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Abstract

Dualities of quantum field theories are challenging to realize in lattice models of qubits.
In this work, we explore one of the simplest dualities, T-duality of the compact boson CFT,
and its realization in quantum spin chains. In the special case of the XX model, we un-
cover an exact lattice T-duality, which is associated with a non-invertible symmetry that
exchanges two lattice U(1) symmetries. The latter symmetries flow to the momentum
and winding U(1) symmetries with a mixed anomaly in the CFT. However, the charge op-
erators of the two U(1) symmetries do not commute on the lattice and instead generate
the Onsager algebra. We discuss how some of the anomalies in the CFT are nonetheless
still exactly realized on the lattice and how the lattice U(1) symmetries enforce gapless-
ness. We further explore lattice deformations preserving both U(1) symmetries and find
a rich gapless phase diagram with special Spin(2k)1 WZW model points and whose phase
transitions all have dynamical exponent z > 1.

Copyright S. D. Pace et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2025-01-14
2025-03-24
2025-04-08

Check for
updates

doi:10.21468/SciPostPhys.18.4.121

Contents

1 Introduction 2
1.1 T-duality 3
1.2 Summary 5

2 Review of the compact free boson 7
2.1 T-duality 7
2.2 ’t Hooft anomalies 9
2.3 Non-invertible symmetry 10

3 T-duality in the XX model 11
3.1 Gauging Z2 momentum symmetry 12
3.2 Lattice U(1) winding symmetry from T-duality 15

3.2.1 Lattice T-duality 15
3.2.2 A quantized winding charge 16
3.2.3 An unquantized winding charge 17

3.3 Non-invertible symmetry and lattice T-duality 18
3.3.1 Continuous families of non-invertible symmetries 19
3.3.2 Matrix product operator expression 20

1

https://scipost.org
https://scipost.org/SciPostPhys.18.4.121
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.18.4.121&amp;domain=pdf&amp;date_stamp=2025-04-08
https://doi.org/10.21468/SciPostPhys.18.4.121


SciPost Phys. 18, 121 (2025)

4 ’t Hooft anomalies in the XX model 22
4.1 The mixed anomaly of momentum and winding symmetries 23
4.2 Type III anomaly of ZM

2 ×Z
W
2 ×Z

C
2 25

4.3 Anomaly of the non-invertible symmetry 27
4.4 Anomaly enforced gaplessness 28

4.4.1 Proof 29

5 The Onsager algebra 30
5.1 Onsager charges from bosonization 31
5.2 Symmetry actions on the Onsager charges 33

6 T-duality in other spin chains 34
6.1 The XYZ model 35
6.2 U(1)M and U(1)W symmetric spin chains 37

7 Outlook 39

A Review of bosonization and fermionization in the continuum 40
A.1 Fermionic field theories and the Arf invariant 40
A.2 Bosonizing a fermionic field theory 41
A.3 Fermionizing a bosonic field theory 42

B Lattice bosonization and fermionization done globally 43
B.1 Ising model←→ Kitaev chain 43

B.1.1 Fermion parity 44
B.1.2 Bosonizing by gauging 45
B.1.3 Jordan-Wigner transformation 47
B.1.4 Fermionizing by gauging 48

B.2 XX model←→ two-Majorana chain 49
B.2.1 Bosonizing by gauging 50
B.2.2 Jordan-Wigner transformation 51
B.2.3 Fermionizing by gauging 51

C Explicit expressions of the Onsager algebra generators 53

References 53

1 Introduction

Dualities in quantum field theories and lattice models are a cornerstone of contemporary the-
oretical physics, signaling that two seemingly distinct theories are secretly the same. They
emphasize how it is insufficient to organize the space of quantum field theories/lattice models
by Lagrangians/Hamiltonians and related degrees of freedom. They further act as a crucial
aid in calculations since certain physical observables become manifest only after utilizing a
duality transformation.

When discussing duality, however, one must specify what is meant by two theories being
“the same.” There are three primary ways in which the word duality is used throughout the
literature:
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1. The strongest form of duality is exact duality, which states that two theories are dual
if they are isomorphic. Namely, for a given boundary condition, there is a one-to-one
mapping between every state in the Hilbert space, every operator acting on all of these
states, the models’ entire spectra, and the correlation functions of all observables. This is
the notion of duality that we adopt in this paper, and we will refer to exact duality just as
duality from here on. Therefore, two dual theories are simply different presentations of
the same physical model. Standard examples of such dualities include T-dualities [1], S-
dualities (e.g., electromagnetic duality) [2], dualities of free theories [3], and level-rank
dualities [4–6].

2. A weaker version of duality is that of IR duality. Two theories that are IR dual are
distinct in the UV but flow to the same theory in the IR. The theories they flow to in the
IR could be the same or distinct (dual) presentations of the IR theory. Some prototypical
examples are particle-vortex duality [7, 8], its generalizations [9–11], and dualities for
3+ 1 dimensional N = 1 supersymmetric gauge theories (e.g., Seiberg duality) [12].

3. An unrelated notion of duality is discrete gauging (e.g., orbifolding).1 Gauging a dis-
crete symmetry generically relates two theories that are globally distinct, both in the UV
and IR. However, while distinct, the correlation functions and spectra of one model can
be deduced from that of the other by inserting various symmetry defects (i.e., chang-
ing boundary conditions). Discrete gauging, therefore, implements an isomorphism be-
tween two families of models and their combined states and spectra subject to different
boundary conditions, but not between one theory and another. Alternatively, by restrict-
ing to fixed symmetry charge sectors (e.g., their symmetric subspaces) of two models
related by discrete gauging with appropriate symmetry defect insertions, gauging then
acts bijectively on states and operators for these fixed sectors.2 Well-known examples
of discrete gauging maps include the Kramers-Wannier transformation3 [16] and the
Kennedy-Tasaki transformation [17].

These three notations are generically unrelated. However, there can be instances where they
coincide. In particular, two theories related by discrete gauging may also be dual or IR dual.
Importantly, however, in such cases the gauging map and duality transformations between
states and operators are different. For instance, the latter map is always bijective while the
former is not.

1.1 T-duality

One of the simplest dualities in quantum field theory is T-duality. In its most general form,
it is a duality between particular nonlinear sigma models with different target spaces and

1Discrete gauging is sometimes referred to as just duality, especially in the condensed matter and quantum
information literature (e.g., see Ref. 13). A reader familiar with category theory may be inclined to call it Morita
duality to distinguish it from the meaning of the word duality we use here. The adjective Morita emphasizes that
the (higher-)category describing the symmetry of the theory obtained after discrete gauging is Morita equivalent
to the original theory’s symmetry [14].

2For gauge-related models with appropriate boundary conditions that are projected into corresponding fixed
charge sectors, the gauging maps become exact duality transformations. However, these projected models are
non-local due to the fixed charge sector constraint involving a non-local operator—the symmetry operator. From a
continuum field theory point of view, these models violate modular invariance and Haag duality and/or additivity
(see, e.g., Ref. 15).

3In this context, the Kramers-Wannier duality refers to a transformation between the ordered and disordered
phases of the 1+ 1D Ising model. It is implemented by gauging the model’s Z2 symmetry. On the other hand, there
is also an exact duality that maps the ordered/disordered phase of the Ising model to the disordered/ordered phase
of the Ising model coupled to a Z2 gauge field. This exact duality is also sometimes called Kramers-Wannier duality.
In the Hamiltonian formalism, it is implemented by adding ancillas and then performing a unitary transformation.
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backgrounds. The simplest example of this is the T-duality of a compact boson, which relates
a 1+ 1D sigma model whose target space is S1 with radius R to another sigma model whose
target space is S1 with radius 1/R [18,19]. In terms of their Euclidean Lagrangians, this means
that

LR =
R2

4π
∂µΦ∂

µΦ
T−duality
←−−−−−−→ L1/R =

1
4πR2

∂µΘ∂
µΘ , (1)

where Φ∼ Φ+ 2π and Θ ∼ Θ+ 2π are compact boson fields. A further defining feature of this
T-duality is that it exchanges the U(1) momentum and U(1) winding symmetries4 of LR and
L1/R. In terms of their conserved currents, this means that

iR2

2π
∂µΦ (momentum)

εµν

2π
∂ νΦ (winding)

T−duality
←−−−−−−→

εµν

2π
∂ νΘ (winding),

i
2πR2

∂µΘ (momentum).
(2)

T-duality of a compact boson has played a significant role in understanding string theory on a
circle and has found diverse applications in condensed matter theory. As it will be the focus
of this paper, from here on we will implicitly refer to the T-duality of a compact boson as just
T-duality. We refer the reader to Section 2 for a review of the compact free boson, its T-duality,
and its symmetries.

T-duality is not unique to the continuum and can also arise in lattice regularizations of the
compact free boson [20–23] (see Refs. 24, 25 for similar dualities in related lattice models).
These models with lattice T-duality flow to the compact boson in the IR and have exact U(1)
momentum and winding symmetries on the lattice. The constructions of these theories are
often directly inspired by the continuum field theory. For instance, they can be obtained by
putting the compact free boson on a Euclidean spacetime lattice or are modified Villain lattice
models that have infinite-dimensional local Hilbert spaces when quantized.

The traditional perspective of T-duality is based on the LR→ L1/R transformation and
exchange of momentum and winding symmetries. However, a modern and more invari-
ant perspective of T-duality uses non-invertible symmetries of the compact free boson (see
Refs. [26–29] for reviews on non-invertible symmetry). For example, when R2 = N ∈ Z>0,
the compact free boson has a non-invertible symmetry that implements the ZN momentum
symmetry gauging map followed by the T-duality transformation [30–33]. The non-invertible
symmetry operator D acts on the momentum and winding symmetry charges, QM and QW

respectively, by

DQM = N QW D , DQW =
1
N

QMD . (3)

The existence of the two U(1) symmetries generated by QM and QW alongside the non-
invertible symmetry D satisfying (3) implies T-duality, and can further serve as its definition.
Generalizations of the non-invertible symmetry D arising from T-duality have been proposed
for arbitrary radii R [34]. However, for simplicity, we will specialize to T-duality associated
with R2 = N ∈ Z>0 (in particular, R2 = 2).

Adopting this symmetry-based definition of T-duality is especially useful in the context
of lattice models. Indeed, consider a 1+ 1D lattice model that bears no resemblance to the
compact free boson yet flows to it in the IR. It is entirely possible that despite its differing
appearance to the continuum, the lattice model can have two U(1) symmetries that become
the momentum and winding symmetries in the continuum and have a non-invertible symmetry
implementing a lattice T-duality as in (3). This then begs the question: there are many known

4For the compact free boson at radius R, the U(1) momentum and U(1) winding symmetries are shift symmetries
of Φ and Θ, respectively. The terminology “momentum” and “winding” symmetries are used in the string theory
literature, and they are sometimes respectively referred to as “charge” and “vortex” symmetries.
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lattice models that flow to the compact free boson, but do any have lattice T-duality? In
particular, what about the simplest quantum lattice model of qubits on a chain?

1.2 Summary

In this paper, we explore lattice T-duality in 1+ 1D lattice models of qubits. We start in Sec-
tion 3 by considering the XX model, a quantum spin chain model whose Hamiltonian is

HXX =
L
∑

j=1

�

X jX j+1 + YjYj+1

�

. (4)

Unless otherwise specified, throughout this paper, we assume that L is even for all quantum
spin chain models considered. It is well known that the IR of HXX is described by the compact
free boson at radius R=

p
2.5 The integer-quantized operator QM = 1

2

∑L
j=1 Z j commutes with

HXX and is the generator of a U(1)M symmetry that becomes the momentum symmetry of the
compact free boson in the IR.6 The XX model Hamiltonian also commutes with the integer-
quantized charge [36–39]

QW =
1
4

L/2
∑

n=1

(X2n−1Y2n − Y2nX2n+1) . (5)

This operator is the generator of another U(1) symmetry of the XX model. In fact, we show that
it becomes the U(1)W winding symmetry of the R=

p
2 compact free boson in the IR. However,

unlike in the continuum, the lattice charges QM and QW do not commute: [QM,QW] ̸= 0.
Given the existence of two U(1) symmetries of the XX model that respectively flow to

the momentum and winding symmetries of the compact free boson, it is then natural to ask
whether the XX model has a lattice T-duality. From the symmetry perspective advocated above,
this would mean that the XX model has a non-invertible symmetry that exchanges QM and
QW (with appropriate factors of R2 = 2). This non-invertible symmetry would implement the
gauging map of the lattice Z2 momentum symmetry e iπQM

and then the lattice T-duality trans-
formation.

We show that the XX model does, in fact, have lattice T-duality. To do so, we first gauge the
Z2 symmetry generated by e iπQM

and find a basis in which the gauged XX model Hamiltonian
becomes

HXX/ZM
2
=

L
∑

j=1

(X j + Z j−1X j Z j+1) . (6)

The key observation is that there exists a unitary operator UT for which HXX = UTHXX/ZM
2

U−1
T .

Therefore, there exists a non-invertible operator D that commutes with the Hamiltonian,

DHXX =
�

UTHXX/ZM
2

U−1
T

�

D= HXX D , (7)

such that U−1
T D implements the e iπQM

gauging map. Crucially, we find that this non-invertible
symmetry operator satisfies

DQM = 2QWD , DQW =
1
2

QMD . (8)

5Our convention for R is chosen such that R= 1 is the self-dual, SU(2)1 WZW model point of the compact free
boson. This convention differs from Ginsparg’s [35] whose radius RGinsparg is related to ours by R=

p
2 RGinsparg.

6We generally use calligraphic and ordinary fonts for operators in the continuum and on the lattice, respectively.
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Therefore, just as in the continuum theory (i.e., Eq. (3) with R2 = 2), the XX model has T-
duality. In particular, the lattice T-duality transformation is implemented by the unitary opera-
tor UT. Since unitary transformations preserve the spectrum of the Hamiltonian, act bijectively
on states in the Hilbert space, and preserve the operator algebra, this is an exact duality.

Having found new symmetries in the XX model that exactly match those in the continuum
compact boson—the symmetries formed by e iθQW

and D—we then investigate their anoma-
lies in Section 4. Anomalies in the XX model are well known, in particular the Lieb-Schultz-
Mattis anomalies involving translations and the U(1)M ⋊ZC

2 symmetry formed by e iφQM
and

∏L
j=1 X j [22,40–44]. With the identification of QW and D, we find new ’t Hooft anomalies. In

particular, while QM and QW do not commute, the symmetry operators e iπQM
and e iθQW

do.
Therefore, there is a ZW

2 ×Z
C
2 ⋉U(1)M sub-symmetry of the XX model, and we show that its

anomalies manifest on the lattice the same way as they do in the continuum. Firstly, the sub-
symmetry ZW

2 ×U(1)M exhibits a spectral flow where inserting a 2π U(1)M symmetry defect
changes the ZW

2 charge of states (i.e., ZW
2 charge pumping upon adiabatically inserting a 2π

flux of U(1)M in the SPT in one-higher dimension). Secondly, the ZW
2 ×Z

C
2 ×Z

M
2 sub-symmetry

exhibits a type III anomaly where inserting a symmetry defect of one Z2 causes the other two
Z2 sub-symmetries to be projectively represented. We further prove that any deformation of
the XX model that preserves the U(1) symmetries generated by QM and QW does not gap out
the Hamiltonian. In other words, just like the perturbative anomaly in the compact free boson,
the lattice U(1)M and U(1)W symmetries enforce gaplessness.

The unitary symmetries and their interplay with the non-invertible symmetry arising from
T-duality are much richer on the lattice than in the continuum. This stems from the fact that
while the momentum and winding symmetries commute in the continuum, QM and QW do
not commute on the lattice. Instead, they generate a large Lie algebra known as the Onsager
algebra [36, 37, 39]. The Onsager charges Qn and Gn, with n an integer, are quantized and
satisfy

[Qn,Qm] = iGm−n , [Gn, Gm] = 0 , [Qn, Gm] = 2i(Qn−m −Qn+m) , (9)

where Q0 =QM while Q1 = 2QW. In Section 5, we find closed expressions for Qn and Gn in
terms of QM and QW and explore their interplay with the non-invertible symmetry operator D.
For instance, we find that

DQn =Q1−nD , DGn = −GnD . (10)

The transformation (8) signaling T-duality is then the special case of (10) for n= 0, 1. We fur-
ther show that for finite n in the IR limit, once the momentum and winding charges commute,

Qn
IR limit
−−−−−−→

¨

2QW , n odd,

QM , n even,
Gn

IR limit
−−−−−−→ 0 . (11)

In particular, while the lattice charges Qn don’t commute with each other, their IR limits do:
[QM,QW] = 0.

In Section 6, we discuss the fate of lattice T-duality upon deforming the XX model. Generic
deformations will break the lattice momentum and/or winding symmetries and destroy the
corresponding T-duality. For example, in the XYZ chain, the only points in the phase diagram
with a lattice T-duality are those for which the XYZ chain is unitarily related to the XX model.
However, in Section 6.2, we find the most general class of qubit models with lattice momen-
tum and winding symmetries and corresponding T-duality. Due to the gapless constraint we
prove, these Hamiltonians are all gapless. For example, the simplest one-parameter family of
Hamiltonians is

H(g2) =
L
∑

j=1

�

X jX j+1 + YjYj+1 + g2 (Yj−1Z jX j+1 − X j−1Z jYj+1)
�

. (12)

6

https://scipost.org
https://scipost.org/SciPostPhys.18.4.121


SciPost Phys. 18, 121 (2025)

We find the phase diagram of this Hamiltonian plus the next simplest deformation exactly by
fermionizing. As shown in Fig. 5, all phases are gapless and there are various phase transitions
all with dynamical exponent z > 1. There are also special points described by Spin(2k)1 WZW
models.

2 Review of the compact free boson

In this section, we review T-duality in the c = 1 compact scalar boson conformal field theory
(CFT)—the compact free boson. We work in Euclidean signature and denote by M2 two-
dimensional Euclidean spacetime. We refer the reader to Ref. 31 for a contemporary, detailed
introduction to the compact free boson.

The partition function of the compact free boson at radius R is

ZR[M2] =

∫

DΦ e−SR[M2,Φ] , SR[M2,Φ] =
R2

4π

∫

M2

∂µΦ∂
µΦ d2 x , (13)

where Φ∼ Φ+ 2π is a compact scalar boson. Since Φ is multi-valued, it satisfies the quantiza-
tion condition

∫

C ∂µΦ dxµ ∈ 2πZ for all cycles C of M2. Furthermore, it is differentiable only
locally. In particular, while dΦ≡ ∂µΦ dxµ is globally a closed 1-form (i.e., εµν∂µ∂νΦ= 0), it is
not globally an exact 1-form. For our purposes, it is sufficient to handle this by viewing ∂µΦ
as a shorthand for ∂µeΦ+ 2πωµ, where eΦ is a real scalar field andωµ is a representative of the
de Rham cohomology class [ω] ∈ H1

dR(M2) satisfying εµν∂νω= 0 and
∫

C ωµdxµ ∈ Z.7

2.1 T-duality

The compact free boson at radii R and 1/R are equivalent, and the duality between these
different presentations of the CFT is T-duality. To see this equivalence, let us consider the
partition function

∫

DΘDWµ exp

�

−
∫

M2

�

R2

4π
WµWµ −

i
2π
εµν∂µΘWν

�

d2 x

�

, (14)

where Θ ∼ Θ+ 2π is a compact scalar boson. This compact boson is a Lagrange multiplier
field. In particular, treating ∂µΘ as shorthand for ∂µeΘ+ 2πηµ, integrating out eΘ enforces
εµν∂µWν = 0 and summing over [η] enforces

∫

C Wµ dxµ ∈ 2πZ. These constraints are solved
by Wµ = ∂µΦ, with Φ∼ Φ+ 2π, from which it is clear that the partition functions (13) and (14)
both describe the compact free boson. Integrating out Wµ in (14), on the other hand, yields

Z1/R[M2] =

∫

DΘ e−S1/R[M2,Θ] , S1/R[M2,Θ] =
1

4πR2

∫

M2

∂µΘ ∂
µΘ d2 x , (15)

which is the compact free boson at radius 1/R. Therefore, while the classical actions SR and
S1/R differ, the partition functions

ZR[M2] = Z1/R[M2] . (16)

7The quantity (∂µeΦ+ 2πωµ)dxµ is the Hodge decomposition of the closed 1-form dΦ. The notion of Φ being
differentiable only locally is made precise by treating Φ as the map Φ: M2→ R/2πZ and using Čech cohomology.
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More precisely, T-duality is a bijective map from the states and operators of the compact free
boson in the Φ presentation (13) to those in the Θ presentation (15). By inserting operators
in the Φ presentation partition function (13) and repeating the above manipulations, we can
derive how local operators of Φ are related to those of Θ. For example, inserting ∂µΦ in (13) is
equivalent to inserting Wµ into (14), and by then integrating out Wµ we arrive at the partition
function (15) with − i

R2εµν∂
νΘ inserted. Therefore,

∂µΦ
T-duality
−−−−→−

i
R2
εµν∂

νΘ . (17)

Using the T-duality map, we can also relate the symmetries of the compact free boson in
the Φ presentation to those in the Θ presentation. For example, the CFT has a U(1)M ×U(1)W

symmetry whose conserved currents in the Φ presentation are

J (M)µ = i
R2

2π
∂µΦ , J (W)µ =

1
2π
εµν∂

νΦ . (18)

On the other hand, these currents in the Θ presentation are

bJ (M)µ =
i

2πR2
∂µΘ , bJ (W)µ =

1
2π
εµν∂

νΘ . (19)

Therefore, using (17), we see that T-duality maps the momentum and winding U(1) symme-
tries in the Φ presentation to the winding and momentum U(1) symmetries, respectively, in
the Θ presentation.

The local primary operators of the compact free boson are Vn,w ≡ e i nΦe i wΘ,8 and their
conformal weights are

h=
1
4

�n
R
+wR

�2
, h̄=

1
4

�n
R
−wR

�2
. (20)

Therefore, their scaling dimension and spin are∆=h+h̄≡ 1
2

�

n2

R2 +w2R2
�

and s ≡ h− h̄= nw.

The U(1)M and U(1)W symmetries are shift symmetries of Φ and Θ, respectively and act on
the local primary operator as

U(1)M : Vn,w→ e i nφ Vn,w , (21)

U(1)W : Vn,w→ e i wθ Vn,w . (22)

These transformations commute and are described by the product group U(1)M ×U(1)W .
Furthermore, the compact free boson has a ZC2 charge conjugation symmetry that transforms
the momentum and winding currents by

ZC2 : (J (M), J (W))→ (−J (M),−J (W)) . (23)

This transformation, of course, also applies to the currents bJ in the Θ presentation. Therefore,
it transforms that local primary operators as Vn,w→ V−n,−w, which in the Φ andΘ presentations
implies Φ→−Φ and Θ→−Θ. Since ZC2 transforms the U(1)M and U(1)W currents, the total
group describing these symmetries is

(U(1)M ×U(1)W)⋊ZC2 . (24)
8Writing the local primary operator Vn,w as Vn,w ≡ e i nΦ e i wΘ is a bit of an abuse of notation. Denoting the T-

duality map by T, it is more precise to write Vn,w in the Φ and Θ presentations of the CFT as e i nΦ T−1(e i wΘ) and
T(e i nΦ) e i wΘ, respectively.
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2.2 ’t Hooft anomalies

The symmetry (24) has ’t Hooft anomalies involving its sub-symmetries. These ’t Hooft anoma-
lies obstruct the symmetry (24) from being gauged and preclude a unique gapped symmetric
ground state. They are most conveniently labeled by SPT theories in 2+ 1D Euclidean space-
time M3 that serve as their anomaly inflow theories. Here, we characterize these SPTs by
their response theory, the invertible topological field theory that describes the universal, long-
wavelength properties of the corresponding SPT phase.

There is a mixed ’t Hooft anomaly between the momentum and winding symmetries. It
corresponds to the SPT

Z[AM, AW , M3] = exp

�

i
2π

∫

M3

εµνρ AM
µ ∂νA

W
ρ d3 x

�

, (25)

where AM and AW are U(1)M and U(1)W background gauge fields, respectively. This anomaly
manifests in 1+ 1D through spectral flow [22, 45–47]. In particular, inserting a momen-
tum symmetry defect labeled by an angle φ ∈ U(1)M modifies the winding symmetry charge
QW ≡

∫

JW
0 dx to [22]9

QW
φ =QW +

φ

2π
. (26)

In particular, the winding charge is no longer an integer in the presence of a nontrivial mo-
mentum symmetry defect. Dually, inserting a winding symmetry defect labeled by an angle
θ ∈ U(1)W modifies the momentum symmetry charge QM ≡

∫

JM
0 dx to

QM
θ =QM +

θ

2π
. (27)

It follows that inserting a 2π winding (momentum) symmetry defect increases energy eigen-
states’ momentum (winding) charge by one. The 2+ 1D SPT is a bosonic integer quantum Hall
state [48], and the spectral flow arises from a 2π winding (momentum) symmetry flux pump-
ing momentum (winding) symmetry charge. However, we emphasize that the 2+ 1D bulk is
not required for 2πmomentum (winding) symmetry defects to increase winding (momentum)
charge in 1+ 1D (See Ref. 22 and Section 4.1).

There is also an ’t Hooft anomaly involving ZC2 and the ZM2 and ZW2 sub-symmetries of
U(1)M and U(1)W . The corresponding SPT is

Z[aM, aW , aC , M3] = exp

�

iπ

∫

M3

aC ∪ aM ∪ aW

�

, (28)

where each a• ∈ Z1(M3,Z2) is a Z•2 gauge field and ∪ denotes the cup product. This ’t Hooft
anomaly, known as the type III anomaly [49, 50], manifests in 1+ 1D by inserting a Z•2 sym-
metry defect (i.e., choosing Z•2 twisted boundary conditions) causing the other two Z2 sym-
metries to be represented projectively. For example, the ZM2 ×Z

W
2 symmetry is projectively

represented in the presence of a ZC2 symmetry defect. Relatedly, the 2+ 1D SPT state de-
scribed by (28) is characterized by Z•2 symmetry charges dressing trivalent junctions formed
by the other two Z2 symmetry defects fusing (e.g., ZC2 charges dressing junctions formed by
ZM2 ×Z

W
2 symmetry defects fusing). Such a decoration pattern corresponds to, for instance,

the nontrivial element of the group cohomology H2(ZM2 ×Z
W
2 , H1(ZC2 , U(1)))≃ Z2 in the Kün-

neth decomposition of H3(ZC2 ×Z
M
2 ×Z

W
2 , U(1)) [51].

9The spectral flow equation QW
φ
=QW + φ

2π is derived by minimally coupling a background U(1)M gauge field

A to the winding current J (W)
µ

. Doing so yields J (W)
µ
[A] = 1

2πεµν(∂
νΦ−Aν). The winding symmetry charge QW

then becomes QW
φ
=QW + φ

2π , where the holonomy φ = −
∫

Ax dx .

9
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2.3 Non-invertible symmetry

The compact free boson at R2 = N ∈ Z>0 has a non-invertible symmetry arising from T-
duality [30–33]. In particular, there is a Kramers-Wannier symmetry implementing a gaug-
ing map of a finite sub-symmetry of U(1)M ×U(1)W followed by the T-duality map. From
T-duality, however, this implies that the R2 = 1/N compact free boson has a non-invertible
symmetry, too. In what follows, we will review this symmetry for R2 = N ∈ Z>0, in which case
the Kramers-Wannier transformation implements a ZMN gauging map. We also refer the reader
to Ref. 52 for discussion on non-invertible symmetries for multiple copies of compact bosons
and Ref. 34 for a proposal of generalizations to arbitrary radius.

We now gauge the ZMN sub-symmetry of U(1)M in the Φ presentation of the compact free
boson at radius R. We couple the compact boson to the 1+ 1D ZN gauge theory

SR[M2,Φ]/ZMN =

∫

M2

�

−
R2

4π

�

∂µΦ+ aµ
�2
+

iN
2π
εµνaµ∂νb

�

d2 x . (29)

Here, aµ is a U(1) gauge field and b is another compact scalar field (i.e., b ∼ b + 2π). There
is now a U(1) gauge redundancy

Φ∼ Φ+α , aµ ∼ aµ − ∂µα . (30)

Locally, integrating out b enforces aµ to be a ZN gauge field, so that its holonomy is ZN -valued,
∫

C aµdxµ ∈ 2πZ/N . Next, we introduce a new scalar field Φ∨ that is invariant under the above
gauge transformation. It is defined as

∂µΦ
∨ = N(∂µΦ+ aµ) . (31)

The normalization factor of N is introduced so that
∫

C ∂µΦ
∨dxµ ∈ 2πZ. In other words, Φ∨ is

a compact boson with period 2π (i.e., Φ∨ ∼ Φ∨ + 2π). Writing the action in terms of the new
compact boson field Φ∨, it then becomes clear that gauging ZMN reduces the radius from R to
R/N :

ZR[M2]
Gauge ZMN−−−−−−→ ZR/N [M2] . (32)

After coupling to the gauge field aµ, the momentum and winding currents in the Φ and Φ∨

presentations are

J (M)µ = i
R2

2π

�

∂µΦ+ aµ
�

= iN
(R/N)2

2π
∂µΦ

∨ ,

J (W)µ =
1

2π
εµν (∂

νΦ+ aν) =
1
N

1
2π
εµν∂

νΦ∨ .
(33)

Therefore, the momentum and winding currents at radius R/N (in terms of Φ∨) are the same
as their R counterparts (in terms of Φ) but rescaled by N and 1/N , respectively.

Since the partition function after gauging is the compact free boson at a new radius, it
is not invariant under this gauging of ZMN . However, when followed by the T-duality map, it
yields the transformations

ZR[M2]
Gauge ZMN−−−−−−→ ZR/N [M2]

T-duality
−−−−→ ZN/R[M2] ,

J (M)
Gauge ZMN−−−−−−→ N J (M)

T-duality
−−−−→ N J (W) ,

J (W)
Gauge ZMN−−−−−−→

1
N

J (W)
T-duality
−−−−→

1
N

J (M) .

(34)

Therefore, the compact free boson is invariant under gauging ZMN when R=
p

N . Conse-
quently, it has a non-invertible symmetry. This Kramers-Wannier symmetry transforms the
momentum and winding currents J (M) and J (W) to N J (W) and 1

N J (M), respectively.
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3 T-duality in the XX model

We now turn our attention to quantum lattice models. In particular, we consider quantum
spin chains where a single qubit resides on each site j of a one-dimensional periodic lattice.
We always take the number of lattice sites L to be an even integer. The Pauli operators X j , Z j ,
and Yj = iX j Z j act on the qubit at site j and obey the periodic boundary conditions X j+L = X j ,
Z j+L = Z j . Furthermore, the total Hilbert space H admits the tensor product factorization

H =
L
⊗

j=1

H j , H j = C2 , (35)

with each H j describing the qubit at site j.
The particular quantum spin chain we study is the XX model,10 whose Hamiltonian is

HXX =
L
∑

j=1

�

X jX j+1 + YjYj+1

�

. (36)

This celebrated Hamiltonian has appeared throughout the literature as various limits of toy
models used for studying quantum phases and their transitions [53] and is a prototypical
model studied in quantum integrability [54].

Among its conserved quantities, the XX model has a well-known U(1)M global symmetry
generated by

QM =
1
2

L
∑

j=1

Z j . (37)

Because we assume L is an even integer, the eigenvalues of QM are integers. The U(1) sym-
metry operator e iφQM

acts on the Pauli operators by the spin rotation

e iφQM
�

X j

Yj

�

e− iφQM
=

�

cos(φ) − sin(φ)
sin(φ) cos(φ)

��

X j
Yj

�

. (38)

Therefore, the operator X j + iYj carries QM = +1 charge. Another well-known symmetry of
the XX model is the ZC

2 symmetry generated by

C =
L
∏

j=1

X j . (39)

This symmetry operator acts on X j + iYj by conjugation. Furthermore, the QM charge trans-

forms under it by QM→−QM. Therefore, e iφQM
and C furnish a faithful representation of the

group U(1)M ⋊ZC
2
∼= O(2).

The IR limit11 of the XX model is described by the compact free boson (13) at radius
R=
p

2 [55, 56]. This is equivalent to the U(1)4 WZW CFT, which is the WZW model whose
associated 2+ 1D Chern-Simons theory is U(1)4. In the IR, the lattice operator X j + iYj flows
to the primary e iΦ (up to a multiplicative constant). Therefore, in the IR limit, the U(1)M and

10The XX model goes by different names within the literature, sometimes being called the isotopic XY model or
just the XY model.

11By the IR limit, we mean we focus on the low-energy states—the energy eigenstates that lie within an O(L0)
energy window above the ground state—of the lattice model and then take the thermodynamic limit L→∞. For
a gapped Hamiltonian, these low-energy states form the ground-state subspace. For a gapless Hamiltonian, they
would be a collection of low-lying energy states.
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Figure 1: T-duality in the XX model HXX is implemented by the unitary operator
UT (55). It relates HXX to its ZM

2 -gauged version HXX/ZM
2

. It further relates ZM
2 -gauged

momentum and winding symmetries of the XX model to the winding and momentum
symmetries, respectively. The lattice T-duality implemented by UT precisely matches
the T-duality of the compact free boson in the IR limit of the XX model.

ZC
2 symmetries of the XX model become the U(1)M and ZC2 symmetries of the compact free

boson at R=
p

2 (this explains the superscripts M and C).
While the XX model realizes the momentum and charge conjugation symmetries of the

CFT exactly on the lattice, it is common lore that it does not realize the winding symmetry.
Accordingly, without a lattice winding symmetry, the XX model also fails to enjoy a lattice T-
duality and any related non-invertible symmetries. However, this piece of lore is a bit surprising
when viewing the XX model from an integrability point of view. With an extensive number of
conserved charges, perhaps one of them generates a U(1) symmetry on the lattice that flows
to the winding symmetry in the CFT. In what follows, we show that T-duality and a related
U(1) winding symmetry, in fact, exist on the lattice. Fig 1 summarizes this lattice T-duality
and its resemblance to the T-duality in the compact free boson.

3.1 Gauging Z2 momentum symmetry

To motivate T-duality in the XX model, recall that gauging the Z2 sub-symmetry of the U(1)
momentum symmetry in the compact free boson at R=

p
2 leaves the CFT invariant after im-

plementing T-duality (i.e., gauging replaces R=
p

2 with R/2= 1/
p

2≡ 1/R, see Section 2.3).
In light of this occurring in the IR, we now gauge the ZM

2 symmetry of the XX model, which is
generated by

η≡ e i πQM
=

L
∏

j=1

i Z j =

¨
∏L

j=1 Z j , L = 0 mod 4 ,

−
∏L

j=1 Z j , L = 2 mod 4 .
(40)

In its current form, η is not written in a manifestly onsite12 manner since the local i Z j is of
order 4 rather than 2. However, since we assume L is even, it can be written as

η=
L
∏

j=1

(−1) j Z j . (41)

In this form, the local operators η j ≡ (−1) j Z j correctly square to one.
To gauge the ZM

2 symmetry, we first introduce a qubit onto each link 〈 j, j + 1〉 of the lattice,
the collection of which plays the role of a Z2 gauge field. They are acted on by the Pauli
operators eX j, j+1 and eZ j, j+1. The gauging procedure is implemented by enforcing the Gauss
law

G j = eZ j−1, j η j eZ j, j+1 = 1 , η j = (−1) j Z j . (42)

12Here, we call a unitary symmetry G onsite if its representation Ug has the decomposition Ug =
∏L

j=1 U ( j)g with

U ( j)g linear representations of G.
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The Gauss operators G j are mutually commuting for all j and are Z2 operators. The ZM
2

symmetry operator (40) can be written as

η=
L
∏

j=1

G j . (43)

Therefore, enforcing the Gauss law G j = 1 projects states into the η= 1 subspace. Minimally
coupling the XX Hamiltonian such that each G j commutes with it yields the new Hamiltonian

L
∑

j=1

(X j eX j, j+1X j+1 + Yj eX j, j+1Yj+1) . (44)

Notice that the lattice translation generated by T eT (where T X j T
−1 = X j+1,

eT eX j−1, j eT
−1 = eX j, j+1, etc) is not gauge-invariant since T eT G j (T eT )−1 = −G j+1 ̸= G j+1. How-

ever, the gauged model is still translation-invariant because T eT
∏

j X j is gauge-invariant and
commutes with (44).

It is convenient to rotate the enlarged Hilbert space to a basis where the physical subspace
has a tensor product factorization. To do so, we use the unitary operator

L
∏

j=1

1
4

X j
j (1+ X j + eZ j, j+1 − X j eZ j, j+1) (1+ X j + eZ j−1, j − X j eZ j−1, j) , (45)

to implement the basis transformation

Z j → (−1) j eZ j−1, j Z j eZ j, j+1 , eZ j, j+1→ eZ j, j+1 ,

X j → X j , eX j, j+1→ X j eX j, j+1 X j+1 .
(46)

In this new basis, the Gauss law (42) becomes Z j = 1, which polarizes the site qubits to all spin
up, decoupling them from the system. Furthermore, the gauge-invariant translation operator
T eT

∏

j X j becomes T eT , which acts as just eT in the physical, Z j = 1 subspace. In the physical
subspace of this new basis, the gauged XX model (44) becomes

L
∑

j=1

(eX j, j+1 + eZ j−1, j eX j, j+1 eZ j+1, j+2) . (47)

We relabel these Pauli operators by dropping the tildes and performing a half lattice translation
〈 j, j + 1〉 → j + 1 to find the final form of the gauged Hamiltonian:13

HXX/ZM
2
=

L
∑

j=1

(X j + Z j−1X j Z j+1) . (48)

Up to an overall minus sign, which can be changed using
∏L

j=1 Z j , this Hamiltonian is the
transition point between the two Z2 ×Z2 SPT phases.14

13The ZM
2 gauged Hamiltonian HXX/ZM

2
is quite similar to the PXP model Hamiltonian HPXP =

∑L
j=1 Pj−1X j Pj+1

where Pj = (1− Z j)/2 [57]. In fact, it can be written as HXX/ZM
2
= 2(HPXP + eHPXP) where eHPXP =

∑L
j=1
ePj−1X j

ePj+1

with ePj = (1+ Z j)/2. We thank Igor Klebanov for pointing this out.
14More correctly, it is the transition between the two Z2 dipole SPT states [58,59].
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Since the IR limit of the XX model is the compact free boson at R=
p

2, the IR limit of (48)
is the ZM2 -gauged compact free boson at R=

p
2, which is the same as the compact free boson

at R= 1/
p

2 (see Section 2.3).15

The above gauging procedure implements the gauging map on η= +1 operators described
by

�

Z j
X j X j+1

�

Gauge ZM
2−−−−−→

�

(−1) j Z j Z j+1
X j+1

�

. (50)

We emphasize that the gauging map is not implemented by a unitary operator.16 Indeed, a
gauged Hamiltonian is generally not related to the original Hamiltonian by a unitary transfor-
mation. However, as we will see in the next subsection, the XX Hamiltonian HXX is special in
that it is unitarily equivalent to its gauged counterpart HXX/ZM

2
.

The image of the momentum charge (37) under it is

QM
/ZM

2
=

1
2

L
∑

j=1

(−1) j Z j Z j+1 . (51)

Because QM commutes with the Hamiltonian before gauging, QM
/ZM

2
will commute with the

gauged Hamiltonian and generate a U(1) symmetry. The conserved charge QM
/ZM

2
, however,

has quantized 2Z eigenvalues for all even L.17 The factor of 2 can be understood from the fact
that gauging the ZM

2 symmetry compactifies the U(1)M angle from [0,2π) to [0,π). Therefore,
the gauged XX model (48) has a U(1) symmetry with 2π periodic angle generated by

bQ M =
1
2

QM
/ZM

2
≡

1
4

L
∑

j=1

(−1) j Z j Z j+1 . (52)

Its symmetry operator e i θ bQ M
transforms the Pauli operators as

e i θ bQ M
X j e

− i θ bQ M
= X j e

i θ
2 (−1) j(Z j−1Z j−Z j Z j+1) ,

e i θ bQ M
Z j e− i θ bQ M

= Z j .
(53)

15When L = 0 mod 4, the ZM
2 -gauged XX model is unitarily equivalent to the the 1+ 1D Levin-Gu edge Hamilto-

nian

HLG =
L
∑

j=1

(X j − Z j−1X j Z j+1) . (49)

A unitary transformation relating the two Hamiltonians is (X j , Z j)→ (X j ,−Z j) if j = 2, 3 mod 4, and under this

transformation, bQ M is mapped to the conserved charge 1
4

∑L
j=1 Z j Z j+1 of [60]. When L = 2 mod 4, HXX/ZM

2
and HLG

are not unitarily equivalent. In fact, while the former flows to the compact free boson at R= 1/
p

2 with no defects
present, the latter flows to the same CFT but with a defect inserted. Indeed, because a lattice translation defect
of HLG flows to a ZW4 symmetry defect of the R= 1/

p
2 compact free boson [22], HLG at L = 2 mod 4 flows to the

R = 1/
p

2 compact free boson with a ZW2 symmetry defect inserted. This is consistent with 1
4

∑L
j=1 Z j Z j+1 being

integer-quantized for L = 0 mod 4, but quantized to an integer plus half for L = 2 mod 4. This Lieb-Schultz-Mattis
anomaly between translations and U(1) in (49) matches the ’t Hooft anomaly between winding and momentum
symmetry in the IR.

16Suppose it were, then there exists a unitary operator V such that V−1X j+1V = X j X j+1. However, then

V−1
∏L

j=1 X j+1V =
∏L

j=1(X j X j+1) = 1, which is a contradiction.
17The quantization condition on QM

/ZM
2

can be derived using that the product of (−1) j Z j Z j+1 in (51) equals

(−1)L(L+1)/2 = (−1)L/2. Therefore, for any QM
/ZM

2
eigenstate, there must always be an even (odd) number of the

operators (−1) j Z j Z j+1 whose eigenvalues are −1 when L = 0 mod 4 (L = 2 mod 4), and QM
/ZM

2
has eigenvalues

1
2 {−L,−L + 4, . . . , L − 4, L} ⊂ 2Z ( 1

2 {−L + 2,−L + 6, . . . , L − 6, L − 2} ⊂ 2Z).
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This leaves the Hamiltonian (48), invariant since

e i θ bQ M
HXX/ZM

2
e− i θ bQ M

=
L
∑

j=1

X j e−
i θ
2 (−1) j Z j(Z j+1−Z j−1) (1+ Z j−1Z j+1) , (54)

and (1+Z j−1Z j+1) in the local Hamiltonian projects e−
i θ
2 (−1) j Z j(Z j+1−Z j−1) to 1 (i.e., each term in

the sum vanishes whenever Z j−1 ̸= Z j+1). Furthermore, since QM in the compact free boson
at R=

p
2 becomes 2QM in the R= 1/

p
2 compact free boson after gauging ZM2 , the U(1)

symmetry generated by bQ M flows to the momentum U(1) symmetry of the R= 1/
p

2 compact
free boson.

3.2 Lattice U(1) winding symmetry from T-duality

3.2.1 Lattice T-duality

The compact free boson at R=
p

2 and R= 1/
p

2 are equivalent by T-duality. It is therefore
natural to wonder if the XX model (36) and its ZM

2 -gauged version (48) are equivalent — if
there is a lattice T-duality. It turns out that they are unitarily equivalent. The equivalence
between the XX model and its ZM

2 -gauged version was also noted in Ref. 61.
Consider the unitary operator

UT =
L/2
∏

n=1

�

e i π4 Z2n+1 e i π4 X2n+1 e− i π4 X2n CZ2n,2n+1

�

, (55)

where CZ j,k =
1
2(1+ Z j) +

1
2(1− Z j)Zk is the controlled-Z gate. The unitary UT acts on local

operators as18

UTX jU
−1
T =

¨

Yj−1Yj , j odd,

X jX j+1 , j even,
UTYjU

−1
T =

¨

Yj−1Z j , j odd,

Z jX j+1 , j even.
(57)

Using these transformations, it is straightforward to confirm that19

HXX = UTHXX/ZM
2

U−1
T . (58)

The unitary operator UT relates the XX model Hamiltonian to its ZM
2 -gauged version, just as

T-duality does in the compact free boson at radius R=
p

2. However, a defining feature of
T-duality in the continuum is that it also relates the ZM2 -gauged momentum (winding) charge
at R=

p
2 to the winding (momentum) charge at R=

p
2. Without replicating this feature, we

cannot say that UT implements T-duality. In what follows, however, we will show that the XX
model has a U(1) winding symmetry and UT satisfies this requirement of a lattice T-duality.

18The action of U−1
T on the Pauli operators is straightforward to derive using (57). Doing so, we find that

U−1
T X j UT =

¨

Z j , j odd,

X j Z j+1 , j even,
U−1

T Yj UT =

¨

−Z j−1X j , j odd,

−Z j , j even.
(56)

19We note that Ref. 62 found a unitary transformation that maps HXX/ZM
2

to
∑L

j=1(X j X j+1+Z j Z j+1). In terms of UT,

their unitary transformation is implemented by
�

∏L
j=1 e− i π4 Z j e i π4 Yj

�

UT

�

∏L
j=1 CZ j, j+1

�

. Closely related unitaries
were also constructed in Refs. 51 and 63.
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3.2.2 A quantized winding charge

T-duality exchanges the momentum and the winding symmetry in the compact free boson.
Therefore, since bQ M generates a U(1) lattice momentum symmetry of HXX/ZM

2
, we can use UT

to identify a U(1)W symmetry of the XX model that becomes the winding symmetry in the IR.
In doing so, we find the conserved charge

QW = UT bQ
M U−1

T =
1
4

L/2
∑

n=1

(X2n−1Y2n − Y2nX2n+1) , (59)

where the superscript W emphasizes that it generates a U(1)W lattice winding symmetry of the
XX model (i.e., it flows to the U(1) winding symmetry of the compact free boson at R=

p
2).

The lattice charge conjugation symmetry (39) acts on QW as C QW C−1 = −QW, matching its
corresponding action in the IR.20 Furthermore, because of (52), this implies that

QW = UT

�

1
2

QM
/ZM

2

�

U−1
T . (60)

The U(1)W symmetry transforms the Pauli operators as

e i θ QW
X j e− i θ QW

=

¨

X j , j odd,

X j e−
i θ
2 Yj(X j−1−X j+1) , j even,

(61)

e i θ QW
Yj e− i θ QW

=

¨

Yj e
i θ
2 X j(Yj−1−Yj+1) , j odd,

Yj , j even.
(62)

It commutes with HXX since it leaves X2n−1X2n + X2nX2n+1 and Y2nY2n+1 + Y2n+1Y2n+2 invari-
ant. A local operator carrying charge QW = +1 charge is

(

X j

�1+X j−1

2
1−Yj

2
1−X j+1

2

�

, j even,

Yj

�1+Yj−1

2
1+X j

2
1−Yj+1

2

�

, j odd.
(63)

Since the lattice winding symmetry acts differently on qubits residing on even and odds
sites, it is a modulated U(1) symmetry [64–68]. Therefore, the translation operator T does
not commute with the charge QW, instead satisfying

TQWT−1 = −
1
4

L/2
∑

n=1

(Y2n−1X2n − X2nY2n+1)≡ e i π2 QM
QW e− i π2 QM

. (64)

A unitarily related version of the quantized lattice winding charge QW first appeared in [69]
and QW was later discussed in [36–38] as the generator of a U(1) symmetry of the XX model.
Here, we identify the U(1)W symmetry it generates with the winding symmetry in the IR com-
pact free boson theory. Interestingly, while the momentum and winding symmetries commute
in the IR, the lattice charges QW and QM do not commute, i.e., [QM,QW] ̸= 0. Instead, they
generate an extensively large Lie algebra known as the Onsager algebra [36,37,39]. However,
in the IR limit, the lattice charges do commute and flow to the anomalous U(1)W ×U(1)M

symmetry of the compact free boson. We will further discuss the Onsager algebra and its
relation to lattice T-duality in Section 5.

20Gauging the ZC
2 symmetry of the XX model leads to the model HIsing2 =

∑L
j=1(Z j Z j+2 − X j), which flows to the

Ising2 CFT when L = 0 mod 4. The XX model’s U(1) symmetries generated by QM and QW become non-invertible
symmetries under this gauging map. These non-invertible symmetries are the lattice counterpart to the non-
invertible “cosine” symmetries of the Ising2 CFT [31].
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Even though [QM,QW] ̸= 0, the symmetry operators e iφQM
and e iθQW

can still commute
for particular values of φ and θ . For example, e iπQM

and e iθQW
commute for all values of θ .

However, e iφQM
and e iπQW

only commute for φ = π. Therefore, unlike in the compact free
boson, the momentum and winding symmetries in the XX model are on different footing.

We can also identify a lattice winding symmetry of the ZM
2 -gauged XX model (48) using

the unitary operator UT:

bQ W = U−1
T QM UT =

1
2

L/2
∑

n=1

(Y2nZ2n+1 − Z2nY2n+1) . (65)

This flows to the winding charge of the compact free boson at R= 1/
p

2. In fact, denoting by
QW
/ZM

2
the image of QW under the ZM

2 -gauging map (50), it satisfies

QW
/ZM

2
=

1
2
bQ W =⇒ QM = UT

�

2QW
/ZM

2

�

U−1
T . (66)

The factor of 1/2 matches the corresponding result in the compact free boson (see (34)).
Furthermore, the charge conjugation symmetry C =

∏L
j=1 X j of the XX model in this basis

becomes

bC = U−1
T CUT =

L
∏

j=1

[X j]
j+1 . (67)

This is a modulated Z2 symmetry that satisfies T bC T−1 = e iπbQ W
bC .21 Therefore, the bC and

e iπbQ W
symmetry operators of HXX/ZM

2
form a Z2 dipole symmetry. This dipole symmetry arises

after ZM
2 gauging due to the Lieb-Schultz-Mattis (LSM) anomaly between lattice translations,

C and e iπQM
≡ η in the XX model (see Refs. 70–72 for more discussion on the relationship

between dipole symmetries and LSM anomalies via gauging).
Therefore, the unitary transformation implemented by UT is lattice version of the T-duality

map in the XX model since it relates the XX model Hamiltonian and its lattice momentum
and winding charges to their ZM

2 -gauged versions (i.e., Eqs. (60) and (66)), just as T-duality
does in the compact free boson. We summarize this relation in Fig. 1. As we will discuss in
Section 3.3, this lattice T-duality is equivalent to the existence of a non-invertible symmetry of
the XX model.

The unitary UT satisfies U5
T = 1. Since T-duality in the compact free boson maps the radius

R CFT to radius 1/R, it is sometimes said that T-duality has a finite order. However, dualities
of quantum field theories do not have an order: they are maps between classical Lagrangians
that yield the same quantum field theory. More precisely, what is meant is that at the self-dual
point R= 1, the T-duality map becomes a Z4 symmetry of the quantum field theory [73]. It is
the self-duality symmetry that has a finite order.

3.2.3 An unquantized winding charge

The conserved winding charge QW is integer quantized and its relation to QM gives rise to
lattice T-duality in the XX model. It, however, does not commute with QM. Here we note that
there is another conserved charge

eQ W =
1
2
(QW + TQWT−1) =

1
8

L
∑

j=1

(X jYj+1 − YjX j+1) , (68)

21Because lattice translation T of the XX model flows to e iπ(QM+QW ) in R=
p

2 compact free boson [22,
42], T in the ZM

2 -gauged XX model flows to e iπ(2QM+ 1
2 Q

W ) = e i π2 QW
in the R= 1/

p
2 compact free bo-

son. Denoting by C the IR limit of bC , the dipole symmetry algebra T bC T−1 = e iπbQ W
bC on the lattice becomes

e i π2 QWC e− i π2 QW
= e iπQWC in the IR, describing the action of charge conjugation on the winding symmetry.
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which does commute with QM. This conserved charge was considered in Ref. 74. Since the
diagonal part of ZM2 × Z

W
2 emanates from lattice translations, eQ W also flows to the winding

symmetry charge in the IR. Furthermore, eQ W can be written as

eQ W = −
i

2π

L
∑

j=1

g−1
j

� g j+1 − g j−1

2

�

, g j =
p
π

2
(X j + iYj) , (69)

which, with the identification of g j with e iΦ, makes eQ W the most straightforward lattice reg-
ularization of the winding charge QW = − i

2π

∫

e− iΦ∂x e iΦ dx in the compact free boson.
While eQ W is appealing as a naïve lattice regularization, it does not relate to the momentum

charge QM under the lattice T-duality UT. It becomes further less appealing when viewed as
generating a lattice symmetry. Indeed, it is tempting to view the unitary operator e iλeQ W

as an
R symmetry operator (eQ W does not have integer-quantized eigenvalues). For λ∼O(L0) and
large L, e iλeQ W

transforms a local operator acting in a neighborhood of site j to a quasi-local
operator localized around site j. For λ∼O(L), however, it transforms such a local operator to
a non-local operator, i.e. one that acts on all sites in a non-localized fashion [39]. Therefore,
e iλeQ W

is not a locality-preserving unitary. This lack of locality disqualifies e iλeQ W
from being

interpreted as a symmetry operator on the lattice. In the IR limit, however, eQ W becomes
integer-quantized and e iλeQ W

becomes a well-behaved symmetry operator, namely the winding
symmetry operator.

3.3 Non-invertible symmetry and lattice T-duality

T-duality in the compact free boson implies a non-invertible symmetry when R2 ∈ Z>0 (see
Section 2.3). Because the XX model flows to the compact free boson at R =

p
2 and has

a lattice version of T-duality, there is a corresponding lattice non-invertible symmetry. This
symmetry implements the ZM

2 -gauging map (50) followed by the lattice T-duality map (57),
and its action on ZM

2 -symmetric operators follows from







Z2n−1
Z2n

X2n−1 X2n
X2n X2n+1







Gauge ZM
2−−−−−→







−Z2n−1Z2n
Z2nZ2n+1

X2n
X2n+1







UT−→







X2n−1Y2n
−Y2nX2n+1
X2nX2n+1
Y2nY2n+1






. (70)

These transformations are implemented by an operator D that satisfies

DZ j =

¨

(X jYj+1)D , j odd,

(−YjX j+1)D , j even,
DX jX j+1 =

¨

(X j+1X j+2)D , j odd,

(YjYj+1)D , j even.
(71)

This is a non-invertible operator because Dη=D, so it has a nontrivial kernel spanned by
states |ψ〉 for which η|ψ〉= −|ψ〉. Furthermore, using (71), we find

DYjYj+1 =

¨

(X jX j+1)D , j odd,

(Yj+1Yj+2)D , j even,
(72)

which makes it clear that D commutes with the XX model Hamiltonian, as expected.
The non-invertible symmetry operator D satisfies

DQM = 2QWD , DQW =
1
2

QMD . (73)

The action of D on these symmetry charges is the same as the Kramers-Wannier symmetries’
action (34) on the momentum and winding symmetry currents in the compact free boson!
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Therefore, any Hamiltonian that commutes with QM, QW, and D has the lattice T-duality im-
plemented by UT. Indeed, by the construction of D, any Hamiltonian commuting with D will
be unitarily equivalent by UT to its ZM

2 gauged version. In fact, as we argue in Section 6.2, any
many-qubit, local Hamiltonian that commutes with QM and QW must also commute with D.

Using the action of D on the η-symmetric operators and that L is even, we find that D
satisfies the operator algebra22

D2 = (1+η) T e− i π2 QM
, Dη= ηD=D , CD=DC ,

TDT−1 = e i π2 QM
e iπQW

D , D† =D T−1 e i π2 QM
.

(74)

This operator algebra, which mixes with lattice translation, bears many similarities to other
Kramers-Wannier type symmetries [75–81] (see [13,71,82–99] for discussion related to other
non-invertible symmetry operators in quantum spin chains and [100–107] for those in higher-
dimensional quantum spin models). However, something notable about this non-invertible
symmetry operator is that it does not commute with lattice translations. Therefore, it is a
modulated non-invertible symmetry [71]. This is also evident from its action on η-symmetry
operators (71) depending on the position of the qubits. Nevertheless, while T does not com-
mute with D, lattice translations by two sites T2 does commute.

3.3.1 Continuous families of non-invertible symmetries

Using the invertible symmetry operators discussed earlier in this section, we can construct two
families of non-invertible symmetries

D+,φ,θ = e iφQM
e iθQW

D , D−,φ,θ = C e iφQM
e iθQW

D . (75)

These operators act on the momentum and winding charges by

D±,φ,θQM = (±2e± iφQM
QW e∓ iφQM

)D±,φ,θ ,

D±,φ,θQW =
�

±
1
2

e± iφQM
e± iθQW

QM e∓ iθQW
e∓ iφQM�

D±,φ,θ .
(76)

The only operatorD±,φ,θ whose action on QM and QW exactly matches with that in the compact
free boson is D+,0,0 =D. Furthermore, using the operator algebra for D, it is straightforward
to find the operator algebra obeyed by D±,φ,θ . For example, D±,φ,θ satisfies

(D±,φ,θ )
2 = (1+η) e± iφQM

e i (2φ±θ )QW
e

i
2 (θ−π)Q

M
T , (77)

TD±,φ,θ T−1 =D±,φ+π/2,θ+π . (78)

Therefore, D±,φ,θ is always a modulated non-invertible operator that squares to something
involving more than just (1+η)T .

Similar to other non-invertible Kramers-Wannier symmetry operators in 1+ 1D quantum
spin chains, the non-invertible symmetries in the CFT describing the IR arise from D±,φ,θ . Let
us denote by D±,φ,θ the IR limit of D±,φ,θ . Then, since QM and QW flow to the momentum
and winding charges QM and QM of the compact free boson, respectively, and since T flows
to e iπ(QM+QW ) [22,42], the IR operator D±,φ,θ satisfies

(D±,φ,θ )
2 = (1+ e iπQM

)e
i
2 (θ±2φ−π)(QW±2QW ) . (79)

22It is easy to see that Eqs. (73) and (74) are consistent with one another because QW is a modulated operator
that satisfies (64). Similarly, it follows from Eq. (64) that T 2 D=D T 2.
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When θ = π∓ 2φ, this non-invertible symmetry operator obeys the Z2 Tambara-Yamagami
fusion algebra

(D±,φ,π∓2φ)
2 = 1+ e iπQM

. (80)

Therefore, the non-invertible symmetry operators D±,φ,π∓2φ of the XX model flow to the Z2

Tambara-Yamagami fusion category symmetries of the compact free boson at R=
p

2 [31].
In particular, these symmetries are described by the Z2 Tambara-Yamagami fusion category
whose Frobenius-Schur indicator is ε= 1. Furthermore, while not all D±,φ,θ are described by
this fusion category symmetry, they all act on the IR momentum and winding charges as

D±,φ,θQM = ±2QWD±,φ,θ , D±,φ,θQW = ±
1
2
QMD±,φ,θ . (81)

This follows from the expression (76) and the fact that the IR momentum and winding charges
commute.

3.3.2 Matrix product operator expression

Thus far, our discussion of the non-invertible symmetry D related to lattice T-duality in the
XX model did not use an explicit expression for D. Here, we will construct a matrix product
operator (MPO) expression for D. This is most easily done by first rotating to a basis in which
D is simpler, constructing the MPO expression, and then rotating back.

Consider the unitary operator

U =
L/2
∏

n=1

e i π4 (3Y2n−1+Y2n)e− i π4 Z2n , (82)

which implements the transformation

U X j U−1 =

¨

−Z j , j odd,

+Yj , j even,
U Yj U−1 =

¨

+Yj , j odd,

−Z j , j even.
(83)

The XX model under this transformation becomes

UHXXU−1 = −
L
∑

j=1

(Z jYj+1 + Yj Z j+1) . (84)

This Hamiltonian commutes with the operator DU that satisfies

DU X j = Z j Z j+1DU , DU Z j Z j+1 = −X j+1DU . (85)

Since we assume L is even, states charged under the symmetry
∏L

j=1 X j of (84) span the kernel
ofDU , soDU a non-invertible symmetry operator of (84). Using its action on η-symmetric local
operators, we find that the non-invertible symmetry DU once rotated back into the basis of the
XX model Hamiltonian becomes

D= U−1 DU U . (86)

The transformation (85) implemented by DU is similar to that of the non-invertible sym-
metry operator DKW in the critical Ising chain. Using that DKW satisfies DKWX j = Z j Z j+1DKW
and DKWZ j Z j+1 = X j+1DKW, these two operators are related by

DU = e2π i L
4 e iπQM

DKW . (87)
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The advantage of this is that the MPO expression forDKW is well-known [76,80,108],23 and us-
ing it allows us to easily find the MPO expression for D using that D= e2π i L

4 U−1 e iπQM
DKW U .

Doing so, we find that

D= Tr

 

L
∏

j=1

D( j)
!

≡ D(1) D(2) D(L). . . (89)

where the trace is over the virtual Hilbert space and the MPO tensors are

D( j) ≡ D( j) =























1
p

8

 

1− Z j + X j + iYj 1+ Z j + X j − iYj

−1− Z j + X j − iYj 1− Z j − X j − iYj

!

, j odd,

i
p

8

 

1+ Z j − iX j − Yj −1+ Z j − iX j + Yj

1− Z j − iX j + Yj 1+ Z j + iX j + Yj

!

, j even.

(90)

D is a modulated operator because its MPO tensors differ between even and odd sites. The
MPO tensors satisfy

TD( j)T−1 = −Yj+1 e i π4 Z j+1D( j+1)X j+1 e i π4 Z j+1 . (91)

The explicit MPO expression of D is useful since various identities involving D can be
derived explicitly using it. Denoting byX, Y, and Z the Pauli matrix tensors, the matrix tensors
D( j) satisfy

Z jD( j) = (−1) j XD( j)X , D( j)Z j = (−1) j ZD( j)Z ,

X jD( j) =

¨

ZD( j) , j odd,

YD( j)X , j even,
D( j)X j =

¨

D( j)X , j odd,

ZD( j)Y , j even.

(92)

Using these expression, for instance, we find that the ZM
2 symmetry operator η=

∏L
j=1(−1) j Z j

acts on D( j) by
ηD( j)η−1 = YD( j)Y−1 . (93)

Therefore, the ZM
2 symmetry operator acts as Y in the virtual Hilbert space. Furthermore,

using (92), we find that

D(2n−1)D(2n)(Z2n−1) = −ZD(2n−1)ZD(2n) = (X2n−1Y2n)D(2n−1)D(2n+2) ,

D(2n)D(2n+1)(Z2n) = ZD(2n)ZD(2n+1) = (−Y2nX2n+1)D(2n)D(2n+1) ,

D(2n−1)D(2n)D(2n+1)(X2n−1X2n) = − iD(2n−1)YD(2n)YD(2n+1) = (X2nX2n+1)D(2n−1)D(2n)D(2n+1) ,

D(2n)D(2n+1)(X2nX2n+1) = ZD(2n)YD(2n+1)X= (Y2nY2n+1)D(2n)D(2n+1) ,

from which the action (71) of D on Z j and X jX j+1 straightforwardly follows.

23Written in terms of the Pauli operators, the MPO expression for DKW is

DKW = Tr

�

L
∏

j=1

D( j)KW

�

, D( j)KW =
1
p

8

�

1+ Z j + X j + i Yj 1+ Z j − X j − i Yj

−1+ Z j + X j − i Yj 1− Z j + X j − i Yj

�

. (88)
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Figure 2: Symmetries of the XX model and their anomalies. When considering only
lattice translation, the ZC

2 symmetry generated by C =
∏L

j=1 X j , and the spin rotation

symmetry U(1)M generated by QM = 1
2

∑L
j=1 Z j , the only anomaly is the well-known

LSM anomaly [22,40–44]. Once the winding symmetry (59) and non-invertible sym-
metry formed by D (71) are included, three new types of anomalies arise.

4 ’t Hooft anomalies in the XX model

In Section 3, we identified a lattice T-duality in the XX model and related it to the lattice
winding and non-invertible symmetries that flow to well-known symmetries of the compact
free boson at R=

p
2 in its IR limit. The compact free boson, however, also has various ’t Hooft

anomalies. In fact, as we reviewed in Section 2.1, all of its anomalous invertible symmetries
involve the winding symmetry. Furthermore, the mixed anomaly between the momentum and
winding symmetries enforces any symmetric theory to be gapless.

Having found a lattice winding symmetry in the XX model, it is natural to wonder how
its anomalies compare to those in the compact free boson. However, it only makes sense to
compare anomalies of symmetries whose symmetry operators form the same group/algebra.
Since the U(1) momentum and winding symmetry operators do not commute on the lattice but
do in the compact free boson, their total symmetry groups are different. Nonetheless, some of
the IR anomalies can still be matched by those on the lattice because there are sub-symmetries
that obey the same group/algebra on the lattice and in the continuum. In particular, the lattice
symmetry operators η, C , and e iθQW

satisfy

ηC = Cη , η e iθQW
= e iθQW

η , C e iθQW
= e− iθQW

C , (94)

which give the group multiplication law forZM
2 ×Z

C
2 ⋉U(1)W (recall that we assume L is even).

This is the same as the ZM2 ×Z
C
2 ⋉U(1)W symmetry in the compact free boson, so we can

compare their anomalies.
In this section, we will discuss the ’t Hooft anomalies in the XX model involving the lattice

winding symmetry identified in Section 3.2, as well as the non-invertible symmetry from 3.3.
We will emphasize their connection to corresponding anomalies of the compact free boson. In
particular, we first show how the ZM

2 ×U(1)W and ZM
2 ×Z

W
2 ×Z

C
2 symmetries of the XX model

are anomalous, and how these anomalies can be diagnosed using symmetry defects (just as
in the IR). The various anomalies present in the XX model are summarized in Fig. 2. Our
discussion follows [22], which discusses various anomalies of the XX model (and the more
general XXZ model) that do not involve the lattice winding symmetry generated by QW. Then,
we prove that any quantum spin chain with both the U(1)M and U(1)W symmetries must be
gapless, reminiscent of the ’t Hooft anomaly of U(1)M ×U(1)W in the compact free boson.
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4.1 The mixed anomaly of momentum and winding symmetries

In the compact free boson, there is a mixed anomaly between U(1)M and U(1)W that manifests
through spectral flow (i.e., charge pumping in the corresponding 2+ 1D SPT). Here, we will
show how this anomaly and related spectral flow arise from the ZM

2 ×U(1)W symmetry in the
XX model using symmetry defects. We only consider the ZM

2 ⊂ U(1)M sub-symmetry since
other U(1)M symmetry operators do not commute with U(1)W symmetry operators.

Let us first insert an η-symmetry defect. Since ZM
2 is an internal symmetry whose symmetry

operator η is unitary, we can do so by first transforming all operators by ηI ,J =
∏J

j=I(−1) j Z j
(i.e., η truncated to sites I ≤ j ≤ J). By having |I − J | ∼O(L), this modifies (quasi-)local,
η-symmetric operators in localized neighborhoods around sites I and J . These two local-
ized modifications are η-symmetry defects, which we take to reside at the links 〈I − 1, I〉 and
〈J , J + 1〉, respectively. To find the corresponding operator with only one symmetry defect at
〈I − 1, I〉, we then remove the modifications near site J by hand.

Using this procedure, we find that the XX Hamiltonian with a η-defect is

H〈I−1,I〉
η = HXX − 2(X I−1X I + YI−1YI) , (95)

which differs from the original XX Hamiltonian in the signs of the terms on the 〈I − 1, I〉 link.
Because the Hamiltonian H〈I−1,I〉

η differs from HXX, the symmetry operators of the XX model
will generally also be modified (that is if they remain symmetries, of course).24 Indeed, this
procedure also modifies the lattice translation operator T to Tη = ZI T .25 This twisted lattice

translation satisfies the twisted periodic boundary conditions [Tη]L = e2π i L
4 η. Furthermore,

the winding symmetry charge QW in the presence of this defect becomes

QW
η =

¨

QW + 1
2 YI−1X I , I odd,

QW − 1
2 X I−1YI , I even.

(96)

The symmetry defect can be moved from 〈I − 1, I〉 to 〈I , I + 1〉 (and vice versa) by conjugating
observables (e.g., the defect Hamiltonian and symmetry operators) with the unitary operator
ZI . For instance, ZI H

〈I−1,I〉
η Z−1

I = H〈I ,I+1〉
η . Therefore, the spectrum of H〈I−1,I〉

η does not depend
on I , and the symmetry defect is referred to as a topological defect for this reason.

While QW has integer eigenvalues, the eigenvalues of QW
η are integer plus a half. This

is because QW commutes with YI−1X I and X I−1YI , both of which have integer eigenvalues.
Consequentially, after inserting the η-defect,

QW
η ∈ Z+

1
2
⇒ e2π iQW

η = −1 . (97)

This matches the spectral flow formula in (26) (with φ = π) in the continuum compact boson
theory. As discussed in Section 2, this is a manifestation of a mixed anomaly between the ZM

2
and U(1)W symmetries.

24Using the truncated symmetry operator ηI ,J is a systematic way of finding how inserting an η-symmetry defect
modifies symmetry operators. However, when the defect Hamiltonian does not commute with local operators, there
is a practical and often simpler way to find the modified symmetry operators after inserting a symmetry defect in
1+ 1D. In particular, they can be found by first observing how (and if) the defect-free symmetry operators fail to
commute with the defect-Hamiltonian. If they no longer commute, we then modify them by operators localized
near the defect in order to make them commute. This will always be possible if the symmetry remains after
inserting the defect. For example, the defect-free translation operator T satisfies T H 〈I−1,I〉

η
T−1 = H 〈I ,I+1〉

η
and does

not commute with H 〈I−1,I〉
η

. However, since ZI is the defect movement operator, we modify T to ZI T ≡ Tη which

does commute with H 〈I−1,I〉
η

. This simplified procedure returns the correct operator up to an overall phase factor.
However, this phase does not affect the symmetry operators’ algebra or their action on states.

25To avoid cluttered notation, we will drop the I dependency of the twisted symmetry operator and label them
just by the symmetry defect.
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Having seen a manifestation of the mixed anomaly after inserting a ZM
2 defect, let us now

insert a θ ∈ U(1)W symmetry defect instead. For truncating e iθQW
, it is convenient to first

rewrite

QW =
L
∑

j=1

qW
j, j+1 , qW

j, j+1 = −
1
4

YjX j+1(−Z j Z j+1)
j . (98)

The U(1)W symmetry operator e iθQW
can then be rewritten as e iθQW

=
∏L

j=1 e iθqW
j, j+1 because

the charge density operators qW
j, j+1 all mutually commute (i.e., qW

j, j+1 qW
ℓ,ℓ+1 = qW

ℓ,ℓ+1 qW
j, j+1).

In this form, we now introduce the truncated U(1)W symmetry operator
[e iθQW

]I ,J =
∏J

j=I e iθqW
j, j+1 , which inserts a θ -symmetry defect at 〈I − 1, I〉 and a (−θ )-

symmetry defect at 〈J , J + 1〉. Using this, we find that the defect Hamiltonian with a θ ∈ U(1)W

defect inserted at 〈I − 1, I〉 is

eH〈I−1,I〉
θ

=

¨

HXX + (YI−1YI + YI YI+1)(e−
i θ
2 X I YI+1 − 1) , I odd,

HXX + (X I−1X I + X I X I+1)(e
i θ
2 YI X I+1 − 1) , I even.

(99)

The unitary operator moving the defect from 〈I − 1, I〉 to 〈I , I + 1〉 is e− iθqW
I ,I+1 . Further-

more, because the U(1)W and U(1)M symmetry operators fail to commute, inserting the θ -
symmetry defect explicitly breaks U(1)M down to its ZM

2 subgroup. The surviving ZM
2 symme-

try of eH〈I−1,I〉
θ

, however, is still generated by η since η commutes with the truncated operator

[e iθQW
]I ,J .

There is something perhaps surprising about the defect Hamiltonian eH〈I−1,I〉
θ

: the factor of

2 dividing θ in (99) makes eH〈I−1,I〉
θ

4π-periodic in θ instead of 2π-periodic. Therefore, the
fusion rules of the θ -defect are described by a lift of U(1)W. However, The Hamiltonians at θ
and θ + 2π are unitarily equivalent:

eH〈I−1,I〉
θ+2π =

¨

X I eH
〈I−1,I〉
θ

X I , I odd,

YI eH
〈I−1,I〉
θ

YI , I even,
(100)

so the lift can be trivialized using a unitary operator. This is something that can generically
happen when inserting symmetry defects [22]. In particular, using the θ -dependent unitary
operator

VI(θ ) =

¨

e
i θ
4 X I , I odd,

e−
i θ
4 YI , I even,

(101)

we rotate the Hilbert space into a basis where the defect-Hamiltonian becomes

H〈I−1,I〉
θ

= VI(θ ) eH
〈I−1,I〉
θ

V−1
I (θ ) =

¨

HXX + (YI−1YI + YI YI+1)(e
− iθX I

1+YI+1
2 − 1) , I odd ,

HXX + (X I−1X I + X I X I+1)(e
iθ YI

1+XI+1
2 − 1) , I even .

(102)

In this basis, the defect movement operator is still e− iθqW
I ,I+1 , and the Hamiltonian is now 2π

periodic in θ .
The unitary operator VI is not ZM

2 -symmetric, and the ZM
2 symmetry operator η in the above

basis becomes

η(θ ) = VI(θ )ηV−1
I (θ ) =

¨

ηe−
i θ
2 X I , I odd,

ηe
i θ
2 YI , I even.

(103)

While η(θ ) is still a Z2 operator, it is not 2π periodic in θ . Instead, η(θ ) satisfies

η(θ + 2π) = −η(θ ) . (104)
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However, this is precisely spectral flow and a manifestation of the ’t Hooft anomaly. In partic-
ular, inserting a 2π winding symmetry defect by adiabatically tuning θ → θ + 2π causes ZM

2
even (odd) states to become ZM

2 odd (even) (i.e., pumps a ZM
2 symmetry charge). Again, this

exactly matches the spectral flow formula (27) in the continuum with the identification that
η flows to e iπQM

.
A consequence of the anomaly between ZM

2 and U(1)W is that the symmetry operators

e iφQM
and e iθQW

can not simultaneously be made onsite. For instance, consider the ZM
2 ×Z

W
2

sub-symmetry generated by η= e iφQM
and e iπQW

. Using the lattice T-duality unitary operator
UT, we can rotate to a basis where26

U−1
T e iπQM

UT = e iπbQ W
=

L
∏

j=1

X j , (105)

U−1
T e iπQW

UT = e iπbQ M
=

L
∏

j=1

CZ j, j+1 . (106)

Therefore, the Z2 symmetry operator e iπQM
e iπQW

is unitarily equivalent to
∏L

j=1 CZ j, j+1
∏L

k=1 Xk, which is a well-known non-onsiteable (“CZX”) symmetry operator

whose anomaly is classified by the generator of H3(Z2, U(1))≃ Z2 [109]. Therefore, since
e iπQM

and e iπQW
cannot be made simultaneously onsite, e iφQM

and e iθQW
cannot as well.

4.2 Type III anomaly of ZM
2 ×Z

W
2 ×Z

C
2

There is an ’t Hooft anomaly of ZM2 ×Z
W
2 ×Z

C
2 in the compact free boson manifested by the

projective representations formed by two of these Z2 symmetries in the defect Hilbert space of
the third Z2 symmetry (e.g., ZM2 ×Z

W
2 realizing a projective representation in the nontrivial

ZC2 defect Hilbert space). It is often called a type III anomaly [49, 50] due to the form of its
SPT theory (28).

In the XX model, the lattice ZM
2 ×Z

W
2 ×Z

C
2 symmetry is generated by the unitary opera-

tors27

η=
L
∏

j=1

(−1) j Z j , e iπQW
=

L/2
∏

n=1

e i π4 X2n−1Y2n e− i π4 Y2nX2n+1 , C =
L
∏

j=1

X j . (108)

The winding symmetry operator e iπQW
is relatively complicated, but it acts on the Pauli oper-

26In deriving this expression for e iπbQ M
, we used that for even L, bQ M = 1

4

∑L
j=1(−1) j Z j Z j+1 can be written as

− 1
2

∑L
j=1(−1) jCZ j, j+1.

27Using the unitary operator U−1
T whose action on the Pauli operators is (56), we can change basis to where the

ZM
2 ×Z

W
2 ×Z

C
2 symmetry operators become

e iπbQ W
=

L
∏

j=1

X j , e iπbQ M
=

L
∏

j=1

CZ j, j+1 , bC =
L
∏

j=1

[X j]
j+1 . (107)

These are known to generate a Z2 ×Z2 ×Z2 symmetry with a type III anomaly (see, e.g., Ref. 90). This anomaly
falls into a class of anomalous symmetries formed by G symmetry operators and a G-SPT entangler. In particular,
e iπbQ M

is the SPT entangler for an SPT—the cluster state—protected by the G = Z2 ×Z2 symmetry generated by
e iπbQ W

and bC . Indeed, these three operators are symmetries of the Hamiltonian (48), which is the transition point
between the paramagnet and cluster Hamiltonians.

25

https://scipost.org
https://scipost.org/SciPostPhys.18.4.121


SciPost Phys. 18, 121 (2025)

ators as

e iπQW
X j e

− iπQW
=

¨

X j , j odd,

X j−1X jX j+1 , j even,
(109)

e iπQW
Yj e
− iπQW

=

¨

Yj−1YjYj+1 , j odd,

Yj , j even.
(110)

In what follows, we will see the projective algebras arising from inserting each of the Z2 defects
in the context of the XX model and confirm the type III anomaly of ZM

2 ×Z
W
2 ×Z

C
2 .

We first insert anη-symmetry defect at the link 〈I − 1, I〉. As was worked out in the previous
section, the defect Hamiltonian is (95) and the winding symmetry charge becomes (96). The
modified winding symmetry charge causes the ZW

2 symmetry operator to become

e iπQW
η =

¨

i e iπQW
YI−1X I , I odd,

− i e iπQW
X I−1YI , I even.

(111)

On the other hand, the charge conjugation symmetry operator C does not change: Cη = C .
This can be seen from the fact that C still commutes with the η-defect Hamiltonian (95).
After inserting the η-symmetry defect, the ZW

2 and ZC
2 symmetry operators obey the projective

algebra
Cη e iπQW

η = −e iπQW
η Cη . (112)

This nontrivial projectivity is precisely the expected manifestation of the type III anomaly for
the ZM

2 ×Z
W
2 ×Z

C
2 symmetry.

Let us next check that inserting a e iπQW
symmetry defect causesZM

2 ×Z
C
2 to realize a projec-

tive representation. In the previous section, we inserted a e iθQW
symmetry defect at 〈I − 1, I〉

for general θ . The defect Hamiltonian (102) for θ = π simplifies to

H〈I−1,I〉
W =

¨

HXX − (YI−1YI + YI YI+1)(YI+1 + 1) , I odd,

HXX − (X I−1X I + X I X I+1)(X I+1 + 1) , I even.
(113)

After inserting this symmetry defect, the ZM
2 and ZC

2 symmetry operators become

ηW =

¨

− i ηX I , I odd,

i ηYI , I even,
CW =

¨

X I C , I odd,

C , I even.
(114)

The modified ZM
2 symmetry operator for general θ is given by (103), and we arrive at the above

expression by setting θ = π. Furthermore, we found the modified ZC
2 symmetry operator by

modifying C such that it commutes with H〈I−1,I〉
W . After inserting the e iπQW

symmetry defect,
the ZM

2 ×Z
C
2 symmetry operators satisfy the projective algebra

ηWCW = −CWηW . (115)

Again, this is the expected signature of a type III anomaly for the ZM
2 ×Z

W
2 ×Z

C
2 symmetry.

Lastly, the Hamiltonian with a C defect at link 〈I − 1, I〉 is

H〈I−1,I〉
C = HXX − 2YI−1YI . (116)

The ZM
2 and ZW

2 symmetry operators in the presence of the C-defect become

ηC = η , e iπQW
C =

¨

X I e iπQW
, I odd,

X I−1 e iπQW
, I even.

(117)
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The ZM
2 symmetry operator η still commutes with this defect Hamiltonian and, therefore, is

not modified by the symmetry defect. The ZW
2 symmetry operator e iπQW

does not commute

with H〈I−1,I〉
C , and the above expression is found by modifying e iπQW

to make it commute.
The ZM

2 and ZW
2 symmetry operators after inserting the C-symmetry defect form the projective

algebra
ηC e iπQW

C = −e iπQW
C ηC . (118)

Once again, this matches the expectation from the type III anomaly for the ZM
2 ×Z

W
2 ×Z

C
2

symmetry.
All three Z2 symmetries obey these projective algebras upon inserting respective defects.

Therefore, we find that the ZM
2 ×Z

W
2 ×Z

C
2 symmetry of the XX model has a type III anomaly,

which is the same as the type III anomaly of ZM2 ×Z
W
2 ×Z

C
2 in the compact free boson.

4.3 Anomaly of the non-invertible symmetry

Just as invertible symmetries can have ’t Hooft anomalies, non-invertible symmetries can as
well [110–115]. When discussing ’t Hooft anomalies of non-invertible symmetries, it is useful
to define an ’t Hooft anomaly as an obstruction to a Symmetry-Protected Topological (SPT)
phase (i.e., a phase with a symmetric, non-degenerate gapped ground state on all spatial man-
ifolds) [32,110,111,115,116]. This definition is motivated by ’t Hooft anomaly matching and
avoids having to define the gauging of non-invertible symmetries. We will now argue that the
non-invertible symmetry D arising from lattice T-duality is anomalous in this sense.

To do so, we first restrict ourselves to spin chains for which the number of sites L = 0 mod 4.
For such system sizes, we can define the unitary operator

U4 =
L/4
∏

n=1

Z4n+1X4n+2Y4n+3 . (119)

Using this unitary operator and the unitary U given by (82), we can rotate the Hilbert space
to a basis in which

(U4U)HXX (U4U)−1 =
L
∑

j=1

(Z jYj+1 − Yj Z j+1) , (120)

(U4U)D (U4U)−1 =DKW . (121)

Eq. (121) follows from (86) and (87). DKW is the non-invertible symmetry operator of the
critical Ising chain, which satisfies

DKWX j = Z j Z j+1DKW , DKWZ j Z j+1 = X j+1DKW . (122)

The benefit of this basis transformation is that the operator D becomes the well-known
non-invertible Kramers-Wannier symmetry operator DKW, which has been shown to be anoma-
lous [76, 117]. Therefore, because D and DKW are related by the finite-depth local unitary
U4U when L = 0 mod 4, the symmetry generated by D is also anomalous when L = 0 mod 4.
However, the symmetry generated by D does not change when L = 2 mod 4. In particular, its
operator algebra is the same for all even L. (This is to be contrasted with odd L, for which
D no longer commutes with HXX.) Therefore, this obstruction to an SPT is expected to per-
sist for all even L, and the symmetry generated by D has an ’t Hooft anomaly. The ’t Hooft
anomaly for L = 2 mod 4 can likely be argued more rigorously by generalizing the arguments
from Refs. 117 and 76, but it is not something we will pursue here.
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4.4 Anomaly enforced gaplessness

Thus far, we have seen how manifestations of ’t Hooft anomalies involving the momentum and
winding symmetries in the XX model are the same as those in the compact free boson. In this
subsection, we will show that any local Hamiltonian (defined on the same Hilbert space as the
XX model) that is both U(1)M and U(1)W symmetric must be gapless. To do this, we will use
a theorem from Ref. 39 proven in the fermionized counterpart of the XX model.

Fermionizing the XX model on L sites gives rise to a local fermionic Hamiltonian on L
sites, where each site j carries a two-dimensional Hilbert space Hf

j acted on by the complex

fermion operators c j and c†
j . It is implemented by a map that relates η-symmetric operators

of the XX model to (−1)F ≡ (−1)
∑L

j=1(c
†
j c j−

1
2 ) symmetric operators of the fermionic model. For

the fermionization map we consider, it is convenient to rewrite the complex fermion creation
operator c†

j acting on Hf
j as c†

j =
1
2(a j − i b j), where the real fermion operators a j and b j satisfy

{a j , b j′}= 0 , {a j , a j′}= 2δ j, j′ , {b j , b j′}= 2δ j, j′ . (123)

In terms of these real fermion operators, the fermionization map is specified by

Z j → ia j b j , X jX j+1→

¨

− ia ja j+1 , j odd,

− i b j b j+1 , j even.
(124)

We refer the reader to Appendix B.2.3 for a detailed derivation.
The map (124) fully specifies the fermionization because any η-symmetric operator can

be constructed from Z j and X jX j+1. For example, the η-symmetric operator YjYj+1 appearing
in the XX model Hamiltonian is a product of the above operators. Under fermionization, it
becomes

YjYj+1 = Z jX jX j+1Z j+1→

¨

− i b j b j+1 , j odd,

− ia ja j+1 , j even.
(125)

Using this, we find that fermionizing the XX model Hamiltonian yields the two-flavor Majorana
chain Hamiltonian

H2maj = − i
L
∑

j=1

(a ja j+1 + b j b j+1) , (126)

with periodic boundary conditions. Furthermore, the U(1)M and U(1)W symmetry charges QM

and QW become

QM→
1
2

L
∑

j=1

ia j b j ≡QV , QW→
1
4

L
∑

j=1

ia j b j+1 ≡
1
2

QA . (127)

Here, QV and QA denote the vector and axial symmetry charges of the Hamiltonian (126)
discussed in Ref. 39.

Fermionizing any local bosonic Hamiltonian commuting with QM and QW yields a local
fermionic Hamiltonian commuting with QV and QA. In fact, there is a one-to-one correspon-
dence of such bosonic and fermionic models. In Ref. 39, it was proven that any QV and QA

symmetric deformation to (126) never gaps out the theory. In other words, the axial and vec-
tor lattice symmetries enforce gaplessness. While fermionization changes the global spectrum
on a closed chain, it does not change the scaling behavior of the energy gap. Therefore, the
theorem proved in Ref. 39 for the fermion models implies that the lattice charges QM and QW

enforce gaplessness in any symmetric spin chain model. This is reminiscent of the consequence
of the anomaly in the continuum compact boson theory.
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It is interesting to perform the the unitary transformation (X2n, Y2n)→ (Y2n, X2n), which
implements the transformations

QM→−
1
2

L
∑

j=1

Z j , QW→−
1
4

L
∑

j=1

(−1) jX jX j+1 . (128)

Therefore, the gapless constraint induced by QM and QW implies that any even-length quan-
tum spin chain whose Hamiltonian commutes with

∑L
j=1 Z j and

∑L
j=1(−1) jX jX j+1 is gapless.

When L = 0 mod 4, the unitary transformation (X j , Yj)→ (−X j ,−Yj) for j = 0, 1 mod 4 further

implies that any Hamiltonian commuting with
∑L

j=1 Z j and
∑L

j=1 X jX j+1 must be gapless. In

fact, the operators
∑L

j=1 Z j and
∑L

j=1 X jX j+1 were the ones consider by Onsager in Ref. 69 as
generators of the now-called Onsager algebra (see Section 5.1).

4.4.1 Proof

In the remainder of this subsection, we review the proof from Ref. 39 that QV and QA symmet-
ric Hamiltonians are always gapless. The U(1)V and U(1)A symmetries act on the Majorana
fermions as

QV =
i
2

L
∑

j=1

a j b j , e iϕQV

�

a j
b j

�

e− iϕQV
=

�

cosϕ a j + sinϕ b j
cosϕ b j − sinϕ a j

�

,

QA =
i
2

L
∑

j=1

a j b j+1 , e iϕQA

�

a j
b j

�

e− iϕQA
=

�

cosϕ a j + sinϕ b j+1
cosϕ b j − sinϕ a j−1

�

.

(129)

Therefore, the operator e− i π2 QA
e i π2 QV

acts as

e− i π2 QA
e i π2 QV

�

a j
b j

�

e− i π2 QV
e i π2 QA

=

�

a j−1
b j+1

�

. (130)

This action on the real fermion operators is the same as the action from TbT−1
a , where Ta and

Tb are Majorana translation operators satisfying

Taa j T
−1
a = a j+1 , Ta b j T

−1
a = b j , Tba j T

−1
b = a j , Tb b j T

−1
b = b j+1 . (131)

Thus, any Hamiltonian commuting with QV and QA also commutes with TbT−1
a .

Repeated actions of TbT−1
a makes any operators constructed from both a and b operators

increasingly non-local. Therefore, any local Hamiltonian must include terms made of only a or
only b real fermion operators. Consider 2ℓ-fermion operators involving only a or b fermions.
For ℓ= 1, these take the form a ja j+n and b j b j+n. However, the U(1)V symmetry requires that
they appear in combinations a ja j+n + b j b j+n. A general allowed linear combination of such
operators for a fixed n is

L
∑

j=1

g j,n

�

ia ja j+n + i b j b j+n

�

, (132)

which under the action of TbT−1
a becomes

L
∑

j=1

g j,n

�

ia j−1a j+n−1 + i b j+1 b j+n+1

�

=
L
∑

j=1

(g j+1,n ia ja j+n + g j−1,n i b j b j+n) . (133)
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However, TbT−1
a invariance requires g j+1,n = g j,n for all j. Therefore, we drop the subscript j

in g j,n and write the above general quadratic QV and QA symmetric deformation as

L
∑

j=1

gn

�

ia ja j+n + i b j b j+n

�

. (134)

Having worked out the ℓ= 1 case, we next consider 2ℓ-fermion operators with ℓ≥ 2.
These are all of the form

Oa
2ℓ( j1, . . . , j2ℓ) =

2ℓ
∏

m=1

a jm , Ob
2ℓ( j1, . . . , j2ℓ) =

2ℓ
∏

m=1

b jm . (135)

An infinitesimal e iϕQV
transformation acts on these operators as

Oa
2ℓ( j1, . . . , j2ℓ)→ Oa

2ℓ( j1, . . . , j2ℓ) +ϕ
2ℓ
∑

m=1

a j1 · · · a jm−1
b jm a jm+1

· · · a j2ℓ +O(ϕ2) ,

Ob
2ℓ( j1, . . . , j2ℓ)→ Ob

2ℓ( j1, . . . , j2ℓ)−ϕ
2ℓ
∑

m=1

b j1 · · · b jm−1
a jm b jm+1

· · · b j2ℓ +O(ϕ2) .

(136)

Each O(ϕ) deformation of Oa
2ℓ consists of 2ℓ− 1 of the a fermions and one b fermion, while

that of Ob
2ℓ consists of 2ℓ− 1 of the b fermions and one a fermion. Therefore, these deforma-

tions must be linearly independent when ℓ≥ 2. Consequently, there is no linear combination
of Oa

2ℓ and Ob
2ℓ with ℓ≥ 2 that preserve the U(1)V symmetry.

From the above arguments, we have found that all QV and QA symmetric local Hamiltoni-
ans are constructed from (134) and of the form

HV,A = −
L
∑

j=1

� N
∑

n=1

gn

�

ia ja j+n + i b j b j+n

�

�

= −2i
L
∑

j=1

� N
∑

n=1

gn

�

c†
j c j+n + c jc

†
j+n

�

�

. (137)

In order for HV,A to be local, we assume that N/L→ 0 in the L→∞ limit. This is a gapless
Hamiltonian for all choices of gn, which has been discussed in, for example, Ref. 118. Indeed,
performing the Fourier transformation

c j =
1
p

L

∑

−L/2≤k<L/2

e
2π i k j

L γk , (138)

HV,A in momentum space becomes

HV,A =
∑

−L/2≤k<L/2

� N
∑

n=1

4gn sin
2πkn

L

�

γ†
kγk . (139)

For any non-trivial choice of the parameters {gn}, this Hamiltonian has an algebraically van-
ishing spectral gap in the L→∞ limit.

5 The Onsager algebra

As we saw in section 3.2, unlike in the compact free boson, the U(1)M and U(1)W symmetries
in the XX model do not commute. Instead, they generate an extensively-large Lie algebra
known as the Onsager algebra, which was demonstrated in Refs. [36,37,39]. In this section,
we will further explore the interplay of the conserved charges forming the Onsager algebra
with lattice T-duality and the various related non-invertible symmetries of the XX model. In
particular, we will see that the non-invertible and translation symmetries in the XX model have
a nontrivial interplay with the conserved Onsager charges.
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5.1 Onsager charges from bosonization

Before getting into this rich interplay, we first review the conserved Onsager charges in the XX
model. The Onsager charges are simplest to introduce in the fermionized version (126) of the
XX model. In terms of the real fermion operators a j and b j , the conserved Onsager charges of
the two-Majorana chain (126) are [39]

Q f
n =

i
2

L
∑

j=1

a j b j+n , G f
n =

i
2

L
∑

j=1

(a ja j+n − b j b j+n) . (140)

Notice that the axial and vector charges (127) are contained within these expressions, given
by Q f

0 =QV and Q f
1 =QA. The Onsager charges get their name from the fact that they satisfy

the Onsager algebra [69]

[Q f
n,Q f

m] = iG f
m−n , [G f

n, G f
m] = 0 , [Q f

n, G f
m] = 2i(Q f

n−m −Q f
n+m) . (141)

From these relations, it is clear that Q f
0 =QV and Q f

1 =QA are generators of this algebra.
To relate this fermion model and its conserved operators to the XX model, we implement

the bosonization map

ia j b j → Z j , ia j b j+1→

¨

X jYj+1 , j odd,

−YjX j+1 , j even.
(142)

This bosonization is the “inverse” of the fermionization map (124).28 Indeed, using that the
bilinears ia ja j+1 = i( ia j b j+1)( ia j+1 b j+1) and i b j b j+1 = i( ia j b j)( ia j b j+1), their image under
this bosonization is

ia ja j+1→

¨

−X jX j+1 , j odd,

−YjYj+1 , j even,
(143)

i b j b j+1→

¨

−YjYj+1 , j odd,

−X jX j+1 , j even.
(144)

We refer the reader to Appendix B.2.1 for further discussion and a detailed derivation of this
bosonization procedure.

Let us denote by Qn and Gn the image of Q f
n and G f

n under this bosonization map. Just like
Q f

n and G f
n, they also satisfy the Onsager algebra

[Qn,Qm] = iGm−n , [Gn, Gm] = 0 , [Qn, Gm] = 2i(Qn−m −Qn+m) . (145)

It is straightforward to find the explicit, albeit cumbersome, expressions for Qn and Gn in terms
of the Pauli operators using (142) (see Appendix C). For example, we find that

Q0 =QM , Q1 = 2QW , G1 =
1
2

∑

n

(−1) j(X jX j+1 − YjYj+1) , (146)

which is consistent with (127).
There are simpler and more enlightening expressions for Qn and Gn in terms of the momen-

tum and winding charges QM (37) and QW (59). To derive them, we introduce the images of

28Importantly, the bosonization map is not an invertible map on the entire Hilbert space. More precisely, these
bosonization and fermionization maps are inverses of each other when restricted to the η and (−1)F even local
operators and states of the XX and the two-flavor Majorana models, respectively.
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the Majorana translation operators Ta and Tb under bosonization by Da and Db, respectively.
Since Ta and Tb satisfy

TaQ f
n =Q f

n−1Ta , TbQ f
n =Q f

n+1Tb , TaG f
n = G f

nTa , TbG f
n = G f

nTb , (147)

the operators Da and Db satisfy

DaQn =Qn−1Da , DbQn =Qn+1Db , DaGn = GnDa , DbGn = GnDb . (148)

The first two expressions are particularly suggestive that Qn can be solved for recursively with
the “initial conditions” Q0 =QM and Q1 = 2QW. Then, the related expressions for Gn would
follow from the Onsager algebra relation [Qn,Qm] = iGm−n.

To do so, however, we need to know a bit more about the operators Da and Db. In partic-
ular, since Ta and Tb satisfy

Ta( ia j b j) = ( ia j+1 b j)Ta , Ta( i b j b j+1) = ( i b j b j+1)Ta , Ta( ia ja j+1) = ( ia j+1a j+2)Ta ,

Tb( ia j b j) = ( ia j b j+1)Tb , Tb( i b j b j+1) = ( i b j+1 b j+2)Tb , Tb( ia ja j+1) = ( ia ja j+1)Tb ,

we can deduce from the bosonization map (142) that

DaZ j =

¨

(−YjX j+1)Da , j odd,

(X jYj+1)Da , j even,
Da(X jX j+1) =

¨

(Yj+1Yj+2)Da , j odd,

(X jX j+1)Da , j even,

DbZ j =

¨

(X jYj+1)Db , j odd,

(−YjX j+1)Db , j even,
Db(X jX j+1) =

¨

(X jX j+1)Db , j odd,

(Yj+1Yj+2)Db , j even.

(149)

These expressions are useful because they are similar to the action of D on η-even operators
given by (71). In fact, from their actions on these Pauli operators, we find that

Da = e i π2 QM
D , Db = e iπQW

D . (150)

In particular, these expressions make it clear that Da,Db are non-invertible (since D is).
Indeed, bosonization turns the invertible Majorana translation operators Ta, Tb into non-
invertible operators [75,119].

Equipped with Eq. (150), the first two equations of (148) can be written as

DQn =
�

e− i π2 QM
Qn−1 e i π2 QM

�

D , DQn =
�

e− iπQW
Qn+1 e iπQW

�

D . (151)

These can now be used to recursively solve for Qn since we know that D acts on QM and QW

as (73). For example, setting n= 1 and using DQW = 1
2QMD, we find that

D(2QW) =
�

e− iπQW
Q2 e iπQW

�

D =⇒ Q2 = e iπQW
QM e− iπQW

, (152)

thereby expressing Q2 in terms of QM and QW. Using this expression for Q2, we can find the
expression for Q3 using (151) and continue on to find Qn for all n> 0. Similarly, setting n= 0
and using DQM = 2QWD, we find that

DQM =
�

e− i π2 QM
Q−1 e i π2 QM

�

D =⇒ Q−1 = 2e i π2 QM
QW e− i π2 QM

. (153)

Again, using this we can find Q−2 in terms of QM and QW, and eventually Qn for all n< 0. The
general expression for Qn using this recursive solution is29

Qn =

¨

2 SnQWS−1
n , n odd,

SnQMS−1
n , n even,

(154)

29This derivation of Qn given by (154) is ambiguous up to multiplying Qn by the operator η since ηD=Dη=D.
However, the expression (154) is correct since it satisfies a crucial locality property obeyed by the explicit expres-
sions from Appendix C: each Qn is a sum of operators q( j)n acting within a size ∼ n neighborhood of each site j.
Replacing Qn by Qnη or ηQn would spoil this property. Furthermore, while conjugating Qn by η preserves this
locality, each Qn commutes with η, so it does not affect their expressions.

32

https://scipost.org
https://scipost.org/SciPostPhys.18.4.121


SciPost Phys. 18, 121 (2025)

where the unitary operator Sn is an alternating product of e iπQW
and e i π2 QM

, given by

Sn =

¨
∏|n|−1

k=1 sk , n≥ 0 ,

e i π2 QM ∏|n|−1
k=1 sk , n< 0 ,

sk =

¨

e iπQW
, k odd,

e i π2 QM
, k even.

(155)

For example,

S0 = S1 = 1 , S2 = e iπQW
, S3 = e iπQW

e i π2 QM
, S4 = e iπQW

e i π2 QM
e iπQW

. (156)

The operators Sn with n< 0 are related to those with n> 0 by S−|n| = e i π2 QM
S|n|. These Sn

operators implement the pivoting procedure for the Onsager algebra [120,121].
The Onsager charges in the form (154) are useful because they are directly related to gen-

erators QM and QW of the Onsager algebra (145). Firstly, since they are unitarily related to the
quantized QM and QW, they have quantized eigenvalues. Secondly, since they are constructed
from only QM and QW, which commute with the XX model Hamiltonian, it is clear that each
Qn also commutes with the XX model Hamiltonian. Furthermore, in this form, it is clear what
the Onsager charges in the T-dual model (48) become: conjugating Qn by U−1

T amounts to
replacing each QM with bQ W and each QW with bQ M. Last but not least, the expression (154)
for Qn makes it clear what Qn flows to in the IR limit — the compact free boson. Indeed, since
QM and QW become the commuting operators QM and QW , the IR limit of Sn will commute
with QM and QW , too. Therefore, Qn in the IR becomes

Qn
IR limit
−−−−−−→

¨

2QW , n odd,

QM , n even.
(157)

5.2 Symmetry actions on the Onsager charges

In deriving the expression (154) for the Onsager charges Qn, we constructed the operators
Da and Db that have a nontrivial action (148) on Qn. From Eq. (150), Da and Db are non-
invertible symmetry operators of the XX model. They are particular instances of the family of
operators D±,φ,θ (75), given by Da ≡D+,π/2,0 and Db ≡D+,0,π, and satisfying

DaDb =DbDa =DD , TDaT−1 =Db , TDbT−1 =Da . (158)

Given that Da and Db have interesting actions on Qn, it is natural to wonder whether other
symmetry operators of the XX model act nontrivially on Qn as well. In what follows, we will
deduce the action of the translation operator T and D on Qn. We summarize these actions in
Fig. 3.

Let us first discuss the action of T on Qn. To do so, we first recall that T commutes with
QM but not QW. In fact, from Eq. (64), T acts on QW the same as e i π2 QM

. Using this, we can
rewrite the action of T on Sn as

TSnT−1 = e i π2 QM
Sn e− i π2 QM

. (159)

With this relationship, the action of T on Qn is straightforward to deduce using
S−|n| = e i π2 QM

S|n|, and we find that

TQnT−1 = e i π2 QM
Qn e− i π2 QM

=Q−n . (160)

Furthermore, because [Qn,Qm] = iGm−n, translation acts on Gn as

T GnT−1 = G−n = −Gn . (161)
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Q−2 Q−1 Q0 Q1 Q2· · · · · ·
Db

Da

Db

Da

Db

Da

Db

Da

Db

Da

Db

Da

T

T

T

D

D

D

· · ·

Figure 3: The symmetry operators T , Da, Db, and D of the XX model act nontrivially
on the conserved Onsager charges Qn. The color-coded arrows in this diagram de-
scribe the action on Qn by the symmetry operators labeling them.

Therefore, the Onsager charges Qn for n ̸= 0 are all modulated operators. Since e iπ(QM+QW )

arises from T in the IR limit, and Qn and Q−n both flow to either QM or QW , Eq. (160) in the
IR becomes trivially satisfied because QM and QW commute.

Having found how Da, Db, and T act on Qn, we can next deduce how D acts on Qn. In
particular, using that Da = e i π2 QM

D = e− i π2 QM
D and plugging this into DaQn =Qn−1Da, we

find that
DQn =

�

e i π2 QM
Qn−1 e− i π2 QM

�

D . (162)

However, we can further simplify this using (160), which says that e i π2 QM
acts on Qn by chang-

ing the sign of n. Therefore, we find that

DQn =Q1−nD , (163)

which implies that
DGn = G−nD= −GnD . (164)

The existence of a non-invertible transformation sending Qn → Q1−n was also discussed in
Ref. 121. Here, in the context of symmetries of the XX model, we find that D implements said
transformation, and that the non-invertible symmetry formed by D and the Onsager algebra
formed by Qn have a nontrivial interplay from D acting on Qn. Furthermore, we see that
Eq. (73) is a particular instance of (163), realizing the special cases in which n= 0 and n= 1.
In the IR limit, (163) always flows to the continuum equation (34) since if Qn becomes QM

(2QW), then Q1−n will become 2QW (QM).

6 T-duality in other spin chains

In Section 3, we identified lattice T-duality in the XX model. In this section, we will discuss
the fate of lattice T-duality upon deforming the XX model Hamiltonian and explore the phase
diagrams of the resulting spin models.
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Figure 4: The XYZ model (165) with −1≤ γ≤ 1 and ∆> 0 as three distinct phases,
all of which are gapped, Néel ordered phases with two ground states. We color
these three phases orange, green, and purple, respectively. The black solid lines
separating them denote phase transitions, which are described by the compact free
boson CFT at various radii 1≤ R≤

p
2. The three R=

p
2 points are described by

three unitarily related XX models, all of which have their own lattice momentum
and winding U(1) symmetries. These symmetries do not generally persist away from
the XX model points, and we denote by dashed/dotted colored lines where such
respective symmetries exist in the XYZ model.

6.1 The XYZ model

Let us first contextualize the discussion of lattice T-duality and corresponding symmetries to
the XYZ model

HXYZ(γ,∆) =
L
∑

j=1

�

(1− γ)X jX j+1 + (1+ γ)YjYj+1 +∆ Z j Z j+1

�

. (165)

We will restrict our discussion of this model to parameters −1≤ γ≤ 1 and ∆≥ 0.
The phase diagram of the XYZ model has been studied both numerically and analyti-

cally [122–124], which we show in Fig. 4. The Hamiltonian is translation invariant and
has the ZM

2 ×Z
C
2 symmetry generated by η=

∏L
j=1(−1) j Z j and C =

∏L
j=1 X j . It has three

gapped phases, all of which have two ground states that spontaneously break ZM
2 ×Z

C
2 ×ZL .

We denote these three phases as Néelx , Néely , and Néelz phases. The spontaneous symmetry-
breaking patterns associated with them are

Néelx

GS 1 GS 2

T

C C ,

η

Néely

GS 1 GS 2 ,

T

η

C

Néelz

GS 1 GS 2

T

η η .

C

As their name suggests, these are all Néel antiferromagnet phases since the spin rotation sym-
metry ZM

2 ×Z
C
2 and lattice translations are spontaneously broken such that each spin rotation

symmetry can be composed with T to act trivially on the ground states. Consequently, the
coarse-grained magnetization vanishes (i.e., it is an antiferromagnet). We use the notation
that the subscript on Néel describes the trivial spin flip symmetry without using translations
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(i.e., Néely means that
∏L

j=1 Yj ≡ C η acts trivially on the ground states). The transitions be-
tween these various Néel phases are deconfined quantum critical points [125] described by
the compact free boson CFT.

When γ=∆= 0, the XYZ Hamiltonian reduces to the XX Hamiltonian (36). Furthermore,
it is unitarily equivalent to the XX model when (γ,∆) = (−1, 2) and (γ,∆) = (1, 2). Therefore,
there are three sets of momentum and winding U(1) symmetries respective to these three XX
model points. These XX model points and their symmetries are related to one another by the
unitary operators

Hzx =
L
∏

j=1

�Z j + X j
p

2

�

, Hyz =
L
∏

j=1

�Yj + Z j
p

2

�

, Hx y =
L
∏

j=1

�X j + Yj
p

2

�

. (166)

In fact, these unitaries relate the XYZ model Hamiltonians (up to a multiplicative constant) at
different parameters. For example, using that Hyz acts on the Pauli operators by exchanging
each Yj and Z j , we find that

Hzx HXYZ(γ,∆)H−1
zx =

1+∆+ γ
2

HXYZ

�

1−∆+ γ
1+∆+ γ

,
2− 2γ

1+∆+ γ

�

. (167)

The Hamiltonian is invariant under this transformation when ∆= 1− γ. Similar expressions
hold for Hyz and Hx y :

Hyz HXYZ(γ,∆)H−1
yz =

1+∆− γ
2

HXYZ

�−1+∆+ γ
1+∆− γ

,
2+ 2γ

1+∆− γ

�

, (168)

Hx y HXYZ(γ,∆)H−1
x y = HXYZ(−γ,∆) , (169)

the invariant lines of which are ∆= 1+ γ and γ= 0, respectively. These invariant lines co-
incide with the critical lines of the model, and the above unitaries also relate the three Néel
phases and c = 1 phase transitions to one another.

Perturbing away from an XX model point in the XYZ model explicitly breaks most of the
symmetries discussed in Section 3. Consequently, without both momentum and winding sym-
metries simultaneously present, there fails to be a lattice T-duality. For example, the XYZ
Hamiltonian with ∆= 0 becomes the XY model [53]

HXY(γ) =
L
∑

j=1

�

(1− γ)X jX j+1 + (1+ γ)YjYj+1

�

. (170)

When γ ̸= 0, the U(1) momentum symmetry (38) is explicitly broken and there is no lattice
T-duality. In fact, this must be the case in order for the phase diagram to be consistent with Sec-
tion 4.4: any Hamiltonian with both the U(1) momentum and winding symmetries is gapless,
but the XY model at γ ̸= 0 is gapped. The winding symmetry, on the other hand, is preserved
for all γ. Therefore, using the unitaries (166), there are also winding symmetries at γ= ±1
corresponding to XX model points at (γ,∆) = (±1, 2), as depicted by the dashed lines in Fig. 4.
However, away from their critical points—their XX model points—these winding symmetries
do not play an important role in understanding the phase diagram.

Similarly, the XYZ Hamiltonian when γ= 0 becomes the the XXZ chain

HXXZ(∆) =
L
∑

j=1

(X jX j+1 + YjYj+1 +∆ Z j Z j+1) . (171)

When ∆ ̸= 0, this Hamiltonian fails to preserve with the U(1) winding symmetry (59). There-
fore, without the winding symmetry, there is no lattice T-duality. Again, this must be the case
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for the phase diagram to be consistent with Section 4.4 since the XXZ Hamiltonian is gapped
for∆> 1, undergoing a Berezinskii–Kosterlitz–Thouless (BKT) transition at∆= 1 [126,127].

The XXZ Hamiltonian, however, still has the U(1) momentum symmetry. Using the uni-
taries (166), there two other U(1) momentum symmetries at ∆= 1± γ corresponding to the
XX model points at (γ,∆) = (±1,2). This U(1) symmetry play an important role in the phase
diagram: together with lattice translations [22], they protect the gapless phase of the XXZ
model. For instance, in the XXZ model (171), it is in a gapless phase for −1<∆≤ 1 and flows
to the compact free boson at radius [55,56]

RXXZ(∆) =
√

√ π

π− arccos(∆)
. (172)

Even though the deformation Z j Z j+1 explicitly breaks the lattice winding symmetry, there is
an emergent U(1) winding symmetry in the continuum limit for this range of ∆. Indeed, the
continuum counterpart of the Z j Z j+1 deformation is an exactly marginal current-current de-
formation of the compact boson CFT, which changes the radius R. This deformation, unlike its
lattice counterpart, preserves both the continuum momentum and winding U(1) symmetries.

The three U(1) momentum symmetries along ∆= 0, 1± γ all coexist at the BKT transi-
tion point (γ,∆) = (0,1). At this point, the three U(1) momentum symmetries are embed-
ded into an enlarged SO(3) spin rotation symmetry and the XYZ chain becomes the XXX
chain, which is described in the IR by the compact free boson at radius R= 1. This is the
SU(2)1 = U(1)2 WZW CFT, which is the WZW model whose associated 2+ 1D Chern-Simons
theory is SU(2)1 = U(1)2.

6.2 U(1)M and U(1)W symmetric spin chains

In the XYZ chain (165), the XX model points were the only points in parameter space with
both momentum and winding U(1) symmetries and the related lattice T-duality. While the XYZ
deformations of the XX model could break the momentum and winding symmetries, alternative
symmetric deformations exist. Here, we will discuss the general class of qubit chains with both
the momentum and winding U(1) symmetries.

We can construct the Hamiltonian of such a U(1)M and U(1)W symmetric model by bosoniz-
ing the fermionic model (137). The model (137) is the most general fermion model commuting
with the vector and axial charges QV and QA, which are defined by (127). Under bosonization,
these conserved charges become the momentum and winding charges QM (37) and QW (59).
Therefore, the image of the fermionic model (137) under bosonization will yield the most
general qubit model commuting with QM and QW. This qubit Hamiltonian is30

HM,W(gn) =
L
∑

j=1

N
∑

n=1

gn H(n)j , H(n)j =

¨
�

X jX j+n + YjYj+n

�∏n−1
k=1 Z j+k , n odd,

�

YjX j+n − X jYj+n

�∏n−1
k=1 Z j+k , n even.

(173)

By construction, HM,W(gn) commutes with QM and QW, which can be checked explicitly.
However, it also commutes with the non-invertible symmetry operator D (71). Indeed, its
fermionized counterpart (137) commutes with e− i π2 QV

Ta, and under bosonization this be-
comes e− i π2 QM

Da =D. Because D commutes with (173), any Hamiltonian commuting with
both QM and QW has the non-invertible symmetry formed by D. Therefore, any QM and
QW symmetric Hamiltonian has lattice T-duality that exchanges the momentum and winding
charges.

30The parameters gn in the bosonic Hamiltonian (173) are the same as those in the fermionic model (137)
up to possible multiplicative signs. In particular, they are related by gbosonic

2ℓ = (−1)ℓ+1 g fermionic
2ℓ and

gbosonic
2ℓ+1 = (−1)ℓg fermionic

2ℓ+1 .
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Spin(4)1

Figure 5: Phase diagram of the quantum spin Hamiltonian (174), which is gapless
for all values of g2 and g3. The gapless phases are incommensurate and labeled by
the number of bosonized Dirac fermions C. Furthermore, the dark red stars denote
points in the phase diagram for which the IR of (174) is described by a CFT. At these
CFT points, C corresponds to the central charge. The phase transitions are labeled
by their dynamical critical exponent z, all of which have z > 1. The z = 2 critical
line shown in green occurs at g2 =

p

1− (2g3 − 1)2 for g3 > 1/5. The z = 3 line is
shown in purple and occurs at g2 =

1
2 |3g3 + 1|. These two critical lines intersect at a

multi-critical point with z = 5 at (g2, g3) = (
4
5 , 1

5).

Because the Hamiltonian (173) commutes with both QM and QW, it is gapless for all gn (see
Section 4.4). When gn = δn,k for some positive integer k, the IR is described by the Spin(2k)1
WZW CFT. This is the diagonal, bosonic WZW model based on the Lie algebra so(2k) whose
associated 2+ 1D Chern-Simons theory is Spin(2k)1. For example, when k = 1, this is the
Spin(2)1 = U(1)4 WZW model, which is the R=

p
2 compact free boson. To see why this CFT

describes the IR for general k, we use that the IR of the fermionized model (137) with gn = δn,k
is described by the Dirack CFT—k decoupled copies of the Dirac CFT. This is because fermions
on different sites j mod k are decoupled from one another, and there is a free, massless Dirac
fermion in the IR for each j mod k. It then follows that the Spin(2k)1 WZW CFT describes
the IR of the bosonic model since the Dirack CFT under bosonization becomes the Spin(2k)1
WZW CFT [128]. It would be interesting to understand how the Onsager algebra maps into
the IR current algebra at these Spin(2k)1 points, but we leave this for future work. When
gn ̸= δn,k, the Hamiltonian (173) remains gapless, but its IR is generally described by a non-
relativistic quantum field theory, not a CFT. At the Spin(2k)1 point gn = δn,k, turning on gn̸=k
corresponds in the fermionized IR theory to changing the relative velocities of left and right-
moving fermions. This is a marginal, but nonzero conformal spin, non-relativistic deformation
of the Spin(2k)1 WZW model.

Let us now specialize (173) to the case where N = 3. In this case, the Hamiltonian becomes

H(g2, g3) =
L
∑

j=1

�

X jX j+1 + YjYj+1 + g2 (Yj−1Z jX j+1 − X j−1Z jYj+1)

+ g3 (X j−2Z j−1Z jX j+1 + Yj−2Z j−1Z jYj+1)
�

, (174)
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where we have set g1 = 1. The g2 term is the simplest deformation of the XX model that pre-
serves both the momentum and winding U(1) symmetries on the lattice. Using the fermionized
Hamiltonian (137) with N = 3, we can exactly solve for the spectrum of (174).

We can deduce the phase diagram of H(g2, g3) using the single-particle dispersion of the
fermionized model, which is given by

1
4
ωk = sin

�

2πk
L

�

+ g2 sin
�

4πk
L

�

+ g3 sin
�

6πk
L

�

. (175)

Because H(g2, g3) is unitarily related to H(−g2, g3) by X j ↔ Yj , we consider only positive
values of g2. Then, using this single-particle dispersion, we find the phase diagram shown in
Fig. 5. At the points (g2, g3) = (0, 0), (0,∞), and (±∞, 0) in the phase diagram, the IR of
the Hamiltonian is described by the U(1)4, Spin(4)1, and Spin(6)1 WZW CFTs, respectively.
Away from these special CFT points, however, the IR of its gapless phases is described by a
non-relativistic quantum field theory. Furthermore, these gapless phases are incommensurate
gapless phases in the sense of Ref. 78. Namely, there are points in the phases where the many-
body spectrum is gapless in a dense subset of the Brillouin zone, which follows from the zeros
ofωk occurring at irrational values of 2πk

L mod 2π. The fact that the phase transitions between
these incommensurate gapless phases have z > 1 agrees with a conjecture made in Ref. 78.

7 Outlook

In this paper, we have shown how dualities of quantum field theories can also arise in quantum
lattice models of qubits. We focused on the T-duality of the compact boson CFT at radius
R=
p

2 and its relationship to a duality of the XX spin chain. However, there is much more
to reveal in understanding the general relationship of dualities in quantum field theories and
dualities of quantum lattice models. In particular, what is the deeper relationship between
unitary transformations on the lattice and field theory dualities in their IR limit? For one,
it would be interesting to explore how the T-duality of the compact boson CFT at R ̸=

p
2

can appear in quantum spin chains (especially at radii R2 ̸∈ Z>0). Related work towards this
direction was carried out in [129]. Furthermore, exploring other dualities, such as other T-
dualities and S-dualities, would be interesting. In particular, S-duality of U(1) gauge theory in
3+ 1D, which, like T-duality, is related to a non-invertible symmetry [32]. There are known
three-dimensional quantum spin models known to flow to U(1) gauge theory (e.g., quantum
spin ice models [130–132]) and it would be exciting to explore the possibility of them realizing
a lattice S-duality.

Additionally, this paper considered spin chains described in the IR by CFTs with Abelian
current algebras. Of course, there are various well-known CFTs with non-Abelian current
algebras, such as su(n) current algebras. It would be interesting to investigate a generalization
of our results to such non-Abelian algebras and consider lattice counterparts of non-Abelian
continuous symmetries and their anomalies.
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A Review of bosonization and fermionization in the continuum

In this appendix, we briefly review bosonization and fermionization in 1+ 1D continuum field
theory,31 following recent discussions [136–142]. See Ref. 29 for a more detailed review. In the
following discussion, we consider Euclidean continuum field theories defined on an arbitrary
smooth orientable Riemannian 2-manifold M with genus g (i.e., a Riemann surface). For the
IR limit of the lattice models discussed in the main text, it is enough to consider M to be the
torus T2. However, in this appendix, our treatment applies for arbitrary M . For simplicity, we
assume there is no gravitational anomaly, in which case bosonization can be implemented by
gauging the fermion number parity.32

A.1 Fermionic field theories and the Arf invariant

Defining spinors in a fermionic field theory on an arbitrary Riemann surface M requires a
choice of spin structure on M . Abstractly, an oriented Riemannian n-manifold admits a spin
structure if the transition group SO(n) of its oriented frame bundle can be lifted to Spin(n)
while preserving the cocycle condition on each triple-overlap of coordinate charts. Every ori-
ented n< 4-manifold admits a spin structure, and inequivalent lifts of SO(n) correspond to
different spin structures. Furthermore, if a manifold admits a spin structure, it is called a spin
manifold.

In practice, a spin structure on a genus g ̸= 0 Riemann surface M corresponds to a choice
of signs picked up by a spinor when parallel transported around non-trivial 1-cycles of M .
For general M , there are 22g such choices. For M = T2, there are 22 = 4 such choices, which
correspond to the different choices of periodic and anti-periodic boundary conditions along
the two canonical non-trivial 1-cycles. These boundary conditions are referred to as (NS,NS),
(NS,R), (R,NS), and (R,R) in the string theory literature, where NS and R are anti-periodic
(Neveu-Schwarz) and periodic (Ramond) boundary conditions, respectively.

31The terms bosonization and fermionization sometimes refer to an exact duality between two presentations of
a QFT, one of which is expressed in terms of bosonic fields and the other in terms of fermionic fields [128, 133].
In this context, the QFT can be either fermionic or bosonic (i.e., it may or may not depend on a spin structure and
have a fermion number parity symmetry). For fermionic QFTs, the spin structure that affects the spinor fields in
the fermionic presentation arises after bosonization in topological terms of the bosonic presentations [134–136].
For bosonic QFTs, there is no dependence on a spin structure (by definition), and the fermion number parity
in the fermion presentation is a gauge redundancy, not a global symmetry. In this paper, we refer to bosoniza-
tion/fermionization as maps between bosonic and fermionic QFTs. Therefore, our usage of “bosonization” and
“fermionization” does not refer to exact dualities. Instead, the bosonization and fermionization maps are imple-
mented by summing over various background fields (e.g., bosonization is implemented by summing over spin
structures).

32Bosonizing a 1+ 1D fermionic QFT is generally implemented by summing over its spin structures, which re-
quires its gravitational anomaly n ∈ (IZΩSpin)4(pt) = Z to be 0 mod 16. In this case, gauging fermion number
parity causes the spin structures to be summed over and bosonizes the theory. When the gravitational anomaly is
n ̸= 0 mod 16, the spin structure cannot be summed over and the QFT cannot be bosonized. When n= 8 mod 16,
fermion number parity can still be gauged, but doing so maps the fermionic QFT to a different fermionic QFT. For
example, gauging (−1)F in a QFT with eight chiral fermions with cL = 4 and cR = 0 maps the fermionic QFT to
another fermionic QFT. We refer the reader to [143,144] for additional discussion.
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Given a Riemann surface M with spin structure ρ, there is a bordism, mod 2 invariant
known as the Arf invariant. It depends on the spin structure ρ and is characterized by the
relation [145]

Arf[ρ] =

¨

1 , ρ is odd,

0 , ρ is even,
(A.1)

where ρ is even/odd if the associated chiral Dirac operator /Dρ has an even/odd number of
zero-modes. Of the 22g allowed spin structures on M , 2g−1(2g + 1) are even and the remain-
ing 2g−1(2g − 1) are odd. See, e.g., Ref. [146] for a pedagogical discussion of the Arf invariant
from a physics perspective. The Arf invariant plays a key role in the classification of invert-
ible fermionic phases. In 1+ 1D, there are two invertible fermionic phases whose low-energy
partition functions differ by the invertible TFT (−1)Arf[ρ] [147].

The difference between two spin structures is given by an element of H1(M ,Z2). Impor-
tantly, there is no canonically trivial spin structure, so individual spin structures themselves
are not classified by H1(M ,Z2).33 This is to be contrasted to the space of Z2 gauge fields on M ,
which is described by H1(M ,Z2) and has a trivial gauge field. In fact, because both spin struc-
tures and Z2 gauge fields are related to H1(M ,Z2), there is a natural action of Z2 gauge fields,
a ∈ H1(M ,Z2), on the spin structures, which we denote as a+ρ. Two important identities
using this action, which we will make use of below, are34

Arf[(a+ b) +ρ] = Arf[a+ρ] +Arf[b+ρ] +Arf[ρ] +

∫

M
a ∪ b , (A.2)

e iπArf[b+ρ] =
1
2g

∑

a∈H1(M ,Z2)

e iπ(Arf[a+ρ]+Arf[ρ]+
∫

M a∪b) , (A.3)

where a, b ∈ H1(M ,Z2) and ∪ denotes the cup product.35

A.2 Bosonizing a fermionic field theory

Every fermionic field theory F has a ZF2 symmetry generated by the fermion parity operator
(−1)F . This symmetry flips the sign of every fermion field and distinguishes a bosonic local
operator from a fermionic one. Therefore, activating a nontrivial background for ZF2 amounts
to changing the spin structure. We denote the partition function of F with spin structure ρ as
ZF [ρ].

Bosonization of F is implemented by gauging the ZF2 symmetry, which is performed by
summing over different spin structures via making the background ZF2 gauge field dynamical.
Doing so yields a bosonic field theory B whose partition function is

ZB[A] =
1
2g

∑

b∈H1(M ,ZF2 )

ZF [b+ρ] e iπ(
∫

b∪A+Arf[A+ρ]+Arf[ρ]) . (A.5)

33When Euclidean spacetime is T 2, people sometimes make a non-canonical choice of calling the spin structure
associated with the (R,R) boundary condition the trivial spin structure. With respect to such a non-canonical
choice, the remaining spin structures are then classified by H1(M ,Z2). However, the general and most invariant
perspective is that spin structures are classified by an H1(M ,Z2)-torsor, which has no unique trivial element.

34We will drop the subscript M going forward to make the notation less cumbersome.
35The reader may be familiar with cup products via Poincaré duality. The cup product is related to the intersection

number of 1-cycles via
∫

M

a ∪ b = 〈γa,γb〉 . (A.4)

Here, γa,γb ∈ H1(M ,Z2) are the Poincaré dual 1-cycles associated with a and b, respectively, and 〈γa,γb〉 is their
intersection number modulo 2.
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Here A∈ H1(M ,Z2) is the background gauge field for the dual Z2 global symmetry of B. The
factor e iπ(Arf[A+ρ]+Arf[ρ]) is designed such that the left-hand side does not depend on the choice
of ρ, as it shouldn’t for a bosonic field theory.

There is an alternative way to bosonize the fermionic theory F . In this way, we first stack-
ing the Arf invariant e iπArf[b+ρ] onto F before summing over b. This “twisted” gauging of
the fermion parity symmetry produces a second bosonization map that produces the bosonic
theory

ZB∨[A] =
1
2g

∑

b∈H1(M ,ZF2 )

ZF [b+ρ] e iπ(Arf[b+ρ]+
∫

b∪A+Arf[A+ρ]+Arf[ρ])

=
1
2g

∑

b∈H1(M ,ZF2 )

ZF [b+ρ] e iπArf[(b+A)+ρ] .
(A.6)

These two bosonization producers are related. Indeed. one can check that B and B∨ are
related by orbifolding,

ZB∨[A] =
1
2g

∑

a∈H1(M ,Z2)

ZB[a]e
iπ
∫

a∪A . (A.7)

A.3 Fermionizing a bosonic field theory

We now consider a bosonic field theory B with a non-anomalous ZB2 global symmetry. Since
all Riemann surfaces are spin, we can equip spacetime with a spin structure ρ and fermionize
the bosonic theory by gauging ZB2 in a particular way involving this spin structure that gives
rise to a dual fermion number parity symmetry.

One way to fermionize is to stack B with (−1)Arf[a+ρ]+Arf[ρ] before summing over a. This
yields a fermionic theory F coupled to a background fermion parity background gauge field
B whose partition function is

ZF [B +ρ] =
1
2g

∑

a∈H1(M ,ZB2 )

ZB[a] e iπ(Arf[a+ρ]+Arf[ρ]+
∫

a∪B) . (A.8)

We refer to F as a fermionization of B. It is straightforward to verify that bosonizing this
fermionic theory using (A.5) returns the bosonic theory we started with.

Instead of fermionizing as above, one can first orbifold the ZB2 symmetry to obtain theory
B∨ and then perform the above fermionization map with respect to the dual ZB

∨

2 symmetry.
This provides an alternative fermionized theory F∨,

ZF∨[B +ρ] =
1
2g

∑

a∨∈H1(M ,ZB∨2 )

ZB∨[a
∨] e iπ(Arf[a∨+ρ]+Arf[ρ]+

∫

a∨∪B)

=
1

22g

∑

a∨∈H1(M ,ZB∨2 )

∑

a∈H1(M ,ZB2 )

ZB[a] e iπ(Arf[a∨+ρ]+Arf[ρ]+
∫

a∨∪B+
∫

a∪a∨)

= e iπArf[B+ρ]ZF [B +ρ] .

(A.9)

In going from the first line to the second, we used the definition of orbifolding (cf. (A.7)), and
in going from the second line to the third, we used the identities (A.2) and (A.3).

From (A.9), we learn that the two possible ways to fermionize B, leading to fermionic
theories F and F∨, differ by an invertible TFT (−1)Arf. There is no canonically preferred
choice between these two ways to fermionize, but only a relative difference. In our lattice
discussion in Appendix B, we will see a similar feature.

The fermionization and bosonization maps of 1+ 1D continuum field theories discussed
in Appendices A.2 and A.3 are summarized in Figure 6.
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Figure 6: A summary of the different transformations relating bosonic and fermionic
field theories discussed in Appendix A. The diagram commutes.

B Lattice bosonization and fermionization done globally

In this Appendix, we discuss how bosonization and fermionization of 1+ 1D lattice Hamilto-
nians can be implemented within a unified gauging framework. In Appendix B.1, we illus-
trate this approach by bosonizing the Kitaev chain and fermionizing the transverse field Ising
model. Afterwards, we apply the same approach to the XX model (36) and the two-Majorana
chain (126) in Appendix B.2, the results of which are used in the main text. The reader is
encouraged to refer to Refs. [70,75,87,148,149] for closely related discussions.

B.1 Ising model←→ Kitaev chain

In this appendix, we discuss a lattice perspective on the bosonization and fermionization maps
discussed in Appendix A. In B.1.2 and B.1.4, we focus on developing a unified gauging lan-
guage for the maps between fermionic and bosonic lattice models, closely paralleling the con-
tinuum treatment. We illustrate this approach using the examples of the Ising model and the
Kitaev chain [150] for concreteness.

Let us define the transverse field Ising model on a periodic ring of qubits with L sites,

HTFIM(g) = −
L
∑

j=1

�

g−1Z j Z j+1 + g X j

�

. (B.1)

Unlike in the rest of this paper, in this subsection we let L be any positive integer, even or odd.
The Hamiltonian has a Z2 symmetry generated by ξ≡

∏L
j=1 X j . For g < 1, this symmetry is

spontaneously broken evidenced by the doubly degenerate ground state in the thermodynamic
limit. This is known as the ferromagnet phase. For g > 1, ξ is unbroken with a unique ground
state. This is known as the paramagnet phase.

Next, consider the Kitaev chain of 2L Majorana whose Hamiltonian is given by [150]:

HKitaev(t) = −
L
∑

j=1

�

i t χ2 j−1χ2 j + i t−1χ2 jχ2 j+1

�

. (B.2)

The Majorana fermions χℓ (with ℓ= 1,2, . . . , 2L) satisfy the anti-commutation algebra

{χℓ,χℓ′}= 2δℓ,ℓ′ . (B.3)
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Below we consider both the periodic (ν= 0) and anti-periodic (ν= 1) boundary conditions
on a closed chain:36

χℓ+2L = (−1)νχℓ . (B.5)

B.1.1 Fermion parity

The Hamiltonian HKitaev has a fermion parity symmetry, implemented by the operator

(−1)F = i L
2L
∏

ℓ=1

χℓ = i Lχ1χ2 · · ·χ2L , (B.6)

where the factor of i L ensures that the operator squares to 1. For t ̸= 1, the ground state of this
Hamiltonian is unique and gapped. The two regimes, t < 1 and t > 1 correspond to distinct
invertible fermionic phases, differing in the continuum by the Arf invariant. On the lattice, we
can choose a tensor product factorization of the full Hilbert space as

H =
L
⊗

j=1

Hf
2 j−1,2 j , (B.7)

where Hf
2 j−1,2 j

∼= C2 is the local Hilbert space acted on by χ2 j−1 and χ2 j . With this choice, one
finds that the ground state in the t →∞ limit is an unentangled product state, while that in
the t → 0+ limit has non-trivial entanglement. We could alternatively choose a tensor product
factorization of the full Hilbert space as

H =
L
⊗

j=1

Hf
2 j,2 j+1 , (B.8)

where Hf
2 j,2 j+1

∼= C2 is the local Hilbert space acted on by χ2 j and χ2 j+1. With this second
choice of tensor product factorization, we find that the ground state in the t → 0+ limit is
now a product state while that in the t →∞ limit realizing an entangled state. We will make
a non-canonical choice to call the t < 1 phase non-trivial in the following discussion, which
amounts to choosing the tensor product factorization (B.7).

The Majorana translation operator Tmaj, which acts as37

TmajχℓT
−1

maj = χℓ+1 , (B.9)

transforms the coupling constant t of the Kitaev Hamiltonian as

TmajHKitaev(t)T
−1

maj = HKitaev(t
−1) . (B.10)

As a result, Tmaj interchanges the two phases of the Kitaev chain. The fermion parity (−1)F is
transformed by Tmaj as [75,151,152]

Tmaj(−1)F T −1
maj = i Lχ2χ3 · · ·χ2L+1 = (−1)ν+1(−1)F . (B.11)

36Due to the (anti-)periodic boundary conditions (B.5), operators can depend on ν when written in terms of
χℓ with ℓ= 1,2, . . . , 2L. For example, using that χ2L+1 = (−1)νχ1, the explicit dependence on ν for the Kitaev
Hamiltonian (B.2) is

−
L
∑

j=1

i tχ2 j−1χ2 j −
L−1
∑

j=1

i t−1χ2 jχ2 j+1 − (−1)ν i t−1χ2Lχ1 . (B.4)

To avoid making expressions too cumbersome, however, we will keep this dependence implicit.
37The Majorana translation operator Tmaj implicitly depends on ν such that Tmajχ2L T −1

maj = (−1)νχ1. See Ref. [75]
for the explicit expressions for the Majorana translation operators under these two boundary conditions.
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In the continuum limit, Tmaj implements a chiral fermion parity transformation that equiva-
lently stacks the Arf invariant. At t = 1, this algebra was related to the ’t Hooft anomaly of the
chiral fermion parity of the continuum Majorana CFT in Ref. [75].

For anti-periodic boundary conditions (ν= 1), the ground states in both the t < 1 and
t > 1 have the same eigenvalue under (−1)F . This follows from (B.11) since these two ground
states are related by Tmaj. In fact, we have fixed the normalization of (−1)F in (B.6) such that
both eigenvalues are+1. However, for periodic boundary conditions (ν= 0), the ground states
of the two phases carry different (−1)F quantum numbers. Therefore, there is no natural way
to determine the overall minus sign of (−1)F for all t under periodic boundary conditions.
The different responses to changing boundary conditions shows that these phases are distinct
invertible phases, and their low-energy partition functions differ by an Arf invariant.

B.1.2 Bosonizing by gauging

We will gauge this fermion parity symmetry of the Hamiltonian HKitaev in two different ways to
bosonize the Kitaev chain and find the transverse-field Ising model at two different g ’s related
by the Kramers-Wannier transformation.

To gauge the fermion parity symmetry, we first rewrite the symmetry operator (B.6) in a
manifestly onsite manner. One way of doing so is

(−1)F =
L
∏

j=1

iχ2 j−1χ2 j , (B.12)

which is onsite with respect to the tensor product factorization (B.7). We will refer to the
local Hilbert spaces Hf

2 j−1,2 j as site Hilbert spaces, with sites indexed by j = 1, . . . , L. We
introduce gauge field qubits on links; the qubit on link 〈 j, j + 1〉 is acted on by the Pauli
operators X j, j+1, Z j, j+1. We impose the Gauss law G j = 1 for each site j, where the Gauss
operators are defined as

G j = Z j−1, j

�

iχ2 j−1χ2 j

�

Z j, j+1 . (B.13)

These Gauss operators appropriately satisfy
∏L

j=1 G j = (−1)F . Next, we couple the Kitaev
Hamiltonian (B.2) minimally to the gauge fields so that it commutes with each G j:

Hmc = − i t
L
∑

j=1

χ2 j−1χ2 j − i t−1
L
∑

j=1

χ2 j X j, j+1χ2 j+1 . (B.14)

Then we perform the unitary transformation

χ2 j−1→ Z j−1, j χ2 j−1 , χ2 j → χ2 j Z j, j+1 ,

X j, j+1→ iχ2 j X j, j+1χ2 j+1 , Z j, j+1→ Z j, j+1 ,
(B.15)

which transforms

G j → iχ2 j−1χ2 j , Hmc→−t
L
∑

j=1

Z j−1, j Z j, j+1( iχ2 j−1χ2 j)− t−1
L
∑

j=1

X j, j+1 . (B.16)

In this unitary frame, we project to the Gauss law invariant sector by setting iχ2 j−1χ2 j = 1,
decoupling the fermions. Upon this projection and a shift of the qubits by a half-lattice trans-
lation 〈 j − 1, j〉 → j, we find the bosonized Hamiltonian,

Hb = −
L
∑

j=1

�

t Z j Z j+1 + t−1X j

�

= HTFIM(t
−1) , (B.17)
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which is the transverse field Ising model (B.1) with coupling g = t−1. The trivial (t > 1) and
non-trivial (t < 1) phases of the Kitaev chain get mapped to the ferromagnet and paramag-
net phases of the Ising model, respectively. This gauging procedure can be summarized by a
gauging map, which acts on the generators of (−1)F -even local operator algebra as follows:

iχ2 j−1χ2 j → Z j Z j+1 , iχ2 jχ2 j+1→ X j+1 . (B.18)

Given that there is an alternate factorization of the Hilbert space (B.8), it is also natural to
consider the onsite operator

L
∏

j=1

iχ2 jχ2 j+1 = (−1)ν+1(−1)F . (B.19)

For anti-periodic boundary condition (ν = 1), this gives the fermion parity operator, whereas
for periodic boundary condition (ν= 0), it differs from (−1)F by an overall minus sign. How-
ever, as we discussed before, there is no canonical way to determine the overall minus of the
fermion parity operator under the periodic boundary condition.

This operator is obtained by applying Tmaj on the fermion parity operator (B.12):

Tmaj (−1)F T−1
maj =

L
∏

j=1

iχ2 jχ2 j+1 . (B.20)

This mirrors the continuum discussion in Appendix A. There, the second bosonization map
was implemented in the continuum by stacking with the Arf invariant followed by gauging
fermion parity. On the lattice, this stacking corresponds to acting with the entangler for the
non-trivial Kitaev phase. This entangler is nothing but Tmaj, which exchanges the two phases
(see discussion around (B.10)).

For the second bosonization map, we therefore define the Gauss operators in line with the
factorization in (B.19),

G∨j = Tmaj G j T−1
maj = Z j−1, j

�

iχ2 jχ2 j+1

�

Z j, j+1 . (B.21)

The minimally coupled Hamiltonian commuting with all G j is

H∨mc = − i t
L
∑

j=1

X j−1, jχ2 j−1χ2 j − i t−1
L
∑

j=1

χ2 jχ2 j+1 . (B.22)

This time, we perform the unitary transformation

χ2 j−1→ Z j−1, j χ2 j−1 , χ2 j → Z j−1, j χ2 j ,

X j−1, j → X j−1, j iχ2 j−1χ2 j , Z j−1, j → Z j−1, j ,
(B.23)

which transforms

G∨j → iχ2 jχ2 j+1 , H∨mc→−t
L
∑

j=1

X j−1, j − t−1
L
∑

j=1

Z j−1, j Z j, j+1( iχ2 jχ2 j+1) . (B.24)

In this unitary frame, we project to the Gauss law invariant sector by setting iχ2 jχ2 j+1 = 1,
decoupling the fermions. Upon this projection and a shift of the qubits by a half-lattice trans-
lation 〈 j − 1, j〉 → j, we find the bosonized Hamiltonian,

H∨b = −
L
∑

j=1

�

t−1Z j Z j+1 + t X j

�

= HTFIM(t) , (B.25)
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which is the transverse field Ising model (B.1) with coupling g = t. The trivial (t > 1) and
non-trivial (t < 1) phases of the Kitaev chain get mapped to the paramagnet and ferromagnet
phases of the Ising model, respectively. This gauging procedure can be summarized by a gaug-
ing map, whose action on the generators of the algebra of (−1)F -symmetric local operators is
given by

iχ2 j−1χ2 j → X j , iχ2 jχ2 j+1→ Z j Z j+1 . (B.26)

Let us note that Hb (B.17) and H∨b (B.25) are related by orbifolding, i.e. gauging the Z2 sym-
metry generated by

∏

j X j (also known as Kramers-Wannier transformation), which parallels
the continuum discussion.

B.1.3 Jordan-Wigner transformation

Here we compare bosonization and the Jordan-Wigner transformation. We consider both peri-
odic (ν= 0) and anti-periodic (ν= 1) boundary conditions for the Majorana fermions defining
the Kitaev chain, as above.

Starting with the Majorana operators, we define the Pauli operators ( j = 1, . . . , L):

σz
j =

 

j−1
∏

k=1

iχ2k−1χ2k

!

χ2 j−1 , σ
y
j =

 

j−1
∏

k=1

iχ2k−1χ2k

!

χ2 j , (B.27)

which satisfy the usual Pauli operator algebra. This is known as the Jordan-Wigner transfor-
mation. From this, it follows that

iχ2 j−1χ2 j = σ
x
j , iχ2 jχ2 j+1 =

¨

σz
jσ

z
j+1 , j ̸= L ,

(−1)ν+1(
∏L

k=1σ
x
k )σ

z
Lσ

z
1 , j = L .

(B.28)

Using this transformation, we rewrite the Kitaev Hamiltonian (B.2) as:

HKitaev = −t
L
∑

j=1

σx
j − t−1

L−1
∑

j=1

σz
jσ

z
j+1 − t−1(−1)ν+1

� L
∏

k=1

σx
k

�

σz
Lσ

z
1 . (B.29)

Although expressed in terms of bosonic variables, this Hamiltonian is an exact rewriting of the
Kitaev Hamiltonian: it has exactly the same spectrum and phase diagram. In terms of the spin
variables, this Hamiltonian is non-local, because of the last term.

However this is different from the transverse field Ising model we obtained via gauging
(−1)F in (B.17) or (B.25). In particular, (B.29) has a different spectrum and phase diagram
from the transverse field Ising Hamiltonian on a closed periodic chain. While the structure of
the phase diagram—in particular, the location of the critical point—is the same, the ground
state degeneracies of the gapped phases as well as the conformal field theories describing the
critical points are different.

The Jordan-Wigner transformation provides an alternative presentation for bosonization
of the Kitaev chain. We focus on the first gauging while the discussion for the second one is
similar. Written in terms of the Pauli variables, the Gauss operators (B.13) and the minimally
coupled Hamiltonian (B.14) become

G j = Z j−1, jσ
x
j Z j, j+1 ,

Hmc = −t
L
∑

j=1

σx
j − t−1

L−1
∑

j=1

σz
j X j, j+1σ

z
j+1 − t−1(−1)ν+1

� L
∏

k=1

σx
k

�

σz
LX L,1σ

z
1 .

(B.30)
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Gauss’s law G j = 1 in particular implies that
∏L

k=1σ
x
k = 1. Furthermore, the sign (−1)ν+1

can be removed by a unitary transformation that flips the sign of X L,1. Therefore, up to this
unitary transformation, the minimally coupled Hamiltonian becomes

Hmc = −t
L
∑

j=1

σx
j − t−1

L
∑

j=1

σz
j X j, j+1σ

z
j+1 . (B.31)

This is nothing but the Ising Hamiltonian HTFIM(t) with its Z2 symmetry gauged. Performing
the unitary transformation σx

j → Z j−1, j σ
x
j Z j, j+1 and X j, j+1→ σz

j X j, j+1σ
z
j+1 causes the new

σ qubit in the G j = 1 subspace to decouple and Hmc to become the Ising Hamiltonian at the
opposite coupling, i.e., HTFIM(t−1). This gives the same result as in (B.17) from bosonization.

B.1.4 Fermionizing by gauging

In this appendix, we will fermionize the Ising model (B.1), i.e., gauge the Z2 symmetry ξ by
introducing fermionic degrees of freedom on links. The fermionic Hilbert space on the link
〈 j, j+1〉 is acted on by the Majorana operators a j, j+1, b j, j+1. We will impose periodic boundary
conditions on the fermion degrees of freedom. To gauge ξ, we define the Gauss operators,

G j = i b j−1, jX ja j, j+1 . (B.32)

Next, we minimally couple the fermions to (B.1) so that it commutes with all G j ,

Hmc = −
L
∑

j=1

�

g−1Z j ia j, j+1 b j, j+1Z j+1 + g X j

�

. (B.33)

To simplify the Gauss operator, we do a change of basis using a unitary transformation that
acts on the qubits and the fermions as

X j → i b j−1, j X j a j, j+1 , Z j → Z j , a j, j+1→ Z j a j, j+1 , b j, j+1→ b j, j+1 Z j+1 . (B.34)

This transforms the Gauss operator as G j → X j , so that the Gauss law can be enforced by
projecting to the X j = 1 eigenspace, decoupling the qubits entirely. The unitary transformation
also changes the minimally coupled Hamiltonian,

Hmc→−
L
∑

j=1

�

g−1 ia j, j+1 b j, j+1 + g X j i b j−1, ja j, j+1

�

, (B.35)

which upon projecting to the X j = 1 subspace, followed by the renaming the Majoranas as

a j, j+1 = χ2 j−1 , b j, j+1 = χ2 j . (B.36)

With this renaming, (B.35) becomes the periodic Kitaev chain Hamiltonian (B.2) at t = g−1,

Hf = −
L
∑

j=1

�

i g−1χ2 j−1χ2 j + i g χ2 jχ2 j+1

�

. (B.37)

If we had chosen the Majorana fermions on the links to have anti-periodic boundary condi-
tions, the fermionized Hamiltonian would be the Kitaev chain with anti-periodic boundary
conditions.

The fermionization map transforms the Z2 symmetry of the qubits,

ξ=
L
∏

j=1

X j →
L
∏

j=1

iχ2 j−2χ2 j−1 = −(−1)F , (B.38)
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and maps the ferromagnet (g < 1) and paramagnet (g > 1) phases of the Ising Hamiltonian
to the trivial and non-trivial phases of the Kitaev chain, respectively. Furthermore, the action
of this fermionization map on the algebra of ξ-symmetric local operators is given by

Z j Z j+1→ iχ2 j−1χ2 j , X j → iχ2 j−2χ2 j−1 . (B.39)

As in the continuum, we could also first gauge the Z2 symmetry ξ, before performing the
fermionization map relative to the dual Z2 symmetry, to implement another bosonization map.
Gauging ξ amounts to implementing the Kramers-Wannier transformation on the ξ-symmetric
local operators,

Z j Z j+1→ eX j+1 , X j → eZ j eZ j+1 . (B.40)

Furthermore, gauging ξ trivializes the symmetry. However, the gauged model has a dual Z2
symmetry generated by eξ≡

∏L
j=1

eX j . Now, if we perform the fermionization map relative to

the symmetry eξ, the operator map (B.39) acts as

eX j+1→ iχ2 jχ2 j+1 , eZ j eZ j+1→ iχ2 j−1χ2 j . (B.41)

Composing (B.40) and (B.41), we have the following transformation of the generators of the
ξ-even local operator algebra:

Z j Z j+1→ iχ2 jχ2 j+1 , X j → iχ2 j−1χ2 j , (B.42)

hence the fermionized Hamiltonian is the Kitaev chain Hamiltonian (B.2) at coupling t = g,

H∨f = −
L
∑

j=1

�

i g−1χ2 jχ2 j+1 + i g χ2 j−1χ2 j

�

. (B.43)

This fermionization map transforms the Z2 symmetry generator ξ of the Ising Hamiltonian
as

ξ=
L
∏

j=1

X j →
L
∏

j=1

iχ2 j−1χ2 j = (−1)F , (B.44)

while the Z2 symmetry-breaking ferromagnet (g < 1) and symmetric paramagnet (g > 1)
phases are mapped to the non-trivial and trivial phases of the Kitaev chain, respectively. Note
that the two fermionized Hamiltonians (B.37) and (B.43) are related by the unitary Tmaj, which
implements the lattice analog of stacking with the fermionic invertible TFT. This parallels the
relationship between the two bosonized theories in the continuum, as summarized in (A.6).

B.2 XX model←→ two-Majorana chain

In this appendix, we follow the approach outlined in Appendix B.1 to bosonize the XX model
Hamiltonian,

HXX =
L
∑

j=1

�

X jX j+1 + YjYj+1

�

, (B.45)

to the two-Majorana chain Hamiltonian,

H2maj = − i
L
∑

j=1

(a ja j+1 + b j b j+1) , (B.46)

as well as fermionize H2maj to recover the XX model. As we carry out either step, we will keep
track of how the symmetries of each theory are modified by the respective transformations.
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We will assume L is an even integer and that both (B.45) and (B.46) are defined with periodic
boundary conditions, i.e., X j+L = X j , Yj+L = Yj for the former and a j+L = a j and b j+L = b j for
the latter. Having already demonstrated multiple ways of fermionizing and bosonizing on
the lattice and the continuum in preceding appendices, in this appendix we will make a non-
canonical choice for the transformation in each direction.

B.2.1 Bosonizing by gauging

Similar to the Kitaev chain (see Appendix B.1.2), bosonizing the two-Majorana chain
model (B.46) on a periodic chain is implemented by gauging the fermion number parity sym-
metry,

(−1)F =
L
∏

j=1

ia j b j . (B.47)

We gauge this symmetry by introducing a qubit onto each link 〈 j, j + 1〉, which is acted on by
the Pauli operators X j, j+1 and Z j, j+1, and specifying a Gauss law that implements the gauging.

Noting that (−1)F can be written as (−1)F = −
∏L

j=1 ia j b j+1, we enforce the Gauss law G j = 1
where

G j =

¨

X j−1, j ( ia j b j+1)Yj, j+1 , j odd,

−Yj−1, j ( ia j b j+1)X j, j+1 , j even.
(B.48)

The fermion number parity operator satisfies (−1)F = (−1)L/2+1
∏L

j=1 G j , so enforcing G j = 1

projects the Hilbert space into the (−1)F = (−1)L/2+1 subspace—the (−1)F odd (even) sub-
space when L = 0 mod 4 (L = 2 mod 4). When L = 0 mod 4, this choice of gauging corre-
sponds in the IR field theory to gauging (−1)F after stacking with the nontrivial Arf invariant.

Minimally coupling the new qubits, the two-Majorana chain model (B.46) becomes

Hmc = − i
L
∑

j=1

�

Z j, j+1 a ja j+1 + Z j−1, j b j b j+1

�

, (B.49)

and the vector and axial charges become

QV
mc =

i
2

L
∑

j=1

Z j−1, j a j b j , QA
mc =

i
2

L
∑

j=1

a j b j+1 . (B.50)

We next perform a unitary transformation

a j →

¨

−X j−1, j a j , j odd,

Yj−1, j a j , j even,
b j →

¨

−X j−1, j b j , j odd,

−Yj−1, j , b j , j even,

X j−1, j →

¨

X j−1, j , j odd,

X j−1, j ( ia j b j) , j even,
Z j−1, j → (−1) j−1 Z j−1, j ( ia j b j) .

(B.51)

In this unitary frame, the Gauss law becomes G j = ia j b j+1 = 1, which decouples the original
fermions from the system. Shifting the qubits from links to sites, the minimally coupled Hamil-
tonian (B.49) in the physical subspace of this unitary frame becomes the XX model (B.45).
Similarly, the vector and axial charges become

(QV)∨ =
1
2

L
∑

j=1

Z j =QM , (QA)∨ =
1
2

L/2
∑

n=1

(X2n−1Y2n − Y2nX2n+1) = 2QW . (B.52)
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This is consistent with bosonizing the free Dirac fermion CFT [35,139].
The above gauging procedure gives rise to a gauging map—a bosonization map—that re-

lates the fermionic model (B.46) and its (−1)F -even operators to the XX model and its η-even
operators. The algebra of (−1)F -even operators are generated by the fermion bilinears ia j b j
and ia j b j+1 for all sites j. Under the above gauging procedure, these operators are mapped
to

ia j b j → Z j , ia j b j+1→

¨

X jYj+1 , j odd,

−YjX j+1 , j even.
(B.53)

Using that ia ja j+1 = i( ia j b j+1)( ia j+1 b j+1) and i b j b j+1 = i( ia j b j)( ia j b j+1), their image un-
der this bosonization is

ia ja j+1→

¨

−X jX j+1 , j odd,

−YjYj+1 , j even,
i b j b j+1→

¨

−YjYj+1 , j odd,

−X jX j+1 , j even.
(B.54)

B.2.2 Jordan-Wigner transformation

In this appendix, we compare the bosonization procedure with a Jordan-Wigner transforma-
tion of the periodic two-Majorana chain model (B.46). We define the following Pauli operators
in terms of the Majorana operators a j , b j with j = 1, . . . , L:

σx
j =

(�

∏ j−1
k=1(−1)k iak bk

�

b j , j odd,

−
�

∏ j−1
k=1(−1)k iak bk

�

a j , j even,
σ

y
j =

(�

∏ j−1
k=1(−1)k iak bk

�

a j , j odd,
�

∏ j−1
k=1(−1)k iak bk

�

b j , j even.
(B.55)

From this Jordan-Wigner transformation, it follows that for j ̸= L,

− ia ja j+1 =

¨

σx
j σ

x
j+1 , j odd,

σ
y
j σ

y
j+1 , j even,

− i b j b j+1 =

¨

σ
y
j σ

y
j+1 , j odd,

σx
j σ

x
j+1 , j even.

(B.56)

On the other hand, for j = L,

− iaLa1 = −

 

∏

j=1

(−1) jσz
j

!

σ
y
Lσ

y
1 , − i bL b1 = −

 

∏

j=1

(−1) jσz
j

!

σx
Lσ

x
1 , (B.57)

Using (B.56) and (B.57), the two-Majorana chain Hamiltonian can be re-written as

H2maj =
L−1
∑

j=1

(σ y
j σ

y
j+1 +σ

x
j σ

x
j+1)−

 

L
∏

j=1

(−1) jσz
j

!

(σx
Lσ

x
1 +σ

y
Lσ

y
1 ) . (B.58)

Similar to the Jordan-Wigner transformation of the Kitaev chain, the above transformation
makes the two-Majorana chain a non-local Hamiltonian in terms of the spin variables. We
stress that, despite appearances, (B.58) is an exact re-writing of the two-Majorana chain model.
While locally, it resembles the XX model Hamiltonian, it differs in important global aspects,
including their global symmetries (cf. [39]).

B.2.3 Fermionizing by gauging

Following the procedure outlined in Appendix B.1.4, we fermionize the XX model (B.45) on
a periodic chain by gauging its ZM

2 symmetry using fermionic degrees of freedom on the
links. The Hilbert space associated to link 〈 j, j + 1〉 is acted on by the Majorana operators
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a j, j+1, b j, j+1, on which we impose periodic boundary conditions. We gauge the ZM
2 symmetry

of HXX, generated by

η=
L
∏

j=1

(−1) j Z j , (B.59)

by defining the Gauss operators,

G j = (−1) j Z j ia j, j+1 b j, j+1 . (B.60)

Minimal coupling turns the Hamiltonian HXX into

Hmc =
L
∑

j=1

�

iX ja j, j+1X j+1 b j+1, j+2 + iYja j, j+1Yj+1 b j+1, j+2

�

, (B.61)

and the charges QM and QW into

QM
mc =

1
2

L
∑

j=1

Z j ,

QW
mc =

1
4

L/2
∑

n=1

�

iX2n−1a2n−1,2nY2n b2n,2n+1 − iY2n b2n,2n+1X2n+1a2n+1,2n+2

�

.

(B.62)

Next, we implement a unitary transformation, defined by

Z j → Z j ia j, j+1 b j, j+1 , X j →

¨

X j , j odd,

X j ia j, j+1 b j, j+1 , j even,

a j, j+1→

¨

X j a j, j+1 , j odd,

Yj a j, j+1 , j even,
b j, j+1→

¨

−X j b j, j+1 , j odd,

Yj b j, j+1 , j even.

(B.63)

In this unitary frame, the Gauss laws become Z j = 1, so a projection to the physical, Gauss
law-invariant subspace effectively decouples the qubits. Performing a half-lattice translation
〈 j, j + 1〉 → j of the fermions then turns Hmc into the two-Majorana chain (B.46). The mo-
mentum and winding charges, in turn, become

(QM)∨ =
1
2

L
∑

j=1

ia j b j =QV , (QW)∨ =
1
4

L
∑

j=1

ia j b j+1 =
1
2

QA . (B.64)

We note that this closely parallels (B.52), and is consistent with fermionizing the compact
boson CFT at radius R=

p
2 [139].

The gauging procedure discussed above maps the η-even local operators of the XX model
to the (−1)F -even local operators of the two-Majorana chain, preserving their algebra. We
refer to this as the fermionization map. This map transforms the ZM

2 symmetry of the qubits
as follows:

η=
L
∏

j=1

(−1) j Z j →
L
∏

j=1

ia j b j = (−1)F . (B.65)

Furthermore, the action of the fermionization map on the algebra of η-even local operators is
given by the following transformation of its generators:

Z j → ia j b j , X jX j+1→

¨

− ia ja j+1 , j odd,

− i b j b j+1 , j even.
(B.66)

We note that this is precisely the inverse of the bosonization map (B.54) when restricted to the
(−1)F -even and η-even local operators of the fermionic and the bosonic models, respectively.
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C Explicit expressions of the Onsager algebra generators

In this Appendix, we present explicit expressions for the Onsager charges Qn and Gn discussed
in Section 5 of the main text. We find these expressions using the fermionic Onsager charges
Q f

n and G f
n discussed in Ref. 39, whose explicit expressions are given by Eq. (140). In particular,

we apply the bosonization map (142) to Q f
n and G f

n in order to find Qn and Gn in terms of the
Pauli operators. Upon doing so, we find

Qn =















































1
2

∑L
j=1 Z j , n= 0 ,

(−1)
n+2

2

2

∑L/2
j=1

�

X2 j−1
∏2 j+n−2

k=2 j Zk X2 j+n−1 + Y2 j
∏2 j+n−1

k=2 j+1 Zk Y2 j+n

�

, n> 0 even,

(−1)
n−1

2

2

∑L/2
j=1

�

X2 j−1
∏2 j+n−2

k=2 j Zk Y2 j+n−1 − Y2 j
∏2 j+n−1

k=2 j+1 Zk X2 j+n

�

, n> 0 odd,

(−1)
n−2

2

2

∑L/2
j=1

�

Y2 j+n−1
∏2 j−2

k=2 j+n Zk Y2 j−1 + X2 j+n
∏2 j−1

k=2 j+n+1 Zk X2 j

�

, n< 0 even,

(−1)
n+1

2

2

∑L/2
j=1

�

X2 j+n−1
∏2 j−2

k=2 j+n Zk Y2 j−1 − Y2 j+n
∏2 j−1

k=2 j+n+1 Zk X2 j

�

, n< 0 odd,

Gn =







sign(n) (−1)
n
2

2

∑L/2
j=1(−1) j

�

X jYj+n + YjX j+n

�∏ j+n−1
k= j+1 Zk , n even,

sign(n) (−1)
n−1

2

2

∑L/2
j=1(−1) j

�

X jX j+n − YjYj+n

�∏ j+n−1
k= j+1 Zk , n odd.

We refer the reader to Ref. 37 for explicit expressions of Qn and Gn in a different basis.
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