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Abstract

Configurational entropy, or complexity, plays a critical role in characterizing disordered
systems such as glasses, yet its measurement often requires significant computational
resources. Recently, Rényi entropy, a one-parameter generalization of Shannon entropy,
has gained attention across various fields of physics due to its simpler functional form,
making it more practical for measurements. In this paper, we compute the Rényi ver-
sion of complexity for prototypical mean-field disordered models, including the random
energy model, its generalization, referred to as the random free energy model, and the
p-spin spherical model. We first demonstrate that the Rényi complexity with index m
is related to the free energy difference for a generalized annealed Franz-Parisi poten-
tial with m clones. Detailed calculations show that for models having one-step replica
symmetry breaking (RSB), the Rényi complexity vanishes at the Kauzmann transition
temperature TK , irrespective of m > 1, while RSB solutions are required even in the
liquid phase. This study strengthens the link between Rényi entropy and the physics of
disordered systems and provides theoretical insights for its practical measurements.

Copyright N. Javerzat et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-12-06
2025-03-24
2025-04-10

Check for
updates

doi:10.21468/SciPostPhys.18.4.124

Contents

1 Introduction 2

2 Rényi entropy and related approaches 4
2.1 Monasson approach for computing the complexity 5
2.2 Shannon expression of the complexity 6
2.3 Rényi complexity 7
2.4 General properties of Rényi complexity 8
2.5 Franz-Parisi potentials 8
2.6 Rényi complexity and m-annealed Franz-Parisi potential 9

3 Random free energy model 10
3.1 Definition of the model 10
3.2 Thermodynamic free energy and entropy 11
3.3 Complexity 12
3.4 Rényi complexity 13
3.5 Special case of the REM 14

1

https://scipost.org
https://scipost.org/SciPostPhys.18.4.124
mailto:nina.javerzat@univ-grenoble-alpes.fr
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.18.4.124&amp;domain=pdf&amp;date_stamp=2025-04-10
https://doi.org/10.21468/SciPostPhys.18.4.124


SciPost Phys. 18, 124 (2025)

4 p-spin spherical model 15
4.1 Definition of the model 15
4.2 Replica computation of the Rényi complexity 15

4.2.1 Replica Ansatz 16
4.2.2 Saddle-point solutions 18

5 Conclusion and discussion 21

A Analytical solution of the p-spin model 23
A.1 RS solution 23
A.2 RSBb solution 24
A.3 Transition temperature Tc(m) 26
A.4 Roots of order 3 polynomials 27

References 28

1 Introduction

High-dimensional, rugged (free) energy landscapes are a hallmark of disordered systems, in-
cluding structural glasses [1–3], spin glasses [4, 5], constraint satisfaction problems [6–8],
machine learning models [9, 10], and biological systems [11, 12]. A key quantity in under-
standing these landscapes is the complexity (or configurational entropy), Σ, which quantifies
the number of metastable states within the landscape, providing crucial insights into the sta-
tistical characterization of these systems [13,14]:

Σ=
1
N

logN , (1)

where N is the number of metastable states and N is the number of elements (e.g., particles,
spins). In this paper, the natural logarithm is used unless otherwise stated. Σ defined in
Eq. (1) is based on Boltzmann’s view on entropy, i.e., the logarithm of the number of accessible
states. Alternatively, particularly in thermal equilibrium, one can seeΣ based on Gibbs’ view or
Shannon’s information-theoretical view [15] using the probability distribution, pα, for finding
a metastable state α:

Σ= −
1
N

∑

α

pα log pα . (2)

Σ has been measured numerically, or computed analytically in a wide variety of disordered
systems [5].

In structural glasses, Σ is one of the most fundamental quantities in theories of the glass
transition [16–20]. Σ takes a finite value in a supercooled liquid, and it decreases with de-
creasing temperature. A sharp reduction of Σ reflects rarefaction of the number of accessible
metastable states, leading to glassy slow dynamics [18,19]. The mean-field theory of the glass
transition [17, 20] predicts that when the temperature is decreased further, Σ vanishes at a
finite temperature TK , called the Kauzmann transition temperature [21,22], where the system
undergoes a phase transition from a supercooled liquid to an ideal glass.

Although the complexity provides us with valuable insights into the phenomenology of
glassy systems, its practical measurement involves multiple difficulties [23]. First, in finite
dimensions, metastable states are no longer well-defined since the energy barrier between
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states is finite (unlike mean-field models). Thus, metastable states are meaningful only in a
short (vibrational) timescale [24]. Second, direct (brute force) counting of metastable states
is virtually impossible except for very small N (say N ≈ 20) because of an exponentially large
number of states [25]. Various computational schemes have been proposed to circumvent
these difficulties [26, 27] (see Ref. [23] for review). For example, the inherent structure for-
malism approximates the free energy landscape by a potential energy landscape at T → 0
and computes the associated complexity [28–30]. Thermodynamic integration schemes were
introduced by imposing a harmonic potential to confine the system in a glass state [31, 32].
Among various proposals, measuring the free energy difference between the liquid and glass
states, using the so-called Franz-Parisi potential (cf. Sec. 2.5) is the most straightforward and
theoretically grounded [33–35]. However, computation of the (quenched) Franz-Parisi poten-
tial requires a thermal average of the system (replica 2) under the external field coupled to a
reference configuration (replica 1). One then performs averaging over independent reference
configurations. This double (quenched) average requires huge computational resources [36].
Thus, in the literature, an annealed version of the Franz-Parisi potential, where two replicas
evolve on the same timescale (hence, single, annealed, average), is often computed as a proxy
to the quenched Franz-Parisi potential [37, 38]. Although recent developments in efficient
sampling algorithms, such as swap Monte-Carlo [39], allow one to perform simulations for
the quenched Franz-Parisi potential, the temperature range and system size is still limited due
to harsh computational costs [40–42]. Despite the frequent use of the annealed Franz-Parisi
potential, its validity as an approximation of the quenched one has yet to be investigated widely
(except for earlier numerical simulations [36]).

The difficulty of measuring the Shannon entropy in Eq. (2) originates from its daunting
functional form, involving the probability density times the logarithm of the probability density.
This difficulty also arises in other domains of physics: for example, in quantum many-body
systems, the Shannon entropy corresponds to the von Neumann entropy, which is a measure
of quantum entanglement. However, direct measurement of the von Neumann entropy is
challenging in experiments, simulations, and analytical calculations.

Recently, there has been growing interest in using the Rényi entropy as an alternative to the
Shannon entropy [43–53]. The Rényi entropy is a one-parameter generalization of Shannon
entropy (with the parameter denoted as m here), which was initially proposed in information
theory [54], defined as

ΣRenyi(m) =
1

N(1−m)
log

∑

α

(pα)
m . (3)

As explained in detail in Sec. 2.3, the Rényi entropy coincides with the Shannon entropy in
the limit m → 1. The probability density pα enters the Rényi entropy in Eq. (3) in the form
of
∑

α(pα)
m, while it enters the Shannon entropy via

∑

α pα log pα. The former functional
form is simpler than the latter in terms of measurements (in experiments and simulations)
and analytical calculations. This is one of the main reasons why the Rényi entropy is widely
used. In quantum many-body systems, the Rényi entropy can also serve as a measure of quan-
tum entanglement, that can be experimentally measured [43, 44, 55] and is computationally
less demanding in numerical simulations than the Shannon (or von Neumann) entanglement
entropy [45–48, 56]. Moreover, computing the Rényi entropy for integer m, it is possible to
obtain the entanglement entropy by analytic continuation [57]. A similar situation can be
found in the characterization of chaos in dynamical systems: instead of a direct measurement
of the Kolmogorov-Sinai entropy, which has essentially the same functional form as the Shan-
non one, it is convenient to compute the Rényi entropy as a proxy of the former [58–60].
The Rényi entropy also has applications in non-equilibrium statistical mechanics [49,60–62],
and is frequently used in ecology and statistics. In particular, Hill’s diversity index (corre-
sponding to the exponential of the Rényi entropy) characterizes the diversity of a statistical
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ensemble [50,63]. Recently, Wang and Harrowell [51] proposed structural diversity, inspired
by biodiversity literature, using the (exponential of) Rényi entropy to characterize various
crystalline and amorphous materials quantitatively. Aside from these examples, Rényi entropy
is applied in a wide variety of physics research areas [52,53,64].

However, the use of Rényi entropy is not just for practical purposes, and its relevance in
physics is not a coincidence. Characterizing the mean of information content (or logarithm of
probability) is ubiquitous in physics. In Sec. 2.3, we detail the construction of Rényi entropy
in terms of a generalized mean of information content possessing the additivity property.

One of the main goals of this paper is to demonstrate the role of the Rényi entropy in
the context of disordered systems, along the direction initiated by Kurchan and Levine [65],
which shows the deep connections between the Rényi entropy and the physics of disordered
systems. Kurchan and Levine interpret the thermodynamics of the glass transition through
a Rényi version of the complexity [65] (see also a short review [66]). In particular, they
clarified the relationship between the Rényi complexity and the so-called Monasson approach
(see Sec. 2.1). Furthermore, going beyond mean-field, they associated the Rényi complexity
with frequently repeated amorphous patches in real space structure [67], proposing a practical
method to estimate the Rényi complexity in finite dimensions [65]. Thus, the Rényi complexity
is not just a convenient analog of the (Shannon) complexity, but it is an insightful quantity to
assess fundamental aspects of the glass transition.

In this paper, we extend the phenomenological arguments put forward by Kurchan and
Levine and investigate the Rényi complexity of disordered models in detail. First, in section 2.1
we review the computation of the complexity using the Monasson method. In section 2.3 we
introduce the Rényi complexity as a generalization of the Shannon one, and in section 2.5
we leverage the connection between the Rényi complexity and the Monasson approach, to
demonstrate that the Rényi complexity with index m essentially corresponds to the free en-
ergy difference of the m-components annealed Franz-Parisi potential in any dimension. We
then compute the Rényi complexity for several prototypical disordered models: the Random
Free Energy Model [68] –which encompasses the standard Random Energy Model [69] as a
specific limit– in section 3, and the p-spin spherical model [70] in section 4. From a technical
perspective, our computation for the p-spin model follows the approach of Kurchan, Parisi, and
Virasoro [71], using real replicas with integer m (referred to as clones in our paper), but ex-
tends this to a more detailed analysis for general real values of m. For each model we provide
detailed temperature and m dependencies, in the liquid phase above the Kauzmann transi-
tion. Our computations across all models studied show that all Rényi complexities with index
m vanish at the same Kauzmann transition temperature, TK . However, the solutions require a
replica symmetry breaking Ansatz, even in the liquid phase, and we provide the phase diagram
for the RS/RSB transition. Interestingly, the RSB solution saturates the bound imposed by an
inequality derived using an information-theoretical approach.

Our results provide deeper insights into the Rényi complexity in disordered systems, par-
ticularly in models exhibiting one-step replica symmetry breaking. Additionally, they offer an
insightful guideline for using the Rényi complexity (and the annealed Franz-Parisi potential)
as an estimate of complexity in numerical simulations. Furthermore, our study serves as a
concrete example demonstrating the interdisciplinary connection between the Rényi entropy
in information theory and theoretical techniques in the physics of disordered systems.

2 Rényi entropy and related approaches

We first give a brief pedagogical review of the Monasson approach, before explaining how it
is connected to the Shannon complexity. This also sets up our notations for later use. We then
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detail how the Rényi complexity provides a generalization of the Shannon one. Finally we
introduce the Franz-Parisi potentials and explain that the Rényi complexity corresponds to a
generalized annealed Franz-Parisi potential.

2.1 Monasson approach for computing the complexity

In mean-field theories, a convenient way to compute the complexity Σ is Monasson’s construc-
tion [72] (see also Refs. [73–76] for reviews). Consider the partition function Z(m) of a system
composed of m (real number) clones belonging to the same metastable state specified by α:

Z(m) =
∑

α

e−mβN fα(T ) =

∫

d f exp [−N {mβ f −Σ( f , T )}]

≈ exp [−N {mβ f∗(T, m)−Σ( f∗(T, m), T )}] , (4)

where fα(T ) is the free energy density of the metastable state α, and β = 1/T is the inverse
temperature. Σ( f , T ) is given by Σ( f , T ) = 1

N logN ( f , T ) with N ( f , T ) =
∑

αδ( f − fα(T )),
where δ(x) is the Dirac delta function. In the last equality, we performed the saddle-point
approximation, so that f∗(T, m) is given by the saddle-point condition,

mβ = ∂Σ( f , T )/∂ f | f= f∗(T,m) . (5)

The free energy per element, φ(m) is given by

βφ(m) = −
1

mN
log Z(m)≈ β f∗(T, m)−

1
m
Σ( f∗(T, m), T ) . (6)

The differentiation of φ(m) with respect to m nicely decomposes the two contributions in
Eq. (6) as

Σ( f∗(T, m), T ) = m2 ∂

∂m
βφ(m) , (7)

f∗(T, m) =
∂

∂m
mφ(m) , (8)

where we have used Eq. (5). In particular, Eq. (7) allows one to extract the complexity, Σ,
above TK by taking the m→ 1 limit,

Σ= lim
m→1

m2 ∂

∂m
βφ(m) . (9)

Below TK instead, m∗ < 1 is chosen such that Σ( f∗(T, m∗), T ) = 0.
Thus, the computation of Σ boils down to the computation of βφ(m), which is the free

energy of the system composed of m clones belonging to the same metastable glass state. In
practice, to compute βφ(m) from the microscopic Hamiltonian Ei , where i specifies config-
uration, one needs to constrain m clones in the same state. This is realized, for instance, by
introducing an overlap q and computing the free energy and associated partition function in
a constrained ensemble [73], as given by

βφ(m, q) = −
1

mN
log Z(m, q) , (10)

Z(m, q) =
∑

i1

∑

i2

· · ·
∑

im

e−β
�

Ei1+Ei2+...+Eim

� m
∏

a<b

δ(q− q̂ia ,ib
) , (11)

where q̂ia ,ib
is an overlap function characterizing similarity between configurations ia and ib.

When ia and ib are similar q̂ia ,ib
≈ 1, whereas q̂ia ,ib

≈ 0 when ia and ib are distinct. · · · denotes
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a disordered average if needed, e.g., in cases of spin glasses with disordered couplings. Ideally,
we wish to compute βφ(m, q) for a given disorder, as the above argument stands on such a
situation. Yet, in practice, thanks to the self-averaging property, at the thermodynamic limit,
one can equivalently obtain βφ(m, q) by Eq. (10) with the disordered average. To extract
Σ at m → 1, one can use log Z(m, q) instead of log Z(m, q) for simple models such as the
p-spin model. Yet this is not generally correct [76]. When m ̸= 1, the distinction between
log Z(m, q) and log Z(m, q) is crucial, even for the p-spin model, as the latter must be used for
the Monasson approach and the computation of Rényi complexity, while the former is related
to the large deviation function of the free energy [77–80] (see further discussions below). In
systems with continuous variables, such as spherical models, the summations in Eq. (11) are
replaced by integrals.

We then obtain the complexity Σ(q) as a function of q, given by

Σ(q) = lim
m→1

m2 ∂

∂m
βφ(m, q) . (12)

Below the Mode-Coupling dynamic transition temperature Tmct, the second (local) minimum
appears in Σ(q), which provides the solution constraining m clones (with m → 1) in a
metastable glass state. This corresponds to the Edwards-Anderson parameter qEA(T ) [81],
which characterizes the random freezing of degrees of freedom in the physical system under
consideration. The identification between the overlap parameter in replica computations and
the physical Edwards-Anderson parameter is non-trivial and reflects the construction of the
replica symmetry (breaking) Ansatz (see Ref. [82] for a pedagogical discussion). Finally, we
obtain the complexity as a function of temperature T ,

Σ(T ) = Σ(qEA(T )) . (13)

2.2 Shannon expression of the complexity

The Monasson construction allows one to compute the complexity in Shannon’s information
view based on the probability distribution, as given by Eq. (2). Indeed, consider the partition
function of the original system with m = 1, Z(m = 1) =

∑

α Zα, where Zα = e−βN fα(T ) is the
partition function restricted to a metastable state α. The probability distribution pα for finding
a metastable state α can be defined as

pα =
Zα

Z(m= 1)
=

e−βN fα(T )

Z(m= 1)
. (14)

Then,

−
1
N

∑

α

pα log pα = β
∑

α

pα fα(T ) +
1
N

log Z(m= 1) = β f∗(T, m= 1)− βφ(m= 1)

= lim
m→1
Σ( f∗(T, m), T ) . (15)

We used
∑

α pα fα(T ) = f∗(T, m = 1), βφ(m = 1) = − 1
N log Z(m= 1), and Eq. (6). Equa-

tion (15) is nothing but the complexity computed with Monasson’s method. We then conclude

Σ= −
1
N

∑

α

pα log pα =
1
N

∑

α

pα Iα , (16)

where Iα = − log pα is the information content or magnitude of surprise. This equation pro-
vides us with Shannon’s information-theoretical view on the complexity. If one observes a
metastable state with a very small probability pα, one gets a surprise, and hence, it is in-
formative. Instead, if one observes a state with high pα, it would not be surprising and not
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informative, because it takes place very often. Thus, Σ based on Eq. (16) quantifies a mean of
the information content. It also quantifies the magnitude of uncertainty on average. At higher
temperatures, it is uncertain which state one observes among an exponentially large number
of metastable states; hence, the mean information contentΣ is large. Instead, at lower temper-
atures, in particular below TK , one would always observe the system in the unique stable state
(actually a subexponential number of stable states). Hence, the mean information content is
zero.

2.3 Rényi complexity

Given the above considerations, the Rényi entropy corresponds to a one-parameter general-
ization of the Shannon entropy, whose construction, motivation, and interpretation can be
understood by considering two key aspects (such details on the Rényi entropy are discussed
in a recent review [83].)

• Generalized mean of information content. As we emphasized above, the Shannon entropy
is nothing but a mean value of the information content Iα, using the standard arithmetic
mean (or linear average). However, the notion of mean is not limited to arithmetic mean.
In fact, there are various other types of means, such as the geometric mean, harmonic
mean, and root mean square (non-linear averages). For example, one encounters the
harmonic mean when computing the equivalent resistance of parallel electrical circuits.
Recall also that the root mean square is one of the most used means to analyze data in
science and technology. Kolmogorov and Nagumo generalized the concept of the mean
further using a wider class of functional forms [84, 85], which allows one to define a
more general measure of averaged information content.

• Additivity. One can then define a generalized entropy using a generalized mean. How-
ever, as a quantity of information, one wishes to have an entropy with the property of
additivity for independent events, namely, if two random variables A and B are indepen-
dent, an entropy S(A, B) of their joint distribution is the sum of their individual entropies,
S(A, B) = S(A) + S(B). This is called additivity which serves as a fundamental (desired)
property in information theory. The additivity is also naturally expected for the thermo-
dynamic entropy in physical systems. We also note that in contrast to the Rényi entropy,
other generalized entropies, such as the Tsallis entropy, do not satisfy additivity [86–89].

Alfréd Rényi searched for a generalized entropy using the concept of generalized mean,
while keeping the additivity condition, and obtained the entropy that is now called the Rényi
entropy [54]. In our current setting (with the disordered average), we now define the Rényi
complexity, ΣRenyi(m), by

ΣRenyi(m) =
1

N(1−m)
log

∑

α

(pα)m , (17)

where m is the Rényi index with 0 < m <∞ and m ̸= 1. The Renyi complexities, ΣRenyi(0),
ΣRenyi(1), and ΣRenyi(∞) are defined as the corresponding limits of ΣRenyi(m) for m → 0,
m→ 1, and m→∞, respectively. In this study, we mainly consider m> 1.

The m→ 1 limit corresponds to the (Shannon) complexity, as one can easily check using
l’Hôpital’s rule:

lim
m→1
ΣRenyi(m) = lim

m→1

1
N(1−m)

log
∑

α

(pα)m = lim
m→1

∂
∂m log

∑

α(pα)m

−N

= lim
m→1

1
∑

α(pα)m
∑

α
∂
∂m em log pα

−N
= −

1
N

∑

α

pα log pα = Σ . (18)
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The m→∞ limit corresponds to the so-called min-entropy, ΣRenyi
∞ = limm→∞Σ

Renyi(m).
When m is very large, the state with the highest probability, maxα{pα}, dominates the sum-
mation, i.e.,

∑

α(pα)
m ≈ (maxα{pα})m. Thus at m→∞, one obtains

Σ
Renyi
∞ = −

1
N

logmax
α
{pα}=

1
N

min
α
{− log pα} . (19)

In particular, using Eq. (14), one gets

Σ
Renyi
∞ = β fL(T )− βφ(m= 1) , (20)

where fL(T ) =minα{ fα(T )} is the lowest free energy at a given temperature T .

2.4 General properties of Rényi complexity

We summarize the properties of the Rényi complexity (or Rényi entropy in general) that are
relevant to this paper (see Ref. [83] for other interesting properties).

First, ΣRenyi(m) is a non-increasing function as one can check,

∂ΣRenyi(m)
∂m

≤ 0 . (21)

Thus, ΣRenyi(m) is bounded by ΣRenyi
∞ from below, i.e., ΣRenyi

∞ ≤ ΣRenyi(m). For m > 1, one
can also obtain an upper bound. In general,

∑

α(pα)
m ≥ maxα{ (pα)m} = (maxα{pα})m.

Using the definition of the Rényi entropy in Eq. (17) and min-entropy in Eq. (19), we get
ΣRenyi(m)≤ m

m−1Σ
Renyi
∞ . To summarize, when m> 1, we have

Σ
Renyi
∞ ≤ ΣRenyi(m)≤

m
m− 1

Σ
Renyi
∞ . (22)

As it is clear from the derivation, the upper bound is realized when the summation is com-
pletely dominated by the state with the highest probability or lowest free energy. In general, a
larger value of m in ΣRenyi(m) tends to discriminate or highlight states with larger probability,
while a smaller value of m tends to take into account states with finite probabilities in a rather
equal manner. Thus, varying m from the Shannon entropy limit m→ 1 corresponds to biasing
(m> 1) or unbiasing (m< 1) the original probability distribution.

2.5 Franz-Parisi potentials

We now explain the relation between the Rényi complexities and the Franz-Parisi potentials.
The Franz-Parisi potential, V (q) [33, 34, 90], corresponds to the Landau free energy for the
glass transition. It is a function of the order parameter q associated with the Kauzmann ideal
glass transition, namely the overlap function that we introduced in section 2.1. According
to mean-field theories, at high temperatures, V (q) shows a single minimum near q ≈ 0,
which corresponds to the liquid state. Below Mode-Coupling dynamic transition temperature
Tmct, V (q) develops a second minimum at a finite overlap (the Edwards-Anderson parame-
ter) q = qEA ≈ 1 corresponding to the metastable glass state. The second minimum (hence
V (qEA)) decreases with decreasing temperature and coincides with V (q ≈ 0) (which is often
set to zero) at TK , showing a first-order-transition-like behavior. Yet, the complexity Σ remains
continuous without latent heat. Therefore, this type of transition is unique to disordered glassy
systems and is called “random first-order transition” (RFOT) [18,19]. The free energy differ-
ence between the liquid and glass states amounts to the complexity (times temperature) [33],
namely

Σ= β [V (qEA)− V (q ≈ 0)] . (23)
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This equation provides an alternative interpretation of the complexity as a free energy differ-
ence in the Franz-Parisi potential. The random-first-order transition scenario is not restricted
to structural glasses. Similar phenomenologies are observed in a wide variety of problems. In
fact, the original RFOT argument was constructed based on a class of mean-field spin glasses
showing one-step replica symmetry breaking [91,92].

Franz-Parisi potentials can be defined by the quenched way, denoted as βV Quench(q) and
the annealed way, denoted as βV Anneal(q):

βV Quench(q) = −
1
N

∑

i1

e−βEi1

Z
log

∑

i2

e−βEi2

Z
δ(q− q̂i1,i2) , (24)

βV Anneal(q) = −
1
N

log
∑

i1

∑

i2

e−β
�

Ei1+Ei2

�

(Z)2
δ(q− q̂i1,i2) . (25)

In the quenched construction, firstly, equilibrium configuration i1 is sampled by e−βEi1/Z ,
which serves as a reference or template configuration. On top of that, the target configu-
ration i2 is sampled according to e−βEi2/Z , while the configuration i1 is fixed permanently or
quenched, together with measuring overlap q̂i1,i2 between i1 and i2. Thus, it requires a double
average (for a given disorder if it exists), which is computationally demanding in practice.
We note that, in general, the sampling temperatures for i1 and i2 can be different, and this
difference was exploited in some cases [41, 42]. Yet we consider that both temperatures are
the same for simplicity in this paper.

In the annealed construction, instead, both configurations, i1 and i2, are sampled at the
same time. In other words, two clones i1 and i2 evolve with the same timescale. Therefore, it
has only one average operation (again, for a given disorder), reducing the computational cost
significantly compared with the quenched construction. Indeed, previous literature performed
molecular simulations under the annealed construction and measured βV Anneal(q) to get a
proxy of βV Quench(q) [37,38].

In the annealed construction above, we considered two clones evolving on the same
timescale. One can generalize this setting to the m clones setting. Namely, one can define
the m-annealed Franz-Parisi potential, βV Anneal(m, q), given by

βV Anneal(m, q) = −
1
N

log
∑

i1

∑

i2

· · ·
∑

im

e−β
�

Ei1+Ei2+...+Eim

�

(Z)m

m
∏

a<b

δ(q− q̂ia ,ib
) . (26)

One notices that this m-clones setting is conceptually very similar to the Monasson construction
with m clones (see Sec. 2.1). Indeed, with Eqs. (10) and (11), one can rewrite Eq. (26) as

βV Anneal(m, q) = m [βφ(m, q)− βφ(m= 1)] . (27)

Thus, βV Anneal(m, q) is expressed by the difference of the free energy per element for the
m-clones and the original (single) system.

2.6 Rényi complexity and m-annealed Franz-Parisi potential

Now we are in a position to derive the connection between the Rényi complexity defined in
Eq. (17) and the m-annealed Franz-Parisi potential defined in Eq. (26). We wish to compute
ΣRenyi(m, q) with a constraint by the overlap q, similar to the argument below Eq. (12). Using
Eqs. (17) and (14) with the constraint, we get

ΣRenyi(m, q) =
1

N(1−m)

�

log Z(m, q)−mlog Z(m= 1)
�

=
m

m− 1
[βφ(m, q)− βφ(m= 1)] . (28)
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Thus,ΣRenyi(m, q) is expressed by the difference of the free energy per element for the m-clones
and the original (single) system. Namely, Eq. (28) demonstrates the relationship between the
Rényi complexity and the Monasson approach as clarified by Ref. [65]. In particular, it is now
clear that the Rényi index is nothing but the number of clones in the Monasson approach.

By comparing Eq. (27) and (28), we arrive at

ΣRenyi(m, q) =
1

m− 1
βV Anneal(m, q) . (29)

To conclude, the Rényi complexity with the index m corresponds to the m-annealed Franz-
Parisi potential with a factor 1/(m− 1).

In the following sections, we will compute the Rényi complexity in detail for prototypical
mean-field disordered models, the Random Free Energy Model and the p-spin spherical model.

3 Random free energy model

3.1 Definition of the model

As a simple example to illustrate the evaluation of the Rényi complexity, we first consider
a slight generalization of the Random Energy Model in which the energies of the different
configurations are interpreted as the free energies Fα = N fα of metastable states, where N
is the underlying number of degrees of freedom (that are not described explicitly). We call
this model Random Free Energy Model (RFEM), taking inspiration from the Random Energy
Random Entropy Model of Ref. [68]. The case of the standard Random Energy Model (REM)
[69] is a specific limit of the RFEM, as will appear clearly below. The reason we study the
RFEM instead of the standard REM is that the RFEM provides clear distinctions among total
entropy stot, complexity Σ, and vibrational entropy svib (or glass entropy for a metastable
state). This makes it a useful model for illustrating the essence of the Monasson approach and
for computing the Rényi complexities, while analytically tractable. In contrast, the standard
REM has total entropy that is entirely configurational, i.e., stot = Σ, lacking any vibrational
entropy component.

The free energy distribution ρ( f ) from which the free energy densities fα are randomly
drawn is now a Gaussian distribution with a temperature-dependent variance J2(T )/N ,

ρ( f ) =

√

√ N
2πJ2(T )

exp

�

−
N( f − f0)2

2J2(T )

�

. (30)

We denote as MN the total number of metastable states for a system of size N , and we assume
that MN grows exponentially with N , as MN ∼ eλN . For the sake of simplicity, the parameter λ
is assumed to be temperature-independent. It should not be confused with the complexity Σ,
which takes into account the probability weight∝ e−βN fα of the different metastable states.
In the usual REM [69], configurations implicitly correspond to 2N spin configurations as in
an Ising spin model, so that λ = log 2. In the RFEM, the sum is over metastable states which
contain part of the system entropy as vibrational entropy, so that 0 < λ < log2. The value of
λ will be determined below.

To get some insights on the temperature dependence of the parameter J(T ), we focus for
simplicity on the RFEM derived from the Random Energy Random Entropy Model [68]. In
this simple model, metastable states are assumed to have both a random energy density ϵα
and a random entropy density sα drawn from Gaussian distributions, so that fα = ϵα − Tsα.
Both ϵα and sα are temperature-independent. We assume ϵ = 0, ϵ2 = J2

0/N , s = s0 and
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Var(s) = s2 − s2
0 = σ

2/N , where J0 and σ are two temperature-independent parameters. The
distribution of fα is thus the Gaussian distribution in Eq. (30), with

f0 = −Ts0 , J2(T ) = J2
0 + T2σ2 . (31)

The calculations performed below can in principle be done keeping J(T ) as a generic increasing
function of T . However, to get tractable explicit expressions for physical observables like the
typical free energy or the complexity, it is convenient to use the specific parametrization of J(T )
in Eq. (31). In the following, we thus keep the notation J(T ) as long as expressions remain
simple with a generic J(T ), and then switch to the specific expression given in Eq. (31).

3.2 Thermodynamic free energy and entropy

To evaluate the thermodynamic free energy and entropy of the system, we introduce the par-
tition function of the model, given by

Z =
MN
∑

α=1

e−βN fα . (32)

The (total) thermodynamic free-energy density, ftot, averaged over the disorder is then given by
ftot = −T N−1log Z . The disorder-averaged quantity log Z in the REM may be evaluated using
the replica trick [93]. However, a standard approach when considering REM-type models is
to introduce the density of states of a typical sample [69]. We define the density n( f ) of
metastable states with free energy f . Averaging over disorder, we have for large N

n( f )∼ eN[λ−( f − f0)2/2J2(T )] . (33)

The average density of states is exponentially large in N over the interval fmin < f < fmax,
where

fmin = f0 −
p

2λJ(T ) , fmax = f0 +
p

2λJ(T ) . (34)

Outside this interval, the average density of states n( f ) is exponentially small in N , meaning
that in a typical sample of the disorder in a large system, there are no states outside the
interval [ fmin, fmax]. The density of state ntyp of a typical sample can thus be approximated as
ntyp ≈ n( f ) for f ∈ [ fmin, fmax] and ntyp = 0 for f /∈ ( fmin, fmax). The partition function of a
typical sample can thus be evaluated as

Ztyp ≈
∫ fmax

fmin

d f ntyp( f )e
−N f /T ≈

∫ fmax

fmin

d f e−N g( f ) , (35)

where we have introduced the function

g( f ) = −λ+
( f − f0)2

2J2(T )
+

f
T

. (36)

We then perform the usual approximation, ftot ≈ −T N−1 log Ztyp.
From Eq. (35), Ztyp can be evaluated by a saddle-point calculation. The value f∗ that

minimizes g( f ) over the entire real axis is given by

f∗ = f0 −
J2(T )

T
, (37)

leading to

g( f∗) = −λ+
f0
T
−

J2(T )
2T2

. (38)
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We now need to compare f∗ with fmin. When f∗ > fmin, the typical free energy density
ftot = −

T
N log Ztyp is obtained from the saddle-point calculation, ftot = T g( f∗). Using Eqs. (34)

and (37), the condition f∗ > fmin is equivalent to T > J(T )/
p

2λ. To get an explicit condition
on the temperature, we use the parametrization of J(T ) in Eq. (31). We then find that the
condition f∗ > fmin boils down to T > TK , where TK = J0/

p
2λ−σ2, provided that λ > σ2/2,

a condition assumed to hold in the following. In contrast, when f∗ < fmin, corresponding to
the low-temperature regime T < TK , the free energy is given by the contribution of the lower
bound of the integral, ftot = T g( fmin). It is also useful to compute the total thermodynamic
entropy, stot = −∂ ftot/∂ T , from the knowledge of the free energy ftot. For T > TK , one finds

ftot = −T (λ+
σ2

2
)−

J2
0

2T
+ f0 , stot = λ+

σ2

2
−

J2
0

2T2
+ s0 . (39)

It follows that for T →∞, the total thermodynamic entropy density goes to s∞ = λ+
σ2

2 + s0.
Assuming that the RFEM effectively describes a spin model with 2N spin configurations, one
has s∞ = log2, which fixes the parameter λ to the value,

λ= log2− s0 −
σ2

2
. (40)

The condition λ > σ2/2 then imposes the constraint σ2 < log2 − s0, which also fixes the
range of s0 to 0 < s0 < log2. In the following, we assume that the condition σ2 < log2− s0
is satisfied.1 Note that the REM case corresponds to s0 = 0 and σ = 0 (i.e., metastable states
boil down to single configurations with zero glass –or vibrational– entropy), and one recovers
the result λREM = log 2. For σ2 < log 2− s0, the glass transition temperature TK thus reads

TK =
J0

p

2(log 2− s0 −σ2)
. (41)

For T < TK , the free energy ftot and thermodynamic entropy stot read as

ftot = f0 −
q

(2 log2− 2s0 −σ2)(J2
0 + T2σ2) , stot = s0 +σ

2T

√

√

√
2 log2− 2s0 −σ2

J2
0 + T2σ2

. (42)

3.3 Complexity

We now evaluate the complexity counting the exponential number of metastable states at
temperature T . To perform this calculation, we follow Monasson’s approach [72], as recalled
in Sec. 2.1. We thus introduce the partition function Z(m) of m clones,

Z(m) =
MN
∑

α=1

e−mβN fα , (43)

as well as the corresponding m-clone free energy,

φ(m) = −
1

mβN
log Z(m) . (44)

In practice, we replace log Z(m) in the definition of φ(m) by log Ztyp(m) defined as

Ztyp(m) =

∫ fmax

fmin

d f e−N g(m, f ) , (45)

1Note that for log 2− s0 ≤ σ2 < 2 log 2− 2s0 (the upper bound corresponds to the condition λ > 0), the glass
transition temperature is infinite and the model is glassy at all temperature.

12

https://scipost.org
https://scipost.org/SciPostPhys.18.4.124


SciPost Phys. 18, 124 (2025)

with

g(m, f ) = − log2+ s0 +
σ2

2
+
( f − f0)2

2J2(T )
+

mf
T

. (46)

Following the same reasoning as in Sec. 3.2, the value f∗(m) minimizing g(m, f ) reads

f∗(m) = f0 −
mJ2(T )

T
. (47)

Using Eq. (31) and assuming σ2 < 2(log2− s0)/(1+m2), the condition f∗(m)> fmin is equiv-
alent to T > Tc(m), with

Tc(m) =
J0

Ç

2 log2−2s0−σ2

m2 −σ2
. (48)

We note that Tc(m = 1) = TK , where TK is the Kauzmann transition temperature defined in
Sec. 3.2.

One then finds for the m-clone free-energy,

φ(m) =

¨

T/m g(m, fmin) = −(2 log 2− 2s0 −σ2)1/2 J(T ) + f0 , if T < Tc(m) ,
T/m g(m, f∗(m)) = −

T
2m(2 log 2− 2s0 −σ2)− m

2T J2(T ) + f0 , if T > Tc(m) .
(49)

In contrast, ifσ2 ≥ 2(log2−s0)/(1+m2), or equivalently, m≥
p

(2 log2− 2s0 −σ2)/σ, the
condition f∗(m)< fmin is satisfied for all temperature, meaning that Tc(m) is actually infinite.
In the following, we focus on the case when Tc(m) is finite, but the results straightforwardly
generalize to the case of an infinite Tc(m).

According to Eq. (9), the configurational entropy Σ is obtained from φ(m) as Σ= βφ′(1).
We thus get,

Σ=

¨

0 , if T < TK ,

log 2− s0 −σ2 − J2
0

2T2 , if T > TK .
(50)

One can check that Σ→ 0 when T → T+K .
One may also evaluate the vibrational entropy, svib = stot −Σ. Using Eqs. (39), (42), and

(50), one obtains

svib =

(

s0 +σ2T
È

2 log 2−2s0−σ2

J2
0+T2σ2 , if T < TK ,

s0 +σ2 , if T > TK .
(51)

One thus has a nonzero vibrational entropy in the glassy phase, which goes to zero when
T → 0. Note also that svib is continuous at TK .

3.4 Rényi complexity

We now finally evaluate the Rényi complexity as

ΣRenyi(m, T ) =
mβ

m− 1
[φ(m)−φ(1)] , (52)

where m > 1 is now a fixed parameter. The Rényi complexity can readily be evaluated us-
ing Eqs. (49). As Tc(m) > TK for m > 1, three different temperature regimes have to be
distinguished, namely T < TK , TK < T < Tc(m), and Tc(m)< T . One finds

ΣRenyi(m, T ) =















0 , if T ≤ TK ,
mJ4

0
2(m−1)T2

�

1+T/TK

J(T )+T
p

2 log 2−2s0−σ2

�2
�

1− T
TK

�2
, if TK < T ≤ Tc(m) ,

log2− s0 − (1+m)σ
2

2 −
mJ2

0
2T2 , if Tc(m)< T .

(53)
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We plot the obtained ΣRenyi(m, T ) in Fig. 1a, for s0 → 0 and σ =
p

log 2/2. For m → 1,
ΣRenyi(m, T ) converges to the standard complexity Σ(T ) evaluated in Sec. 3.3. Σ(T )monoton-
ically decreases in a concave manner as the temperature is decreased and vanishes at the Kauz-
mann transition temperature TK > 0, which is a well-known behavior. When m is increased
from 1, ΣRenyi(m, T ) decreases at a given T , which is a general property of the Rényi entropy,
as mentioned in Sec. 2.4 (see also Ref. [83]). We note that, in the regime TK < T ≤ Tc(m),
the expression of ΣRenyi(m, T ) contains the solution associated with one step replica symmetry
breaking, despite the fact that the system is above TK (this will become clear in the p-spin
spherical model in Sec. 4). We thus plot ΣRenyi(m, T ) in this intermediate regime by the solid
curves. The temperature dependence of ΣRenyi(m, T ) has interesting behaviors. It becomes
milder with increasing m. In particular, the concavity seen as m→ 1 turns into convex behav-
ior. Nevertheless, ΣRenyi(m, T ) vanishes at the same TK irrespective of m. These results suggest
that an accurate measurement of ΣRenyi(m, T ) can provide a good estimate of the location of
TK .

Moreover, for arbitrary m> 1, the m−dependence factorizes in the regime, TK<T≤Tc(m),
so that:

ΣRenyi(m, T ) =
m

m− 1
Σ

Renyi
∞ (T ) , ∀m> 1 , TK < T ≤ Tc(m) , (54)

where ΣRenyi
∞ (T ) is the min-entropy defined in section 2.3. As shown in Eq. (22) in Sec. 2.4,

Σ
Renyi
∞ (T ) provides us with lower and upper bounds on ΣRenyi(m, T ) (when m > 1). In-

terestingly, from Eq. (54), we find that ΣRenyi(m, T ) reaches its upper bound in the range
TK < T ≤ Tc(m). This means that in this range, the state with the highest probability or
lowest free energy (for a given T) completely dominates the contribution to ΣRenyi(m, T ).

The above observations also hold for the p−spin model, as we derive in section 4.

3.5 Special case of the REM

As explained above, the RFEM reduces to the Random Energy Model when s0 = 0 and σ = 0.
In that case we simply have Tc(m) = m TK = m J0/

p

2 log 2. This can be readily seen from the
fact that, when fα = ϵα is temperature-independent, the cloned partition function in Eq. (43)
satisfies Z(m, T ) = Z(m= 1, T/m).

As expected, the complexity becomes equal to the thermodynamic total entropy,

Σ= log 2−
J2

0

2T2
= stot , (55)

while the vibrational entropy in Eq. (51) vanishes, svib = 0. The Rényi complexities in Eq. (53)
read

ΣRenyi(m, T ) =











0 , if T ≤ TK ,
mJ2

0
2(m−1)T2

�

1− T
TK

�2
, if TK < T ≤ m TK ,

log2− mJ2
0

2T2 , if m TK ≤ T ,

(56)

and are plotted in Fig. 1b.
One may think that the fact that TK does not depend on m is at odds with the phase diagram

drawn by Gardner and Derrida in terms of the number of replicas versus temperature [94].
This difference comes from the fact that they studied the thermodynamics of log Z(m) (m= ν
in their paper) while our Rényi setting uses log Z(m). As will be clear for the p−spin model,
the former involves a replica symmetric (RS) transition in the regime of TK < T ≤ mTK when
m > 1. Yet, RS is not the correct saddle point to compute log Z(m), and we need a 1RSB
solution even in the liquid phase. We also note that log Z(m) is related to the scaled cumu-
lant generating function in large deviation theory [77–80], which encodes sample-to-sample
fluctuations of (total) free energy density.

14

https://scipost.org
https://scipost.org/SciPostPhys.18.4.124


SciPost Phys. 18, 124 (2025)

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

TK<T≤Tc(m)

Tc(m)<T

T

Σ
R
e
n
y
i (
m
,T

)

Σ
m = 1.1
m = 2
m = 3
m = 5

(a) RFEM with σ =
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(b) Special case of the REM, σ = 0.

Figure 1: Rényi complexities for the RFEM model in the limit s0 → 0. The solid
(dashed) curves correspond to the regimes below (above) Tc(m) in Eq. (53).

4 p-spin spherical model

4.1 Definition of the model

We next study the p-spin spherical model [70], defined by the Hamiltonian,

H = −
∑

1≤i1<···<ip≤N

Ji1···ip σi1 · · ·σip − h
N
∑

i=1

σi , p ≥ 3 , (57)

with N continuous spin variables σi ∈ R that satisfy the spherical constraint
∑N

i=1σ
2
i = N .

The Ji1···ip are frozen random couplings drawn from

ρ(Ji1···ip) =

√

√N p−1

πp!
exp

�

−
1
2

2N p−1(Ji1···ip)
2

p!

�

. (58)

For introductions to the p−spin model see e.g., Refs. [75, 80, 82]. We will focus mainly on
the case p = 3 with no external field, h = 0. In that case the Kauzmann and mode-coupling
transition temperatures are given respectively by TK ≈ 0.586 and Tmct =

p

3/8≈ 0.612.

4.2 Replica computation of the Rényi complexity

We recall that the goal is to compute the following Rényi complexity:

ΣRenyi(m) =
1

N(1−m)
log

∑

α

(pα)m =
1

N(1−m)
log

∑

α

�

e−βN fα(T )

Z(m= 1)

�m

=
1

N(1−m)

�

log Z(m)−mlog Z(m= 1)
�

=
m

m− 1
[βφ(m)− βφ(m= 1)] . (59)

Thus, the main task here is to compute βφ(m) = − 1
mN log Z(m), which requires the replica

trick:

log Z(m) = lim
n→0

1
n

log (Z(m))n . (60)
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Using standard techniques (see Ref. [82]), one can express (Z(m))n by

(Z(m))n =

 

∏

a ̸=b

∫

dOab

!

exp [−NG({Oab})] , (61)

G({Oab}) = −
β2

4

mn
∑

a,b

(Oab)
p −

1
2

log det O−
mn
2
(1+ log 2π) , (62)

where G({Oab}) is the action and Oab is (the elements of) the mn×mn overlap matrix. The
above expressions are obtained by replacing n by mn in the standard computation for the
p-spin model reviewed in Ref. [82]: the system is now composed of m clones, each having
n replicas. We note that the number of replicas per clone, n, arises from the replica trick in
Eq. (60), with the limit n→ 0 applied afterward, whereas the number of clones, m, remains
a fixed parameter. Thus, clones are sometime referred to as real replicas [71], to distinguish
them from the usual replicas counted by n. Different values of m will be explored in the phase
diagram (see below).

4.2.1 Replica Ansatz

The overlaps entering the matrix O are then non-trivial, even above TK , and should be carefully
determined. Following Refs. [71,95], we assume that O is given by a m×m block matrix (m= 3
in the example below),

O =





Q P P
P Q P
P P Q



 , (63)

where Q and P are n× n matrices. Q characterizes overlaps between replicas from the same
clone, whereas P represents overlaps between replicas from different clones. Under this as-
sumption, one can express the terms in Eq. (62) by Q and P as follows.

mn
∑

a,b

(Oab)
p = m

n
∑

a,b

(Qab)
p +m(m− 1)

n
∑

a,b

(Pab)
p , (64)

logdet O = log
�

det
�

(Q− P)m−1
�

det (Q+ (m− 1)P)
�

= (m− 1) logdet(Q− P) + logdet (Q+ (m− 1)P) . (65)

Hence, Eq. (62) becomes

G ({Qab}, {Pab}) = −
β2

4



m
n
∑

a,b

(Qab)
p +m(m− 1)

n
∑

a,b

(Pab)
p



 (66)

−
1
2
(m− 1) log det(Q− P)−

1
2

logdet (Q+ (m− 1)P)−
mn
2
(1+ log2π) ,

which is valid for generic Q and P.
We now make further assumptions in the form of Q and P. In particular, we consider the

following 1RSB form for Q and P [71,95], composed of submatrices:

Q1RSB =















1 q1 q1 q0 q0 q0
q1 1 q1 q0 q0 q0
q1 q1 1 q0 q0 q0

q0 q0 q0 1 q1 q1
q0 q0 q0 q1 1 q1
q0 q0 q0 q1 q1 1















, P1RSB =















p2 p1 p1 p0 p0 p0
p1 p2 p1 p0 p0 p0
p1 p1 p2 p0 p0 p0

p0 p0 p0 p2 p1 p1
p0 p0 p0 p1 p2 p1
p0 p0 p0 p1 p1 p2















. (67)
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Each submatrix has size x × x (n= 6 and x = 3 in the above example). We assume that Q1RSB

and P1RSB share the same value of parameter x .
For Q1RSB, the diagonal elements correspond to the overlap between the same replicas

from the same clone, which is set to one. Off-diagonal elements instead correspond to overlaps
between different replicas from the same clone, parameterized by q0 and q1. For P1RSB, instead,
the diagonal elements p2 correspond to the overlap between the same replica index yet from
different clones. Off-diagonal elements, p0 and p1, are overlaps between different replicas
from different clones. Note that when computing the partition function by the saddle-point
approximation (see next subsection), the overlaps, as well as the submatrix size x , become
variational parameters, whereas the number of clones m remains fixed.

We next compute the terms in Eq. (66) using the 1RSB matrices Q1RSB and P1RSB. One
finds

n
∑

a,b

�

Q1RSB
ab

�p
= n+ n(x − 1)(q1)

p + n(n− x)(q0)
p , (68)

n
∑

a,b

�

P1RSB
ab

�p
= n(p2)

p + n(x − 1)(p1)
p + n(n− x)(p0)

p , (69)

and
log det

�

Q1RSB − P1RSB
�

= d1 logΛ1 + d2 logΛ2 + d3 logΛ3 + n log(1− p2) , (70)

where Λ1, Λ2, and Λ3 are eigenvalues of
�

Q1RSB − P1RSB
�

/(1− p2), given by

Λ1 =
1− (q1 − p1)− p2

1− p2
, (71)

Λ2 = Λ1 + x
(q1 − p1)− (q0 − p0)

1− p2
, (72)

Λ3 = Λ2 + n
q0 − p0

1− p2
, (73)

with degeneracies d1 = n(1− x−1), d2 = n/x − 1, and d3 = 1. Similarly, one obtains

log det
�

Q1RSB + (m− 1)P1RSB
�

= d1 logΛ′1+d2 logΛ′2+d3 logΛ′3+n log (1+ (m− 1)p2) , (74)

where Λ′1, Λ′2, and Λ′3 are the eigenvalues of
�

Q1RSB + (m− 1)P1RSB
�

/(1+ (m− 1)p2), given
by

Λ′1 =
1− q1 − (m− 1)p1 + (m− 1)p2

1+ (m− 1)p2
, (75)

Λ′2 = Λ
′
1 + x

q1 + (m− 1)p1 − q0 − (m− 1)p0

1+ (m− 1)p2
, (76)

Λ′3 = Λ
′
2 + n

q0 + (m− 1)p0

1+ (m− 1)p2
. (77)

The case of zero external field, that we consider here, corresponds to setting
q0 = 0 and p0 = 0. In this case, the n dependence in the action factorizes as
G
�

{Q1RSB
ab }, {P

1RSB
ab }

�

= G(n, m, x , q1, p1, p2) = n g(m, x , q1, p1, p2). Here, g(m, x , q1, p1, p2)
is given by

g(m, x , q1, p1, p2) = −
mβ2

4
[1+ (x − 1)(q1)

p + (m− 1)(p2)
p + (m− 1)(x − 1)(p1)

p]

−
(m− 1)

2

�

(1− x−1) log (1− (q1 − p1)− p2) + x−1 logη0

�

−
1
2

�

(1− x−1) logη1 + x−1 logη2

�

−
m
2
(1+ log 2π) , (78)
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where we introduce

η0 = 1+ (x − 1)(q1 − p1)− p2 , (79)

η1 = 1− q1 − (m− 1)p1 + (m− 1)p2 , (80)

η2 = 1+ (x − 1)q1 + (m− 1)(x − 1)p1 + (m− 1)p2 . (81)

4.2.2 Saddle-point solutions

Having prepared all detailed equations for the p-spin model, we now perform the saddle-point
evaluation for (Z(m))n when N ≫ 1 under the above 1RSB Ansatz:

(Z(m))n ≈ exp
�

−N extr
x ,q1,p1,p2

{G(n, m, x , q1, p1, p2)}
�

= exp
�

−nN extr
x ,q1,p1,p2

{g(m, x , q1, p1, p2)}
�

. (82)

Consequently, we obtain the free energy per spin, βφ(m), as

βφ(m) = −
1

mN
log Z(m) = −

1
mN

lim
n→0

1
n

log (Z(m))n

= m−1 extr
x ,q1,p1,p2

{g(m, x , q1, p1, p2)} . (83)

The second term in the Rényi entropy in Eq. (59) is then

βφ(m= 1) = extr
x ,q1
{g(m= 1, x , q1)} , (84)

g(m= 1, x , q1) = −
β2

4
[1+ (x − 1)(q1)

p]−
1
2

�

(1− x−1) log(1− q1)

+x−1 log (1+ (x − 1)q1)
�

−
1
2
(1+ log2π) . (85)

When TK ≤ T the solution is

βφ(m= 1) = g(m= 1, x∗ = 1, q1∗ = 0) = −
β2

4
−

1
2
(1+ log2π) . (86)

Eventually, we are interested in computing the Rényi complexity for fixed m, as a func-
tion of the clone overlap p2, since this corresponds to the free energy difference as shown in
Eq. (28), namely,

ΣRenyi(m, p2) =
m

m− 1
[βφ(m, p2)− βφ(m= 1)] , (87)

where βφ(m, p2) is given by

βφ(m, p2) = m−1 extr
x ,q1,p1
{g(m, x , q1, p1, p2)} . (88)

Thus computing ΣRenyi(m, p2) boils down to finding x∗, q1∗, and p1∗ which extremize the func-
tion g(m, x , q1, p1, p2), given m and p2. We solved the coupled saddle-point equations numer-
ically and analytically, which leads to the following three distinct regimes, depending on the
value of m and p2.

• RS regime: x∗ = 1 (equivalently, q1∗ = p1∗ = 0).

• RSBa regime: x∗ < 1 and q1∗ > p1∗ > 0.
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Figure 2: Phase diagrams of the spherical p = 3 spin model for three different tem-
peratures, TK < T = 0.6 < Tmct (a), Tmct < T = 0.7 (b), and Tmct < T = 0.75 (c).
p2,EA locates the local minimum of ΣRenyi(m, p2), and lies either in the RS or in the
RSBb regimes. Note that the line m = 1 always lies in the RS regime, so that the
(Shannon) complexity Σ is given at all T by the RS solution.

• RSBb regime: x∗ < 1 and q1∗ = p1∗ > 0.

The phase diagram in the m versus p2 plane for three values of T is shown in Fig. 2. The
boundary between RS and either RSBa or RSBb is denoted as p(1)2 (m), whereas the boundary

between RSBa and RSBb is denoted as p(2)2 (m).
To better understand the phase diagram, we now monitor the solutions, x∗, q1∗, and p1∗,

along representative paths in the phase diagram, m = 2.5 at T = 0.6 < Tmct in Fig. 3a and
at T = 0.75 > Tmct in Fig. 3b. For T = 0.6, at low values of p2 the trivial solution is x∗ = 1
(equivalently, q1∗ = p1∗ = 0), which corresponds to the replica symmetric (RS) Ansatz (RS
regime). At intermediate values of p2 with p(1)2 < p2 < p(2)2 , a non-trivial, one-step replica
symmetry broken solution appears with x∗ < 1 and q1∗ > p1∗ > 0 (RSBa regime). At high
values of p2 > p(2)2 , the solutions, q1∗ and p1∗, merge, while x∗ < 1 (RSBb regime). As we
present in details in Appendix A (for the case of p = 3), both the RS and RSBb solutions
can be found analytically. In the intermediate RSBa regime instead, we resorted to numerical
extremization.

At high enough temperature, e.g., at T = 0.7 > Tmct shown in Fig. 3b, the intermediate
RSBa regime disappears, as is also visible in Fig. 2c. Hence x∗ < 1 and q1∗ = p1∗ > 0 above
p(1)2 .

Once the saddle points have been identified, we obtain ΣRenyi(m, p2) as a function of p2.
Figure 4 shows ΣRenyi(m, p2) for several values of m and T , where the circles are the numerical
solutions, while the dashed and solids curves correspond to the analytic solutions from the RS
and RSBb regimes, respectively. The analytic solutions reproduce correctly numerical solutions
in the range of low (RS) and high (RSBb) p2 values, while they do not capture the intermediate
values of p2 (RSBa). This is especially visible at higher m and lower temperatures, reflecting
the phase diagram in Fig. 2. Importantly, we find that the value p2,EA(T ) that locates the local
minimum of ΣRenyi(m, p2) lies either in the RS or RSBb region (as shown in Fig. 2 as dashed
lines). Therefore, the Rényi complexity, ΣRenyi(m, T ) = ΣRenyi(m, p2,EA(T )), can be computed
analytically for all m.

Finally, we plot ΣRenyi(m, T ) = ΣRenyi(m, p2,EA(T )) in Fig. 5, where p2,EA(T ) is determined
in the RS and RBSb regimes. We find that ΣRenyi(m, T ), calculated using the RS solutions
(dashed curves), decreases as T decreases in a concave way and becomes zero above TK for
m > 1. To compute the Rényi complexity correctly, the RSBb solution (solid curves) must be
used. This solution appears below an m-dependent temperature, Tc(m), defined by Eq. (A.35)
in Appendix A. With the RSBb solution, ΣRenyi(m, T ) decreases in a convex way at lower tem-
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Figure 3: Saddle points, x∗ (triangles), q1∗ (squares), and p1∗ (diamond), as func-
tions of p2 for a given m= 2.5, below (a) and above (b) Tmct. The dashed and solid
curves correspond to the analytical solutions obtained in the RS and RSBb regimes,
respectively.
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Figure 4: ΣRenyi(m, p2) with different indices m, as functions of p2, for varying tem-
peratures. In each case we show ΣRenyi(m, p2) computed from numerical minimiza-
tion (circles), as well as the analytic solutions in the RS (dashed) and RSBb (solid)
regimes. There is an expected discrepancy between the numerical points and the
curves in the RSBa regime where none of the analytic solutions hold. In the m→ 1
limit, ΣRenyi(m, p2) coincides with Σ given by Eq. (A.9).

peratures and becomes zero at the same temperature, TK = Tc(m= 1), regardless of the value
of m. This behavior is also observed in the RFEM, as discussed in Sec. 3. In Fig. 6 we show
larger values of m, on the full temperature range TK < T < Tmax, where Tmax is the maximum
temperature at which the local minimum and hence p2,EA exist. (cf. A.2).

Besides, we show in Sec. A.2 of Appendix A that, as was made explicit for the RFEM (see
Eq. (54)), the Rényi complexity below Tc(m) is essentially given by ΣRenyi

∞ (T ) (min-entropy),
namely,

ΣRenyi(m, T ) =
m

m− 1
Σ

Renyi
∞ (T )

�

TK < T < Tc(m), m> 1
�

. (89)

ΣRenyi(m, T ) saturates the upper bound of the general inequality, Eq. (22), derived within infor-
mation theory. Therefore, as discussed in the RFEM case, the state with the highest probability
or lowest free energy (at a given T) entirely dominates the contribution to ΣRenyi(m, T ). This
result provides us with an information-theoretic interpretation of the RSBb regime.
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Figure 5: Rényi complexity for different indices m, as functions of T . Above Tc(m),
ΣRenyi is computed by using the RS solution in Eq. (A.7) (dashed-curves), which
vanishes above TK . Below Tc(m), the RSBb solution using Eq. (A.29) is needed to
compute ΣRenyi (solid-curves). We also plot the (Shannon) complexity Σ as the black
dashed curve. The locations of TK = Tc(m→ 1) and Tc(m= 1.08) are indicated with
vertical arrows.

We can rewrite Eq. (89) in two interesting ways. First we can express all Rényi complexities
for m> 1 in terms of the Rényi complexity with m= 2 over a restricted temperature range,

ΣRenyi(m, T ) =
m

2(m− 1)
ΣRenyi(m= 2, T ) , TK < T ≤min{Tc(m), Tc(m= 2)} . (90)

As mentioned before, the Rényi complexity with index m = 2 corresponds to the annealed
Franz-Parisi potential (see Eq. (29)) which is the easiest to compute in numerical simulations.
Moreover, Eq. (89) implies that the ratio of Rényi complexities with different indices, m1 and
m2, with 1< m1 < m2 is a constant below Tc(m1),

ΣRenyi(m1, T )/ΣRenyi(m2, T ) =
m1(m2 − 1)
m2(m1 − 1)

, TK < T ≤ Tc(m1) . (91)

In numerical experiments, this could be used to detect the transition point, Tc(m), from the
RS to RSBb regimes, provided that Eq. (89) would hold beyond the mean-field limit.

5 Conclusion and discussion

We have computed the Rényi entropy version of complexity, Rényi complexity, for prototypical
mean-field disordered models: the random energy model, the random free energy model, and
the p-spin spherical model. We first demonstrated that the Rényi complexity with Rényi index
m is linked to the free energy difference of the generalized m-component annealed Franz-Parisi
potential. Detailed calculations of Rényi complexity for the random energy model and random
free energy model were performed without using the replica trick, yet these computations sug-
gest that replica symmetry-breaking solutions are required even in the liquid phase. We then
performed replica computations for the p-spin spherical model using techniques involving m
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Figure 6: Rényi complexity with large indices for TK < T < Tmax.

clones (real replicas) and n replicas. We confirmed that indeed replica symmetry-breaking
solutions are needed in the liquid phase when m > 1. All models studied consistently exhibit
that all Rényi complexities with m > 1 vanish at the same Kauzmann transition temperature
TK , separating the liquid and glass phases, irrespective of the value of m. This finding sug-
gests that the Rényi complexity is also a useful observable for estimating or locating TK in
practical applications when measured in the liquid phase and extrapolated toward lower tem-
peratures. Besides, the RSBb solution (in the liquid phase) saturates the upper bound of a
general inequality satisfied by Rényi entropies in information theory.

For practical measurements of Rényi complexity, through Eq. (29), one can compute the m-
component annealed Franz-Parisi potential, which can be achieved by a generalization of what
has been done numerically, e.g., for glass-forming liquids [36–38]. However, our mean-field
computations in this paper suggest that sampling becomes more challenging when T is low and
m is large, due to the underlying putative replica symmetry breaking (RSB) at Tc(m), at least
at the mean-field level. It would be interesting to investigate whether the features observed
in our mean-field study persist in finite-dimensional systems. Kurchan and Levine proposed
a different way to measure the Rényi complexity by enumerating frequently appearing local
patches in amorphous configurations. In principle, this method would not be affected by the
sampling problem (in terms of measuring Rényi complexity), and is insightful as it connects
a real-space perspective (an inherently finite-dimensional property) with Rényi complexity. It
could also allow one to verify whether the relation between the Rényi complexities with arbi-
trary index m and the annealed Franz-Parisi potential shown in Eq. (90), as well as Eq. (91),
hold in finite-dimensional systems.

In this paper, we considered mainly the case m > 1, motivated by the practical use of
measurement of the Rényi entropy with, say, m= 2, 3, . . .. In general, varying the Rényi index
m from the Shannon limit m → 1 corresponds to biasing (m > 1) or unbiasing (m < 1) the
original probability distribution. Thus, similar to the large deviation studies, it is interesting
to extend our computation to 0 < m < 1 (or even negative m). It would also be interesting
to compute the Rényi complexity for more complicated mean-field models, such as the mixed
p-spin model [75,96,97], and replica liquid theory [98], where the complexity plays a crucial
role in understanding the glassy behavior of the system.
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This paper demonstrates a strong connection between the Rényi entropy in information
theory and techniques used in the physics of disordered systems. We expect that further trans-
fer of knowledge and techniques, leveraging mathematical equivalence, will continue to ad-
vance both fields.
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A Analytical solution of the p-spin model

In this appendix, we describe the detailed calculations leading to the determination of the
saddle-point solutions. In particular, we give the analytical solution for ΣRenyi(m, T ), in the
case of p = 3.

We wish to find the saddle-point solution for g(m, x , q1, p1, p2) in Eq. (78), given m and
p2. The derivatives of g(m, x , q1, p1, p2)with respect to x , q1, p1, and p2 are respectively given
by

∂ g(m, x , q1, p1, p2)
∂ x

=−
mµ
2p
[(q1)

p + (m− 1)(p1)
p]−

(m− 1)
2x2

log
�

1− (q1 − p1)− p2

η0

�

−
(m− 1)(q1 − p1)

2xη0
−

1
2x2

log(η1/η2)−
q1 + (m− 1)p1

2xη2
, (A.1)

∂ g(m, x , q1, p1, p2)
∂ q1

=
(1− x)

2

�

mµ(q1)
p−1 −

(m− 1)(q1 − p1)
η0(1− (q1 − p1)− p2)

−
q1 + (m− 1)p1

η1η2

�

, (A.2)

∂ g(m, x , q1, p1, p2)
∂ p1

=
(1− x)(m− 1)

2

�

mµ(p1)
p−1 −

q1 + (m− 1)p1

η1η2
+

q1 − p1

η0(1− (q1 − p1)− p2)

�

, (A.3)

∂ g(m, x , q1, p1, p2)
∂ p2

=
m− 1

2

�

−mµ (p2)
p−1 +

1
x η0

+
1− x

x
1
η1
−

1
x η2

+
x − 1

x
1

1− (q1 − p1)− p2

�

, (A.4)

where µ= β2p/2 and

η0 = 1− p2 + (x − 1)(q1 − p1) , (A.5a)

η1 = 1+ (m− 1)p2 − (m− 1)p1 − q1 , (A.5b)

η2 = 1+ (m− 1)p2 + (m− 1)(x − 1)p1 + (x − 1)q1 . (A.5c)

A.1 RS solution

One can easily check that the saddle-point conditions given by Eqs. (A.1), (A.2), and (A.3)
have the trivial solution, x∗ = 1 (or q1∗ = 0 and p1∗ = 0), which corresponds to the replica
symmetric Ansatz. Hence, for m > 0 with m ̸= 1, the last variational equation in Eq. (A.4)
becomes

µ (p2)
p−1 =

p2

(1− p2) [1+ (m− 1)p2]
. (A.6)
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p2∗ = 0 is the trivial solution of Eq. (A.6), which corresponds to the liquid state. Yet, we wish
to find a non-trivial solution in the local minimum of g(m, x∗ = 1, q1∗ = 0, p1∗ = 0, p2), which
corresponds to the Edwards-Anderson parameter, p2,EA > 0, characterizing the metastable
glass state. For p = 3 the RS solution then reads

xRS
∗ = 1 , (A.7a)

qRS
1∗ = pRS

1∗ = 0 , (A.7b)

pRS
2,EA(m, T ) = R1

�

−
3
2
β2(m− 1),

3
2
β2(m− 2),

3
2
β2,−1

�

, (A.7c)

where R1 is the real root in Eq. (A.37) of the order-3 polynomial in Eq. (A.6). From Eq. (A.6)
one can also obtain a generalized m-dependent dynamic transition temperature, Td(m), below
which the local minimum appears. Td(m) is given by

Td(m) =
p

3m
p

4[1+m(m− 1)]3/2 − (4m3 − 6m2 − 6m+ 4)
. (A.8)

The mode-coupling transition temperature is recovered as Tmct = limm→1 Td(m).
When m→ 1, we obtain the complexity as

Σ(pRS
2,EA) = lim

m→1

m
m− 1

�

βφ(m, pRS
2,EA)− βφ(m= 1)

�

= −
β2

4
(pRS

2,EA)
p −

1
2

log(1− pRS
2,EA)−

pRS
2,EA

2
,

(A.9)

where we used Eq. (86) and L’Hopital’s rule to evaluate the limit. In that case Eq. (A.6)
becomes an order-2 polynomial and

pRS
2,EA(T ) =

1
2
+

1
2

√

√

1−
8T2

3
. (A.10)

A.2 RSBb solution

Finding non-trivial solutions, namely, x∗ < 1, q1∗ > 0, and p1∗ > 0 requires solving the coupled
saddle-point equations given by Eqs. (A.1-A.4). When m ̸= 1, they become

0=
mµ
p
[(q1)

p + (m− 1)(p1)
p] +

(m− 1)
x2

log
�

1− (q1 − p1)− p2

η0

�

+
(m− 1)(q1 − p1)

xη0
+ x−2 log(η1/η2) +

q1 + (m− 1)p1

xη2
, (A.11)

0= mµ(q1)
p−1 −

(m− 1)(q1 − p1)
η0(1− (q1 − p1)− p2)

−
q1 + (m− 1)p1

η1η2
, (A.12)

0= mµ(p1)
p−1 −

q1 + (m− 1)p1

η1η2
+

q1 − p1

η0(1− (q1 − p1)− p2)
, (A.13)

0= −mµ pp−1
2 +

1
x η0

+
1− x

x
1
η1
−

1
x η2

+
x − 1

x
1

1− (q1 − p1)− p2
. (A.14)

While a fully general analytical solution to the above equations is out of reach, they can be
solved in the RSBb regime, where q1∗ = p1∗ > 0. This allows us to compute analytically the
Rényi complexities ΣRenyi(m, T ), as the location of the local minimum, p2,EA, of ΣRenyi(m, p2)
is always located in the RS or RSBb regimes (cf. Fig. 2 and Fig. 4).
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When q1 = p1 and for m> 0 with m ̸= 1, Eqs. (A.11-A.14) reduce to

µ

p
(q1)

p = −
1

x m
q1

η2
−

1
m2 x2

log(η1/η2) , (A.15)

µ (q1)
p−1 =

q1

η1η2
, (A.16)

µ (p2)
p−1 =

q1

η1η2
+

1
m
η1 −η0

η0η1
, (A.17)

and Eqs. (A.5) to

η1 = 1−mq1 + (m− 1)p2 , (A.18)

η2 = 1+m(x − 1)q1 + (m− 1)p2 . (A.19)

Equations (A.15) and (A.16) can be rewritten as

(1− y)2

p y
+ log y + 1− y = 0 , (A.20)

µ(q1)
p−2(η1)

2 − y = 0 , (A.21)

where y = η1/η2. For a given p, one can obtain y by solving Eq. (A.20) via, e.g., the bisection
method. For p = 3, y ≈ 0.3549927. Then Eq. (A.21) gives rise to the solution, q1∗(m, T, p2).
Finally, we obtain x∗ by inverting the relation, y = η1/η2, and find

x∗(m, T, p2) =
(1− y) (1−mq1∗ + (m− 1)p2)

myq1∗
. (A.22)

We next find the Edwards-Anderson parameter p2,EA, locating the local minimum associ-
ated with the metastable glass state. Subtracting Eq. (A.16) from Eq. (A.17) gives

µ
�

(p2)
p−1 − (q1)

p−1
�

=
p2 − q1

η0η1
. (A.23)

We now specialize to the case of p = 3, where the above equation becomes

µ (p2 − q1) (p2 + q1) =
p2 − q1

η0η1
. (A.24)

One solution is p2 = q1. We argue that this is the only correct solution (using proof by contra-
diction). Indeed if p2 ̸= q1 we have

µ (p2 + q1) =
1
η0η1

⇔ µ(p2 + q1)(1− p2)(1+ (m− 1)p2 −mq1)− 1= 0 . (A.25)

This is a second order polynomial for q1. However one can check that the discriminant,

∆= µ2(p2 − 1)4 + 4 mµ(p2 − 1) [1+µ p2(p2 − 1)(1+ (m− 1)p2)] , (A.26)

is negative for all p2 (for arbitrary values of β , m), so that there cannot exist any real solution
for q1 if p2 ̸= q1. Therefore p2 = q1.

Assuming then that p2 = q1, we can rewrite Eq. (A.21) as

µ p2(1− p2)
2 − y = 0 . (A.27)

The order-3 polynomial has the solution p2,EA(T ) = R2 [µ,−2µ,µ,−y], which is independent
of m.
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We then summarize the RSBb solution for p = 3, by expressing xRSBb
∗ , qRSBb

1∗ , and pRSBb
1∗ as

a function of p2,

qRSBb
1∗ (m,β , p2) = pRSBb

1∗ (m,β , p2)

= R2

�

3
2
β2 m2,−3 mβ2 (1+ [m− 1]p2) ,

3
2
β2 (1+ [m− 1]p2)

2 ,−y
�

, (A.28a)

xRSBb
∗ (m,β , p2) =

1− y
y

1+ (m− 1)p2 −mqRSBb
1 (m,β , p2)

m qRSBb
1 (m,β , p2)

, (A.28b)

and as a function of β = 1/T ,

qRSBb
1∗ (β) = pRSBb

1∗ (β) = pRSBb
2,EA (β) , (A.29a)

pRSBb
2,EA (β) = R2

�

3
2
β2,−3β2,

3
2
β2,−y

�

, (A.29b)

xRSBb
∗ (m,β) =

1− y
y

1− pRSBb
2,EA (β)

m pRSBb
2,EA (β)

. (A.29c)

Note that pRSBb
2,EA is defined up to a certain temperature Tmax, such that the polynomial root

remains real, which can be found for p = 3 as Tmax =
1
3

Ç

2
y ≈ 0.7912.

Finally we compute ΣRenyi(m, p2,EA) in the RSBb regime:

ΣRenyi(m, pRSBb
2,EA ) =

m
m− 1

�

βφ(m, pRSBb
2,EA )− βφ(m= 1)

�

=
m

m− 1

�

−
β2

4
(mxRSBb

∗ − 1)(pRSBb
2,EA )

3 −
1
2

log(1− pRSBb
2,EA )

−
1

2mxRSBb
∗

log
1+ (mxRSBb

∗ − 1)pRSBb
2,EA

1− pRSBb
2,EA

�

. (A.30)

Interestingly, the terms inside the bracket in Eq. (A.30) do not depend on m, since from the
solutions in Eq. (A.29), pRSBb

2,EA and mxRSBb
∗ depend on temperature only. Thus, as we found

explicitly for the RFEM, one can express the Rényi complexities below Tc(m) in terms of the
min-entropy, ΣRenyi

∞ (pRSBb
2,EA ):

ΣRenyi(m, pRSBb
2,EA ) =

m
m− 1

Σ
Renyi
∞ (pRSBb

2,EA ) , (A.31)

where ΣRenyi
∞ (pRSBb

2,EA ) is given by

Σ
Renyi
∞ (pRSBb

2,EA ) = −
β2(1− y − pRSBb

2,EA )(p
RSBb
2,EA )

2

4y
−

1
2

log(1− pRSBb
2,EA )+

pRSBb
2,EA y log y

2(1− pRSBb
2,EA )(1− y)

. (A.32)

A.3 Transition temperature Tc(m)

We determine the temperature Tc(m) (below Tmax) marking the transition between the RS and
RSBb solutions. In the RSBb regime, as shown in Eq. (A.29), we have qRSBb

1∗ = pRSBb
1∗ = pRSBb

2,EA .
In this case, the condition for the local minimum, Eq. (A.17), becomes

µ pRSBb
2,EA =

1

(1− pRSBb
2,EA )(1+ (m xRSBb

∗ − 1)pRSBb
2,EA )

. (A.33)
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Figure 7: Phase diagram for the computation of the Rényi complexity. Below Td(m)
a secondary minimum of the generalized annealed Franz-Parisi potential appears in
the RS regime, and below Tc(m) in the RSBb regime. Specifically, Tc(m = 1) = TK

and Tc(m) = Tmax when m≥ mc =
2(1−y)

y ≈ 3.63.

By using y = η1/η2, we can express pRSBb
2,EA in terms of xRSBb

∗ as

pRSBb
2,EA = (1− y)/

�

1+ y(m xRSBb
∗ − 1)

�

.

Therefore, Eq. (A.33) can be rewritten in terms of xRSBb
∗ as

3
2T2

=
[1+ y(mxRSBb

∗ − 1)]3

m2(xRSBb
∗ )2 y(1− y)

. (A.34)

From Eq. (A.34), the transition temperature Tc(m) is identified when xRSBb
∗ → xRS

∗ = 1. Thus
we get

Tc(m) =

√

√

√
3 m2 y(1− y)

2 [1+ y(m− 1)]3
. (A.35)

In particular, one can check that Tc(m= 1) = TK [80]. In Fig. 7, we plot Tc(m) and Td(m) in the

m versus T plane. By solving Tc(m) = Tmax =
1
3

Ç

2
y , we find that for m≥ mc =

2(1−y)
y ≈ 3.63,

the Rényi complexity is given by the RSBb solution on the whole interval, TK ≤ T ≤ Tmax, and
there exist no non-trivial (p2,EA > 0) RS regime, as can be seen also in Fig. 6 for m= 4.

A.4 Roots of order 3 polynomials

We write here for reference the solutions of the polynomial equation,

a x3 + b x2 + c x + d = 0 . (A.36)

The three roots x = R j ( j ∈ {1, 2,3}) of Eq. (A.36) are given by

R j [a, b, c, d] = P + z j

�

Q+
Æ

Q2 − (P2 − R)3
�

1
3 + z̄ j

�

Q−
Æ

Q2 − (P2 − R)3
�

1
3

, (A.37)

where

P = −
b

3a
, Q = P3 +

bc − 3ad
6a2

, R=
c

3a
,

z1 = 1 , z2 = −
1
2

�

1+
p

3i
�

, z3 = −
1
2

�

1−
p

3i
�

.
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