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Abstract

Fracton models host unconventional topological orders in three and higher dimensions
and provide promising candidates for quantum memory platforms. Understanding their
robustness against quantum fluctuations is an important task but also poses great chal-
lenges due to the lack of efficient numerical tools. In this work, we establish neural
quantum states (NQS) as new tools to study phase transitions in these models. Ex-
act and efficient parametrizations are derived for three prototypical fracton codes —
the checkerboard and X-cube model, as well as Haah’s code — both in terms of a re-
stricted Boltzmann machine (RBM) and a correlation-enhanced RBM. We then adapt
the correlation-enhanced RBM architecture to a perturbed checkerboard model and re-
veal its strong first-order phase transition between the fracton phase and a trivial field-
polarizing phase. To this end, we simulate this highly entangled system on lattices of up
to 512 qubits with high accuracy, representing a cutting-edge application of variational
neural-network methods. In addition, we reproduce the phase transition of the X-cube
model previously obtained with quantum Monte Carlo and high-order series expansion
methods. Our work demonstrates the remarkable potential of NQS in studying compli-
cated three-dimensional problems and highlights physics-oriented constructions of NQS
architectures.
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1 Introduction
Fracton topological orders are novel states of quantum matter that support mobility-
constrained quasiparticles with a subextensively divergent ground-state degeneracy [1–10].
Understanding their phase transitions is an important topic and of great interest in condensed
matter physics, quantum information, and quantum field theories. The fate of fracton or-
ders against fluctuations ultimately determines their applications as robust topological error-
correcting platforms [1, 2, 11–13] for storing and processing quantum information [14, 15].
Moreover, the dynamics and condensation of fracton excitations may reveal new organizing
principles beyond the celebrated Landau-Ginzburg-Wilson paradigm [16–20]. Nevertheless,
the study of fracton phase transitions suffers from the lack of efficient tools. Established field-
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theoretical constructions face fundamental challenges because of the restricted mobility of the
quasi-particles and the strong system size dependence of the ground-state degeneracy [21–24].
Numerical simulations of lattice fracton models are in a similarly difficult situation since the
strongly entangled fracton topological orders only exist in three and higher dimensions. Fur-
thermore, interaction terms driving a phase transition may trigger the infamous sign problem.
Applications of standard techniques, such as exact diagonalization [25, 26], tensor network
states [27,28], and quantum Monte Carlo simulations [29,30] are hence limited in scope.

NQS represent a modern technique for addressing the ground state problem of strongly
correlated systems [31] that is not inherently limited by dimensionality or the sign prob-
lem [32, 33]: The quantum wave function is parameterized in terms of a neural network,
thereby avoiding the exponential growth of the Hilbert space by restricting the ground state
search to a smaller parameterized subspace. Observables and gradients can then be estimated
using Monte-Carlo sampling, which places NQS in the variational Monte Carlo (VMC) [34]
framework.

The restricted Boltzmann machine (RBM) is the prototypical shallow NQS architecture [31,
35–37] and enjoys much popularity due to its relation with statistical physics, simple closed-
form expressions, and connection to tensor network states [38,39]. Although previous works
have shown the RBMs’ ability to represent highly entangled systems and topological orders [33,
40–43], they typically work in low dimensions or rely on the exactly solvable limit of topolog-
ical stabilizer codes.

The objectives of this work are twofold: Firstly, we explore the potential of neural quantum
states (NQS) in representing three-dimensional (3D) lattice Hamiltonians with long-range en-
tanglement. In particular, we construct efficient NQS parametrizations for the checkerboard
model, the X-cube model, and Haah’s code [1,2]. Secondly, we study the phase transitions of
fracton models subject to external fields. Since the phase transitions of the X-cube model and
Haah’s code under uniform magnetic fields have previously been investigated with quantum
Monte Carlo simulations [44,45] and series expansions [46], we focus our simulations on the
checkerboard model. They are found to be strongly first order, just as was the case for the
X-cube model and Haah’s code. It is an open question whether RBMs are powerful enough in
dealing with such 3D problems: The universal approximation theorem [47–49] does not guar-
antee a favorable scaling in the number of parameters when increasing the system size or the
desired accuracy, and we find that regular RBMs and feedforward neural networks (FFNNs)
have difficulties in learning the ground state of small 3D topological codes. The correlation-
enhanced RBM, by contrast, performs remarkably well. Our results thus complement our
knowledge of fracton phase transitions and demonstrate the power of NQS in studying highly
entangled 3D systems.

This paper is organized as follows: In Section 2, we define the Hamiltonians of the three
prototypical fracton models. In Section 3, we review the NQS method and the network ar-
chitectures used in this work, in particular, a correlation-enhanced RBM (cRBM) introduced
in Ref. [50]. This cRBM architecture is used to produce the main results of this paper, in par-
ticular to simulate the perturbed checkerboard model on large lattices. Exact representations
of unperturbed fracton models are constructed in terms of both regular RBMs and cRBMs in
Section 4. Section 5 is devoted to an overview of the NQS simulations, including the key as-
pects of hyperparameters, GPU parallelization, as well as training and sampling strategies. A
comprehensive benchmark on a small lattice is followed in Section 6, where we perturb the
checkerboard model by three different field directions including a σy coupling. Section 7 dis-
cusses the field-induced phase transitions by focusing on the σx -perturbation, as the checker-
board model is self-dual under swapping σx and σz . We also discuss the problem and possible
solutions for scaling up simulations in the presence of an imaginary σy term. We conclude in
Section 8 with a discussion.
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(a) Checkerboard model. (b) X-cube model.

Figure 1: The positions of the qubits are indicated by the purple balls. For the
checkerboard model 1a, two stabilizer generators AC and BC are assigned to every
second cube C. For the X-cube model 1b, a stabilizer generator AC is assigned to every
cube, and three generators BSµ are assigned to every vertex.

In addition, we provide extensive details of our NQS implementations in the Appendices A–
D. We expect them to serve as a technical guide for readers who are not yet familiar with NQS
simulations but are willing to explore these methods. The complete code with a detailed
documentation and a toy-model example of the 2D toric code is available in [51].

2 Fracton models

In this section, we introduce the three prototypical fracton models [1,2]— the checkerboard
model, the X-cube model, and Haah’s code, and review their basic properties.

2.1 Checkerboard model

The checkerboard model is defined on a three-dimensional cubic lattice where a single qubit is
placed on every vertex. Denoting the three Pauli matrices by σx ,σ y and σz , the Hamiltonian
of the checkerboard model reads

HCB = −
∑

C
AC −

∑

C
BC , with AC :=

∏

i∈C
σx

i , BC :=
∏

i∈C
σz

i . (1)

The sums include every second cube C of the cubic lattice, corresponding to just one color of
a three-dimensional checkerboard. For the AC and BC operators, the tensor product is taken
over the 8 corners (or vertices) of each such cube. This is illustrated in Figure 1a.

Being a stabilizer code, its so-called stabilizer generators AC and BC mutually commute,
which is due to any two cubes sharing either none, two or all vertices. Hence, the Hamilto-
nian 1 can be solved exactly and the ground state manifold is determined by the conditions
AC = BC = +1 ∀C. Using the projectors 1+AC

2 , it is possible to write one ground state as

|GSCB〉 ∝
∏

C

(1+ AC)
2

|↑ ... ↑〉 , (2)

where |↑ ... ↑〉 denotes the all-spin-up state in the z-basis. If periodic boundary conditions
are imposed on the lattice, the ground state degeneracy of the checkerboard model scales
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(a) Checkerboard model. (b) X-cube model.

Figure 2: 2a shows the elementary excitations in the checkerboard model. The string
operators W x and membrane operators M x act with σx on the sites indicated by
the red dots. The violated stabilizer generators with BC = −1 corresponding to the
immobile fracton excitations are indicated by the red colored cubes. The situation is
symmetric under x ↔ z. 2b shows the elementary excitations in the X-cube model
and the logical operators acting on its code space. Membrane operators M z , which
act on the sites indicated by the blue dots via σz , create four spatially separated
fractons at their corners. The violated AC stabilizer generators are indicated by the
blue colored cubes. W x string-like operators, which act withσx on the sites indicated
by the red dots, create lineon excitations at both ends and every corner, which are
shown as red ellipsoids. (M z

1 , Γ x
1 ) and (M z

2 , Γ x
2 ) are two pairs of logical operators

acting on the code space of the X-cube model.

exponentially in linear system size, for instance as 26L−6 on a three-torus of size L × L × L - a
characteristic property of fracton models. Similar to topologically ordered phases, the ground
state degeneracy is robust with respect to local perturbations. However, the dependence on
system size, a non-topological feature, already indicates that fracton models are not described
by conventional topological order [3].

The elementary excitations in the checkerboard model are strictly immobile and corre-
spond to violated stabilizer generators AC = −1 or BC = −1 with an energy cost of +2 each.
These so-called fractons - the hallmark of fracton models - are created at ends and corners of
σz- or σx -type string and membrane operators, as is illustrated in Figure 2a. This implies in
particular that they must be created at least in pairs and cannot be moved individually without
an additional energy cost. However, such excitations can form composite quasiparticles that
are free to move on certain submanifolds. For instance, two fracton excitations at the end of
one string operator can move freely as a pair along the direction of the string. The logical op-
erators acting on the ground state manifold, also referred to as the code space of the stabilizer
code, correspond to non-contractible line operators Γ x =

∏

σx and Γ z =
∏

σz , which act
with σx and σz along strings that wind around the three-torus, respectively. There are 6L−6
independent pairs of (Γ x , Γ z) that encode 6L − 6 logical qubits in a fault-tolerant way [2,52].

2.2 X-cube model

For the X-cube model, a qubit is placed on every link of the three-dimensional cubic lattice.
Then, we define AC :=

∏

i∈C σ
x
i for every cube C, where the tensor product involves all 12

qubits on the edges of the cube. Further, to each vertex V we assign three different stars:
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S x = {n, j, p, m }, S y = {n, i, p, k }, and Sz = { k, j, i, m }, the indices of which are marked
in Figure 1b. In this notation, Sµ is the star orthogonal to direction µ ∈ { x , y, z }. Then, for
every vertex V we define the star operators as BSµ :=

∏

i∈Sµ σ
z
i . Finally, the Hamiltonian of

the X-cube model can be written as

HXcube = −
∑

C
AC −

∑

µ

∑

Sµ
BSµ . (3)

Just as the checkerboard model, the X-cube model is a stabilizer code with stabilizer generators
AC and BSµ . Hence, the model is solved exactly by AC = BSµ = +1 ∀C and Sµ. Again, one can
express the ground state as

|GSXcube〉 ∝
∏

C

(1+ AC)
2

|↑ ... ↑〉 . (4)

For periodic boundary conditions, the ground state is no longer unique and the degeneracy
scales as 26L−3 for an L × L × L three-torus [2,11].

The X-cube model hosts two different kinds of elementary excitations [2], which are il-
lustrated in Figure 2b: First, immobile fractons that are created at the corners of σz-type
membrane operators M z . Second, so-called lineon excitations created at the ends and cor-
ners of σx -type string operators W x . Remarkably, a lineon can move freely on a line along
the direction µ indicated by the elongated dimension of the red ellipsoids in Figure 2b such
that BSµ = 1 and BS ν̸=µ = −1. Moreover, Figure 2b shows two pairs of logical operators that
act on the ground state manifold (assuming periodic boundary conditions) corresponding to
extended line Γ x

1,2 and membrane M z
1,2 operators winding around the three-torus.

2.3 Haah’s code

For Haah’s code, two separate qubits denoted by σ and µ are placed on every site of a three-
dimensional cubic lattice. Then, the Hamiltonian is defined as

HHaah = −
∑

C
AC −

∑

C
BC , (5)

AC :=µz
jµ

z
kσ

z
l µ

z
mσ

z
nσ

z
pσ

z
qµ

z
q , (6)

BC :=σx
i µ

x
i µ

x
j µ

x
kσ

x
l µ

x
mσ

x
nσ

x
p , (7)

which is illustrated in Figure 3. Here, both σαi and µαi with α ∈ { x , y, z } denote the Pauli
matrices on site i. The AC and BC are the commuting stabilizer generators of the stabilizer
code. Consequently, the codespace of the system is determined by AC = BC = +1 ∀C. Its
ground state has the form

|GSHaah〉 ∝
∏

C

(1+ BC)
2

|↑ ... ↑〉σ ⊗ |↑ ... ↑〉µ . (8)

Under periodic boundary conditions, its ground state degeneracy GSD strongly depends on the
system size and is bounded by 22 ≤ GSD≤ 24L−2. Despite no closed-form formula being avail-
able for all system sizes, for any given L the precise GSD can be computed using a polynomial
ring formalism [52, 53]. Haah’s code is a so-called type-II fracton model, i.e. all excitations
are completely immobile. Fractons are created locally by the action of σx (µx) or σz (µz)
operators, violating the AC or BC stabilizer generators, respectively. Note, any local operator
must create at least four fractons at once. In Haah’s code, there are no string-like operators
that can individually move these fractons or bound states thereof. Instead, spatially sepa-
rated excitations are created at the four corners of fractal operators instead of membrane-like
operators [2,52].
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2.4 Perturbed fracton model

The form of the fracton codes permits various dynamical terms. Here we consider the simplest
case in which the checkerboard model is perturbed by a uniform external magnetic field. The
perturbed checkerboard model is given by

H = −
∑

C
AC −

∑

C
BC − h⃗

∑

i

σ⃗i , (9)

where σ⃗i = (σx
i ,σ y

i ,σz
i ) denotes the Pauli vector at site i. More general terms such as bond

or plaquette couplings are allowed but left for future work.

3 Neural quantum states

Consider an arbitrary pure quantum state |ψ〉 that is element of an N -qubit Hilbert
space H = ⊗N

i Hi = ⊗N
i C

2
i . The state can be expanded in the computational z-basis

{ | σ1...σN 〉 }σi=↑,↓ (or any other basis of choice) as |ψ〉 =
∑

σ 〈σ|ψ〉 |σ〉 =
∑

σψ(σ) |σ〉 ,
where σ is a shorthand for σ1...σN . There are in total 2N complex coefficients ψ(σ) that
must be normalized

∑

σ |ψ(σ)|
2 = 1. To compress the many-body wave function, ψ(σ) is

now expressed in terms of a neural network with parameters θ , which maps input spin config-
urations to complex-valued wave function amplitudes ψθ (σ). This approach, first described
by [31], mitigates the issues arising from the exponentially large Hilbert space by modelling
the wave function in a much smaller parameter space. In particular, the parameterized wave
functions are typically not normalized to avoid summation over said Hilbert space. Then, ap-
proximating the ground state with energy E0 amounts to finding the optimal parameters that
minimize the variational energy

E(θ ) =
〈ψθ |H|ψθ 〉
〈ψθ |ψθ 〉

≥ E0 . (10)

This is done by estimating the gradient of E(θ ) with Monte Carlo samples from the Born
distribution |ψθ |2 and updating the parameters into the direction of steepest descent using
stochastic reconfiguration, first introduced by [54]. Repeating this parameter update itera-
tively then leads to a local, ideally global, minimum of the energy landscape E(θ ). Hence,

(a) Haah’s code.

Figure 3: The positions of the qubits are indicated by the purple and cyan balls. Two
separate qubits are placed on each lattice site and two stabilizer generators AC and
BC are defined on each cube.
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Figure 4: For an RBM, the M hidden units (top) are connected to the N visible units
(bottom) through interactions described by the weight matrix Wi j . No connection
between any two hidden or visible units is permitted. Moreover, both hidden and
visible units are coupled to an inhomogeneous magnetic field via b j and ai , respec-
tively.

neural quantum states (NQS) are a subclass of variational quantum states characterized by
parameterizing the wave function in terms of a neural network. Appendix B contains a more
detailed description of the NQS optimization.

Although under which conditions a specific neural quantum state can parameterize a
ground state of H exactly remains a difficult question, it is in principle possible to improve
the accuracy of the approximation arbitrarily by increasing the capacity of the neural net-
work, which usually corresponds to increasing the number of variational parameters θi . In
the case of feedforward neural networks (FFNNs), for instance, the universal approximation
theorem [47, 48] guarantees the approximation of arbitrary continuous (and even Lebesgue-
integrable functions) when the width or depth of the network is increased appropriately.

We now introduce the neural network parametrizations used throughout this work. The
restricted Boltzmann machine (RBM), a widely used NQS architecture [31,35–37], is given by

RBMθ (σ) =
∑

h j=±1

exp

 

∑

i, j

Wjih jσi +
M
∑

j=1

b jh j +
N
∑

i=1

aiσi

!

∝ exp

� N
∑

i=1

aiσi

� M
∏

j=1

cosh

� N
∑

i=1

Wjiσi + b j

�

.

(11)

Here, θ = {W, a, b } collectively denotes the trainable parameters, the M so-called hidden
units h j ∈ {±1 } constitute the hidden layer of the RBM, and the σi are termed visible units.
Accordingly, we refer to the ai as visible biases and to the b j as hidden biases. Up to a nor-
malization factor, this expression corresponds to the the canonical (or Boltzmann) distribution
over the visible units after tracing out the hidden units, with the energy of the system given by
E(h,σ)RBM = −

∑

i, j Wjih jσi −
∑

j b jh j −
∑

i aiσi . This architecture is illustrated in Figure 4.
In general, the parameters are complex numbers in order to model complex-valued wave

function amplitudes. RBMs, just as FFNNs, are universal approximators [49]; by increasing the
number of hidden units M , the accuracy of the approximation can be improved systematically.

Furthermore, we include translational symmetries into our Ansatz. The symmetrized wave
function then satisfies 〈gσ|ψθ 〉 = ψθ (gσ) = ψθ (σ) ∀σ, where g is an arbitrary translation
on the corresponding lattice. This is achieved by sharing the weights in equation 11 over all
translated versions of a given spin configuration, i.e. the orbit of the translation action on
the spin configuration. See Appendix A for a detailed description of the symmetrized RBM
architecture.
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The main results of this work are produced using the correlation-enhanced RBM architec-
ture (cRBM), introduced and demonstrated for the 2d toric code by [50]. To this end, we
include correlators Ci , which are products of spins over specified index sets, into our neural
network architecture. This is done by adding additional visible units representing the correla-
tor values and connecting them to the hidden units with their own trainable parameters. The
new energy functional then reads EcRBM(h,σ) = E(h,σ)RBM+

∑

i acorr
i Ci+

∑

i, j W corr
i, j Cih j . This

leads to the following expression for a cRBM with one type of correlators Ci:

cRBMθ (σ) = exp

�

∑

i

aiσi

�

exp

�

∑

i

acorr
i Ci

�

∏

j

cosh

�

b j +
∑

i

Wjiσi +
∑

i

W corr
ji Ci

�

. (12)

In essence, one constructs a new feature vector out of the pure spin configuration, which is
then fed into the neural network in its place.

The specific choice of correlators is guided by the available background knowledge about
the system. For instance, the ground state of the unperturbed checkerboard model satisfies
BCi
= +1 ∀i. Including these features explicitly into the variational Ansatz directly informs

the network about the values of these stabilizer generators. Therefore, we make use of cube
correlators Ci =

∏

Ci
σi , where the product is taken over the 8 spins at the corners of each

cube Ci . In addition to cube correlators, our final wave function Ansatz also includes bond
and non-contractible loop correlators, as illustrated in Figure 5. Finally, the cRBM Ansatz is
also symmetrized, see Appendix A for an explicit expression. To adapt the cRBM to the X-cube
model, for instance, one should include the values of the BSµ correlators. In this manner, the
cRBM architecture can be tailored to any specific problem for which relevant correlations are
known, resulting in improved performance over a regular RBM.

Figure 5: Illustrated is an example of the different correlators included in the cRBM
architecture applied to the checkerboard model. A non-contractible loop correlator
(green), cube correlator (purple) and bond operator (orange) are constructed from
the input configuration and connected to the hidden units (grey).
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Figure 6: The hidden units (right) are connected locally to the cubes of the checker-
board model (left). We introduce two hidden units for each cube C, here shown as
orange and purple cubes.

4 Exact representations

In this section, we show how to construct exact and efficient RBM parametrizations for the
checkerboard model, the X-cube model, and Haah’s code. The key component is to impose
sparsity on the weight matrix W by connecting hidden units only locally to visible units. This
results in an efficient parameter count that scales at most linearly in system size. Then, we
construct their cRBM representations and show that including the right correlators can lead
to significant simplifications. Throughout this work, we impose periodic boundary conditions
(PBCs).

4.1 Checkerboard model

Introducing one hidden unit for each stabilizer generator and connecting them just locally to
the 8 qubits on the vertices of the corresponding cubes, as illustrated in Figure 6, leads to

ψRBM(σ) = exp

�

∑

i

aiσi

�

∏

CA

cosh

 

bCA
+
∑

i∈CA

σiWiCA

!

∏

CB

cosh

 

bCB
+
∑

i∈CB

σiWiCB

!

. (13)

Solving for the ground state amounts to finding the parameters such that AC = BC = +1∀C,
resulting in the conditionsψRBM(σ)=

∏

k∈C σkψRBM(σ) for any BC andψRBM(σ̃C)=ψRBM(σ)
for any AC , where σ is arbitrary. Here, σ̃C = (σ|σi → −σi ∀i ∈ C) denotes the spin configu-
ration after flipping all qubits belonging to C.

We set the visible biases ai to zero and begin by solving the BC stabilizer conditions, which
are simpler than the AC conditions because they are diagonal in the computational basis. This
leads to

cosh

 

bCB
+
∑

i∈CB

σiWiCB

!

=
∏

i∈CB

σi cosh

 

bCB
+
∑

i∈CB

σiWiCB

!

∀CB , (14)

after cancelling all other equal terms. Now, for any given cube CB we observe that
 

∑

k∈CB

σk,
∏

k∈CB

σk

!

∈ { (0,1), (±2,−1), (±4,1), (±6,−1), (±8,1) } . (15)

By choosing bCB
= 0 and WiCB

=WCB
= iπ4 ∀CB, the conditions 14 are solved.
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Now, in order to solve the AC conditions, we consider flipping all qubits that belong to
some cube C. First, notice that the factor in Equation 13 corresponding to C itself is invariant
under the flip and

�

∑

k∈C′(σ̃C)k −
∑

j∈C′ σ j

�

∈ {0,±4 } for any other cube C′ ̸= C. Hence, the
CB-factors in Equation 13 stay invariant or gain a sign under such cube flips. To make the
RBM Ansatz invariant, we simply choose the same set of parameters for the CA-terms as for
the CB-terms: bCA

= 0 and WiCA
= WCA

= iπ4 ∀CA. Thus, our final expression for the ground
state of the checkerboard model in terms of an RBM reads

ψRBM(σ) =
∏

C
cos2

�

π

4

∑

i∈C
σi

�

. (16)

We switch to the correlation-enhanced RBM (cRBM) architecture. In this setup, we only
include cube correlators and set the weights coupling to the single visible units directly to zero.
After connecting one hidden unit to the correlator feature of each cube and setting the visible
biases to zero, the cRBM Ansatz can be expressed as

ψcRBM(σ) =
∏

C
cosh

�

bC +WC

∏

i∈C
σi

�

. (17)

First, notice that the AC stabilizer conditions are already satisfied. Flipping all qubits belong-
ing to some cube C leaves this parametrization invariant as any AC generator shares an even
number of qubits with any BC generator. The BC conditions are easily solved by setting bC = iπ4
and WC = −iπ4 ∀C. The final cRBM expression then reads

ψcRBM(σ) =
∏

C
cos

�

π

4
(1−

∏

i∈C
σi)

�

. (18)

The above RBM and cRBM representations contain 8N and N non-zero parameters, respec-
tively, hence scaling linearly in system size N = L3.

4.2 X-cube model

Similar to the checkerboard model, one hidden unit is connected locally to every S x ,S y and
Sz star corresponding to the σz-type stabilizer generators, as shown in Figure 7. We directly
set all visible biases to zero to arrive at the following RBM Ansatz:

ψRBM(σ) =
∏

µ∈{ x ,y,z }

∏

Sµ
cosh

�

bSµ +
∑

i∈Sµ
σiWiSµ

�

. (19)

For any Sµ with µ ∈ { x , y, z }, we have
�

∑

k∈Sµ
σk,

∏

k∈Sµ
σk

�

∈ { (0,1), (±2,−1), (±4, 1) } . (20)

Therefore, setting bSµ = 0 and WiSµ = WSµ = iπ4 ∀Sµ solves the BSµ stabilizer conditions
ψRBM(σ) =

∏

k∈Sµ σkψRBM(σ) for any Sµ. This leads to the following (and indeed final)
form of the exact RBM parametrization

ψRBM(σ) =
∏

µ∈{ x ,y,z }

∏

Sµ
cos

�

π

4

∑

i∈Sµ
σi

�

. (21)

Regarding the AC conditions, consider flipping all 12 qubits belonging to some cube C and
focus on any corner of C with the three qubits associated to that corner, see Figure 7. At this
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Figure 7: The hidden units (right) are connected locally to the three different stars
S x ,S y and Sz at each corner in the X-cube model (left). The three qubits in C asso-
ciated with the corner in the bottom left are colored red.

vertex, there is exactly one S x ,S y and Sz affected by the flip. If all three corner qubits have
the same value, each factor in Equation 21 corresponding to the three Sµ gains a sign. If one
qubit is different than the other two, only the one Sµ-factor containing the two equal qubits
gains a sign. Hence, the wave function 21 acquires one sign for each corner of the flipped
cube, so the AC stabilizer conditions are directly satisfied.

To find the expression of the X-cube ground state in terms of a cRBM, we introduce star
correlators for all Sµ and connect one hidden unit to each of them. After setting all visible
biases to zero, we get

ψcRBM(σ) =
∏

µ∈{ x ,y,z }

∏

Sµ
cosh

�

bSµ +WSµ
∏

i∈Sµ
σi

�

. (22)

Conveniently, the AC stabilizer conditions are directly satisfied as each cube flip changes the
sign of either none or two qubits belonging to any Sµ. To solve the BSµ stabilizer conditions,
we simply choose bSµ = iπ4 and WSµ = −iπ4 ∀Sµ in analogy to the checkerboard model. Thus,
the cRBM parametrization of the X-cube ground state reads

ψcRBM(σ) =
∏

µ∈{ x ,y,z }

∏

Sµ
cos

�

π

4
(1−

∏

i∈Sµ
σi)

�

. (23)

Again, the cRBM parametrization contains less non-zero parameters, i.e. 6N , compared to
the RBM Ansatz with 12N parameters. For completeness, we point to [55] for an alternative
parametrization of the X-cube ground state. At this point, the general scheme for constructing
an exact and efficient cRBM parametrization for any CSS code should become clear: Introduce
a correlator feature for every σz-type stabilizer generator T z

i and locally connect a hidden unit
to each of them with corresponding weights bi = iπ4 , Wi = −iπ4 and visible biases set to zero.
For a stabilizer code, all σx -type stabilizer generators T x

i commute with any T z
j , so they must

share an even number of qubits. Hence, the T x
i generator conditions are directly satisfied.

4.3 Haah’s code

To arrive at an RBM representation of Haah’s code, we introduce two hidden units for each
cube C and connect them locally to the sites on which the σz-type stabilizer generator AC acts
non-trivially, as is illustrated in Figure 8. After setting the visible biases to zero and sharing
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the weights over the corresponding sites within each cube, we arrive at the following Ansatz:

ψRBM(σ,µ) =
∏

C
cosh

�

bC +WC(µ j +µk +σl +µm +σn +σp +σq +µq)
�

× cosh
�

b′C +W ′
C(µ j +µk +σl +µm +σn +σp +σq +µq)

�

.
(24)

For brevity, the indexing of the sites is always relative to the cube index of the corresponding
cosh-factor; for instance, we write µ j instead of µC, j .

The exact parameters are found in complete analogy to the checkerboard model: To satisfy
the AC stabilizer conditions, we choose bC = 0 and WC = iπ4 ∀C. Next, we observe that any BC
operator shares 6 qubits with AC and either two or no qubits with any AC′ , where C′ is any cube
adjacent to C. It follows from some quick combinatorial considerations that any cosh-factor
corresponding to bC and WC stays either invariant or changes sign by the action of BC . Hence,
the BC stabilizer conditions are solved simply by setting bC′ = bC and WC′ = WC . Then, the
exact RBM representation of Haah’s code reads

ψRBM(σ,µ) =
∏

C
cos2

�π

4
(µ j +µk +σl +µm +σn +σp +σq +µq)

�

. (25)

Finally, we can write down the exact cRBM representation in a straightforward way: We
introduce one hidden unit for each AC stabilizer generator, connect them to the corresponding
correlators, and choose bC = iπ4 and WC = −iπ4 ∀C. This results in

ψcRBM(σ) =
∏

C
cos

�π

4
(1−µ jµkσlµmσnσpσqµq)

�

. (26)

This Ansatz contains N non-zero parameters, much less than the RBM parametrization with
8N parameters.

The linear scaling in system size of all derived exact parametrizations can be made con-
stant by further imposing translational symmetries. For instance, a translation invariant RBM
architecture with two hidden units is capable of representing the ground state of the unper-
turbed checkerboard model exactly, as shown in Figure 5 and Appendix A. Such knowledge of
exact representations can guide the architecture design for perturbed fracton models where
exact solutions become unavailable.

Figure 8: The hidden units (right) are connected locally to the cubes of Haah’s code
(left). We introduce two hidden units for each cube C, here shown as orange and
purple cubes.
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5 Simulation overview

We utilize Netket [56] as the infrastructure of our code and use JAX [57] to exploit GPU
acceleration. A translation-invariant cRBM Ansatz is employed and detailed in Appendix A.
The simulations are performed on A100 and V100 GPUs. We typically use 212–214 samples per
epoch, distributed on 210 individual Markov chains, to train the cRBM. The training time of one
cRBM is about 6 A100-hours for the largest system size L = 8 (512 qubits). 24×214 reasonably-
thermalized samples are considered to compute expectation values of physical observables.

The Netket library provides a flexible and convenient framework to implement different
Hamiltonians and operators through its local operator interface. Nonetheless, the large-weight
stabilizer generators of the checkerboard model allow for significant performance improve-
ments. We provide a custom implementation of the computation of connected states and
corresponding matrix elements in a jax-compatible way, which reduces the computation time
by orders of magnitudes as compared in Appendix C with Netket’s built-in implementation.

Moreover, we introduce a transfer learning protocol that carries over samples and param-
eters of a trained NQS to the optimization for the next physical parameter, namely, a nearby
value of the magnetic field h⃗, see Appendix B. By comparing the results for transfer learning
along increasing and decreasing fields, the method detects hysteresis effects in the checker-
board model and provides insights into the nature of the underlying phase transitions. We
verified this method on the X-cube model, for which existing quantum Monte Carlo and high-
order series expansion results predict a strong first-order transition, see Appendix E.2.

Sampling schemes like the Metropolis-Hasting algorithm can suffer from many issues such
as long auto-correlation times, for instance. We make use of a custom update rule including,
for example, cube flips (see Appendix B), perform sampling on O(1000) chains in parallel,
and carefully analyze the convergence of our simulations by monitoring behaviors of the ac-
ceptance ratio of our update rule, the split-R̂ value [58], and the V-score [59] in Appendix D.

We refer to the Appendices for details of the complexity and the optimization algorithms
and Repository [51] for the code implementation.

6 Benchmarking on small lattices

We benchmark the performance of the cRBM on a checkerboard model of size 4× 2× 2 with
PBCs subject to uniform magnetic fields along different directions. Such a system size remains
exactly diagonalizable, hence no sampling is required and we can compare with the exact
results.

First, in Figure 9 we compare the performance of several common NQS architectures on the
pure checkerboard model in the absence of magnetic fields and for different combinations of
hyperparameters, namely the standard deviation of the parameter initialization and the learn-
ing rate. We make use of the following architectures: an FFNN with two hidden layers con-
taining 8 hidden units each, a regular RBM with 16 and 8 hidden units, a translation-invariant
RBM with 8 and 4 hidden units, a symmetric FFNN that first constructs 4 translation-invariant
features (as in a symmetric RBM) which are then processed by another layer consisting of 4
hidden units before being accumulated, a Jastrow Ansatz, and a translation-invariant cRBM
with α= 1/4 containing only additional cube correlators. The Jastrow wave function is mod-
eled as ψJastrow(σ) = exp

�

∑

i ̸= j σiWi jσ j

�

with a symmetric matrix W that is treated as lower
triangular. All types of RBM architectures except RBM(8) contain enough hidden units to learn
the exact representations derived in Section 4.
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(a) σ = 0.01, lr= 0.01.
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Figure 9: Comparison of different model architectures for learning the ground state
of the pure Checkerboard model on a 4 × 2 × 2 lattice. The complex parameters
are sampled independently from a centered complex Gaussian with given standard
deviation. The number in parentheses corresponds to the number of hidden units.
The parameter counts for the different models are 208 for the FFNN, 288/152 for
the RBM(16)/(8), 137/69 for the symmetric RBM(8)/(4), 88 for the symmetric NN,
120 for the Jastrow and 52 for the cRBM architecture. The ground state energy is
indicated by the dashed grey line.
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Figure 10: Relative energy error of the trained cRBM for different field strengths and
directions, working in the computational z-basis. For every field strength separately,
the initial parameters of the model are sampled independently from a Gaussian dis-
tribution N (0,σ2) with small standard deviation σ ∼ 10−2.

The initial complex-valued parameters are sampled independently from a complex Gaus-
sian distribution N (0,σ2) with zero mean and standard deviation σ, a common practice in
machine learning. For sufficiently small σ, this implies that the initial state described by
any network with a final cosh-activation function approximately corresponds to the equal-
weighted superposition of all configurations |ψθ≈0〉z ≈ 2−

N
2 ⊗i (|+z〉i + |−z〉i) = ⊗i |+x〉i .

Consequently, all AC stabilizer conditions are approximately satisfied, resulting in an initial
energy of E(θ0)≈ E0/2. This state, however, appears to be a strong local minimum for all but
the cRBM architecture, as can be seen in Figure 9a. The challenge of transitioning from an
equal weighted superposition of all states to a fracton soup, the equal weighted superposition
of states which also satisfy the BC stabilizer conditions, is lifted for the cRBM by simplifying
its loss landscape through the inclusion of the cube correlators.

By increasing the variance of the parameter initialization as in Figure 9c, it is possible to
move away from said local minimum, thereby allowing the (symmetric) RBM architectures
with α = 1 to reach the ground state within the given number of training iterations. A larger
variation in the initial parameters can result in unstable training and may lead to local minima
later in the optimization, especially for larger learning rates as in Figure 9d. Also, we refer to
Figure 20 in Appendix E.1 which displays the training curves for uniform parameter initializa-
tion. Figure 9c additionally shows training curves for the (symmetric) RBM architectures with
only half as many hidden units. Clearly, the reduced α value results in non-convergence of
these RBM architectures within the given number of training steps, although both models still
contain more parameters than the cRBM. In conclusion, while other network architectures are
able to approximate the ground state successfully in some scenarios, the cRBM architecture
displays significant advantage over the others: it requires the smallest number of training it-
erations to learn the ground state, it exhibits strong robustness to different hyperparameter
choices, it typically reaches the lowest energy variance by the end of training, and it is the
most parameter efficient parametrization of the considered candidates. This highlights the
significant advantage achieved by incorporating domain knowledge.
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Next, relative energy errors of the trained cRBM for the checkerboard model perturbed
with different fields (Eq. 9) are shown in Figure 10. Implementation details and hyperpa-
rameter choices are contained in Appendix C. We observe a significant difference in accuracy
between magnetic fields applied along the x- and z-directions, although the only difference
between these two field configurations is a rotation from the x- to the z-basis. Hence, this
discrepancy must be due to the choice of basis made when expanding the wave function, the
only step where the x- and z-directions are treated differently. Of course, the choice of ba-
sis inherently determines the form of the loss landscape E(θ ), and hence the difficulty of the
optimization problem. In particular, however, it determines the initial state in the following
sense: Here, the initial parameters were sampled independently from a Gaussian distribution
N (0,σ2) with zero mean and small standard deviation σ ∼ 10−2. In the z-basis, this implies
that the initial state described by an RBM or cRBM approximately corresponds to the equal-
weighted superposition of all configurations |ψθ≈0〉z ≈ 2−

N
2 ⊗i (|+z〉i + |−z〉i) = ⊗i |+x〉i . On

the other hand, when working in the x-basis this parameter initialization results in an initial
state that is close to the z-polarized state |ψθ≈0〉x ≈ 2−

N
2 ⊗i(|+x〉i+|−x〉i) = ⊗i |+z〉i . Together

with the results in Figure 10, this suggests that the performance for some applied magnetic
field might be improved by initializing the NQS close to the corresponding polarized state.

With that motivation in mind, we introduce a simple transfer-learning protocol: First,
the NQS is optimized in the presence of strong magnetic fields, which can be done for all
field directions with high accuracy (see Figure 10). Then, the NQS is trained for the next
highest field strength with the previously optimized NQS as the initial state. We achieve this
by taking the learned parameters and, whenever full summation over the Hilbert space is not
possible due to larger system sizes, also the final states of the Markov chains as the starting
point for the NQS optimization with the new magnetic field. This process is repeated until
some smallest field strength, usually zero, is reached. Hence, we not only initialize the NQS
close to the polarized state but we also recycle learned features by transferring the network
parameters. We would like to point out that this optimization scheme can also be understood
as an implementation of variational neural annealing (VNA) [60]. A similar protocol has also
been utilized in [61]. See Appendix B for additional details.

The relative energy error of the cRBM applied to the 4 × 2 × 2 checkerboard model for
different field directions and transfer-learning protocols is shown in Figure 11. In addition to
transfer-learning from strong to weak fields, we compare against the same protocol for increas-
ing field strengths. We observe significant performance improvements for all field directions if
we initialize in the polarized phase and transfer to weaker fields (right-left sweep), while ini-
tializing in the absence of magnetic fields and transferring to stronger fields (left-right sweep)
leads only to minor improvements except for increasingly strong y-fields. This demonstrates
that the accuracy improvement is not solely caused by reusing the network parameters and
the initial state of the transfer-learning sequence is indeed crucial.

7 Field-driven phase transitions

We now move on to larger systems of size L × L × L, L ∈ {4, 6,8 }, corresponding to 64, 216
and 512 qubits, respectively. The low parameter count of the cRBM, i.e. 5195 for L = 8, makes
these computations feasible even with limited computational resources. The observables and
gradients are estimated with samples obtained from the Metropolis algorithm; in addition to
single spin flips, our update rule includes cube and non-contractible loop flips, see Appendix B
and C for further technical details.

First, we inspect the results for the perturbed checkerboard model Eq. 9 under uniform hx
and hz fields on an L = 4 lattice. The performance issue for hz-fields is in principle mitigated
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by transfer learning from strong to weak fields. This is indeed the case as indicated by the
comparisons of energies and magnetizations along the two field directions in Figure 12. Still,
slightly lower energies are achieved for hx -fields in the region 0.37 ≲ h ≲ 0.45, which is
consistent with the previous benchmark results in Fig. 11. Note, as the checkerboard model is
self-dual, the two field directions are physically equivalent upon changing basis. Hence, from
now on we focus on hx -fields.

Moreover, although the benchmark results in Fig. 11 suggest better performance when
sweeping from strong to weak fields (right-left), we also include sweeps from weak to strong
fields (left-right) for the following reason: Left-right sweeps, in particular along the x-
direction, still result in a reasonably high energy accuracy, and comparing the two sweep
directions will help uncover a hysteresis.

The kick in energy and jump in magnetization in Figure 12 suggest a first-order phase
transition for both field directions already at L = 4. Nonetheless, to confirm its first-order
nature, one has to verify that these signatures get sharper with increasing system sizes.

As shown in Figure 13 for lattice sizes L = 4, 6,8, the energy and magnetization hystereses
become more profound, as revealed by comparing the left-right and right-left transfer learning
results. When sweeping from right to left, the NQS settles in a meta-stable phase resulting in
higher energy for fields slightly weaker than the critical value hcrit. When the field strength is
decreased further, the state becomes unstable and collapses into a new state with lower energy.
This sudden jump coincides with a discontinuous decrease of the magnetization. For left-right
sweeps we observe similar behavior, but for system sizes L > 4 the NQS remains in the meta-
stable phase for all observed field strengths. This confirms that the perturbed checkerboard
model indeed experiences a strong first-order phase transition. We estimate a critical field
hcrit ≈ 0.44(1) from the intersection points of energy curves.

Note that we begin the left-right transfer-learning sequence for L = 6,8 system sizes with
h = 0.1 instead of the zero field limit. This is because we observe that pre-training the NQS
in the absence of magnetic fields typically led to no training progress or diverging gradients
after transferring to finite magnetic fields. Some literature, such as Ref. [50], suggests adding
noise to the parameters when transferring to non-zero magnetic fields to mitigate this issue;
however, in our case we could not find an improvement compared to directly optimizing the
NQS from scratch.

Consistently, as the system is trapped in different (meta-)stable configurations near the
first-order transition, the split-R̂ diagnostic and energy variance also display a significant in-
crease in magnitude; these and other MC convergence measures are included in App. D. This
is simply a consequence of slowly-mixing Markov chains caused by the two coexisting phases
which is, however, mitigated well by sampling from O(1000) chains in parallel.
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Figure 11: Relative energy error of the optimized cRBM for different transfer learning
protocols and external magnetic fields on the 4× 2× 2 checkerboard model.
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Figure 12: Comparison of the energy per spin and magnetization obtained from the
symmetric cRBM architecture trained on the checkerboard model for L = 4 and mag-
netic fields along the x- and z-directions.

For a deeper understanding of the phase transition, we show the relative energy contri-
butions of different parts of the Hamiltonian in Figure 14. The perturbation commutes with
the σ(x)-type stabilizer generators AC , leaving their eigenvalues approximately invariant in
the fracton phase. Clearly, there is a transition into an x-polarized phase, which is essentially
dominated by the contributions of the magnetic field and AC stabilizer generators. Intuitively,
this behaviour can be understood by condensing fracton excitations: In a perturbative pic-
ture, small magnetic fields create isolated fracton excitations. This violates the corresponding
BC stabilizer generators, thereby slightly reducing their contribution to the variational energy.
Creating enough excitations through an increasingly strong magnetic field then effectively lifts
their mobility restrictions. This results in a significant violation of the BC stabilizer generators
and leads to a vanishing energy cost for creating further excitations.

Here we do not use the Wilson loop, i.e. a non-contractible loop as in Figure 5, as an effec-
tive order parameter because of the limited system sizes. Although 512 qubits is a formidable
number, a linear lattice extend of L = 8 may be too small to faithfully determine a perime-
ter law or an area law, where the loop correlators decay exponentially in both cases [62].
Nevertheless, we expect fractons to remain (partially) deconfined at small fields and become
confined in the polarized phase, as in the case of the type-I X-cube model [63].

The situation for finite magnetic fields in y-direction is more complicated: First of all,
the Hamiltonian becomes non-stoquastic. Although we employ complex-valued parameters,
which in principle enable the network to express complex-valued wave function amplitudes,
it is known that learning the structure of the phase factors is a difficult task for many neural
network architectures [64–66]. Indeed, when attempting a right-left sweep for system size
4× 4× 4, we observe a very high variance in the same order of magnitude as the variational
energy for strong y-fields ≈ 0.9. This quickly leads to diverging gradients if the optimization
is not regularized accordingly. We find that the choice of solver for stochastic reconfigura-
tion, iterative conjugate gradient or direct pseudo-inverse, has no significant impact on this
issue. Moreover, all sampling diagnostics indicate high-quality Markov chains with R̂ ≲ 1.01,
acceptance rates of at least 0.4, and auto-correlation times τ ≲ 0.1. Hence, it appears that
the network architecture itself has difficulty learning the structure of the phase factors even
for the simple hy -polarized phase. This observation is in accordance with [64], who found
that complex RBMs have difficulty representing the ground states of Hamiltonians that can-
not be transformed into a stoquastic form with local Pauli and phase-shift transformations.
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Figure 13: Comparison of the energy per spin and magnetization obtained from the
symmetric cRBM architecture trained on the checkerboard model for different system
sizes (L = 4, L = 6, L = 8) and sweep directions.
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Figure 14: Relative contributions of different parts of the Hamiltonian to the ground
state energy of the L = 4 and L = 8 Checkerboard model subject to a magnetic field
in x-direction obtained from a right-left sweep.
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This problem may be amended, as proposed in [65, 66], by splitting the network into two
separate components, one of which encodes the phase and the other one the modulus of the
wave function amplitudes. Nevertheless, we leave the systematic study of hy -fields to future
endeavors.

8 Conclusion

In this work, we explored the utility of neural quantum states in studying three-dimensional
topological fracton models and performed extensive simulations for the perturbed checker-
board model for up to 512 qubits. We finalize our discussions by revisiting the two objectives
of this paper.

On the side of fracton physics, our work disclosed that the checkerboard model experiences
a strong first-order phase transition with a large hysteresis when subjected to uniform magnetic
fields. This finding leads to an interesting observation: All three prototypical 3D lattice fracton
models, including the type-I X-cube [44] and checkerboard models and the type-II Haah’s
code [46], show strong first-order phase transitions against the simplest quantum fluctuations.
The same is true for their dual classical spin models, which correspond to the ungauged version
of fracton models [2] and experience discontinuous thermal phase transitions [52, 67]. This
may imply a ubiquitous relation between subsystem symmetries and first-order transitions,
and mark intrinsic challenges to the development of field theories and mean-field analyses.

On the side of simulation techniques, we show that NQS methods are promising for study-
ing complicated three-dimensional problems. They are able to approximate the ground states
of long-range entangled 3D systems beyond the exactly solvable limits for considerably large
lattice sizes to high accuracy. Nevertheless, physical insights play a crucial guide for the con-
struction of efficient NQS representations. In the current example, implementing well-chosen
correlator features using the cRBM architecture has led to significant performance improve-
ments. Hence, our work highlights the importance of physics-oriented NQS design.

Still, some challenges remain: Our approach suffers from increased variance in the criti-
cal region, which we believe is mainly due to sampling issues caused by the phase separation
near the strong first-order transition. In general, we believe it is necessary to explore more
complex network architectures that better exploit the structure and symmetries of the prob-
lem of interest to further reduce the variance and arrive at more accurate results in the critical
regime. In addition, the performance issues for the non-stoquastic Hamiltonians require fur-
ther investigation. While the benchmarking results on the small system suggest high accuracy
is possible in the presence of σy coupling, we found that scaling up the NQS for larger system
sizes suffers from training instabilities / non-convergence.

NQS constitutes a relatively young field of computational physics that often finds itself in
competition with tensor networks and quantum Monte Carlo methods. Although NQS achieve
state-of-the-art ground state energies for many different benchmark problems [59,68–70], we
want to establish NQS as viable tools for unsolved problems which are not readily accessible
by other commonly employed numerical methods. With this work, we made a step towards
achieving this goal by demonstrating that even a simple NQS architecture and carefully imple-
mented domain knowledge can lead to new insights into complex three-dimensional systems.
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A Symmetric NQS

A.1 Translation-invariant RBM

Starting from the regular RBM expression

RBMθ (σ) = exp

� N
∑

i=1

aiσi

� M
∏

j=1

cosh

� N
∑

i=1

Wjiσi + b j

�

, (A.1)

symmetries are imposed in the following way: Consider a symmetry group G with elements
g ∈ G acting on the Hilbert space by Tg |σ〉 = |gσ〉, where Tg is a linear unitary operator
representing the action of g on the spins and gσ denotes the permuted spin configuration.
Every g ∈ G induces a permutation πg of the spins as (gσ)i = σπg−1 (i), where σi denotes
the i-th spin on the lattice. After introducing the hidden feature density α = M/B ∈ N, with
B = N/|G| being the number of basis spins such that any other spin is connected to one basis
spin by some permutation πg , the symmetrized RBM architecture is given by [31]

RBMsymm
θ

(σ) = exp

 

B
∑

b=1

ab

∑

g∈G

σπg (b)

!

∏

g∈G

αB
∏

j=1

cosh

� N
∑

i=1

Wjiσπg (i) + b j

�

. (A.2)

The number of hidden units M = αB is chosen such that this expression reduces back to
equation A.1 for the trivial group G = { e }. Notice, for fixed α, the number of trainable pa-
rameters is reduced by the factor of |G| in comparison to the regular RBM, although the cost
of evaluating the wave function for a single input stays the same. In this work, we include
just translational symmetries for which |G| ∼ O(N). The checkerboard model is defined on
the three-dimensional cubic lattice but it is only symmetric under translations by two lattice
sites in any direction due to the checkerboard-like structure. Hence, this leads to B = 8, in
comparison to B = 2 for the 2d toric code, for instance.

A.2 Symmetric correlation-enhanced RBM (cRBM)

Motivated by the cRBM architecture for the 2d toric code [50], we include bond and non-
contractible loop correlators in addition to cube correlators. The bond correlators Cbond

i con-
tain the pairwise products of nearest-neighbor spins. The values of the non-contractible loop
correlators Cµ−loop

i with µ ∈ { x , y, z } inform the network about the different ground state sec-
tors, as some might be energetically favourable over others in the presence of magnetic fields
due to finite-size effects.

Moreover, we include additional hidden units that are just connected to the non-
contractible loop correlators, allowing the network to separately adjust wave function am-
plitudes only in terms of the ground state sectors. Similar to the regular RBM, we symmetrize
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this Ansatz by sharing weights over the configurations connected by translations. This is possi-
ble since symmetries of the system correspond to graph-automorphisms of the lattice, thereby
transforming correlators of one type into each other. For instance, any translation transforms
a cube into another cube, hence inducing a permutation on the cube correlators. Hence, our
cRBM Ansatz for the checkerboard model reads

cRBMθ (σ)
symm =exp

�

a
∑

i

σi

�

exp

�

abond
∑

i

Cbond
i

�

exp

�

acube
∑

i

Ccube
i

�

(A.3)

×
αB
∏

j=1

∏

g∈G

cosh

�

b j +
∑

i

Wjiσπg (i) +
∑

i

W bond
ji Cbond

πg (i)
+
∑

i

W cube
ji Ccube

πg (i)

+
∑

µ∈{ x ,y,z }

∑

i

Wµ−loop
ji Cµ−loop

πg (i)

�

×
∏

µ∈{ x ,y,z }

exp

�

aµ−loop
∑

i

Cµ−loop
i

�

cosh

�

bµ−loop +
∑

i

(W ′)µ−loop
i Cµ−loop

πg (i)

�

.

For the hidden feature density, we choose α= 1/4, resulting in two hidden features which
are shared according to the translational symmetries of the system. This choice is guided by
the discussion in Section 4, which highlights that two hidden units per cube are sufficient
to parameterize the unperturbed checkerboard model. Notice, in our parametrization the
visible biases of the single spins and bonds are shared even over sectors not connected by
translations. Due to the enlarged units cell of the checkerboard model, this greatly simplifies
the implementation of the network while maintaining translational invariance. We found that
sharing the visible biases in this way has no noticeable impact on the performance. For a fixed
feature density α and linear system size L, this Ansatz contains 9+ 3L2 + αB(1+ 3L2 + 9

2 L3)
trainable parameters, with B = 8 for translations in the checkerboard model. For the 4×2×2
system, there are 215 variational parameters.

Figure 15: Illustrated is an example of the different correlators included in the cRBM
architecture applied to the checkerboard model. A non-contractible loop correlator
(green), cube correlator (purple) and bond operator (orange) are constructed from
the input configuration and connected to the hidden units (grey).
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B NQS optimization and transfer learning

The gradient fθ j
of the variational energy with respect to a real-valued parameter θ j can be

expressed as

fθ j
=∇θ j

〈ψθ |H|ψθ 〉
〈ψθ |ψθ 〉

= 2Re
h
¬

O†
j H − 〈H〉ψθO†

j

¶

ψθ

i

, (B.1)

where the derivative operators Oj are defined by

Oj |ψθ 〉 :=
∑

σ

ψθ (σ)∂θ j
log(ψθ (σ)) |σ〉⇔ 〈σ|Oj|σ′〉= δσσ′∂θ j

log(ψθ (σ)) = δσσ′Oj(σ) .

(B.2)
If ψθ is holomorphic in terms of its complex-valued parameter θ j , which is the case for the
RBM architectures presented in this work, we instead arrive at the following expression for
the gradient:

fθ j
=
¬

O†
j H − 〈H〉ψθO†

j

¶

ψθ
= Cov(Oj , H) . (B.3)

Otherwise, we can simply treat any complex-valued parameter as two independent real-valued
parameters and again apply Equation B.1. Finally, this expression can be computed by sam-
pling configurations σi from the Born distribution:

Cov(Oj , H) =
¬

O†
j H − 〈H〉ψθO†

j

¶

ψθ
≈

1
Nsamples

Nsamples
∑

i=1

�

O∗j (σi)Eloc(σi)− 〈Eloc〉O∗j (σi)
�

, (B.4)

where the so-called local estimators of H are defined as

Eloc(σ) :=
∑

η

〈σ|O|η〉 ψθ (η)
ψθ (σ)

. (B.5)

Note that the expectation values Cov(Oj , H), which are also referred to as forces, can be con-
veniently expressed as a vector-Jacobian product (VJP) in the following way:

Cov(O, H)† = v†J , (B.6)

where vi := N−1
samples (Eloc(σi)− 〈Eloc〉) and Ji j = Oj(σi) is the Jacobian of the map

�

σ1, ...,σNsamples

�

7−→
�

logψθ (σ1), ..., logψθ (σNsamples
)
�

. (B.7)

This is useful because the local estimators can now be computed efficiently by means of auto-
matic differentiation.

Markov chain Monte Carlo methods are typically deployed to obtain the samples σi . We
make use of the Metropolis-Hastings algorithm, which only requires access to a function pro-
portional to the target probability distribution in order to make sampling from the unnor-
malized NQS feasible. Our update rule includes single spin-flips, cube-flips and flips of non-
contractible loops along all three spatial directions (defined precisely like the σz-type logical
operators) with probabilities 0.51, 0.25, 0.08, 0.08, 0.08, respectively. This improves the ac-
ceptance rate and mixing of the chains, in particular deep in the fracton phase.

In order to minimize the variational energy of the NQS, we make use of stochastic recon-
figuration, a modified gradient-descent update introduced by [54]. Stochastic reconfiguration
(SR) can be derived as a second-order method that tries to align the parameter update with
imaginary time evolution and is the standard optimization technique for NQS applied to the
ground state problem. With SR, the parameter update rule reads

θ new = θ old − γS−1 fθ old
, (B.8)
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where the quantum geometric tensor (QGT) S is defined as

Si j = Cov(Oi , Oj) = 〈O
†
i Oj〉ψθ − 〈O

†
i 〉ψθ 〈Oj〉ψθ . (B.9)

Alternatively, we can write

S = O
†
O , where Oi j :=

1
Æ

Nsamples

�

Oj(σi)− 〈Oj〉
�

. (B.10)

The introduced hyperparameter γ ∈ R+ is called learning rate. Since S is only a noisy estimate
obtained from MC samples and is usually not directly invertible, we regularize it by applying
a diagonal shift S 7→ S + εdiag1. Then, we use the iterative conjugate gradient method for the
inversion. The parameter update B.8 is then applied repeatedly for Niter iterations. Algorithm 1
depicts all essential elements of a training loop for NQS.

The implementation of the transfer learning protocol is straightforward: First, save the
optimized parameters θ ∗prior obtained by training the NQS for some field configuration h⃗prior.

Moreover, we save the final Nchains configurations of the Markov chains s⃗
(Nepochs)
prior . Then, simply

use these parameters and chain states as the new initial parameters θ 0 and chain states s⃗ (0)next
when training the NQS for the next field configuration h⃗next. For the first NQS training run,
we sample the initial parameters from a zero-mean Gaussian with a standard deviation of
σ ∼ 10−2. A too large difference ∆h = |h⃗prior − h⃗next| between successive field strengths
might result in diverging gradients or overflow errors. In general, we found the performance
during transfer learning robust for values ∆h ≲ 0.1. Of course, ∆h can be further reduced to
achieve higher resolution in the critical region, for instance. This needs to be weighed against
the increased computational cost, as transfer learning does not allow the training of NQS for
different field strengths in parallel.

While this optimization scheme is derived from numerical experiments and basis consid-
erations, it can also be seen as an implementation of variational neural annealing (VNA) [60].

Algorithm 1: NQS optimization.
Data: neural network wave function ψθ , Hamiltonian H, MCMC sampler including

update rule, hyperparameters
Result: optimized parameters θ ∗

1 initialize network parameters θ 0;

2 initialize MCMC sampler configurations s⃗ (0) ≡ (s (0)l )l∈{1,...,Nchains };
3 e← 0;
4 while e < Niter do
5 (σi)i∈{1,...,Nsamples }, s⃗ (e+1)← sampler(ψθ e

, s⃗ (e)) ; ▷ incl. thermalization
6 c i j ← η j s.t. 〈σi|H|η j〉 ≠ 0, j ∈ {1, . . . , K }; ▷ get all K connected states
7 mi j ← 〈σi|H|η j〉 ; ▷ get corresponding matrix elements

8 Eloc(σi)←
∑K

j=1 mi j
ψθ (c i j)
ψθ (σi)

; ▷ get all local estimators
9 H ← 1

Nsamples

∑

i Eloc(σi);

10 v← 1
Nsamples

(Eloc(σi)−H);

11 fθ ← VJP(v) ; ▷ compute gradients
12 ∆θ ← S−1 fθ ; ▷ stochastic reconfiguration
13 θ e+1 = θ e − γ∆θ ;
14 e← e+ 1;

15 return θ ∗ = θ Niter
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This is a framework in which variational quantum annealing is emulated using variational
methods such as NQS in order to find the ground state of some Hamiltonian Htarget. To
this end, an additional driving term HD is introduced, such that the full Hamiltonian reads
H(t) = Htarget + f (t)HD, where f (t) describes a time dependent coupling. For simplicity, we
fix f (0) = f (t0) = 1 and f (1) = f (t f ) = 0. The key idea is as follows: HD is chosen such
that the ground state of H(t = 0) is easy to learn. The NQS is trained to approximate the
ground state at t = 0, which serves as the initialization for the VNA procedure: First, the time
is increased by a small increment t i+1 = t i +δt. Then, the neural network is trained for some
number of gradient-descent (SR) steps to approximate the new instantaneous ground state.
Repeating this process until some final time t f is reached such that f (t f ) = 0 should lead to the
ground state of Htarget. At each step, the training of the network at time t i+1 is always initial-
ized with the trained parameters and samples from the previous time t i to ensure adiabaticity.
See [60] for a full discussion and more details. Finally, by identifying the target Hamiltonian
with HFracton, the driving term with the Pauli operators HD =

∑

i σ⃗i , and the magnetic field
strengths h⃗(t) with a suitably chosen schedule of the coupling strength f (t), we recover the
optimization scheme discussed above.

C Complexity

C.1 Hyperparameters

Table 1 shows the hyperparameters that we used to train the cRBM on the checkerboard model
subject to magnetic fields. By making use of one or multiple GPUs, we can efficiently sample
from multiple Markov chains in parallel, denoted by Nchains. New samples are obtained after
Nupdates update steps in the Metropolis-Hastings algorithm to reduce their auto-correlation.
Each chain is individually thermalized after every parameter change by omitting the first Ntherm
samples. The zero-variance principle only applies to the energy and not to other observables
like the magnetization. In order to still obtain accurate estimates of these observables, a much
larger number of samples is required, which we denote as Nexpect. Both the learning rate γ
and the diagonal regularization εdiag of the quantum geometric tensor (QGT) are gradually
reduced after a couple hundred training iterations. We use a smaller learning rate for left-right
sweeps in order to stabilize the training. The reduced number of samples for training on the
L = 8 lattice is due to computational constraints. With these hyperparameter choices, the
time required to train the NQS on an A100 GPU for a single magnetization takes about 2.5h
and 6h for L = 6 and L = 8, respectively (not including the evaluation using Nexpect samples).
Using two V100 GPUs, it takes about 30min to train for a single field configuration on an
L = 4 lattice. In total, training for all field configurations and system sizes required about 140
V100-hours and 390 A100-hours (without evaluation).

C.2 Complexity and parallelization

Table 2 summarizes dominant contributions to different steps of the NQS optimization process
in terms of time and memory complexity. Sampling with the Metropolis-Hastings algorithm
requires a large number of network evaluations ∼ O(N2); there are Nupdates ∼ N update steps
to obtain a new sample, each one requiring a new network evaluation with cost F . For a
G-symmetric RBM architecture with dense filters, it holds that F ∼ N |G|. For any network
architecture, we have that F is at least O(N) in order to process the whole input configura-
tion of size N . For some network architectures the sampling cost can be reduced, for instance
by using look-up tables for RBM architectures. Still, sampling with the Metropolis-Hastings
algorithm belongs to the most time consuming steps in NQS optimization. For every sample,
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there are typically K ∼ N connected matrix elements that must be calculated according to the
specific Hamiltonian. The time scaling in N stems from the fact that each connected element
is a vector of length N that must be constructed and written to memory, but this is generally a
cheap operation. Storing the connected elements is typically the most memory expensive task,
however, it is possible to batch the calculations of the local estimators such that not all con-
nected elements must be stored at the same time. The automatic differentiation capabilities
of JAX allow for the calculation of VJPs at a cost that scales linearly with the evaluation cost of
the network on all samples. However, reverse-mode automatic differentiation requires saving
intermediate results, which are calculated during the forward pass of the network. We denote
the corresponding memory requirement by O(F) (in the memory context); note that this is not
the same amount of (and usually less than the) memory required for storing the parameters
P of the network. Stochastic reconfiguration, in principle, requires the inversion of a P × P
matrix. This scales as O(P3), thereby hindering the deployment of large neural networks. The
iterative conjugate gradient (CG) method can be used to invert the QGT approximately, but it
a requires suitable regularization and a potentially large number of iterations if the QGT has
a high condition number. Note that at no point in time the full QGT needs to be constructed
in memory. Instead, its action on a vector can be recalculated from the Jacobian of the net-
work (Jacobian-dense) or on-the-fly, we refer to the Netket documentation for details [56].
Recently, [68, 69] proposed a modified algorithm to perform SR based on the reduced QGT,
which only has Nsamples×Nsamples entries. This enables SR even for large neural networks and
also allows for direct inversions if the number of samples is not too large.

Since the proposed transfer learning protocol does not allow the training of NQS for multi-
ple field strengths in parallel, it is crucial to optimize the training of individual NQS as much as
possible. In fact, Algorithm 1 can be parallelized to a large degree, as is illustrated in Figure 16.
In particular the sampling, the calculation of local estimators, the computation of the VJP for

the force vector, and the application of S = O
†
O to some vector p (required for the CG solver)

can be parallelized along the sample dimension. However, this speed-up is only noticeable for
a large number of samples because a single GPU can already parallelize many computations,
like sampling from O(100) Markov chains in parallel in the same time as sampling from a
single chain, and communication between ranks causes additional overhead.

Table 1: Hyperparameters for the checkerboard model. The Nsamples samples are
evenly distributed over all Nchains chains, each chain is thermalized individually. A
sample is obtained after performing Nupdates update steps in the Metropolis algorithm.
Nexpect denotes the total number of samples used to evaluate physical observables.
The sampling parameters apply only to larger system sizes (L ≥ 4) where full sum-
mation is not available.

Hyperparameter 4× 2× 2 L = 4 L = 6 L = 8

Nsamples - 214 214 212

Nchains - 1024 1024 1024

Nupdates - 43 63 83

Ntherm - 24 24 20

Nexpect - 24× Nsamples 24× Nsamples 96× Nsamples

Niter 1200 1200 1200 1500

γ (right-left) 10−2→ 10−3 10−2→ 10−3 10−2→ 10−3 3× 10−3→ 10−3

γ (left-right) 10−2→ 10−3 3× 10−3→ 10−3 3× 10−3→ 10−3 3× 10−3→ 10−3

εdiag 10−4→ 10−5 10−4→ 10−5 10−4→ 10−5 10−4→ 10−5
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Table 2: Overview of time and memory complexities of individual steps during NQS
optimization. N denotes the number of qubits, K denotes the maximum number of
connected elements for any input state. F denotes the cost of evaluating the network
for a single input in the time context and the space required to store intermediate
values during the forward pass in the memory context. P denotes the number of
variational parameters in the network.

time complexity memory complexity

sampling O
�

(Ntherm + Nsamples)NupdatesF
�

O(NsamplesN)

connected
matrix elements

O(NsamplesKN) O(NsamplesKN)

local estimators O(NsamplesKF) O(NsamplesNK)

forces O(4NsamplesF) O(NsamplesF)

stochastic
reconfiguration

direct: O(P3)
CG: O(PNsamplesNiter)

direct: O(P2)
Jacobian-dense: O(PNsamples)

on-the-fly: O(FNsamples)

C.3 Code implementation

Our code [51] is based on the Netket library [56] and JAX [57]. JAX is a machine learning
and HPC framework written in Python that supports automatic differentiation and functional
transformations on CPU, GPU and TPU. Jax traces the action of functions on their input to
construct the computational graph, which is then compiled using XLA, an open-source com-
piler for machine learning applications. For instance, automatic differentiation allows for ef-
ficient computation of the forces for the NQS optimization through vector-Jacobian products,
and functional transformations such as vmap make it simple to sample from multiple O(100)
Markov chains in parallel in the same time as a single chain by making use of the parallel
compute capabilities of GPUs. We implemented the NQS architectures, the update rule for the
Metropolis sampler, and the operators ourselves. For the basic infrastructure, like computing
gradients and SR, we rely on the Netket library.

To demonstrate an advantage of our implementation, we briefly discuss the implementa-
tion of the Hamiltonians. It is generally not tractable to store any operator like the Hamil-
tonian as a matrix for large system sizes. Instead, we implement operators as functions that
take as input some spin configuration |σ〉 and return the connected elements |η〉i such that
〈σ|H|ηi〉 ̸= 0 ∀i, as well as the corresponding matrix elements 〈σ|H|ηi〉. Netket’s built-in local
operator API makes it very simple to implement operators that can be written as a sum of local
operators. However, in order to make this API so flexible, it works with matrix representations
of the individual local operators behind the scenes. For the checkerboard model, Netket han-
dles O(N) different matrices of size 28×28 corresponding to the stabilizer generators defined
on the cubes, which leaves much room for performance improvements.
Here, we compare the performance between our custom operator implementation and the
NetKet local operator version in Figure 17 in the presence of a magnetic field along the x-
direction. For the Checkerboard model, every input configuration leads to 1+ L3/2+ L3 con-
nected elements (1 diagonal element, L3/2 from the AC cube operators and L3 = N from
the magnetic field) and corresponding matrix elements. All computations are run on a single
Nvidia V100 GPU. The python script to reproduce these plots is located in our repository [51]
under the name custom_operator_performance.py.
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Figure 16: Visualization of an NQS optimization step distributed over multiple
hosts/processes, in this example four. Most communications between ranks are re-
quired for the iterative CG procedure. We typically run O(100) chains in parallel on
each rank. For more detailed benchmarks investigating the speed-up when working
with multiple hosts, see [56].

2 4 6 8
Linear system size L

106

107

108

109

T
im

e
in

n
s

Custom

NetKet

Size L Custom Operator NetKet Operator
2 8e+05 5.54e+06
4 9e+05 5.65e+07
6 2.1e+06 3.36e+08
8 8.1e+06 1.186e+09

Figure 17: The time required to compute connected elements and corresponding ma-
trix elements for the checkerboard model subject to a magnetic field in x-direction is
shown for NetKets built-in local operator interface (red) and our custom implemen-
tation (green) in nanoseconds for different system sizes L× L× L. 2048 samples are
used.
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D Convergence diagnostics

Figure 18 and 19 show different MC statistics for the L = 4 and L = 8 checkerboard model,
respectively, averaged over the last 200 training iterations. Next to the acceptance ratio of the
weighted update rule and the estimated auto-correlation time τ, they also display the split-R̂
value and the so-called V-score. The split-R̂ value, introduced by [58], is a modified version
of the original R̂ value [71] that measures the ratio between the intra-chain and inter-chain
variance when sampling from multiple chains in parallel. High R̂ values indicate slow mixing
of the chains, which means that the variance between chains exceeds the variance within any
single chain. Ideally, R̂ should be close to 1 and R̂ ≲ 1.1 is deemed acceptable. For the split-R̂
value, each chain is split in half and treated independently while applying the same analysis
as for the regular R̂, resulting in higher sensitivity to non-convergence of single chains. The
V-score [59] is a dimensionless intensive number defined by N Var(E)

E2 , which can be used to
compare the variational accuracy of different methods on the same ground state problem; we
refer to the original paper for a detailed discussion.

Although Figure 18 and 19 confirm that the L = 8 problem is harder in terms of sam-
pling and V-score, the acceptance rate of updates does not fall significantly below 0.5 and the
auto-correlation times stay sufficiently short. Unsurprisingly, the critical region is particularly
challenging for the NQS. This is indicated by an increase of the split-R̂ value and the V-score, as
well as the auto-correlation times, although the latter stay very low overall; in particular, the
high split-R̂ values close to the critical point seems problematic at first glance. As mentioned
earlier, split-R̂ is particularly sensitive to non-convergence of individual chains and might not
be the most suitable score for massively parallel sampling with O(1000) chains or more [58].
Close to the first-order transition, we expect the Markov chains to remain in different (meta-
)stable configurations; even after passing the transition point, the variational state and the
chains tend to remain in the (meta-stable) phase in which the state was initialized. This is
precisely what causes the observed hysteresis. As the chains begin to explore the region of
Hilbert space corresponding to the other phase, the variance increases significantly. At some
point, the NQS and the majority of the Markov chains transition to the new phase in order
to decrease the variational energy. (This is not observed for left-right sweeps and L = 6,8,
likely due to slow mixing and the stability of the fracton phase for larger system sizes.) We
observe that about O(10)Markov chains remain in the initial meta-stable phase even after the
NQS transitioned towards the new phase. However, their impact on estimated observables
should not be significant in the face of the O(1000) parallel chains used for sampling, but they
still cause increased variance (lower than in the critical region, higher than deep in the initial
phase) and split-R̂. Hence, it can be argued that the increased variance and split-R̂ in the crit-
ical region is a natural consequence of the first-order transition, while the increased variance
after transitioning to the new phase is a sampling-related issue. More work needs to be done
- like improved sampling techniques, a denser grid of field values, or even larger networks -
in order to make precise statements about the exact location of the transition point, but the
nature and rough location of the transition should have been captured well by our methods.
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Figure 18: Different MCMC diagnostics averaged over the last 200 training iterations
to assess the quality of the sampling process for the L = 4 Checkerboard model and
varying magnetic x-fields are shown.
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Figure 19: Different MCMC diagnostics averaged over the last 200 training iterations
to assess the quality of the sampling process for the L = 8 Checkerboard model and
varying magnetic x-fields are shown.
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E Supplementary results

E.1 Hyperparameter comparison
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Figure 20: Comparison of different model architectures for learning the ground state
of the pure Checkerboard model on a 4×2×2 lattice. The real and imaginary parts of
the parameters are initialized separately using a centered uniform distribution with
given standard deviations. The number in parentheses corresponds to the number of
hidden units. The parameter counts for the different models are 208 for the FFNN,
288/152 for the RBM(16)/(8), 137/69 for the symmetric RBM(8)/(4), 88 for the
symmetric NN, 120 for the Jastrow and 52 for the cRBM architecture. The ground
state energy is indicated by the dashed grey line.
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E.2 X-cube model

In full analogy to the checkerboard simulations, we have included star, loop and bond correla-
tors into the cRBM parametrization. Moreover, cube flips are proposed with a small probability
at each update step during sampling. In order to stabilize the computations, a denser grid for
the field strengths and slightly stronger diagonal regularization (εdiag = 10−2 → 10−3) were
required. We use 213 samples during training for L = 3,4 and 212 samples for L = 5, and the
number of stochastic reconfiguration steps after each field change are adapted dynamically.
We choose a feature density of α = 1, leading to 3 hidden units. Otherwise, the choice of
hyperparameters is similar to Table 1. The networks contain 1591, 3673, 7075 parameters for
L = 3,4, 5, respectively.
Fig. 21 shows the energy per site and magnetization in the X-cube model subject to a magnetic
field in x-direction for different system sizes. The L = 3 lattice is too small to exhibit a clear
first-order transition, while the larger lattices display a strong hysteresis. We observe a strong
first-order transition at hx ,c ≈ 0.91(1), determined from the intersection point of the energy
curves for the largest system size in Fig. 21, which is in accordance with existing results: Previ-
ously, the critical value for the magnetic field in x-direction was estimated to be hx ,c ≈ 0.9 [44]
via quantum Monte Carlo simulations, and hx ,c = 0.9196±0.0012 [46] from high-order series
expansions.
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Figure 21: Comparison of the energy per spin and magnetization obtained from the
symmetric cRBM architecture trained on the X-cube model for different system sizes
and sweep directions. The total number of qubits in the system is equal to 3L3.
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