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Abstract

We study the binary symmetric perceptron model, and in particular its atypical solutions.
While the solution-space of this problem is dominated by isolated configurations [1], it
is also solvable for a certain range of constraint density α and threshold κ. We provide
in this paper a statistical measure probing sequences of solutions, where two consecu-
tive elements shares a strong overlap. After simplifications, we test its predictions by
comparing it to Monte-Carlo simulations. We obtain good agreement and show that
connected states with a Markovian correlation profile can fully decorrelate from their
initialization only for κ > κno−mem. state (κno−mem. state ∼

p

0.91 log(N) for α = 0.5 and N
being the dimension of the problem). For κ < κno−mem. state, we show that decorrelated
sequences still exist but have a non-trivial correlations profile. To study this regime we
introduce an Ansatz for the correlations that we label as the nested Markov chain.
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1 Introduction

1.1 Background and motivation

We consider the symmetric binary perceptron (SBP), introduced in [1], where we have a set
ξ = {ξµ}µ∈[[1,M]] of M i.i.d. standard Gaussian random vectors in IRN , such that M = ⌊αN⌋
with α > 0. This model consists in a constraint satisfaction problem for which binary vectors
x ∈ {−1,+1}N are solutions to the system of linear inequalities

�

�ξµ · x
�

�≤ κ
p

N , for all 1≤ µ≤ M , (1)

with κ > 0. Defining this set of solutions by S(ξ,κ), it was proven by Aubin, Perkins and Zde-
borová [1] that S(ξ,κ) is non-empty with high probability if and only if the margin threshold
κ verifies

κ > καSAT , with log(2) +α log

�∫

DuΘ(καSAT − |u|)
�

= 0 . (2)

We will equation throughout this paper the notation Du to represent an integration with a
scalar normal-distributed variable, and Θ(.) for the Heaviside function. This condition can
also be reformulated as S(ξ,κ) being non-empty if and only if α verifies

α < ακSAT , with log(2) +ακSAT log

�∫

DuΘ(κ− |u|)
�

= 0 . (3)

Our aim with this paper will be to analyse the geometrical arrangements of solutions for
κ > κSAT(α) -or conversely α < ακSAT-.
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In their seminal paper [2], Mézard and Krauth showed with replica-based computation [3]
that the set of solutions for the one-sided perceptron (where there is no absolute value in the
constraints (1)) is dominated by isolated solutions. This means that the typical solutions to
this problem are at large Hamming distance -linear in N - from any other solutions. It is an
indirect consequence of their geometrical structure sometimes called “frozen replica symmetry
breaking” [4–8]. From the mathematics point of view, the frozen replica symmetry breaking
prediction was proven true for the SBP in works by Perkins and Xu [9] and Abbé, Li and
Sly [10]. They showed more particularly that for κ > κSAT(α), a solution drawn uniformly at
random from S(ξ,κ) is isolated with high probability.

Having a constraint satisfaction problem with such a set of solutions has been usually asso-
ciated with algorithmic hardness. Indeed, with the scope of using only local-moves algorithms,
it is unlikely to find a routine capable of facing such extreme clustering. This phenomenology
has been detailed and argued, for instance, by Zdeborová and Mézard [11], or Huang and
Kabashima [7]. In some problems, this predicted algorithmic hardness was even confirmed
empirically, [5, 11]. On the contrary, other constraint satisfaction problems are known to be
solvable using certain efficient heuristics, while their typical solutions are predicted by sta-
tistical approaches to be isolated [6, 12–17]. A prime example of this is the above-defined
binary perceptron, with symmetric or not threshold function. For this model, the solutions
returned by efficient algorithms and their neighborhood have been the focus of several statis-
tical mechanics papers [18–20]. One of the main intriguing observation of these studies is
that solutions are arranged in dense regions. This could probably mean that atypical, well con-
nected subset(s) of S(ξ,κ) are the regions found algorithmically. As mentioned earlier, these
efficient algorithms also fail to return a solution if α is too large, which could be a hint for a
computational phase transition in the binary perceptron.

Again in the symmetric binary perceptron, two recent mathematical works further eluci-
date the geometry of its solution landscape. First in [21], Abbé et al. show the existence of
clusters comprising non-isolated solutions for κ > κSAT(α) and α small enough. These clusters
they found could possibly be probed with an algorithm as their diameter is linear in N . Sec-
ondly, in the small α regime, Gamarnik et al. [22] established an almost sharp result stating
the following:

• the online algorithm of Bansal and Spencer [23] can find a solution for κ ≥ c0
p
α with

c0 a positive constant.

• For κ ≤ c1

p

−α/ log(α), with c1 a positive constant, S(ξ,κ) exhibits an overlap gap
property ruling out local algorithms.

Being more precise, the first result is established in the case for which the data set ξ is
Rademacher distributed instead of Gaussian. Nevertheless, the same result is expected in
the Gaussian case.

With a different perspective, Baldassi et al. [24] suggested that this computational tran-
sition can be caused by the presence/disappearance of regions where atypical solutions have
a monotonous local entropy as a function of the distance. More precisely, this local entropy
measures the number of solutions that can be found at a given Hamming distance from a fixed
configuration, in this case a targeted atypical solution. If such a conjecture is correct, then it
must agree with the above-mentioned finding of Gamarnik et al. [22] in the regime of small
α.

In a previous paper [25], we elucidated why the replica method with a one-step replica
symmetry breaking (1-RSB) Ansatz had so far not managed to find clusters of atypical solutions
in the binary perceptron. As a reminder, this computation is a standard method for counting
rare clusters in constraint satisfaction models, as long as they correspond to fixed points of
a corresponding potential [26]. This analysis gave further elements for understanding that
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solutions with a local maximum in the local entropy, put forward in [18–20], correspond ac-
tually to 1-RSB rare clusters. However, we will see in the very beginning of this paper that any
atypical solutions -including these 1-RSB clustered solutions- are in fact isolated.

Keeping this phenomenology in mind, this paper focuses on introducing a formalism ca-
pable of probing non-isolated solutions and describing their configurational arrangement.

1.2 Summary of the results

Solutions chain formalism: We define a formalism that allows to study connected solutions
of the SBP. It consists in building sequentially a chain of solutions {x j} j∈[[1,t]], the starting
configuration x0 being a solution we plant. Each “link” x j is a solution with threshold κ j and
built following the same pattern: having determined the chain from x0 to x j−1, we pick x j by
sampling a local entropy measure biased around x j−1. In practice the local entropy probes
a subset of S(ξ,κ j) for which we have the additional constraint x j · x j−1/N = m j, j−1. This
additional constraint is the reason why we call this approach a “chain formalism” as the set of
solutions {x j} j∈[[1,t]] verifies for any consecutive “links” x j · x j−1/N = m j, j−1.

In the general case, evaluating the local entropy via replica computation is involving as any
replica Ansatz can be considered a priori. However, when taking the limit m j, j−1 → 1 it can
be shown that an annealed evaluation of the entropy becomes exact (the interested reader
can find a detailed explanation about this result in App. B.2). This simplification is yet not
sufficient for our computation to be numerically tractable. Indeed, it also requires to evaluate
the entire correlation function m j, j′ = x j ·x j′/N for all j and j′. This task, close from dynamical
mean-field theory computation [27–29], is know to be difficult.

The no-memory Ansatz: In a first attempt to determine chains of solutions in the SBP, we
start by focusing on so-called no-memory chains. It consists in supposing that a “link” solu-
tion x j correlates non-trivially only with its neighbors x j−1 and x j+1. A direct consequence
of this simplification is the solutions chain becoming Markovian. It allows to study analyti-
cally the chain and the evolution of its local entropy as the number of “links” is increased.
For fixed α and fixed overlap (x j · x j−1/N = m for all j) we identify a critical threshold
καno−mem. state ∼

p

− log(1−m) above which no-memory chains can be of infinite size and con-
sequently be delocalized, i.e. limt→+∞ xt · x0/N = 0.

We compare these prediction with Monte-Carlo simulations and observe good agreements
when we set that two consecutive “link” solutions differ only by a spin flip, i.e. m = 1− 2/N .
More particularly, we show that the distribution of margins follow a profile that is not the one
of typical solutions of this problem. For κ < καno−mem. state, the no-memory chain describes
the behavior of the Monte-Carlo dynamics as long as the total number of spin flip trials in
the dynamics scales linearly with the size of the system. For longer time-scales, simulations
attest to the presence of delocalized connected states which are not Markovian and thus do
not follow the no-memory chain predictions.

The nested Markov chain Ansatz: To describe non-Markovian chains, we introduce what we
call a nested Markov chain Ansatz. It consists in a hierarchical interactions profile between the
elements {x j} j∈[[1,t]] of the chain -schematized in Fig. 10- that can be integrated recursively.
With it we show that delocalized chains exist for a wider range of parameters {α,κ} than
predicted with the no-memory Ansatz.

1.3 Organization of the paper

The rest of the paper is organized as follows:
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• Section II focuses on showing that any planted configurations in the symmetric binary
perceptron is isolated. It serves as a warm-up and justification for the introduction of a
formalism guaranteeing connectivity between solutions.

• Section III is dedicated to the introduction of a “solutions chain” formalism. Broadly
speaking, it consists in studying a sequence of solutions {x j}t∈[[1,t]] for which two con-
secutive elements have a fixed overlap x j+1 · x j/N = m j+1, j .

• Section IV focuses on simplifying the chain formalism by introducing an Ansatz for the
correlation function m j, j′ = x j ·x j′/N -with j, j′ ∈ [[1, t]]2-. We will call it the no-memory
Ansatz as it describes a Markov-like chain.

• Section V is devoted to put in parallel predictions from this no-memory Ansatz and
Monte-Carlo simulations.

• Finally, in section VI we propose to go beyond the no-memory Ansantz with our chain
formalism. More practically, we introduce a routine that allows us to study chains of
solutions with non-trivial correlations {m j, j′} j, j′∈[[1,t]]2 .

2 A first remark: All planted solutions are isolated

We start our analysis of the symmetric binary perceptron with a small warm-up. In this section,
we will focus on the planted version of this model and highlight how any planted solution is
isolated. Starting with definitions, the planted symmetric binary perceptron is built as follows:
suppose that we fix a configuration x0 on the hypercube, we draw a biased data set {ξµ}µ∈[[1,M]]
following the rule

ξµ =
wµx0p

N
+ ξ⊤µ , (4)

where {ξ⊤µ}µ∈[[1,M]] is a set of i.i.d. random Gaussian variables orthogonal to x0 -i.e. ξ⊤µ ∼
N (0, I − 1

N x0x⊤0 )-. The set of margins {wµ = ξµ · x0
p

N}µ∈[[1,M]] is drawn from an arbitrary
distribution Pκ[.]. which verifies the constraint

Pκ[w] = 0 , for |w|> κ . (5)

Throughout this article we will keep the convention according to which the index κ indicates
that a margin distribution is null outside the interval [−κ,κ]. With this setting x0 is a solution
of the planted perceptron with threshold κ, as it verifies ξµ · x0 =

p
Nwµ and |wµ|< κ.

In a previous paper focusing on this model [25] it has been showed that the local entropy
of solutions around the planted solution x0 is [25]

φκplanted[x0, m] =
1
N

IEξ















log









∑

x∈ΣN

s.t.
x·x0

N =m

e
∑M
µ=1 log[Θ(κ−|ξµ·x|)]























(6)

= opt
q,q̂,m̂

¦

φ
κ,∗
planted[x0, q, q̂, m, m̂]

©

,
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with

φ
κ,∗
planted[x0, q, q̂, m, m̂] = −

1− q
2

q̂−mm̂+

∫

Dzφin[z, q̂, m̂] (7)

+α

∫

Dz dwPκ[w]φκout[w, z, q, m] ,

φκout[w, z, q, m] = log
�

H(κ, mw+
Æ

q−m2z, 1− q)
�

, (8)

φin[z, q̂, m̂] = log

�

∑

x=±1

e(m̂+
p

q̂z)x

�

= log
�

2cosh(m̂+
Æ

q̂z)
�

, (9)

H(x , y, z) =

∫

−y+xp
z

−y−xp
z

Du=
1
2

erf
�

x − y
p

2z

�

+
1
2

erf
�

x + y
p

2z

�

, (10)

and where again Dz, Du represent an integration with a scalar normal-distributed variable.
The magnetization m is the overlap between the equilibrated system and the planted configu-
ration, i.e. IEξ[x·x0] = Nm. The self-overlap q corresponds to the overlap between two distinct
typical configurations a and b of the equilibrium measure, i.e. IEξ[xa · xb] = Nq. Finally q̂ and
m̂ are external fields that fix these overlaps. For more details on the derivation of this local
entropy we redirect the interested readers to previous statistical mechanics works [1,25].

The number of solutions that lie extremely close to the planted solution can be obtained by
fixing m≈ 1 and optimizing over {q, q̂, m̂} in the local entropy. In this case we identify a saddle-
point that corresponds to the annealed replica Ansatz, i.e. {q = m2, q̂≪ m̂, m̂ = artanh[m]}.
More details about the demonstration can be found in App. A. In this setting, the total number
of such solutions is therefore given by the annealed local entropy

φ
κ,annealed
planted [x0, m] =−

1−m
2

log
�

1−m
2

�

−
1+m

2
log

�

1+m
2

�

(11)

+α

∫

dwPκ[w] log
�

H(κ, mw, 1−m2)
�

.

In App. A we also show that at first order in 1−m this local entropy boils down to

φ
κ,annealed
planted [x0, m]

�

�

�

m≈1
≈−

1−m
2

log
�

1−m
2

�

(12)

+ 2α
p

1−m

∫ +∞

0

dB {Pκ[κ] + Pκ[−κ]} log
�

1+ erf [B]
2

�

.

It can be easily check numerically that there is a range of magnetization such that the local
entropy remains strictly negative, as long as Pκ[κ] + Pκ[−κ] ̸= 0. More precisely this simpli-
fication allows to check that

∃m0 ∈ [0, 1[ s.t. φ
κ,annealed
planted [x0, m]< 0 ∀m ∈]m0, 1[ . (13)

This means that all the solutions that we can plant in the symmetric binary perceptron are
isolated. Starting from the configuration x0, we have to flip an extensive number of spins in
order to reach any other solution of the problem, this is often referred as an overlap gap. So
as to beat this curse we will focus in the following on building connected solutions.

3 Probing connected solutions around a planted solution

In this section we will describe how we can find connected solutions around a planted config-
uration. A first tentative for finding such solutions has been carried out in [25]. In this paper
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the authors avoided the overlap gap we described in the previous section by planting a solution
with threshold κ′ and probing solutions with higher threshold κ ≥ κ′. Such a release in the
constraints of the problem allows for an exponential number of solutions to appear around
the planted configuration. However, the distance between these new typical solutions and the
planted one is extensive, i.e Nm = IEξ[x · x0] = O(N). This means that there is no control
over whether or not there is a solution path connecting the planted configuration to these new
typical solutions (at threshold κ and overlap m). In other words, we do not know if there is a
sequence of single spin flips which makes it possible to join x0 to x while remaining a solution
of the perceptron with threshold κ.

In the following, we will therefore follow the same procedure of planting a solution with
threshold κ′ and probing solutions with threshold κ ≥ κ′. But we will build an equilibrium
measure that imposes solutions to be connected. More practically speaking, we will focus on
the equilibrium potential

Vt

�

x0,
�

m j+1, j

	

j∈[[0,t−1]] , {κ j} j∈[[1,t]]

�

(14)

=
1
N

IEξ

�

∑

x1

Pκ1

h

x1

�

�

�

x0 · x1

N
= m1,0

i

× · · · ×
∑

xt−1

Pκt−1

h

xt−1

�

�

�

xt−2 · xt−1

N
= mt−1,t−2

i

× log

�

∑

xt∈ΣN

s.t.
xt ·xt−1

N =mt,t−1

e
∑M
µ=1 log[Θ(κt−|ξµ·xt |)]

��

,

with

Pκ j

�

x j

�

�

�

x j−1 · x j

N
= m j, j−1

�

=
δ
�x j−1·x j

N −m j, j−1

�∏M
µ=1Θ

�

κ j − |ξµ · x j|
�

Zκ j [x j−1, m j, j−1]
, (15)

and Zκ j [x j−1, m j, j−1] being the renormalization factor of the distribution. As in [25], x0 is a
fixed planted solution that act like a quench variable. But in the setting above, we also add
a solutions chain (from “link” j = 1 to j = t − 1) that will bias the ensemble of solutions we
probe. We call it a chain as two consecutive “link” configurations x j and x j+1 are constrained
to have an overlap m j+1, j . We also impose that each “link” x j is a solution of the constraint
satisfaction problem with a given threshold κ j . Thus, Vt[., ., .] is a local entropy which counts
the number of solutions xt that can form the next “link” in the chain (given that it has the
correct threshold κt and overlap IEξ[xt ·xt−1/N] = mt,t−1). If the potential is positive, it means
that xt can be chosen among an exponential number of binary configurations. Therefore, we
will consider that it is possible to join x0 to x= xt by exploring sequentially the solutions chain
{x j} j∈[[0,t]] if the chain potential Vj[., ., .] is positive for j ∈ [[1, t]]. In fact, this construction
shares similarities with previous works on quasi-equilibrium formalism, in particular for spin
glasses models [30,31]. And more broadly speaking, sequences of conditional probabilities is
a central feature of the dynamical mean-field theory framework [27–29].

After some computation steps it can be shown that the potential reads (the detailed com-
putation can be found in App. B)

Vt

�

x0,
�

m j+1, j

	

j∈[[0,t−1]] , {κ j} j∈[[1,t]]

�

(16)

= opt
{m̂t, j′}0≤ j′≤t−1
{mt, j′}0≤ j′≤t−2













opt∗

{m̂ j, j′}0≤ j′< j≤t−1
{m j, j′}0≤ j′< j−1≤t−2

�

V ∗t
�

x0,
�

m j, j′
	

0≤ j′< j≤t ,
�

m̂ j, j′
	

0≤ j′< j≤t , {κ j} j∈[[1,t]]

�

�













,
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with

V ∗t
�

x0,
�

m j, j′
	

0≤ j′< j≤t ,
�

m̂ j, j′
	

0≤ j′< j≤t , {κ j} j∈[[1,t]]

�

=−
∑

j′<t

m̂t, j′mt, j′ (17)

+
∑

x0,...,x t−1=±1

1
2

t−1
∏

j=1

e
∑

0≤ j′< j m̂ j, j′ x j x j′

2 cosh
�

∑

0≤ j′< j m̂ j, j′ x j′
� log



2 cosh

 

∑

0≤ j′<t

m̂t, j′ x j′

!





+α

∫ t−1
∏

j=0

dw j Pκ0[w0]
t−1
∏

j=1

e−
∑

0≤ j′≤ j Σ j, j′ (m)w j w j′
2 Θ(κ j − |w j|)

∫

dw∗j e
−
∑

0≤ j′≤ j Σ j, j′ (m)w
∗
j w j′

2 Θ(κ j − |w∗j |)

× log

�∫

dwt e
−
∑

0≤ j′≤t Σt, j′ (m)wt w j′
2 Θ(κt − |wt |)

�

.

The matrix Σ(m) simply fixes the covariances for the interactions wµj = ξ
µ · x j as

Σ−1(m) j, j′ = IEξ

�

(ξµ · x j)(ξµ · x j′)

N

�

= IEξ

�x j · x j′

N

�

= m j, j′ , and m j, j = 1 . (18)

We specified two types of optimization, respectively labeled “opt∗” and “opt”, in Eq. (16). The
first one corresponds to a “time-ordered” optimization. By this we mean that the fields m̂ j, j′

and overlaps m j, j′ which do not involve the “link” at time t are set by optimizing (in increas-
ing order) the potentials V ∗t ′=1[., ., ., .] to V ∗t ′=t−1[., ., ., .]. The second optimization corresponds
simply to the usual maximization of the potential V ∗t [., ., ., .] over the variables m̂t, j′ and mt, j′ .
To put it more concretely, we set m̂1,0 by optimizing V ∗t=1[., ., ., .]. Then, we fix m̂2,0, m̂2,1
and m2,0 by optimizing V ∗t=2[., ., ., .] (and so on and so forth). This time-ordered optimiza-
tion is a direct consequence of the chain construction. Indeed, each conditional probabili-

ties Pκt−1

h

xt

�

�

�

xt ·xt−1
N = mt,t−1

i

depends solely on its past “links” x j(<t). Thus, to characterize

the configurations xt dominating this measure, we should only optimize over the parameters
{m̂t, j′}0≤ j′≤t−1 and {mt, j′}0≤ j′≤t−2. A global optimization (not time-ordered) of V ∗t [.] could
yield a different saddle-point, it would describe a dynamics where time-ordering can be vio-
lated.

This optimization scheme actually becomes more and more difficult as we increase the
number of “links” in the chain. Indeed, if we look at the t th “link” in the chain, we have to
optimize the potential over 2(t − 1) variables. It is thus crucial to simplify this procedure in
order to study large chains of connected solutions. In the following section we will propose
a first simple Ansatz for fields

�

m̂ j, j′
	

0≤ j′< j≤t and overlaps
�

m j, j′
	

0≤ j′< j≤t . This Ansatz will
drastically reduce the number of variables involved in the optimization scheme. A second leg
of this paper will then be dedicated at refining this simple Ansatz. In the rest of this paper, we
will always refer to the term involving a sum over x ’s binary variables - respectively an integral
over w’s continuous variables- in Eq. (17) as the entropic term -respectively the energetic term-.

4 A first simplification the potential: The no-memory Ansatz

4.1 Detailed simplifications

As mentioned just above, optimizing the potential V ∗t [., ., ., .] over the whole set of free vari-
ables {m̂ j, j′} and {m j, j′} is a difficult task. Therefore in this part, we will suppose that any
given “link” -indexed j- only gets coupled with its nearest-neighboring “links”, i.e. the ones
labelled j′ = j ± 1. In other words, we will suppose that the number of solutions x j+1 probed
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at the step j+ 1 only depends on the “link” configuration x j , and not on the whole set of con-
figurations {x j′}0≤ j′≤ j . Regarding the fields {m̂ j, j′}, this no-memory Ansatz implies that we
set

m̂ j, j′ = 0 , for | j − j′| ≠ 1 . (19)

Keeping only the nearest-neighbor interactions, the entropic term in the potential behaves like
an effective 1D Ising spin chain, i.e.

∑

x0,...,x t−1=±1

1
2

t−1
∏

j=1

e
∑

0≤ j′< j m̂ j, j′ x j x j′

2 cosh
�

∑

0≤ j′< j m̂ j, j′ x j′
� log



2cosh

 

∑

0≤ j′<t

m̂t, j′ x j′

!



 (20)

=
∑

x0,...,x t−1=±1

1
2

t−1
∏

j=1

em̂ j, j−1 x j x j−1

2cosh
�

m̂ j, j−1

� log
�

2cosh
�

m̂t,t−1 x t−1

��

.

As in the 1D Ising spin chain, this implies that the overlaps have to verify

m j, j′ =
j−1
∏

l= j′
ml+1,l . (21)

This last result allows for important simplifications in the correlation matrix Σ(m). In fact, we
have now that

Σ−1
j, j′(m) = IEξ

�x j · x j′

N

�

=
j−1
∏

l= j′
ml+1,l . (22)

Keeping this correlation structure, we can perform the standard change of variable (see Ap-
pendix A in [1] for more details)

w j = m j, j−1w j−1 +
Ç

1−m2
j, j−1u j , (23)

with ul ∼ N (0,1) for l ∈ [[1, j]]. Implementing Eqs. (20,23) in our potential we can derive
the simplified expression

V ∗t
�

x0,
�

m j, j−1

	

1≤ j≤t , m̂t,t−1, {κ j} j∈[[1,t]]

�

=− m̂t,t−1mt,t−1 + log
�

2 cosh
�

m̂t,t−1

��

(24)

+α

∫

dwt−1 Pκt−1[wt−1] log
�

H
�

κt , mt,t−1wt−1, 1−m2
t,t−1

��

,

with the update rule

Pκ j [w j] =

∫

dw j−1

e
−
(w j−mj, j−1w j−1)

2

2
�

1−m2
j, j−1

�

Θ
�

κ j − |w j|
�

Ç

2π(1−m2
j, j−1) H

�

κ j , m j, j−1w j−1, 1−m2
j, j−1

� Pκ j−1
�

w j−1

�

, (25)

and the function H(., ., .) is given in Eq. (10). The detailed computation steps to obtain this
potential can be found in App. C.

4.2 Solving the optimization and choosing the magnetizations

Now that we have simplified the potential V ∗t [., ., ., .], the double optimization required to de-
rive Vt[., ., ., .] -see Eq. (16)- is trivial. Indeed, the no-memory Ansatz presented just above fixes
all fields to zero except {m̂ j+1, j} j∈[[0,t−1]]. We recall that almost all the fields, {m̂ j+1, j} j∈[[0,t−2]],
appear in the “time-ordered” optimization labelled opt∗. Again, this means that we set m̂1,0
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by optimizing V ∗t=1[., ., ., .], then m̂2,1 by optimizing V ∗t=2[., ., ., .] and so on and so forth. We
finally optimize the potential V ∗t [., ., ., .] over the last free variable, namely m̂t,t−1. Each of
these optimizations is identical and simply boils down to verifying

∂m̂ j+1, j

�

−m̂ j+1, jm j+1, j + log
�

2 cosh
�

m̂ j+1, j

��	

= 0 , ∀ j ∈ [[0, t − 1]] , (26)

=⇒ m̂ j+1, j = artanh
�

m j+1, j

�

.

In the following, we will consider for simplification that the distance between two consecutive
“link” solutions x j and x j+1 is constant along the chain, i.e. m j+1, j = m. If we plug the saddle-
point from Eq. (26) in the expression of V ∗t [., ., ., .] we finally obtain the expression for the
potential Vt[., ., ., .]

Vt

�

x0, m, {κ j} j∈[[1,t]]
�

=−
1−m

2
log

�

1−m
2

�

−
1+m

2
log

�

1+m
2

�

(27)

+α

∫

dwt−1 Pκt−1[wt−1] log
�

H
�

κt , mwt−1, 1−m2
��

,

where we recall that the update rule for the distribution of interactions Pκ j [.] is

Pκ j [w j] =

∫

dw j−1

e
−
(w j−mw j−1)

2

2(1−m2) Θ
�

κ j − |w j|
�

p

2π(1−m2)H
�

κ j , mw j−1, 1−m2
� Pκ j−1

�

w j−1

�

. (28)

In general one could be tempted to fine tune m in order to optimize Vt[., ., ., .] along the
chain. For example, by determining the overlap m∗ achieving the best minimal value in the
chain, i.e.

m∗ = argmax
m

n

min
t

Vt

�

x0, m, {κ j} j∈[[1,t]]
�

o

. (29)

However, our goal is different in this paper: we want to probe connected states. Therefore,
we shall not optimize over m but rather send it to 1. In the remainder of this section, we will
discuss to which extend we can take the overlap m close to one.

In the standard setting, the potential Vt

�

x0, m, {κ j} j∈[[1,t]]
�

is computed by taking the num-
ber of dimensions N going to infinity first and keeping all parameters α, κ’s and m constants.
This means for example that the distance between two consecutive solutions in the chain -
which is 1 − m- cannot dependent on the system size. In practice, the computation can be
generalized and 1−m can be a function of N . This will be particularly handy when comparing
our chain approach to Monte-Carlo simulations. By definition Monte-Carlo dynamics follows
paths of solutions by performing a sequence of single spin-flip (i.e. m= 1−2/N). To correctly
describe a regime for which N(1 − m) = o(N), we need to control that the saddle-point ap-
proximation -used in the computation of Vt[., ., ., .]- remains correct. In other words, when we
take N(1−m) = o(N) the finite-size corrections to the saddle-point evaluation have to remain
negligible. A common result from the study of the canonical ensemble - see the Chapter 7.2
in [32]- is that these corrections are of order log(N)/N . Thus, a simple criteria we can identify
for the overlap is that

Vj

�

x0, m, {κ j′} j′∈[[1, j]]
�

≫
log(N)

N
. (30)

For the sake of simplicity, if we only consider the entropic term of the potential we obtain

−
1−m

2
log

�

1−m
2

�

−
1+m

2
log

�

1+m
2

�

≫
log(N)

N

=⇒ −
1−m

2
log

�

1−m
2

�

≫
log(N)

N

=⇒ 1−m≫
2
N

,
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Figure 1: Schematic representation for the geometrical arrangement of the connected
solutions we probe in the symmetric binary perceptron. At the center we find the
initial planted configuration x0. Directly away from it we have the solutions x1,
their typical number being eNV1[x0,m,κ1]. Then, having fixed the solutions x0 and
x1 we are able to probe eNV2[x0,m,κ1,κ2] solutions x2. A chain of connected solutions
corresponds to a set of solutions {x j} j∈[[1,t]] where we have fixed the overlap between
to consecutive configurations -x j+1 · x j/N = m-.

where 1−m = 2/N is exactly the distance between x j and x j−1 when only one spin has been
flipped. Taking into an account this criteria, we will consider the limiting case 1−m=2 f (N)/N
where the function f(.) can be any function verifying limN→+∞ f (N) =+∞ and f (N) > 1.
Thus, we will probe solutions {x j}0< j<t which can be visited by sequentially flipping f (N)
spins, while correctly counting their number with the saddle-point evaluation of Vt[., ., .]. In
particular, we can set f (N)≪ N , which means that we flip a large but sub-extensive number
of spins.

4.3 Some properties of the simplified potential

In this section we will detail the more straightforward properties implied by our construction
of connected solutions. First, in Fig. 1 we represented a schematic view of the connected
solutions arrangement. At the center we have the planted configuration x0. Then, we find
eNV1[x0,m,κ1] solutions x1 to form the first “link” in our chain -at a distance corresponding to
IEξ[x0 ·x1] = m-. Subsequently, we select a given solution x1 and find eNV2[x0,m,κ1,κ2] solutions
x2 for the second “link” in the chain. Again, the distance between x1 and x2 is such that
IEξ[x1 · x2] = m. The no-memory Ansatz is such that IEξ[x0 · x2] = m2, see Eq. (21). We
can generalize this construction saying that we select a chain of connected configurations
{x j}1≤ j≤t−1 and find eNVt[x0,m,{κ j} j∈[[1,t]]] solution xt with IEξ[xt−1 · xt] = m. Again, Eq. (21)
shows that

IEξ[x j · xt] = m|t− j| . (31)
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Another remark we can make is that V t[., ., .] has exactly the same form as the potential
φ
κ,annealed
planted [., .], see Eq. (11). We recall that this potential counts the number of solutions with

threshold κ around a planted signal also with threshold κ. In Sec. 2, we showed with it that
any planted signal is isolated as it verifies

∃m0 ∈ [0, 1[ s.t. φ
κ,annealed
planted [x0, m′]< 0 , ∀m′ ∈]m0, 1[ . (32)

This means that there is a finite distance range for which no solution can be found around
the planted signal, it is often called an overlap-gap [33, 34]. If we transcribe this for our
connected solutions setting, this shows that any “link” configuration xt−1 with threshold κt−1
is an isolated solution. In other words, if we set κt ≤ κt−1 we have

∃m0 ∈ [0,1[ s.t. Vt

�

x0, m′, {κ j} j∈[[1,t]]
� �

�

κt≤κt−1
< 0 , ∀m′ ∈]m0, 1[ . (33)

In the case where κt > κt−1, solutions appear around xt−1 as the problem becomes less con-
strained. However, the overlap-gap is still present if the increase in κt remains small. Thus,
we observe numerically

∃{m0, m1} ∈ [0, 1[2 s.t. Vt

�

x0, m′, {κ j} j∈[[1,t]]
� �

�

κt>κt−1
< 0 , ∀m′ ∈]m0, m1[ . (34)

If κt is increased above a critical value κc(t), the overlap-gap disappears. In this case, the value
κc(t) depends on the whole past of the chain as it is a function of the distribution of interactions
Pκt−1[.]. This last regime will not be tackled in this paper. Indeed, setting κt > κc(t) for all
times t yields to a fast divergence of κt and we reach a regime for which the problem becomes
trivial. In Fig. 2 we have summarized the behavior of Vt

�

x0, m′, {κ j} j∈[[1,t]]
�

depending on the
value of κt .

Regarding the chain formalism, the presence of this overlap-gap between m0 and m1 will
dictate whether or not our chain of solutions stops or continues. As presented in Fig. 3, if the
solutions xt with IEξ[xt · xt−1] = m are in this overlap-gap (Vt[x0, m, {κ j} j∈[[1,t]]] < 0) their
typical number will be limN→+∞ exp(NVt [x0, m, {κ j} j∈[[1,t]]]) = 0. In this case, xt−1 has no
solution with threshold κt at the distance we fixed and thus the chain of solution stops. On
the contrary, if Vt[x0, m, {κ j} j∈[[1,t]]] > 0 we find an exponential number of solutions xt and
the chain can continue. As we detailed in Fig. 3, different scenarios are possible depending
on whether κt ≤ κt−1 or κt > κt−1. With the former the overlap-gap is between m′ = 1 and
m′ = m0, so the condition for the chain to continue is m ≤ m0. In the following, we will see
this condition when studying quenches, i.e κ1 > κ0 and κ j(̸=0) = κ1. The latter situation is
a bit more complex as the gap is between m′ = m1 and m′ = m0. In this case the chain can
continue only if m /∈]m0, m1[.

Obviously this construction raises the question of the feasibility of crossing such overlap
gaps. In recent work [22,33,34], this has been considered to be algorithmically impossible as
going from xt−1 to xt means being able to flip an extensive number of spins in one go. However,
with our connected solutions setting we have m= 1−2 f (N)/N with f(.) any function verifying
limN→+∞ f (N) = +∞ and f (N) > 1. This means that the number of spins we have to flip
between xt−1 to xt is actually f (N), and it can be arbitrary small. Thus, if an overlap gap
appears for a range of spin flips smaller than f (N) we will consider that it is algorithmically
possible to cross it.

When comparing with the original planted model of Sec. 2, it is now clear how the con-
nected solutions formalism enables us to avoid the curse of observing only isolated solutions in
this model. With the chain formalism a minimum distance 1−m is set and divides overlap gaps
into two category: either they are discarded when they appear below this minimal distance,
or they are taken into account when they appear above it.
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Figure 2: Sketch of the potential Vt[x0, m′, {κ j} j∈[[1,t]]] as a function of m′. In this
representation, we focus on a range of overlaps m′ close to the chain overlap m (i.e.
1−m′ ∼ 1−m). Each color corresponds to a different regime for κt . In red, we have
κt ≤ κt−1. In this case, the solution xt is isolated for m′ ∈ [m0, 1[ as the potential
is negative. In green, κt has been slightly increased. Solutions have been created
around xt−1 for a small range of overlaps (m′ ∈ [m1, 1[), but an overlap-gap remains
(for m′ ∈ [m1, m0[). The last regime regime, in blue, corresponds to a large increase
of κt -above a critical value κc(t)- for which the overlap-gap disappear. To have this
regime at all time in the chain a large and constant increase in κt is required.

5 The quenched procedure

In this section we will study the case of quench dynamics with the aim to compare the pre-
dictions made by the no-memory chain with Monte-Carlo simulations. Our quench dynamics
setting corresponds to κ j(̸=0) = κ(> κ0) with an initial planted configuration x0 verifying

κ0 = κ
α
SAT ≈ 0.31 , with α= 0.5 , (35)

Pκ0[w] =
e−w2/2

p
2π
Θ(κ0 − |w|) . (36)

With this distribution of margins w the planted signal corresponds a typical solution with
threshold κSAT [1,25]. Choosing κ0 = κSAT is simply a convention and changing its value will
have no incidence on our conclusions. We want also to note that all cases presented here will
be for α= 0.5.

5.1 The setting of the Monte-Carlo procedure and matching with the theoretical
modelization

For the Monte-Carlo simulations, we will set x0 = {+1}N , then draw the margins with the
distribution from Eq. (36) and finally set the random data set {ξµ}µ∈[[1,M]] following Eq. (4).
The system is initialized in the planted configuration -xt=0 = x0- and the dynamics goes as
follows:
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Figure 3: Representation of the different scenarios for the overlap gap around con-
nected solutions. We have separated the cases κt ≤ κt−1 (top) and κt > κt−1 (bot-
tom). For both we have highlighted with a dotted red box the cases for which the
chain of solutions stops, i.e when Vt[x0, m, {κ j} j∈[[1,t]]]< 0.

• at each time-step t we pick randomly an entry of xt−1 and change its sign, we label the
resulting vector as x∗t .

• if x∗t verify |ξµ ·x∗t |/
p

N < κ for all vectors ξµ in the data set, then we set xt = x∗t . If this
condition is not verified then we take xt = xt−1.

So as to match Monte-Carlo simulations with our theoretical predictions, two essential
remarks must be made. First, both approaches are dependent on the dimension N of the prob-
lem. For the simulations this remark is trivial. But for the chain computation, we highlighted
that the chain computation is valid until 1−m≫ 2/N . In the following we will crudely take
the limiting case 1−m= 2/N and check a posteriori that this distance allows a good match be-
tween the simulations and our theoretical predictions. With this, two neighbouring solutions
in the chain x j and x j+1 will be one spin flip away from each other (i.e. f (N) = 1).

Secondly, we also need to juxtapose correctly the time-scales between the simulations and
the chain computation in order to compare the evolution of overlaps throughout the dynamics.
The Monte-Carlo dynamics has a natural time-scale which is the one of a spin flip trial, i.e.
being at time t = 10 means we have tried to flip consecutively 10 spins. In the following
we will always call this the “natural” time-scale. In the case of the theoretical predictions,
going from a “link” configuration x j−1 to x j means that f (N) = 1 spins have been flipped.
Therefore, we will define a “rescaled” time-scale corresponding to the number of accepted
spin flips, i.e. trescaled = 10 means that 10 f (N) spins have been flipped. In particular, flipping
two times the same entry during the dynamics still counts as two spin flips. To go from the
“natural” to the “rescaled” time-scales, we introduce the matching function g : trescaled → t.
This function simply attributes the number of spin flip trials t that are required to actually
perform trescaled f (N) spin flips, it will depend on each run of Monte-Carlo dynamics. In this
scaling, Monte-Carlo simulations should approximately follow the overlaps rule from Eq. (31)

14

https://scipost.org
https://scipost.org/SciPostPhys.18.3.115


SciPost Phys. 18, 115 (2025)

with

xg(trescaled) · xg(t ′rescaled)

N
≈ m|trescaled−t ′rescaled| (37)

≈
�

1−
2 f (N)

N

�|trescaled−t ′rescaled|
.

This is an approximation as it supposes that the Monte-Carlo dynamics goes forward in a chain
of solutions, i.e. it always go from “link” x j to “link” x j+1. In reality we can observe backward
moves, meaning the dynamics can go from “link” x j to “link” x j−1. However, this remains
negligible if the number of possible forward moves outweighs the number of backward ones.
As a last note on the rescaling, we observe that the dynamics typically slows down. Thus, this
induces the matching function g : trescaled→ t to be convex, i.e.

g(t2
rescaled +∆trescaled)− g(2rescaled)> g(t1

rescaled +∆trescaled)− g(t1
rescaled) , (38)

for
t2
rescaled > t1

rescaled . (39)

This inequality simply transcribes the fact that the later we are in a Monte-Carlo run, the longer
it takes for the dynamics to accept ∆trescaled f (N).

5.2 The update of the chain for a quench procedure

For the chain computation the update scheme is in fact quite simple. It goes as follows:

• First, we compute Vt=1[x0, m,κ0,κt=1 = κ] with Eq. (27) and the margin distribution
Pκ0[.] of the planted signal.

• Then, if Vt=1[x0, m,κ0,κt=1 = κ] > 0, we derive the new distribution of interaction
Pκt=1[.] using Eq. (28).

• We repeat this process by computing Vt=2[x0, m,κ0,κ1 = κ,κt=2 = κ] and, if the poten-
tial is positive, we derive Pκt=2[.].

• We keep this update for any step t > 2 until we obtain Vt[x0, m,κ0, {κ j = κ}1≤ j≤t]< 0.
Then, the chain stops.

One crucial remark has to be added. When performing a quench, the update rule [28]
for the interaction distribution Pκ j [.] simplifies as the margin threshold remains constant:
κ j(>0) = κ. In this case we have

Pκ j [w j] =

∫

dw j−1

e
−
(w j−mw j−1)

2

2(1−m2) Θ
�

κ− |w j|
�

p

2π(1−m2) H
�

κ, mw j−1, 1−m2
� Pκ j−1

�

w j−1

�

, with ∀ j ̸= 0 , κ j = κ , (40)

which corresponds to a Markov-Chain distribution update. Following results on Markov-chain
processes [35], there exists only one stable distribution of interactions to this update. In other
words, we have only one function P[.] verifying

P
�

w′
�

=

∫

dw
e
− (w
′−mw)2

2(1−m2) Θ
�

κ− |w′|
�

p

2π(1−m2) H (κ, mw, 1−m2)
P[w] . (41)

We will label this distribution Pκno−mem. state[.].
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A complementary point of view is to say that the linear operator Tκ j
corresponding to this

update, Pκ j = Tκ j
Pκ j−1 , verifies the Perron-Frobenius theorem [36]. Thus, Tκ j

has a non-
degenerate top eigenvector Pκno−mem. state[.] with only positive entries and eigenvalue one. All
other eigenvectors have an eigenvalue strictly smaller than one. As we update the distribution
of interactions along the chain, the projection on each eigenvector -except for Pκno−mem. state[.]-
will decay exponentially fast with a rate corresponding to their respective eigenvalue. There-
fore, with an infinitely long chain, the distribution of interactions will inevitably collapse onto
Pκno−mem. state[.]. In fact, this distribution has a simple expression, it is

Pκno−mem. state[w] =
e
−w2

2 H(κ, mw, 1−m2)
N

, (42)

with N ensuring its normalization.
In order to fully decorrelate from any planted signal we need this top eigenvector to cor-

respond to non-isolated solutions in the perceptron, i.e.

Vt=+∞
�

x0, m,κ0, {κ j = κ} j∈[[1,t]]
�

> 0 , (43)

with

Vt=+∞
�

x0, m,κ0, {κ j = κ} j∈[[1,t]]
�

=−
1−m

2
log

�

1−m
2

�

−
1+m

2
log

�

1+m
2

�

(44)

+α

∫

dwt−1 Pκno−mem. state[wt−1] log
�

H
�

κ, mwt−1, 1−m2
��

.

If κ is large enough (α being fixed) this condition can be verified. In this case, our formalism
predicts that any dynamics initialized in a configuration x0 with Pκno−mem. state[.] as its distri-
bution of margins {wµ = ξµ · x0/

p
N} will asymptotically decorrelate from its initialization.

Thus, we will always refer to this ensemble of solution as the “delocalized no-memory states”.
In the following, the lower margin threshold required to verify this condition (with α being

fixed) will be referred as καno−mem. state -and respectively ακno−mem. state (with κ being fixed)-.

5.3 Remaining correlated with the planted signal (κ < καno−mem. state)

In this section we will focus on the case where we do not release enough the threshold κ, i.e.
κ < καno−mem. state. It is a situation for which the system remains correlated with its initializa-
tion.

In Fig. 4, we display overlap curves for the quench dynamics described above with several
system sizes, N = {3 × 103, 7 × 103, 1 × 104, 2 × 104, 4 × 104}. We have set the margin
threshold to κ= 0.75 and averaged the dynamics for each system size over 10 realizations of
the disorder. Starting with the right panel, we simply plotted the overlap of the system at time
t (natural time-scale) with its initial configuration. We can observe that this quantity appears
to converge to a plateau in the long-time limit, and the height of this plateau depends on N .
In particular, the bigger the system is the closer this plateau gets to 1. In other words, this
means that the dynamical system remains closer and closer to its initialization as the number
of dimensions increases.

In fact, the landscape of solutions around a planted configuration have already been stud-
ied in [25]. In particular, authors analysed the Franz-Parisi potential around a fixed solution
of the problem. This allowed them to count the number of typical solutions around a fixed
configuration in the N → +∞ limit. One of the main results is that a Monte-Carlo initialized
in x0 should be able to decorrelate up to an extensive Hamming distance from its initializa-
tion in the long-time limit (given that the number of dimension goes to infinity first), i.e.
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limt→+∞ xt · x0/N = m′ and m′ < 1. However, this prediction is not consistent with our
Monte-Carlo simulations or our chain computation. This discrepancy comes from the fact that
the Franz-Parisi potential counts solutions whether or not they are isolated, i.e. disregarding
any dynamical accessibility. In most models this consideration is superfluous. However, as our
simulations show, it is a core problem in the symmetric binary perceptron.

Coming back on Fig. 4, the left panel displays the same simulations but this time with the
rescaled time-scale. We recall that this time-scale corresponds to the number of spin flips that
have been accepted. With this framing we can over-impose the predictions from the chain
computation. In particular, we added the decorrelation profile predicted by the no-memory
chain (dashed black line) and highlighted the point for which its update stops (colored spot)
-when the local entropy becomes negative-. We want to emphasize that the stopping point in
the no-memory chain is N -dependent since we have set the overlap m= 1− 2/N . Thus, both
the Monte-Carlo dynamics and our theoretical predictions are dependent on the size of the
system.

With the rescaled time-scale we can highlight that the Monte-Carlo simulations undergo
two dynamical regimes. A first one that follows the chain prediction: the system takes O(N)
natural time steps to decorrelate as a no-memory system. In this regime we observe that it
accepts roughly from 0.1N to 0.3N spin flips, depending on the size of the system. Then,
while the chain computation predicts that no more spin flips should be accepted, the Monte-
Carlo enters a second regime where it continues to find possible spin flips. This second regime
however cannot be obtained if the dynamics is ran for an usual O(N) total number of natural
time steps. Indeed, we can observe that while all simulations were run for a maximum of
1500N natural time steps (as shown in the right panel), the left panel shows that the second
regime (in which more spin flips than expected are accepted) shrinks as N increases.

Showing further agreements between the simulations and the no-memory chain predic-
tions, we plot in Fig. 5 quenches with an adaptive value for κ. In this case κ is fixed such
that the chain formalism predicts for each size N a stop at exactly xt · x0/N = 0.9. Again, we
have averaged the dynamics over 10 realizations of the disorder. On the right-hand panel, as
the size of the system is increased we see that the correlation profile gets closer and closer to
a sudden drop at xt · x0/N = 0.9 followed by a plateau. The left-panel displays even more
clearly this behavior, where the fraction of spin being flipped shrinks to the predictions of
the no-memory chain. Again, we have a fast regime -where the system decorrelates accord-
ing to our theoretical predictions- and then a second slow regime -where the system further
decorrelates but requires more than O(N) natural time steps to achieve it-.

As a last note, we observe in the left panel of Fig. 5 that increasing the system size lowers
the correlation function more and more. This can be interpreted straightforwardly. Each time
the Monte-Carlo dynamics performs a spin-flip, there is a finite probability that it performs a
backward move. In the chain formalism, this means that instead of going from xt to xt+1 we go
from xt to xt−1. As the system size increases, this move becomes more and more negligible and
the correlation function collapses on the prediction given by a no-memory chain (for which
only forward moves are accepted).

In a nutshell, after releasing the margin to κ the Monte-Carlo dynamics explore connected
states corresponding to a chain of solutions with no memory with its past. This first regime
stops after O(N) natural time steps, as no solutions with such a decorrelation profile can be
found anymore. However, the dynamics can further decorrelates but it now takesω(N) natural
time steps -i.e. t ≫ N - for finding a correct set of spins to flip. For now we will leave aside
this second regime as we lack the correct theoretical frame to analyse it. We will go back to it
in Sec 6.
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Figure 4: We plot the overlap of the system with its initial configuration x0 as it decor-
relates via a quench Monte-Carlo dynamics. The quench is performed for α = 0.5,
κ= 0.75 and several sizes of the system N . For each size the correlation curve is av-
eraged over 10 realizations of both the dynamics and disorder. It is also attached to
a matching color shade which highlight the maximum and minimum overlap values
attained over these 10 realizations. On the right, the correlation curves are plotted
with the natural time-scale. This means that every time the Monte-Carlo algorithm
performs a spin-flip -accepted or not- time is incremented by one. On the left, the
same correlation curves are plotted with the rescaled time-scale. In this case, time is
incremented by one only when a spin-flip is accepted. In this left panel we added the
correlation curve predicted by the no-memory chain. Each colored dot represented
the point where the chain stops when setting m= 1− 2/N .

5.4 Escaping in delocalized no-memory states (κ > καno−mem. state)

In this section we focus on the case where the quench is done for κ > καno−mem. state. This
means that we have released the threshold enough for the system to escape from the planted
configuration with O(N) natural time steps. To show this, we plot in Fig. 6 the evolution of
the correlation function C(t, t ′)t ′>t = xt ·xt ′/N for a quench in this regime. On the right-hand
side the decorrelation regime appears clearly as we have lim|t−t ′|/N→+∞ C(t, t ′) = 0 with the
natural time-scale. We can also notice a slowdown in this dynamics as the correlation func-
tions decay more and more slowly as time t increases. It is important to emphasize that once
the correlation functions are plotted with the rescaled time-axis (left panel) this aging effect
disappear. With this rescaling all correlation functions collapse on the theoretical predictions
from the no-memory chain. This means that the system decorrelates through the connected
no-memory configurations, the slowdown in the dynamics being simply due to fewer of these
configurations being available as time flows. Indeed, if the number of available solutions de-
creases, more spin-flip trials will be required for a Monte-Carlo routine to find one of these
solutions. This behavior also appears clearly with our theoretical framework as we observe
that Vt=1[x0, m, {κ j} j∈[[1,t]]] > Vt=2[x0, m, {κ j} j∈[[1,t]]] > · · · > Vt[x0, m, {κ j} j∈[[1,t]]]. In this
case, the decrease in the potential straightforwardly quantifies the diminution in number of
available no-memory solutions.

In Fig. 7 we display the distribution of interactions wµ = ξµ · x/
p

N for a single quenched
dynamics. It is obtained after averaging over 9000 configurations x explored by the Monte-
Carlo algorithm. On both panel we have added the truncated Gaussian envelop -which corre-
sponds to the distribution of interactions for the typical states verifying x0 · x/N = 0- and the
distribution Pκno−mem. state[.] -which corresponds to the delocalized connected states with no
memory-. The right panel displays the same distribution as the left panel but zoomed around
one of its edge, in this case at wµ = κ = 1.9. First, we can note that the discrepancy be-
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Figure 5: We plot the overlap of the system with its initial configuration x0 as it decor-
relates via a quench Monte-Carlo dynamics. The quench is performed for α= 0.5 and
several sizes of the system N . For each size the correlation curve is averaged over 10
realizations of both the dynamics and disorder. We set κ such that the decorrelation is
predicted to stop at exactly xt ·x0/N = 0.9 by the no-memory chain computation. We
recall that this prediction depends on the size of the system as we have m= 1−2/N .
On the right, the correlation curves are plotted with the natural time-scale. On the
left, the same correlation curves are plotted with the rescaled time-scale. In this left
panel we added in dashed black the correlation curve predicted by the no-memory
chain.

tween the truncated Gaussian envelop and Pκno−mem. state[.] appears only around the edges, i.e.
|wµ| ≈ κ. More specifically, this discrepancy depends on the overlap m set for the no-memory
chain computation as it is observed for |wµ| − κ ∼

p
1−m2. This means in particular that

the difference between the two distributions vanishes when we set m → 0. However, this
does not mean that this edge effect is negligible in our formalism. In fact, when computing
the potential Vt=+∞[x0, m,κ0, {κ j = κ} j∈[[1,t]]] from Eq. (44) the function appearing in the
integral takes non-negligible values only within this range |wµ|−κ∼

p
1−m2. This means in

other words that this edge effect is crucial for properly counting and describing the connected
states with no memory. Comparing these two distribution with our simulation, we observe
that the solutions resulting from the Monte-Carlo procedure follow the distribution predicted
by the no-memory chain. More strikingly, it follows the distribution for which we have set
m = 1− 2/N . This feature is a good a posteriori check for setting m = 1− 2/N . Indeed, we
mentioned just above that the distribution decay in Pκno−mem. state[.] around the edges |wµ| ≈ κ
depends on the value of m. If we would have set 1−m= 2 f (N)/N , with f (N)≫ 1, this decay
would be greater and would not match the Monte-Carlo simulations.

Finally, in Fig. 8 we plot the phase diagram for the presence of delocalized connected states
(with no memory) with fixed α = 0.5. We recall that καno−mem. state corresponds to the margin
for which Vt=+∞[x0, m,κ0, {κ j = κ1} j∈[[1,t]]] = 0 (with m = 1 − 2/N). If κ > καno−mem. state,
the potential Vt=+∞[., ., ., .] is positive and the steady-state to which any no-memory chain
converges is not isolated and thus can delocalize forever. For κ < καno−mem. state this steady
state is isolated, which means that all no-memory chain will stop after a certain number of
iterations. Going back on the phase diagram itself, it shows that while the system size N
diverges (which implies m → 1) the critical margin καno−mem. state diverges as

p
0.91 ln N . It

is important to note that the region for which delocalized no-memory states can be observed
remains non-vanishing for N → +∞. To understand this we can note that margin threshold
κtrivial of a random point x on the hypercube verifies the scaling law κtrivial ∼

p
2 ln N [37].

Thus, we have that καno−mem. state remains distinct from κtrivial (even for large system sizes).
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Figure 6: We plot the two-time correlation function of a quench Monte-Carlo dy-
namics. The system is tuned to α= 0.5, κ= 1.9, N = 5000. Both panels display the
same correlation curve but with different time-axis. On the right, the time-axis is the
natural time-scale -for which time is incremented by one for every spin-flip trial-. On
the left, the time-axis corresponds to the rescaled one -for which time is incremented
only when a spin-flip is accepted-. In the left panel we also added in dashed black
the decorrelation profile corresponding to the no-memory chain.

Finally, we should also note that tuning α does not change qualitatively the phase diagram.
The case we display (α= 0.5) is generic.

6 Going beyond the no-memory Ansatz

As mentioned in Sec. 5.3, when we set κ < καno−mem. state the Monte-Carlo procedure is capable
of decorrelating more than what is predicted by the no-memory Ansatz. We have also shown
that this second regime of decorrelation requires to run the quench forω(N) natural time steps
-i.e t ≫ N -. Put differently, this means that there is a set of subdominant connected solutions
that allow escape further from the planted configuration than the no-memory states.

In fact, for a certain range of system size N and tuning parameters {α,κ}, we can observe
that the algorithm ends up totally decorrelating from the planting signal, if again it is executed
for a sufficiently long time period. As an example, if we set N = 2000, α = 0.5 and κ = 0.91
(καno−mem. state ≈ 1.13) we can observe xt · x0/N ≈ 0 for t/N ≥ 4× 104. In Fig. 9 we plot the
distribution of interactions wµ = ξµ · x/

p
N for a single quenched dynamics. It is obtained

after averaging over 30000 configurations x explored by the Monte-Carlo algorithm after full
decorrelation. As in Fig.7, we added on both panel the truncated Gaussian envelop -which
corresponds to the distribution of interactions for the typical states verifying x0 ·x/N = 0- and
the distribution Pκno−mem. state[.] -which corresponds to the delocalized connected states with
no memory-. The more striking output from this is the decay in the density of interactions
around the edges |wµ| ≈ κ. Indeed, we observe that this decay is more pronounced than the
no-memory state prediction.

At this point it is important to recall one key feature which follows from the no-memory
chain computation. For the no-memory delocalized state, we have briefly mentioned that the
decay at the edges of its density of interactions is directly linked to the parameter m we have
chosen. Indeed, this decay appears within a range |ωµ|−κ∼

p
1−m2. We can try to consider

that this equivalence -between the edge-decay in the distribution of interactions and the typical
correlation length within a chain of connected solution- is general. More particularly, if our
Monte-Carlo algorithm probes connected states with a greater distribution decay than the
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Figure 7: We plot the distribution of interactions wµ = ξµ · x/
p

N obtained with a
Monte-Carlo quench. The dynamics is performed for α= 0.5, κ= 1.9 and N = 5000.
We derived the histogram of interactions after sampling Nsampling = 9000 different
configurations throughout the dynamics. In dotted grey we have added the trun-
cated (between −κ and κ) Gaussian distribution. It corresponds to the distribution
of interactions for the typical solutions in the binary perceptron. The distribution of
interactions predicted by the no-memory chain -with m= 1−2/N - is plotted dashed
black. While the left panel displays the distribution in its entirety, the right one zooms
in on one edge of the distribution -|wµ| ≈ κ-.

no-memory steady state it is because the typical correlation length between the solutions it
probes is also greater. With our formalism, increasing the typical correlation length between
connected states means than we have to give up the no-memory Ansatz and start analysing
chains with a correlation profile involving memory of previous links, i.e. m|t−t ′| > m|t−t ′|.
Consequently, the task we propose to do in the rest of this paper is to implement memory in
our chain computation -see Eq. (16,17)-.

We recall that the potential Vt[x0,
�

m j+1, j

	

j∈[[0,t−1]] , {κ j} j∈[[1,t]]] -as it is written in
Eq. (16)- cannot be computed. Indeed, it requires to perform multidimensional sums and inte-
grals and to optimize over a large number of parameters. Therefore, so as to have a tractable
computation we will have to simplify the correlations variables mt,t ′ and m̂t,t ′ . Keeping the
case of a quench where κt (̸=0) = κ, we will propose in the following a correlation pattern that
allows us to fall back on an effective no-memory chain. More particularly, we will study as
schematized in Fig. 10 the case of nested Markov memory chains. Starting with a configura-
tion xt0

, the system will perform t1 steps decorrelating as a no-memory chain (also known as a
Markov chain) with m j+1, j = m1. The step ∆2

t = t1 + 1 then recorrelates with xt0
by verifying

the overlaps

IEξ[xt0+∆2
t
· xt0+t1

] = m1 , and IEξ[xt0+∆2
t
· xt0
] = m∆2

t
, (45)

with the condition on the fields

m̂t0+∆2
t ,t ′ (̸=t0+t1, t0) = 0 . (46)

This overlaps and fields structure allows for integrating the intermediate t1 steps in both the
entropic and the energetic terms of the potential. From this follows an effective step that goes
directly from xt0

to xt0+∆2
t
. Thus, we have defined a new effective no-memory chain where a

“link” xt0+ j∆2
t

only correlates with its effective nearest neighbors xt0+( j−1)∆2
t

and xt0+( j+1)∆2
t
.

Once this first building block is defined it can be iterated easily. Indeed, we can continue and
consider that the system passes t2 effective steps following our new Markov chain. The step
∆3

t = (t2 + 1)∆2
t then recorrelates with xt0

by setting the overlaps

IEξ[xt0+∆3
t
·xt0+t2∆

2
t+t1
] = m1 , IEξ[xt0+∆3

t
·xt0+t2∆

2
t
] = m∆2

t
, IEξ[xt0+∆3

t
·xt0
] = m∆3

t
, (47)
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Figure 8: Phase diagram for the localization/delocalization transition of the steady-
state predicted by the no-memory chain (α = 0.5). We recall that this state is de-
scribed by the distribution of interactions Pκno−mem. state[.] and is delocalized when its
potential Vt=+∞

�

x0, m,κ0, {κ j = κ} j∈[[1,t]]
�

is positive. Again, to compute the poten-
tial and obtain the transition line, we equated the system size and the no-memory
chain overlap by setting m = 1− 2/N . The value κtrivial corresponds to the margin
max
µ

�

ξµ · x/
p

N
�

obtained for a random configuration x on the hypercube of dimen-

sion N . The derivation of this threshold can be found in [37].

with the condition on the fields

m̂t0+∆3
t ,t ′ (̸=t0+t2∆

2
t+t1, t0+t2∆

2
t , t0) = 0 . (48)

Consequently, this builds a new effective Markov chain where a “link” xt0+ j∆3
t

now only couples
with its neighbors xt0+( j−1)∆3

t
and xt0+( j+1)∆3

t
. It is then straightforward to iterate this routine

an arbitrary number of times. The detailed computation for building sequently the nested
Markovian chain can be found in App. D. In the rest of this section we will refer at each
iteration of the computation as a level of the nested Markov chain. Level one corresponds to
the original no-memory chain, level two to the Markov chain with ∆2

t steps increment, and so
on and so forth.

With this correlation pattern and a total of ktot levels of nested Markov chains, we end
up with a new effective no-memory chain where the overlap between two “links” is now
m
∆

ktot
t
(< m1). In this case, the update rule for the distribution of interactions becomes

P t0+∆
ktot
t

�

wt0+∆
ktot
t

�

=

∫

dwt0
Tκ,ktot

�

wt0+∆
ktot
t

, wt0
, {Vk′}k′∈[[1,ktot ]]

�

P t0[wt0
] , (49)

where the expression for Tκ,ktot
can be found in App. D. We will label the stable distribution of

this new Markov process as Pκktot−mem. state[.]. Although this state is stable for the ktot
th level

of our Markovian diffusion, it is not stable regarding lower levels. In other words we have

Pκktot−mem. state[wt+∆k
t
] ̸=

∫

dwt Tκ,k(wt+∆k
t
, wt , {Vk′}k′∈[[1,k]]) Pκktot−mem. state[wt] , (50)

for k ̸= ktot . This will induce the chain potential V ∗t [., ., ., .] to fluctuate during the diffusion

and more particularly to be ∆ktot
t -periodic. To examine if the new stable state can delocalize
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Figure 9: We plot the distribution of interactions wµ = ξµ · x/
p

N obtained with
a Monte-Carlo quench. The dynamics is performed for α = 0.5, κ = 0.91 and
N = 2000. We derived the histogram of interactions after sampling Nsampling = 30000
configurations throughout the dynamics after full decorrelation, i.e. after obtaining
xt · x0/N ≈ 0. In dotted grey we have added the truncated (between −κ and κ)
Gaussian distribution. It corresponds to the distribution of interactions for the typi-
cal solutions in the binary perceptron. The distribution of interactions predicted by
the no-memory chain -with m = 1 − 2/N - is plotted dashed black. While the left
panel displays the distribution in its entirety, the right one zooms in on one edge of
the distribution -|wµ| ≈ κ-.

we should in theory compute the chain potential on ∆ktot
t consecutive “links”. In practice, we

observe numerically that it is always the last step in the nested Markovian process that has the
minimal potential. More concretely, if we take the example represented in Fig. 10 where we
have ktot = 4 levels of nested Markov chains starting at t = t0 and finishing at t = t0+∆4

t , the
step where we are most limited in number of solutions to extend the chain is the one where we
go from xt0+∆

ktot
t −1 to xt0+∆

ktot
t

. Consequently, to determine whether this state is delocalized

or not, we will simply compute the chain potential for the step t0+∆
ktot
t only. If this quantity

is positive -respectively negative- then the state delocalizes -respectively remains localized-.
The calculation of this potential will not be derived in this section, but the detailed steps to
obtain it can be found in App. D.

Having κ fixed, the delocalized phase (α < ακktot−mem. state) corresponds to the existence of
a steady-state induced by ktot nested Markov chains with a positive potential V ∗

t0+∆
ktot
t

[., ., ., .].

While in the localized phase (α < ακktot−mem. state), no steady-state has a positive potential. In
App. D, the interested reader can also find the detailed computation on how the critical point
ακktot−mem. state is obtained. In short, we solve the saddle-points equations for the fields m̂ ’s
given by the chain potential and determine numerically the set of magnetizations and time-
intervals

�

m
∆

j
t
,∆ j

t

	

j∈[[2,ktot ]]
that yield a positive potential with the highest possible value of

α. In particular, while our construction implies that t j ∈ IN (and consequently ∆ j
t ∈ IN) for all

j ∈ [[2, ktot]], we determine the critical point after extending the computation to t j ∈ IR.
In the following we will present results where we have injected only a few level of nested

Markov chains with m1 = 0.98. The aim is to show that our construction reproduces qualita-
tively the compression of the interactions distribution observed in Fig. 9 and yield connected
states for α > ακno−mem. state. To obtain quantitative comparisons, in particular with known al-
gorithmic thresholds, we would have to perform this procedure with m1 closer to one and with
a greater number of nested Markov chains. To start with, we display in Table 1 the value of the
critical point ακktot−mem. state for ktot ∈ [[1,5]], κ = 0.9, m1 = 0.98. We obtain that increasing
the total number of nested Markov chains extends the range of the parameter α for which a
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Figure 10: Schematic representation for the iterative integration of the nested
Markov chain. The case we display corresponds to ktot = 4, i.e. a total of 4 level
of nested Markovian chains. We highlight with it that the iterative integration of
the chain starts with the nearest-neighbor interaction (black), then continues with
shortest distance interaction (blue) and so on an so forth until we obtain an effective
no-memory chain with m= m∆4

t
.

delocalized steady-state can be observed. We also see that each increment of ktot results in a
smaller and smaller increase in the critical point. Moreover in Fig. 11, we plot the decorre-
lation profiles obtained for each optimized ktot nested Markov chain. In this case, increasing
ktot allows to find delocalizable chains with greater correlation functions. By putting these
two results in parallel, we directly see that we must increase the correlations between the
“links” of the chain in order to build a chain of connected solutions with an increasingly high
α. For the interested reader, we display in Table 2 the order parameters m∆k

t
and ∆k

t obtained
for the optimized chains with again ktot ∈ [[1,5]], κ= 0.9, m1 = 0.98.

We already mentioned the link between increasing correlations and the possibility to de-
localize for α > ακno−mem. state. Indeed, when analysing the distribution of interactions after a
quench with κ < κno−mem. state (Fig. 9), we highlighted that the decay at the edges |wµ| ≈ κ
could be a clue for the increase of correlations. In Fig. 12 we plot the distribution of inter-
actions -Pκktot−mem. state- for each optimized ktot nested Markov chain. As predicted, increasing
the number of nested levels -and consequently the correlations- creates an increasingly pro-
nounced decay at the edges of the distributions. Thus, implementing memory between the
“links” in the chain allows us to mimic the contraction in the margin distribution that we
observed with the Monte-Carlo dynamics.

As a final note, we can also observe a significant discrepancy appearing already between the
truncated Gaussian envelop and the no-memory state distribution. This is due to our choice
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Table 1: Table displaying the critical point ακktot−mem. state as a function of ktot, the total
number of nested Markov chains in the memory pattern. It is obtained for κ = 0.9
and m1 = 0.98 (with ∆1

t = 1).

ktot = 1 (no-memory) ktot = 2 ktot = 3 ktot = 4 ktot = 5

ακktot−mem. state 0.889 0.961 0.993 1.009 1.015

Table 2: Table displaying the order parameters m∆k
t

and ∆k
t for optimized nested

Markov chains with varying values of ktot . We recall that ktot corresponds to the total
number of levels we introduced in the memory Ansatz. For the interested reader, the
optimization scheme is detailed in App. D and is independent of α. The case we
present is obtained fixing κ= 0.9 and m1 = 0.98 (with ∆1

t = 1).

ktot = 1 ktot = 2 ktot = 3 ktot = 4 ktot = 5

m1/∆
1
t 0.98/1 0.98/1 0.98/1 0.98/1 0.98/1

m∆2
t
/∆2

t 0.9740/2.00 0.9745/2.10 0.9747/1.64 0.9749/1.69

m∆3
t
/∆3

t 0.9529/4.20 0.9636/3.38 0.9623/2.07

m∆3
t
/∆3

t 0.9295/6.76 0.9560/5.53

m∆3
t
/∆3

t 0.8903/11.04

for m1 which is far from being close to one. If this overlap was set closer to one, the two
distributions would be more similar. However, we would need more nested levels to observe
strong memory effects in the steady-state of the effective Markov chain.

7 Conclusion and discussion

In this paper we developed a formalism allowing us to probe connected solutions in the sym-
metric binary perceptron. Our starting point was to justify the need of such a formalism. Thus,
we showed that any planted solution in this model is cursed to be isolated and that a more
refined strategy is reacquired to unveil an algorithmic transition. We then detailed our ap-
proach, which in few words consists in building a chain of solutions {x j} j∈[[1,t]] for which the
overlap between two consecutive configurations is fixed close to one.

Under its general form the solutions chain construction is intractable both analytically
and numerically. Indeed, it involves optimizing a potential over multiples variables while
evaluating the multidimensional integrals it contains. Therefore, as a first attempt to de-
scribe connected solutions with our formalism, we introduced a no-memory Ansatz that al-
lows analytically studying its resulting states. This Ansatz is so named because the chain
of solutions becomes Markovian-like. With it we determined a critical threshold value
καno−mem.state∼

p

log(N) (α being fixed) above which such chains are fully delocalized.
Then, focusing on quenches in κ, we compared our no-memory chain predictions with

Monte-Carlo simulations. As long as we probed a regime where time scales linearly with N ,
we obtained good agreement between the two settings. In particular when no-memory states
are delocalized (κ > καno−mem.state), we could observe that the distributions of interactions
{wµ = ξµ · x}µ∈[[1,M]] are matching. This highlighted the presence of an edge decay in the
distributions, which can be linked directly to the correlation length in the chain computation.

Moreover for κ < καno−mem.state, we mentioned that Monte-Carlo simulations decorrelate
further than predicted -conditioned that time scales more than linearly with N -. For this
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Figure 11: We plot the correlation function for each of the optimized nested Markov
chains, ktot ∈ [[1,5]], κ = 0.9 and m1 = 0.98 (with ∆1

t = 1). We recall that the
optimization yields, for fixed ktot , the chain that can delocalize with the largest pos-
sible value for α. Each stair-shape increments in the correlation curves corresponds
to a new level of nested Markov chain being felt by the system. In particular, we have
highlighted the very last one corresponding to the level ktot for each of the optimized
decorrelation profiles.

regime, we showed that fully delocalized states have a distribution of interactions with a more
pronounced edge decay than the one of no-memory states. Generalizing the parallel between
the distribution decay and the correlation length in the solutions chain formalism, we proposed
to study connected solutions with an increased correlation function. Therefore, we introduced
a nested Markovian chain Ansatz that implements memory in the chain while allowing us to
fall back on effective no-memory states. This approach showed that increasing the correlation
length indeed led to a more pronounced edge-decay in the distribution of interactions. More
interestingly, it yielded chains that delocalize for κ < καno−mem.state.

For future work, we hope to further investigate the nested Markov chain iterative construc-
tion, and in particular to push for increasing the number of total levels ktot . One straightfor-
ward direction would be to consider that we operate in a regime for which m

∆
j
t
≈ 1 -with

j ∈ [[1, ktot]]-. In this regime we can expand all Markov-chain generator around identity, i.e.

Tκ,k

�

x , y, {V ′k}k′∈[[1,k]]
�

≈ δ(x − y) + T̃κ,k

�

x , y, {V ′k}k′∈[[1,k]]
�

+ o
�

T̃κ,k

�

x , y, {V ′k}k′∈[[1,k]]
��

. (51)

Implementing this linearization we should be able to simplify our iteration routine for the
Markov generators and to push it to higher values of ktot .
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Figure 12: We plot the distributions of interactions for each optimized nested Markov
chain. We recall that this optimization consists in determining the the chain’s pa-
rameters (overlaps m, time intervals ∆t and fields m̂ ) that yields a positive poten-
tial V ∗

t0+∆
ktot
t

[., ., ., ., .] with maximum value for α. In the present case we have set

ktot ∈ [[1, 5]], κ = 0.9 and m1 = 0.98 (with ∆1
t = 1). In dotted grey we added the

truncated Gaussian distribution, it corresponds to the typical distribution of interac-
tions for solutions in the perceptron -with threshold κ-.

A Proving that the planted free energy φκplanted[.] is approximately
annealed

In this section we will prove that a saddle-point for the planted free energy, defined in Eq. (6),
verifies q̂≪ m̂ and q ≈ m2 when fixing m ≈ 1. Starting with the saddle-point equations, the
partial derivatives of the free energy with respect to q and m are

∂qφ
κ,∗
planted[x0, q, q̂, m, m̂]= 0=

q̂
2
+α

∫

Dz dwPκ[w]

�

∂qH
�

κ, mw+
p

q−m2 z, 1− q
�

H
�

κ, mw+
p

q−m2 z, 1− q
�

�

, (A.1)

∂mφ
κ,∗
planted[x0, q, q̂, m, m̂]= −m̂+α

∫

Dz dwPκ[w]

�

∂mH
�

κ, mw+
p

q−m2 z, 1− q
�

H
�

κ, mw+
p

q−m2 z, 1− q
�

�

. (A.2)

We recall that the first equation shall be set to zero while the second equation should not.
Indeed, in this case we optimize over q whereas m is fixed to a given value. The partial
derivative with respect to q can be rewritten as

∂qφ
κ,∗
planted[x0, q, q̂, m, m̂] =

q̂
2

(A.3)

+α

∫

Dz dw Pκ[w]







∫

Du
�

z
2
p

q−m2
− u

2
p

1−q

�

Θ′(κ− |mw+
p

q−m2z +
p

1− qu|)

H
�

κ, mw+
p

q−m2 z, 1− q
�






,

with
Θ′(κ− |x |) = −

x
|x |
δ(κ− |x |) . (A.4)
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Now if we assume q−m2≪ 1− q we see that

∂qφ
κ,∗
planted[x0, q, q̂, m, m̂] (A.5)

=
q̂
2
+α

∫

Dz dwPκ[w]







∫

Du
�

z
2
p

q−m2
− u

2
p

1−q

�

Θ′(κ− |mw+
p

q−m2z +
p

1− qu|)

H (κ, mw, 1− q)







−α
∫

Dz dwPκ[w]





∫

Du
�

z2

2 ∂y H
�

x = κ, y = mw, z = 1− q
��

Θ′(κ− |mw+
p

1− qu|)

H2 (κ, mw, 1− q)





+O
�
Æ

q−m2
�

,

=
q̂
2
+α

∫

dwPκ[w]







∫

DuDz
�

z
2
p

q−m2
− u

2
p

1−q

�

Θ′(κ− |mw+
p

q−m2z +
p

1− qu|)

H (κ, mw, 1− q)







−
α

2

∫

dw
Pκ[w]

H (κ, mw, 1− q)
+O

�
Æ

q−m2
�

,

and it it easy to show with an integration by part that

∫

DuDz
�

z
2
p

q−m2
− u

2
p

1−q

�

Θ′(κ− |mw+
p

q−m2z +
p

1− qu|)

H (κ, mw, 1− q)
= 0 . (A.6)

This finally yields

q̂ ≈ α
∫

dw
Pκ[w]

H (κ, mw, 1− q)
+O

�
Æ

q−m2
�

. (A.7)

Now if we focus on the partial derivatives with respect to q̂ and m̂ we obtain

q =

∫

Dz tanh2
�

m̂+
Æ

q̂z
�

=
q̂≪m̂

tanh2 [m̂] , (A.8)

m=

∫

Dz tanh
�

m̂+
Æ

q̂z
�

=
q̂≪m̂

tanh [m̂] , (A.9)

or, rewritten in another fashion,

q =
q̂≪m̂

m2 , (A.10)

m̂ =
q̂≪m̂

artanh [m] . (A.11)

In the case where m ≈ 1 it follows from Eq. (A.11) that m̂ diverges while Eq. (A.7) implies
that q̂ remains finite. Therefore, we have closed our saddle-point equations self-consistently
for m≈ 1 and proved that it verifies the annealed Ansatz (q = m2 and q̂≪ m̂).

When plugging the annealed Ansatz in the free energy we obtain the simplification

φ
κ,annealed
planted [x0, m] =−

1−m
2

log
�

1−m
2

�

−
1+m

2
log

�

1+m
2

�

(A.12)

+α

∫

dwPκ[w] log
�

H(κ, mw, 1−m2)
�

.
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This equation can be even further simplified when adding m≈ 1, indeed we can derive

φ
κ,annealed
planted [x0, m]

�

�

�

m≈1
(A.13)

≈ −
1−m

2
log

�

1−m
2

�

+α

∫ κ

−κ
dwPκ[w] log

�

H(κ, mw, 1−m2)
�

≈ −
1−m

2
log

�

1−m
2

�

+α

∫ κ

0

dwPκ[w] log







1+ erf
�

κ−mwp
2(1−m2)

�

2







+α

∫ 0

−κ
dwPκ[w] log







1+ erf
�

κ+mwp
2(1−m2)

�

2







≈ −
1−m

2
log

�

1−m
2

�

+
α
p

2(1−m2)
m

∫
κp

2(1−m2)

κ(1−m)p
2(1−m2)

dB Pκ
�

κ− B
p

2(1−m2)
m

�

log
�

1+ erf [B]
2

�

+
α
p

2(1−m2)
m

∫
κp

2(1−m2)

−κ(1−m)p
2(1−m2)

dB Pκ
�

−κ+ B
p

2(1−m2)
m

�

log
�

1+ erf [B]
2

�

≈ −
1−m

2
log

�

1−m
2

�

+ 2α
p

1−m

∫ +∞

0

dB {Pκ[κ] + Pκ[−κ]} log
�

1+ erf [B]
2

�

.

The implications following this simplification of the local free energy can be found in Sec. 2.

B General Ansatz for the chained equilibrium

In this section we present the detailed computation for

Vt

�

x0,
�

m j, j+1

	

j∈[[0,t−1]] , {κ j} j∈[[1,t]]

�

(B.1)

=
1
N

IEξ

�

∑

x1

Pκ1

h

x1

�

�

�

x0 · x1

N
= m1,0

i

× · · · ×
∑

xt−1

Pκt−1

h

xt−1

�

�

�

xt−2 · xt−1

N
= mt−1,t−2

i

× log

�

∑

xt∈ΣN

s.t.
xt ·xt−1

N =mt,t−1

e
∑M
µ=1 log[Θ(κt−|ξµ·xt |)]

��

.

For simplicity in the following we will drop the variables of this potential and simply write Vt .
This potential can be rewritten as

Vt =
1
N

IEξ

¨

∑

x1

∫

dm̂1,0
e
∑

µ log[Θ(κ1−|ξµ·x1|)]+m̂1,0(x1·x0−Nm1,0)

Zκ1[x0, m1,0]
(B.2)

× · · ·

×
∑

xt−1

∫

dm̂t−1,t−2
e
∑

µ log[Θ(κt−1−|ξµ·xt−1|)]+m̂t−1,t−2(xt−1·xt−2−Nmt−1,t−2)

Zκt−1[xt−2, mt−1,t−2]

× log

�

∑

xt

∫

dm̂t,t−1e
∑

µ log[Θ(κt−|ξµ·xt |)]+m̂t,t−1(xt ·xt−1−Nmt,t−1)

�«

.
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B.1 General computation

If we introduce replica for each “link” configuration in the chain we have

Vt = lim
{n j→0} j∈[[1,t]]

1
nt
−

1
Nnt

IEξ

(

n1
∏

a1=1

∑

x1,a1

∫

dm̂1,0,a1
e
∑

µ log
�

Θ(κ1−|ξµ·x1,a1
|)
�

+m̂1,0,a1
(x1,a1

·x0−Nm1,0)

× · · · (B.3)

×
nt−1
∏

at−1=1

∑

xt−1,at−1

∫

dm̂t−1,t−2,at−1
e
∑

µ log
�

Θ(κt−1−|ξµ·xt−1,at−1 |)
�

+m̂t−1,t−2,at−1
(xt−1,at−1

·xt−2,1−Nmt−1,t−2)

×
nt
∏

at=1

∑

xt,at

∫

dm̂t,t−1,at
e
∑

µ log[Θ(κt−|ξµ·xt,at |)]+m̂t,t−1,at (xt,at ·xt−1,1−Nmt,t−1)

)

= lim
{n j→0} j∈[[1,t]]

1
nt
−

1
Nnt

IEξ

(

n1
∏

a1=1

∑

x1,a1

∫

dm̂1,0,a1

M
∏

µ=1

�

dwµ1,a1
dŵµ1,a1

�

× e
∑

µ log
�

Θ(κ1−|w
µ
1,a1
|)
�

+ŵµ1,a1
(ξµ·x1,a1

−wµ1,a1
)+m̂1,0,a1

(x1,a1
·x0−Nm1,0)

× · · ·

×
nt−1
∏

at−1=1

∑

xt−1,at−1

∫

dm̂t−1,t−2,at−1

M
∏

µ=1

�

dwµt−1,at−1
dŵµt−1,at−1

�

× e
∑

µ log
�

Θ(κt−1−|w
µ
t−1,at−1

|)
�

+ŵµt,at
(ξµ·xt−1,at−1

−wµ1,a1
)+m̂t,t−1,at (xt−1,at−1

·xt−2,1−Nmt,t−1)

×
nt
∏

at=1

∑

xt,at

∫

dm̂t,t−1,at

M
∏

µ=1

�

dwµt,at
dŵµt,at

�

× e
∑

µ log
�

Θ(κt−|w
µ
t,at
|)
�

+ŵµt,at
(ξµ·xt,at−wµt,at

)+m̂t,t−1,at (xt,at ·xt−1,1−Nmt,t−1)
�

.

The integration over the disorder {ξµ}µ∈[[1,M]] and after over the variables {ŵµj,a j
}µ∈[[1,M]] is

trivial as it simply involves Gaussian integrals. It yields

Vt = lim
{n j→0} j∈[[1,t]]

1
nt
−

1
Nnt





∫

dw0Pκ0[w0]
t
∏

j=1

n j
∏

a j=1

�∫

dw j,a j
elog

�

Θ(κ j−|w j,a j
|)
�

�

e
−w⊤Σ(x)w

2





M

×





∑

x0∈ΣN

1
2N

t
∏

j=1

n j
∏

a j=1





∑

x j,a j
∈ΣN

∫

dm̂ j, j−1,a j
em̂ j,a j

(x j,a j
·x j−1,1−Nm j, j−1)







 ,

(B.4)

with
[Σ(x)−1] j,a j , j′,a j′

= x j,a j
· x j′,a j′

, and w j,a j
= w j,a j

. (B.5)
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Finally, we introduce the overlap and field matrices, respectively m j,a j , j′,a j′
= IEξ[x j,a j

· x j′,a j′
]

and m̂ j,a j , j′,a j′
= m̂ j,a j , j′,a j′

. The potential then reads

Vt = lim
{n j→0} j∈[[1,t]]

1
nt

(B.6)

−
1

Nnt
opt

m j′ ̸= j−1,a j′ ̸=1











∫

dw0Pκ0[w0]
t
∏

j=1

n j
∏

a j=1

�∫

dw j,a j
elog

�

Θ(κ j−|w j,a j
|)
�

�

e
−w⊤Σ(m)w

2





M

×





∑

x0=±1

1
2

t
∏

j=1

n j
∏

a j=1





∑

x j,a j
=±1

∫ j−1
∏

j′=1

n j′
∏

a j′=1

dm̂ j, j′,a j ,a j′
e

m̂ j,a j , j′ ,a j′
(x j,a j

x j′ ,a j′
−Nm j, j−1)









N




,

and Σ(m)−1 =m.

B.2 Proving that the replica Ansatz for Vt[.] is annealed

In App. A we showed that Vt=1[x0, m1,0,κ1] = φ
κ=κ1
planted[x0, m = m1,0] can be determined with

an annealed replica Ansatz when m1,0 ≈ 1. Indeed, the planted and chain settings are equiv-
alent when considering the first “link” in the chain. In the following, we will continue the
reasoning by proving that the second “link”, namely x2, also verifies an annealed geometry for
m2,1 ≈ 1.

A simple fashion to write a physically correct replica Ansatz is to focus first on the interac-
tion set w. We see from the construction of the potential Vt , and in particular with the term

e
−w⊤Σ(m)w

2 , that this set can be decomposed over a basis of independent random Gaussian pro-
cesses such that we match the covariances given by Σ(m)−1. More practically, we can write
for the first “link” in the chain

w0 ∼ Pκ0[.] , (B.7)

wa1
1 = m1,0w1

0 +
Ç

1−m2
1,0 ua1

1 , and ua1
1 ∼N (0,1) . (B.8)

If we then take a replica symmetric Ansatz for the second “link” we obtain

wa2
2 = m2,0wa0

0 +
m2,1 −m2,0m1,0
q

1−m2
1,0

u1
1+

√

√

√q−m2
2,0 −

(m2,1 −m2,0m1,0)2

1−m2
1,0

z2+
p

1− q ua2
2 , (B.9)

and {z2, ua2
2 } ∼N (0, 1). We can now simplify Vt=2 to manipulate a more handy formula,

Vt=2 = opt
q,m2,0,q̂,m̂2,1,m̂2,0

�

−
1− q

2
q̂− m̂2,1m2,1 − m̂2,0m2,0 (B.10)

+
∑

x0=±1

1
2

∑

x1=±1

em̂1,0 x0 x1

2cosh
�

m̂1,0 x0

� log
�

2 cosh
�

m̂2,0 x0 + m̂2,1 x1

�	

+α

∫

dw0Pκ0[w0]

∫

Du1Θ(κ1 − |m1,0w0 +
q

1−m2
1,0 u1|)

∫

Du∗1Θ(κ1 − |m1,0w0 +
q

1−m2
1,0 u∗1|)

×
∫

Dz2 log
�

H
�

κ2, w, 1− q
��

�

,

w=m2,0w0 +
m2,1 −m2,0m1,0
q

1−m2
1,0

u1 +

√

√

√q−m2
2,0 −

(m2,1 −m2,0m1,0)2

1−m2
1,0

z2 , (B.11)
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with m̂1,0 = arctanh
�

m1,0

�

. As mentioned in Sec. 3, the optimization being “time-ordered”
we took for m̂1,0 the value obtained with the optimization of Vt=1[x0, m1,0,κ1]. Again the
demonstration for this saddle-point can be found in App. A. To keep light notation throughout
the computation we will rewrite Vt=2 as

Vt=2 = opt
q,m2,0,q̂,m̂2,1,m̂2,0

�

V ∗[q, m2,1, m2,0, q̂, m̂2,1, m̂2,0]
	

, (B.12)

with

V ∗t=2[q, m2,1, m2,0, q̂, m̂2,1, m̂2,0] =−
1− q

2
q̂− m̂2,1m2,1 − m̂2,0m2,0 (B.13)

+
∑

x0=±1

1
2

∑

x1=±1

em̂1,0 x0 x1

2cosh
�

m̂1,0 x0

� log
�

2 cosh
�

m̂2,0 x0 + m̂2,1 x1

�	

+α

∫

dw0Du1Dz2Pκ0,κ1[u1, w0] log
�

H
�

κ2, w, 1− q
��

,

and

w=m2,0w0 +m2,1u1 +
Ç

q−m2
2,0 −m2

2,1 z2 , (B.14)

Pκ0,κ1[u1, w0] =Pκ0[w0]
Θ(κ1 − |m1,0w0 +

q

1−m2
1,0 u1|)

∫

Du∗1Θ(κ1 − |m1,0w0 +
q

1−m2
1,0 u∗1|)

, (B.15)

m2,1 =
m2,1 −m2,0m1,0
q

1−m2
1,0

. (B.16)

Then, we can repeat the computation carried out in App. A. More precisely we have

∂qV ∗t=2 =
q̂
2
+α

∫

dw0Du1Dz2Pκ0,κ1[u1, w0] (B.17)

×









∫

Du2

�

z2

2
Ç

q−m2
2,0−m2

2,1

− u2

2
p

1−q

�

Θ′(κ− |w|)

H
�

κ, w, 1− q
�









.

Now if we assume q−m2
2,0 −m2

2,1≪ 1− q we see that

∂qV ∗t=2 =
q̂
2
+α

∫

dw0Du1Dz2Pκ0,κ1[u1, w0] (B.18)

×









∫

Du2

�

z2

2
Ç

q−m2
2,0−m2

2,1

− u2

2
p

1−q

�

Θ′(κ− |w+
p

1− qu2|)

H (κ, w, 1− q)









−α
∫

dw0Du1Dz2Pκ0,κ1[u1, w0]

×





∫

Du2

�

z2
2

2 ∂y H
�

x = κ, y = w, z = 1− q
��

Θ′(κ− |w+
p

1− qu2|)

H2 (κ, w, 1− q)





+O
�
Ç

q−m2
2,0 +m2

2,1

�

,
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with
w= m2,0w0 +m2,1u1 . (B.19)

As in App. A, it can be shown with an integration by part that the second term in the r.h.s. of
the previous equation is null. It thus follows that the saddle-point verifies

q̂ = α

∫

dw0Du1
Pκ0,κ1[u1, w0]

H
�

κ, m2,0w0 +m2,1u1, 1− q
� . (B.20)

Now if we focus on the partial derivatives with respect to q̂, m̂2,1 and m̂2,0 we obtain

q =
∑

X=±1

em̂1,0X

2cosh
�

m̂1,0

�

∫

Dz tanh2
�

m̂2,0X + m̂2,1 +
Æ

q̂z
�

(B.21)

=
q̂≪m̂

∑

X=±1

em̂1,0X

2cosh
�

m̂1,0

� tanh2
�

m̂2,0X + m̂2,1

�

,

m2,1 =
∑

X=±1

em̂1,0X

2cosh
�

m̂1,0

�

∫

Dz tanh
�

m̂2,0X + m̂2,1 +
Æ

q̂z
�

(B.22)

=
q̂≪m̂

∑

X=±1

em̂1,0X

2cosh
�

m̂1,0

� tanh
�

m̂2,0X + m̂2,1

�

,

m2,0 =
∑

X=±1

X em̂1,0X

2cosh
�

m̂1,0

�

∫

Dz tanh
�

m̂2,0X + m̂2,1 +
Æ

q̂z
�

(B.23)

=
q̂≪m̂

∑

X=±1

X em̂1,0X

2cosh
�

m̂1,0

� tanh
�

m̂2,0X + m̂2,1

�

,

or, rewritten in another fashion,

q =
q̂≪m̂

m2
2,0 +m2

2,1 , (B.24)

m2,1 =
q̂≪m̂

∑

X=±1

em̂1,0X

2 cosh
�

m̂1,0

� tanh
�

m̂2,0X + m̂2,1

�

, (B.25)

m2,0 =
q̂≪m̂

∑

X=±1

X em̂1,0X

2 cosh
�

m̂1,0

� tanh
�

m̂2,0X + m̂2,1

�

. (B.26)

In the case where m2,1 ≈ 1, it follows from Eq. (B.25) that m̂21 diverges, while Eq. (B.20)
implies that q̂ remains finite. We have once again closed the equation self-consistently and
showed that for m21 ≈ 1 the correct replica Ansatz is the annealed one.

In a nutshell, we showed in App. A that the first “link” in the chain verifies an annealed
replica Ansatz (for m1,0 ≈ 1). In this appendix we continued and proved that the second “link”
also follows an annealed replica Ansatz (for m2,1 ≈ 1). To show that this applies for all “links”
in the chain, we simply have to repeat recursively the exact same demonstration written just
above. Finally, if we apply an annealed replica Ansatz for each “link” in the chain we obtain
we

Vt

�

x0,
�

m j+1, j

	

j∈[[0,t−1]] , {κ j} j∈[[1,t]]

�

(B.27)

= opt
{m̂t, j′}0≤ j′≤t−1
{mt, j′}0≤ j′≤t−2













opt∗

{m̂ j, j′}0≤ j′< j≤t−1
{m j, j′}0≤ j′< j−1≤t−2

�

V ∗t
�

x0,
�

m j, j′
	

0≤ j′< j≤t ,
�

m̂ j, j′
	

0≤ j′< j≤t , {κ j} j∈[[1,t]]

�

�













,
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with

V ∗t
�

x0,
�

m j, j′
	

0≤ j′< j≤t ,
�

m̂ j, j′
	

0≤ j′< j≤t , {κ j} j∈[[1,t]]

�

=−
∑

j′<t

m̂t, j′mt, j′ (B.28)

+
∑

x0,...,x t−1=±1

1
2

t−1
∏

j=1

e
∑

0≤ j′< j m̂ j, j′ x j x j′

2 cosh
�

∑

0≤ j′< j m̂ j, j′ x j′
� log



2 cosh

 

∑

0≤ j′<t

m̂t, j′ x j′

!





+α

∫ t−1
∏

j=0

dw j Pκ0[w0]
t−1
∏

j=1

e−
∑

0≤ j′≤ j Σ j, j′ (m)w j w j′
2 Θ(κ j − |w j|)

∫

dw∗j e
−
∑

0≤ j′≤ j Σ j, j′ (m)w
∗
j w j′

2 Θ(κ j − |w∗j |)

× log

�∫

dwt e
−
∑

0≤ j′≤t Σt, j′ (m)wt w j′
2 Θ(κt − |wt |)

�

.

C Simplifying the no-memory Ansatz potential

In this section we present how to simplify the potential

V ∗t
�

x0,
�

m j, j′
	

0≤ j′< j≤t ,
�

m̂ j, j′
	

0≤ j′< j≤t , {κ j} j∈[[1,t]]

�

=−
∑

j′<t

m̂t, j′mt, j′ (C.1)

+
∑

x0,...,x t−1=±1

1
2

t−1
∏

j=1

e
∑

0≤ j′< j m̂ j, j′ x j x j′

2 cosh
�

∑

0≤ j′< j m̂ j, j′ x j′
� log



2 cosh

 

∑

0≤ j′<t

m̂t, j′ x j′

!





+α

∫ t−1
∏

j=0

dw j Pκ0[w0]
t−1
∏

j=1

e−
∑

0≤ j′≤ j Σ j, j′ (m)w j w j′
2 Θ(κ j − |w j|)

∫

dw∗j e
−
∑

0≤ j′≤ j Σ j, j′ (m)w
∗
j w j′

2 Θ(κ j − |w∗j |)

× log

�∫

dwt e
−
∑

0≤ j′≤t Σt, j′ (m)wt w j′
2 Θ(κt − |wt |)

�

.

We can in fact operate the standard change of variable

w j = m j, j−1w j−1 +
Ç

1−m2
j, j−1u j (C.2)

= m j, j−1m j−1, j−2w j−2 +m j, j−1

Ç

1−m2
j−1, j−2u j−1 +

Ç

1−m2
j, j−1u j

=

 

j−1
∏

l= j′
ml+1,l

!

w j′ +
j−1
∑

l= j′+1

 

j−1
∏

n=l

mn+1,n

!

Ç

1−m2
l,l−1ul +

Ç

1−m2
j, j−1u j

=

 

j−1
∏

l=0

ml+1,l

!

w0 +
j−1
∑

l=1

 

j−1
∏

n=l

mn+1,n

!

Ç

1−m2
l,l−1ul +

Ç

1−m2
j, j−1u j ,

and obtain

V ∗t
�

x0,
�

m j, j−1

	

1≤ j≤t , m̂t,t−1, {κ j} j∈[[1,t]]

�

=− m̂t,t−1mt,t−1 + log
�

2 cosh
�

m̂t,t−1

��

(C.3)

+α

∫

dw0 Pκ0[w0]
t−1
∏

j=1





∫

Du j

Θ
�

κ j −
�

�

�m j, j−1w j−1 +
Ç

1−m2
j, j−1u j

�

�

�

�

H
�

κ j , m j, j−1w j−1, 1−m2
j, j−1

�





× log
�

H
�

κt , mt,t−1wt−1, 1−m2
t,t−1

��

.
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In fact, the energetic term can be estimated recursively. If we perform back the change of
variable

w j = m j, j−1w j−1 +
Ç

1−m2
j, j−1u j , (C.4)

we can rewrite the potential as

V ∗t
�

x0,
�

m j, j−1

	

1≤ j≤t , m̂t,t−1, {κ j} j∈[[1,t]]

�

=− m̂t,t−1mt,t−1 + log
�

2 cosh
�

m̂t,t−1

��

(C.5)

+α

∫

dw0 Pκ0[w0]
t−1
∏

j=1









∫

dw j
e
−
(w j−mj, j−1w j−1)

2

2(1−m2
j, j−1) Θ

�

κ j − |w j|
�

Ç

2π(1−m2
j, j−1)H(κ j , m j, j−1w j−1, 1−m j, j−1)









× log
�

H
�

κt , mt,t−1wt−1, 1−m2
t,t−1

��

.

The potential can now be integrated recursively, starting with the integral over w0 (then w1
and so on). Thus, the potential becomes

V ∗t
�

x0,
�

m j, j−1

	

1≤ j≤t , m̂t,t−1, {κ j} j∈[[1,t]]

�

=− m̂t,t−1mt,t−1 + log
�

2cosh
�

m̂t,t−1

��

(C.6)

+α

∫

dwk Pκk[wk]
t−1
∏

j=k+1









∫

dw j
e
−
(w j−mj, j−1w j−1)

2

2(1−m2
j, j−1) Θ

�

κ j − |w j|
�

Ç

2π(1−m2
j, j−1)H(κ j , m j, j−1w j−1, 1−m j, j−1)









× log
�

H
�

κt , mt,t−1wt−1, 1−m2
t,t−1

��

,

with the update rule

Pκ j+1[w j+1] =

∫

dw j Pκ j
�

w j

� e
−

w j+1−mj+1, j w j

2(1−m2
j+1, j ) Θ

�

κ j+1 − |w j+1|
�

Ç

2π(1−m2
j+1, j)H

�

κ j+1, m j+1, jw j , 1−m2
j+1, j

� . (C.7)

Applying this recursion until the end we obtain

V ∗t
�

x0,
�

m j, j−1

	

1≤ j≤t , m̂t,t−1, {κ j} j∈[[1,t]]

�

=− m̂t,t−1mt, j t−1 + log
�

2cosh
�

m̂t,t−1

��

(C.8)

+α

∫

dwt−1 Pκt−1[wt−1] log
�

H
�

κt , mt,t−1wt−1, 1−m2
t,t−1

��

.

D Computing the chain potential for the nested Markovian process

D.1 Building the nested Markovian process

In this section we detail how to build iteratively the nested Markovian process. Starting with
the level 2 Markov chain, we recall that the overlap structure verifies

IEξ[xt0+∆2
t
· xt0+t1

] = m1 , and IEξ[xt0+∆2
t
· xt0
] = m∆2

t
, (D.1)

with the condition on the fields

m̂t0+∆2
t ,t ′ (̸=t0+t1, t0) = 0 . (D.2)
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We will now detail how the entropic and energetic term simplify. The former is the simplest
to compute, we have straightforwardly

∑

x t0 ,...,x t0+∆
2
t
=±1

1
2





t0+t1
∏

j=t0+1

em̂ j, j−1 x j x j−1

2cosh(m̂ j, j−1)





e
m̂t0+∆

2
t ,t0+t1

x t0+∆
2
t

x t0+t1+m̂t0+∆
2
t ,0 x t0+∆

2
t

x t0

2 cosh(m̂t0+∆2
t ,t0+t1

x t0+t1
+ m̂t0+∆2

t ,0 x t0
)

(D.3)

=
∑

x t0 ,x t0+∆
2
t
=±1

e
m̃
∆2

t
x t0 x t0+∆

2
t

2cosh(m̃∆2
t
)

,

with m̃∆2
t
= artanh(m∆2

t
). For the energetic term, we first have to perform the change of

variables in the integrals -preserving the correct correlations-

w j = m1w j−1 +
q

1−m2
1u j , for j ∈ [[1, . . . , t1]] , (D.4)

wt1+1 = m1wt0
+

m∆2
t
−mt1+1

1

1−m2t1
1

(w0 −mt1
1 wt1

) +

√

√

√

√1−m2
1 −
(m∆2

t
−mt1+1

1 )2

1−m2t1
1

ut1+1 , (D.5)

with again ul ∼N (0,1) for l ∈ [[1, t1 + 1]]. We will use later the general notation

m1 = m1 , mk ̸=1 =
m∆k

t
−mtk−1+1

∆k−1
t

1−m2tk−1

∆k−1
t

, V1 = 1−m2
1 , Vk ̸=1 = Vk−1 +

�

m∆k
t
−mtk−1+1

∆k−1
t

�2

1−m2tk−1
k−1

. (D.6)

Injecting this change of variable in the energetic term we obtain

∫ t0+∆2
t

∏

j=t0

dw j e−
wΣ(m)w

2





t0+∆2
t

∏

j=t0+1

Θ(κ− |w j|)
∫

dw∗j e
−

w∗j
∑

j′≤ j Σ(m) j′ , j w j′
2 Θ(κ− |w∗j |)



 (D.7)

=

∫

dwt0

t0+∆2
t

∏

j=t0+1

Du j





t0+t1
∏

j=t0+1

Θ
�

κ− |m1w j−1 +
p

V1u j|
�

H(κ, m1w j−1, V1)





×
Θ
�

κ− |m1wt0+t1
+m1(wt0

−mt1
1 wt0+t1

) +
p

V2ut0+∆2
t
|
�

H[κ, m1wt0+t1
+m2(wt0

−mt1
1 wt0+t1

), V2]

=

∫ t0+∆2
t

∏

j=t0

dw j







t0+t1
∏

j=t0+1

e−
(w j−m1w j−1)

2

2V1 Θ(κ− |w j|)
p

2πV1 H(κ, m1w j−1, V1)







×
e−

�

w
t0+∆

2
t
−m1wt0+t1−m2

�

wt0−m
t1
1 wt0+t1

�

�2

2V2 Θ(κ− |wt0+∆2
t
|)

p

2πV2H[κ, m1wt0+t1
+m2(wt0

−mt1
1 wt0+t1

), V2]

=

∫ t0+∆2
t

∏

j=t0

dw j





t0+t1
∏

j=t0+1

Tκ,1(w j , w j−1, V1)





× Tκ,1

�

wt0+∆2
t
, wt0+t1

+
m2

m1

�

wt0
−mt1

1 wt0+t1

�

, V2

�
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=

∫

dwt0
dwt0+t1

dwt1+∆2
t
Tκ,1

t1(wt0+t1
, wt0

, V1)

× Tκ,1

�

wt0+∆2
t
, wt0+t1

+
m2

m1

�

wt0
−mt1

1 wt0+t1

�

, V2

�

=

∫

dwt0
dwt0+∆2

t
Tκ,2

�

wt1+1, w0, {V1, V2}
�

,

with the definitions

Tκ,1(x , y, V ) =
e−

(x−m1 y)2

2V Θ(κ− |x |)
p

2πV H(κ, m1 y, V )
, (D.8)

Tκ,1
t(x , y, V ) =

∫ t−1
∏

j=1

dz j Tκ,1(z1, y, V )





t−2
∏

j=1

Tκ,1(z j+1, z j , V )



 Tκ,1(x , zt−1, V ) , (D.9)

and

Tκ,2 (x , y, {V1, V2}) =
∫

dz Tκ,1
t1(z, y, V1)Tκ,1

�

x , z +
m2

m1
(y −mt1

1 z), V2

�

. (D.10)

Having started with the memory-less Markov-chain generator T1(w j , w j−1, V1), these com-
putations steps simply highlight that T2(wt0+∆2

t
, wt0

, {Vk}k∈[[1,2]]) is the new Markov-chain gen-
erator. As we mentioned in Sec. 6, this construction can be further iterated with more nested
Markov chains. Given that we have already integrated k levels of nested Markov chains and
that the system spends tk iterations in this level, the configuration xt0+∆k+1

t =t0+(tk+1)∆k
t

verifies
the overlaps

IEξ
�

xt0+∆k+1
t

.xt0+∆k+1
t −∆

j
t

�

= m
∆

j
t
, (D.11)

with the notation
∆k

t = (tk−1 + 1)∆k−1
t , and ∆1

t = 1 . (D.12)

More practically, ∆k
t corresponds to the number of “links” in the chain that are passed when

one iteration of the Markov-chain at level k is performed. Again this profile for the overlaps
allows to reduce the number of free fields variables as we have

m̂t0+∆k+1
t ,t ′ (̸={t0+∆k+1

t −∆
j
t} j∈[[1,k+1]])

= 0 . (D.13)

The entropic term can be trivially simplified as

∑

x t0 ,...,x
t0+∆

k+1
t =±1

1
2

t0+∆k+1
t

∏

j=t0+1

e
∑

0≤ j′< j m̂ j, j′ x j x j′

2cosh
�

∑

0≤ j′< j m̂ j, j′ x j′
� =

∑

x t0 ,x
t0+∆

k+1
t =±1

e
m̃
∆k+1

t
x

t0+∆
k+1
t

x t0

2 cosh(m̃∆k+1
t
)

, (D.14)

with m̃∆k+1
t
= arctanh(m∆k+1

t
). Regarding the energetic term, the form of the correlations

allows us to perform the change of variable

wt0+∆k+1
t
=m1wt0+∆k+1

t −∆
1
t
+

k+1
∑

j=2

m j

�

wt0+∆tk+1
−∆t j
−m

t j−1

∆t j−1
wt0+∆tk+1

−∆t j−1

�

(D.15)

+
p

Vk+1ut0+∆k+1
t

,
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with ul ∼ N (0,1) for l ∈ [[t0 + 1, t0 + ∆k+1
t ]]. Then, it becomes simple to generalize the

computation steps we performed for the first level of Markov-chain and to obtain

∫ (tk+1)∆k
t

∏

j=0

dw je
−wΣ(m)w

2





(tk+1)∆k
t

∏

j=1

Θ(κ− |w j|)
∫

dw∗j e
−

w∗j
∑

j′≤ j Σ(m) j′ , j w j′
2 Θ(κ− |w∗j |)



 (D.16)

=

∫

dwt0
dwt0+∆k+1

t
Tκ,k+1

�

wt0+∆k+1
t

, wt0
, {Vj} j∈[[1,k+1]]

�

,

with the definitions

Tκ,1(x , y, V )=
e−

(x−m1 y)2

2V Θ(κ− |x |)
p

2πV H(κ, m1 y, V )
, (D.17)

Tκ,k
t
�

x , y, {Vk′}k′∈[[1,k]]
�

=

∫ t−1
∏

j=1

dz j Tκ,k

�

z1, y, {Vk′}k′∈[[1,k]]
�

(D.18)

×





t−2
∏

j=1

Tκ,k

�

z j+1, z j , {Vk′}k′∈[[1,k]]
�



Tκ,k

�

x , zt−1, {Vk′}k′∈[[1,k]]
�

,

and the recursion rule

Tκ,k+1

�

x , y, {Vk′}k′∈[[1,k+1]]
�

(D.19)

=

∫

dz Tκ,k
tk
�

z, y, {Vk′}k′∈[[1,k]]
�

Tκ,k

�

x , z +
m j+1

m j

�

y −m
t j

j z
�

, {Vk′}k′∈[[1,k−1]]∪{k+1}

�

.

Detailing our notation, {Vk′}k′∈[[1,k−1]]∪{k+1} means that, given the ordered sequence
{V1, V2, . . . , Vk−1, Vk}, we have replaced the last term as {V1, V2, . . . , Vk−1, Vk+1}. For example,
if we take the Markov chain at level k = 3 the generator T3(., ., .) is

Tκ,3

�

x , y, {Vk′}k′∈[[1,3]]
�

(D.20)

=

∫

dz Tκ,2
t2 (z, y, {V1, V2}) Tκ,2

�

x , z +
m j+1

m j

�

y −m
t j

j z
�

, {V1, V3}

�

=

∫

dz Tκ,2
t2 (z, y, {V1, V2})

×
�∫

dz′Tκ,1
t1[z′, z, V1]Tκ,1

�

x , z′+
m2

m1

�

z −mt1
1 z′

�

+
m3

m1

�

y −mt2
2 z
�

, V3

��

.

D.2 Computing the chain potential

In this section we will focus on computing the potential Vt[., ., .] for the very last step of the
effective Markovian process presented in Sec. 6. We will consider that our connected solutions
follow a memory pattern of ktot nested Markovian chains where it effectively jump from a
solution xt0

to xt0+∆
ktot
t

. The aim is to compute the number of accessible solutions xt0+∆
ktot
t

when the chain is fixed from configuration xt0
to xt0+∆

ktot
t −1. In this situation we recall that

only a handful of overlaps are strictly fixed with our nested Markovian process, namely

IEξ
�

xt0+∆
ktot
t

.xt0+∆
ktot
t −∆

j
t

�

= m
∆

j
t
, (D.21)
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where ∆ j
t corresponds to the number of “links” in the chain we pass when one iteration of the

Markov-chain at level j is performed. We recall that it is determined by the recursion

∆k
t = (tk−1 + 1)∆k−1

t , and ∆1
t = 1 . (D.22)

Moreover, we have to highlight that going from configuration xt0+∆
ktot
t −∆

j+1
t

to xt0+∆
ktot
t −∆

j
t

the

system simply passes through the j th level of the Markovian process. All of these features
allow simplifications in the potential V ∗

t0+∆
ktot
t

[., ., .]. If we start for example with the entropic

term, we have

∑

x t0 ,...,x
t0+∆

ktot
t −1

=±1

1
2

t0+∆
ktot
t −1
∏

j=t0+1

e
∑

t≤ j′< j m̂ j, j′ x j x j′

2cosh
�

∑

t≤ j′< j m̂ j, j′ x j′
� (D.23)

× log



2cosh





∑

t0≤ j′<t0+∆
ktot
t

m̂t+∆ktot
t , j′ x j′









=
∑

x t0=±1

1
2

ktot−1
∏

j=1





∑

x
t+∆ktot

t −∆ j
t
=±1

e
m̃
∆

j
t
x

t0+∆
ktot
t −∆ j

t
x

t0+∆
ktot
t −∆ j+1

t

2cosh(m̃
∆

j
t
)





× log



2cosh

 

ktot
∑

j=0

m̂t0+∆
ktot
t ,t0+∆

ktot
t −∆

j
t
x t0+∆

ktot
t −∆

j
t

!



 ,

with

m̃
∆

j
t
= arctanh

�

m
t j

∆
j
t

�

. (D.24)

Regarding the energetic term, we can again use the Markov-chain generators
T j(., ., {Vk}k∈[[1, j]]) that describe the jump from a configuration xt ′ to xt ′+∆ j

t
. In particular,

to go from xt0+∆
ktot
t −∆

j+1
t

to xt0+∆
ktot
t −∆

j
t

we have to apply T j
t j (., ., {Vk}k∈[[1, j]]). With these

generators we can rewrite the energetic term as

α

∫ t−1
∏

j=0

dw j Pκ0[w0]
t−1
∏

j=1

e−
∑

0≤ j′≤ j Σ j, j′ (m)w j w j′
2 Θ(κ j − |w j|)

∫

dw∗j e
−
∑

0≤ j′≤ j Σ j, j′ (m)w
∗
j w j′

2 Θ(κ j − |w∗j |)
(D.25)

× log

�∫

dwt e
−
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0≤ j′≤t Σt, j′ (m)wt w j′
2 Θ(κt − |wt |)

�

= α

∫

dwt0
Pκktot−mem. state[wt0

]
ktot−1
∏

j=1

�

dwt0+∆
ktot
t −∆

j
t
T j

t j (wt0+∆
ktot
t −∆

j
t
, wt0+∆

ktot
t −∆

j+1
t

, {Vk}k∈[[1, j]])
�

× log



H

�

κ, m1wt0+∆
ktot
t −∆

1
t
+

ktot
∑

j=1

m j

�

wt0+∆
ktot
t −∆

j
t
−m

t j−1

∆
j−1
t

wt0+∆
ktot
t −∆

j−1
t

�

, Vktot

�



 ,

where we recall the notation

m1 = m1 , mk ̸=1 =
m∆k

t
−mtk−1+1

∆k−1
t

1−m2tk−1

∆k−1
t

, V1 = 1−m2
1 , Vk ̸=1 = Vk−1 +

�

m∆k
t
−mtk−1+1

∆k−1
t

�2

1−m2tk−1
k−1

. (D.26)
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Combining together the entropic and energetic terms we obtain

V ∗
t0+∆

ktot
t

�

x0, {m
∆

j
t
} j=[[1,ktot ]], {m̂t0+∆

ktot
t ,t0+∆

ktot
t −∆

j
t
} j=[[1,ktot ]], {κ j = κ} j∈[[t0,t0+∆

ktot
t ]]

�

= −
ktot
∑

j=0

m̂t0+∆
ktot
t ,t0+∆

ktot
t −∆

j
t
m
∆

j
t

(D.27)

+
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!


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
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From then on, the potential V ∗
t+∆ktot

t

[., ., ., .] can be evaluated numerically by integrating se-

quentially in the entropic and energetic term over the variables {x t0+∆
ktot
t −∆

1
t
, wt0+∆

ktot
t −∆

1
t
},

then {x t0+∆
ktot
t −∆

2
t
, wt0+∆

ktot
t −∆

2
t
} and so on and so forth. This sequence of integration yields

similar recursion equations than the one obtain for the Markov-chain generators T j(., ., .).
Finally comes the optimization scheme for the potential. We want either to determine

the localization/delocalization critical point καktot−mem. state (α being fixed) or ακktot−mem. state
(κ being fixed). We recall that the transition occurs when the potential becomes null. In
the present case, it is less numerically complex to determine ακktot−mem. state. Indeed, after
satisfying the saddle-points over the fields {m̂t0+∆

ktot
t ,t0+∆

ktot
t −∆

j
t
} j=[[1,ktot ]] we can identify that

the potential is null for

α= −
Ventropic

Venergetic
, (D.28)

with

Ventropic =−
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Venergetic =

∫

dwt0
Pκktot−mem. state[wt0

] (D.30)

×
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Consequently, having fixed κ, we can obtain ακktot−mem. state by simply tuning the set of variables
�

m
∆

j
t
,∆ j

t

	

j∈[[1,ktot ]]
so as to maximize the value of α given by Eq. (D.28). In particular, while

our construction implies that t j ∈ IN (and consequently ∆ j
t ∈ IN) for all j ∈ [[2, ktot]], we

determine the critical point after extending the computation to t j ∈ IR.
Again, we recall that the potential V ∗t ′ [., ., ., .] should be evaluate throughout the en-

tire effective Markovian process to ensure that it remains positive (or null) for the period
t0 → t0 + ∆

ktot
t . However, we observe numerically that it is always the very last step, i.e.

t0+∆
ktot
t −1→ t0+∆

ktot
t , that has the minimal potential and that is consequently the limiting

“link” in the chain.
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