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Renormalisation group effects in SMEFT for di-Higgs production
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Abstract

We study the effects of renormalisation group running for the Wilson coefficients of
dimension-6 operators contributing to Higgs boson pair production in gluon fusion
within Standard Model Effective Field Theory (SMEFT). The running of these Wilson
coefficients has been implemented in the NLO QCD code ggHH_SMEFT, which is publicly
available within the Powheg-Box-V2 framework.
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1 Introduction

The production of Higgs boson pairs is of major importance to elucidate the form of the Higgs
potential, at the LHC as well as at future colliders. The form of the Higgs potential assumed
in the Standard Model (SM) is reminiscent of an effective potential, yet unknown physics at
higher energy scales may alter its form, leading to small deviations from the SM expectation
at energies we are currently able to probe.

Parametrising effects of new physics at higher energy scales through Effective Field Theory
(EFT) is a meanwhile well established procedure, and the experimental collaborations already
have constrained large sets of Wilson coefficients related to an EFT expansion such as Standard
Model Effective Field Theory (SMEFT) [1–4] or Higgs Effective Field Theory (non-linear EFT,
HEFT) [5–10].

Global fits based on observables from different processes can lift degeneracies in the space
of anomalous couplings and may hint to patterns of deviations from the SM. On the other
hand, they involve measurements at different energy scales, for example when combining
flavour and high energy collider data. Therefore it is important to take the running according
to their renormalisation group equations (RGEs) into account. In SMEFT, the one-loop running
for dimension-6 operators has been calculated in Refs. [11–13] and implemented in various
tools [14–18]. Work on two-loop running in SMEFT has also started to emerge [19–23]. In
HEFT, the one-loop RGEs have been worked out in Refs. [24,25].

The impact of one-loop RGE running effects of Wilson coefficients on processes relevant for
LHC phenomenology, such as Higgs+jet, Higgs pair, t t̄ or t t̄H production, has been studied in
Refs. [23,26–30]. However, for Higgs boson pair production in gluon fusion, running Wilson
coefficients in combination with full SM NLO QCD corrections, calculated in Refs. [31–34],
are not yet available.

For constant Wilson coefficients, the results of [31] have been implemented into the
Powheg-Box-V2 event generator [35–37] allowing for κλ variations in Ref. [38] and includ-
ing the leading operators contributing to this process for HEFT in Ref. [39,40] and for SMEFT
in Ref. [41]. Recently, the NLO QCD corrections obtained from the combination of a pT -
expansion and an expansion in the high-energy regime have been calculated analytically and
implemented in the Powheg-Box-V2 [42]. We note that in HEFT, the QCD renormalisation
factorises from the treatment of the leading operators contributing to g g → hh [25,43], there-
fore the running effects are given by the QCD running of the strong coupling (and masses in
the MS scheme), when considering only the leading logarithmic (LL) level.

The present work aims to further extend the functionalities of the public code
ggHH_SMEFT [41], which since recently also includes 4-top-operators and the chromo-
magnetic operator [44], providing now the leading RGE running of the operators included
in the program. This is a further step on the way to provide tools combining precise predic-
tions in the SM with flexible functionalities for Higgs boson pair production within SMEFT and
HEFT.

This paper is structured as follows: in Section 2, the RGE running of the leading and
subleading Wilson coefficients contributing to g g → hh is calculated. Section 3 describes
the implementation and usage within the ggHH_SMEFT code. In Section 4, we perform phe-
nomenological studies to assess the effects of running Wilson coefficients on Higgs boson pair
production, before we conclude in Section 5. The Appendix contains details about power
counting in view of the RGEs.
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2 The RGE running for the relevant subset of Wilson coefficients

We are considering the following operators at dimension-6 in the SMEFT, relevant for Higgs
boson pair production in gluon fusion:

LSMEFT ⊃ CH□ (φ
†φ)□(φ†φ) + CHD (φ

†Dµφ)
∗(φ†Dµφ) + CH (φ

†φ)3

+ CtH

�

φ†φQ̄Lφ̃ tR + h.c.
�

+ CHGφ
†φGa

µνGµν,a

+ CtG

�

Q̄Lσ
µνT aGa

µνφ̃ tR + h.c.
�

+ C(1)Qt Q̄Lγ
µQL t̄Rγµ tR + C(8)Qt Q̄Lγ

µT aQL t̄RγµT a tR ,

(1)

where σµν = i
2 [γ

µ,γν] and φ̃ = iσ2φ is the charge conjugate of the Higgs doublet. The di-
mensionful Wilson coefficients are also commonly written as Ci =

Ci
Λ2 with explicit appearance

of the new physics cutoff scale Λ to highlight the canonical dimension of a term. The missing
4-top operators with coefficients C(1)QQ, C(8)QQ and Ct t have been shown to provide no noticeable
impact on the cross section of Higgs pair production [44].

The full one-loop RGE of the dimension-6 Wilson coefficients in the Warsaw basis [2] has
been derived some time ago and can be found in Refs. [11–13]. According to our opera-
tor selection based on power counting arguments and the assumption of weakly coupled UV
completions, the first two lines in Eq. (1) comprise the leading EFT contribution, while the
remaining ones are subleading [44,45]. Focussing on QCD effects affecting the coefficients in
Eq. (1), we only need a subset of the one-loop anomalous dimension, namely for CtH , CHG ,

CtG , C(1)Qt and C(8)Qt , but have to add the mixing of the 4-top Wilson coefficients into CHG at
two loops. This has been worked out in Ref. [46], where it also has been pointed out that
the 4-top-Wilson coefficients depend on the chosen γ5 scheme. In this section we restrict the
discussion to the Naive Dimensional Regularisation (NDR) scheme [47], yet the RGE solution
as implemented in ggHH_SMEFT [41,44] provides a choice between NDR and a version of the
Breitenlohner-Maison-t’Hooft-Veltman (BMHV) scheme [48, 49]. Details about the usage are
described in Section 3.

The solution of the RGE is represented in analytical form in terms of the scale dependence
of the strong coupling αs. To keep a consistent truncation of higher orders, we use the RGE of
the strong coupling in the nexto-to-leading-logarithmic (NLL) approximation, which has the
form [50]

µ
dαs

dµ
= −2αs

�

β0
αs

4π
+ β1

α2
s

16π2

�

, (2)

with
β0 =

11
3

cA−
4
3

TF nl ,

β1 =
34
3

c2
A − 4cF TF nl −

20
3

cATF nl .
(3)

The familiar solution at leading logarithmic (LL) accuracy for the evolution from an input scale
µ0 to µ is given by

αLL
s (µ) =

αs(µ0)

1+αs(µ0)
β0
2π log µ

µ0

, (4)

solutions beyond LL are usually provided numerically, e.g. together with the employed parton
distribution function (PDF) interfaced to a Monte-Carlo generator.

For later reference, we also list the QCD induced RGE terms of the top-Yukawa coupling in
the MS scheme y t [51]

µ
dy t

dµ
= −2y t

�

β
y
0
αs

4π
+ β y

1

α2
s

16π2

�

, (5)
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with
β

y
0 = 3cF ,

β
y
1 =

3
2

c2
F +

97
6

cF cA−
10
3

cF TF nl ,
(6)

and its solution in terms of αs

y LL
t (µ) = y t(µ0)

�

αLL
s (µ)

αs(µ0)

�

β
y
0
β0

, (7)

at LL and

y t(µ) = y t(µ0)
�

αs(µ)
αs(µ0)

�

β
y
0
β0

 

β0 + β1
αs(µ)

4π

β0 + β1
αs(µ0)

4π

!−
β

y
0
β0
+
β

y
1
β1

, (8)

at NLL QCD.

2.1 SMEFT renormalisation scale dependence and renormalisation group evo-
lution at Leading Log

In general, if we decouple the MS renormalisation scale of the SMEFT coefficients, µEFT, from
the (QCD) renormalisation scale of the SM, µR, the dependence of the cross section on µEFT has
two origins. There is an explicit dependence of the fixed order amplitude on µEFT introduced
by the renormalisation of the bare Wilson coefficients, C b

i , related to the renormalised Wilson
coefficients Ci by

C b
i = µ

κiε
EFT

�

Ci +δ
C j

Ci
C j

�

, (9)

where κi is a natural number determined by the field (and SM coupling) content of the oper-

ator. For convenience, we summarise the relevant counter terms δ
C j

Ci
entering our calculation

of g g → hh:

δ
CtH
CtH
=
(4πe−γE )ε

ε

αs

4π

�

−β y
0

�

µ2
R

µ2
EFT

�ε�

,

δ
CHG
CHG
=
(4πe−γE )ε

ε

αs

4π

�

−β0

�

µ2
R

µ2
EFT

�ε

+

�

µ2
R

m2
t

�ε
4
3

TF

�

,

δ
C(1)Qt

CtH
=
(4πe−γE )ε

ε

1
16π2

γ
CQt

CtH

2

�

µ2
R

µ2
EFT

�ε

,

δ
C(8)Qt

CtH
= cFδ

C(1)Qt

CtH
,

δ
CtG
CHG
=
(4πe−γE )ε

ε

gs

16π2

γ
CtG
CHG

2

�

µ2
R

µ2
EFT

�ε

,

δ
C(1)Qt

CHG
=
(4πe−γE )2ε

ε

gs

16π2

γ
CQt

CHG

4

�

µ2
R

µ2
EFT

�2ε

,

δ
C(8)Qt

CHG
= (cF −

cA

2
)δ

C(1)Qt

CtH
,

(10)
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where we introduced

γ
CQt

CtH
= 8yt

�

y2
t −λ

�

=
4
p

2mt

�

4m2
t −m2

h

�

v3
,

γ
CtG
CHG
= 8TF yt = 8

p
2TF

mt

v
,

γ
CQt

CHG
= −8TF y2

t
1

16π2
= −16TF

m2
t

v2

1
16π2

.

(11)

On top of the explicit dependence on µEFT in terms of fixed order renormalisation, the
cross section also implicitly depends on µEFT due to the scaling of the renormalised Wilson co-
efficients dictated by the RGE. Our selection of relevant RGE terms follows from a few guiding
principles, as explained below.

We are interested only in the Wilson coefficients listed in Eq. (1), as these lead to non-
negligible contributions to the cross section without running effects following the investigation
in Ref. [44], and consider only QCD effects at LL plus those non-QCD terms which are induced
by the renormalisation necessary for a finite contribution of the subleading Wilson coefficients
to g g → hh listed in Eq. (10).

Moreover, since we want to describe the scaling behaviour relevant for a precise measure-
ment of Wilson coefficients at current collider energies and not incorporate the running up to
or down from an arbitrarily high energy scale, we employ a decoupling of heavy particles like
the top-quark and the Higgs boson from the RGE, as their logarithmic contributions should not
be of high impact. This also has to be respected in the NLO QCD calculation, which is implicitly
considered by the counter term δ

CHG
CHG

in Eq. (10), implying a decoupling of the top-quark at
mt . In addition, we fix the mass of the top-quark (and associated Yukawa-parameter) with an
on-shell renormalisation. A subsequent running between measurement scale and UV match-
ing scale can be performed independently with all SM particles and parameters being active,1

and may include higher logarithmic accuracy, as the large scale difference might require much
more precision.

Following these criteria, the remaining terms of the RGEs are given by

µ
dCtH

dµ
= −2β y

0
αs

4π
CtH + γ

CQt

CtH

1
16π2

�

C(1)Qt + cFC(8)Qt

�

,

µ
dCHG

dµ
= −2β0

αs

4π
CHG + γ

CtG
CHG

gs

16π2
CtG + γ

CQt

CHG

αs

4π

�

C(1)Qt + (cF −
cA

2
)C(8)Qt

�

,

µ
dCtG

dµ
= −βtG

αs

4π
CtG ,





µ
dC(1)Qt
dµ

µ
dC(8)Qt
dµ



= −β̂Qt
αs

4π

�

C(1)Qt

C(8)Qt

�

,

(12)

1For µ0 = mt the decoupling of the top quark is continuous at the considered order in perturbation theory,
such that the 5-flavour version of CHG coincides with the 6-flavour version at the measurement scale. This is
desirable, as the running between measurement and matching requires the 6-flavour version which would be
directly available in that case. For choices of µ0 in the vicinity of mt , the discrepancy neglecting the scale difference
is numerically irrelevant, such that the identification of the 5-flavour and 6-flavour version at µ0 is still possible.
Even for µ0 = 1 TeV the effect of the associated mismatch on the total cross section is less than 2 % of the Born
cross section.
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with diagonal coefficients
βtG = β0 + 4cA− 10cF ,

β̂Qt =





0 3
N2

c −1
N2

c

12
6N2

c −2Nc−12
Nc



 .
(13)

Let us comment on how we applied the selection criteria to arrive at the expressions above.

• Identifying the QCD terms contained in the results of Ref. [13] entering at LL relies on the
application of a power counting scheme for which we provide some details in Appendix
A.

• The coefficients C(1)Qt and C(8)Qt are not closed under QCD corrections, as the four-fermion
Wilson coefficients mix heavily with each other under renormalisation [13]. Neglecting
these additional mixings is expected to lead to less than 10% effects on the contribution
of C(1)Qt and C(8)Qt to the cross section. This has been estimated by investigating the effect

of C(1)Qt or C(8)Qt defined at the input scale µ0 = 1TeV on the cross section when comparing
the full RGE solution with a version with constant subleading coefficient. For realistic
scenarios within ranges presented in Fig. 4, the missing contribution is expected to be
well within the scale uncertainty range.

• Relying on power counting arguments alone, there would be an additional mixing of
CHG into CtG in Eq. (12) as part of the LL QCD effects, cf. Appendix A. Yet, since the
one-particle-irreducible diagrams generating this mixing require a Higgs propagator, this
mixing term should be decoupled according to our selection criteria. Moreover, this
mixing is also irrelevant from the numerical point of view, as the measured limits of CHG
are much tighter than the bounds on CtG itself [52] and the effect of the subleading
Wilson coefficient CtG is numerically much smaller than the dependence on the leading
contribution of CHG .

In order to solve Eq. (12) in terms of αs we first find the solution to the homogeneous
terms described by βi and subsequently add the inhomogeneous solution by the introduction
of scale dependent coefficients. We thus find for the running from the input scale of the SMEFT
coefficients, µ0, to µEFT

C LL
tH (µEFT) =

�

αs(µEFT)
αs(µ0)

�

β
y
0
β0 �CtH(µ0) +∆CtH(µEFT,C(1)Qt ,C(8)Qt )

�

,

C LL
HG(µEFT) =

αs(µEFT)
αs(µ0)

�

CHG(µ0) +∆CHG(µEFT,CtG ,C(1)Qt ,C(8)Qt )
�

,

CtG(µEFT) =
�

αs(µEFT)
αs(µ0)

�

βtG
2β0 CtG(µ0) ,

�

C(1)Qt (µEFT)
C(8)Qt (µEFT)

�

= exp
�

log
�

αs(µEFT)
αs(µ0)

�

β̂Qt
1

2β0

�

�

C(1)Qt (µ0)
C(8)Qt (µ0)

�

.

(14)
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The formal solution of
�

C(1)Qt (µEFT), C(8)Qt (µEFT)
�T

is impractical for the determination of

∆CtH(µEFT,C(1)Qt ,C(8)Qt ) and ∆CHG(µEFT,CtG ,C(1)Qt ,C(8)Qt ), we therefore express the result in terms
of the diagonalised system of the last equation in Eq. (12). We introduce the rotation matrix
RQt , which leads to a diagonalisation of2

RQt β̂QtR
−1
Qt =

�

βQt,1 0
0 βQt,2

�

=: diag
�

βQt,i

�

, (15)

with eigenvalues

βQt,1/2 =
1
2

�

(β̂Qt)88 ∓
Ç

(β̂Qt)288 − 4(β̂Qt)18(β̂Qt)81

�

. (16)

With this definition, we may write

�

C(1)Qt (µEFT)
C(8)Qt (µEFT)

�

= R−1
Qt diag

 

�

αs(µEFT)
αs(µ0)

�

βQt,i
2β0

!

RQt

�

C(1)Qt (µ0)
C(8)Qt (µ0)

�

. (17)

For the full LL expression of CtH and CHG we finally find

C LL
tH (µEFT) =

�

αs(µEFT)
αs(µ0)

�

β
y
0
β0
�

CtH(µ0)

+
γ
CQt

CtH

g2
s (µ0)

�

1, cF
�

R−1
Qt diag









1−
�

αs(µEFT)
αs(µ0)

�

βQt,i−2β
y
0 −2β0

2β0

βQt,i − 2β y
0 − 2β0









RQt

�

C(1)Qt (µ0)
C(8)Qt (µ0)

�

�

,

(18)

and

C LL
HG(µEFT) =

αs(µEFT)
αs(µ0)

�

CHG(µ0) +
γ
CtG
CHG

gs(µ0)

1−
�

αs(µEFT)
αs(µ0)

�

βtG−3β0
2β0

βtG − 3β0
CtG(µ0)

+ γ
CQt

CHG

�

1, cF −
cA
2

�

R−1
Qt diag







1−
�

αs(µEFT)
αs(µ0)

�

βQt,i−2β0
2β0

βQt,i − 2β0






RQt

�

C(1)Qt (µ0)
C(8)Qt (µ0)

�

�

.

(19)

2.2 Inclusion of QCD effects beyond Leading Log

Since the fixed order calculation includes NLO QCD corrections to the leading SMEFT contri-
bution, it is desirable to include QCD effects at the next-to-leading-logarithmic (NLL) level as
well. As the full NLL scaling of the SMEFT is yet unknown, we follow the procedure of Ref. [27]
and include an overall factor multipying the LL solutions of Eqs. (18) and (19), which describes
the NLL QCD evolution of the respective homogeneous part of the RGE. The additional RGE
term for CHG can be derived from Eq. (19) of Ref. [27] identifying cg =

CHG
αs

. Since OtH has
the same structure as the Yukawa interaction regarding QCD corrections, the additional term

2The definition on the right of Eq. (15) serves as a short-hand notation we use for 2-dimensional diagonal
matrices, where the diagonal entries are evaluated with i = 1, 2.
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for CtH follows from Eq. (5). The final version of the RGE has the form

µ
dCtH

dµ
= −2

�

β
y
0
αs

4π
+ β y

1

� αs

4π

�2�

CtH + γ
CQt

CtH

1
16π2

�

C(1)Qt + cFC(8)Qt

�

,

µ
dCHG

dµ
= −2

�

β0
αs

4π
+ 2β1

� αs

4π

�2�

CHG + γ
CtG
CHG

gs

16π2
CtG + γ

CQt

CHG

αs

4π

�

C(1)Qt + (cF −
cA

2
)C(8)Qt

�

,

µ
dCtG

dµ
= −βtG

αs

4π
CtG ,





µ
dC(1)Qt
dµ

µ
dC(8)Qt
dµ



= −β̂Qt
αs

4π

�

C(1)Qt

C(8)Qt

�

,

(20)
and we have approximate solutions

CtH(µEFT) = C LL
tH (µEFT)

 

β0 + β1
αs(µEFT)

4π

β0 + β1
αs(µ0)

4π

!−
β

y
0
β0
+
β

y
1
β1

,

CHG(µEFT) = C LL
HG(µEFT)

 

β0 + β1
αs(µEFT)

4π

β0 + β1
αs(µ0)

4π

!

.

(21)

3 Implementation and usage within the Powheg-Box-V2

The RGE evolution described in the previous section is implemented as an extension of
ggHH_SMEFT [41,44] while the usage of the preexisting features is the same.

We added some new options in the input card which define the RGE flow of the coefficients:

WCscaledependence : Switches the scale dependence of the Wilson Coefficients be-
tween three modes,
0: µEFT = µR but without any running effects (default, represents previ-
ous implementation)
1: static EFT scale µEFT = µ0.
Takes the fixed value for the EFT input scale defined by the user. If
EFTscfact ̸= 1, µEFT = µ0 × EFTscfact, such that running between
µ0 and µEFT is included.
2: dynamic EFT scale, µEFT =

mhh
2 × EFTscfact with running.

inputscaleEFT : defines the input scale/measurement scale µ0 of the Wilson coeffi-
cients, from which the running starts.
(Only relevant for WCscaledependence> 0.)

EFTscfact : varies the EFT scale µEFT around the central EFT scale, i.e.
µEFT = µEF Tcentral

× EFTscfact, to be used for uncertainty assessment.

The new features require the code to be run in SMEFT mode, i.e. setting usesmeft = 1,
since it describes the running of the SMEFT Wilson coefficients. In addition,
includesubleading = 0 [44] switches off the mixing terms of the subleading coeffi-
cients into the leading coefficients. No additional requirement is put on the setting of
SMEFTtruncation (this keyword supersedes multiple-insertion),3 nevertheless only

3multiple-insertion is still available for backwards compatibility, however the setting of
SMEFTtruncation overrules the value given for multiple-insertion.
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SMEFTtruncation = 0, 1 corresponding to truncation options (a) (SM+linear EFT) and (b)
(SM+linear and quadratic EFT) [41], respectively, are valid choices in a consistent SMEFT
power counting.

As a reminder, these truncation options correspond to

dσ = dσSM + dσdim6
︸ ︷︷ ︸

(a)

+dσdim6×dim6

︸ ︷︷ ︸

(b)

, (22)

where

dσdim6 :=
∑

i

Ci(µEFT)dσi (µR,µF ,µEFT) ∼
∑

i

Ciℜ
�

MSMM∗i
�

,

dσdim6×dim6 :=
∑

i, j

Ci(µEFT)C j(µEFT)dσi× j (µR,µF ,µEFT) ∼
∑

i, j

CiC jℜ
�

MiM∗j
�

,
(23)

denote the linear interference with the SM and quadratic contribution to the cross section,
respectively. The sums over i, j include all Wilson coefficients of Eq. (1). In addition, the
amplitudes are further expanded according to perturbation theory in the SM couplings; we
provide NLO QCD corrections to the SM and the leading Wilson coefficient contributions in-
volving {CH□,CHD,CH ,CtH ,CHG}. This leads to

dσSM = dσLO
SM + dσNLO

SM ,

dσi =

¨

dσLO
i + dσNLO

i , for i ∈ {CH□,CHD,CH ,CtH ,CHG} ,
dσLO

i , for CtG , 4-top operators,

dσi× j =

¨

dσLO
i× j + dσNLO

i× j , for i, j ∈ {CH□,CHD,CH ,CtH ,CHG} ,
dσLO

i× j , for CtG , 4-top operators.

(24)

In the following section, we refer to this expansion when discussing the inclusion of NLO QCD
effects.

4 Results

The results presented in this section were obtained for a centre-of-mass energy ofp
s = 13.6 TeV using the PDF4LHC15_nlo_30_pdfas [53] parton distribution functions, in-

terfaced to our code via LHAPDF [54], along with the corresponding value for αs. We
used mh = 125 GeV for the mass of the Higgs boson; the top quark mass has been fixed to
mt = 173 GeV to be coherent with the virtual two-loop amplitude calculated numerically, the
top quark and Higgs boson widths have been set to zero. We set the central renormalisation
and factorisation scales to µR = µF = mhh/2.

For the reference distributions representing the previously existing implementation we set
µEFT = µR, but keep the values of the Wilson coefficients fixed, and use a 3-point scale variation
of µR = µF = mhh/2 · {1, 2, 1

2}. This choice of fixed Wilson coefficients effectively corresponds
to setting Ci(µEFT) = Ci(µ0) and therefore it leaves uncancelled logarithms at NLO. However,
we demonstrate in the following that the differences are not large for a convenient choice of
the SMEFT input scale µ0. The central SMEFT scale for the other distributions is either chosen
to be static with µEFT = µ0 (µEFT fixed) or dynamic with µEFT = mhh/2 (µEFT dynamic) and
the scale variation is only applied to µEFT.

We start by considering the behaviour of a single Wilson coefficient, with Ci(µ0) = 1 TeV−2

as input, and focus only on the interference term (dσdim6 ), defined in Eq. (23). We compare
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five different settings for the RGE effects: µEFT = µR with constant coefficients (reference
distribution, denoted by “without µEFT dependence”), and both, fixed and dynamic µEFT, for
input scales of µ0 = 200 GeV and µ0 = 1 TeV.

Fig. 1 demonstrates the running effects for the leading coefficients CtH and CHG individu-
ally, as these coefficients only contribute to the diagonal part of the anomalous dimension. The
upper panels only show the non-vanishing values of the Wilson coefficients for each scenario,
the middle panels show the distributions at LO and the lower panels at NLO QCD. We observe
that distributions with µ0 = 200 GeV are compatible with the reference distributions where
no µEFT dependence was included. Including µEFT and using µ0 = 1 TeV, the running effects
for CtH are within the SM 3-point scale uncertainty band (the grey band in Fig. 1), whereas
for CHG the running has a noticeable effect beyond the SM scale uncertainty. However, this
may originate from the fact that there is a factor of αs less in the amplitude, since we do not
factor out gs explicitly from the Wilson coefficient, sticking to the Warsaw basis conventions.
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Figure 1: Top row: Running of the Wilson coefficients as a function of mhh, mid-
dle and bottom row: mhh differential cross sections for dσdim6 at LO and NLO
QCD, respectively, with different modes of EFT running, considering only the con-
tribution of a single Wilson coefficient. Left: CtH(µ0) = 1 TeV−2 as input, right:
CHG(µ0) = 1 TeV−2 as input; upper: values of the Wilson coefficients. The grey
bands denote 3-point scale variations of µR and µF , while the coloured bands denote
variations of µEFT by a factor of two around its central value.
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Figure 2: Running values of the Wilson coefficients and differential results for dσdim6
as a function of mhh with different modes of EFT running for CtG(µ0) = 1 TeV−2 as in-
put. Upper: values of the Wilson coefficients, lower left: mhh-distributions for dσdim6
at LO, lower right: mhh-distributions including NLO QCD corrections to the contri-
bution of RGE induced leading Wilson coefficients. Again, the grey bands denote
3-point scale variations of µR and µF , while the coloured bands denote variations of
µEFT by a factor of two around its central value.

This reduces the SM scale uncertainty, but adds an additional contribution to the running of
CHG , thus leading to a more significant dependence on the variation of µEFT. This fact empha-
sizes the necessity to estimate the scale uncertainties in a combined manner, to account for
different conventions concerning the absorption of SM couplings into Wilson coefficients.

We note that, by construction, the central scale prediction for an input scale µ0 = 200 GeV
precisely coincides with the reference distribution at mhh = 400 GeV, since µR = µF = mhh/2.

In Fig. 2 we investigate the running for the input CtG(µ0) = 1 TeV−2. RGE running where
only CtG is non-zero at the input scale µ0 implies a mixing into CHG , which is induced due to
the off-diagonal terms in the anomalous dimension in Eq. (12); the scale dependent values
of the two Wilson coefficients are depicted in the upper panel. Comparing the distributions
in the lower panels, we notice that the two different choices for the EFT input scale lead to
vastly different shapes. While µ0 = 200 GeV is within the scale uncertainty of the reference
distribution, choosing µ0 = 1 TeV leads to results with a different sign for the interference
contribution dσdim6 . These differences clearly demonstrate that the specification of the input
scale is necessary to obtain non-ambiguous results. We also observe that the effects of the
running, especially the uncertainties due to variations ofµEFT, are more pronounced when NLO
corrections are included. This can be understood by remembering how the Wilson coefficients
enter at the different orders in QCD (see Eq. (24)): the contributions multiplying CtG(µEFT)
(and also C(1)Qt (µEFT) or C(8)Qt (µEFT)) only enter at LO, while the contributions of the mixing
effect into CHG(µEFT) or CtH(µEFT) are considered at NLO QCD, and are thus enhanced by a
K-factor of approximately 2.
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Table 1: Definition of benchmark scenario 6, considered here in terms of SMEFT
Wilson coefficients. Coefficients not listed here are set to 0. Benchmark point 6
refers to the set given in Refs. [41, 56], which is an updated version of Ref. [57].
The benchmark points were originally derived in HEFT, where benchmark point 6
corresponds to chhh = −0.684, ct th = 0.9, ct thh = −

1
6 , cg gh = 0.5, cg ghh = 0.25. CHG

is determined using αs(mZ) = 0.118 in the translation between HEFT and SMEFT
coefficients.

benchmark CH□ CH CtH(µ0) CHG(µ0)
SM 0 0 0 0
6 0.561 TeV−2 3.80 TeV−2 2.20 TeV−2 0.0387 TeV−2

In Fig. 3 we investigate the effects of the 4-top operators, setting individually
C(1)Qt (µ0) = 1 TeV−2 or C(8)Qt (µ0) = 1 TeV−2. Similar to the case of CtG shown in Fig. 2, C(1)Qt

and C(8)Qt contribute to a mixing into other Wilson coefficients through RGE evolution, leading
to non-vanishing values of all Wilson coefficients depicted in the upper panels.4

Despite the particular shapes of the distributions, the qualitative observations considering
the peculiarities of the running effects are similar to the case of CtG described above.

In order to better estimate the impact of the different settings for the running on the full
mhh distribution, we present in Fig. 4 the effect of individual SMEFT coefficients Ci(µ0) includ-
ing the full SM contributions (truncation option (a): dσSM+dσdim6 ), using the central scales
µR = µF = µEFT =

mhh
2 . The input values for the coefficients are oriented at current constraints

given in Ref. [55] for C(1)Qt and C(8)Qt at O
�

Λ−2
�

, and the ranges resulting from marginalised fits
of Ref. [52] for the other coefficients. The SM distribution is depicted including a 3-point scale
variation. The distributions with µ0 = 200 GeV (red) coincide well with the reference distri-
butions (blue) for the leading coefficients; for the subleading coefficients we also find compat-
ibility between blue and red, except for the threshold region in the cases of (CtG ,C(1)Qt ,C(8)Qt ) and

the tails of (C(1)Qt ,C(8)Qt ). Note that the bands shown in Fig. 4, except for the grey band, denote
the variation of the Wilson coefficients within the constraints given on top of the figures, and
not the scale variations. If we included scale variations for the SMEFT reference distribution
(blue, “without µEFT dependence”) the observed differences between the reference and the
µ0 = 200 GeV curves would mostly be within the associated scale uncertainty. Choosing an in-
put scale of µ0 = 1 TeV (orange), there are observable differences to the case of µ0 = 200 GeV,
which are particularly large for CtG , C(1)Qt and C(8)Qt . Overall, deviations from the SM within cur-
rent constraints can be large for the leading coefficients and noticeable beyond the SM scale
uncertainty for CtG (both input scales) and C(1)Qt , C(8)Qt (only for µ0 = 1 TeV).

In the following, we demonstrate the consequences of running effects for a shape bench-
mark scenario discussed in Refs. [41,56], investigating the impact on the benchmark scenario
6 specified by Table 1. The distributions for truncation options (a) and (b) are depicted in
Fig. 5. Since the benchmark scenarios have been originally derived for HEFT, a coefficient
translation from HEFT to SMEFT only involves leading Wilson coefficients which do not lead
to a mixing in the implemented RGE evolution. Therefore, the qualitative observations made
from Fig. 1 apply and the reference distribution is well compatible with the ones including
running effects with input scale µ0 = 200 GeV.

4Note that in the case of C(1)Qt (µ0), the values of C(1)Qt (µEFT) for the variation of µEFT by a factor of two around the
central scale do not enclose the values at the central scale for small deviations of µEFT around µ0. The reason is
the lack of the diagonal term for C(1)Qt in the anomalous dimension, shown in Eq. (13), which results in a quadratic

dependence, i.e. O
�

�

αs(µ0) log(
µ2

EFT
µ2

0
)
�2�

, of the solution for C(1)Qt (µEFT) when expanded around µ0.
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Figure 3: Running of the Wilson coefficients and differential cross sections for dσdim6

as a function of mhh with different modes of EFT running for left: C(1)Qt (µ0) = 1 TeV−2

as input, and right: C(8)Qt (µ0) = 1 TeV−2 as input. Upper: values of the Wilson co-
efficients, middle: mhh-distributions at LO, lower: mhh-distributions including NLO
QCD corrections to the contribution of RGE induced leading Wilson coefficients.

We would like to stress that the comparison between the different input scales presented
so far refers to different physics scenarios. This should be contrasted to a comparison of equiv-
alent settings of Wilson coefficients defined at different input scales, which we investigate in
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Figure 4: mhh-distributions demonstrating the impact of individual Wilson coefficient
variations on the SM mhh-distribution for truncation option (a). The ranges for C(1)Qt

and C(8)Qt are oriented at the constraints given in Ref. [55], the ranges for the other

coefficients are oriented at O
�

Λ−2
�

marginalised fits of Ref. [52].

the following. To this aim we define CtG(µ0) = 1TeV−2 at µ0 = 200 GeV and calculate the val-
ues of the Wilson coefficients at µ1 = 1 TeV using the contributions to the running described
in Sec. 2. Subsequently, the inputs using the derived coefficient values entering at µ1 = 1 TeV
and the original setting of CtG(µ0) = 1TeV−2 at µ0 = 200 GeV are used for the comparison of
the mhh distributions shown in in Fig. 6. We observe that the distributions with dynamical µEFT
are very well compatible with each other, in contrast to the case shown in the lower panels of
Fig. 2. However, comparing the different fixed scale settings for µEFT, a sizeable difference is
visible. Moreover, considering that the scale evolution of the Wilson coefficients is not avail-
able at arbitrary precision, but often only accounts for leading logarithmic RGE terms, the EFT
input scale µ0 should be chosen carefully. We expect a good choice for µ0 to be given by a
value that avoids large logarithmic contributions from the running in the energy range which is
optimal to derive constraints from a given observable. On the other hand, this is process or ob-
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Figure 5: NLO QCD distributions of benchmark 6 with different settings for the µEFT
scale dependence. Left: truncation option (a), right: truncation option (b). By con-
struction only the Wilson coefficients of the leading SMEFT contribution enter.
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Figure 6: Running values of the Wilson coefficients and differential cross section
of the linear interference as a function of mhh with different modes of EFT running
which are derived from the scenario CtG(µ0 = 200 GeV) = 1 TeV−2. In contrast to
Fig. 2, the runs with input at µ1 = 1 TeV are obtained by first estimating the corre-
sponding physical configuration of the coefficients by running from µ0 to µ1. Upper:
values of the Wilson coefficients, lower left: mhh-distributions at LO, lower right:
mhh-distributions including NLO QCD corrections to the contribution of RGE induced
leading Wilson coefficients.

servable dependent and therefore may not be viable for global fits. Nevertheless, coefficients
determined at different scales can be compared using external tools for the RGE evolution,
which in principle can be provided at better logarithmic accuracy without introducing more
computational complexity at runtime of the Monte Carlo evaluation.
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5 Conclusions

We have investigated how the renormalisation group running of Wilson coefficients in SMEFT
impact Higgs boson pair production in gluon fusion. After having motivated the selection of
relevant contributions to the RGE of the Wilson coefficients, we derived an analytic solution of
the scale evolution for the Wilson coefficients that incorporates approximate NLL QCD effects
for the leading coefficients. The resulting expressions are added as new features to the public
code ggHH_SMEFT [41, 44] which is implemented in the framework of the Powheg-Box-V2
and contains NLO QCD corrections in the SM. We have described the usage of the additional
settings in detail.

The effects of the scale dependence of the Wilson coefficients on the process g g → hh
have been investigated considering both, the running of individual Wilson coefficients as well
as mhh-distributions where different input choices have been compared. We summarise the
main observations in the following.

Choices of the EFT input scale with the same nominal value of the Wilson coefficients
but different settings for the running can lead to a drastic change of the effect on the mhh
distribution. Therefore, it is important to fully specify the choices made in physical predictions
and measurements, in particular the choice for the EFT input scale µ0.

While the input scale µ0 can in principle be freely chosen, a convenient choice of µ0 sup-
presses the logarithms of the running in the energy range which is optimal to derive constraints
for the considered Wilson coefficient, thereby minimising the expected effects of missing elec-
troweak and higher order QCD logarithms. This is achieved by choosing a value within the
range of the SM renormalisation scale µR in that region. In predictions for g g → hh at the LHC,
the SM renormalisation scale is typically set to µR =

mhh
2 , since this scale shows good pertur-

bative stability. Therefore, µ0 ∼ mt represents a good choice, as the logarithms for the Wilson
coefficient evolution will be suppressed near the top-quark-pair production threshold, which
is where the mhh-distribution is peaking. Of course, results obtained for different choices for
µ0 can a posteriori be compared by applying external tools for the RGE evolution, which could
even take into account electroweak mixing and higher logarithmic accuracy if available.

Formally, calculations in SMEFT for different choices of an EFT basis are equivalent up
to a given order in the canonical counting, which includes the freedom to rescale Wilson
coefficients by SM couplings. However, different conventions for such rescalings affect the
dependence on the SM renormalisation scale µR and on the EFT renormalisation scale µEFT
differently. Therefore, the development of a procedure to consistently assess combined SM
and EFT scale uncertainties is highly desirable.
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A Power counting and the renormalisation group equations

The selection of LL QCD terms of the SMEFT RGE follows the classification in terms of per-
turbative weight developed in Ref. [58] which employs a generalised version of the naive
dimensional analysis (NDA) [59]. The NDA formula for the normalisation of an interaction
term in an EFT can be cast in the form [3,60,61]

Λ4

16π2

�

∂µ

Λ

�N∂ �4πAµ
Λ

�NA �4πψ
Λ3/2

�Nψ �4πφ
Λ

�Nφ � g
4π

�Ng
� y

4π

�Ny
�

λ

16π2

�Nλ
, (A.1)

with N∂ derivatives, NA gauge fields Aµ, Nψ spinors ψ, Nφ Higgs fields φ, Ng gauge couplings
g, Ny Yukawa couplings y and Nλ Higgs self-interaction couplings λ. This NDA normalisa-
tion is derived from topological relations and the requirement of an absence of fine tuning and
therefore provides an estimate of the relevance of the term up to an O (1) coefficient. Ref. [62]
demonstrated that the counting of generalised chiral dimensions [63] dχ can be equivalently
used to determine the normalisation, if the assumptions about the underlying dynamics in
terms of weak couplings coincide. The minimal assumption resulting in our selection is based
on the extraction of a gauge coupling for each field strength tensor and of a Yukawa parameter
for a single chirality flipping fermion bilinear in the operator. These conditions correspond to
the expectation of fundamental gauge fields and a suppression of chirality flipping terms me-
diated by the Yukawa couplings; they simultaneously lead to the restoration of a Z2 symmetry
which is present in the SM [58].

To clarify the procedure, let us consider the power counting of the terms in Ref. [13]
involving QCD mixing between the coefficients CtH , CHG and CtG in addition to the mixing

terms of CtG , C(1)Qt and C(8)Qt into CHG of Eq. (12)

µ
dCtH

dµ
∼O

�

g2
s

16π2

�

CtH +O
�

yt g2
s

16π2

�

CHG +O
�

y2
t gs

16π2

�

CtG

+O
�

ytλ

16π2
,

y3
t

16π2

�

(C(1)Qt + cFC(8)Qt ) ,

µ
dCHG

dµ
∼O

�

g2
s

16π2

�

CHG +O
� gs yt

16π2

�

CtG

+O
�

y2
t g2

s

(16π2)2

�

(C(1)Qt + (cF −
cA

2
)C(8)Qt ) ,

µ
dCtG

dµ
∼O

�

g2
s

16π2

�

CtG +O
� yt gs

16π2

�

CHG .

(A.2)

We normalise the terms of the Warsaw basis according to the classification of chiral dimensions
which in terms of the Wilson coefficients Ci can be written as [45]

Ci = gNG
s y

NQ̄φ̃ t
t

�

1
16π2

�(dχ−4)/2 C̃i

Λ2
, (A.3)

where NG is the number of gluon field strength tensors of the operator and NQ̄φ̃ t determines
whether there is a single chirality flipping fermion bilinear. The coefficients of the normalised
Lagrangian on the right-hand side of Eq. (A.3) are expected to be C̃i ∼O (1) following the con-
siderations presented at the beginning of this Appendix. For the relevant Wilson coefficients
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we explicitly have

CtH = yt(16π2)
C̃tH

Λ2
,

CHG = g2
s

C̃HG

Λ2
,

CtG = gs yt
C̃tG

Λ2
,

C(1/8)Qt = (16π2)
C̃ (1/8)Qt

Λ2
,

(A.4)

which leads to

µ
dC̃tH

dµ
∼O

�

g2
s

16π2

�

C̃tH +O
�

g4
s

(16π2)2

�
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�
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t g2

s

(16π2)2

�
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+O
�

λ

16π2
,

y2
t

16π2

�

(C̃ (1)Qt + cF C̃ (8)Qt ) ,

µ
dC̃HG

dµ
∼O

�

g2
s

16π2

�

C̃HG +O
�

y2
t

16π2

�

C̃tG

+O
�

y2
t

16π2

�

(C̃ (1)Qt + (cF −
cA

2
)C̃ (8)Qt ) ,

µ
dC̃tG

dµ
∼O

�

g2
s

16π2

�

C̃tG +O
�

g2
s

16π2

�

C̃HG .

(A.5)

This provides the form of the RGE in which we identify the relevant terms:

• Applying the NDA normalisation to the selected coefficients, the one-loop QCD contri-
butions in the RGE reduce to QCD corrections diagonal in the coefficients for C̃tH , C̃HG
and C̃tG up to the mixing of C̃HG into C̃tG . The mixing of C̃HG and C̃tG into C̃tH are of
higher order and suppressed by g2

s (16π2)−1 and y2
t (16π2)−1, respectively.

• The mixing of C̃tG into C̃HG and C̃ (1)Qt , C̃ (8)Qt into C̃tH , C̃HG required by the renormalisation
of the subleading contribution are not of QCD origin, but describe one-loop effects. In
particular, the mixing of C(1)Qt , C(8)Qt into CHG originating from two-loop diagrams is of the
same order as the mixing of C̃tG into C̃HG in this power counting approach. Note that

we do not consider any terms at O
�

y2
t

16π2

�

and O
�

λ
16π2

�

, but only include those induced

by the renormalisation in Eq. (10).

• Considering a weakly coupled, renormalisable UV completion on top of the assumptions
made in the beginning does not change the picture. Including the weak couplings of
the UV theory entering a matching calculation in the counting of dχ for the expansion
in Eq. (A.3) results in a tree-loop classification, see Ref. [45]. This changes the overall
normalisation of the coefficients in Eq. (A.4) by a factor of (16π2)−1, but the hierarchy
between the selected coefficients remains intact. In particular, the weights determined
by Eq. (A.5) are still valid.

18

https://scipost.org
https://scipost.org/SciPostPhys.18.3.113


SciPost Phys. 18, 113 (2025)

0.00

0.01

0.02

0.03

0.04

d
σ
/

d
m
h
h

[f
b
/

G
eV

]
dσdim6 at LO with CtH(200 GeV) = 1 TeV−2 as input

µr = µf = mhh / 2; without µEFT dependence

µr = µf = λ ·mhh / 2; µEFT = λ · 200 GeV

µr = µf = µEFT = λ ·mhh / 2;

300 400 500 600 700 800 900

mhh [GeV]

0.75

1.00

1.25

ra
ti

o

0.00

0.01

0.02

0.03

0.04

d
σ
/

d
m
h
h

[f
b
/

G
eV

]

dσdim6 at NLO QCD with CtH(200 GeV) = 1 TeV−2 as input

µr = µf = mhh / 2; without µEFT dependence

µr = µf = λ ·mhh / 2; µEFT = λ · 200 GeV

µr = µf = µEFT = λ ·mhh / 2;

300 400 500 600 700 800 900

mhh [GeV]

0.75

1.00

1.25

ra
ti

o

Figure 7: mhh-distributions demonstrating combined scale uncertainty bands for the
CtH–part of dσdim6 using a 3-point variation with λ ∈ {1,2, 0.5}. Left: LO, Right:
NLO QCD. The y-axis range is chosen such that a comparison between LO and NLO
is possible.

Table 2: Total cross section values comparing LO and NLO QCD for the CtH–part of
σdim6 with different treatments of µEFT. The percentages refer to a 3-point scale vari-
ation using λ ∈ {1,2, 0.5}. Left: reference implementation with µR = µF = λ ·

mhh
2 ,

center: static µEFT with µR = µF = λ ·
mhh

2 and µEFT = λ · 200 GeV, right: dynamic
µEFT with µR = µF = µEFT = λ ·

mhh
2 .

reference dynamic µEFT static µEFT

σdim6 [fb] at LO 4.23+28.2%
−20.8% 4.18+34.7%

−24.2% 4.23+34.9 %
−24.3 %

σdim6 [fb] at NLO QCD 7.86+13.2%
−12.5% 7.80+19.6%

−11.8% 7.84+19.5 %
−16.7 %

B Study of scale uncertainties at LO and NLO with different µEFT

settings

In this appendix we try to quantify the effect of different choices for the setting of µEFT, in
particular the effect of an incomplete cancellation of logarithms if the values of the Wilson
coefficients are kept fixed. We use the interference of the SM with the dimension-6 part, σdim6,
and consider only CtH as an example. This investigation is not meant to provide conclusive
guidelines for the determination of scale uncertainties in the SMEFT. The intention is rather to
provide an estimate for the change of the scale bands from LO to NLO when taking µEFT into
account. We therefore consider a combined 3-point variation of µR, µF and µEFT around the
corresponding central scale prediction for the static and dynamic µEFT choice, using a SMEFT
input scale µ0 = 200 GeV, and compare these settings with the “reference distribution” where
only µR and µF are varied. The resulting mhh distributions are shown in Fig. 7; values for the
total cross sections are listed in Table 2.

Comparing the LO (left) and NLO (right) distributions in Fig. 7 we first notice that LO
and NLO mostly do not overlap within the scale uncertainties. This is very similar to the SM
behaviour [32], also with regards to the reduction of the scale uncertainties from more than
20% at LO to about 13% at NLO. We observe larger uncertainty bands for the distributions
that consider µEFT variations on top of µR and µF variations, but still the uncertainty bands
do not include the LO curve in the dominant mhh region. From Table 2 we also notice that
the uncertainty of the NLO QCD total cross section is fairly symmetric around the central scale
prediction for the reference calculation, whereas this is not the case for static or dynamic µEFT.
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