=1

bx
ix ,qy

, W−1
3,qy−1

Lx
∏

ix=1

b y
ix ,qy−1 ,

W−1
5,qy−1

lcm(Lx ,N)
∏

ix=1

(b y
ix ,qy−1)

ix

Lx
∏

ix=1

(bx
ix ,qy
)

lcm(Lx ,N)
Lx

(qy+1) . (22)

Here, qy is the y-coordinate of the lower boundary of the region A. The idea behind the
construction is this: WW operators in the region B (but lying close to the lower boundary of
A) turn into WW operators in the region A by being multiplied with a product of stabilizers at
the border of A and B regions. The case for the first operator in Eq. (22) is depicted in Fig. 4.

A fourth operator is defined when W k
1 with certain integer k is not a logical operator. As

mentioned earlier, whether W k
1 serves as a logical operator or not depends on the lattice size

relative to N . Suppose W k
1 is not a logical operator after all, then it must be the case that W k

1
becomes a product of bx

i and b y
i [19]. Keeping this in mind, the fourth operator in question is

W k
1,qy−1(W1,A)

†

 

Lx
∏

ix=1

bx
ix ,qy

!k

≡W1,B

 

Lx
∏

ix=1

bx
ix ,qy

!k

, (23)
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Figure 4: Illustration showing that W1,qy−1
∏Lx

ix=1 bx
ix ,qy

is entirely within region A.
The y-coordinate of the lower boundary of region A is qy .

where in general one can decompose W k
1,qy−1 = W1,AW1,B with W1,A being a product of

bx
i , b y

i ∈ GA and W1,B a product of bx
i , b y

i /∈ GA. Since bx
ix ,qy
̸= GA, the above operator is

made of stabilizers that are not entirely in A. Nevertheless the overall product consists of X -
operators lying entirely in A. The operator in Eq. (23) is a product of three operators W k

1,qy−1,
�

∏Lx
ix=1 bx

ix ,qy

�k
, and W †

1,B. The product of the first two, namely (W1,qy−1
∏Lx

ix=1 bx
ix ,qy
)k, is

simply the first expression in Eq. (22) raised to the power of k and lies in the region A. Addi-
tionally, by definition, (W1,A)† consists of stabilizers that are entirely in A. Therefore, Eq. (23)
gives an operator defined entirely in region A.

Combining the first operator in Eq. (22) and the fourth operator constructed in Eq. (23), we
have an operator constructed out of W1 whether W k

1 itself is a logical operator or not. Hence
W1 contributes a factor N to the cardinality |GA|. The W3 in the second operator of Eq. (22) con-
tributes an additional factor N to the cardinality. Finally, W5 appearing in the third operator in
Eq. (22)) contributes gcd(Lx , N). To conclude, the cardinality of GA is N Lx (2l y−1)N2 gcd(Lx , N).

The results can be summarized:

|GA|= N Lx (2l y−1)N2 gcd(Lx , N) ,

|GB|= |GMES|N2 gcd(Lx , N)/N Lx (l y+2)+Lx (l y+1) . (24)

Therefore, the entanglement entropy of such MES can be obtained, S x
MES = 4Lx log N − γx

MES,
with

γx
MES = log(N4 gcd(Lx , N)2) . (25)

A similar construction of MES for the y-cut uses bx
i , b y

i , W2, W4, and W6 as generators and
gives

γ
y
MES = log(N4 gcd(L y , N)2) . (26)

We have successfully confirmed that the lattice size dependence not only exists in GSD [17,
21] [Eq. (4)] but also in TEE [Eqs. (25) and (26)] for the bi-partition by non-contractible loops.
Having obtained explicit lattice size-dependent formulas, one may naturally suspect that some
general principle underlies their behavior. Such principle, in terms of translation symmetry
defect picture, is given in the next section.

4 Translation symmetry enriched topological phase

The ZN R2TC Hamiltonian has translation symmetry in both x and y directions. However,
acting on an one of its anyons with translation symmetry operator in general changes its type.
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For example, an e anyon of charge l1 at the site (0,0), expressed as l1e, transforms under
translation Tx to l1e+ l1px anyon on site (1,0), and is therefore topologically distinct from the
original anyon.

The charaterization of anyon types given in Eq. (2) is for a single electric or magnetic
anyon. For a collection of all such anyons located across the lattice, we can employ a more
general formula to express the overall anyon content in the system as

[l]i =
∑

r

�

[e]
l1,i+r

i+r + [m
x]

l2,i+r

i+r + [m
y]

l3,i+r

i+r

�

, (27)

where
∑

r is the sum over all the lattice sites. Each expression in the sum, [e]
l1,i+r

i+r , [mx]
l2,i+r

i+r

and [my]
l3,i+r

i+r , follows the definition given in Eq. (2) with (l1,i+r , l2,i+r , l3,i+r) referring to the
e, mx , my anyon charges at the site i + r. Performing the sum over the lattice

∑

r yields a
simple formula for [l]i ,

[l]i = (l1 mod N)e+ (l2 mod N)mx + (l3 mod N)my

+
�

(l1ix + l4) mod N
�

px +
�

(l1iy + l5) mod N
�

p y

+
�

(l2iy − l3ix + l6) mod N
�

g , (28)

where

l1 =
∑

r

l1,i+r , l2 =
∑

r

l2,i+r , l3 =
∑

r

l3,i+r , (29)

are the total anyon charges of e, mx , and my type. Explicit dependence on the coordinate i
drops out after the summation

∑

r . The other three integers

l4 =
∑

r

l1,r rx , l5 =
∑

r

l1,r ry , l6 =
∑

r

�

l2,r ry − l3,r rx

�

, (30)

represent the total dipole moments. The equation (28) expresses the position-dependent
anyon type of R2TC in the most general manner. Since the integers in Eq. (28) are defined
mod N , there are N6 distinct anyon types. It is also quite easy to understand which anyon
types remain invariant under various translation operations T m

x T n
y where Tx , Ty refer to trans-

lation by one site in the x , y direction. The knowledge of translation-invariant anyons will
play a vital role when we interpret TEE and GSD from the perspective of translation symmetry
defects.

We will interpret the R2TC as a ZN ×ZN translation SET. The reasoning is as follows: From
Eq. (3), both Tx and Ty generate anyon permutations of rank N , that is, T N

x and T N
y leave

the anyon type unchanged. If we coarse-grain to an N × N unit cell, then we can think of
T N

x = T N
y = 1 as manifestations of “on-site” symmetry group G = Z(x)N ×Z

(y)
N (the superscript

notation is just a reminder that Tx generates the first copy of ZN and Ty the second). Although
the symmetry is not actually on-site, we will treat it as such in what follows according to the
crystalline equivalence principle [39]. Therefore, the R2TC should be viewed as a ZN × ZN
translation SET. Then, we will consider the lattice size change under a symmetry defect picture.

It is well-understood how to characterize symmetry defects in the presence of anyons; the
correct mathematical framework is a “G-crossed modular tensor category.” [10,11,34,35] (To
avoid confusion with the notation G for the group of generators earlier, we use the roman G
when referring to symmetry defects.) We briefly summarize the salient results of [10]. Given a
G-enriched topological phase, there are many symmetry defects associated to a group element
g ∈ G; we call the set of such defects Cg. We denote one such defect as ag, which is an element
of Cg. Any one of the defects associated to g can be obtained from any other by fusing it with
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some anyon. (If 0 is the identity element of G, then the set of 0 defects C0 is just the set of
anyons.)

The fusion and braiding of symmetry defects can be considered on a similar footing as
those of anyons. The main difference between symmetry defects and anyons is that if one
defect braids around another, it can change the defect type because it is acted upon by an
element of the symmetry group. In particular, if ag does a full braid with bh (h ∈ G), then
we say that ag transforms as ag → hag. If it turns out that hag = ag, that is, the defect type
does not change under the action of h, then we say that ag is h-invariant. We denote the set of
h-invariant g defects by Ch

g . The set of g-invariant anyons is denoted by Cg
0 . The set of distinct

g defect, previously denoted Cg, is equivalent to C0
g .

The cardinality of Cg is

|C0
g |= |C

g
0 |= # of g−invariant anyons. (31)

Here we used the fact that |Ch
g | = |C

g
h| in general, and that Cg

0 by definition represents the set
of g-invariant anyons [10].

If all the anyons are Abelian, then all the symmetry defects belonging to the set Cg have the
same quantum dimension. Using the fact that the total quantum dimension of the g defects
must equal the total quantum dimension of the anyons (denoted D) [10], it follows that the
quantum dimension dag

of any individual g defect is

dag
=

√

√ # of anyons
# of g−invariant anyons

. (32)

We now use the defect formalism to explain the TEE results of Sec. 3. For a cut with a
contractible boundary, the TEE of a state with an anyon a0 inside the region A is [38,40]

γ= log
D
da0

. (33)

In the ground state for Lx , L y divisible by N , there are no anyons inside A (other than the
vacuum itself) and γ = logD = 3 log N in the case of R2TC. An arbitrary Lx , L y means that
defects g and h are piercing the non-contractible loops along x- and y-axis of the torus, re-
spectively. Therefore, still only the vacuum is inside A, which means γ= 3 log N , in agreement
with our earlier result, Eq. (18). The defect picture gives a concise interpretation of the lack
of lattice size dependence in the case of contractible boundary.

In the absence of symmetry defects, each MES for the x-cut can be associated in a one-
to-one manner with a particular anyon a0 ∈ C0 crossing the x-cut cycle, and the TEE of such
MES is given by [30,38]

γ
x ,(a0)
MES = 2 log

D
da0

. (34)

For an Abelian model, da0
= 1 and D2 is the total number of anyons, so Eq. (34) becomes

γ
x ,(a0)
MES = log (# of anyons) . (35)

For R2TC this equals γx ,(a0)
MES = log N6 in agreement with Eqs. (25) and (26).

Now, choosing a linear lattice size Lx such that N does not divide Lx introduces a CAP of
symmetry defect crossing the non-contractible loop along the x-axis of the torus. Therefore,
defect comes in the form of non-contractible loop with no open ends. If we define

Lx mod N ≡ m , L y mod N ≡ n , (36)
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any excitation traversing the non-contractible loop along the x-axis of the torus will be acted
upon by the element g = m of Z(x)N (in additive notation). Similarly, L y not divisible by N

gives rise to CAP of another symmetry defect h= n of Z(y)N crossing the non-contractible loop
along the y-axis of the torus. Any excitation that traverses the non-contractible loop along the
y-axis of the torus will be acted on by h.

In this picture, each MES for the x-cut is associated with ag ∈ Ch
g . This is now ag instead

of a0, because, in effect, what is taking place for m ̸= 0 is the CAP of a g-symmetry defect and
an anyon as a composite object rather than an anyon by itself. One can further argue that ag
is h-invariant where h is the symmetry defect in the case of L y mod N = n ̸= 0. Therefore,
we conclude ag ∈ Ch

g .
If we could assume that the TEE formula analogous to Eq. (34) continues to hold in

symmetry defect picture, the TEE of the MES associated with ag is given by:

γ
x ,(ag)
MES = 2 log

D
dag

. (37)

A similar mapping formulas valid for C0 (without symmetry defects) to an analogous formulas
in the G-crossed modular tensor category (with symmetry defects) were used in an earlier
work, such as GSD, modular S, and modular T matrices [10]. According to Eqs. (32) and
(37), for Abelian model,

γ
x ,(ag)
MES = log (# of g−invariant anyons) . (38)

We propose this as the formula capturing the TEE of an MES state associated with the sym-
metry defect ag. For the MES along the x-cut, the TEE is directly related to the number of
g-invariant anyons, where g is the symmetry defect pertaining to the size Lx mod N . An
analogous consideration gives

γ
y,(ah)
MES = log (# of h−invariant anyons) . (39)

The two equations in Eqs. (38) and (39) capture the TEE of MES in the presence of translation
symmetry defects. We can complete the argument by showing that these formulas indeed
capture the TEE for non-contractible boundaries derived in the previous section.

In counting the number of g- or h-invariant anyons, we begin by considering how they
transform as they move along the non-contractible loop of the torus and then return to their
original position:

[l]Lx+ix ,iy
=[l]ix ,iy

+(l1 Lx mod N)px−(l3 Lx mod N)g . (40)

For an anyon to be g-invariant, it must satisfy l1 Lx mod N = 0 = l3 Lx mod N , that is, l1 and
l3 must be multiples of N/gcd(Lx , N). Since l2, l4, l5, and l6 are in ZN without restriction,
we find the number of g-invariant anyons to be |Cg

0 | = N4 gcd(Lx , N)2. Plugging this result
into Eq. (38), we find perfect agreement with γx

MES in Eq. (25). A similar reasoning correctly
captures γy

MES in Eq. (26). To conclude, the TEE formulas (38) and (39) obtained from the
symmetry defect picture, coupled with the explicit anyon data such as Eq. (28), allows one to
obtain the TEE of MES without going through arduous calculations such as performed in the
previous section.

The utlity of the symmetry defect picture goes beyond that of calculating TEE. It turns
out that even the GSD formula of Eq. (4) can be recovered in the same language. G-crossed
modularity [10] requires that

GSD(g,h) = # of g−invariant h defects

= # of h−invariant g defects. (41)
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That is, we can calculate the GSD of R2TC using Eq. (41) by appropriately counting the num-
ber of invariant anyons. This is done by first identifying distinct defects in Cg, then further
identifying a subset of those that are invariant under the symmetry defect h.

We can express general defects in Cg as ag ⊗ [l]i , where ag ∈ Cg is h-invariant. First of
all, any one of the defects in Cg can be obtained from any other by fusing it with some anyon.
Furthermore, we can find at least one defect ag ∈ Cg which is h-invariant, since the coexistence
of both CAP of g and h defects implies that an h-invariant defect must exist among Cg. In the
case of translation symmetry defects, allowing for arbitrary lattice size Lx × L y is equivalent
to the coexistence of g and h defects.

Not all of the defects in ag ⊗ [l]i are distinct; we need to find a minimal set of anyons out
of [l]i that, when fused with ag, generates all distinct defects in Cg. To this end, we employ
the known property that all defects in Cg are automatically g-invariant [10]. The statement of
g-invariance becomes

ag ⊗ [l]ix ,iy
= g

�

ag ⊗ lix ,iy

�

= ag ⊗ [l]Lx+ix ,iy
. (42)

Using Eq. (28), we can equivalently state Eq. (42) as

ag ⊗ (l1 Lx mod N)px ⊗ (−l3 Lx mod N)g = ag . (43)

That is, in order for ag ⊗ li to be g-invariant, ag must reproduce itself when fused
with (l1 Lx mod N)px or (−l3 Lx mod N)g for arbitrary l1, l3. By Bezout’s identity,
l1 Lx mod N , l3 Lx mod N ≥ gcd(Lx , N). The distinct defects in Cg, denoted as ag ⊗ [l]

g
i , are

given by the fusion of arbitrary h-invariant g-defect ag and

[l]gi = l1e+ l2mx + l3my + ((l1ix + l4) mod gcd(Lx , N))px

+ ((l1iy + l5) mod N)p y + ((l2iy − l3ix + l6) mod gcd(Lx , N))g . (44)

The difference between [l]gi and the general expression [l]i given in Eq. (28) is that the coef-
ficients before px and g are both mod gcd(Lx , N) rather than mod N . The cardinality of Cg is
N4 gcd(Lx , N)2. The subset of Cg that are h-invariant satisfies the additional requirement

[l]gix ,iy
= [l]gix ,L y+iy

,

which is fulfilled if

l1 L y mod N = 0= l2 L y mod gcd(Lx , N) . (45)

This implies that l1 and l2 must be multiples of N/gcd(L y , N) and gcd(Lx , N)/gcd(Lx , L y , N),
respectively. Taking this addition constraint into account gives

|Ch
g |= |Cg| ·

gcd(L y , N)

N
·

gcd(Lx , L y , N)

gcd(Lx , N)
= N3 gcd(Lx , N)gcd(L y , N)gcd(Lx , L y , N) ,

equal to GSD in Eq. (4). Similar consideration applies to |Cg
h | with the same result.

We conclude that various lattice size dependence manifested in the TEE and GSD of topo-
logical lattice models can be adequately explained by thinking of the system as a coarse-grained
system enriched by a ZN × ZN symmetry which arises from lattice translations. Though our
calculations are confined to one specific model, namely R2TC, we speculate that other models
demonstrating lattice size dependence in various topological quantities may also fall within
the same symmetry defect picture, with the translation symmetry playing the role of enriching
the symmetry to SET.
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5 Discussion

In conclusion, we have performed systematic calculations of the TEE for the rank-2 toric code,
revealing that TEE for a contractible boundary remains unaffected by lattice size. Conversely,
the TEE for non-contractible boundaries exhibits lattice-size dependence, similar to that of the
ground state degeneracy in the same model. We quantitatively explain both results by viewing
the R2TC as a translation SET with the lattice size itself acting as symmetry defects. Our work
shows that the symmetry defect picture is powerful enough to predict topological properties
such as the ground state degeneracy and the topological entanglement entropy.

Given the wide range of unique features in such translation SETs, it would be highly in-
teresting to realize such models in spin, Rydberg atom, or other synthetic systems. It may
also be possible to use our understanding of such translation SETs in (2+1) dimensions as
a stepping stone to a more general understanding of (3+1)-dimensional phases with lattice
size-dependent GSDs, including translation SETs and fracton topological orders.

Another potential avenue for future research is the exploration of the rotation+SWAP SET
aspect of R2TC and its associated symmetry defect. By utilizing Eq. (2), it can be demonstrated
that a π/2 rotation about the reference point (ix , iy) = (0,0), combined with the exchange of
qudits at the same vertices—achievable through the application of SWAP gates—induces the
following transformations:

[e]l1ix ,iy
→ [e]l1−iy ,ix

,

[mx]l2ix ,iy
→ [my]l2−iy ,ix

,

[my]l3ix ,iy
→ [mx]l3−iy ,ix

, (46)

which are the permutation of anyon types. Morevoer, one may investigate the CAP of symmetry
defects that induce the transformation in Eq. (46) and analyze its impact on TEE.

A few additional remarks are in order. One can use the exact tensor network ground
state wave function for R2TC proposed in [19] to compute the entanglement entropy nu-
merically. Without adopting the numerical scheme such as the tensor-netork renormalization
group, it turns out the calculation is currently limited to N = 2 and L y ≤ 3 for the case of
the y-cut, with Lx ≤ 5, due to severe computational costs. Following the procedure out-
lined in [41], we numerically find the entanglement entropy in excellent agreement with
S y

MES = 4L y log N − log(N4gcd(L y , N)2) for N = 2, L y = 3 and Lx = 4,5, confirming the
validity of our derivation. Secondly, it is known that spurious TEE can appear for some non-
topological states [26,42,43]. To check that our results are not being plagued by such effects,
we use the model proposed in [43] and construct bulk products similar to Eq. (16). After the
interior terms again cancel out, leaving the product of operators along the boundary of A. Im-
portantly, this product does not completely encircle the boundary, as is the case in R2TC and
other topological models, but is limited to a finite segment. Consequently, the TEE depends
on the shape of the boundary and the area of the region (see Fig. 5). With this observation,
we can ensure that the TEE of the R2TC is a genuine TEE. This comprehension can serve as a
useful diagnostic for distinguishing between spurious and genuine TEE.
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A Entanglement entropy formula

In this section, we summarize a derivation of the entanglement entropy expression presented
in Eq. (13) [25,33]. The entanglement entropy SA of the region A is formally defined as

SA = lim
n→1

1
1− n

log Tr[ρn
A] , (A.1)

where ρA = TrB[ρ] is the reduced density matrix of region A. Starting from the pure state
expression in Eq. (11), ρA can be expressed as

ρA = TrB[|ψ〉 〈ψ|]

= |G|−1TrB[
∑

g∈G,g ′∈G

g |0〉 〈0| (g g ′)†]

= |G|−1TrB[
∑

g∈G,g ′∈G

gA |0〉A 〈0|A (gAg ′A)
† ⊗ gB |0〉B 〈0|B (gB g ′B)

†]

= |G|−1
∑

g∈G,g ′∈G

gA |0〉A 〈0|A (gAg ′A)
† × 〈0|B (gB g ′B)

† gB |0〉B , (A.2)

where g = gA ⊗ gB and |0〉 = |0〉A ⊗ |0〉B. The requisite condition for the non-vanishing of
〈0|B (gB g ′B)

† gB |0〉B is g ′B = IB. Subsequently, the formulation for ρA adopts the structure

ρA = |G|−1
∑

g∈G,g ′∈GA

gA |0〉A 〈0|A(gAg ′A)
† , (A.3)

where GA = {g ∈ G|g = gA ⊗ IB}. Employing Eq. (A.3), we proceed to deduce
ρ2

A = |GA||GB|/|G|ρA [25,33]. After all, we arrive at

SA = lim
n→1

1
1− n

logTr

�

� |GA||GB|
|G|

�n−1

ρA

�

= log
�

|G|
|GA||GB|

�

(A.4)

as the conclusive expression.

B Reduced density matrix equivalence

In this section, we will prove that i) the reduced density matrix of the contractible boundary
is the same for any arbitrary ground state of the R2TC, and ii) the EE and TEE for the x-cut is
the same for any arbitrary MES of the R2TC.
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B.1 Contractible boundary

For the region A in the form of rectangle surrounded by a contractible boundary, an important
caveat in defining the logical operators is that we can always choose them in such a way
that they are defined entirely in the region B, without crossing the region A surrounded by a
contractible boundary.

Then, the most general ground state of R2TC can be written as |ψgen〉=
∑

α cαoα|ψ〉, with
the coefficients cα satisfying

∑

α |cα|
2 = 1, and all oα are entirely located in the region B. The

reduced density matrix of |ψgen〉, denoted as ρgen
A , can be expressed as:

ρ
gen
A = TrB [|ψgen〉〈ψgen|] = |G|−1TrB





∑

α,β

∑

g∈G,g ′∈G

cαc∗βoαg |0〉 〈0| (g g ′)†o†
β





= |G|−1TrB





∑

α,β

∑

g∈G,g ′∈G

cαc∗β gA |0〉A 〈0|A (gAg ′A)
† ⊗ oαgB |0〉B 〈0|B (gB g ′B)

†o†
β





= |G|−1
∑

α,β

∑

g∈G,g ′∈G

cαc∗β
�

〈0|B (gB g ′B)
†o†
β

oαgB |0〉B
�

gA |0〉A 〈0|A (gAg ′A)
† . (B.1)

The matrix element 〈0|B (gB g ′B)
†o†
β

oαgB |0〉B is nonzero only if the product of operators

equals one. This arises from the fact that each of the operators in (gB g ′B)
†o†
β

oαgB is a product
of X ’s, hence the only way to obtain nonzero elements for |0〉B is for their product to become
one. In other words,

o†
β

oα = gB g ′B g†
B . (B.2)

The expression on the right is a product of stabilizers acting on region B and cannot equal the
product of logical operators on the left, unless oα = oβ . It then follows g ′B = IB. Ultimately,
the expression for ρgen

A can be simplified to:

ρ
gen
A = |G|−1

∑

g∈G,g ′∈GA

gA |0〉A 〈0|A (gAg ′A)
† , (B.3)

where GA = {g ∈ G|g = gA ⊗ IB}. Here, gA and g ′A are parts of g and g ′ acting on region A,
respectively, and the number of gA and g ′A may differ in general. One can readily see that ρgen

A
is equal to ρA in Eq. (12).

B.2 Non-contractible boundaries

When the MES with eigenvalue +1 for all the logical operators running along the x-cut is
|ψMES〉, the general MES can be described by U |ψMES〉, where U is the product of logical
operators along the y (x)-axis in the case of x (y)-cut. Given that U = UA⊗ UB, the reduced
density matrix of the region A for a general MES, denoted as ρgMES

A , is expressed as follows:

ρ
gMES
A = TrB[U |ψMES〉 〈ψMES|U†]

= |GMES|−1TrB[
∑

g,g ′∈G

UAgA |0〉A 〈0|A (gAg ′A)
†U†

A ⊗ UB gB |0〉B 〈0|B (gB g ′B)
†U†

B]

= |GMES|−1
∑

g∈G,g ′∈GA

UAgA |0〉A 〈0|A (gAg ′A)
†U†

A = UAρ
MES
A U†

A , (B.4)

where U = UA ⊗ UB. ρMES
A equals ρA in Eq. (12) since |ψMES〉 can be expressed as Eq. (11).

Then, since TrA[(ρ
gMES
A )n] = TrA[(ρMES

A )n], the EE and TEE outcomes for all MES are same.
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C Spurious entanglement entropy

We analyze the spurious entanglement of the non-topological model proposed in [43], using
our idea of taking the bulk product of stabilizers to arrive at the boundary product. We con-
clude the boundary product in this case does not fully encircle the region A, and also find some
dependence on the shape of the boundary.

The model [43] is defined on a square lattice, comprising two stabilizers:

I Z − I Z ZX − Z I

a = | | , b = | | ,

I Z − X Z Z I − Z I (C.1)

Two Z2 degrees of freedom are assigned to each vertex corresponding to the first and the
second Pauli operator in the above. The (unique) ground state of this model is

|ψ〉= |G|−1/2
∑

g∈G

g |0+〉 , (C.2)

where the group G is generated by a’s and |0+〉 satisfies IX |0+〉= Z I |0+〉= |0+〉 for arbitrary
vertices.

We evaluate the entanglement entropy of |ψ〉 first for a lx × l y square region A. The op-
erations that significantly influence the TEE are the elements of GB, which are the product of
a /∈ GB, and the elements of GA, which are the product of a /∈ GA. We can identify the operation
satisfying the former condition, depicted in Fig. 5 (a). The operation is the multiplication of
a’s and encircled by the yellow loop. This operation in terms of X and Z takes the form of a
square bracket encompassing a part of the boundary, signifying that the count of such opera-
tions is expected to vary based on the shape of the region. The entanglement entropy result is
summarized as

|G|= 2Lx L y ,

|GA|= 2lx l y ,

|GB|= |G|2−(lx+2)(l y+2)+1 ,

SA = (2lx + 2l y) log2− log 2 , (C.3)

and TEE is equal to log 2. We can easily check that the TEE depends on the shape of the
boundary. By altering the boundary, as depicted in Fig. 5 (b), we can identify two operations
influential to the TEE, each one encircled by yellow loop.

This observation deviates from the well-known concept of TEE and should be regarded as
spurious TEE. Conversely, if the operation takes the form of a WW loop encircling the entire
boundary of the region, the number of elements cannot depend on the shape of the region,
indicating a genuine TEE. Based on the analysis conducted in this simple example, we can
confidently assert that there are no instances of spurious TEE in the entanglement entropy cal-
culation for R2TC. The identified operations are the the form of WW loop, thereby eliminating
any possibility of spurious TEE contributions.

D Tensor network calculation: Entanglement entropy for R2TC

In this section, we demonstrate how to express the MES of R2TC using a Tensor Network
(TN) framework, building upon the TN wavefunction introduced in Ref. [19]. By examining
the local gauge symmetry of tensors as summarized in Ref. [19], when both lattice sizes Lx
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Figure 5: (a) An operation satisfying the condition of being an element of GB and
the product of a /∈ GA. The operation is influential to the TEE and represented by
by the encirculed yellow loop. (b) Two operations, represented by yellow loops and
influential to the TEE, are depicted.

and L y are multiples of N , the TN wavefunction, or projected entangled-pair states (PEPS)
wavefunction, serves as a ground state of R2TC and is simultaneously an eigenstate of W1,
W2, W3 and W4, all with eigenvalues equal to 1. The WW operators W5 and W6 transition the
PEPS ground state wavefunction to the other ground states without affecting the eigenvalues
of W1, W2, W3, and W4.

With a y-directed entanglement cut, the MES should simultaneously be an eigenstate of
the WW operators W2, W4, and W6. Meanwhile, W1, W3, and W5 should facilitate the transition
of a given MES to other anyon sectors. From this perspective, the PEPS wavefunction initially
proposed in Ref. [19] is not an MES and requires modifications to transform it into one.

The process of modifying the PEPS wavefunction to become an MES for a y-cut can be
divided into two distinct steps. First, the PEPS wavefunction is projected so that it no longer
serves as an eigenstate of W1 and W3. The projected ground state remains a ground state of
the R2TC, with W1 and W3 now transitioning the projected ground state to another orthogonal
ground state. In the second step, the wavefunction is further constrained to be an eigenstate
of W6, thereby completing the MES PEPS representation.

D.1 Review: PEPS wavefunction

In this subsection, we review the PEPS wavefunction introduced in Ref. [19], which is sug-
gested as one of the PEPS formulas responsible for one of the R2TC ground states. The PEPS
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is composed of three local tensors Tudl r , gs1s2
udl r , and gs0

udl r and can be represented as below:

(D.1)

The indices s1, s2, s0 represent physical indices corresponding to the local ZN orbitals of
R2TC, while the indices u, d, l, r are virtual indices with ZN character that are contracted out
in the finial expression. The first two tensors are defined as

Tudl r = δu+r−(l+d),0 , gs1s2
udl r =

�

δl,rδl,s1

� �

δd,uδd,s2

�

. (D.2)

Note that the delta is implemented by mod N throughout this section. To define the third local
tensor, we need to introduce following isometry tensor:

Ps0
s1s1
= δs0,s1+s2

. (D.3)

Then the third local tensor is defined as

gs0
udl r = Ps0

s1s1
gs1s2

udl r . (D.4)

Here, the summation for repeated indices is implied.

D.2 Loop-gas interpretation

As mentioned in above, the PEPS wavefunction is an eigenstate of WW operators, W1, W2,
W3, and W4. To gain an intuitive understanding of this, we introduce the concept of a loop-
gas configuration picture. From this point onward, we confine our analysis to the Z2 case for
the sake of clarity and simplicity in the subsequent discussion. The concepts and principles
discussed can be readily extended to the general ZN case without any difficulty. Furthermore,
our discussion will primarily center on scenarios where both lattice sizes, Lx and L y , are even.
To say it in advance, we have numerically confirmed that the PEPS achieved by the discussion
below also serves as a MES for lattice size under various conditions.

In Z2 case, one can understand the virtual legs as being occupied by a loop when the
corresponding virtual index has a value of 1, and being unoccupied when the the value is 0.
Using this interpretation, we can translate the PEPS wavefunction in Eq. (D.1) into the loop-
gas configuration picture. In doing so, we discover that the PEPS wavefunction is essentially an
equal superposition of every possible closed-loop configurations, both on the solid and dotted
lattices, respectively. An example of the closed-loop configuration is given in Fig. 6 (a).

This is attributed to the role played by Tudl r , which acts to ensure the closure of all loops.
It is because, from the definition of Tudl r in Eq. (D.2), whenever a loop enters to Tudl r , it must
also exit. It is important to note that the closed-loop condition enforced by Tudl r facilitates the
presence of non-contractible loop configurations around the torus system.

Now, we consider how the WW operator W1 acts on the PEPS wavefunction. To see that,
we need to understand the action of a local Pauli-X operator on the g tensors. Referring to
the definition in Eq. (D.2), one can observe that when s1 = 1 (s2 = 1), a solid (dotted) line
crossing the gs1s2

udl r tensor is occupied by a horizontal (vertical) loop, while it remains empty
when s1 = 0 (s2 = 0). Additionally, for either the dotted or solid lines crossing the gs0

udl r , they
are occupied by horizontal or vertical lines when s0 = 1, and both lines are either empty or
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Figure 6: Illustrations of R2TC loop configurations. Blue lines denote loops on the
dotted lattice, while orange lines represent loops on the solid lattice. The physical
indices are omitted. The position where W6 is applied is marked by closed green
dashed-loop. (a) A configuration comprising exclusively of closed loops. (b) A con-
figuration featuring a single isolated vertical loop. All other loops, apart from the
vertical ones inside the green dashed rectangule, are closed.

occupied by both horizontal and vertical lines when s0 = 0. Consequently, applying a local
Pauli-X operator to the g tensors leads to a switch in the occupation state as described.

The WW operator W1 acts by applying Pauli-X operators to lattice sites positioned on the
non-contractible dotted line defined along the x-axis. Building upon the insights from the
previous paragraph, it becomes clear that the action of W1 involves the insertion of a hori-
zontal non-contractible loop in the dotted lattice. It is worth noting that in the context of
our Z2 system, the insertion of a non-contractible loop is equivalent to toggling the number
of non-contractible loops between even and odd. Since the PEPS wave function described in
Eq. (D.1) already includes all possible closed loop configurations, encompassing both cases
containing an even or odd number of non-contractible loops, the operations performed by the
W1 operator do not alter the PEPS wave function. This property results in the PEPS wavefunc-
tion being an eigenstate of W1 with eigenvalue 1. By applying a similar rationale as discussed
above, one can ascertain that the remaining WW operators, W2, W3, and W4 also function by
inserting horizontal or vertical non-contractible loops into the dotted or solid lattices, respec-
tively. Employing analogous logic, it can be deduced that the PEPS wavefunction defined in
Eq. (D.1) is likewise an eigenstate of W2, W3, and W4 with eigenvalue 1.

Now, we will delve into the two steps involved in transforming the PEPS wavefunction into
an MES within the framework of loop-gas configurations, addressing each step individually.
The first step is to shift the PEPS wavefunction from being an eigenstate of W1 and W3 by
applying the appropriate projection. Let’s first consider the W1 operator, with the same ap-
proach extendable to the W3 operator. In the context of the loop-gas interpretation, the PEPS
wavefunction can be expressed as |0〉+ |1〉. Here, |0〉 represents an equal superposition of all
loop configurations with an even number of loops crossing the entanglement y-cut, whereas
|1〉 represents an equal superposition of all loop configurations with an odd number of loops
crossing the entanglement y-cut. Each of them is a ground state of the R2TC. As described in
the previous subsection, the action of W1 toggles |0〉 into |1〉 and vice versa.
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To satisfy the MES condition, one simply needs to project the PEPS wavefunction into
either |0〉 or |1〉. In the loop-gas configuration picture, this translates to ensuring that the PEPS
wavefunction contains either an even or odd number of horizontal non-contractible loops in
the dotted lattice.

Expanding on this idea, one can observe that enforcing the PEPS wavefunction to be an
eigenstate of fW3 is equivalent to guaranteeing that the PEPS wavefunction comprises only
even or odd numbers of horizontal non-contractible loops in the solid lattice. This marks the
first step in the process of making the PEPS wavefunction an MES.

The final step involves ensuring that the PEPS wavefunction becomes an eigenstate of W6.
The original PEPS wavefunction presented in Eq. (D.1) consists exclusively of closed-loop
configurations, as shown in Fig. 6 (a). However, applying W6 introduces open-loop segments
along the line where the WW operator is applied. For instance, when W6 is applied to the
vertical line marked by the dashed green rectangle in Fig. 6 (a), it affects every other edge,
either breaking an existing closed loop or creating an open loop, as illustrated in Fig. 6 (b).

Let |ψ0〉 denote the original PEPS wavefunction and |ψ1〉 = W6|ψ0〉 represent the wave-
function with open-loop segments resulting from the action of the WW operator. The action
of W6 toggles between |ψ0〉 and |ψ1〉. Since the MES must be an eigenstate of W6, it should
be of the form |ψMES〉= |ψ0〉±|ψ1〉. This completes the final step of transforming the original
PEPS wavefunction into an MES.

D.3 Tensor network implementation

In the following, we will provide a detailed explanation of how to implement these two steps
within the framework of TN one by one.

In the first step, we start by ensuring that the PEPS wavefunction contains only an even
number of horizontal non-contractible closed loops on the dotted lattice. This is achieved by
selecting any single vertical line from the dotted lattice and attaching a new tensor Ωudl r to
the Tudl r tensors located along the vertical line as shown below:

(D.5)

The tensor Ωudl r is defined as

Ωudl r = δl,rδl,u−d . (D.6)

To understand how the tensor Ωudl r constrains the number of horizontal non-contractible
closed loops, let’s focus on a vertical dotted bond connected to Ωudl r . Assume we start with
a value of 0 for the virtual bond and move along the y-direction. Every time a horizontal
loop crosses through Ωudl r , the value of the vertical bond toggles between 0 and 1, and vice
versa. If a configuration has an odd number of non-contractible horizontal loops on the dotted
lattice, we will encounter the horizontal loop an odd number of times during the round trip,
leaving the virtual bond with a value of 1. Since the initial value of the virtual bond was 0,
this leads to a mismatch, excluding the configuration from the tensor contraction. Thus, we
obtain configurations consisting solely of an even number of horizontal non-contractible loops
on the dotted lattice.
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Similarly, by attaching an additional Ωudl r tensor to the Tudl r tensors located along any
single vertical line from the solid lattice as follows:

(D.7)

Note that Ωudl r is not connected to the remaining vertical lattice lines. As a result, the PEPS
wavefunction now exclusively comprises loop configurations with an even number of horizon-
tal non-contractible loops on each lattice. This ensures that the PEPS wavefunction is shifted
from being an eigenstate of W1 and W3, and the first step of transforming the PEPS wavefunc-
tion into an MES is successfully implemented.

The second step in ensuring the PEPS wavefunction becomes an MES involves more than
just attaching additional auxiliary tensors. It also requires modifying certain local tensors Tudl r .
Similar to the first step, we select a single vertical line from the dotted lattice and replace the
Tudl r tensors with Tudl r;m tensors, which can be graphically illustrated as follows:

(D.8)

Here, the first image provides a top view, while the second shows a side view from a slanted
perspective. The leg representing the Z2 index m extends in the direction penetrating the
surface, whereas the physical indices in Eq. (D.1) emerge from the surface. Its mathematical
definition is given by

Tudl r;m =δu+r−(l+d),m . (D.9)

Now, Tudl r;m allows termination of a loop at the point when m= 1. Note that Tudl r;0 = Tudl r .
Afterward, we attach the auxiliary tensor Θm

ud right below the Tudl r;m as

(D.10)

Here, Θm
u′d ′ is defined as

Θm
u′d ′ = δm,u′δu,d ′ . (D.11)

25

https://scipost.org
https://scipost.org/SciPostPhys.18.3.110


SciPost Phys. 18, 110 (2025)

Consequently, the ultimate structure of the PEPS wavefunction takes the form:

(D.12)

With the introduction of Θm
u′d ′ , an additional vertical line is created on the “lower level” of the

original lattice, linking the indices u′ and d ′. As defined in Eq. (D.11), this vertical line allows
only two configurations: either a closed non-contractible loop occupies the line, or the line
remains empty. The configurations of the empty line correspond to the configurations prior to
the second step of transforming the PEPS wavefunction into an MES. In the case of an occupied
line, the configurations include a single vertical dashed loop on the dotted lattice, as depicted
in Fig. 6 (b). Consequently, the resulting wavefunction is an eigenstate of W6 with eigenvalue
1, completing the entire process of transforming the PEPS wavefunction into an MES.
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