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Abstract

Rare events play a crucial role in understanding complex systems. Characterizing and
analyzing them in scale-invariant situations is challenging due to strong correlations.
In this work, we focus on characterizing the tails of probability distribution functions
(PDFs) for these systems. Using a variety of methods, perturbation theory, functional
renormalization group, hierarchical models, large n limit, and Monte Carlo simulations,
we investigate universal rare events of critical O(n) systems. Additionally, we explore the
crossover from universal to nonuniversal behavior in PDF tails, extending Cramér’s series
to strongly correlated variables. Our findings highlight the universal and nonuniversal
aspects of rare event statistics. We also discuss the ubiquity of this power-law corrections
to the leading compressed-exponential decay in these tails in and out-of-equilibrium.
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1 Introduction

The comprehension of rare events holds great significance in the study of complex systems
encompassing diverse fields such as climate science, brain activity, societies, financial mar-
kets, and earthquakes. The occurrence of exceptional and dramatic phenomena arises from
emergent behaviors within these systems. When they occur in large stochastic systems, these
rare events can have universal characteristics. This is typically the case for systems exhibiting
scaling, a situation encountered for systems that are close to a second-order phase transition
or that are generically scale-invariant, i.e. without fine-tuning of any parameter, as in the
Kardar-Parisi-Zhang (KPZ) equation describing interface growth. Predicting and analyzing
such events is generally difficult because of the strong correlations between the degrees of
freedom involved.

From an analytical point of view, the characterization of the rare events is contained in
the tails of the probability distribution functions (PDF) P(ŝ = s) of the normalized sum ŝ
of the stochastic variables of the system. Generically, the presence of strong correlations in
scale invariant systems makes it necessary to use special techniques such as the Functional
Renormalization Group (FRG) to obtain a complete characterization of the PDF and of its tail.
Most of the time, it is therefore difficult to have fully controlled results concerning these rare
events. When there is scale invariance, typically the leading behavior of the decay of the tails
is a compressed exponential ruled by a critical exponent and is therefore not too difficult to
obtain. For instance, for the d-dimensional Ising model, the leading behavior of the tail of
the PDF is exp(−aLdsδ+1) where a is a constant, L the linear dimension of the system and δ
the critical isotherm exponent [1]. However, this exponential decay can be accompanied by a
nontrivial subleading term which is difficult to obtain, except when exact results are available.

A full understanding of these tails is important for at least three reasons. The first and
obvious reason is conceptual: we want to fully characterize the statistics of the rare events.
The second reason is related to the consistency of the different behavior of the PDF according to
the value of its argument. For instance, for KPZ in 1+1 dimension, there are different regimes
depending on the behavior of the fluctuations of the height H of the interface as a function
of the time t. For the typical height fluctuations, H behaves as t1/3 and the PDF of these
typical fluctuations is given by the Tracy-Widom distribution. Atypical large height fluctuations
correspond to H ∼ O(t) and satisfy other distributions [2]. Obviously, these different behavior
should match, the large field behavior of one distribution being the small field behaviors of the
other. The matching between these different regimes has been proven for KPZ and it requires
a detailed understanding of the tails of these distributions. The third reason is pragmatic:
a quantitative fit of a PDF requires knowing it on the largest possible range which requires
detailed knowledge of its tail, which has been argued to be mandatory for the Ising model in
d = 3 [3].
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Figure 1: Schematic representation of different regimes of the probability distribution
function of an O(n) critical system. The regime a) is the scaling regime where the
probability distribution is a universal function of sLβ/ν. This regime corresponds
to a generalization of the CLT to strongly correlated variables. The universal large
deviation regime b) appears for sLβ/ν ≫ 1, where the PDF takes the form Eq. (1).
This region is the main focus of the present work. Finally, regime c) is the non-
universal large deviation regime. The cross-over from b) to c) is characterized by
universal corrections to scaling multiplied by non-universal amplitudes, see Sec. 4.

For all the reasons mentioned above, the universal statistics of the rare events have been
much studied in the last decades, especially for the Ising model close to criticality. For the
models in the Ising universality class, it has been argued that a power-law correction to the
leading exponential decay should be present [4], i.e. at large s

PL(ŝ = s)∝ sψe−aLd sδ+1
, (1)

with ψ= δ−1
2 on heuristic ground [5] or assuming some analytic properties of the free energy

[3,6–8]. This expression of the PDF has been argued in [8] to hold also out of equilibrium with
ψ being again (δ− 1)/2 for a one-component degree of freedom x , say a position in space, if
the PDF is a scaling function of x and t.

Our objectives in this article are twofold. We first want to show that Eq. (1) is most likely
valid for O(n) models with periodic boundary conditions with ψ= nδ−1

2 , by a set of different
methods: perturbation theory, FRG, hierarchical Ising model, large n limit, and Monte Carlo
(MC) simulations. Although the methods and models are well-established, and we provide a
brief review of each, our compilation of results on the power-law prefactor of the PDF and
subsequent analysis constitutes, to the best of our knowledge, a novel contribution. We also
argue that the existence of a power-law prefactor as in Eq. (1) withψ= nδ−1

2 is not necessarily
present neither at nor out of equilibrium. We show it by considering the Ising model in d = 3
with free boundary conditions. Equation (1) is then invalid because a subleading power-law
term corrects the leading sδ+1 term and hides the sψ term. For out-of-equilibrium systems,
using exact results for KPZ derived in [2], we show that the exponent ψ is not necessarily
(δ− 1)/2 which invalidates the argument put forward in [8].

Our second objective is to study the crossover between the universal tail of the PDF de-
scribed by Eq. (1) which is valid for s ∼ L−β/ν with β and ν respectively the order parameter
exponent and the correlation length exponent, and the nonuniversal behavior of the PDF which
holds for s ≫ L−β/ν. For independent and identically distributed (iid) random variables σ̂i ,
this crossover which takes place for ŝ =

∑

i σ̂i/Ld ∼ 1, is given by the Cramér’s series. We
argue that this Cramér’s series can be generalized to the case of strongly correlated variables
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and that it is given by a sum of contributions, each term of which corresponds to a correction-
to-scaling exponent and its associated universal function. The non-universality of this series
only appears in the amplitudes multiplying each of these contributions. Finally, this series has
a finite radius of convergence, and beyond this radius, the PDF is fully nonuniversal, that is, is
strongly dependent on the joint probability distribution of the σ̂i .

The manuscript is organized as follows. In Sec. 2 we recall the theory of large devia-
tions and its connection to the Central Limit Theorem via Cramér’s series for independent and
weakly dependent variables. We then discuss how this picture is modified for strongly cor-
related variables in the context of second-order phase transitions. In Sec. 3, we characterize
universal large deviations and show that Eq. (1) is obeyed for a variety of models. In Sec. 4,
we discuss the connection between correction to scaling and Cramér’s series, and we discuss
the generality of our results in Sec. 5.

2 A short reminder on CLT and large deviations

2.1 Central limit theorem and Cramér’s series for independent variables

For the sum of N independent identically distributed (iid) random variables σ̂i , Ŝ =
∑

i σ̂i ,
the Central Limit Theorem (CLT) and the Large Deviation Principle (LDP) allow for describing
the typical fluctuations Ŝ ∼

p
N and large deviations Ŝ ∼ N from the mean, respectively.

(We assume that σ̂i has zero mean and finite variance to simplify the discussion.) On the one
hand, independently of the PDF of the σ̂i , the CLT implies that in the limit N →∞, the typical
fluctuations of Ŝ are Gaussian, with standard deviation scaling as

p
N . On the other hand, the

LDP asserts that for large deviations, Ŝ of order N , the PDF takes the form

P(Ŝ = Ns)≃
Æ

N I ′′(s)/2π e−N I(s) , (2)

where the rate function I(s) strongly depends on the probability distribution of σ̂i , i.e. it
is non-universal in the language of critical systems. The derivation of this result, known as
Cramér’s theorem in the large deviation literature, is standard, see for instance [9]. It follows
from a saddle-point approximation of the integral representation of the PDF

P(Ŝ = Ns) = 〈δ(Ŝ − Ns)〉

=

∫ a+i∞

a−i∞

dh
2iπ

e−Nhs〈ehŜ〉 ,
(3)

where the average 〈. . .〉 is over the joint probability of the σ̂i . The integral over h is performed
on the Bromwich contour, i.e. along a vertical line h = a in the complex plane. The real
number a is chosen so that the line h = a lies to the right of all singularities. Notice that
〈ehŜ〉 is the moment generating function of Ŝ, and w(h) = N−1 ln〈ehŜ〉 its cumulant generating
function. For iid variables, we of course have that w(h) = ln〈ehσ̂i 〉, where the average is over
σ̂i only. Then

P(Ŝ = Ns) =

∫ a+i∞

a−i∞

dh
2iπ

e−N(hs−w(h))

≃
Æ

N/2πw′′(h∗)e−N(h∗s−w(h∗) ,

(4)

where we have performed a saddle-point approximation (including Gaussian fluctuations) in
the limit N →∞, and h∗ is found as suph∈R(hs−w(h)) (note that the minimum of hs−w(h)
along the Bromwich contour is a maximum for h real). Here, the Bromwich contour has been
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deformed to go through its real saddle point, the existence of which is ensured by the fact
that the PDF is real. Assuming that w(h) is analytic, then h∗ is such that w′(h∗) = s. We
introduce the average m(h) = w′(h), and U(m) = suph∈R(hm − w(h)), which have a clear
interpretation in statistical physics (see below). In the case of iid, we thus recover Eq. (2) with
I(s) = U(m = s), using the fact that U ′′(m(h)) = w′′(h)−1. Note that by construction U(m) is
always convex, while I(s) needs not to be in general. Therefore, and this will be important
below, the identification I(s) = U(m= s) can only work in the regions where the rate function
is convex.

In the present setting, the CLT can be reframed as

P(Ŝ =
p

Ns̃)≃
e−I ′′(0)s̃2/2

p

2π/I ′′(0)
, (5)

for s̃ of order 1. The Gaussian distribution is universal (up to a non-universal “amplitude”
1/
p

I ′′(0) characterizing the typical fluctuations of σ̂i , i.e. the width of the PDF). CLT and
LDP are related by noting that

P(Ŝ =
p

Ns̃)≃
e−I ′′(0)s̃2/2

p

2π/I ′′(0)
e

s̃3p
N
λ(s̃/
p

N) , (6)

for s̃ = o(
p

N), i.e. for small deviations of Ŝ from its mean. Here λ(z) =
∑

k=0 akzk is re-
lated to the so-called Cramér’s series, which has a convergent series expansion around z = 0
corresponding to the series expansion of I(s) with s = s̃/

p
N . The coefficients ak are related

to the moments of the iid variables and are thus non-universal. Then λ(z) plays the role of
“finite size corrections” to the Gaussian distribution, with universal power-laws in N but non-
universal amplitudes. We refer to the mathematical literature for more rigorous statements,
see e.g. [10, Chap. 8]. As the scale of s̃ increases to O(

p
N), the probability distribution

crosses over into the fully non-universal regime. This happens because it becomes dominated
by the Cramér’s expansion, as it effectively reconstructs the rate function I(s), which strongly
depends on the microscopic distribution of the random variable.

2.2 Weakly dependent random variables

The above discussion can be straightforwardly generalized to dependent variables, where the
joint probability distribution P[σ̂] of the random variables does not factorize. This is for
instance the case of the high-temperature phase of Ising spins σ̂i = ±1 on a d-dimensional
hypercubic lattice of linear size L (N = Ld) with nearest-neighbor interactions. Weak cor-
relation amounts to 〈Ŝ2〉 = Nχ, with finite susceptibility χ, which is ensured by the finite
correlation length ξ. As the number of spins increases the PDF of the rescaled variables Ŝ/

p
N

tends to a Gaussian: it is attracted to the (universal) high-temperature fixed point. In par-
ticular, the derivation presented above applies directly, as long as L ≫ ξ which ensures that
limN→∞ N−1 ln〈ehŜ〉 is well defined and analytic for all h.

In this context, w(h) is (minus) the Helmoltz free energy, while U(m) is the Gibbs free
energy, with m = 〈Ŝ〉/N the average magnetization. In the high-temperature phase, the rate
function is convex, and I(s) = U(m= s) for all s. This corresponds to the equivalence of ensem-
bles in the thermodynamic limit, between a free energy I(s) at fixed magnetization s (canonical
ensemble) and a free energy U(m) at fixed average magnetization m (grand canonical ensem-
ble).

Large deviations are non-universal, depending on the shape of I(s) at s ∼ 1, strongly
dependent on the microscopic distribution of the random variable (e.g. Ising vs soft spins).
The Cramér’s series in this case corresponds to correction to scaling to the high-temperature
fixed point, with universal scaling form s̃3+i/N1+i , i ∈ N, and non-universal prefactors (which
depend on the derivatives of I(s) at s = 0).
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2.3 Strongly correlated variables

When the variables are strongly correlated, such as is the case close to a second-order phase
transition, the CLT does not apply anymore. A signature is that the typical fluctuations of the
variables scale differently than predicted by the CLT. The typical fluctuations of the normal-
ized total spin ŝ = Ŝ/Ld at criticality are of order L−(d−2+η)/2 instead of L−d/2 (we use bold
symbols for O(n) spins). Here η is the anomalous dimension of the field, and we will often use
β/ν= (d−2+η)/2 with β and ν the magnetization and correlation length critical exponents
respectively.

For |ŝ | of order L−β/ν the PDF of ŝ takes the scaling form

PL(ŝ = s) = Lnβ/νp(sLβ/ν) , (7)

where we used that the O(n) symmetry implies that it only depends on s = |s |. Here
p(s̃) is a n-dependent universal scaling function. The normalization of p(s̃) is such that
∫∞

0 ds̃ s̃n−1p(s̃) = 1 and
∫∞

0 ds̃ s̃n−1s̃2p(s̃) = 1. The second condition fixes the (non-universal)
scale of the field and ensures that p(s̃) is fully universal (does not depend on non-universal
amplitudes). It is highly non-Gaussian, with a shape that depends strongly on how the limits
T → Tc and L → ∞ are taken [11] (we will consider only the case T = Tc , L → ∞ here
for simplicity, unless stated otherwise), as well as the boundary conditions [12] (we assume
periodic boundary conditions unless specified otherwise). However, the fact that p(s̃) is uni-
versal (for a given universality class) can be interpreted as a (non-rigorous) generalization of
the CLT to strongly correlated variables (at least those corresponding to second-order phase
transitions). This regime corresponds to the region a) of Fig. 1.

The critical PDF p(s̃) is typically non-monotonous for s̃∝ O(1), as has been observed in
simulations [6, 7, 12–14], perturbative and non-perturbative renormalization group analysis
[11,15–18]. This implies that the rate function I(s) is non-convex for s of order L−β/ν, and the
relation I(s) = U(m = s) breaks down. This is due to the fact that for s ∼ L−β/ν, the typical
magnetic field is of order L−d+β/ν while the free energy scales as w(h̃L−d+β/ν) = L−d f (h̃) for
h̃ of order 1 (here f (h̃) is a universal scaling function). Thus, the exponent Ld(sh− w(h)) in
the integral representation of the PDF is of order one (i.e. the factor Ld disappears), and the
saddle-point approximation breaks down.

On the other hand, for L−β/ν ≪ s ≪ 1, one expects to recover the thermodynamic limit
behavior typical of critical scaling [1]

PL(ŝ = s)∝ e−aLd sδ+1
, (8)

with δ = d+2−η
d−2+η the critical isotherm exponent and a a constant. Note that since

(δ + 1)β/ν = d, Eqs. (7) and (8) are consistent provided that p(s̃) ∝ e−ãs̃δ+1
for s̃ ≫ 1.

Here ã is universal and related to a by a non-universal amplitude related to the scale of s. This
behavior has been proven rigorously for the two-dimensional Ising model [19, 20] and for
the hierarchical model [21], and is a natural consequence of the (functional) renormalization
group [11]. It can be understood by realizing that in the thermodynamic limit L →∞ and s
fixed but not too large (i.e. much smaller than one), we can use the saddle-point approxima-
tion once again, using that w(h)∝ h1+1/δ in this universal regime.

Note that the PDF in Eq. (8) takes a large deviation form, i.e. its logarithm scales with the
volume, that is universal. On the contrary, for s of order 1, the probability distribution is non-
universal and depends on the microscopic details of the system. Therefore, contrary to what
happens for iid variables, large deviations can be universal (if not too large) or non-universal,
see regime b) and c) of Fig. 1. As we will discuss in Sec. 4, the equivalent of Cramèr’s series that
connects those two regimes are the finite-size effects associated with corrections to scaling.
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Finally, let us give an argument for the O(n) universality class that a better description
of universal large deviation than Eq. (8) is Eq. (1), with ψ = nδ−1

2 . Since L−β/ν ≪ |ŝ | ≪ 1
corresponds to large fields where both the rate function I(s) and the Gibbs free energy U(m)
are convex, the same saddle-point argument as above implies that

PL(ŝ = s)≃ (Ld U ′′(s)/2π)1/2(Ld U ′(s)/s2π)
n−1

2 e−Ld U(s) , (9)

where the first prefactor comes from the longitudinal fluctuations with respect to s and the
second comes from the n− 1 transverse fluctuations. Assuming no logarithm in U(m) (which
has not yet been proven so far) and scaling (U(m)∝ mδ+1 at large m) we obtain the prefactor
sψ of the Eq. (1), with ψ= nδ−1

2 , generalizing the Ising result to O(n).

3 Universal large deviations

We now characterize the universal large deviations for a variety of models close to a second-
order phase transition belonging to the O(n) universality class, and show that they are consis-
tent with Eq. (1) with ψ= nδ−1

2 .
In particular, we demonstrate that this relation holds true both for exact calculations (for

the hierarchical model and at large n) or approximate ones (perturbative and functional RG),
irrespective of the actual value ofδ (exact or approximated). Some of the present models or ap-
proximation schemes might correspond to vanishing anomalous dimension η (at lowest order
of the expansion). However, we do not expect this to impact the validity of ψ= nδ−1

2 , in par-
ticular since in all cases studied here, we have a non-trivial exponent δ (i.e. non-mean-field)
irrespective of the actual value of η. This is also confirmed by our Monte Carlo simulations in
three dimensions, for which η is finite.

3.1 Exactly solvable models

3.1.1 Hierarchical model

The hierarchical model is one of the few models where explicit and rigorous results can be
obtained at criticality. We refer to [22] for a review of the model and the derivations of the
recursion relation of the PDF. The model describes a hierarchy of block-spins S of size Nk = 2k

with interaction strength
� c

4

�k
. The PDF P(k)(s̃) of a block-spin at the k-th level of the hierarchy,

with s̃ =
� c

4

�k/2
S the rescaled block-spin, obeys the recursion relation

P(k+1)(s̃)∝ e
β
2 s̃2

∫

d x P(k)

�

s̃
p

c
+ x
�

P(k)

�

s̃
p

c
− x
�

. (10)

While one cannot speak of the dimensionality of the hierarchical model, it is possible to
make the connection with an effective dimensional d as follows. Call ℓd

k = Nk the number
of spins in a block-spin at level k. Then by analogy with a d-dimensional system, we write

s̃ = ℓ
d−2+η

2
k s = ℓ

−d−2+η
2

k S, or s̃ = N
−d−2+η

2d
k S. Matching this expression with s̃ =

� c
4

�k/2
S, we can

link the parameter c to the effective dimension of the system, c = 2
d−2+η

d . Note that because
there is no real dimensionality of the system, one cannot disentangle the dimension d and
anomalous dimension η in this case. It is then convenient to impose that η here takes the
value of the anomalous dimension of the Ising model in dimension d.

Reframed in this way, the critical behavior of the hierarchical model is very similar to that
of the d-dimensional Ising model. At fixed c and initial condition P(0), there is a transition at
a critical β for c > 1. For c ≥

p
2, corresponding to d ≥ 4 assuming η = 0, the transition is
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mean-field-like, and the fixed point of the recurrence relation is the once-unstable Gaussian.
The Gaussian becomes twice-unstable for c <

p
2 and a new non-trivial fixed point emerges as

c crosses
p

2. One can even perform the equivalent to the epsilon expansion when c is close
to
p

2, i.e. d = 4− ε. For c ∈]1,
p

2[, the case on which we focus on, if the initial condition
is properly fine-tuned, P(k) reaches asymptotically a once-unstable non-trivial fixed point P⋆,
characterized by non-trivial critical exponents.

It is convenient to extract a Gaussian part from the probability and to introduce

g(k)(s̃) = eA⋆ s̃
2
P(k)(s̃) , (11)

with A⋆ =
β c

2(2−c) . (The Gaussian PDF P⋆ = e−A⋆ s̃
2

is a twice-unstable fixed point.) The fixed
point equation for g then reads

g⋆(s̃)∝
∫

d xe−2A⋆x2
g⋆

�

s̃
p

c
+ x
�

g⋆

�

s̃
p

c
− x
�

. (12)

Let us now show that the critical PDF of the hierarchical model does take the form Eq. (1)
in the critical rare events regime. A first simple argument goes as follows. Since the integral
over x is cut by the Gaussian weight, we expect that for sufficiently large s̃ the functions g⋆ (or
more appropriately their logs) can be expanded in x . Keeping the leading term (i.e. neglecting
their x dependence), one obtains [23,24]

g⋆(s̃)∝ g⋆

�

s̃
p

c

�2

, (13)

which is solved by
g⋆(s̃)∝ e−as̃δ+1

, (14)

with δ + 1 = 2/ ln2 c, i.e. δ ∈]4,∞[ depending on c. This behavior has been demonstrated
rigorously for c = 21/3 in [21]. Inserting Eq. (14) into Eq. (12), it is straightforward to see that
the integral over x generates a prefactor s̃−

δ−1
2 , which must be compensated for by requiring

g⋆(s̃)∝ s̃
δ−1

2 e−as̃δ+1
. (15)

We now give a more systematic analysis of the problem. Write g⋆(s̃) = e−u⋆(s̃) and assume
that for s̃≫ 1, u(n)⋆ (s̃)≫ u(n+1)

⋆ (s̃) with u(n)⋆ the n-th derivative of u⋆ (this assumption turns out
to be self-consistent). Expanding in x in the integrand of Eq. (12), and keeping the first two
terms in the asymptotic expansion, we obtain (up to a constant)

u⋆(s̃) = 2u⋆(s̃/
p

c) +
1
2

ln
�

2A⋆ + u(2)⋆ (s̃/
p

c)
�

+ · · · , (16)

where the neglected terms are of order u(2n)
⋆ (s̃/

p
c)/(u(2)⋆ (s̃/

p
c))n. At leading order we recover

u⋆(s̃) = 2u⋆(s̃/
p

c), again solved by u⋆(s̃) = as̃δ+1. This implies that u(2)⋆ (s̃/
p

c)∝ s̃δ−1 is much
larger than A⋆. Keeping the leading term from the log, we find u⋆(s̃)≃ as̃δ+1− δ−1

2 ln s̃ up to a
constant, while the next term implies a subdominant power-law behavior s̃−δ+1. Note that the
neglected terms in Eq. (16) are of order at most s̃−δ−1. The results obtained here are consistent
with the rigorous large deviation analysis of [25].

3.1.2 Large n limit

The large n limit of the O(n)model is another exactly solvable model, see [26] and [27, Chapt.
14] for a review of the derivation. The model is described by the Hamiltonian

H[φ̂] =
∫

x

�

(∇φ̂)2

2
+ V
�

φ̂2/2
�

�

, (17)

8

https://scipost.org
https://scipost.org/SciPostPhys.18.4.119


SciPost Phys. 18, 119 (2025)

with V (x) is the potential, such that V (nx)/n is independent of n, typically of the form

V (x) = r0 x +
u0

6n
x2 . (18)

At some critical value r0, there is a continuous phase transition between an ordered and a
disordered phase for d > 2. Above the upper critical dimension d = 4, the phase transition
is mean-field, while it is non-trivial for 2 < d < 4, with critical exponents ν = 1/(d − 2) and
η= 0. This implies in particular β = 1/2 and δ+ 1= 2d/(d − 2).

The PDF of the O(n) model is defined by

PL(ŝ = s) =N
∫

Dφ̂ δ (s − ŝ)exp(−H[φ̂]) , (19)

with N a normalization constant, ŝ = L−d
∫

x φ̂(x ). The delta-function can be exponentiated
(see [28, 29] for a similar calculation using a different exponentiation of the delta-function),

δ(z)∝ limM→∞ e−
M2
2 z2

, such that

PL(ŝ = s) = lim
M→∞

N ′
∫

Dφ̂ e−H[φ̂]−
M2
2 (s−ŝ)2 . (20)

Introducing two auxiliary fields λ(x ) and ρ̂(x ) such that

1=
∫

DλDρ̂ exp
n

−i
∫

x λ
�

φ̂2

2 − ρ̂
�o

, the PDF is rewritten as

PL(s) = lim
M→∞

N ′
∫

Dφ̂DλDρ̂ e
−
∫

x

�

(∇φ̂)2
2 +iλ φ̂

2

2

�

−
∫

x (V (ρ̂)−iλρ̂)− M2
2 (s−ŝ)2

. (21)

Writing the field φ̂ = (σ̂, π̂), with σ̂ along the direction of s , and integrating out the π̂ fields,
we finally obtain

PL(s) = lim
M→∞

N ′
∫

Dσ̂DλDρ̂ e−Heff[σ̂,λ,ρ̂] , (22)

with

Heff[σ̂,λ, ρ̂] =

∫

x

�

(∇σ̂)2

2
+ iλ

σ̂2

2

�

+

∫

x
(V (ρ̂)− iλρ̂)

+
M2

2

�

L−d

∫

x
(σ̂− s)

�2

+
n− 1

2
Tr log(g−1

π ) ,

(23)

and the correlation function gπ of the π̂-fields satisfying
(−∇2 + iλ(x ) + M2)gπ(x , y) = δ(x − y). Assuming that σ̂ ∼

p
n, the functional integral

can be evaluated by a the saddle-point analysis as n→∞, and the PDF reads

PL(s) = lim
M→∞

N ′e−Heff[σ̂0,λ0,ρ̂0] , (24)

where σ̂0,λ0, ρ̂0 minimize the effective Hamiltonian Heff. Assuming that the saddle is at
constant field configurations, the limit M →∞ imposes σ̂0(x ) = s, and we obtain

iλ0 = V ′(ρ̂0) ,

s2

2
= ρ̂0 −

n
2Ld

∑

q ̸=0

1
q2 + iλ0

.
(25)

Writing log(PL(s)) = −Ld I(ρ)with ρ = s2/2, one shows that at the saddle-point, iλ0 = I ′(ρ).
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In the scaling regime, e.g. for ρ small enough such that I ′(ρ)≪ u2/(4−d)
0 for the potential

given in Eq. (18) (with the Ginzburg length u−1/(4−d)
0 much smaller than L), we obtain the

self-consistent equation

ρ = −n∆−
n

2Ld
˜∑

q ̸=0

1
q2 + I ′(ρ)

, (26)

where ˜∑ means the sum over momenta has been regularized at large momenta and ∆ is the
distance to the critical point (∆ > 0 corresponding to the disordered phase in the thermody-
namic limit). Following [26], this equation can be rewritten as

ρ = −n∆+
n

Ld−2
Fd

�

L2 I ′(ρ)
4π

�

, (27)

where

Fd(z) = −
1
2

∫ ∞

0

du
4π

�

e−uz(ϑd(u)− 1)− u−d/2
�

, (28)

with ϑ(u) =
∑

k∈Z e−uπk2
is a Jacobi theta function.

Looking for universal rare events at criticality (∆ = 0) corresponds to

L−2β/ν ≪ ρ/n ≪ u
d−2
4−d
0 , with β/ν = (d − 2)/2 in large n, and L2 I ′(ρ) ≫ 1. The large z

behavior of Fd(z) reads

Fd(z) = Adz
d−2

2 +
1

8πz
+O
�

e−2
p
πz
�

, (29)

with Ad = −
Γ (1−d/2)

8π > 0, where the first term corresponds to the result in the thermodynamic
limit, while the second one comes from the subtraction of the q = 0 term in the sum, and is
subdominant in the limit L→∞. Thus the self-consistent equation for its solution I⋆ reads

ρ/n≃ Ad

�

I ′⋆
4π

�
d−2

2

+
1

2Ld I ′⋆
, (30)

which is solved by

I ′⋆(ρ)≃ 4π
�

ρ

nAd

�
2

d−2

−
n

Ld(d − 2)ρ
. (31)

Integrating with respect to ρ, we obtain

I⋆(ρ)≃ cρ
d

d−2 −
n

Ld(d − 2)
ln(ρ) , (32)

up to a constant. Recalling that ρ = s2/2, we thus obtain that for rare events

L−β/ν≪ s/
p

n≪ u
d−2

2(4−d)
0 ,

PL(s)∝ sn δ−1
2 e−aLd sδ+1

, (33)

with δ = d+2
d−2 in large n.

On the other hand, in the limit ρ ≫ u
d−2
4−d
0 , the universal term Fd is subdominant and we

recover I(ρ) = V (ρ), corresponding to the non-universal regime of rare events,

PL(s)∝ e−Ld V (s2/2) . (34)
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Figure 2: Rate function of the three-dimensional O(n) model with its leading pow-
erlaw behavior subtracted, Ld I(ρ̃)− aρ̃

δ+1
2 , as a function of ρ, obtained from FRG

for n= 1, 2,3 (top to bottom). Here ρ = s2/2 and ρ̃ = L2β/νρ, with 2β/ν= (d −2)
and δ = 2d/(d − 2) at LPA. The dashed lines correspond to −nδ−1

4 log(ρ̃) (note the
log-scale of the abscissa).

3.2 Perturbative results in dimension d = 4− ε

The rate function at T = Tc can also be computed in perturbation theory using the ε = 4− d
expansion, which reads [15,18,30]

Ld I(x) =
n+ 8

9
2π2

ε
x4 +π2 x4
�

γ+ log2π−
3
2
+ log(x2)
�

+
1
2
∆4

�

2x2
�

+ (n− 1)
�

π2

9
x4
�

γ+ log2π−
3
2
+ log
�

x2

3

��

+
1
2
∆4

�

2x2

3

�

�

+O(ε) ,
(35)

with x =pg∗L
β/νs with β/ν= 1+O(ε) and g∗ =

3ε
n+8 +O(ε2) is the fixed point value of the

interaction to leading order in ε. Here ∆d(z) = θd(z)− θd(0) with

θd(z) = −
∫ ∞

0

ds
e−sz

s

�

ϑd(s)− 1− (1/s)d/2
�

, (36)

is the integral of Fd(z), up to a factor 4π and the subtraction of a term that diverges in d = 4.
In particular, ∆4(z)≃ − log(z) at large z.

At large field, x ≫ 1, the leading behavior of the rate function is

Ld I(x)≃
n+ 8

9
2π2

ε
x4
�

1+ ε log(x) +O(ε2)
�

, (37)

which corresponds to the expected behavior Ld I(x)∝ xδ+1 with δ = 3+ε+O(ε2), expanded
to order ε. This log behavior is an artifact of the ε-expansion and can be dealt with using RG
improvement to resum the large logs [15,18,31]. On the other hand, the contribution of∆4(x)
at large x gives a log correction −n log(x), which corresponds to the power-law prefactor sψ

with ψ = n+O(ε) which is indeed equal to nδ−1
2 to leading order. The calculation has been

performed at two-loop recently for n= 1, and confirms this picture, giving δ = 3+ε+ 25
54ε

2 (as
well known) and ψ = 1+ ε

2 =
δ−1

2 to first order in ε [32]. This suggests that the relationship
ψ= δ−1

2 holds order by order of the epsilon expansion.
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3.3 Functional renormalization group

Recently, we have shown that the critical rate function of the Ising model can be computed
from the FRG [11], see e.g. [33] for a review of FRG. Using the simplest non-trivial approxi-
mation, the so-called Local Potential Approximation (LPA), we were able to compute the PDF
at criticality, in good agreement with Monte Carlo simulations. This is easily generalized to
the O(n) model [29]. We implement Wilson’s idea of integration of the microscopic degrees
of freedom by modifying the Hamiltonian in Eq. (19), H[φ̂] → H[φ̂] +∆Hk[φ̂]. One then
obtains an equation for a scale-dependent rate function Ik. Following the standard procedure
of FRG [33], we choose ∆Hk[φ̂] =

1
2Ld

∑

q Rk(q)φ̂(q).φ̂(−q), where k is the RG momentum
scale and Rk(q) is a regulator function that freezes the low wavenumber fluctuations (q≪ k)
while leaving unchanged the high wavenumber modes (q ≫ k). It is chosen such that: (i)
when k is of order of the inverse lattice spacing, Rk(q)→∞, and all fluctuations are frozen;
(ii) Rk=0(q)≡ 0, all fluctuations are integrated out, and PL(s)∝ e−Ld Ik=0(s2/2).

The flow equation at LPA reads

∂k Ik =
1

2Ld

∑

q ̸=0

∂kRk(q)

�

1
q2 + Rk(q) + I ′k + 2ρI ′′k

+
n− 1

q2 + Rk(q) + I ′k

�

. (38)

In practice, we use the method described in [11] to numerically solve the flow equation and
obtain the critical PDF for the O(n) universality classes. See however Appendix A for a discus-
sion of the technical subtleties specific to the study of the universal large deviations and not
addressed in [11]. The LPA implies a vanishing anomalous dimension, and thus we should ob-
tain a compressed exponential tail with δ+1= 2d

d−2 and a power-law prefactor withψ= n 2
d−2 .

Note that the LPA is exact in the large n limit [34] and we recover the results discussed above
in this limit.

Fig. 2 shows the rate functions of the O(n) model where the leading power-law behavior
asδ+1 is subtracted, in d = 3 for n= 1, 2,3. We observe a behavior consistent with a subleading
logarithmic term (appearing as a straight line in log-linear scale), with prefactor nδ−1

2 . At large
field, we find a deviation from this behavior, which we ascribe to the numerical resolution of the
flow equation (App. A). In particular, increasing the resolution of the grid used to numerically
integrate the flow pushes this deviation to larger and larger fields.

3.4 Monte Carlo simulations of the 3D Ising model

We now proceed to show that there is a power-law prefactor in the PDF of the 3d Ising model
on the cubic lattice with periodic boundary conditions. For this purpose, we use Monte Carlo
simulations based on a specially modified version of the Swendsen-Wang (SW) cluster algo-
rithm [35], similar in spirit to that of [36,37].

SW cluster algorithm is a very efficient tool for simulations of the critical Ising model [38].
One step of the algorithm to get from one spin configuration to the next goes as follows: it
first connects parallel spins into nC clusters (with nC a random variable). Then all spins of a
given cluster are flipped with 50% probability, giving rise to a new spin configuration. Calling
Sa = ±1 the new direction of the spins of cluster Ca (made of |Ca| spins), the total magnetiza-
tion after that step is then M =

∑nC
a=1 Sa|Ca|. Note that for a given cluster configuration {Ca},

a given spin configuration is just one instance of 2nC equally probable configurations (corre-
sponding to the 2nC possible values of {Sa}). Therefore, an improved estimator to increase the
statistics of the magnetization configurations is to take into account the 2nC possible values of
∑nC

a=1 Sa|Ca| (with corresponding weights).
In [36,37], an analytic method for such purpose was proposed for the quantum Heisenberg

model. Here, we follow a different route, using the fact that most clusters are of very small
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Figure 3: Rate function with its leading power law behavior subtracted,
Ld I(s̃)− as̃δ+1, as a function of s̃ = Lβ/νs, obtained from Monte Carlo simulations of
the 3D Ising model of size L = 16, 32,64, 128 (from light to dark blue) at criticality.
The black line corresponds to −δ−1

2 log(s̃) (note the log-scale of the abscissa). Inset:
I(s̃)/s̃δ+1 as a function of s̃ (linear scale). The dashed line corresponds to the con-
stant a ≃ 0.034 extrapolated to infinite system size.

size, meaning that the sum over a typical configuration of the Sa of such clusters will average
out to zero by the law of large numbers.1 In particular, a configuration where most of those Sa
points in the same direction will have a negligible weight and can be ignored. We, therefore,
choose to sample exactly the orientation of the k largest clusters (with k fixed) and choose
randomly the orientations of the nC − k other clusters. Each configuration has a weight of
2−k. Our estimator is in principle less optimal than that of [36,37], though much better than
a naive one considering only one orientation of the nC clusters, but works very well for the
present purpose.

In practice, we use the SW algorithm to construct the clusters, and a variation of the
Hoshen-Kopelman method [40] to identify all the clusters for a given configuration. We typi-
cally generate 107 cluster configurations. We then compute the magnetization for all possible
orientations of the k = 10 largest clusters and update the PDF accordingly. To sample the tail of
the distribution, we also introduce an external magnetic field to bias the system to larger than
typical magnetization, using the ghost spin construction [35]. We then use multi-histogram
reweighting to combine the data at various magnetic fields at zero field [41]. This allows us
to probe the PDF to extremely rare events with probability as low as e−200.

The results for the 3d Ising model with periodic boundary conditions are given in Fig. 3. As
for the FRG results, we have subtracted the leading powerlaw behavior from the rate function,
see App. A for details. We recall that in this case, β/ν≃ 0.518149 and δ ≃ 5.78984 [42]. The
figure shows conclusively the logarithmic correction (corresponding to a power-law prefactor
for the PDF). However, determining the exponentψ is extremely sensitive to finite size effects
which are still apparent for L = 128 (see Appendix A).

1At criticality, the average number Nl of clusters of size l obeys the scaling law Nl = Ld l−τ f (l/LdF ), with
τ= 1+d/dF and fractal dimension dF =

d+2−η
2 , see e.g. [39]. There are thus an extensive number of small clusters,

which contribute to the magnetization per site as a Gaussian variable of zero mean and standard deviation∼ L−d/2.
These contributions do not need to be taken into account, in the sense that after binning of the magnetization data,
with a bin size that is a fraction of the typical magnetization L−(d−2+η)/2, all these contributions fall into the same
bin.

13

https://scipost.org
https://scipost.org/SciPostPhys.18.4.119


SciPost Phys. 18, 119 (2025)

This leads us to comment on the strong finite-size effects observed in the universal rare
events regime. As discussed above, this regime corresponds to L−β/ν ≪ s≪ 1. Note that for
the maximum size that we have, L = 128, L−β/ν ∼ 0.08 and we do not even have a range
of one decade in s to observe this regime. The situation is even worse in d = 2, where the
power-law is very strong since δ + 1 = 16, and β/ν = 1/8. This indicates that it is almost
impossible to be in the universal rare event regime, since L−β/ν ≃ 0.08 even for L = 109. This
casts doubts on the analyses performed on much smaller sizes in previous MC calculations for
Ising 2d [7,43–46].

4 Non-universal large deviations

We finally address how the RG allows us to understand how to relate universal and non-
universal large deviations by generalizing the concept of the Cramérs’ series, see also [47] for
an early discussion about the connection between large deviation and RG. We discuss the Ising
case here to simplify the notations, for which |s| ≤ 1, without loss of generality.

Standard RG arguments imply that the rate function I(s) takes a scaling form

I(s) = L−d Ĩ⋆(sLβ/ν) ,

for s small enough and with Ĩ⋆ a universal function. We know that (at least in d = 3), the
rate function is somewhat similar to the fixed point effective potential Ũ⋆ of the FRG [11].
Furthermore, there are corrections to scaling which are of the form

∑

m am L−ωmδ Ĩm(sLβ/ν),
where the sum is over irrelevant perturbation with critical exponent ωm > 0.

By analogy with the connection between the fixed point potential and the rate function,
we expect that the corrections to scaling δ Ĩm take a form similar to that of the irrelevant
perturbations δũm to the fixed point with eigenvalue ωm. It is important to note that

δũm(φ̃)∝ cmφ̃
(d+ωm)ν/β ,

at large field, while Ũ⋆(φ̃) ∼ c⋆φ̃
dν/β for φ̃ →∞. Note however that δ Ĩm cannot be equal

to δũm (or Ĩ⋆ to Ũ⋆) since the former is universal while the latter depends on the RG scheme
(e.g. the regulator function Rk in FRG).

Thus, we predict that the rate function behaves for small enough s as

I(s) = L−d Ĩ⋆(sLβ/ν) +
∑

m

am L−d−ωmδ Ĩm(sLβ/ν) . (39)

Let us stress here that the functional forms of Ĩ⋆ and δ Ĩm, as well as ωm, are universal (i.e.
described by the Wilson-Fisher fixed point) up to a non-universal amplitude associated with
a characteristic scale of the random variables σ̂. All other microscopic details associated with
the joint probability distribution P[σ̂] are encoded in am.

For large enough L, the PDF takes the form

PL(ŝ = s)≃ e− Ĩ⋆(sLβ/ν)−
∑

m am L−ωmδ Ĩm(sLβ/ν) . (40)

We see that the typical fluctuations of ŝ are of order L−β/ν = L−(d−2+η)/2, instead of the stan-
dard L−d/2 for iid variables, i.e. they are stronger by a factor L1−η. Furthermore, we see that
Ĩ⋆(s̃) does play the role of the universal distribution function of this generalized CLT, while
∑

m am L−ωmδ Ĩm(s̃) is a generalization of Cramér’s series.
Much in the same way that the CLT breaks down for N−1/2

∑

i σ̂i of order
p

N , we find
that the generalized CLT breaks down for sLβ/ν = O(Lβ/ν) (i.e. s of order 1). Indeed, using
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the large field behavior of the fixed point solution and its eigenperturbations, we find that in
this regime

Ĩ⋆(sLβ/ν) +
∑

m

am L−ωmδ Ĩm(sLβ/ν)≃ Ldsdν/β(c⋆ +
∑

m

amcmsωmν/β) , (41)

which shows that for s of order 1, all “corrections” are of the same order and the expansion
breaks down. Therefore, to see the universal feature of the tail of the PDF (in particular,
the expected stretched exponential decay exp(−c⋆L

dsdν/β)), one needs to be in the regime
L−β/ν≪ s≪ 1.

All these aspects can be seen explicitly in the large n limit, as we show now. If the system
size is sufficiently large such that the finite-size corrections are negligible, we have seen in
Sec. 3.1.2 that the rate function takes a universal form I⋆, solution of Eq. (26) at ∆= 0. Then
Ĩ⋆ defined above is just Ld I⋆.

To compute the correction to scaling, we restart from Eq. (25), which we can rewrite as

ρ =
n

Ld−2
Fd

�

L2 I ′(ρ)
4π

�

−
∑

m≥2

m am(I
′(ρ))m−1 , (42)

where we assume ∆ = 0 and the series
∑

m≥2 m am(I ′(ρ))m−1 comes from the inversion of
I ′ = V ′(ρ̂0) in Eq. (25) (the factor −m and the power m − 1 are chosen for later conve-
nience). The amplitudes am are non-universal and depend on the potential V . For instance,
am = −δm,2

3n
2u0

for the potential in Eq. (18). Assuming that I = I⋆ +δI , using that

ρ =
n

Ld−2
Fd

�

L2 I ′⋆(ρ)

4π

�

, (43)

we have

n
4πLd−4

F ′d

�

L2 I ′⋆(ρ)

4π

�

δI ′(ρ) =
∑

m≥2

m am(I
′
⋆(ρ))

m−1 , (44)

where we have neglected higher order terms in δI ′ and neglected subdominant terms in the
scaling limit (e.g. δI ′/u0 compared to δI ′/Ld−4). Furthermore, using that

I ′′⋆ (ρ)
n

4πLd−4
F ′d

�

L2 I ′⋆(ρ)

4π

�

= 1 , (45)

we obtain δI ′(ρ) =
∑

m≥2 m am(I ′⋆(ρ))
m−1 I ′′⋆ (ρ), which implies

δI(ρ) =
∑

m≥2

am(I
′
⋆(ρ))

m . (46)

Finally, using the fact that I ′⋆(ρ) = L−2Gd(Ld−2ρ) with Gd(ρ̃)∝ Ĩ ′⋆(ρ̃) a universal function of
ρ̃ = Ld−2ρ = L2β/νρ, we obtain that

Ld I(ρ) = Ĩ⋆(ρ̃) +
∑

m≥2

am L−(2m−d) Gm
d (ρ̃) , (47)

from which we recover Eq. (40) with δ Ĩm(ρ̃) = Gm
d (ρ̃) and ωm = 2m− d, which are indeed

the correct critical exponents for the irrelevant perturbation to the Wilson-Fisher fixed point
in large n [34,48]. The large field behavior of Gd(ρ̃) is proportional to ρ̃2/(d−2), see Eq. (29),
which implies that

δ Ĩm(ρ̃)∝ ρ̃(d+ωm)ν/2β , (48)
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in agreement with Eq. (41).
To finish this discussion, we can comment on the basin of attraction of this Generalized

CLT. Focusing on the Ising universality class, we expect that a huge manifold in theory space
of co-dimension 1 should be attracted to this universal distribution. In particular, assume that
we know one model (say a φ̂4 theory) that can be fine-tuned to criticality. Then we expect
that we can smoothly modify the initial distribution while still being critical as long as one
parameter is fine-tuned. While it is surely possible to modify the initial Boltzmann weight in
such a way that the critical point disappears (say, by making the transition first order), we
expect the basin of attraction to occupy a large part of the relevant domain of theory space.

For the three-dimensional Ising universality class and provided there is a unique fixed point
associated with its critical behavior –which is commonly accepted– the parameter space at the
phase transition, which is of codimension one in the full parameter space, is divided into two
parts: the space where the transition is second order (II) and the space where it is first order
(I). In I, the correlation length is finite at the transition and the system is therefore weakly
correlated: the CLT applies under the standard form. In II, the RG flow is attracted towards the
Wilson-Fisher FP and the rate function is nontrivial as well as its finite size corrections, Eq. (40).
Thus, the basin of attraction of the GCLT is huge and corresponds to all models displaying a
continuous phase transition belonging to the Ising universality class. The exception to the rule
above is the border between I and II, which is of codimension 2 in the full parameter space.
It is associated with multicritical behavior. Generically, on this multicritical hypersurface, the
long-distance behavior is tricritical which is driven by the Gaussian fixed point in d = 3. This
hypersurface has itself a boundary which is therefore of codimension three in the full parameter
space where the behavior is quadricritical, also driven by the Gaussian fixed point in d = 3.
The process never stops and there are infinitely many multicritical behaviors associated with
attractive hypersurfaces of higher and higher codimensions. Notice that in d = 2 and for the
Ising model, all multicritical behaviors are associated with nontrivial fixed points that are all
different and thus must show a nontrivial PDF.

5 Discussion and conclusion

We have shown that in critical systems at equilibrium, rare events are described by a large
deviation principle, having both a universal and non-universal regime. This is in contrast with
weakly dependent or independent variables, for which rare events are described by a non-
universal rate function. The universal regime is described by Eq. (1), with exponentψ= nδ−1

2 ,
as explicitly shown in a variety of models at a second-order phase transition. The transition
to the non-universal regime is described by finite-size correction to scaling, and character-
ized by the universal critical exponents corresponding to irrelevant perturbations of the fixed
point describing the transition. This is the equivalent of Cramér’s series for strongly correlated
variables (at least when described by a Wilson-Fisher-like fixed point).

An important question concerns the generality of the results presented here. It has been
argued in [8] that Eq. (1) with exponent ψ = δ−1

2 (for one-component degree of freedom)
also holds generically for out-of-equilibrium systems presenting anomalous diffusion. While
the general argument presented in [8] is flawed, see Appendix B, it is also possible to find
counter-examples where ψ ̸= δ−1

2 . One such example is the PDF of the fluctuation height H
at time t of the KPZ universality class. For typical fluctuations, H ∼ t1/3 and the PDF takes the
form

Pβ(H, t)≃ t−1/3 fβ(Ht−1/3) , (49)

where β = 1 (β = 2) corresponds to the flat (droplet) initial condition and fβ(z) is the Tracy-
Widom distribution, see [2] and its supplementary materials for details. For large deviations,
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Figure 4: Rate function obtained from Monte Carlo simulations for the 3d Ising with
L = 64 at Tc , but with free boundary conditions. Note that we have subtracted
the same leading contribution as̃δ+1 that we found for periodic boundary conditions
(shown in Fig. 3). The dashed line corresponds to a quadratic behavior at small
magnetization, while the dotted-dashed line corresponds to a surface correction term.

Ht−1/3≫ 1, the Tracy-Widom distribution takes the asymptotic form

fβ(z)∝ z(2−3β)/4e−
2β
3 z3/2

, (50)

from which we read δ = 1/2 and ψ= 2−3β
4 . While for β = 1, we indeed have ψ= −1

4 =
δ−1

2 ,
this is not the case for β = 2 where ψ = −1. Therefore, while there is indeed a power-law
prefactor in front of the universal compressed exponential term, the two powers need not be
generically related to each other.

Coming back to critical systems at equilibrium, it is possible that the power-law prefactor
may become difficult to observe if corrections to the leading behavior are stronger than the
prefactor itself. To illustrate this, we present two examples.

If the system is slightly out of criticality, with t = (T − Tc)/Tc ̸= 0 a relevant perturbation
with negative eigenvalue −1/ν, Eq. (39) is modified by an additional term (assuming am = 0
for simplicity)

Ld I(s)≈ Ĩ⋆(sLβ/ν) + at L1/νδ Ĩν(sLβ/ν) . (51)

Here a is a non-universal amplitude that can be fixed by trading at with ξ∞∝ t−ν, a diverging
length scale of the infinite system, corresponding for instance to the correlation length in the
disordered phase. Then at L1/ν→ (L/ξ∞)1/ν and I(s)written in terms of ζ= L/ξ∞ and sLβ/ν

is universal. In the scaling regime, t → 0 and L→∞ (implying that irrelevant perturbations
disappear) keeping ζ constant, the shape of the rate function is modified by δ Ĩν, which behaves
as (sLβ/ν)(d+1/ν)ν/β for L−β/ν ≪ s ≪ 1. It can therefore hide the powerlaw prefactor of the
PDF if ζ is large enough.

Another possibility is a critical system with free boundary conditions, where the leading
bulk term in the PDF, Ldsδ+1, might be corrected by subdominant but scaling surface term
∝ Ld−1s ys . From the condition that this term obeys scaling, we find ys = (δ + 1) d−1

d . This
would modify the leading behavior of Eq. (8) in terms of the scaling variable s̃ = sLβ/ν to

PL, f (ŝ = s)∝ e−as̃δ+1−bs̃(δ+1)(d−1)/d+··· . (52)

It is thus clear that in the region of rare events, the surface term would be far more important
than a power law prefactor (which might nevertheless be there). We expect such a surface
term to be present in a critical system with free boundary conditions. Figure 4 shows the
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dimensionless rate function of the 3d Ising model with free boundary conditions, obtained
from Monte Carlo simulations at L = 64. Note that the same leading behavior as̃δ+1 as that
in Fig. 3 has been subtracted, since we do not expect the bulk coefficient to be modified. We
see that after a region where the rate function appears quadratic, it crosses over into a region
that could be compatible with a surface term. In comparison with Fig. 3, we see that there
is little chance of seeing a logarithmic behavior unless the surface term as well is removed,
which is quite a formidable task. We do not doubt that analogous relevant examples could
also be found out of equilibrium.
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A Extraction of the ψ exponent numerically

In Sections 3.3 and 3.4, we show that the correction to the leading order behavior of the rate
function is consistent with a logarithmic behavior, corresponding to a power-law prefactor in
the PDF.

Determining the critical exponentψ remains challenging in numerical analyses of the rate
function, whether obtained from solving the partial differential equation (FRG) or through
simulations at finite sizes (MC). We discuss in this appendix these aspects in more detail.

A.1 Extracting ψ in FRG

First of all consider the solution of Eq. (38). Here, we used the exponential regulator

Rk(q) = αk2e−q2/k2
,

with α ≃ 4.65 corresponding approximately to the optimized (point of least dependence of
the critical exponent on the regulator) value for all cases of n, the number of components
of spin, that we consider in the present work. The numerical resolution of this problem was
considered in detail in [11], from which we summarize the main steps. If one is interested in
the universal scaling function Ld I , one can start the flow from a fixed point initial condition,
at some initial scale k∗, corresponding to the solution of a dimensionless version of Eq. (38)
in the thermodynamic limit. For a large L ≫ k−1

∗ , the flow is initially virtually vanishing.
However as k decreases, the flow starts differing from the thermodynamic-limit flow, and the
flow essentially terminates for kL∝O(1).
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FRG for n = 1 for various maximum ranges of the field ρM , keeping the grid mesh
∆ρ = 0.00075 fixed. The black line shows the expected −δ−1

2 log ρ̃. Increasing the
ρM allows for seeing the log behavior for larger and larger fields.

The ρ dependence of the rate function is discretized on a grid, with mesh ∆ρ and max-
imum range ρM . We use grid parameters that are sufficient to describe the initial condition
correctly. We run the flow in terms of dimensionless quantities (using for instance the variable
ρk−2β/ν, with β/ν= (d−2)/2 at LPA, down to an RG scale kd (typically 4L−1–10L−1), before
switching to dimensionful quantities. Note that this means that the maximum value of ρ has
been shrunk by a factor of typically L−2β/ν, but ensures that the grid is fine enough to capture
the behavior of the rate function for field values of order L−2β/ν. However, this also implies
that to capture correctly the tail of the rate function, we need to start with a big enough range,
and increasing it allows for recovering larger and larger sections of the tail.

From Eq. (1), we expect the rate function to behave as Ĩ(s̃) ≈ as̃δ+1 −ψ ln(s̃) for large
enough s̃ = Lβ/νs = Lβ/ν

p

2ρ. We see that recovering the logarithmic tail on top of the
leading power-law behavior requires determining the rate function to high precision. Typically
the relative magnitude of the logarithmic term compared to the leading power-law behavior
is 10−5 for s̃ ≈ 10.

Extending the range where the logarithmic behavior is seen can be achieved by increasing
the size of the grid in ρ, i.e. increasing ρM . It is illustrated in Fig. 5. Furthermore, for a given
ρM , the range can be extended by refining the mesh∆ρ as seen in Fig. 6. The results presented
here are for n = 1 but are representative. We also found that discretizing the derivatives
following the recommendation of [49] also improves the large field behavior.

Assuming that the PDF behaves as Eq. (1) at large enough fields, writing (recall that
ρ = s2/2)

PL(s)∝ e−Ld I(s)

∝ e− Ĩ(s̃) ,
(A.1)

the exponent ψ can be recovered in principle from the numerical data by computing the esti-
mator

e(s̃) =
s̃δ+2

(δ+ 1) ln(s̃)− 1
d
ds̃

�

Ĩ(s̃)
s̃δ+1

)

�

. (A.2)

Indeed, e(s̃)→ψ for s̃ large enough if Eq. (1) is obeyed. The behavior of e(s̃) does not depend
on ρM as long as it is large enough, but it depends considerably on the mesh of the grid ∆ρ,
as seen in Fig. 7.
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Figure 6: Subleading behavior of the rate function as a function of ρ̃ = L2β/νρ from
FRG for n = 1 for various grid mesh of the field ∆ρ, keeping the maximum range
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Figure 7: Estimator e(s̃), Eq. (A.2), as a function of s̃ for FRG at LPA and n = 1.
Same data as in Fig. 6. Depending on the mesh size∆ρ, the estimator can overshoot
the predicted plateau at ψ = δ−1

2 (equal to 2 at LPA, shown as red dashed line).
Decreasing ∆ρ improves the behavior of e(s̃).

A.2 Extracting ψ in MC

When we consider how well the exponent ψ is captured from the Monte Carlo data, the chal-
lenges are different than in FRG determination. Here we are limited by the maximal L that
can be reasonably studied with high enough statistics. The range in which the logarithmic

correction to the rate function can be observed in principle is for L−
β
ν ≪ s ≪ 1. We see that

even with our largest lattice L = 128 in 3d, L−
β
ν ≈ 0.08, it is quite hard to achieve this regime.

We show in the inset of Fig. 3 that the leading power-law behavior aLsδ+1 is sensible
to finite-size corrections as aL has an L-dependence. We have extrapolated its value in the
thermodynamic limit a = limL→∞ aL to subtract asδ+1 from the rate function. Note that in
this range of field, the leading behavior is of the order of 200 while the correction is of order 1.
Fig. 8 shows e(s̃), defined in Eq. (A.2), as determined from the Monte Carlo data. We observe
that while there is a minimum, it is still far from ψ = δ−1

2 due to finite size effects, even for
L = 128.
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Figure 8: Estimator e(s̃), Eq. (A.2), as a function of s̃ from MC data for
L = 16,32, 64,128 from light to dark blue. The dashed line corresponds toψ= δ−1

2 .
Finite-size corrections are still rather strong even for L = 128, while the maximum
range accessible in s̃ is also rather limited and might not be yet in the deep universal
rare event regime.

B Flaw in the argument of Ref. [8]

We summarize the argument of Ref. [8] to relate ψ and δ and show why it is flawed. We also
provide an explicit toy model to illustrate our point.

Ref. [8] argues the generating function

G(λ, t) =

∫

d xeλx p(x , t) , (B.1)

for scaling systems, p(x , t) = t−ν f (x t−ν), must be well defined for t →∞ and λ→ 0, which
implies that if p(z) is a stretched exponential with power-law zδ+1, then it must be of the form
zψe−azδ+1

with ψ fixed to be equal to δ−1
2 . (They only consider one-component degrees of

freedom, i.e. n= 1.)
The argument goes as follows. Using the change of variable z = x t−ν,

G(λ, t) =

∫

dzeλtνz p(z) , (B.2)

and performing a saddle-point approximation, they find that if p(z) ∼ zψe−azδ+1
for a priori

arbitrary ψ, then

log G(λ, t)≃ λtνz̄ − az̄δ+1 +
2ψ+ 1−δ

2
log z̄ + · · · , (B.3)

where z̄ satisfy the saddle-point condition z̄ ∝ (λtν)1/δ. Note that
λtνz̄ ∼ z̄δ+1 ∼ (λtν)(δ+1)/δ.

They then argue that “The term∝ log z̄ is the only one which actually allows us to split
the λ and t dependencies into the sum of two separate terms. Therefore its presence would
introduce a logarithmic singular dependence on λ in the whole t-independent part of log G,
implying a divergence for λ = 0. For such reason, this dependence should be dropped by the
above choice of [ψ= δ−1

2 ].” The flaw in this argument is that the presence of this logarithmic
term does not imply a logarithmic divergence at λ = 0. Indeed, the saddle-point approxima-
tion assumes that the product λtν is large. Thus one cannot simply take the limit λ → 0 in
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Eq. (B.3) without carefully taking the limit t → ∞ (note that the real object of interest is
1
t log G(λ, t) which is well defined in the limit t →∞ at fixed λ provided δ = ν

1−ν).
Thus, while it is true that in the limit t →∞, 1

t log G(λ, t)→ λ1/ν can have non-analytic
derivatives at λ = 0, it is not true that the exponent ψ must be equal to δ−1

2 to prevent a
logarithmic (non-physical) divergence at λ= 0.

This is easily exemplified with the following toy model. Choose p(z) = e−z4
/2Γ (5/4), with

Γ (z) the Gamma function, corresponding to δ = 3, ν = 3/4 and ψ = 0. The generating
function can be computed exactly in terms of hypergeometric functions,

G(λ, t) = 0F2

�

;
1
2

,
3
4

;
t3λ4

256

�

+
λ2 t3/2Γ
�3

4

�

0F2

�

; 5
4 , 3

2 ; t3λ4

256

�

8 Γ
�5

4

� . (B.4)

Note that G(0, t) = 1 for all t by normalization of p(z), while

lim
t→∞

1
t

log G(λ, t) =
3λ4/3

28/3
, (B.5)

where the limit is taken at fixed λ. In the limit t3/4λ≫ 1, we get

log G(λ, t)≃
3

28/3
λ4/3 t − log
�

λ1/3 t1/4
�

+ · · · . (B.6)

The leading term can be rewritten as (λt3/4)4/3 = (λtν)(δ+1)/δ while the second reads

− log((λt3/4)1/3 =
2ψ+ 1−δ

2
log((λtν)1/δ) , (B.7)

in agreement with saddle-point calculation Eq. (B.3).
Therefore, the logarithmic term in Eq. (B.3) needs not to vanish in this regime (which

would imply ψ= δ−1
2 , in contradiction with our choice of p(z)) for the generating function to

be well defined at λ= 0, as asserted in Ref. [8].
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