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Abstract

We present a new variational method to study the dynamics of a closed bosonic many-
body system, the time-dependent hypernetted-chain Euler-Lagrange method, tHNC.
Based on the Jastrow ansatz, it accounts for quantum fluctuations in a non-perturbative
way. The tHNC method scales well with the number of dimensions, as demonstrated by
our results on one-, two-, and three-dimensional systems. We apply the tHNC method to
interaction quenches, i.e. sudden changes of the interaction strength, in homogeneous
Bose gases. When the quench is strong enough that the final state has roton excitations
(as found and predicted for dipolar and Rydberg-dressed Bose-Einstein condensates, re-
spectively), the pair distribution function exhibits stable oscillations. For validation, we
compare tHNC results with time-dependent variational Monte Carlo results in one and
two dimensions.
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1 Introduction

The dynamics of many-body systems far from equilibrium and the role of interactions is an
interesting and intensely studied topic. Many phenomena not known from linear response
dynamics have been predicted and/or observed: many-body localization, where interactions
may prevent self-equilibration if a system with disorder starts far from equilibrium [1], dy-
namical phase transitions [2] characterized by a non-analytical time evolution after a quench
near a quantum phase transition point [3, 4], orthogonality catastrophe of polarons after an
interaction quench [5], and non-thermal fixed points predicted in relaxation dynamics [6,7].
In particular, the high level of control in experiments with ultracold quantum gases, either as
continuous gases in harmonic [8] and box traps [9] or as lattice gases [10], facilitates the study
of far from equilibrium dynamics [11, 12], by e.g. quenching an optical lattice [13] to study
correlation dynamics, or by interaction quenches of Bose gases by Feshbach resonances [14]
to study three-body correlations [15] and universality [16]. In the latter cases, a rapid quench
to large s-wave scattering length a is essential to investigate strongly interacting Bose-Einstein
condensates (BEC), because equilibrium studies are hampered by losses due to three-body
collisions when ρa3 becomes large, where ρ is the number density.

Theoretical studies of many-body dynamics far from equilibrium have been performed by
a variety of methods, some of which are best suited for lattice systems, like time-evolving
block decimation (TEBD) [17], the application of the time-dependent variational princi-
ple (TDVP) [18] to matrix product states (MPS) [19], non-equilibrium dynamical mean-
field theory (DMFT) [20], and the time-dependent density matrix renormalization group
method (tDMRG) [21–23]. Some of them work best in one dimension, like methods based
on continuous matrix product states (cMPS) [24], while others scale well to two and three di-
mensions, such as multiconfigurational time-dependent Hartree approaches (MCTDHF) [25].

The hypernetted-chain Euler-Lagrange (HNC-EL) method has been formulated for finding
optimized ground states [26–28] and the dynamics in the linear response regime, the latter
also termed correlated basis function method [29]. In this work, we derive an efficient time-
dependent variational method for continuous Bose systems in any dimension by generalizing
the HNC-EL method to a fully time-dependent method. This time-dependent hypernetted-
chain Euler-Lagrange (tHNC) method is based on a Jastrow ansatz for the wave function like
the ground state HNC-EL method, and akin to the time-dependent variational Monte Carlo
(tVMC) method [30–32]. The tHNC method, however, can be orders of magnitude more effi-
cient computationally because it does not require Monte Carlo sampling.

In this work, we use tHNC to study the dynamics of a homogeneous Bose gas after a sud-
den interaction quench. We are interested in the short period of time after the quench where
three-body losses are not dominant yet, therefore we can neglect these losses and have a closed
quantum system. Our primary interest is the time evolution of the pair distribution function
g(r, t) after the interaction quench, in particular after a quench to a strongly correlated sys-
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tem exhibiting roton excitations, which have zero group velocity. To assess the validity of
the approximations of tHNC we compare our results in one and two dimensions with tVMC
simulations.

2 The time-dependent hypernetted-chain Euler-Lagrange method

We consider a Bose gas of particles with positions ri and mass m in d dimensions, interact-
ing via a pair potential v. In equilibrium, such a system is described by a time-independent
Hamiltonian

H0 = −
ħh2

2m

N
∑

j=1

∆ j +
1
2

N
∑

k ̸=l

v(rk − rl) . (1)

In this work, we consider completely homogeneous systems, which for quantum gases can be
approximately realized by box traps [9]. We do not model the box trap boundaries where the
density falls off rapidly; instead, we consider only the constant-density part in the interior of
the trap. Consequently, the Hamiltonian H0 for our model system does not contain an external
one-body potential.

For Bose symmetry, the ground state wave function Φ0(r1, . . . , rN ) can be readily calculated
using, for example, exact quantum Monte Carlo simulations. Variational approximations to
Φ0 can be obtained with less computational effort, such as variational Monte Carlo, including
recent advances using artificial neural networks [33].

A well-established and straightforward variational treatment that includes correlations, i.e.
“quantum fluctuations”, in a non-perturbative way, are based on the Jastrow-Feenberg ansatz
and its generalizations. The many-body Bose ground state Φ0 can be expressed in terms of
two-body, three-body, etc. correlations,

Φ0(r1, . . . , rN ) =
1
p
N

exp
�1

2

∑

k<l

u(0)2 (rk − rl) +
1
3!

∑

k<l<m

u(0)3 (rk, rl , rm) + . . .
�

,

where N denotes the normalization integral 〈Φ0|Φ0〉. The real-valued correlation func-
tions u(0)n are obtained from the Ritz variational principle, which requires that the energy
expectation value E = 〈Φ0|H|Φ0〉/〈Φ0|Φ0〉 is minimized. The series of correlations has to be
truncated for practical calculations. The Euler-Lagrange equations resulting from functional
optimization, δE

δu(0)n
= 0, involve high-dimensional integrals, which can be evaluated approxi-

mately using diagrammatic methods [34].
These equations are the hypernetted-chain Euler-Lagrange (HNC-EL) equations (the name

becomes clear below). If two-body and three-body correlations are considered, the ground
state energy and structural properties of strongly correlated systems, such as liquid 4He, are
very close to exact Monte Carlo results [26]. For a less strongly correlated system, two-body
correlations are sufficient.

Excitations of the many-particle system described by H0 can be obtained from lin-
ear response theory, by allowing for small time-dependent fluctuations of the correlations,
un(rk, rl , . . . , t) = u(0)n (rk, rl , . . . ) + δun(rk, rl , . . . , t), and expanding the Euler-Lagrange equa-
tions up to linear order in δun, see Ref. [35] for details. Typically, excitations are generated
by probing the system with a weak external time-dependent one-body potential,

∑

j vext(r j , t)
(such as a laser, neutrons etc.). Then one-body “correlations” δu1(r j , t) need to be included as
well. Excellent agreement with experiments can be achieved, for example, for the dispersion
relations of collective excitations in 4He if fluctuations of three-body correlations are taken
into account [29].

3

https://scipost.org
https://scipost.org/SciPostPhys.18.4.123


SciPost Phys. 18, 123 (2025)

An interesting question is what happens if the external perturbation is not weak, such
that δun(rk, rl , . . . , t) cannot be assumed to be a small fluctuation around the ground state
u(0)n (rk, rl , . . . ) anymore. There are many examples of nonlinear response, such as nonadia-
batic alignment of molecules [36, 37], dynamic material design [38, 39], or rapid parametric
changes in ultracold gases such as interaction quenches [15, 40], the latter being the focus
of the present work. The nonlinear response of the system could be captured by expanding
the Euler-Lagrange equations to higher orders in δun. Instead of following this path, we want
to formulate the Euler-Lagrange equations for general time-dependent, complex correlations
un(rk, rl , . . . , t), in order to find the time-dependent many-body wave function Φ(r1, . . . , rN , t)
as an approximate solution of the time-dependent Schrödinger equation H(t)Φ = iħhΦ̇. In
this work, we focus on perturbations caused by changing the interaction potential, which is
modeled with the time-dependent Hamiltonian

H(t) = −
ħh2

2m

N
∑

j=1

∆ j +
1
2

N
∑

k ̸=l

v(rk − rl , t) . (2)

No assumption about the magnitude of variations of v in time will be made. Since we focus
here on time-dependent interactions instead of time-dependent external perturbation poten-
tials, we restrict ourselves to homogeneous systems. The interaction is translationally invari-
ant, therefore the system remains homogeneous despite the variation of v. Regarding experi-
mental realizations, Feshbach resonances are one of the means to vary the effective interaction
over many orders of magnitude in experiments with ultracold quantum gases.

As long as the system is not too strongly correlated, two-body correlations are usually
sufficiently accurate. Therefore, we restrict ourselves to two-body correlations u2(rk − rl , t)
to discuss the dynamics resulting from a quench of v(rk − rl , t). It turns out to be convenient
to split u2 into its real and imaginary part, u2(r) ≡ u(r) + 2iϕ(r), where r = |rk − rl | is the
distance between particle k and l. The time-dependent generalization of the Bose Jastrow-
Feenberg ansatz is

Φ(r1, . . . , rN , t) =
1
p

N (t)
exp
�1

2

∑

k<l

u(|rk − rl |, t) + i
∑

k<l

ϕ(|rk − rl |, t)
�

. (3)

Since u and ϕ depend on time, all quantities introduced below depend on time as well.
The Euler-Lagrange equations of motion for u and ϕ are obtained from the generalization

of the Ritz variational principle to the time-dependent Schrödinger equation, the minimization
of the action integral

S =
∫ t

t0

d t ′L(t ′) , (4)

with the Lagrangian

L(t) = 〈Φ(t)|H(t)− iħh
∂

∂ t
|Φ(t)〉 . (5)

The second expression in S involving the time derivative can be simplified by the invariance
of S with respect to adding total time derivatives to L. Terms involving the kinetic energy
operator can be simplified with the Jackson-Feenberg identity for a real-valued F

F∆F =
1
2

�

∆F2 + F2∆
�

+
1
2

F2[∇, [∇, ln F]]−
1
4
[∇, [∇, F2]] ,

where F = e
1
2

∑

k<l u(|rk−rl |) in our case. The Lagrangian L can be brought into a convenient
form,

L= Lg +L3 +
ħh
2

∫

dd r ϕ̇(r, t) g(r, t) +
ħh2

2m
ρ

∫

dd r v(r, t)2 g(r, t) , (6)
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with

Lg =
ρ

2

∫

dd r
�

v(r, t)−
ħh2

4m
∆u(r, t)
�

g(r, t) ,

L3 =
ħh2

2m
ρ2

∫

dd rdd r ′ v(r, t) · v(r′, t) g3(r, r ′, |r− r′|, t) .

We abbreviated the gradient of the phase as v(r, t)≡∇ϕ(r, t). The pair and three-body distri-
bution functions, g(r, t) and g3(r, r ′, |r− r′|, t), are expressed as function of distance vectors
(where r= r1 − r2 and r′ = r1 − r3 are distances between the particles at r1, r2, and r3). They
are obtained from the corresponding pair and three-body densities via

ρ2(r, t) = ρ2 g(r, t) ,

ρ3(r, r ′, |r− r′|, t) = ρ3 g3(r, r ′, |r− r′|, t) ,

where the n-body density ρn is defined as

ρn(r1, . . . , rn, t) =
N !

(N − n)!

∫

drn+1 . . . drN |Φ(t)|2 .

For a homogeneous system, ρ1 ≡ ρ is the (constant) number density.
We vary S by functional derivation, for which we need the relation between u on the one

hand and g and g3 on the other hand. Since g (and g3) does not depend on ϕ, g and u are
related via the hypernetted-chain equation [34] just as in ground state HNC-EL calculations,

g(r, t) = eu(r,t)+N(r,t)+E(r,t) , (7)

where N(r, t) are the so-called nodal diagrams and E(r, t) the elementary diagrams. The
former can in turn be expressed in terms of g via the Ornstein-Zernicke relation, while the
latter have to be approximated by truncating the infinite series of elementary diagrams. Details
on these diagrammatic summations can be found in Ref. [26, 34]. Note that the contribution
Lg , which does not depend on ϕ, is just the expression for the energy expectation value also
used in the ground state optimization of the HNC-EL method.

Unlike the ground state energy expectation value for the Jastrow-Feenberg ansatz with
pair correlations, the Lagrangian L for the time-dependent problem contains the three-body
distribution g3, which is a functional of u and hence of g, but cannot be given in a closed form.
Two approximations of g3 are common [41]: the convolution approximation which reproduces
the correct long-range behavior of g3, and the Kirkwood superposition approximation

g3(r, r ′, |r− r′|, t)≈ g(r, t) g(r ′, t) g(|r− r′|, t) , (8)

which reproduces the correct short-range behavior. Both approximations can be systematically
improved. Since we are interested here in impulsive changes of the short-range repulsion of
the interaction, we choose the latter approximation.

The time-evolution of the time-dependent Jastrow-Feenberg ansatz Φ(t), eq. (3), is deter-
mined by solving the time-dependent hypernetted-chain Euler-Lagrange (tHNC) equations

δS
δg(r, t)

= 0 , (9)

δS
δϕ(r, t)

= 0 . (10)

The tHNC equations are nonlinear partial differential equations. They could be cast into a
form which resembles the Navier-Stokes equations, similar to the Madelung formulation of
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the one-body Schrödinger equation, but we opt instead for a formulation in terms of a suitably
defined “wave function” that is numerically more convenient.

For numerical solution of eqns. (9) and (10), we define an effective “pair wave function”

ψ(r, t)≡
Æ

g(r, t)eiϕ(r,t) .

Within the Kirkwood superposition approximation we can then cast the two real-valued
eqns. (9) and (10) into a single complex nonlinear Schrödinger-like equation for ψ(r, t). The
derivation can be found in the appendix. The final form of the tHNC equation is

iħh
∂

∂ t
ψ(r, t) =− e−iγ(r,t)ħh

2

m
∇2eiγ(r,t)ψ(r, t) + [v(r, t) +wI(r, t)]ψ(r, t)

+
�

β(r, t)−
ħh2

m
|∇γ(r, t)|2
�

ψ(r, t) . (11)

The induced interaction wI is a functional of g(r) only, and it is the same expression that
appears also in ground state HNC-EL calculations, see e.g. Ref. [28]. This induced interaction
can be interpreted as a phonon-mediated interaction in addition to the bare interaction v. An
additional potential term appears if the elementary diagrams E mentioned above are taken
into account; since E depends only on g, the same approximations for E as in the ground state
HNC-EL method could be applied. For simplicity we neglect E in this work. The expressions
β and γ are functionals of both g(r) and ϕ,

β(r, t) =
ħh2

m
ρ

∫

dd r ′ f(r′, t) · f(r′ − r, t) , (12)

∇γ(r, t) = ρ

∫

dd r ′ f(r′, t) [g(r′ − r, t)− 1] , (13)

with f(r, t) ≡ g(r, t)v(r, t). Note that γ in eq. (11) is calculated by integrating ∇γ(r, t) given
in eq. (13).

The formulation (11) is chosen because it can be solved with standard techniques such
as operator splitting methods [42]. In the zero-density limit ρ → 0, all many-body effects
vanish: γ→ 0, wI → 0, β → 0, hence eq. (11) becomes the bare two-body scattering equation
for a two-body wave function ψ with reduced mass m

2 . We remind that, in this paper, we
have an isotropic, homogeneous interaction v(|r1 − r2|, t) and we assume that the system
remains isotropic and homogeneous for all times, i.e. it never spontaneously breaks translation
symmetry. Lifting the restriction of homogeneity and isotropy is formally straightforward, but
solving the resulting tHNC equations would be computationally much more demanding.

3 Results

We present results for a homogeneous d-dimensional gas of bosons, where d = 1, 2, and
3. The interactions v(r, t) are either simple models for a repulsive interaction or interactions
between Rydberg-dressed atoms [43]. In all cases, v(r, t) is characterized by two parameters:
an interaction range R and an interaction strength U , see below. The system is in the ground
state Ψ0 for times t < 0, with interaction parameters R0 and U0. At t = 0, we switch either
the width parameter R to a new value, R(t) = R0 + (R1 − R0)Θ(t), or make a similar switch
of U . For t > 0, the previous ground state Ψ0 evolves according to the new Hamiltonian H
characterized by the new interaction. At t = 0 the energy changes abruptly, but for t > 0
the evolution is unitary and thus energy is conserved, because H is time-independent after the
quench. Since there is no external potential and the interaction is translationally invariant, the
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Figure 1: Left: pair distribution function g(r) for the ground state of a three-
dimensional Rydberg-dressed Bose gas for several range parameters R and for fixed
interaction strength U/E0 = 2, see eq. (14). The thick black curve is for R/r0 = 1,
which is the initial value from which we quench to larger R1 in the dynamical cal-
culations. Other curves are for R/r0 = 1.5; 2.0;2.5; 3.0;3.5; 4.0;4.3; 4.5 (the colors
correspond to different R, given by the colorscale), which correspond to the target
values R1 to which we quench in the dynamical calculations. Right: the Bijl-Feynman
excitation spectrum ϵF (k) for the above values of R.

system is homogeneous before the quench; precluding symmetry breaking, the system stays
homogeneous after the quench.

In section 3.1 we present tHNC results of the pair distribution function g(r, t) after a quench
in a Rydberg-dressed Bose gas in three dimensions, where we show that roton excitations play
an important role for the time-evolution of the pair distribution function. Rydberg-dressed
Bose gases have been studied theoretically quite extensively [44–46], including studies of the
dynamics after interaction quenches in the Bogoliubov approximation [47], and calculations
of the roton excitation spectrum [45, 46]. The influence of roton excitations on the dynam-
ics after interaction quenches have been studied for dipolar gases [48], again in Bogoliubov
approximation. In appendix C, we compare the ground state g(r) for the 3D Rydberg gas
obtained within the Bogoliubov approximation to results obtained with HNC-EL and with ex-
act path integral Monte Carlo (PIMC) simulations in the low temperature limit from [46].
The comparison shows that HNC-EL agrees very well with the exact PIMC result, while the
Bogoliubov approximation deviates quite strongly from the exact result.

In order to assess the approximations of the tHNC method, we compare the dynamics of
g(r, t) with tVMC results in two and one dimensions in section 3.2, using the same Jastrow
ansatz as in tHNC, but with fewer approximations. In general, correlations play a larger role
in lower dimensional systems, hence these comparisons are a harder test of tHNC than in three
dimensions, and furthermore, 3D tVMC simulations would have been computationally even
more expensive.

3.1 Quench dynamics in 3D

Rydberg-dressing means that the ground state and a Rydberg state of the atoms are coupled
by a laser detuned from resonance. The coupled potential energy surfaces of the ground states
and the Rydberg states can be described by the following pair interaction [43,44,49]

v(r, t) =
U(t)

1+ (r/R(t))6
, (14)
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Figure 2: Pair distribution function g(r, t) of a 3D Rydberg-dressed Bose gas after
a quench from R0/r0 = 1 to R1/r0 = 1.5;2.0; 2.5;3.0; 3.5;4.0; 4.3;4.5, with fixed
U/E0 = 2. Blue indicates g(r, t) < 1 and red indicates g(r, t) ≥ 1 (see color scale).
For R1/r0 ≈ 3.0 and higher, the oscillations of g(r, t) near r = 0 do not decay any-
more due to generation of roton pairs with vanishing group velocity. The green line
shows the “sound cone” r = 2c t, where c is the speed of sound after the quench.

where the strength U(t) and the range R(t) may depend on time. When two particles are
closer than ≈ R, they are only weakly repelled because v becomes flat for small r; for r ≳ R,
they feel a van der Waals repulsion. We follow Ref. [46] and measure wave numbers in units
of k0 = (6π2ρ)1/3 in 3D, corresponding to a length unit r0 = 1/k0 (i.e. the density is always

ρr3
0 = (6π

2)−1). Energy is measured in units of E0 =
ħh2k2

0
2m , and time in units t0 =

ħh
E0

.
We study quenches from weak to strong interactions. We keep U fixed at U0 = 2 E0, but

switch R(t) at t = 0, from R0/r0 = 1 to R1/r0 = 1.5;2.0; 2.5;3.0; 3.5;4.0; 4.3;4.5. In the left
panel of Fig. 1 we show the corresponding ground state pair density distributions g(r). The
spatial oscillations in g(r) become more pronounced as R1 grows, and the range of correlations
increases. Typically for the interaction (14), particles tend to cluster for larger R, eventually
leading to a cluster solid [44]. This tendency to cluster is seen in the growth of g(r) for small
distance r as we increase R1.

The time evolution of g(r, t) after a quench from R0/r0 = 1 to the target values is shown in
Fig. 2 as color maps, where the horizontal axis is the distance r and the vertical axis is the time
t. The evolution of g(r, t) shows that the information about the quench of the pair interaction
is spreading to larger distances r as time evolves. Lieb and Robinson proposed a “light cone”
outside of which the effect of the quench has not yet arrived [50]. This light cone bound
applies only to discrete Hamiltonians, and was found for the Bose Hubbard model in Ref. [31]
with tVMC in one and two dimensions, where the “light” are the elementary excitations. Such
a light cone appears if the group velocity vg of the elementary excitations has an upper bound
c. Then a quench can excite two waves in opposite directions (conserving total momentum
zero); the information about the quench would travel with 2c, hence the response of g(r, t) is
expected to move with 2c to larger r.
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Figure 3: The pair distribution at r = 0, g(0, t), after a quench from R0/r0 = 1 to
R1/r0 = 1.5;2.0; 2.5;3.0; 3.5;4.0; 4.3;4.5, with fixed U/E0 = 2. For better visibil-
ity, the curves are shifted with respect to each other and colored based on R1, see
colorscale at the top of the figure. For R1/r0 = 3 and higher, g(0, t) oscillates with
no apparent decay, while for smaller R1, the pair distribution at zero distance equili-
brates to a constant value.

The green lines in Fig. 2 show the light cone based on the speed of sound c of the Rydberg-
dressed Bose gas, the “sound cone” given by r = 2c t. Especially up to R1 = 3 r0 the waves in
g(r, t) move faster than 2c, and are not bound by the sound cone. This is not surprising since
c is not the highest group velocity. Especially for low R1, this can be seen in the right panel of
Fig. 1. There we show the excitation spectrum ϵF (k) for the initial R0 before the quench (thick
line) and for the target values R1 (colored lines), using the Bijl-Feynman approximation [51,
52], ϵF (k) =

ħh2k2

2m S(k) . The Bijl-Feynman spectrum is calculated with the ground state static
structure factor S(k) obtained from a ground state HNC-EL/0 calculation with the respective
value R1. For larger R1, the dispersion relation ϵF (k) becomes steep, corresponding to a large
c. In this regime, the evolutions of g(r, t) approximately obey the sound cone bound, but upon
closer inspection one can see small oscillations with large wave number which spread faster
than 2c t. Hence, the sound cone is not a strict bound. Again, this is not surprising because, at
least in the Bijl-Feynman approximation, the dispersion relation of the Rydberg-dressed Bose
gas has arbitrarily large group velocities for large k, because ϵF (k)→

ħh2k2

2m for k→∞. Note
that this is different from excitations in lattice Hamiltonians, characterized by quasi-momenta
within the finite Brillouin zone, and thus vg does have a maximum (in the usual single-band
Hubbard approximation). The group velocity vg is usually the sound velocity, which becomes
the maximal speed of information spreading.

For small target values R1, g(r, t) quickly converges to an equilibrium distribution in an
r-interval that grows with time, as the perturbation travels away to large r. The equilibrium
is not the ground state g(r) at the same R1, because the quench injects energy into the sys-
tem. For example for the quench from R0 = 1 r0 to R1 = 2 r0, the energy per particle jumps
from E = 0.073 E0 (the ground state energy before the quench) to E = 0.739 E0 and then of
course stays constant during the unitary time evolution; the ground state energy for R1 = 2 r0,
however, is lower, Eg = 0.643 E0.
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Figure 4: Power spectrum P(ω) of g(0, t) shown in Fig. 3, after a quench from
R0/r0 = 1 to R1/r0 = 1.5; 2.0;2.5;3.0; 3.5;4.0; 4.3;4.5, with fixed U/E0 = 2. For
better visibility, the curves are shifted with respect to each other and colored based
on R1, see colorscale at the top of the figure. The stars on the base line indicate the
energies of the roton and the maxon after the quench, if present. The inset compares
P(ω) after a quench to R1 = 4.5 r0 starting from R0 = r0 (red) with a quench starting
from R0 = 4 r0 (black).

When we quench the interaction to larger R1, there is a qualitative change in g(r, t): we
observe long-lived oscillations for R1 ≥ 3 r0 that do not decay within the time window shown
in Fig. 2. This can be seen, for example, for small r. In Fig. 3 we show g(r, t) for r = 0
for all target values R1. The pair distribution function at r = 0 is one way to obtain the
contact parameter [53,54] which can be measured [55]. For R1 ≤ 2.5 r0, g(0, t) converges to
a constant value, which lies slightly above the ground state g(0). For R1 ≥ 3 r0, g(0, t) appears
to keep oscillating indefinitely. Apart from R1 = 3 r0, these oscillations clearly contain more
than one frequency.

The origin of this long-lived oscillation for small r becomes apparent when we invoke the
picture of a quench that generates two opposite excitations. For small R1, the Bijl-Feynman
spectrum ϵF (k) increases monotonically with wave number k, see right panel of Fig. 1. For
R1 = 3 r0, ϵF (k) has a plateau with essentially zero slope around k/k0 = 1, and for larger
R1, ϵF (k) exhibits a maximum, called maxon, with energy ħhωm, and a minimum, called roton,
with energy ħhωr . A vanishing group velocity vg(k) =

dϵF (k)
dk implies a diverging density of state,

leading to a high probability to excite excitations with vg ≈ 0. Furthermore, the excitation pairs
of opposite momenta produced by the quench do not propagate for vg = 0. For R1 > 3 r0,
roton pairs as well as maxon pairs with opposite momenta are generated. Since they do not
propagate, the temporal oscillations for small distance r become long-lived for R1 ≥ 3 r0.
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For R1 = 3 r0, g(0, t) oscillates with a single frequency because maxon and roton coincide
at the inflection point of ϵF (k). The frequency is twice the corresponding excitation energy
(because the quench produces a pair of excitations). For R1 > 3 r0, g(0, t) oscillates with two
frequencies, given by twice the roton and twice the maxon frequency. In order to confirm this
quantitatively, we show the power spectra P(ω) of g(0, t) in Fig. 4, as functions of ω/2. Each
P(ω) is shifted in proportion to R1 for better visibility. For R1 < 3 r0, the power spectra are
broad. At R1 = 3 r0 a single peak appears, corresponding to the single frequency oscillations
seen in Fig. 3. For R1 > 3 r0, P(ω) has two peaks of varying relative spectral weight: at twice
the roton frequency 2ωr and at twice the maxon frequency 2ωm (the combination ωr +ωm
would have finite momentum and cannot be excited in this simple picture by a translation-
ally invariant perturbation such as an interaction quench). The small ringing oscillations are
artifacts from the Fourier transformation of a finite time window [0, 40 t0].

However, ωr and ωm, which are indicated by stars in Fig. 4 for the respective R1, do not
match perfectly with the peaks of P(ω). The picture of an interaction quench exciting two
elementary excitations with opposite momenta is only approximately valid. A quench from
R0/r0 = 1 to e.g. R1/r0 = 4.5 is a highly nonlinear process that cannot be regarded as a small
perturbation and treated with linear response theory. The quench tends to shift the lower-
frequency below 2ωr and the higher-frequency peak above 2ωm. The effect of nonlinearity
is demonstrated in the inset, where the power spectrum P(ω) for the quench 1 r0 → 4.5 r0
shown in the main figure (red) is compared with P(ω) for a much weaker quench 4 r0→ 4.5 r0
(black), where linear response theory may hold. From linear response theory, we would expect
that, if two rotons are created, g(r, t)will oscillate with exactly twice the roton frequency. This
is indeed what we observe in the inset: the power spectrum has a peak very close to 2ωr . Note
that for the weaker quench, the excitation of two maxons is completely suppressed, because the
quench injects less energy into the system. The difference between the energy/particle after
the weak quench and the energy/particle of the R1/r0 = 4.5 ground state is just∆E = 0.03 E0,
while an order of magnitude more energy is injected by the stronger quench, with an excess
energy of ∆E = 0.54 E0. More energy is available in the latter case to excite maxons, which
have about twice the energy of rotons, see Fig.1.

3.2 Comparison with tVMC

We compare tHNC results for the quench dynamics with corresponding results obtained with
time-dependent variational Monte Carlo (tVMC) simulations [30]. Details about our imple-
mentation of tVMC can be found in the appendix and in Refs. [56,57]. We use the same Jastrow
ansatz (3) as in the tHNC method. However, tVMC does not require an approximation for g3
nor does tVMC need to use approximations for the elementary diagrams, because all integra-
tions over the N -body configuration space are performed by brute force Monte Carlo sampling.
The price is, of course, a much higher computational cost. Therefore we have restricted the
comparisons with tVMC to one and two dimensions.

3.2.1 Comparison in 1D

For the 1D comparison we use a square well interaction potential

v(r, t) = U(t)Θ [R(t)− r] , (15)

characterized by strength U(t) and range R(t). The length and energy units are r0 = ρ−1 and
E0 =

ħh2

2mr2
0
. In the tVMC simulations we use N = 100 particles, corresponding to a simulation

box size of L = 100 r0. We can thus calculate g(r, t) up to a maximal distance of r = 50 r0;
when fluctuations reach this maximal distance, spurious reflections appear due to the periodic
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Figure 5: Comparison of the pair distribution function g(r, t) for a Bose gas in 1D
between tHNC (red) and tVMC (blue). The interaction is the square well poten-
tial (15), quenched from initial strength U = 2 E0 to a strength U = 4 E0 (left panel)
and U = 8 E0 (right panel), respectively. For better visibility g(r, t) is shifted in pro-
portion to time, indicated on the right margin.

boundary conditions. Therefore, we restrict our comparisons of g(r, t) with tHNC to times t
before these reflections become noticeable. Further technical details of the tVMC simulations
can be found in the appendix.

In Fig. 5 we compare g(r, t) after a quench. The interaction range is fixed at R/r0 = 1 and
the interaction strength jumps from U = 2 E0 to a target value U = 4 E0 (left panel) and to
U = 8 E0 (right panel). We show g(r, t) at times t/t0 = 0.0; 0.1;0.2; . . . ; 2.0. For the weaker
first quench, the agreement between tHNC (red) and tVMC (blue) is excellent, because the
target interaction is weak enough that neglecting elementary diagrams and the Kirkwood su-
perposition approximation (8) for the three-body distribution g3 are still good approximations.
For the stronger quench to a target value U = 8 E0 the tHNC and tVMC results for g(r, t) do
not match perfectly anymore. For strong interaction, the effect of elementary diagrams or the
three-body distribution or both becomes more important. But overall, the agreement is still
remarkably good; for example, both frequency and phase shift of the oscillations in g(r, t)
are the same. We conclude that tHNC works quite well compared to tVMC in 1D, despite the
approximations that we use in our simple implementation of tHNC. Of course, for strong in-
teractions, even tVMC with pair correlations is not sufficient for quantitative predictions of the
dynamics in 1D and a better variational ansatz than (3) should be used.

3.2.2 Comparison in 2D

For the 2D comparison we use the Rydberg-dressed interaction (14) from the 3D studies in the
previous section 3.1. We use the 2D version of the units introduced above for 3D, see also [46]:
wave numbers are in units of k0 = (4πρ)1/2, and again length in units of r0 = 1/k0, energy

in units of E0 =
ħh2k2

0
2m , and time in units of t0 =

ħh
E0

. Again, we compare only up to times before
effects of the periodic boundaries in tVMC contaminate the dynamics of g(r, t).

Following the quench procedure in our 3D tHNC calculations above, we keep U fixed
at U0 = 2 E0, and switch R(t) from R0 = 2 r0, where excitations from the ground state are
monotonous, to R1 = 4 r0, where the excitation spectrum exhibits rotons. Fig. 6 compares the
tHNC result (red) and tVMC result (blue) for g(r, t) after the quench. As in 1D, we find good
agreement between tHNC and tVMC before spurious oscillations due to the periodic boundary
conditions in tVMC appear for later times (not shown). As expected from our 3D calculations,
the creation of pairs of rotons leads to persistent oscillations in g(r, t) for small r. The ampli-
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Figure 6: Comparison of the pair distribution function g(r, t) for a Bose gas in 2D
between tHNC (red) and tVMC (blue). The interaction is the Rydberg potential (14),
quenched from initial range R= 2 r0 to R= 4 r0. For better visibility g(r, t) is shifted
in proportion to time, indicated on the right margin.

tude, however, becomes smaller in the tHNC results, as can be seen in Fig. 7, which compares
g(r, t) for r = 0. The deviation between the tHNC result and the tVMC result is larger than
the stochastic error inherent in the tVMC method, which increases with time and is shown as
shaded area in Fig. 7. Hence, the differences between tHNC and tVMC are due to the approx-
imations made in our present implementation of tHNC. When g(0, t) becomes large, particles
tend to cluster together, and we expect that particularly the Kirkwood superposition form (8)
for g3 is a poor approximation.

4 Discussion

We present a new method for studying quantum many-body dynamics far from equilibrium,
the time-dependent generalization of the hypernetted-chain Euler-Lagrange method, tHNC,
which is non-perturbative and goes beyond the mean field paradigm. We demonstrate this
variational method in a study of the interaction quench dynamics of a homogeneous Rydberg-
dressed Bose gas. A sudden strong change of the effective Rydberg interaction leads to a strong
response of the pair distribution function g(r, t), which is the quantity we are interested in in
this work. In an interaction quench, the Hamiltonian becomes time-dependent but is still
translationally invariant. The systems stay homogeneous and only pair quantities like g(r, t)
carry the dynamics (we assume there is no spontaneous breaking of translation invariance).

We derived the Euler-Lagrange equations of motion for g(r, t) for the simplest case, where
elementary diagrams in the HNC relations are omitted, and only pair correlations u2 are taken
into account in the variational ansatz for the many-body wave function (Jastrow-Feenberg
ansatz). This simple version is long known in various formulations for ground state calcula-
tions [58,59] and is sufficient for not too strongly correlated Bose systems (but not sufficient
for quantitative predictions of energy and structure of e.g. liquid 4He).

The dynamics of the pair distribution g(r, t) of a Rydberg-dressed 3D gas is similar to
results of previous tVMC studies of bosons on a deep 2D lattice, described by the Bose-Hubbard
model [31], and bosons in 1D [32]. After a weak quench a “wave” travels to larger distances.
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Figure 7: For the quench of the 2D Bose gas in Fig. 6, we compare the roton-induced
oscillation of g(r, t) for r = 0 between tHNC (red) and tVMC (blue). The shaded
area shows the stochastic error of the tVMC result.

Unlike for the dynamics on a lattice, we observe no light-cone restriction for the speed of
propagation since our group velocity is not bounded from above. Ripples of very high wave
number indeed move very fast towards larger distances. We stress that these waves are not
density fluctuations (which would break translation symmetry) but fluctuations of the pair
density.

There is a qualitative change in the behavior of g(r, t) for a strong quench. If the interaction
after the quench is strong enough that a linear response calculation predicts a roton excitation,
i.e. a non-monotonous dispersion relation, g(r, t) exhibits long-lasting oscillations for small
r that do not decay within our calculation time windows. This can be readily understood as
the creation of a pair of rotons with opposite momentum (total momentum is conserved by an
interaction quench). The group velocity of rotons vanishes, therefore the oscillations of g(r, t)
due to rotons do not propagate to larger r; furthermore the density of states for rotons diverges,
therefore exciting roton pairs is very efficient. The argument is equally valid for the maxon, i.e.
the local maximum of the dispersion relation. Finally, since the quench creates a pair of rotons
or maxons (a roton-maxon pair would violate momentum conservation), the oscillations have
twice the roton or maxon frequencies. Indeed, for these strong quenches the power spectra
have peaks at almost these frequencies, and not much strength at other frequencies. The peaks
are slightly off from twice the roton or maxon frequency due to nonlinear effects, which we
confirmed by smaller, hence more linear-response-like, jumps in the interaction quench.

Apart from the Jastrow-Feenberg ansatz with pair correlations, the tHNC equations contain
two approximations, the already mentioned omission of elementary diagrams, and an approx-
imation for the three-body distribution function g3(r1, r2, r3), where we chose the straightfor-
ward Kirkwood superposition approximation. In order to assess these two approximations,
we performed tVMC simulations of interaction quenches. We restricted ourselves to one and
two dimensions due to the high computational cost of tVMC. Overall we see good agreement
between tHNC and tVMC. In 1D we compared for two different quenches, finding excellent
agreement for the weaker quench. As the interaction strength after the quench increases the
agreement worsens somewhat, but all the main features such as the roton-induced oscillations
in the 2D comparison are captured already by tHNC.
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Comparison with tVMC or other time-dependent many-body methods may be prohibitive,
such as for the study of the long-range behavior of g(r, t) in 3D. In such a case, the errors
in tHNC can only be studied and reduced by improving tHNC itself. For strong interactions,
we should (i) incorporate elementary diagrams – this can be done approximately in the same
way as in ground state HNC-EL calculations; (ii) improve upon the Kirkwood superposition
approximation (e.g. use the systematic Abe expansion [41]) or compare with other approxima-
tions like the convolution approximation [34]; (iii) include triplet correlations u3(r1, r2, r3) in
the variational ansatz (also for tVMC), as has been done for ground state and linear response
calculations [29]. The latter improvement of tHNC will require completely new approaches
how to solve the resulting high-dimensional equations of motion.

Like the ground state HNC-EL method, tHNC can be generalized to inhomogeneous and/or
anisotropic systems. The latter is important for dipolar Bose gases, while most quantum gas
experiments are in harmonic or optical traps rather than in box traps, and thus require an in-
homogeneous description; even in case of an interaction quench of a homogeneous Bose gas,
the quench may trigger spontaneous breaking of translational invariance. The diagrammatic
summations used in the ground state HNC-EL method have been generalized to off-diagonal
properties like the one-body density matrix to study off-diagonal long-range order, i.e. the
Bose-Einstein condensed fraction [60]. We will generalize this to the time-dependent case.
Further down the road, we plan to include three-body correlations u3 at least approximately,
known to improve ground states of highly correlated systems [26]. This opens a new scat-
tering channel, where an interaction quench can generate excitation triplets, not just pairs,
with total momentum zero. In the case of quenches to rotons, the oscillation pattern of g(r, t)
will be more complex because its power spectrum can contain frequencies corresponding to
the energies of three rotons. We are also generalizing tHNC to anisotropic interaction in or-
der to study the non-equilibrium dynamics of dipolar quantum gases. Studying the long-time
dynamics after a nonlinear perturbation, such as a strong interaction quench, requires numer-
ical stability for very long times, which is challenging for nonlinear problems like solving the
tHNC equations or the equations of motion of tVMC. A small time step is required to achieve
long-time stability for both tHNC and tVMC. However, tHNC is computationally very cheap
and calculations of the long-time dynamics are feasible. In order to delay artifacts from reflec-
tions at domain boundaries, either the spatial domain must be chosen very large, or absorbing
boundary conditions are implemented.
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A Derivation of the tHNC equation

We derive the tHNC equation of motion (11) using the time-dependent variational principle
δS = 0, where S is the action defined in eq.(4).

The action is given by eqns. (4), (5), and (6) as

S = Sg +S2 +S3 ,
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with

Sg =
ρ

2

t
∫

t0

d t ′
∫

dd r
�

v(r, t ′)−
ħh2

4m
∆u(r, t ′)
�

g(r, t ′) ,

S2 =
ħh
2

t
∫

t0

d t ′
∫

dd r ϕ̇(r, t ′) g(r, t ′) +
ħh2

2m
ρ

t
∫

t0

d t ′
∫

dd r v(r, t ′)2 g(r, t ′) ,

S3 =
ħh2

2m
ρ2

t
∫

t0

d t ′
∫

dd rdd r ′ v(r, t ′) · v(r′, t ′) g3(r, r ′, |r− r′|, t ′) ,

where v(r, t ′)≡∇ϕ(r, t ′).
The Euler-Lagrange equations (9) and (10) require the functional differentiation of Sg ,

S2, and S3 with respect to g(r, t) and ϕ(r, t). Apart from time integration, Sg is the same
expression as the energy expectation value of the ground state HNC-EL method. It does not
depend on ϕ(r, t) and the variation with respect to g(r, t), using the HNC relation (7), can be
found in reviews on HNC-EL, e.g. Ref. [28]. The derivatives of S2 are

δS2

δg(r, t)
=
ħh
2
ϕ̇(r, t) +

ħh2

2m
v(r, t)2 ,

δS2

δϕ(r, t)
= −
ħh
2

ġ(r, t)−
ħh2

2m
∇ [g(r, t) · v(r, t)] .

In S3 we employ the Kirkwood superposition approximation (8)

S3 =
ħh2

2m
ρ2

t
∫

t0

d t ′
∫

dd rdd r ′ f(r, t ′) · f(r′, t ′) g(|r− r′|, t ′) ,

with f(r, t ′)≡ g(r, t ′)v(r, t ′). The derivatives are

δS3

δg(r, t)
=
ħh2

m
v(r, t) · ∇γ(r, t) +

1
2
β(r, t) ,

δS3

δϕ(r, t)
= −
ħh2

m
∇ [g(r, t) · ∇γ(r, t)] .

where β(r, t) and ∇γ(r, t) are defined in eqns. (12) and (13), respectively.
Putting everything together, equation (9) becomes, after multiplying by 2,

0=−
1
p

g(r, t)

ħh2

m
∇2
Æ

g(r, t) + v(r, t) +wI(r, t) +ħhϕ̇(r, t) +
ħh2

m
[∇ϕ(r, t)]2

+ 2
ħh2

m
∇ϕ(r, t) · ∇γ(r, t) + β(r, t) . (A.1)

If we kept only the first line of the equation, we would recover the ground state HNC-EL equa-
tion (where ϕ = 0, of course). The induced potential wI(r, t) describing phonon-mediated
interactions can be found in Ref. [28]. Equation (10) becomes

0= −
1
2
ħhġ(r, t)−

ħh2

m
∇ [g(r, t) · ∇(ϕ(r, t) + γ(r, t)] . (A.2)

When we multiply eq. (A.1) with
p

g(r, t) and eq. (A.2) with i/
p

g(r, t), add the two equa-
tions, and multiply the resulting equation with eiϕ(r,t), we obtain the final form (11) of the
tHNC equation for the effective pair wave function ψ(r, t) =

p

g(r, t)eiϕ(r,t) that we solve
numerically.
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B The tVMC method

In tVMC [30–32], we use the same Jastrow-Feenberg ansatz of equation (3) as in tHNC, and
describe the time dependence of the wavefunction via a set of P complex variational parame-
ters α(t) = {α1(t),α2(t), . . . ,αP(t)}, which are coupled to local operators Om(r1, . . . , rN ). In
our implementation (more details can be found in [57]), these local operators are real and
represented by third order B-splines Bm(r) centered on a uniform grid in the interval [0, L/2],
and are given by Om(r1, . . . , rN ) =

∑

k<l Bm(rkl). The real and imaginary part of the pair cor-
relation function u2(r) can then be written as

u(r) =
P
∑

m

Bm(r)α
R
m(t) , ϕ(r) =

P
∑

m

Bm(r)α
I
m(t) ,

where αR
m and αI

m are the real and imaginary part of αm. The time evolution of the variational
wavefunction is obtained by solving the coupled system of equations (see [30])

i
∑

n

Smnα̇n = 〈EOm〉 − 〈E〉〈Om〉 , (B.1)

with the correlation matrix Smn = 〈OmOn〉 − 〈Om〉〈On〉 and the local energy E = H|Φ〉
|Φ〉 . The

expectation values 〈. . .〉 are estimated using Monte Carlo integration by sampling from the trial
wavefunction Φ(r1, . . . , rN , t) = exp

�∑

k<l u2(rkl , t)
�

. Because of the translational invariance
of the studied system we do not need to take into account a one-body part u1(r, t) in the
wavefunction, unlike in Ref. [57] where the dynamics of a Bose gas in a 1D optical lattice has
been simulated.

Simulation parameters in 1D: In tVMC, we approximate the Jastrow pair-correlation func-
tion u(r) using a cubic spline function with P = 400 complex weights, corresponding to the
time-dependent variational parameters αm(t), as given above. The time propagation is per-
formed with a time step of∆t = 2·10−4 t0, and NMC = 1250 uncorrelated samples are used for
calculating the expectation values required for time propagation. The results are converged
with respect to the spatial and temporal numerical resolution as we see no changes in the
simulation results upon increasing P or decreasing ∆t.

Performing tVMC simulations comes of course with a large computational workload com-
pared to tHNC calculations. While about 560 CPU hours are required to run the discussed
tVMC simulations in 1D, tHNC takes about 5 CPU minutes for evolving the pair distribution
function for the same time window t ∈ [0,20]t0 and for an even larger r-domain, which re-
duces unphysical boundary reflections. However, as most Monte Carlo methods, tVMC can be
highly parallelized, which makes it feasible in terms of real computing time.

Simulation parameters in 2D: In the 2D tVMC simulations we use N = 900 particles, cor-
responding to a simulation box size L = 106.347 r0. We use P = 300 variational parameters, a
time step of ∆t = 2 · 10−4 t0 and NMC = 1250 uncorrelated samples for estimating the expec-
tation values needed to solve equation (B.1).

For the 2D tVMC simulations with N = 900 particles the computational time amounts to
14.000 CPU hours, stressing one more time the benefits of tHNC simulations concerning the
computational workload, which only amounts to approx. 30 CPU hours.
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Figure 8: Comparison of the ground state pair distribution function g(r) obtained
from HNC-EL (line), from exact PIMC in the limit of low temperature (open squares),
from the Bogoliubov method (filled circles), and an approximate Bogoliubov method
(filled squares). See text for details.

C Comparison with Bogoliubov approximation

Interaction quenches in Bose gases have been studied with the Bogoliubov method which
accounts for correlations as a perturbation (“quantum fluctuations”) of the mean field approx-
imation. The pair distribution function g(r) in Bogoliubov approximation [61] has been gen-
eralized to dynamical problems in Refs. [48,62]. Particularly for quenches in Rydberg-dressed
Bose gases this has been used, with a further approximation, in Ref. [47].

In Fig. 8 we compare the result for the ground state g(r) for the 3D Rydberg-dressed
Bose gas for R= 4 and U = 3 obtained with four different methods: exact path integral Monte
Carlo (PIMC) in the limit of low temperature, such that the Bose gas is effectively in the ground
state [46]; the HNC-EL/0 method which is the ground state limit of the time-dependent tHNC
method used in this paper; and two variants of the Bogoliubov method: first, the full expression
for g(r) used in Refs. [48, 62] for dynamics, referred to as Bogo.(1) in Fig. 8; and secondly,
an approximate expression used in Ref. [47] for dynamics, referred to as Bogo.(2) in Fig. 8.
From Fig. 8 we see that HNC-EL/0 result for g(r) (line) reproduces the exact PIMC result
(open squares) very well, apart from small deviations for r → 0. On the other hand, both
Bogoliubov results deviate quite significantly from the exact PIMC result. The comparison
demonstrates that correlations must be incorporated non-perturbatively in this case, while for
weakly interacting Bose systems the Bogoliubov approximation may be sufficient.

References

[1] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman,
U. Schneider and I. Bloch, Observation of many-body localization of interacting fermions
in a quasirandom optical lattice, Science 349, 842 (2015), doi:10.1126/science.aaa7432.

18

https://scipost.org
https://scipost.org/SciPostPhys.18.4.123
https://doi.org/10.1126/science.aaa7432


SciPost Phys. 18, 123 (2025)

[2] M. Heyl, A. Polkovnikov and S. Kehrein, Dynamical quantum phase transi-
tions in the transverse-field Ising model, Phys. Rev. Lett. 110, 135704 (2013),
doi:10.1103/PhysRevLett.110.135704.

[3] P. Jurcevic et al., Direct observation of dynamical quantum phase transitions
in an interacting many-body system, Phys. Rev. Lett. 119, 080501 (2017),
doi:10.1103/PhysRevLett.119.080501.

[4] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-
X. Gong and C. Monroe, Observation of a many-body dynamical phase transition with a
53-qubit quantum simulator, Nature 551, 601 (2017), doi:10.1038/nature24654.

[5] S. I. Mistakidis, G. C. Katsimiga, G. M. Koutentakis, T. Busch and P. Schmelcher, Quench
dynamics and orthogonality catastrophe of Bose polarons, Phys. Rev. Lett. 122, 183001
(2019), doi:10.1103/PhysRevLett.122.183001.

[6] M. Karl and T. Gasenzer, Strongly anomalous non-thermal fixed point in a quenched two-
dimensional Bose gas, New J. Phys. 19, 093014 (2017), doi:10.1088/1367-2630/aa7eeb.

[7] L. Madeira and V. S. Bagnato, Non-thermal fixed points in Bose gas experiments, Symmetry
14, 678 (2022), doi:10.3390/sym14040678.

[8] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensa-
tion in trapped gases, Rev. Mod. Phys. 71, 463 (1999), doi:10.1103/RevModPhys.71.463.

[9] N. Navon, R. P. Smith and Z. Hadzibabic, Quantum gases in optical boxes, Nat. Phys. 17,
1334 (2021), doi:10.1038/s41567-021-01403-z.

[10] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,
Rev. Mod. Phys. 78, 179 (2006), doi:10.1103/RevModPhys.78.179.

[11] A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Colloquium: Nonequilib-
rium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011),
doi:10.1103/RevModPhys.83.863.

[12] T. Langen, R. Geiger and J. Schmiedmayer, Ultracold atoms out of equilibrium, Annu.
Rev. Condens. Matter Phys. 6, 201 (2015), doi:10.1146/annurev-conmatphys-031214-
014548.

[13] M. Cheneau et al., Light-cone-like spreading of correlations in a quantum many-body sys-
tem, Nature 481, 484 (2012), doi:10.1038/nature10748.

[14] C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Feshbach resonances in ultracold gases,
Rev. Mod. Phys. 82, 1225 (2010), doi:10.1103/RevModPhys.82.1225.

[15] R. J. Fletcher, R. Lopes, J. Man, N. Navon, R. P. Smith, M. W. Zwierlein and Z. Hadz-
ibabic, Two- and three-body contacts in the unitary Bose gas, Science 355, 377 (2017),
doi:10.1126/science.aai8195.

[16] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell and D. S. Jin, Universal dynamics
of a degenerate unitary Bose gas, Nat. Phys. 10, 116 (2014), doi:10.1038/nphys2850.

[17] G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev.
Lett. 93, 040502 (2004), doi:10.1103/PhysRevLett.93.040502.

19

https://scipost.org
https://scipost.org/SciPostPhys.18.4.123
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1038/nature24654
https://doi.org/10.1103/PhysRevLett.122.183001
https://doi.org/10.1088/1367-2630/aa7eeb
https://doi.org/10.3390/sym14040678
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1038/s41567-021-01403-z
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1146/annurev-conmatphys-031214-014548
https://doi.org/10.1146/annurev-conmatphys-031214-014548
https://doi.org/10.1038/nature10748
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1038/nphys2850
https://doi.org/10.1103/PhysRevLett.93.040502


SciPost Phys. 18, 123 (2025)

[18] A. K. Kerman and S. E. Koonin, Hamiltonian formulation of time-dependent variational
principles for the many-body system, Ann. Phys. 100, 332 (1976), doi:10.1016/0003-
4916(76)90065-8.

[19] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde and F. Verstraete, Time-
dependent variational principle for quantum lattices, Phys. Rev. Lett. 107, 070601 (2011),
doi:10.1103/PhysRevLett.107.070601.

[20] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka and P. Werner, Nonequilibrium
dynamical mean-field theory and its applications, Rev. Mod. Phys. 86, 779 (2014),
doi:10.1103/RevModPhys.86.779.

[21] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[22] A. E. Feiguin and S. R. White, Time-step targeting methods for real-time dynamics
using the density matrix renormalization group, Phys. Rev. B 72, 020404 (2005),
doi:10.1103/PhysRevB.72.020404.

[23] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[24] F. Verstraete and J. I. Cirac, Continuous matrix product states for quantum fields, Phys.
Rev. Lett. 104, 190405 (2010), doi:10.1103/PhysRevLett.104.190405.

[25] A. U. J. Lode, C. Lévêque, L. B. Madsen, A. I. Streltsov and O. E. Alon, Colloquium: Mul-
ticonfigurational time-dependent Hartree approaches for indistinguishable particles, Rev.
Mod. Phys. 92, 011001 (2020), doi:10.1103/RevModPhys.92.011001.

[26] E. Krotscheck, Optimal three-body correlations and elementary diagrams in liquid 4He,
Phys. Rev. B 33, 3158 (1986), doi:10.1103/PhysRevB.33.3158.

[27] E. Krotscheck, Theory of correlated basis functions, in Introduction to modern methods
of quantum many-body theory and their applications, World Scientific, Singapore, ISBN
9789812777072 (2002), doi:10.1142/9789812777072_0007.

[28] A. Polls and F. Mazzanti, Microscopic description of quantum liquids, in Series on ad-
vances in quantum many-body theory, World Scientific, Singapore, ISBN 9789812777072
(2002), doi:10.1142/9789812777072_0002.

[29] C. E. Campbell, E. Krotscheck and T. Lichtenegger, Dynamic many-body theory: Multi-
particle fluctuations and the dynamic structure of 4He, Phys. Rev. B 91, 184510 (2015),
doi:10.1103/PhysRevB.91.184510.

[30] G. Carleo, F. Becca, M. Schiró and M. Fabrizio, Localization and glassy dynamics of many-
body quantum systems, Sci. Rep. 2, 243 (2012), doi:10.1038/srep00243.

[31] G. Carleo, F. Becca, L. Sanchez-Palencia, S. Sorella and M. Fabrizio, Light-cone effect and
supersonic correlations in one- and two-dimensional bosonic superfluids, Phys. Rev. A 89,
031602 (2014), doi:10.1103/PhysRevA.89.031602.

[32] G. Carleo, L. Cevolani, L. Sanchez-Palencia and M. Holzmann, Unitary dynamics of
strongly interacting Bose gases with the time-dependent variational Monte Carlo method
in continuous space, Phys. Rev. X 7, 031026 (2017), doi:10.1103/PhysRevX.7.031026.

20

https://scipost.org
https://scipost.org/SciPostPhys.18.4.123
https://doi.org/10.1016/0003-4916(76)90065-8
https://doi.org/10.1016/0003-4916(76)90065-8
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.72.020404
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.104.190405
https://doi.org/10.1103/RevModPhys.92.011001
https://doi.org/10.1103/PhysRevB.33.3158
https://doi.org/10.1142/9789812777072_0007
https://doi.org/10.1142/9789812777072_0002
https://doi.org/10.1103/PhysRevB.91.184510
https://doi.org/10.1038/srep00243
https://doi.org/10.1103/PhysRevA.89.031602
https://doi.org/10.1103/PhysRevX.7.031026


SciPost Phys. 18, 123 (2025)

[33] A. Dawid et al., Modern applications of machine learning in quantum sciences, (arXiv
preprint) doi:10.48550/arXiv.2204.04198.

[34] J. P. Hansen and I. R. McDonald, Theory of simple liquids, Academic Press, New York,
USA, ISBN 9780123238504 (1976).

[35] M. Saarela, Elementary excitations and dynamic structure of quantum fluids, in Introduc-
tion to modern methods of quantum many-body theory and their applications, World sci-
entific, Singapore, ISBN 9789812777072 (2002), doi:10.1142/9789812777072_0006.

[36] H. Stapelfeldt and T. Seideman, Colloquium: Aligning molecules with strong laser pulses,
Rev. Mod. Phys. 75, 543 (2003), doi:10.1103/RevModPhys.75.543.

[37] A. S. Chatterley et al., Rotational coherence spectroscopy of molecules in helium nan-
odroplets: Reconciling the time and the frequency domains, Phys. Rev. Lett. 125, 013001
(2020), doi:10.1103/PhysRevLett.125.013001.

[38] M. Fechner, A. Sukhov, L. Chotorlishvili, C. Kenel, J. Berakdar and N. A. Spaldin, Magne-
tophononics: Ultrafast spin control through the lattice, Phys. Rev. Mater. 2, 064401 (2018),
doi:10.1103/PhysRevMaterials.2.064401.

[39] G. Tulzer, M. Hoffmann and R. E. Zillich, Quantum heat engine based on dynamical ma-
terials design, Phys. Rev. B 102, 125131 (2020), doi:10.1103/PhysRevB.102.125131.

[40] L. Villa, S. J. Thomson and L. Sanchez-Palencia, Quench spectroscopy of a disordered quan-
tum system, Phys. Rev. A 104, L021301 (2021), doi:10.1103/PhysRevA.104.L021301.

[41] E. Feenberg, Theory of quantum fluids, Academic Press, New York, USA, ISBN
9780122508509 (1969).

[42] S. A. Chin, Structure of positive decompositions of exponential operators, Phys. Rev. E 71,
016703 (2005), doi:10.1103/PhysRevE.71.016703.

[43] T. Pohl, E. Demler and M. D. Lukin, Dynamical crystallization in the
dipole blockade of ultracold atoms, Phys. Rev. Lett. 104, 043002 (2010),
doi:10.1103/PhysRevLett.104.043002.

[44] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller and G. Pupillo, Supersolid
droplet crystal in a dipole-blockaded gas, Phys. Rev. Lett. 105, 135301 (2010),
doi:10.1103/PhysRevLett.105.135301.

[45] N. Henkel, R. Nath and T. Pohl, Three-dimensional roton excitations and supersolid forma-
tion in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett. 104, 195302 (2010),
doi:10.1103/PhysRevLett.104.195302.

[46] I. Seydi, S. H. Abedinpour, R. E. Zillich, R. Asgari and B. Tanatar, Rotons and
Bose condensation in Rydberg-dressed Bose gases, Phys. Rev. A 101, 013628 (2020),
doi:10.1103/PhysRevA.101.013628.

[47] G. McCormack, R. Nath and W. Li, Dynamical excitation of maxon and roton modes
in a Rydberg-dressed Bose-Einstein condensate, Phys. Rev. A 102, 023319 (2020),
doi:10.1103/PhysRevA.102.023319.

[48] S. S. Natu, L. Campanello and S. Das Sarma, Dynamics of correlations in a quasi-two-
dimensional dipolar Bose gas following a quantum quench, Phys. Rev. A 90, 043617
(2014), doi:10.1103/PhysRevA.90.043617.

21

https://scipost.org
https://scipost.org/SciPostPhys.18.4.123
https://doi.org/10.48550/arXiv.2204.04198
https://doi.org/10.1142/9789812777072_0006
https://doi.org/10.1103/RevModPhys.75.543
https://doi.org/10.1103/PhysRevLett.125.013001
https://doi.org/10.1103/PhysRevMaterials.2.064401
https://doi.org/10.1103/PhysRevB.102.125131
https://doi.org/10.1103/PhysRevA.104.L021301
https://doi.org/10.1103/PhysRevE.71.016703
https://doi.org/10.1103/PhysRevLett.104.043002
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevA.101.013628
https://doi.org/10.1103/PhysRevA.102.023319
https://doi.org/10.1103/PhysRevA.90.043617


SciPost Phys. 18, 123 (2025)

[49] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky and P. Zoller, Strongly correlated gases
of Rydberg-dressed atoms: Quantum and classical dynamics, Phys. Rev. Lett. 104, 223002
(2010), doi:10.1103/PhysRevLett.104.223002.

[50] E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Commun.
Math. Phys. 28, 251 (1972), doi:10.1007/BF01645779.

[51] A. Bijl, The lowest wave function of the symmetrical many particles system, Physica 7, 869
(1940), doi:10.1016/0031-8914(40)90166-5.

[52] R. P. Feynman and M. Cohen, Energy spectrum of the excitations in liquid helium, Phys.
Rev. 102, 1189 (1956), doi:10.1103/PhysRev.102.1189.

[53] S. Tan, Energetics of a strongly correlated Fermi gas, Ann. Phys. 323, 2952 (2008),
doi:10.1016/j.aop.2008.03.004.

[54] F. Werner and Y. Castin, General relations for quantum gases in two and
three dimensions. II. Bosons and mixtures, Phys. Rev. A 86, 053633 (2012),
doi:10.1103/PhysRevA.86.053633.

[55] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell and D. S. Jin, Measurements of Tan’s
contact in an atomic Bose-Einstein condensate, Phys. Rev. Lett. 108, 145305 (2012),
doi:10.1103/PhysRevLett.108.145305.

[56] M. Gartner, Monte Carlo simulations of non-equilibrium dynamics in bosonic many-body
systems, PhD thesis, Johannes Kepler University Linz, Austria (2023).

[57] M. Gartner, F. Mazzanti and R. Zillich, Time-dependent variational Monte Carlo study
of the dynamic response of bosons in an optical lattice, SciPost Phys. 13, 025 (2022),
doi:10.21468/SciPostPhys.13.2.025.

[58] C. E. Campbell, The structure of quantum fluids, in Progress in liquid physics, Wiley &
Sons, Hoboken, USA, ISBN 9780471994459 (1978).

[59] L. J. Lantto and P. J. Siemens, Optimal correlation function for Fermi HNC equations, Phys.
Lett. B 68, 308 (1977), doi:10.1016/0370-2693(77)90481-6.

[60] E. Manousakis, V. R. Pandharipande and Q. N. Usmani, Condensate fraction and mo-
mentum distribution in the ground state of liquid 4He, Phys. Rev. B 31, 7022 (1985),
doi:10.1103/PhysRevB.31.7022.

[61] T. D. Lee, K. Huang and C. N. Yang, Eigenvalues and eigenfunctions of a Bose sys-
tem of hard spheres and its low-temperature properties, Phys. Rev. 106, 1135 (1957),
doi:10.1103/PhysRev.106.1135.

[62] S. S. Natu and E. J. Mueller, Dynamics of correlations in a dilute Bose gas following an
interaction quench, Phys. Rev. A 87, 053607 (2013), doi:10.1103/PhysRevA.87.053607.

22

https://scipost.org
https://scipost.org/SciPostPhys.18.4.123
https://doi.org/10.1103/PhysRevLett.104.223002
https://doi.org/10.1007/BF01645779
https://doi.org/10.1016/0031-8914(40)90166-5
https://doi.org/10.1103/PhysRev.102.1189
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1103/PhysRevA.86.053633
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.21468/SciPostPhys.13.2.025
https://doi.org/10.1016/0370-2693(77)90481-6
https://doi.org/10.1103/PhysRevB.31.7022
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRevA.87.053607

	Introduction
	The time-dependent hypernetted-chain Euler-Lagrange method
	Results
	Quench dynamics in 3D
	Comparison with tVMC
	Comparison in 1D
	Comparison in 2D


	Discussion
	Derivation of the tHNC equation
	The tVMC method
	Comparison with Bogoliubov approximation
	References

