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Abstract

The measurements performed by particle physics experiments must account for the im-
perfect response of the detectors used to observe the interactions. One approach, unfold-
ing, statistically adjusts the experimental data for detector effects. Recently, generative
machine learning models have shown promise for performing unbinned unfolding in a
high number of dimensions. However, all current generative approaches are limited to
unfolding a fixed set of observables, making them unable to perform full-event unfold-
ing in the variable dimensional environment of collider data. A novel modification to the
variational latent diffusion model (VLD) approach to generative unfolding is presented,
which allows for unfolding of high- and variable-dimensional feature spaces. The per-
formance of this method is evaluated in the context of semi-leptonic t t̄ production at
the Large Hadron Collider.
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1 Introduction

Particle interactions can reveal new particles and forces, and allow for measurements of the
parameters of theories that explain their dynamics. The detectors that measure the final state
particles produced by such interactions have limited resolution and efficiency, introducing de-
tector effects that must be accounted for in any statistical inference, for example via a simula-
tor [1]. However, high-fidelity simulations of modern detectors are not universally accessible
and are extremely computationally expensive [2–5]. An alternative approach, unfolding, is to
correct the observed data for the effect of the detectors. This allows for statistical inference
without access to the expensive detector simulator, and enables easier comparison of data from
different experiments or with new theory predictions.

Traditional unfolding techniques [6–8] simplify this challenging task by binning data in a
set of pre-selected quantities. These binned unfolding techniques become unfeasible as the
number of dimensions grows beyond one or two, due to the curse of dimensionality [9]. Re-
cent advances in machine learning (ML) have enabled unbinned unfolding in many dimen-
sions. These methods fall into two categories: discriminative methods that train classifiers to
reweight synthetic data distributions to an estimate of the truth level distributions [10, 11],
and generative methods that model the distribution of a set of truth level observables given
the corresponding detector level distributions [12–18]. Ideally, these methods would enable
full-event unfolding, in which the kinematics of every final state particle are unfolded. The
resulting unfolded datasets could be used to measure any observable without the need for ex-
pensive detector simulation, and even long after the experiment has been concluded. Since the
number of particles in a final state can vary significantly due to inherently random processes,
the ability to handle variable dimensionality events is a crucial element of true full-event un-
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folding. Discriminative methods have successfully performed high-dimensional (up to O(100)
target observables) and variable-dimensional unbinned unfolding [19–22]. However, these
methods may struggle in regions where the number of observed events is small. Because gen-
erative approaches require only synthetic data during training, their performance might be
less sensitive to the number of observed events1 - however, handling variable dimensions can
be a formidable challenge for existing generative unfolding methods [13,16].

Recently, Variational Latent Diffusion (VLD) models [18]were introduced and shown to be
a powerful generative approach for unfolding a fixed number of observables. In this paper, the
VLD approach to unfolding is extended to a variable dimensional set of observables, enabling
full-event unfolding even when the number of observed events is small. Full event unfold-
ing with variable dimensionality is demonstrated for measuring top quark pair production, a
common use-case of unfolding algorithms for experiments at the Large Hadron Collider.

One potential shortcoming of unfolding methods optimized only on simulations is the un-
folded distribution’s dependence on the prior distribution used to construct training data. If
necessary, an iterative method first proposed in Ref. [14] can be applied to mitigate this de-
pendence on the training set prior. This paper assess the prior dependence of a VLD model
by evaluating it over an alternative testing set which contains shifts in the truth particle level
distributions.

2 Background

Unfolding methods aim to sample from a truth distribution ftruth(x), where truth refers to an
unobserved state of interest to physicists. The observations include distortions introduced by
the detector systems, and it is desirable to correct the measured data to remove these effects.
Having only access to the observed detector-level data set y = {yi} with distribution fdet(y),
an unfolding method aims to learn the response function p(y|x) which connects the two:

fdet(y) =

∫

d x p(y|x) ftruth(x) . (1)

The response function itself is unknown, but (x , y) pairs can be produced through Monte-
Carlo (MC) simulation. The truth distribution ftruth(x) can be recovered via the corresponding
inverse process if one has access to the posterior, a pseudo-inversion of the response function
p(x |y):

ftruth(x) =

∫

d y p(x |y) fdet(y) . (2)

The strategy of most generative unfolding methods is to build the posterior as a generative
model trained on (x , y) pairs,2 which can be used to sample from p(x |y) and obtain the truth
distribution via Equation 2. An important issue when choosing to directly model the posterior
is that this quantity is itself dependent on the desired distribution ftruth(x), the prior in Bayes’
theorem:

p(x |y) =
p(y|x) ftruth(x)

fdet(y)
. (3)

1While generative methods alone do not require using the observed events for training, applying an iterative
procedure [14] to reduce prior dependence would. The extent to which a limited number of observed events would
limit performance in this scenario is unclear.

2A method for detector-simulation-free training is presented in Ref. [17].
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Producing the sample of simulated data used to train the generative model requires choos-
ing a specific ftruth(x), which influences the learned posterior. In application to new datasets,
this may lead to an unreliable estimate of the posterior density if the assumed prior is far
enough from the truth distribution. A common method to overcome this challenge is to apply
an iterative procedure, in which the assumed prior is re-weighted to match the approximation
to the truth distribution provided by the unfolding algorithm [6]. Though application of this
iterative procedure is not shown in this paper, the principle has been well-established for other
generative unfolding methods [23], for which the conditions are similar.

In collider physics, there are multiple truth distributions of interest which could in prin-
ciple be inferred from the detector level distribution. Ref. [18] applied VLD to parton-level
unfolding; partons are intermediate particles produced directly from the hard scatter process
but before the parton shower and hadronization processes [24]. For parton-level unfolding,
the pseudo-inversion of the response function p(x |y) then contains the pseudo-inversion of
both the detector response and the parton shower and hadronization processes.

In contrast to the parton showering and hadronization, the response of the detector to the
final state particles from a collision event is very well modeled by simulators and generally
independent of the hard-scatter process which produced the particles. Therefore it is usually
preferable to unfold to particle-level: the set of stable particles directly before interaction with
the detector. After identifying the stable leptons, the remaining stable particles can be clustered
into jets. VLD is applied to particle-level unfolding in this paper, using the leptons and jets as
targets. In contrast to the fixed dimensionality of parton-level unfolding, a particle-level event
is of an inherently variable dimensionality since it must also describe jets that result from
random processes such as initial- and final-state radiation. In this paper, VLD is modified to
accommodate a variable dimension output, making it the first generative unfolding method
with this capability.

3 Methods

Diffusion models are a class of generative models which have excelled in learning high-
dimensional probability distributions at high fidelity. They have been applied to a vari-
ety of generative tasks within high energy physics (HEP), including event generation [25–
31], calorimeter shower simulation [32–39], anomaly detection [40–42], likelihood estima-
tion [43], and unfolding [16,18]. They involve formulating a diffusion process in which sam-
ples from a data distribution are mapped to a pure noise distribution through addition of
(usually Gaussian) noise, parameterized by a time step t ∈ [0, 1]. In a standard formulation
of the diffusion model [44, 45], a neural network is trained to predict the added noise, con-
ditioned on the original data sample and the time step t. The output of this model can then
be used to reverse the diffusion process, allowing samples from the pure noise distribution to
be mapped to a sample from the underlying distribution from which the training data is sam-
pled. Many recent papers have improved the diffusion process, including a reinterpretation of
the diffusion process as a stochastic differential flow [46], improvements in the solver used to
generate samples from a learned flow [47], and moving the diffusion process into an abstract
latent space [48].

Ref. [18] introduced variational latent diffusion models (VLD) which combine the interpre-
tation of a diffusion model as a hierarchical sequence of variational autoencoders (VAEs) [49]
from Ref. [50]with the latent diffusion [48] approach of operating the diffusion process within
the learned latent space of a pre-trained VAE. The combination of these ideas allowed the con-
struction of a conditional generative model in which both the VAE, which defines the latent
space, and the diffusion model can be trained together in an end-to-end variational framework.
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Figure 1: A Flow diagram of the components of Particle VLD. Pairs of particle level
(OP) and detector level (OD) events are used to train the model using the loss func-
tions introduced in Ref. [18]. At inference time, a detector level event is used to
produce a multiplicity prediction and mapped to a latent embedding through the
detector encoder. The multiplicity prediction and the latent representation of the
detector level event are then used to condition the diffusion process, resulting in a
sample from the latent space of the particle VAE. A particle decoder is then applied to
produce a sample from the learned conditional distribution P(X |Y ). During training,
the particle encoder is used to produce latent samples instead of the diffusion pro-
cess. The special vector y0 is a learnable input vector trained alongside the network
weights.

In this section, an extension of the VLD model is introduced, designed to unfold to a vari-
able dimensional truth distribution, conditioned upon a variable dimensional detector-level
distribution. Formally, the particle level unfolding problem is learning the distribution of a
set of objects X = {x1, x2, . . . , xN} conditioned on another set of objects Y = {y1, y2, . . . , yM}.
It is crucial to note that the correspondences between entities in these sets are not strictly
one-to-one and the cardinalities of these sets may differ: M ̸= N . VLD is designed to learn the
distribution P(X |Y ), which is conditional on all information in the set of objects Y and captures
the correlations between the individual elements of X . The latent space of the VAE is adapted
to optimize the diffusion process, rather than being held fixed as the noise prediction network
is trained. A diagram of the model is shown in Figure 1, and the individual components are
described below.

Similarly to Ref. [18], the distributions are defined over a learned latent space X = fP(OP),
derived from the original particle-level observations OP with the help of a VAE. A similar map-
ping is learned for the conditioning set, derived from the detector-level observables with the
help of a detector encoder Y = fD(OD). The VAE, detector encoder, and diffusion components
are trained as part of an end-to-end training scheme similar to Ref. [18], but with the addition
of a multiplicity predictor, described below.

3.1 Particle VAE

The Particle VAE, consisting of an encoder and a decoder, is designed to learn an efficient
mapping from the low-level observables of particle-level events into a latent space optimized
for the diffusion process. Given the variable length nature of particle level events, a trans-
former [51] is used as the underlying architecture for both networks. Each event is comprised
of observables associated with individual particle-level objects, along with global observables
that encapsulate the entire event’s properties. The encoder inputs include a set of N particle-
level objects, represented as PPi

∈ RDParticle for each object, complemented by a one-hot encoded
vector TPi

∈ {0, 1}DType , which specifies the type of the particle object. Additional event-level
observables are denoted as EP ∈ RDEvent .
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The set of observables for each particle-level object is denoted ÕP =
�

OP1
,OP2

, . . . ,OPN

	

,
where OPi

= (PPi
||TPi
) represents concatenated kinematics and type vectors. The event-level

observables are incorporated as an additional input vector, OP0
= EP , ensuring the encoder

receives a complete description of the event OP =
�

OP0
,OP1

, . . . ,OPN

	

. This input set is pro-
cessed through a transformer encoder model that is position-equivariant, acknowledging that
the particle objects within a collision event possess no intrinsic order. The encoder produces
a set X of N elements, each being a DLATENT dimensional latent vector x i , effectively map-
ping both the variable-length particle objects and fixed-length event observables into a unified
latent space.

X = {x0, x1, x2, . . . , xN} , where x i = TRANSFORMERENCODER(OP)i ∈ RDLATENT . (4)

Unlike in Ref. [18], the latent space of the VAE is coupled directly to the diffusion process.
Instead of predicting an independent σ from the VAE encoder, the learned diffusion noise
schedule is used to determine the encoded vectors x0(0), and these noisy latent vectors are
used for the decoder side of the VAE. The details and notation used to describe the diffusion
process are presented below.

The decoder mirrors the encoder, employing a transformer to pre-process the encoded
objects before outputting estimates for both the continuous kinematic features and the discrete
object-type labels. Deep feed-forward multi-layer perceptrons (MLPs) are applied per-object
to reconstruct these inputs, while the event observables are reconstructed using a separately
parameterized MLP. The object-type MLP uses a softmax activation to produce a distribution
over predicted object types.

wi = TRANSFORMERDECODER([x0(0), x1(0), x2(0), . . . , xN (0)])i ∈ RDLATENT ,

P̂Pi
= M LPP(wi) for i ≥ 1 ∈ RDPARTICLE ,

T̂Pi
= Softmax(M LPT (wi)) for i ≥ 1 ∈ RDTYPE ,

ÊP = M LPE(w0) ∈ RDEVENT . (5)

3.2 Detector encoder

The detector encoder employs an identical architecture to the Particle VAE encoder to encode
the detector observations into the conditional latent space Y . The inputs are a cardinality M
set of detector-level objects, each described by a vector of observables PDi

together with a one-
hot encoding of the object type TDi

. These features are concatenated ODi
= (PDi

||TDi
), and

passed through the detector encoder. The output of this network is a set Y of cardinality M
containing DLATENT dimensional latent detector vectors yi

Y = {y1, y2, . . . , yM} , where yi = TRANSFORMERDETECTOR(
�

OD1
,OD2

, . . . ,ODM

�

)i . (6)

3.3 Multiplicity predictor

To accommodate the generation of variable-length particle-level events, a regression network
that predicts the distribution of particle multiplicity conditioned on the encoded detector ob-
servations is used. This step is critical for determining the appropriate number of objects to
generate, as the generative problem is not guaranteed to contain a one-to-one mapping be-
tween detector and truth level objects.

Starting with the encoded detector features Y = {y1, y2, . . . , yM}, a new learnable vector
y0 ∈ DLATENT is appended, and the set is processed with a transformer to extract multiplicity
features z in a manner similar to the class-attention block [52]. Since the predictions are
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positive count values, a deep MLP is used to estimate the shape (k) and scale (θ) parameters
of a gamma distribution which can then be sampled from while unfolding an event.

z = TRANSFORMERMULTIPLICITY ({y0, y1, y2, . . . , yM})0 ,

N̂ ∼ Gamma (M LPk(z), M LPθ (z)) . (7)

3.4 Latent diffusion process

The conditional distribution P(X |Y ) is learned via a diffusion model, following the formulation
presented in Ref. [18], based on the variational diffusion model interpretation first introduced
in Ref. [50], extended to operate on sets of objects. The intrinsically unordered nature of sets
introduces a degree of ambiguity into the definition of the variable-length diffusion model
and the training objective of the noise prediction model. These ambiguities are mitigated by
imposing an arbitrary ordering on X at the diffusion stage of the network via a total ordering
function O(x) ∈ R. In the following diffusion definitions, it will be assumed that X is an
ordered list of objects following the ordering function O, X = [x0, x1, x2, . . . , xN ], such that
for all i < j, O(x i) < O(x j). This order will only affect the diffusion network, as all other
components of the network are order equivariant.

The continuous time (t ∈ [0,1]) diffusion flow is extended to an element-wise generaliza-
tion of traditional diffusion by defining the list distribution flow as

X (t) = [x0(t), x1(t), x2(t), . . . , xn(t)] , where x i(t)∼N (αi(t)x i ,σi(t)I) . (8)

The traditional noise schedule of diffusion models is extended to multiple objects, with
each position in the set defining its own schedule. The correct schedule is applied to the
correct object by defining these schedules as a function of the object’s position in X , which is
fixed by the imposed ordering. A monotonic log signal-to-noise ratio (SNR) function, γφ(i, t),
is learned, where i ∈ N and t ∈ [0,1]. As in Ref. [18], the function is parameterized as a
positive definite neural network trained to minimize the variance of the diffusion loss term.
The flow parameters based on these noise schedules are defined as

σi(t) =
q

sigmoid(−γφ(i, t)) , and αi(t) =
q

sigmoid(γφ(i, t)) .

As this formulation is an element-wise extension of the traditional diffusion process,
the forward and backward dynamics remain identical to the original VLD, although applied
element-wise with each position’s noise schedule. A system of Stochastic Differential Equations
(SDEs) is defined as

d x i(t) = f (x i , t)d t + g(t)dw , (Forward SDE)

d x i(t) =
�

f (x i , t) + g2(t)
ε̂θ (x i(t), X (t), Y, t)

σi(t)

�

d t + dw̄ , (Reverse SDE)

for each i ∈ {0,1, 2, . . . , N}. A noise-prediction formulation is employed for the score network,
with ∇x i

log p(x i) = −
1
2 ε̂θ (x i(t), X (t), Y, t) [45]. A key detail is that the denoising network

(detailed below) depends not only on the conditioning Y and the current noisy latent vector
x i(t), but on all other noisy latent samples in X (t) as well. This allows different generative
components to share information with each other. This contextual information allows the de-
noising network to adjust its predictions based on the other objects currently being generated.
Without these inputs, the denoising network could confuse objects with each other when the
signal-to-noise ratio is low.
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3.4.1 Particle denoising network

To address the challenges of modeling variable-length data and effectively predicting the
noise in the context of diffusion models, a noise prediction function employing transformers,
ε̂θ (x i , X , Y, t), is used to learn a novel list-generative and set-conditioned denoising network.
This network leverages an encoder-only transformer architecture, processing all noisy latent
vectors x i(t) in parallel. By employing attention mechanisms, the network integrates both the
particle-level inputs, X , and the conditioning detector-level inputs, Y , enriching the denoising
process with comprehensive contextual information.

For particle-level inputs, X (t) = [x0(t), x1(t), . . . , xN (t)], Fourier positional features Pi are
incorporated, following the method introduced in Ref. [51]. Additionally, a unique learned
flag vector, FP ∈ RN , is appended to identify these inputs as noisy particle-level data. The
network may need to adjust its outputs based on the specific stage of the diffusion process, so
the current noise scale, σi(t), is additionally included in the inputs.

A parallel pre-processing pipeline is applied to the conditioning set Y , adding position in-
formation and the detector-level flag vector to this input, FD ∈ RM . Both sets of pre-processed
inputs are then transformed via MLPs which map these inputs into the denoising transformer’s
hidden dimensionality, DDENOISE. This produces two lists of DDENOISE dimensional vectors, one
of length N representing the particle level event at a time step t, and the other of length M
representing the detector level event,

P = [P0,P1,P2, . . . ,PN ] , where Pi = M LPP (x i||FP ||Pi||σi(t)) ,

D = [D1,D2, . . . ,DM ] , where Di = M LPD (yi||FD||Pi) .

The denoising network is then defined as the output of a transformer encoder with the
two lists used as inputs. A block diagram of the denoising network and its inputs is shown
in Figure 2. The noise predictions are extracted by dropping the transformer outputs for the
detector-level inputs and indexing the outputs by particle position.

ε̂θ (x i , X , Y, t) = TRANSFORMER(P ||D)i . (9)

3.4.2 Noise schedule network

The noise schedule log SNR is parameterized as a monotonically decreasing function with re-
spect to time, conditioned on position, γφ(i, t). Following [50], this monotonic function is
implemented via a neural network with positive weights and monotonic activations. Weights
are forced positive by squaring them before computing the linear operation, and sigmoid ac-
tivations are used for the hidden layers. Inputs are the time as a scalar, t ∈ [0, 1], and the
position encoded as learned DSCHEDULE dimensional position vectors Pi ∈ RDSCHEDULE . The net-
work’s hidden layer contains 1,000 dimensions to allow for nonlinear behaviour, and the final
layer outputs a scalar value for the log SNR.

Independently, the end-points of the noise schedule γmin and γmax , are learned and held
identical across all positions. The network learns an unconstrained schedule which is then
rescaled to fit into the γ bounds. Given W1 ∈ R1000×(DSCHEDULE+1), W2 ∈ R1×1000, and the sigmoid
function σ(_), the schedule is defined as:

γ̃φ(t, i) = −W 2
2 σ
�

W 2
1 [t||Pi]
�

, (10)

γφ(t, i) = (γmax − γmin)
γ̃φ(t, i)− γ̃φ(0, i)

γ̃φ(1, i)− γ̃φ(0, i)
+ γmin . (11)
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Figure 2: A simplified block diagram of the particle denoising network and all of the
inputs. Each of the inputs is a pre-processed and concatenated collection of various
features. We introduce a variable-length conditional noise-prediction model by pro-
viding the transformer with both the noisy particles, as well as the detector inputs.
The detector outputs are ignored and the particle outputs are interpreted as the noise
prediction.

3.5 Training

The diffusion model is trained with an end-to-end variational inference approach follow-
ing [18]. All networks are trained simultaneously via a unified loss function known as the
evidence lower bound (ELBO). Particle-level unfolding introduces several additional aspects
to this diffusion process, notably variable-length outputs and the need for a multiplicity pre-
dictor. The reconstruction and prior terms remain from the traditional VAE ELBO [49], and
the denoising loss is reinterpreted as the diffusion prior as in Ref. [50]. A final generative
distribution is added to account for the multiplicity output. The full generalized ELBO is:

L=
∑

i∈{0,1,...N}

DK L[q(x i(1)|OP ,OD) ∥ p(x i(1))] PRIOR LOSS

+
∑

i∈{0,1,...N}

Eq(x i(0)|OP )
�

− log p(ÔP |x i(0)
�

RECONSTRUCTION LOSS

+
∑

i∈{0,1,...N}

Eε∼N (0,I),t∼U(0,1)

�

γ′φ(t)∥ε− ε̂θ (x i(t), X (t), Y, t)∥22
�

DENOISING LOSS

− log p(N̂ = N |OD) . MULTIPLICITY LOSS

(12)

Prior loss: The prior loss is an element-wise extension of the regular VDM prior loss [50],
matching each final-time element to the prior distribution independently. A standard normal
prior, p(x i(1))∼N (0, 1), is used for all latent vectors.

Reconstruction loss: The reconstruction loss is extended to an element-wise version of a
regular VAE reconstruction. This is complicated by the fact that there are several different
outputs for every element, and a special event-level element which may also have several
outputs. A Gaussian likelihood is assumed for the continuous outputs and a multinomial like-
lihood for the type predictions. We also assume that the event-level observables EP follow a
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Gaussian likelihood. This sector of the loss function expands to be:
∑

i∈{0,1,...N}

Eq(x i(0)|OP )
�

− log p(ÔP |x i(0))
�

=




ÊP − EP







2
2

+
∑

i∈{1,2,...N}





P̂Pi
− PPi







2
2

+
∑

i∈{1,2,...N}

∑

DTYPE

−TPi
log T̂Pi

. (13)

Denoising loss: The denoising loss extends element-wise to the multi-object case. As the
signal-to-noise ratio reduces, the noisy inputs x i(t) may become ambiguous with respect to
each other, ultimately culminating in all noisy inputs looking identical under the prior distri-
bution at t = 1. Therefore, in order to use the mean squared error loss function in a well
defined manner for high values of t, it is required that the inputs remain ordered and labeled,
breaking the position equivariance of the VAE encoder and decoder. This symmetry breaking
occurs only at the diffusion step, and this identification additionally allows independent noise
schedules to be learned for each position.

Multiplicity loss: The multiplicity estimate N̂ follows a gamma distribution (Eq. 7), and em-
ploys a gamma likelihood when computing the corresponding loss term. Using k̂ = M LPk(z)
and θ̂ = M LPθ (z),

− log p(N̂ = N |OD) = −k̂ log θ̂ + log Γ (k̂)− k̂ log N + N θ̂ + log N . (14)

3.6 Inference

The generative process must be slightly adapted during inference to account for the variable
number of outputs. Given only a set of detector observables OD, the generative inference
process may be described as follows:

1. Encode detector observable, Y = TRANSFORMERDETECTOR(OD).

2. Extract multiplicity latent vector, z = TRANSFORMERMULTIPLICITY (y0||Y )0.

3. Sample a multiplicity, N̂ ∼ Γ (M LPk(z), M LPθ (z)), and round to the nearest integer
N = [N̂].

4. Sample N standard normal vectors from the prior distribution, for i ∈ {0,1, . . . , N},
x i(1)∼ N(0,1).

5. Perform reverse diffusion process using an ODE solver [53] to predict the denoised latent
x i(0) following the independently learned noise schedule γφ(i, t) for each element.

6. Predict the final particle-level observables by decoding the denoised latents following
Eq. (5).

4 Example use-case: Semi-leptonic t t̄ unfolding

As an example of a common use-case, VLD is used to unfold proton-proton collision events
containing top quark pairs (t t̄). The semi-leptonic decay mode is chosen, in which one top

10

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117


SciPost Phys. 18, 117 (2025)

g

g

b

b̄

q

q̄
ℓ

ν̄

t

t̄

W+

W−

Figure 3: A representative Feynman diagram of t t̄ production in the semi-leptonic
decay mode.

quark decays to three quarks via t → W b → qqb and the other to a lepton, neutrino and
b-quark via t → W b→ ℓνb. A Feynman diagram that contributes to the process is shown in
Figure 3. This decay mode, with a final state containing one lepton, two b-quarks, two light
quarks, and missing momentum originating from the neutrino (which escapes the detector
without interaction), is an excellent test case due to its complexity and importance for precision
measurements and searches for new physics [54–64].

4.1 Dataset

Simulated t t̄ events from proton-proton collisions are generated with the Standard Model
(SM) at a centre-of-mass energy of

p
s = 13 TeV using MADGRAPH_AMC@NLO [65] (v3.4.2,

NCSA license) for the matrix element calculation and PYTHIA8 [66] (v8.306, GPL-2) for the
parton showering and hadronization. Interaction with the experimental apparatus is simulated
with DELPHES [67] (v3.5.0, GPL-3) using the default CMS detector card.

Electrons and muons are required to have a transverse momentum pT > 25 GeV and ab-
solute pseudo-rapidity |η| < 2.5. The light and b-quarks are reconstructed as jets, collimated
energy deposits grouped using the anti-kT [68] algorithm with a radius parameter of R= 0.5,
which must satisfy the same pT and η requirements as the leptons. Jets originating from b-
quarks are tagged as such with a pT-dependent efficiency. At particle level, the jet algorithm is
applied to stable particles rather than energy deposits, and jets containing b-quarks are directly
tagged as such.

Selected events are required to have one electron or muon and at least four jets, of which
at least two are b-tagged, at both particle and detector level. 14M and 1M events are used for
training and testing, respectively. Potential adjustments needed to account for events which
pass one, but not both, of these selections are discussed in Section 5.

An additional sample of approximately 2M events is produced to explore the impact of the
training sample prior. This sample uses the dim6top_LO_UFO [69] model to incorporate new
physics in the top-gluon vertex via the ct g parameter, which is set to a value of 25. All other
settings and the event selection are identical to the SM sample.

Particle-level observables are represented by the vector
Pi = (Px , Py , Pz , log(E + 1), log(M + 1)). Both the mass and energy are included in the rep-
resentation to improve robustness to numerical issues. Particles are categorized into four
types: light-quark jets, b-quark jets, electrons, and muons, represented as a four dimen-
sional one-hot type vector, TPi

∈ {0,1}4. The event-level observables for a particle-level
event are taken to be the magnitude of the missing transverse momentum Emiss

T and its az-
imuthal angleφmiss, along with the neutrino kinematics (Pνx , Pνy , Pνz , Eν). At detector level, two

coordinate-representations of the four-momentum are provided; P
Cart

Di
= (Px , Py , Pz , log(E+1))
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Figure 4: Example learned noise schedule for each object. Independent noise sched-
ules are learned for each unfolded object, ordered by true pT . The “Event” represents
the event level observables. Shown are (a) the signal-to-noise ratio (SNR) learned
during training and (b) the equivalent β schedule used during inference, following
the DDPM framework [45].

and PPolar
Di

= (PT ,η, sinφ, cosφ, log(M + 1)), as well as the type one-hot vector, TDi
, for each

object. The event-level observables are only Emiss
T and φmiss, as the neutrino kinematics are

unobserved at detector level.

4.2 Standard model results

The VLD’s learned log signal-to-noise ratio function γφ(i, t) and corresponding β schedule
after training on the SM t t̄ dataset are shown in Figure 4. Low (high) values of the signal-to-
noise ratio indicate high (low) amounts of added noise. The objects are ordered by decreasing
pT, while the “Event” object corresponds to the event-level observables. Early in the generation
process, at high but decreasing values of t, the learned signal-to-noise ratio increases most
quickly for the softest objects. This can be understood as the model adjusting the amount of
added noise to be correctly proportional to the size of the energy and momentum kinematic
quantities for each object. During the bulk of the generation process at intermediate values of
t, the model increases the SNR at roughly equal rates for all objects in the event.

The VLD model performance is evaluated on a testing sample, generated identically to the
training sample. Figures 5 and 6 show the kinematic distributions of the leptons and jets re-
spectively.3 The distributions are inclusive over all leptons or jets in the events. Distributions
labelled “truth” are from events without detector effects, the target of the unfolding. Dis-
tributions labeled “detector” are from events which include simulated effects of the detector
and are used to condition generation. The distributions labelled “unfolded” are from particle
level events generated by the VLD unfolding algorithm, and the shaded error bands on the
unfolded distributions are obtained by sampling each event 128 times. The ability to sample
the generative model multiple times for a single detector-level event is an additional benefit
of the generative approach [70]. However in this application, the uncertainties obtained from
sampling the model are strictly larger than the statistical uncertainties in the distributions.

In general, there is excellent agreement between the unfolded and truth distributions for
the inclusive lepton and jet kinematics. This is expected, as the network is trained to directly
predict these quantities. Some disagreement is found at the kinematic edges, for example at
low pT and mass or at extreme values of η, due to a lack of examples of events migrating

3The predicted lepton mass distributions are not shown since the true lepton masses are precisely determined.
In what follows, the model’s lepton mass predictions are dropped and replaced with the true values.

12

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117


SciPost Phys. 18, 117 (2025)

1.0

2.0

3.0
D

en
si

ty
×10−2

Unfolded
SM Truth
SM Detector

0 100 200 300 400

pjet
T [GeV]

-0.2

0.0

0.2

L
og

R
at

io

(a)

1.0

2.0

3.0

4.0

D
en

si
ty

×10−1

Unfolded
SM Truth
SM Detector

−2 0 2

η jet

-0.5

0.0

0.5

L
og

R
at

io
(b)

0.5

1.0

1.5

2.0

D
en

si
ty

×10−1

Unfolded
SM Truth
SM Detector

−2 0 2

φ jet

-0.02

0.00

0.02

L
og

R
at

io

(c)

0.5

1.0

1.5

D
en

si
ty

×10−1

Unfolded
SM Truth
SM Detector

0 20 40 60

mjet [GeV]

-1.0

0.0

1.0

L
og

R
at

io

(d)

2.5

5.0

7.5

10.0

D
en

si
ty

×10−3

Unfolded
SM Truth
SM Detector

0 200 400 600 800

E jet [GeV]

-0.2

0.0

0.2

L
og

R
at

io

(e)

Figure 5: Inclusive kinematic distributions for jets in the SM testing dataset, compar-
ing the true particle-level jets (dashed blue), the unfolded particle-level jets (solid
red), and the detector-level jets (dotted green). The unfolded distributions include
error bounds estimated by sampling each event 128 times.
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Figure 6: Inclusive kinematic distributions of leptons in the SM testing dataset, com-
paring the true particle-level leptons (dashed blue), the unfolded particle-level lep-
tons (red solid), and the detector-level leptons (dotted green). Unfolded distributions
include error bounds estimated by sampling each event 128 times.

across the selection requirements from particle to detector level. This could be mitigated by
imposing a tighter selection in generation than in training, avoiding the need to learn sharp
cut-offs in the target distributions. Table 1 displays three measures of distance between the
truth distributions and the corresponding detector and unfolded distributions for the jet and
lepton kinematics. The definitions of these measures are presented in Appendix B. In most
cases, the distance to the truth distribution is smaller for the unfolded distributions than the
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Table 1: Wasserstein, Energy, and Kulback-Leibler distance measures between truth
and detector or truth and unfolded distributions for the jet kinematics (top), lepton
kinematics (middle), and event-level observables (bottom). The unfolded distribu-
tion uncertainties are estimated by sampling each event 128 times.

Observable Level Wasserstein Energy KL

pJet
T

Unfolded
Detector

0.36± 0.08
2.30

0.04± 0.01
0.27

0.02± 0.01
0.26

ηJet Unfolded
Detector

0.01± 0.00
0.01

0.00± 0.00
0.01

13.03± 1.18
3.44

φJet Unfolded
Detector

0.00± 0.00
0.00

0.00± 0.00
0.00

0.01± 0.01
0.02

mJet Unfolded
Detector

0.03± 0.01
1.52

0.01± 0.00
0.52

0.17± 0.05
61.66

EJet Unfolded
Detector

0.66± 0.26
2.05

0.05± 0.02
0.20

0.01± 0.00
0.06

pLepton
T

Unfolded
Detector

0.27± 0.10
3.89

0.05± 0.02
0.53

0.17± 0.05
2.64

ηLepton Unfolded
Detector

0.01± 0.00
0.03

0.01± 0.00
0.02

16.72± 3.27
56.01

φLepton Unfolded
Detector

0.01± 0.01
0.01

0.01± 0.00
0.01

0.08± 0.05
0.02

Emiss
T

Unfolded
Detector

0.31± 0.06
3.03

0.04± 0.01
0.41

0.04± 0.01
0.95

HT
Unfolded
Detector

7.45± 0.54
8.54

0.51± 0.03
0.59
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Figure 7: Event-level quantities in the SM testing dataset, comparing the true
particle-level (dashed blue), the unfolded particle-level (solid red), and the detector-
level (dotted green). Unfolded distributions include error bounds estimated by sam-
pling each event 128 times.

detector distributions. One exception is in the jet η observable, due to events migrating across
the event selection between particle and detector levels at high |η|.

Distributions of the event-level observables Emiss
T , φmiss, and the neutrino pseudo-rapidity

ην are shown in Fig. 7. These show good closure except for a slight peak near zero in ην.
Since ην is not measurable at detector level, it must be inferred by examining the kinematics
of the directly measured objects in the event. The excess density predicted by the model at
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Figure 8: Distributions of (a) jet multiplicity and (b) HT comparing the true particle-
level events (dashed blue), the unfolded particle-level events (red solid), and the
detector-level events (dotted green). Unfolded distributions include error bounds
estimated by sampling each event 128 times.

ην = 0 can be understood as the model returning the mean value of the distribution when the
conditioning provided by the rest of the event is particularly weak.

A crucial requirement for full-event unfolding is the capacity to accommodate variable ob-
ject multiplicities, such as the number of reconstructed jets. Four jets are expected from the
quarks produced from the t t̄ decay (see Fig. 3), but some jets may fail the selection require-
ments and additional jets can be generated from other activity such as initial- or final-state
radiation. Figure 8 shows the distribution of the jet multiplicity for the truth-level, detector-
level, and unfolded events, along with HT, the scalar sum of all pT in the event. There is
excellent agreement in the jet multiplicity distribution, indicating that the network is correctly
accounting for the variable dimensionality of the unfolding task. However, a slight disagree-
ment between the unfolded and truth distributions is seen at low HT. To further interrogate
the robustness of the jet multiplicity prediction, Fig. 9 shows the HT, jet pT, and jet mass distri-
butions binned in jet multiplicity, with consistent performance shown in all bins including the
mis-modeling at low values of HT. The network’s ability to reproduce the truth-level kinematic
distributions is therefore found to be independent of the jet multiplicity. The mis-modeling at
low HT may be a consequence of the limited number of training examples in this region of
phase space. Possible solutions to this issue are discussed in Section 5.

The defining feature of full-event unfolding is the capacity to obtain an unfolded distri-
bution of an arbitrary new observable, such as those defined on reconstructed objects like
top quarks, which are functions of the lower-level jet and lepton observables. The pseudo-top
algorithm [71,72] is used to reconstruct hadronically- and leptonically-decaying top quark can-
didates, and check the performance of our unfolding on the kinematics of these reconstructed
systems. Unlike for classical unfolding algorithms, a change in the reconstruction algorithm
does not obsolete the results, as these can be simply recalculated with the new algorithm.

Figure 10 shows the kinematic distributions for the reconstructed hadronically-decaying
top quark, leptonically-decaying top quark, and the t t̄ system. Closure in these distributions is
not as good as for the kinematics of the jets and leptons, though it is not surprising that these
observables are more difficult to model as they were not directly used to optimize the networks.
In particular, the top quark mass distributions are very difficult to unfold, with the sharp peaks
at truth level not reproduced after unfolding. This is an illustration of the well known difficulty
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Figure 9: Distributions of (a) HT, (b) the inclusive jet pT and (c) jet mass, each in
bins of jet multiplicity in the SM testing dataset. Shown are true particle-level jets
(dashed blue), the unfolded particle-level jets (solid red), and the detector-level jets
(dotted green). Unfolded distributions include error bounds estimated by sampling
each event 128 times.
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in modeling sharp features with generative models [12]. Corner plots illustrating correlations
between these observables in the truth and predicted distributions are provided in Appendix E.
These show that correlations between arbitrary observables are faithfully captured by VLD,
despite the difficulty in modeling some of the marginal distributions.

Table 2 shows the distance metrics computed for the kinematics of the hadronically-
decaying top quark, the leptonically-decaying top quark, and the t t̄ system. In some cases,
the unfolded distributions are slightly further from the truth distributions than the detector-
level distributions, suggesting the unfolding is not correctly modeling the subtle correlations
between the objects in particle-level events. For the pT of the hadronically-decaying top quark
and the t t̄ system, the distance between the unfolded and truth distributions is larger than
the distance between the detector-level and truth distributions, while for the corresponding
energy distributions, it is smaller. Meanwhile, the opposite is observed for the leptonically-
decaying top quark. These distributions are highly correlated with the top quark mass, so a
promising avenue for future work would be to incorporate physics constraints, such as knowl-
edge of the expected top mass value, in order to improve these observables. In Ref. [18],
in which the parton-level top quark kinematics were directly included in the training objec-
tive, the modeling of the top quark mass peaks is improved through use of a physics-inspired
consistency loss. Unfortunately this strategy is not immediately applicable in particle-level un-
folding, where the network does not directly predict the top kinematics. Such considerations
are discussed further in Section 5.

To further probe the performance of VLD based unfolding, additional event-level observ-
ables of interest in t t̄ production [60] are constructed, shown in Figure 11.4 There is remark-
ably good agreement between truth and unfolded in most of these complex observables, with
agreement within uncertainties almost everywhere.

To probe the source of the non-closure in the top quark kinematics, the top quark5 pT and
t t̄ mass distributions are reconstructed in bins of jet multiplicity in Figure 12, along with the
top quark pT in bins of the t t̄ mass. The disagreement of the top quark pT seen in Figure 10 is
reproduced in all jet multiplicity bins, indicating that this disagreement is not being produced
by the variable-length nature of the unfolding. In contrast, the disagreement of the top quark
pT gets worse as a function of increasing t t̄ mass. High-mass events are rare in the training
set (see Fig. 10i), so this non-closure may be due to limited training examples, as with the
non-closure at low HT. Effects due to the choice of prior distributions could be overcome via
specific choices in training dataset construction, which need not match the observed data. This
is an important feature, not only for coverage of extreme regions of phase space, but also to
ensure a model trained on SM events does not simply reproduce SM truth distributions and
wash away any new physics that might be present in data. The latter point is investigated in
the following section.

4Full definitions of these variables are given in Appendix A.
5In these pT distributions, both the leptonically- and hadronically-decaying top quarks are included.
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Figure 10: Distributions of reconstructed top quark and t t̄ system kinematics in
the SM testing dataset. Shown are true particle-level (dashed blue), the unfolded
particle-level (solid red), and the detector-level (dotted green). Unfolded distribu-
tions include error bounds estimated by sampling each event 128 times.
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Table 2: Wasserstein, Energy, and Kulback-Leibler distance measures between truth
and detector or truth and unfolded top quark kinematic distributions. The unfolded
distribution uncertainties are estimated by sampling each event 128 times.

Observable Level Wasserstein Energy KL

ptop,had
T

Unfolded
Detector

5.71± 0.40
4.25

0.49± 0.03
0.39

0.34± 0.05
0.25

ηtop,had Unfolded
Detector

0.01± 0.00
0.01

0.01± 0.00
0.01

6.76± 2.34
8.40

φtop,had Unfolded
Detector

0.01± 0.01
0.01

0.00± 0.00
0.01

3.74± 1.35
5.44

Etop,had Unfolded
Detector

2.51± 1.14
10.92

0.10± 0.05
0.60

0.02± 0.01
0.08

mtop,had Unfolded
Detector

4.63± 0.32
4.05

0.55± 0.04
0.50

4.46± 0.25
2.37

ptop,had
Out

Unfolded
Detector

0.82± 0.15
0.48

0.14± 0.02
0.06

0.42± 0.10
0.28

ptop,lep
T

Unfolded
Detector

4.07± 0.30
8.12

0.36± 0.03
0.73

0.28± 0.04
0.82

ηtop,lep Unfolded
Detector

0.01± 0.00
0.05

0.01± 0.00
0.04

5.79± 2.00
51.77

φtop,lep Unfolded
Detector

0.01± 0.01
0.01

0.01± 0.01
0.00

3.36± 1.17
4.54

Etop,lep Unfolded
Detector

7.41± 0.88
4.88

0.40± 0.04
0.36

0.08± 0.02
0.12

mtop,lep Unfolded
Detector

4.50± 0.19
4.56

0.55± 0.01
0.60

7.99± 0.31
7.80

ptop,lep
Out

Unfolded
Detector

1.02± 0.15
0.27

0.17± 0.02
0.03

0.57± 0.12
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Figure 11: Distributions of reconstructed event-level observables related to the top
quarks and t t̄ system in the SM testing dataset. Shown are true particle-level (dashed
blue), the unfolded particle-level (solid red), and the detector-level (dotted green).
Unfolded distributions include error bounds estimated by sampling each event 128
times.
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Figure 12: Distributions of (a) pT of the top quarks and (b) mass of the t t̄ system in
bins of jet multiplicity. Distributions of the pT of the top quarks in bins of t t̄ mass is
shown in (c). Shown are true particle-level (dashed blue), the unfolded particle-level
(solid red), and the detector-level (dotted green). Unfolded distributions include
error bounds estimated by sampling each event 128 times.
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4.3 Performance on dataset with BSM physics injection

To estimate the extent to which the posterior density modeled by VLD, p(x |y), is dependent on
the prior used to construct the training set ftruth in Equation 3, the VLD network trained on the
SM dataset is evaluated on the alternative sample containing BSM physics parametrized with a
non-zero EFT operator (described in Section 4.1). The alternative sample contains a modified
top-gluon vertex, leading to differences in the kinematic distributions used as unfolding targets
as well as in the reconstructed distributions related to the top quarks, and is therefore a good
probe of potential bias in the unfolding model due to the choice of SM prior.

Figure 13 shows the truth, detector, and unfolded lepton and jet kinematics and multi-
plicity in the SM and EFT samples. There is good agreement almost everywhere between the
unfolded and truth distributions for the EFT sample despite large differences with the SM
training sample. The reconstructed top quark and t t̄ system kinematics are shown in Fig. 14.
They show similar disagreements in top pT and mass as was observed in unfolding the SM
sample, which are much smaller than the differences between the SM and EFT truth distribu-
tions. This indicates that the choice of prior training sample has not induced a significant bias
in the unfolding derived using VLD, at least in this test case. Nonetheless, it may be necessary
to apply the iterative method proposed in [14] to remove all dependence on the prior when
applying to real data. A full set of comparisons between the EFT and SM samples can be found
in Appendix C.
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Figure 13: Distributions of lepton kinematic quantities in the EFT testing dataset,
comparing the true particle-level leptons (dashed purple), the unfolded particle-level
leptons (solid orange), and the detector-level leptons (dotted green). Also shown are
the unfolded and truth SM distributions (solid red and dashed blue respectively).
Unfolded distributions include error bounds estimated by sampling each event 128
times. The bottom pad shows the ratio with respect to the EFT truth distribution.
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Figure 14: Reconstructed top quark and t t̄ system kinematics in the EFT testing
dataset. Shown are true particle-level (dashed purple), the unfolded particle-level
(solid orange), and the detector-level (dotted green). Also shown are the unfolded
and truth SM distributions (solid red and dashed blue respectively). Unfolded dis-
tributions include error bounds estimated by sampling each event 128 times. The
bottom pad shows the ratio with respect to the EFT truth distribution.
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5 Outlook and discussion

This paper demonstrates the first application of generative ML models to full-event unfolding
at particle-level, which requires a mechanism for unfolding the variable number of particles
produced in collision events. No performance comparison to other generative approaches is
provided, as none are yet capable of variable-length full-event unfolding. A comparison of VLD
to the discriminative Omnifold method [10] on a variable- and high-dimensional unfolding
task is left to future work.

In this paper, all final state particles not identified as leptons were clustered into jets before
unfolding. A more ambitious approach to full-event unfolding would be to instead unfold
before clustering. While the precise modeling of O(100) final state particles presents a greater
challenge, there is no fundamental reason that the VLD approach would not scale to such a
task. Exploring this possibility is also left to future work.

VLD was able to accurately predict truth-level distributions in the vast majority of phase
space. However, mis-modelling was observed in regions where the truth-level distributions
had sharp features or limited statistics in the training data. Previous work [18] accounted
for the sharply peaked partonic top-quark mass distributions using a physics-inspired consis-
tency loss term that ensured the predicted 4-vector components maintained the correct cor-
relations. Here, this loss was not necessary to ensure consistency in the predicted 4-vectors
for the particle-level leptons and jets. Mis-modelling was however observed in the sharply
peaked particle-level top quark mass distributions. Since the particle-level top quark masses
are reconstructed post-unfolding and VLD is not directly optimized to generate these distri-
butions, applying a similar physics consistency loss is non-trivial. Other physics constraints,
such as those enforcing symmetries or conversation laws, could also be incorporated into the
objective in principle. Such physics constraints can easily be added to the loss function used
to optimize the VAE; however adding such loss terms to the diffusion process would require
performing computationally expensive inference at training time. Table 3 shows the distance
metrics between detector and unfolded distributions for a selection of observables, distinguish-
ing between the contributions to post-unfolding distance from the VAE or the diffusion parts
of the network. The majority of the error comes from the diffusion process, and so an inves-
tigation of how best to utilize physics constraints is left to future work. Full error breakdown
tables can be found in Appendix D.

There are several possibilities to improve performance where the truth-level distributions
have few training samples. One is to simply avoid these regions, constructing the training
sample with boundaries sufficiently far from the region to be unfolded. Another is to increase
the number of training samples in these regions, as long as the unfolding remains insensitive
to the prior distribution.

The presence of background events, which may complicate the unfolding, is not treated
here. These background events are typically estimated using simulated data, and then sub-
tracted before the unfolding step of the analysis. This subtraction could be achieved in an
unbinned fashion with the addition of negative-weighted simulated background events in the
training samples. These can be used directly in the training of the generative model [73], or
after re-weighting the training sample to positive event weights [74].

Additionally the samples of simulated events used in realistic physics analyses typically
contain events that pass one of the particle level or detector level event selections but not
both. Events that pass the detector-level event selection but not the particle-level event selec-
tion (often called fakes) can be accounted for by simply including these events in the training
data sets. At inference time, the events which migrate out of the particle level event selection
are then not included in the final unfolded dataset. Events which pass the particle level event
selection but not the detector level event selection (often called inefficiencies) are more prob-
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Table 3: An examination of the source for the error in unfolding. Presented are the
distribution-free distance metrics from particle-level truth for the detector-level and
unfolded distributions. The distances for the unfolded distributions are further sub-
divided into the distance produced by the VAE, evaluated by encoding and decoding
the particle-level truth events and comparing the resulting distributions to particle-
level truth, as well as the distance produced by the diffusion process, evaluated by
calculating the distance metrics in the latent space of the VAE.

Observable Stage Wasserstein Energy KL

Detector 2.30 0.27 0.26
pJet

T Unfolding 0.45± 0.10 0.05± 0.01 0.03± 0.01

VAE 0.05± 0.01 0.01± 0.00 0.01± 0.00
Diffusion 0.40± 0.09 0.04± 0.01 0.02± 0.00

Detector 3.03 0.41 0.95
Emiss

T Unfolding 0.31± 0.06 0.04± 0.01 0.04± 0.01

VAE 0.05± 0.01 0.01± 0.00 0.00± 0.00
Diffusion 0.26± 0.05 0.04± 0.01 0.04± 0.00

Detector 8.54 0.59 0.20
HT Unfolding 7.45± 0.54 0.51± 0.03 0.20± 0.02

VAE 1.67± 0.12 0.12± 0.01 0.03± 0.01
Diffusion 5.78± 0.43 0.39± 0.02 0.17± 0.02

Detector 4.64 0.61 8.25

mtop,lep Unfolding 5.03± 0.20 0.61± 0.02 9.16± 0.44

VAE 1.13± 0.08 0.13± 0.01 0.53± 0.04
Diffusion 3.90± 0.13 0.48± 0.01 8.63± 0.40

Detector 4.25 0.39 0.25

ptop,had
T Unfolding 5.62± 0.39 0.48± 0.03 0.33± 0.05

VAE 1.65± 0.13 0.15± 0.01 0.08± 0.02
Diffusion 3.97± 0.26 0.33± 0.02 0.25± 0.02

Detector 16.11 0.92 0.15

mt t̄ Unfolding 7.58± 1.58 0.33± 0.08 0.04± 0.01

VAE 0.58± 0.06 0.03± 0.00 0.02± 0.01
Diffusion 6.99± 1.52 0.30± 0.07 0.02± 0.01

Detector 0.27 0.03 0.26

ptop,lep
Out Unfolding 1.02± 0.15 0.17± 0.02 0.57± 0.12

VAE 0.13± 0.03 0.02± 0.00 0.25± 0.05
Diffusion 0.89± 0.11 0.16± 0.02 0.32± 0.06
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lematic, since there is no detector level event on which to condition the model. The number of
these events could be reduced by defining a signal region at detector level that avoids regions
of phase space with poor detector efficiency.

Finally, realistic physics analyses must also account for sources of statistical and systematic
uncertainty. The statistical uncertainties resulting from the finite size of the training sets can
be estimated using bootstrapping methods [75]. One approach to propagating systematic
uncertainties is to parameterize the model on these uncertainties [76] and unfold the data for
several assumed values of the nuisance parameter, perhaps including constraints from auxiliary
measurements. Exploration of this possibility is left to future work.

6 Conclusions

This paper presents the first application of generative unfolding techniques to a variable-
dimensional unfolding task. Several modifications to the original VLD model made it pos-
sible for the model to naturally accommodate the variable-dimensional nature of the task of
unfolding full experimental particle physics events.

In general, there is excellent closure between truth and unfolded distributions, both for a
sample similar to the training sample, and an alternative. Some mis-modeling of kinematic
distributions is seen near edges of the selection, due to a lack of training samples. Poten-
tial mitigation strategies were discussed in Section 5. Observables not included in the VLD
training, such as the reconstructed top quark kinematics, showed larger mis-modeling. Most
significant is the mis-modeling of the top quark mass distributions, which are sharply peaked
at particle-level and not well reconstructed at detector level. Future work may incorporate
additional physics constraints to better handle these kinds of observables.

The results demonstrate the possibility of performing full-event unfolding with a generative
model, where the kinematics of all reconstructed jets, leptons, and the missing transverse
momentum are unfolded to particle level, including handling a variable number of final state
objects. Such measurements would be of great value to the high energy physics community,
allowing results to be easily re-used and re-interpreted many years later, including the ability
to construct event-level quantities not defined at the time of the original measurement. This
would ensure a substantially longer lasting impact for all unfolded results that utilize VLD,
and significantly reduce the number of individual efforts required to measure a large number
of different observables.

To encourage further development in generative unfolding methods, the datasets used
are made publicly available [77]. The code base is available at https://github.com/
Alexanders101/LVD/tree/main.
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A Variable definitions

The observables displayed in Figures 11 and 19 are designed to be sensitive to various physics
effects in t t̄ production and decay. They were measured by the ATLAS collaboration [60]
using traditional unfolding methods, and the distributions from this analysis are routinely
used to test new theory predictions and tune relevant MC settings. These are included here to
demonstrate the power of VLD unfolding, which would allow such variables (and any other
that could be thought of) to be calculated post-unfolding. The definitions of these variables
are as follows:

y t t̄
boost =

1
2

�

y top,had + y top,lep
�

, (A.1)

y∗ = ±
1
2

�

y top,had − y top,lep
�

, (A.2)

χ t t̄ = e2|y∗| , (A.3)

ptop,had
out = p⃗ top,had ·

p⃗ top,lep × e⃗z

|p⃗ top,lep × e⃗z|
, (A.4)

ptop,lep
out = p⃗ top,lep ·

p⃗ top,had × e⃗z

|p⃗ top,had × e⃗z|
. (A.5)

B Distance metrics

As the parton global distributions do not have a known family of distributions to describe their
components, model-free measures of distribution distance must be used to evaluate the mod-
els. Three different families of distance measures are used. These non-parametric distances
are only defined for 1-dimensional distributions. As there is no commonly accepted way of
measuring distance for N -dimensional distributions, the 1-dimensional distances are simply
summed across the components. Although not ideal, it is enough to compare different models
and rank them based on performance.

B.1 Wasserstein distance

The Wasserstein distance, often referred to as the earth-mover distance, quantifies the amount
of work it takes to reshape one distribution into another. This concept originated from the
field of optimal transport and has found wide applications in many areas, including machine
learning. An equivalent definition defines this distance as the minimum cost to move and trans-
form the mass of one distribution to match another distribution. For a pair of 1-dimensional
distribution samples, denoted u and v, the Wasserstein distance can be computed in a bin-
independent manner. This is achieved by computing the integral of the absolute difference
between their empirical cumulative distribution functions (CDFs), U(x) and V (x).

DWasserstein(u, v) =

∫ ∞

−∞
|U(x)− V (x)|d x .

B.2 Energy distance

Energy distance is another statistical measure used to quantify the difference between two
probability distributions based on empericial CDFs. It compares the expected distance between
random variables drawn from the same distribution (intra-distribution) with the expected
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distance between random variables drawn from different distributions (inter-distribution).
The Energy distance may be defined as the squared variant of the Wasserstein distance.

DEnergy(u, v) =

√

√

√

2

∫ ∞

−∞
(U(x)− V (x))2 d x .

B.3 KL-divergence

An alternative approach to empirical CDF approaches is to bin the data into histograms and
compute discrete distribution distances from these histograms. The common Kullback-Leibler
distance is used with N = 64 bins. After building the histogram the discrete KL divergence is
computed as

DK L,N =
N
∑

i=1

PN (i) log
�

PN (i)
QN (i)

�

.

C Full set of EFT distributions
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Figure 15: Kinematic distributions of leptons in the EFT testing dataset, comparing
the true particle-level leptons (dashed purple), the unfolded particle-level leptons
(solid orange), and the detector-level leptons (dotted green). Also shown are the un-
folded and truth SM distributions (solid red and dashed blue respectively). Unfolded
distributions include error bounds estimated by sampling each event 128 times. The
bottom pad shows the ratio with respect to the EFT truth distribution.
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Figure 16: Kinematic distributions of all hadronic jets in the EFT testing dataset,
comparing the true particle-level jets (dashed purple), the unfolded particle-level
jets (solid orange), and the detector-level jets (dotted green). Also shown are the un-
folded and truth SM distributions (solid red and dashed blue respectively). Unfolded
distributions include error bounds estimated by sampling each event 128 times. The
bottom pad shows the ratio with respect to the EFT truth distribution.
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Figure 17: Event-level quantities in the EFT testing dataset, comparing the true
particle-level events (dashed purple), the unfolded particle-level events (solid or-
ange), and the detector-level events (dotted green). Also shown are the unfolded
and truth SM distributions (solid red and dashed blue respectively). Unfolded dis-
tributions include error bounds estimated by sampling each event 128 times. The
bottom pad shows the ratio with respect to the EFT truth distribution.
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Figure 18: The event-level observable HT, and the inclusive jet pT and mass, in the
EFT testing dataset and binned by jet multiplicity. Shown are true particle-level jets
(dashed purple), the unfolded particle-level jets (solid orange), and the detector-
level jets (dotted green). Also shown are the unfolded and truth SM distributions
(solid red and dashed blue respectively). Unfolded distributions include error bounds
estimated by sampling each event 128 times. The bottom pad shows the ratio with
respect to the EFT truth distribution.
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Figure 19: Reconstructed high-level observables related to the top quarks and t t̄
system in the EFT testing dataset. Shown are true particle-level (dashed purple),
the unfolded particle-level (solid orange), and the detector-level jets (dotted green).
Also shown are the unfolded and truth SM distributions (solid red and dashed blue
respectively). Unfolded distributions include error bounds estimated by sampling
each event 128 times. The bottom pad shows the ratio with respect to the EFT truth
distribution.
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Figure 20: Distributions of the pT of the top quarks and mass of the t t̄ system in
bins of jet multiplicity are shown in (a) and (b). The distribution of the pT of the
top quarks in bins of t t̄ mass is shown in (c). The true particle-level (dashed pur-
ple), the unfolded particle-level (solid orange), and the detector-level (dotted green)
distributions from the EFT dataset are shown, as are the the unfolded and truth SM
distributions (solid red and dashed blue respectively). Unfolded distributions include
error bounds estimated by sampling each event 128 times. The bottom pad shows
the ratio with respect to the EFT truth distribution.
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D Full error breakdown tables

Table 4: An examination of the source for the error in unfolding. Presented are the
distribution-free distance metrics from particle-level truth for the detector-level and
unfolded distributions. The distances for the unfolded distributions are further sub-
divided into the distance produced by the VAE, evaluated by encoding and decoding
the particle-level truth events and comparing the resulting distributions to particle-
level truth, as well as the distance produced by the diffusion process, evaluated by
calculating the distance metrics in the latent space of the VAE.

Observable Stage Wasserstein Energy KL

Detector 16.11 0.92 0.15

mt t̄ Unfolding 7.58± 1.58 0.33± 0.08 0.04± 0.01

VAE 0.58± 0.06 0.03± 0.00 0.02± 0.01
Diffusion 6.99± 1.52 0.30± 0.07 0.02± 0.01

Detector 0.09 0.04 4.52

χ t t̄ Unfolding 0.11± 0.02 0.05± 0.01 5.41± 1.47

VAE 0.03± 0.00 0.02± 0.00 2.90± 0.67
Diffusion 0.08± 0.01 0.04± 0.00 2.51± 0.80

Detector 0.02 0.03 80.18

y t t̄
boost Unfolding 0.01± 0.00 0.01± 0.00 22.50± 6.51

VAE 0.00± 0.00 0.00± 0.00 25.15± 4.86
Diffusion 0.01± 0.00 0.01± 0.00 −2.65± 1.65

Detector 0.48 0.06 0.28

ptop,had
Out Unfolding 0.82± 0.15 0.14± 0.02 0.42± 0.10

VAE 0.17± 0.05 0.02± 0.01 0.30± 0.02
Diffusion 0.65± 0.10 0.12± 0.02 0.12± 0.07

Detector 0.27 0.03 0.26

ptop,lep
Out Unfolding 1.02± 0.15 0.17± 0.02 0.57± 0.12

VAE 0.13± 0.03 0.02± 0.00 0.25± 0.05
Diffusion 0.89± 0.11 0.16± 0.02 0.32± 0.06

Detector 3.03 0.41 0.95
Emiss

T Unfolding 0.31± 0.06 0.04± 0.01 0.04± 0.01

VAE 0.05± 0.01 0.01± 0.00 0.00± 0.00
Diffusion 0.26± 0.05 0.04± 0.01 0.04± 0.00

Detector 8.54 0.59 0.20
HT Unfolding 7.45± 0.54 0.51± 0.03 0.20± 0.02

VAE 1.67± 0.12 0.12± 0.01 0.03± 0.01
Diffusion 5.78± 0.43 0.39± 0.02 0.17± 0.02
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Table 5: An examination of the source for the error in unfolding. Presented are the
distribution-free distance metrics from particle-level truth for the detector-level and
unfolded distributions. The distances for the unfolded distributions are further sub-
divided into the distance produced by the VAE, evaluated by encoding and decoding
the particle-level truth events and comparing the resulting distributions to particle-
level truth, as well as the distance produced by the diffusion process, evaluated by
calculating the distance metrics in the latent space of the VAE.

Observable Stage Wasserstein Energy KL

Detector 4.25 0.39 0.25

ptop,had
T Unfolding 5.62± 0.39 0.48± 0.03 0.33± 0.05

VAE 1.65± 0.13 0.15± 0.01 0.08± 0.02
Diffusion 3.97± 0.26 0.33± 0.02 0.25± 0.02

Detector 0.01 0.01 8.40
ηtop,had Unfolding 0.01± 0.00 0.01± 0.00 6.70± 2.46

VAE 0.01± 0.00 0.00± 0.00 8.47± 1.35
Diffusion 0.01± 0.00 0.00± 0.00 −1.77± 1.11

Detector 0.01 0.01 5.44
φtop,had Unfolding 0.01± 0.01 0.00± 0.00 3.76± 1.35

VAE 0.00± 0.00 0.00± 0.00 4.23± 1.08
Diffusion 0.00± 0.00 0.00± 0.00 −0.47± 0.27

Detector 10.92 0.60 0.08
Etop,had Unfolding 2.50± 1.14 0.10± 0.05 0.02± 0.01

VAE 0.52± 0.08 0.03± 0.01 0.01± 0.00
Diffusion 1.98± 1.06 0.08± 0.05 0.01± 0.01

Detector 4.05 0.50 2.37
mtop,had Unfolding 4.62± 0.32 0.55± 0.04 4.45± 0.26

VAE 1.24± 0.05 0.15± 0.01 0.43± 0.04
Diffusion 3.37± 0.26 0.40± 0.02 4.02± 0.22

Detector 7.48 0.66 0.66

ptop,lep
T Unfolding 4.59± 0.41 0.41± 0.04 0.32± 0.05

VAE 1.14± 0.08 0.11± 0.01 0.07± 0.02
Diffusion 3.45± 0.32 0.31± 0.03 0.25± 0.03

Detector 0.05 0.04 51.12
ηtop,lep Unfolding 0.01± 0.00 0.01± 0.00 8.29± 3.34

VAE 0.00± 0.00 0.00± 0.00 10.79± 1.05
Diffusion 0.01± 0.00 0.00± 0.00 −2.50± 2.29

Detector 0.01 0.01 6.15
φtop,lep Unfolding 0.01± 0.01 0.01± 0.01 4.89± 1.84

VAE 0.01± 0.00 0.00± 0.00 4.32± 0.81
Diffusion 0.01± 0.01 0.00± 0.01 0.57± 1.03

Detector 4.71 0.32 0.13
Etop,lep Unfolding 8.32± 1.16 0.45± 0.06 0.09± 0.02

VAE 1.19± 0.09 0.07± 0.00 0.03± 0.01
Diffusion 7.13± 1.07 0.39± 0.06 0.06± 0.01

Detector 4.64 0.61 8.25
mtop,lep Unfolding 5.03± 0.20 0.61± 0.02 9.16± 0.44

VAE 1.13± 0.08 0.13± 0.01 0.53± 0.04
Diffusion 3.90± 0.13 0.48± 0.01 8.63± 0.40
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Table 6: An examination of the source for the error in unfolding. Presented are the
distribution-free distance metrics from particle-level truth for the detector-level and
unfolded distributions. The distances for the unfolded distributions are further sub-
divided into the distance produced by the VAE, evaluated by encoding and decoding
the particle-level truth events and comparing the resulting distributions to particle-
level truth, as well as the distance produced by the diffusion process, evaluated by
calculating the distance metrics in the latent space of the VAE.

Observable Stage Wasserstein Energy KL

Detector 2.30 0.27 0.26
pJet

T Unfolding 0.45± 0.10 0.05± 0.01 0.03± 0.01

VAE 0.05± 0.01 0.01± 0.00 0.01± 0.00
Diffusion 0.40± 0.09 0.04± 0.01 0.02± 0.00

Detector 0.01 0.01 3.44
ηJet Unfolding 0.01± 0.00 0.00± 0.00 13.03± 1.18

VAE 0.00± 0.00 0.00± 0.00 2.51± 0.37
Diffusion 0.00± 0.00 0.00± 0.00 10.52± 0.81

Detector 0.00 0.00 0.02
φJet Unfolding 0.00± 0.00 0.00± 0.00 0.01± 0.01

VAE 0.00± 0.00 0.00± 0.00 0.00± 0.01
Diffusion 0.00± 0.00 0.00± 0.00 0.01± 0.01

Detector 1.52 0.52 61.66
mJet Unfolding 0.03± 0.01 0.01± 0.00 0.17± 0.05

VAE 0.02± 0.00 0.01± 0.00 0.19± 0.03
Diffusion 0.01± 0.01 0.00± 0.00 −0.02± 0.02

Detector 2.05 0.20 0.06
EJet Unfolding 0.66± 0.26 0.05± 0.02 0.01± 0.00

VAE 0.07± 0.00 0.01± 0.00 0.01± 0.01
Diffusion 0.59± 0.25 0.04± 0.01 0.00± 0.01

Detector 3.89 0.53 2.64

pLepton
T Unfolding 0.27± 0.10 0.05± 0.02 0.17± 0.05

VAE 0.07± 0.00 0.02± 0.00 0.14± 0.04
Diffusion 0.20± 0.10 0.03± 0.01 0.03± 0.01

Detector 0.03 0.02 56.01
ηLepton Unfolding 0.01± 0.00 0.01± 0.00 16.72± 3.27

VAE 0.00± 0.00 0.00± 0.00 8.19± 1.65
Diffusion 0.00± 0.00 0.00± 0.00 8.53± 1.62

Detector 0.01 0.01 0.02
φLepton Unfolding 0.01± 0.01 0.01± 0.00 0.08± 0.05

VAE 0.00± 0.00 0.00± 0.00 0.01± 0.01
Diffusion 0.01± 0.00 0.01± 0.00 0.07± 0.04
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E Corner plots of top-quark kinematics
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Figure 21: Corner plot illustrating the correlations between six dimensions that char-
acterise the predicted hadronic top quark kinematics for the SM dataset.
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Figure 22: Corner plot illustrating the correlations between six dimensions that char-
acterise the truth hadronic top quark kinematics for the SM dataset.
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Figure 23: Corner plot illustrating the correlations between six dimensions that char-
acterise the predicted leptonic top quark kinematics for the SM dataset.
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Figure 24: Corner plot illustrating the correlations between six dimensions that char-
acterise the truth leptonic top quark kinematics for the SM dataset.

References

[1] K. Cranmer, J. Brehmer and G. Louppe, The frontier of simulation-based inference, Proc.
Natl. Acad. Sci. 117, 30055 (2020), doi:10.1073/pnas.1912789117.

[2] S. Agostinelli et al., Geant4 — A simulation toolkit, Nucl. Instrum. Methods Phys.
Res. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003), doi:10.1016/S0168-
9002(03)01368-8.

[3] J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. A: Ac-
cel. Spectrom. Detect. Assoc. Equip. 835, 186 (2016), doi:10.1016/j.nima.2016.06.125.

[4] J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270
(2006), doi:10.1109/TNS.2006.869826.

[5] G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3,
S08003 (2008), doi:10.1088/1748-0221/3/08/S08003.

40

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1088/1748-0221/3/08/S08003


SciPost Phys. 18, 117 (2025)

[6] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. In-
strum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 362, 487 (1995),
doi:10.1016/0168-9002(95)00274-X.

[7] S. Schmitt, TUnfold: An algorithm for correcting migration effects in high energy physics,
J. Instrum. 7, T10003 (2012), doi:10.1088/1748-0221/7/10/T10003.

[8] A. Höcker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Methods
Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 372, 469 (1996), doi:10.1016/0168-
9002(95)01478-0.

[9] R. Bellman, Dynamic programming, Science 153, 34 (1966),
doi:10.1126/science.153.3731.34.

[10] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman and J. Thaler, OmniFold: A
method to simultaneously unfold all observables, Phys. Rev. Lett. 124, 182001 (2020),
doi:10.1103/PhysRevLett.124.182001.

[11] P. Komiske, W. P. McCormack and B. Nachman, Preserving new physics while
simultaneously unfolding all observables, Phys. Rev. D 104, 076027 (2021),
doi:10.1103/PhysRevD.104.076027.

[12] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder, How to GAN away
detector effects, SciPost Phys. 8, 070 (2020), doi:10.21468/SciPostPhys.8.4.070.

[13] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, A. Rousselot, R. Winterhalder, L. Ardiz-
zone and U. Köthe, Invertible networks or partons to detector and back again, SciPost Phys.
9, 074 (2020), doi:10.21468/SciPostPhys.9.5.074.

[14] M. Backes, A. Butter, M. Dunford and B. Malaescu, An unfolding method based on condi-
tional invertible neural networks (cINN) using iterative training, SciPost Phys. Core 7, 007
(2024), doi:10.21468/SciPostPhysCore.7.1.007.

[15] M. Backes, A. Butter, M. Dunford and B. Malaescu, Event-by-event comparison between
machine-learning- and transfer-matrix-based unfolding methods, Eur. Phys. J. C 84, 770
(2024), doi:10.1140/epjc/s10052-024-13136-3.

[16] S. Diefenbacher, G.-H. Liu, V. Mikuni, B. Nachman and W. Nie, Improving generative
model-based unfolding with Schrödinger bridges, Phys. Rev. D 109, 076011 (2024),
doi:10.1103/PhysRevD.109.076011.

[17] J. N. Howard, S. Mandt, D. Whiteson and Y. Yang, Learning to simulate high energy par-
ticle collisions from unlabeled data, Sci. Rep. 12, 7567 (2022), doi:10.1038/s41598-022-
10966-7.

[18] A. Shmakov, K. Greif, M. Fenton, A. Ghosh, P. Baldi and D. Whiteson, End-to-end la-
tent variational diffusion models for inverse problems in high energy physics, in Advances
in neural information processing systems 36, Curran Associates, Red Hook, USA, ISBN
9781713899921 (2023).

[19] V. Andreev et al., Measurement of lepton-jet correlation in deep-inelastic scattering with the
H1 detector using machine learning for unfolding, Phys. Rev. Lett. 128, 132002 (2022),
doi:10.1103/PhysRevLett.128.132002.

[20] V. Andreev et al., Unbinned deep learning jet substructure measurement in high Q2 ep colli-
sions at HERA, Phys. Lett. B 844, 138101 (2023), doi:10.1016/j.physletb.2023.138101.

41

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117
https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1088/1748-0221/7/10/T10003
https://doi.org/10.1016/0168-9002(95)01478-0
https://doi.org/10.1016/0168-9002(95)01478-0
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1103/PhysRevD.104.076027
https://doi.org/10.21468/SciPostPhys.8.4.070
https://doi.org/10.21468/SciPostPhys.9.5.074
https://doi.org/10.21468/SciPostPhysCore.7.1.007
https://doi.org/10.1140/epjc/s10052-024-13136-3
https://doi.org/10.1103/PhysRevD.109.076011
https://doi.org/10.1038/s41598-022-10966-7
https://doi.org/10.1038/s41598-022-10966-7
https://doi.org/10.1103/PhysRevLett.128.132002
https://doi.org/10.1016/j.physletb.2023.138101


SciPost Phys. 18, 117 (2025)

[21] LHCb collaboration: R. Aaij et al., Multidifferential study of identified charged hadron
distributions in Z-tagged jets in proton-proton collisions at

p
s= 13 TeV, Phys. Rev. D 108,

L031103 (2023), doi:10.1103/PhysRevD.108.L031103.

[22] P. T. Komiske, S. Kryhin and J. Thaler, Disentangling quarks and gluons in CMS open data,
Phys. Rev. D 106, 094021 (2022), doi:10.1103/PhysRevD.106.094021.

[23] A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot and S.
Vent, Generative networks for precision enthusiasts, SciPost Phys. 14, 078 (2023),
doi:10.21468/SciPostPhys.14.4.078.

[24] S. Höche, Introduction to parton-shower event generators, in Journeys through the preci-
sion frontier: Amplitudes for colliders, World Scientific, Singapore, ISBN 9789814678766
(2014), doi:10.1142/9789814678766_0005.

[25] A. Butter, T. Jezo, M. Klasen, M. Kuschick, S. Palacios Schweitzer and T. Plehn,
Kicking it off(-shell) with direct diffusion, SciPost Phys. Core 7, 064 (2024),
doi:10.21468/SciPostPhysCore.7.3.064.

[26] A. Butter, N. Huetsch, S. Palacios Schweitzer, T. Plehn, P. Sorrenson and J. Spinner, Jet
diffusion versus JetGPT - Modern networks for the LHC, SciPost Phys. Core 8, 026 (2025),
doi:10.21468/SciPostPhysCore.8.1.026.

[27] M. Leigh, D. Sengupta, G. Quétant, J. A. Raine, K. Zoch and T. Golling, PC-JeDi: Dif-
fusion for particle cloud generation in high energy physics, SciPost Phys. 16, 018 (2024),
doi:10.21468/SciPostPhys.16.1.018.

[28] M. Leigh, D. Sengupta, J. A. Raine, G. Quétant and T. Golling, Faster diffusion model
with improved quality for particle cloud generation, Phys. Rev. D 109, 012010 (2024),
doi:10.1103/PhysRevD.109.012010.

[29] E. Buhmann et al., EPiC-ly fast particle cloud generation with flow-matching and diffusion,
(arXiv preprint) doi:10.48550/arXiv.2310.00049.

[30] V. Mikuni, B. Nachman and M. Pettee, Fast point cloud generation with dif-
fusion models in high energy physics, Phys. Rev. D 108, 036025 (2023),
doi:10.1103/PhysRevD.108.036025.

[31] C. Jiang, S. Qian and H. Qu, Choose your diffusion: Efficient and flexible ways to
accelerate the diffusion model in fast high energy physics simulation, (arXiv preprint)
doi:10.48550/arXiv.2401.13162.

[32] V. Mikuni and B. Nachman, Score-based generative models for calorimeter shower simula-
tion, Phys. Rev. D 106, 092009 (2022), doi:10.1103/PhysRevD.106.092009.

[33] V. Mikuni and B. Nachman, CaloScore v2: Single-shot calorimeter shower simu-
lation with diffusion models, J. Instrum. 19, P02001 (2024), doi:10.1088/1748-
0221/19/02/P02001.

[34] S. Diefenbacher, V. Mikuni and B. Nachman, Refining fast calorimeter simulations with a
Schrödinger bridge, (arXiv preprint) doi:10.48550/arXiv.2308.12339.

[35] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasicezka, A. Korol, W. Korcari, K.
Krüger and P. McKeown, CaloClouds: Fast geometry-independent highly-granular calorime-
ter simulation, J. Instrum. 18, P11025 (2023), doi:10.1088/1748-0221/18/11/P11025.

42

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117
https://doi.org/10.1103/PhysRevD.108.L031103
https://doi.org/10.1103/PhysRevD.106.094021
https://doi.org/10.21468/SciPostPhys.14.4.078
https://doi.org/10.1142/9789814678766_0005
https://doi.org/10.21468/SciPostPhysCore.7.3.064
https://doi.org/10.21468/SciPostPhysCore.8.1.026
https://doi.org/10.21468/SciPostPhys.16.1.018
https://doi.org/10.1103/PhysRevD.109.012010
https://doi.org/10.48550/arXiv.2310.00049
https://doi.org/10.1103/PhysRevD.108.036025
https://doi.org/10.48550/arXiv.2401.13162
https://doi.org/10.1103/PhysRevD.106.092009
https://doi.org/10.1088/1748-0221/19/02/P02001
https://doi.org/10.1088/1748-0221/19/02/P02001
https://doi.org/10.48550/arXiv.2308.12339
https://doi.org/10.1088/1748-0221/18/11/P11025


SciPost Phys. 18, 117 (2025)

[36] E. Buhmann, F. Gaede, G. Kasieczka, A. Korol, W. Korcari, K. Krüger and P. McKeown,
CaloClouds II: Ultra-fast geometry-independent highly-granular calorimeter simulation, J.
Instrum. 19, P04020 (2024), doi:10.1088/1748-0221/19/04/P04020.

[37] P. McKeown et al., Fast simulation of highly granular calorimeters with generative models:
Towards a first physics application, Proc. Sci. 449, 568 (2023), doi:10.22323/1.449.0568.

[38] O. Amram and K. Pedro, Denoising diffusion models with geometry adapta-
tion for high fidelity calorimeter simulation, Phys. Rev. D 108, 072014 (2023),
doi:10.1103/PhysRevD.108.072014.

[39] D. Kobylianskii, N. Soybelman, E. Dreyer and E. Gross, Graph-based diffusion model for
fast shower generation in calorimeters with irregular geometry, Phys. Rev. D 110, 072003
(2024), doi:10.1103/PhysRevD.110.072003.

[40] E. Buhmann, C. Ewen, G. Kasieczka, V. Mikuni, B. Nachman and D. Shih,
Full phase space resonant anomaly detection, Phys. Rev. D 109, 055015 (2024),
doi:10.1103/PhysRevD.109.055015.

[41] D. Sengupta, M. Leigh, J. A. Raine, S. Klein and T. Golling, Improving new physics searches
with diffusion models for event observables and jet constituents, J. High Energy Phys. 04,
109 (2024), doi:10.1007/JHEP04(2024)109.

[42] V. Mikuni and B. Nachman, High-dimensional and permutation invariant anomaly detec-
tion, SciPost Phys. 16, 062 (2024), doi:10.21468/SciPostPhys.16.3.062.

[43] T. Heimel, N. Huetsch, R. Winterhalder, T. Plehn and A. Butter, Precision-
machine learning for the matrix element method, SciPost Phys. 17, 129 (2024),
doi:10.21468/SciPostPhys.17.5.129.

[44] Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution,
in Advances in neural information processing systems 32, Curran Associates, Red Hook,
USA, ISBN 9781713807933 (2019).

[45] J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic models, in Advances in
neural information processing systems 33, Curran Associates, Red Hook, USA, ISBN
9781713829546 (2020).

[46] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon and B. Poole, Score-
based generative modeling through stochastic differential equations, (arXiv preprint)
doi:10.48550/arXiv.2011.13456.

[47] T. Karras, M. Aittala, T. Aila and S. Laine, Elucidating the design space of diffusion-based
generative models, in Advances in neural information processing systems 35, Curran Asso-
ciates, Red Hook, USA, ISBN 9781713871088 (2022).

[48] R. Rombach, A. Blattmann, D. Lorenz, P. Esser and B. Ommer, High-resolution image
synthesis with latent diffusion models, in IEEE/CVF conference on computer vision and
pattern recognition, New Orleans, USA (2022), doi:10.1109/CVPR52688.2022.01042.

[49] D. P. Kingma and M. Welling, Auto-encoding variational Bayes, (arXiv preprint)
doi:10.48550/arXiv.1312.6114.

[50] D. P. Kingma, T. Salimans, B. Poole and J. Ho, Variational diffusion models, in Advances
in neural information processing systems 34, Curran Associates, Red Hook, USA, ISBN
9781713845393 (2021).

43

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117
https://doi.org/10.1088/1748-0221/19/04/P04020
https://doi.org/10.22323/1.449.0568
https://doi.org/10.1103/PhysRevD.108.072014
https://doi.org/10.1103/PhysRevD.110.072003
https://doi.org/10.1103/PhysRevD.109.055015
https://doi.org/10.1007/JHEP04(2024)109
https://doi.org/10.21468/SciPostPhys.16.3.062
https://doi.org/10.21468/SciPostPhys.17.5.129
https://doi.org/10.48550/arXiv.2011.13456
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.48550/arXiv.1312.6114


SciPost Phys. 18, 117 (2025)

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I.
Polosukhin, Attention is all you need, in Advances in neural information processing systems
30, Curran Associates, Red Hook, USA, ISBN 9781510860964 (2017).

[52] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve and H. Jégou, Going deeper with image
transformers, in IEEE/CVF international conference on computer vision, Montreal, Canada
(2022), doi:10.1109/ICCV48922.2021.00010.

[53] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li and J. Zhu, DPM-solver: A fast ODE solver for
diffusion probabilistic model sampling in around 10 steps, in Advances in neural information
processing systems 35, Curran Associates, Red Hook, USA, ISBN 9781713871088 (2022).

[54] G. Aad et al., Measurements of top quark pair relative differential cross-sections with ATLAS
in pp collisions at

p
s= 7 TeV, Eur. Phys. J. C 73, 2261 (2013), doi:10.1140/epjc/s10052-

012-2261-1.

[55] G. Aad et al., Measurements of normalized differential cross sections for t̄t production in
pp collisions at

p
s= 7 TeV using the ATLAS detector, Phys. Rev. D 90, 072004 (2014),

doi:10.1103/PhysRevD.90.072004.

[56] G. Aad et al., Measurements of top-quark pair differential cross-sections in the lepton+jets
channel in pp collisions at

p
s= 8 TeV using the ATLAS detector, Eur. Phys. J. C 76, 538

(2016), doi:10.1140/epjc/s10052-016-4366-4.

[57] M. Aaboud et al., Measurements of top-quark pair differential cross-sections in the
lepton+jets channel in pp collisions at

p
s= 13 TeV using the ATLAS detector, J. High En-

ergy Phys. 11, 191 (2017), doi:10.1007/JHEP11(2017)191.

[58] M. Aaboud et al., Measurement of the top quark mass in the t̄t→ lepton+jets channel fromp
s= 8 TeV ATLAS data and combination with previous results, Eur. Phys. J. C 79, 290

(2019), doi:10.1140/epjc/s10052-019-6757-9.

[59] M. Aaboud et al., Measurements of differential cross sections of top quark pair production
in association with jets in pp collisions at

p
s= 13 TeV using the ATLAS detector, J. High

Energy Phys. 10, 159 (2018), doi:10.1007/JHEP10(2018)159.

[60] G. Aad et al., Measurements of top-quark pair differential and double-differential cross-
sections in the ℓ+jets channel with pp collisions at

p
s= 13 TeV using the ATLAS detector,

Eur. Phys. J. C 79, 1028 (2019), doi:10.1140/epjc/s10052-019-7525-6.

[61] S. Chatchyan et al., Measurement of differential top-quark-pair production cross sections in
pp collisions at

p
s= 7 TeV, Eur. Phys. J. C 73, 2339 (2013), doi:10.1140/epjc/s10052-

013-2339-4.

[62] V. Khachatryan et al., Measurement of the differential cross section for top quark
pair production in pp collisions at

p
s= 8 TeV, Eur. Phys. J. C 75, 542 (2015),

doi:10.1140/epjc/s10052-015-3709-x.

[63] V. Khachatryan et al., Measurement of the integrated and differential t̄t production cross
sections for high-pt top quarks in pp collisions at

p
s= 8 TeV, Phys. Rev. D 94, 072002

(2016), doi:10.1103/PhysRevD.94.072002.

[64] V. Khachatryan et al., Measurement of differential cross sections for top quark pair produc-
tion using the lepton+jets final state in proton-proton collisions at 13 TeV, Phys. Rev. D 95,
092001 (2017), doi:10.1103/PhysRevD.95.092001.

44

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117
https://doi.org/10.1109/ICCV48922.2021.00010
https://doi.org/10.1140/epjc/s10052-012-2261-1
https://doi.org/10.1140/epjc/s10052-012-2261-1
https://doi.org/10.1103/PhysRevD.90.072004
https://doi.org/10.1140/epjc/s10052-016-4366-4
https://doi.org/10.1007/JHEP11(2017)191
https://doi.org/10.1140/epjc/s10052-019-6757-9
https://doi.org/10.1007/JHEP10(2018)159
https://doi.org/10.1140/epjc/s10052-019-7525-6
https://doi.org/10.1140/epjc/s10052-013-2339-4
https://doi.org/10.1140/epjc/s10052-013-2339-4
https://doi.org/10.1140/epjc/s10052-015-3709-x
https://doi.org/10.1103/PhysRevD.94.072002
https://doi.org/10.1103/PhysRevD.95.092001


SciPost Phys. 18, 117 (2025)

[65] J. Alwall et al., The automated computation of tree-level and next-to-leading order differen-
tial cross sections, and their matching to parton shower simulations, J. High Energy Phys.
07, 079 (2014), doi:10.1007/JHEP07(2014)079.

[66] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159
(2015), doi:10.1016/j.cpc.2015.01.024.

[67] J. de Favereau et al., DELPHES 3: A modular framework for fast simulation of a generic col-
lider experiment, J. High Energy Phys. 02, 057 (2014), doi:10.1007/JHEP02(2014)057.

[68] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, J. High Energy
Phys. 04, 063 (2008), doi:10.1088/1126-6708/2008/04/063.

[69] J. A. Aguilar Saavedra et al., Interpreting top-quark LHC measurements in the standard-
model effective field theory, (arXiv preprint) doi:10.48550/arXiv.1802.07237.

[70] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying event
samples, SciPost Phys. 10, 139 (2021), doi:10.21468/SciPostPhys.10.6.139.

[71] A. Giammanco, Particle level objects and pseudo-top-quark definitions, CERN,
Geneva, Switzerland (2016), https://twiki.cern.ch/twiki/bin/view/LHCPhysics/
ParticleLevelTopDefinitions.

[72] J. Kvita, Study of methods of resolved top quark reconstruction in semileptonic t̄t decay,
Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 900, 84
(2018), doi:10.1016/j.nima.2018.05.059.

[73] M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN event unweighting, SciPost
Phys. 10, 089 (2021), doi:10.21468/SciPostPhys.10.4.089.

[74] B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweighting with preserved
uncertainties, Phys. Rev. D 102, 076004 (2020), doi:10.1103/PhysRevD.102.076004.

[75] ATLAS collaboration, Evaluating statistical uncertainties and correlations using the boot-
strap method, Tech. Rep. ATL-PHYS-PUB-2021-011, CERN, Geneva, Switzerland (2021),
https://cds.cern.ch/record/2759945.

[76] A. Ghosh, B. Nachman and D. Whiteson, Uncertainty-aware machine learning for high
energy physics, Phys. Rev. D 104, 056026 (2021), doi:10.1103/PhysRevD.104.056026.

[77] K. Greif and M. Fenton, Semi-leptonic ttbar full-event unfolding R&D dataset, Zenodo
(2024), doi:10.5281/zenodo.13364827.

45

https://scipost.org
https://scipost.org/SciPostPhys.18.4.117
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.48550/arXiv.1802.07237
https://doi.org/10.21468/SciPostPhys.10.6.139
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ParticleLevelTopDefinitions
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ParticleLevelTopDefinitions
https://doi.org/10.1016/j.nima.2018.05.059
https://doi.org/10.21468/SciPostPhys.10.4.089
https://doi.org/10.1103/PhysRevD.102.076004
https://cds.cern.ch/record/2759945
https://doi.org/10.1103/PhysRevD.104.056026
https://doi.org/10.5281/zenodo.13364827

	Introduction
	Background
	Methods
	Particle VAE
	Detector encoder
	Multiplicity predictor
	Latent diffusion process
	Particle denoising network
	Noise schedule network

	Training
	Inference

	Example use-case: Semi-leptonic t unfolding
	Dataset
	Standard model results
	Performance on dataset with BSM physics injection

	Outlook and discussion
	Conclusions
	Variable definitions
	Distance metrics
	Wasserstein distance
	Energy distance
	KL-divergence

	Full set of EFT distributions
	Full error breakdown tables
	Corner plots of top-quark kinematics
	References

