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Abstract

Universality is a crucial concept in modern physics, allowing us to capture the essential
features of a system’s behavior using a small set of parameters. In this work, we un-
veil universal spin relaxation dynamics in anisotropic random Heisenberg models with
infinite-range interactions at high temperatures. Starting from a polarized state, the
total magnetization can relax monotonically or decay with long-lived oscillations, de-
termined by the sign of a universal single function A = −ξ2

1 + ξ
2
2 − 4ξ2ξ3 + ξ2

3. Here
(ξ1,ξ3,ξ3) characterizes the anisotropy of the Heisenberg interaction. Furthermore, the
oscillation shows up only for A > 0, with frequency Ω∝

p
A. This result is derived from

the Kadanoff-Baym equation under the melon diagram approximation, which is consis-
tent with numerical solutions. Furthermore, we verify our theory and approximation
using exact diagonalization, albeit for a small system size of N = 8. Our study sheds
light on the universal aspect of quantum many-body dynamics beyond low energy limit.
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1 Introduction

A complete description of realistic many-body systems always contains a large number of pa-
rameters. For example, typical solid-state material contains complicated interactions between
electrons, phonons, nuclei, and impurities. However, properties that are of physical interest
can usually be captured by simple toy models with few parameters. This is a remarkable con-
sequence of universality. The universality states that microscopically different systems can
share the same physics at large scales. It usually emerges in long wave length or low-energy
limit. For example, phase transitions of many-body systems can be classified into universal-
ity classes determined only by the symmetry and dimension of systems [1, 2]. Low-energy
scattering between atoms can be well described by a single parameter, the scattering length
as, despite details of underlying microscopic interaction potentials [3]. Aiming at deepening
our understanding of realistic systems, discovering new universalities becomes an important
subject in modern many-body physics.

Recent years have witnessed a great breakthrough in understanding real time dynamics
or relaxation in quantum many-body systems both theoretically [4–30] and experimentally
[31–37]. In the previous studies on relaxation, most universal dynamical behaviors emerge
in the low temperature or long time scale. That reflects the microscopic details of models
are smoothed out in the low energy scale. However at high temperature and short time, it is
common believed that most microscopic details are involved in the evolution. Such that the
evolution is highly model dependent and hard to observe a universal dynamics. In this work,
we unveil that a universal aspect of relaxation dynamics which shows up in an anisotropic
Heisenberg model with all-to-all interactions even at high temperatures and short time. The
Hamiltonian reads:

Ĥ =
∑

1≤i< j≤N

Ji j(ξ1Ŝ x
i Ŝ x

j + ξ2Ŝ y
i Ŝ y

j + ξ3Ŝz
i Ŝz

j )− h(t)
∑

1≤i≤N

Ŝ x
i . (1)

This model with different anisotropy parameters (ξ1,ξ2,ξ3) has been realized in cold
molecules [38,39], NV centers [40,41], trapped fermions [42], Rydberg atoms [43,44], high
spin atoms [45], and solid-state NMR systems [46, 47]. A schematic figure is presented in
Fig. 1 (a). Because of random locations or complicated spatial wavefunctions of spin carriers,
Ji j is usually modeled as independent random Gaussian variables with expectation Ji j = J̄/N

and variance δJ2
i j = 4J2/N .
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Figure 1: (a). Schematics of the random spin model with random (anisotropic)
Heisenberg interactions Ji j in the magnetic field h. (b). Different dynamical behav-
iors of the system for different anisotropy parameters (1,ξ2,ξ3).The boundary line is
determined by A= −ξ2

1 +ξ
2
2 − 4ξ2ξ3 +ξ2

3 = 0, which is symmetric under the reflec-
tion along ξ2 = ±ξ3. OR and NOR denote the oscillating regime and non-oscillating
relaxation regime respectively, distinguished by features of the magnetization relax-
ation process.

We focus on the following protocol: The system is prepared at high temperatures with a
polarization field h(t < 0) = h, which induces a magnetization in the x direction. We then
monitor the relaxation of the total magnetization after turning off h suddenly at t = 0. We find
the total magnetization decays either monotonically or with long-lived oscillations, depending
on A= −ξ2

1 + ξ
2
2 − 4ξ2ξ3 + ξ2

3. The oscillation only appears for A> 0, in which case the fre-
quency satisfies Ω∝ J

p
A. Importantly, this phenomenon should be understood as a universal

property of the relaxation dynamics since the criterion only contains a specific combination
of anisotropic parameters, instead of full details of the microscopic model (1). The result is
derived from the Kadanoff-Baym equation under the melon diagram approximation, which is
consistent with numerical solutions. We further verify our theory and approximation using
exact diagonalization, albeit for a small system size of N = 8. Our work also provides a novel
theoretical framework to analyze the dynamics of randomly interacting quantum spin models.

2 Kadanoff-Baym equation

We are interested in the relaxation dynamics of total magnetization. Our theoretical analy-
sis is based on the path-integral approach on the Keldysh contour, as elaborated in [48, 49].
To begin with, we observe that the random spin model can be written in terms of Abrikosov
fermion operators ĉi,s with spins s =↑,↓ in the single occupation subspace. Explicitly, we have
Ŝαi =
∑

ss′
1
2 ĉ†

i,s(σ
α)ss′ ĉi,s′ , where α = x , y, z and σα denote the corresponding Pauli matrices.

Since the Hamiltonian (1) exhibits π rotation symmetries along the x axis, the total mag-
netization can only be along the x axis. We thus introduce m(t) ≡ 〈Ŝ x(t)〉. Since the total
magnetization is always along the x direction, the magnetization can be computed by real-time
Green’s functions of fermion operators:

m(t) = −iG>↑↓(t, t) = −iG<↑↓(t, t) , (2)

3
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where we have defined

G>ss′(t1, t2)≡ −i
∑

l

¬

cl,s(t1)c
†
l,s′(t2)
¶

/N ,

G<ss′(t1, t2)≡ i
∑

l

¬

c†
l,s′(t2)cl,s(t1)
¶

/N .
(3)

The relaxation dynamics of m(t) can then be computed once we obtain the Green’s func-
tions G≷(t1, t2). It is known that the evolution of G≷(t1, t2) is governed by the Kadanoff-Baym
equation, which can be derived by the Schwinger-Dyson equation on the Schwinger-Keldysh
contour.

i∂t1
G≷ +

1
2

heff(t1)σ
x G≷ = ΣR ◦ G≷ +Σ≷ ◦ GA ,

−i∂t2
G≷ +

1
2

heff(t2)G
≷σx = GR ◦Σ≷ + G≷ ◦ΣA .

(4)

Here we have introduced self-energies Σ≷ and ΣR/A. We define the operation ◦ for functions
with two time variables as f ◦ g ≡

∫

d t3 f (t1, t3)g(t3, t2). The retarded and advanced Green’s
functions GR/A are related to G≷ by GR/A = ±Θ (±t12) (G> − G<), where Θ(t) is the Heaviside
step function. Similar relations work for self-energies ΣR/A. heff(t) = h(t) + J̄m(t) is the
effective magnetic field, which includes the mean-field contribution from J̄ . For t < 0, the
system is prepared in thermal equilibrium. Consequently, we have G≷(t1, t2) = G≷

β
(t12) for

t1, t2 < 0. For either t1 > 0 or t2 > 0, the Green’s functions evolve due to the quantum quench
and should be obtained by solving Eq. (4) after the self-energy is specified.

The approximation comes in when we try to relate the self-energies to Green’s functions.
After transforming into the Abrikosov fermion representation, the random Heisenberg inter-
action takes the form of random fermion scatterings. Interestingly, such random interaction
terms is a close analog of the celebrated complex Sachdev-Ye-Kitaev (SYK) model [50–56]. Mo-
tivated by this observation, here we make the melon diagram approximation for the fermion
self-energy. A formal argument to control errors is to generalize the Hamiltonian (1) into
large-M spins, as in the seminal work by Sachdev and Ye [57]. We promote the original model
by adding an additional M indices as

Ĥ =
1
p

M

∑

i< j,αγ

Ji jξ
α T̂α,γ

i T̂α,γ
j − h
∑

i

Ŝ x
i , (5)

where we have introduced

T̂α,γ
i =

1
2

∑

si ,mi

ĉ†
i,s1,m1

(σα)s1s2
(Tγ)m1m2

ĉi,s2,m2
, with γ ∈ {1, 2, . . . , M2 − 1} ,

labeling the generators of the SU(M) group. It is known that they satisfy the completeness
relation
∑

γ Tγm1m2
Tγm3m4

= δm1m4
δm2m3

− 1
Mδm1m2

δm3m4
. The external field h only couples

to the SU(2) part. The constrain is also promoted as
∑

s,m ĉ†
i,s,m ĉi,s,m = M . Firstly, we take

the imaginary time approach in the large-N and large-M limits. The constrain is satisfied
automatically due to the particle-hole symmetry, and the self-energy can be obtained by the
melon diagrams as in [57]. Finally, this leads to

Σ≷(t1, t2) =
J2

4

∑

α,α′
ξαξα′σ

α′G≷(t1, t2)σ
αTr
�

σα
′
G≷(t1, t2)σ

αG≶(t2, t1)
�

. (6)

Here, we omit spin indices for conciseness. We have introduced the anisotropy vector
ξ = (ξ1,ξ2,ξ3). The melon diagram approximation may fail in the low-temperature limit
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Figure 2: The numerical result for the evolution of the magnetization m(t) by numeri-
cally solving: (a) the Kadanoff-Baym equation (4) and (b) exact diagonalization with
system size N = 8. Initially, the system is in thermal equilibrium with βJ = 0.04,
J̄ = 0 and h/J = 10. We take ξ1 = 1 and consider four different anisotropy pa-
rameters (ξ2,ξ3) = (0.8,−1.5), (0.8,1.5), (1,−2), and (1,2), which corresponds to
A= 6.69, −2.91, 12, and −4. The results show that the relaxation of m(t) is mono-
tonic/oscillating if A < 0/A > 0. These two numerical results match each other to
good precision despite a small N .

if the system exhibits spin glass orders [58]. In this work, we avoid this problem by focusing
on the high-temperature regime with βJ ≪ 1. Combining Eq. (2), (4), and (6) leads to a
set of closed equations which determines the relaxation of the magnetization. For later con-
venience, we also provide matrix elements of Eq. (6) explicitly after using the symmetry of
Green’s function in Appendix C. Leaving the details in the Appendix. D, we have

Σ≷ = J2

2

�

−ξ2G≷↑↑(t1, t2)3 + AG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)2 AG≷↑↑(t1, t2)2G≷↑↓(t1, t2) + ξ2G≷↑↓(t1, t2)3

AG≷↑↑(t1, t2)2G≷↑↓(t1, t2) + ξ2G≷↑↓(t1, t2)3 −ξ2G≷↑↑(t1, t2)3 + AG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)2

�

, (7)

with A= −ξ2
1 + ξ

2
2 − 4ξ2ξ3 + ξ2

3 and ξ2 ≡ ξ2
1 + ξ

2
2 + ξ

2
3.

Typical numerical results for m(t) obtained by two methods are shown in Fig. 2. Here we
consider examples with ξ1 = 1 and (ξ2,ξ3) = (0.8,−1.5), (0.8, 1.5), (1,−2), and (1,2). We set
the initial temperature βJ = 0.04, the polarization field h/J = 10 and J̄ = 0. In the long-time
limit, the system exhibits the quantum thermalization to the thermal ensemble with h= 0. In
this case, π rotations along y or z also become the symmetry of the Hamiltonian, which makes
m(∞) = 0. According to the relaxation process, different anisotropy parameters can be di-
vided into two groups, under which m(t) relaxes monotonically (for (ξ2,ξ3) = (0.8,1.5) and
(1, 2)) or with long-lived oscillations (for (ξ2,ξ3) = (0.8,−1.5) and (1,−2)). Furthermore,
we numerically checked that the presence of the oscillation is stable against deformations of
parameters. As a result, we propose the Hamiltonian (1) with different (ξ1,ξ2,ξ3) can be
separated in parameter regimes with oscillating relaxation (OR) versus non-oscillating relax-
ation (NOR), as shown in Fig. 1. In Appendix A, we verify that the difference in the dynamical
behavior can not be detected in equilibrium via spin susceptibility.
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3 Oscillation versus monotonic decay

After evolving for a long time, the total magnetization, as well as off-diagonal components of
Green’s functions, becomes very small. Consequently, we can perform a linearized analysis of
the KB equation to reveal the mechanism for the oscillation and determine the criterion for
different dynamical behaviors. A differential equation that governs the long-time evolution of
the magnetization can be derived following a few steps:

Step 1.– The linearized analysis can be largely simplified after the Keldysh rotation. We
introduce the standard Keldysh Green’s function of fermions as GK = G> + G<. The total
magnetization can be expressed as its off-diagonal component:

m(t) = −iGK
↑↓(t, t)/2 . (8)

We can further combine equations in (4) to derive the equation for GK . On the Keldysh contour,
the Schwinger-Dyson equation reads

�

GR GK

0 GA

�−1

=

�

GR
0 0

0 GA
0

�

−
�

ΣR ΣK

0 ΣA

�

. (9)

Here, we have ΣK = Σ> +Σ<. Taking the Keldysh component of Eq. 9, we find

GK = GR ◦ΣK ◦ GA . (10)

Step 2.– We linearize Eq. (10) around the equilibrium solution in the long-time limit after
the quantum thermalization. We expand Ga(t1, t2) = Ga,β f (t12)+δGa(t1, t2), where Ga,β f (t)
is the equilibrium Green’s function on the final state. Leaving the details in the appendix. D,
the off-diagonal element of (10) reads

δGK
↑↓ = G

R,β f

↑↑ ◦δΣ
K
↑↓ ◦ G

A,β f

↑↑ ,

δΣK
↑↓ =

1
4

J2A
�

(G
>,β f

↑↑ )
2 + (G

<,β f

↑↑ )
2
�

δGK
↑↓ ,

(11)

where we have used the fact that the equilibrium state contains no magnetization, and is

approximately at infinite temperature. The second fact leads to ΣK ,β f ≈ 0. Since G
K ,β f

↑↓ = 0,
Eq. (8) is equivalent to m(t) = −iδGK

↑↓(t, t)/2.

Step 3.– To proceed, we need to obtain approximations for G
a,β f

↑↑ . In thermal equilibrium
with h= 0, the self-energies (6) can be simplified as

Σ
≷,β f

ss′ (t) = −
J2ξ2

2
G
≷,β f
ss (t)3δss′ , (12)

where we have used G
>,β f
ss (t) = −G

<,β f
ss (−t) due to the particle-hole symmetry. Eq. (12)

then matches the self-energy of the Majorana SYK4 model with effective coupling constant
J |ξ|/
p

2. It is known that at high temperatures βJ ≪ 1, the SYK model can be described by
weakly interacting quasi-particles [59]. Taking the Lorentzian approximation, we have

G
R/A,β f

↑↑ (t)≈ ∓iΘ(±t)e−Γ |t|/2 , G
≷,β f

↑↑ (t)≈ ∓ie−Γ |t|/2/2 , (13)

with quasi-particle decay rate Γ ∝ J .
Step 4.– Using the high-temperature solution, we get

δGK
↑↓(t1, t4)=

∫

dt2 dt3 GR
↑↑(t1, t2)
�

−
1
8

J2Ae−|t2−t3|ΓδGK
↑↓(t2, t3)
�

GA
↓↓(t3, t4)

= −
1
8

J2A

∫

dt2 dt3e−
Γ
2 (t1−t2)Θ(t1 − t2)e

−|t2−t3|ΓδGK
↑↓(t2, t3)e

Γ
2 (t3−t4)Θ(−t3 + t4) .

(14)

6
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KB Numerics

ED Numerics

Theory
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Ω
/J

Figure 3: A comparison between the theoretical prediction ΩTh/J = c0
p

A and nu-
merical simulations. Here we choose c0 = 1. In each case, we randomly choose the
anisotropic parameter (ξ1,ξ2,ξ3). Initially, the system is also in thermal equilibrium
with βJ = 0.04, J̄ = 0, and h/J = 10. The numerical data are obtained by fitting
numerics based on the KB equation and ED method. The error bars correspond to
standard deviations when concerning the different fitting regions.

Multiply e
Γ
2 t1 and take ∂t1

on the Eq. (14), which gives

∂t1

�

e
Γ
2 t1δGK

↑↓(t1, t4)
�

= −
1
8

J2A

∫

dt2 dt3e
Γ
2 t2δ(t1 − t2)e

−|t2−t3|ΓδGK
↑↓(t2, t3)e

Γ
2 (t3−t4)Θ(−t3 + t4)

= −
1
8

J2A

∫

dt3e
Γ
2 t1 e−|t1−t3|ΓδGK

↑↓(t1, t3)e
Γ
2 (t3−t4)Θ(−t3 + t4) .

(15)

Then multiply e
Γ
2 t4 and again take ∂t4

on both sides of Eq. (15), which leads to a differential
equation

�

∂t1
+
Γ

2

��

∂t2
+
Γ

2

�

δGK
↑↓ = −

A
8

J2e−Γ |t12|δGK
↑↓ . (16)

Eq. (16) is the starting point for analyzing the relaxation dynamics. Since it is invariant
under time translations, we separate out the center-of-mass time dependence by introducing
δGK
↑↓(t1, t2) = Re e−λ

t1+t2
2 ϕ(t12). The relaxation is oscillatory only if λ is complex. Interest-

ingly, ϕ(t12) then satisfies the 1D Schrödinger equation

−
(Γ −λ)2

4
ϕ(t12) = −∂ 2

t12
ϕ(t) +

A
8

J2e−Γ |t12|ϕ(t12) , (17)

where − (Γ−λ)
2

4 plays the role of the energy E and A
8 J2e−Γ |t12| plays the role of potential V .

Eq. (17) suggests the boundary line between the oscillating regime and the non-oscillating
regime is at A= 0: For A< 0, the potential energy is negative. It is known that in 1D any at-
tractive potential exhibits at least one bound state. Denoting the energy of the ground state as
−|E0|, we can solve λ= Γ −2

p

|E0|, which is real. Consequently, we expect the magnetization
relaxes monotonically. For A > 0, the potential is repulsive. The eigenstates of the (17) are
scattering modes with continuous positive energy E. We find λ= Γ ±2i

p
E, which is complex.

This leads to oscillations in the relaxation process.
To further determine the typical oscillation frequency Ω, we need to determine the typical

energy E that contributes to the quench dynamics. According to Eq. (8), the magnetiza-
tion probes the decay of the wave function at t12 = 0, where the potential energy is ∼ AJ2.
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For E ≪ AJ2, the eigenstate has exponentially small weight near t12 = 0. As a result, the
corresponding contribution to m(t) can be neglected. We can approximate

m(t)∼
∫

AJ2

dE c(E)e−Γ t−2i
p

Et . (18)

Here c(E) is some smooth function determined by the initial condition. We then expect
Ω ≈ c0

p
AJ , with some O(1) constant c0 which does not depend on parameters in the Hamil-

tonian (1) and should be extracted using numerics. Interestingly, the result predicts the oscil-
lation period T = 2π/Ω diverges as we approach A = 0, which can be viewed as an analog
of the divergence of the correlation length in traditional phase transition described by order
parameters.

We comment that our results unveil the universality of relaxation dynamics in random spin
models. Although the microscopic model in Eq. (1) contains several parameters, the criterion
for the different relaxation behaviors, as well as the oscillation frequency, only depends on a
specific combination A. This is a direct analog of universality in the scattering theory, where
for a complicated potential, the low-energy scattering problem can only depend on a specific
combination of microscopic parameters, which is the scattering length.

We further compare our prediction of the oscillation frequency Ω ≈ c0
p

AJ to numerical
results. We obtain Ω in numerics by fitting m(t) = m0 cos(Ωt + θ )e−Γ t +moffset. Here m0 is
the amplitude, θ is the phase, Γ is the quasi-particle decay rate, and moffset is the offset which
is significant in the finite N ED numerics. The fitting particularly focuses on the matching in
the small m(t) region. Hence the detailed fitting region and the error bars caused by such
ambiguity are left to the Appendix. E. The results are shown in Fig. 3. We randomly choose
the anisotropic parameters, and the first 15 cases correspond to A > 0, and the last 4 cases
to A < 0 (see Appendix. E). Among the A > 0 cases, the mean ratio between the numerical

data and the polynomial A reads ΩKB/(J
p

A) = 0.995± 0.018 and ΩED/(J
p

A) = 0.94± 0.04.
Therefore, we set c0 = 1 for theoretical predictions in Fig. 3. Although the error bars for ED
numerics are significantly larger than KB numerics since the calculation is based on the finite
N = 8 system, we find the theoretical prediction of the oscillation frequency almost matches
the KB results and the ED results, up to the error bars. From Fig. 3, most notably, the OR and
NOR relaxation are sharply distinguished by the A > 0 or A < 0 criterion, which is perfectly
aligned with our theoretical analysis.

4 Discussions

In this work, we show that the random Heisenberg model with all-to-all interactions exhibits
universal relaxation dynamics governed by a single parameter A = −ξ2

1 + ξ
2
2 − 4ξ2ξ3 + ξ2

3.
Unlike traditional examples where the universality emerges in the low-energy limit, here the
universal physics appears at high temperatures. For A< 0, the magnetization decays monoton-
ically after we turn off the polarization field. For A> 0, long-lived oscillation appears during
the relaxation process, with a frequency Ω∝ J

p
A. Our theoretical analysis is based on the

path-integral approach along the Keldysh contour, using the KB equation. This includes both
perturbative analysis and numerical solutions, further validated by simulations using ED.

We remark that quantum coherence is essential for the existence of the oscillating relax-
ation regime. As an example, if we spoil the coherence by considering time-dependent random
interactions instead of static interactions, the magnetization is expected to decay monotoni-
cally: After replacing Ji j with Brownian variables Ji j(t), Eq. (16) is replaced by

(∂t + Γ )δGK
↑↓(t, t) = −

AJ
8
δGK
↑↓(t, t) , (19)
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as derived in the Appendix B. This results in m(t) ∼ e−(Γ+AJ/8)t with a simple exponential
decay, on contrary to the existence of different dynamical behaviors in the static case.

We also point out that amazingly our criteria A> 0 for the oscillation regime matches the
criteria proposed in [56] for the presence of the instability towards the formation of wormholes
with ξ1 = ξ2 = 1. However, the analysis in [56] focuses on the low-temperature regime,
while in this work we focus on high temperatures. This makes it difficult to establish a direct
relationship between the two theoretical analyses. It would be interesting to explore whether
there is some form of duality between the high-temperature and low-temperature limits. Given
that the wormhole phase is non-chaotic, it would also be intriguing to study the out-of-time-
order correlator or the operator size distribution in regimes with different dynamical behaviors.
Experimentally, our results can be readily verified through quantum quench experiments in
NMR systems.

Note Added. Universal behaviors of auto-correlation function related to the quench dynam-
ics discussed here, including oscillatory versus non-oscillatory behavior, have been related to
Lanczos coefficients computed for determining the Krylov complexity in Ref. [60].

Acknowledgments

We are especially grateful to the invaluable discussions with Hui Zhai, whose advice is indis-
pensable for the whole work. We thank Riqiang Fu, Yuchen Li, Xinhua Peng, Xiao-Liang Qi
and Ren Zhang for their helpful discussions.

Funding information This project is supported by the Shanghai Rising-Star Program under
grant number 24QA2700300, the NSFC under grant 12374477, and the Innovation Program
for Quantum Science and Technology 2024ZD0300101.

A Susceptibility in thermal equilibrium

As we discussed in the main text, we calculate the equilibrium susceptibility. We take a small
external magnetic field in the x direction in the equilibrium thermal state. The finite difference
susceptibility is defined as χ = 〈Ŝx〉h/h, where 〈Ŝx〉h means the thermal average in the external
magnetic field h. First, we find the exact diagonalization and large-N Kadanoff-Baym results
in Fig. 4 agree well with each other. Second, equilibrium susceptibility in Fig. 4 is highly in
contrast with the criterion for the relaxation dynamics A in Fig. 1 (b). There is no appreciable
distinction between A > 0 and A < 0 region correspondingly in the plot of the equilibrium.
Hence, it reveals the significance of our dynamical framework.

B Analysis for Brownian interactions

To check the effect of coherence, we place Ji j in the Hamiltonian Eq. (5) with Brownian vari-

ables Ji j(t), where Ji j(t1)Ji j(t2) = 4J2/Nδ(t1 − t2).The self energy is replaced by

Σ≷(t1, t2) =
1
2

J2δ(t1 − t2)

×
�

−ξ2G≷↑↑(t1, t2)3 + AG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)2 AG≷↑↑(t1, t2)2G≷↑↓(t1, t2) + ξ2G≷↑↓(t1, t2)3

AG≷↑↑(t1, t2)2G≷↑↓(t1, t2) + ξ2G≷↑↓(t1, t2)3 −ξ2G≷↑↑(t1, t2)3 + AG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)2

�

.
(B.1)
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(a) (b)

Figure 4: (a) The susceptibility of the exact diagonalization numerics. We choose
site number N = 7, and random realizations to be 500. (b) The susceptibility of the
large-N numerics. In both cases, to obtain the susceptibility, we choose the equilib-
rium thermal state with temperature T/J = 10.0, and external magnetic field with
h/J = 0.05 in x direction. We take the region of anisotropic parameter ξ2,ξ3 to be
[−5,5], and the discretization step is ∆ξ= 0.5.

Therefore, following the same steps, the linearization of the Schwinger-Dyson equation
GK = GR ◦ΣK ◦ GA leads to

δGK
↑↓(t1, t1) =
�

G
R,β f

↑↑ ◦δΣ
K
↑↓ ◦ G

A,β f

↑↑

�

(t1, t1) ,

δΣK
↑↓(t1, t2) =

1
4

J2Aδ(t1 − t2)
�

G
>,β f

↑↑ (t1, t1)
2 + G

<,β f

↑↑ (t1, t1)
2
�

δGK
↑↓(t1, t1) .

(B.2)

To form close equation groups, we set the time argument of the first equation to be (t1, t1),
and then we study the equal time perturbation of the Green’s function δGK

↑↓(t, t).
The equilibrium Green’s function still has the form of Eq. (13) with Lorentz approximation.

Using such a solution, we get

δGK
↑↓(t1, t1) =

∫

dt2 GR
↑↑(t1, t2)
�

−
1
8

J2Ae−|t2−t2|ΓδGK
↑↓(t2, t2)
�

GA
↓↓(t2, t1)

= −
1
8

J2A

∫

dt2e−
Γ
2 (t1−t2)Θ(t1 − t2)δGK

↑↓(t2, t2)e
Γ
2 (t2−t1)Θ(−t2 + t1)

= −
1
8

J2A

∫

dt2e−Γ (t1−t2)Θ(t1 − t2)δGK
↑↓(t2, t2) .

(B.3)

Multiply eΓ t1 and take ∂t1
on the Eq. (B.3), which gives

∂t1

�

eΓ t1δGK
↑↓(t1, t1)
�

= −
1
8

J2A

∫

dt2 eΓ t2δ(t1 − t2)δGK
↑↓(t2, t2) . (B.4)

Finally leads to

(∂t + Γ )δGK
↑↓(t, t) = −

AJ
8
δGK
↑↓(t, t) . (B.5)

Solving this differential equation leads to δGK
↑↓(t, t) ∼ m(t) ∼ e−(Γ+AJ/8)t with a simple expo-

nential decay without any oscillation for arbitrary anisotropy parameters.
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C Symmetry on Green’s function

The greater Green’s function in Eq. (3) can be explicitly expressed in 2× 2 matrix form.

G>s1s2
(t1, t2) = −i〈ĉs1

(t1)ĉ
†
s2
(t2)〉=
�

G>↑↑(t1, t2) G>↑↓(t1, t2)
G>↓↑(t1, t2) G>↓↓(t1, t2)

�

s1s2

. (C.1)

There are two symmetries crucial for the later simplification. The first can be regarded as
π rotation of axis x .

ĉs1
→
∑

s′
(iσx)s1s′ ĉs′ ,

ĉ†
s1
→
∑

s′
ĉ†
s′ (−iσx)s′s1

.
(C.2)

With symmetry in Eq. (C.2),
�

Ŝ x , Ŝ y , Ŝz
	

is mapped to
�

Ŝ x ,−Ŝ y ,−Ŝz
	

, and therefore keeps
Eq. (1) invariant. As a consequence, the symmetry of Green’s function leads to

G>s1s2
(t1, t2)→
∑

s′s′′
σx

s1s′G
>
s′s′′(t1, t2)σ

x
s′′s2

=

�

G>↓↓(t1, t2) G>↓↑(t1, t2)
G>↑↓(t1, t2) G>↑↑(t1, t2)

�

s1s2

.
(C.3)

The second symmetry is combined with particle-hole symmetry and rotation, which reads as

ĉs1
→
∑

s′
(iσ y)s1s′ ĉ

†
s′ ,

ĉ†
s1
→
∑

s′
ĉs′ (−iσ y)s′s1

.
(C.4)

Similarly, with symmetry in Eq. (C.4),
�

Ŝ x , Ŝ y , Ŝz
	

is mapped to
�

Ŝ x ,−Ŝ y , Ŝz
	

, and therefore
keeps Eq. (1) invariant. Also, the symmetry of Green’s function leads to

G>s1s2
(t1, t2)→−
∑

s′s′′
σ

y
s1s′G

<
s′′s′(t2, t1)σ

y
s′′s2

=

�

−G<↑↑(t2, t1) G<↑↓(t2, t1)
G<↑↓(t2, t1) −G<↑↑(t2, t1)

�

s1s2

,
(C.5)

where the second line to the third line uses the symmetry obtained in Eq. (C.3). Finally, we
can exchange > and < symbols in Eq. (C.3) and Eq. (C.3) to obtain another two symmetry in
terms of Green’s function.

D Derivation of the self-energy

D.1 Simplification of Eq. (6)

Starting from Eq. (6), we derive the corresponding analytical formula. We first consider the
trace part Tr
�

σα
′
G≷(t1, t2)σαG≶(t2, t1)

�

. In the basis of α′,α = {x , y, z}, direct calculation
of the trace part reads

Tr
�

σα
′
G≷(t1, t2)σ

αG≶(t2, t1)
�

= −Tr
�

σ yσα
′
G≷(t1, t2)σ

ασ y G≷(t1, t2)
�

=







−2G≷↑↑(t1, t2)2 + 2G≷↑↓(t1, t2)2 0 0

0 −2G≷↑↑(t1, t2)2 − 2G≷↑↓(t1, t2)2 4iG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)

0 −4iG≷↑↑(t1, t2)G
≷
↑↓(t1, t2) −2G≷↑↑(t1, t2)2 − 2G≷↑↓(t1, t2)2







α′α

.

(D.1)
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The second line applies the symmetry Eq. (C.5) and implicitly use Eq. (C.3) to ensure
�

G≷
�T
= G≷. The off-diagonal matrix elements in the first row and column correspond to

the x direction, which is nontrivially disappeared. Since the initial external field is in the x
direction, such anisotropic is exactly reflected in the components of self-energy by applying
the symmetry constraints.

The self-energy composites different components α,α′ which represents the internal spin
interaction. Therefore we show each non-zero contribution in Eq. (6).

α′ = x , α= x :

1
2

J2ξ2
1

�

G≷↑↑(t1, t2) G≷↑↓(t1, t2)

G≷↑↓(t1, t2) G≷↑↑(t1, t2)

�

�

−G≷↑↑(t1, t2)
2 + G≷↑↓(t1, t2)

2
�

, (D.2)

α′ = y, α= y :

1
2

J2ξ2
2

�

−G≷↑↑(t1, t2) G≷↑↓(t1, t2)

G≷↑↓(t1, t2) −G≷↑↑(t1, t2)

�

�

G≷↑↑(t1, t2)
2 + G≷↑↓(t1, t2)

2
�

, (D.3)

α′ = z, α= z :

1
2

J2ξ2
3

�

−G≷↑↑(t1, t2) G≷↑↓(t1, t2)

G≷↑↓(t1, t2) −G≷↑↑(t1, t2)

�

�

G≷↑↑(t1, t2)
2 + G≷↑↓(t1, t2)

2
�

, (D.4)

α′ = y, α= z :

J2ξ2ξ3

�

G≷↑↓(t1, t2) −G≷↑↑(t1, t2)

−G≷↑↑(t1, t2) G≷↑↓(t1, t2)

�

�

G≷↑↑(t1, t2)G
≷
↑↓(t1, t2)
�

, (D.5)

α′ = z, α= y :

J2ξ2ξ3

�

G≷↑↓(t1, t2) −G≷↑↑(t1, t2)

−G≷↑↑(t1, t2) G≷↑↓(t1, t2)

�

�

G≷↑↑(t1, t2)G
≷
↑↓(t1, t2)
�

. (D.6)

We finally arrive at the full self-energy by collecting all these terms

Σ≷(t1, t2) =
J2

2

�

−ξ2G≷↑↑(t1, t2)3 + AG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)2 AG≷↑↑(t1, t2)2G≷↑↓(t1, t2) + ξ2G≷↑↓(t1, t2)3

AG≷↑↑(t1, t2)2G≷↑↓(t1, t2) + ξ2G≷↑↓(t1, t2)3 −ξ2G≷↑↑(t1, t2)3 + AG≷↑↑(t1, t2)G
≷
↑↓(t1, t2)2

�

, (D.7)

where the polynomials ξ2 = ξ2
1 + ξ

2
2 + ξ

2
3 and A= −ξ2

1 + ξ
2
2 − 4ξ2ξ3 + ξ2

3.

D.2 Perturbation

With perturbation on the off-diagonal term on the Eq. (10), in principle we have

δGK
↑↓ =
∑

s1,s2

G
R,β f

↑s1
◦δΣK

s1s2
◦ G

A,β f

s2↓
︸ ︷︷ ︸

Eq. (D.8)(a)

+δGR
↑s1
◦ΣK ,β f

s1s2
◦ G

A,β f

s2↓
︸ ︷︷ ︸

Eq. (D.8)(b)

+G
R,β f

↑s1
◦ΣK ,β f

s1s2
◦δGA

s2↓
︸ ︷︷ ︸

Eq. (D.8)(c)

. (D.8)

For Eq. (D.8)(a), all off-diagonal components of GR/A,β f are zero, and consequently we only
take s1 =↑ and s2=↓. For Eq. (D.8)(b), the vanishing off-diagonal component of GA,β f ,ΣK ,β f re-

quires s2=↓ and then s1=↓. However, in the infinite high-temperature region we haveΣ
K ,β f

↓↓ = 0
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Figure 5: Fitting of (a) the large-N dynamics; (b) the exact diagonalization dynamics
corresponding to the main text fig. 3. The solid line is the numerical data, and the
dashed line is the fitting curve. The inset legend lists each anisotropic parameter
corresponding to the 19 cases in the main text. Besides, the right panel shows the
fitting functions for each case.

as a result of the fluctuation-dissipation theorem [48,49]. In the following content, we can also
verify this with the specific ansatz for equilibrium Green’s function in Eq. (12), (13). There-
fore Eq. (D.8)(b) vanishes, and we can show Eq. (D.8)(c) vanishes with similar arguments.
Combining all the argument, only the off-diagonal term in Eq. (D.8)(a) survives and finally
leads to Eq. (11).

To obtain δΣK
s1s2

with s1 =↑ and s2 =↓, we can use the relation ΣK = Σ> + Σ< and the
off-diagonal term in Eq. (D.7). Near the equilibrium solution,

G≷↑↑(t1, t2)
2G≷↑↓(t1, t2)≈ G

≷,β f

↑↑ (t1, t2)
2δG≷↑↓(t1, t2) ,

and G≷↑↓(t1, t2)3 ≈ δG≷↑↓(t1, t2)3. We will drop the third order contribution in δG≷↑↓ and only
keep the linear order. Finally, it leads to the result

δΣK
↑↓ =

1
2

J2AG
>,β f

↑↑ (t1, t2)
2δG>↑↓(t1, t2) +

1
2

J2AG
<,β f

↑↑ (t1, t2)
2δG<↑↓(t1, t2)

=
1
4

J2A
�

G
>,β f

↑↑ (t1, t2)
2 + G

<,β f

↑↑ (t1, t2)
2
�

δGK
↑↓(t1, t2) .

(D.9)

E Estimation of frequency and error bar in Fig. 3

Fig. 3 in the main text shows the estimation of frequency and error bars with random
anisotropic parameters. Here we show the detailed fitting result in fig. 5, where the initial
temperature and external magnetic field is βJ = 0.04, J̄ = 0 and h/J = 10.

The choice of the fitting region is naturally uncertain. First, the theoretical prediction
of the oscillation frequency acquires the assumption of small m(t), but the small m(t) time
region is not uniquely defined. Secondly, especially for ED numerics, finite system size leads to
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untrustable results in the late time limit. Therefore it is reasonable only to consider the early
time when fitting the ED numerics, which also introduces uncertainty of fitting region.

The error bars of the fitting frequency arise from such uncertainty. To quantify such error,
we separately consider two different numerical approaches.

• For the large-N data, we choose the time region begins at different values:
tbeginJ = 0,0.05, 0.1, . . . , 1.2, and ends at the same point tendJ = 10.0. We fit these
frequencies and take the standard deviation as the error bars.

• For the ED data, we choose the time region begins at different values: tbeginJ = 0,0.08,
0.16, . . . , 0.4, and ends at also different points tendJ = 3.0,4.0, · · ·9.0. We take a com-
bination of these beginning and ending points and take the standard deviation among
these frequencies as the error bars.

We summarize the detailed fitting region in table 1. Notice that for the ED approach, we need a
larger ending fitting time for the small frequency cases, but in other cases, we choose a smaller
ending fitting time to avoid the finite N effect.

Table 1: The detailed parameters and result for each case. (ξ1,ξ2,ξ3) means
anisotropic parameters. ΩKB,ΩED,ΩTh are the fitting frequencies from Kadanoff-
Baym numerics, ED numerics, and theoretical prediction. σΩKB

,σΩED
are the standard

deviations for KB and ED numerics. [tbegin,KBJ , tend,KBJ] and [tbegin,EDJ , tend,EDJ] are
the fit region which lead to the ΩKB,ΩED numerics data of the main text fig. 3.

Cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ξ1 -1.46 1.47 0.36 1.79 -0.8 -0.51 0.25 -1.58 -0.01 0.09 1.51 0.25 -1.49 0.89 -0.73 0.56 -1.83 -1.15 1.31

ξ2 1.89 -1.78 -1.66 -1.68 1.07 0.97 0.08 1.05 -0.29 -1.54 -0.22 0.06 -1.27 -0.1 1.89 0.58 -0.97 1.23 -1.68

ξ3 -1.25 0.27 0.88 0.99 -0.76 -1.51 -1.42 -1.88 1.34 0.18 1.54 0.81 0.83 -1.66 0.22 0.93 -1.04 1.27 -1.31

ΩKB 3.34 1.89 2.73 2.76 1.91 2.66 1.47 3.10 1.69 1.76 1.43 0.60 2.10 1.27 1.36 0.01 0.00 0.00 0.00

σΩKB
0.19 0.17 0.13 0.20 0.12 0.13 0.10 0.20 0.10 0.12 0.12 0.03 0.16 0.10 0.11 0.01 0.00 0.00 0.01

ΩED 3.74 1.58 3.25 2.73 2.12 3.13 1.38 3.17 1.80 1.76 0.84 0.40 2.10 0.93 0.93 0.02 0.00 0.00 0.02

σΩED
0.59 0.46 0.31 0.52 0.17 0.30 0.05 0.49 0.11 0.10 0.33 0.16 0.23 0.08 0.16 0.05 0.04 0.04 0.04

ΩTh 3.53 1.73 3.04 2.69 2.08 2.97 1.55 3.17 1.85 1.87 1.22 0.63 2.07 1.14 1.19 0.00 0.00 0.00 0.00

tbegin,KBJ 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

tend,KBJ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

tbegin,EDJ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

tend,EDJ 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 9 3.5 9 9 9 9 9 9
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