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Abstract

Altermagnets are a new class of magnetic materials with zero net magnetization (like
antiferromagnets) but spin-split electronic bands (like ferromagnets) over a fraction of
reciprocal space. As in antiferromagnets, magnons in altermagnets come in two flavours,
that either add one or remove one unit of spin to the S = 0 ground state. However, in
altermagnets these two magnon modes are non-degenerate along some directions in
reciprocal space. Here we show that the lifetime of altermagnetic magnons, due to Lan-
dau damping caused by coupling to Stoner modes, has a very strong dependence on both
flavour and direction. Strikingly, coupling to Stoner modes leads to a complete suppres-
sion of magnon propagation along selected spatial directions. This giant anisotropy will
impact electronic, spin, and energy transport properties and may be exploited in spin-
tronic applications.
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1 Introduction

The recent recognition of altermagnets as a new class of magnetic materials [1–3], originally
predicted by Pekar and Rashba in 1964 [4], has been a very exciting development for both
condensed matter and materials physics. In a static configuration, altermagnets camouflage
very well as antiferromagnets; however, when you look under the hood the disguise is given
away by the spin-polarized electronic bands. It is their dynamics, however, that reveal their
true colors [5,6]. To understand the dynamical properties of a magnetic system it is essential
to look at its elementary spin excitations, or magnons [7].

A magnon in a ferromagnetic solid is usually associated to processes by which the total mag-
netization of the sample is lowered by the equivalent of a quantum of angular momentum, ħh,
and associated with the spin-lowering operator S−. We thus say that a ferromagnetic magnon
carries spin Sz = −1. In terms of elementary electronic processes, generating a magnon con-
sists in promoting an electron from the majority spin band (↑) to the minority spin band (↓),
and is associated with the operator a†

↓a↑. By virtue of electron-electron interactions, the elec-
tron and the hole involved in this process form a bound state, whose energy depends on the
net crystal momentum of the pair.

In antiferromagnets, magnons can have either Sz = −1 or Sz = 1, associated with lowering
the spin of the ↑ sublattice or raising the spin of the ↓ sublattice. Due to the complete equiva-
lence between the two spin directions, the two kinds of antiferromagnetic magnons (Sz = ±1)
have identical energies [8]. On the other hand, it has been noted [2,9] that magnons in alter-
magnets have unique features when compared to their antiferromagnetic counterparts. The
most noticeable difference is that Sz = −1 and Sz = 1 magnons have distinct energies along
certain directions in the reciprocal space, the same direction associated with the spin-split
electronic bands.

In metallic magnets, magnons have finite lifetimes, due to the fact that they can decay
into uncorrelated electron-hole pairs, also known as a Stoner excitations [10, 11]. The decay
probability (hence the inverse of the magnon lifetime) is proportional to the spectral density
associated with the Stoner excitations, which usually increases monotonically with energy for
a fixed wavevector. Thus, magnon lifetimes typically decrease monotonically as the magnon
energy increases [12].

It has been assumed hitherto [9] that, due to the distinct energies of Sz = ±1 magnons
in altermagnets, their lifetimes would also be different, in an almost trivial manner. Other
works have looked into the effects of magnon-magnon interactions on magnon lifetimes, a
mechanism that is supposed to be relevant for insulating magnets. [13] Apart from that, very
little attention has been paid to the lifetime of magnons in altermagnets, and most theoretical
approaches employ spin-only models in their description [9,14–16].

Here we show that Landau damping by Stoner modes in metallic and slightly doped al-
termagnets has highly non-trivial consequences. Specifically, the combination between the
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peculiar symmetry of the altermagnet and the damping by Stoner excitations makes magnons
in itinerant altermagnets completely distinct from their antiferro- and ferromagnetic counter-
parts. The magnons acquire a strong frequency- and spin-dependent directionality, which can
potentially be exploited as a resource in spintronics devices [17].

2 Model and mean-field ground state

We model the electronic structure of altermagnets using a Hamiltonian proposed in ref. [18],
which is essentially a Hubbard model with an especially chosen hopping structure that realises
an altermagnetic symmetry,

H =
∑

l l ′

∑

µµ′

∑

σ

τ
µµ′

l l ′ c†
lµσcl ′µ′σ + U
∑

l,µ

nlµ↑nlµ↓ , (1)

where nlµσ ≡ c†
lµσclµσ, l and l ′ label unit cells, µ and µ′ label sublattices (A or B) and σ labels

the spin projection along the z axis. The hopping matrix τµµ
′

l l ′ elements have the following
structure: nearest-neighbor hopping τ, between different sublattices, is adopted as the energy
unit (solid lines in Fig. 1). Second-neighbor hopping (between identical sublattices) is given by
τ′(1±δ) with different signs for different sublattices. These are indicated in Fig. 1 as dashed
and dotted lines. The intra-atomic interaction parameter U can be chosen to place the system
in either the metallic or insulating altermagnetic phase; for the value of diagonal hopping we
adopted in this work, 2τ ≲ U ≲ 3τ yields a metallic altermagnetic phase, whereas U ≳ 3τ
produces the insulating altermagnetic phase. The complete mean-field phase diagram of this
model has been explored in Ref. [18]. Here we will choose two representative points, one in
the insulating and one in the metallic region, and study the elementary spin excitations above
their respective mean-field ground states. The mean-field approximation we employ amounts
to the following replacement,

U
∑

l,µ

nlµ↑nlµ↓ −→
U
2

∑

l,µ

�

(n̄µl + m̄µl)nlµ↓ + (n̄µl − m̄µl)nlµ↑
�

, (2)

with n̄µl ≡ 〈nlµ↑〉 + 〈nlµ↓〉 and m̄µl ≡ 〈nlµ↑〉 − 〈nlµ↓〉, plus a constant term that can be
safely ignored. The average occupancies n̄µl and magnetic moments m̄µl are determined self-
consistently.

We obtain the magnon spectrum of altermagnets by studying the transverse spin suscepti-
bilities,

χ+−µν (r⃗l ′ − r⃗l , t)≡ −iθ (t)
¬�

S+lµ(t), S−l ′ν(0)
�¶

, (3)

and
χ−+µν (r⃗l ′ − r⃗l , t)≡ −iθ (t)

¬�

S−lµ(t), S+l ′ν(0)
�¶

, (4)

where t is the time, S−lµ ≡ c†
lµ↓clµ↑, (S+lµ = (S

−
lµ)

†) is the operator that creates a spin excitation
with Sz = −1 (Sz = 1) at cell l in the sublattice µ, r⃗l is the position of unit cell l, and θ (t)
is the Heaviside unit step function. These two-time correlation functions cannot be computed
exactly for an interacting model such as the one defined in Eq. 1; the simplest approach that
can describe magnons is the so-called random phase approximation (RPA), in which the inter-
action is taken into account, to all orders in perturbation theory, between the electron and the
hole that form the spin-flip excitation [10]. The RPA relates the transverse interacting suscep-
tibilities χ⊥ (⊥≡ +− or −+) to the mean-field susceptibilities χ̄⊥, which are the same Green
functions defined in Eqs. 3 and 4, with the thermal average 〈·〉 evaluated for the mean-field
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Figure 1: Schematic representation of the model altermagnet on a square lattice
defined by primitive vectors a⃗1 and a⃗2, with |a⃗1| = |a⃗1| = a. Blue and red circles
indicate atomic sites belonging to different sublattices. The solid line connecting
different sublattices represents the nearest-neighbor hopping τ. Dashed and dotted
lines represent the alternating second neighbor hoppings τ′(1± δ). The lightly col-
ored rectangle indicates the unit cells.

configuration. For the model considered here, after Fourier transforming both in time and
position, the RPA equations are

χ+−µν (Q) = χ̄
+−
µν (Q)− U
∑

ξ

χ̄+−µξ (Q)χ
+−
ξν (Q) , (5)

where Q ≡ (q⃗,ħhΩ). We obtain an analogous expression for χ−+. The spectral density associ-
ated with magnons, projected on sublattice µ, is given by

ρ⊥µ (Q) = −
1
π

Imχ⊥µµ(Q) , (6)

where⊥ can be either+− or−+, denoting the transversal character of these response functions
with respect to the equilibrium staggered magnetization (Néel vector). Magnon energiesħhΩ(q⃗)
are associated with the positions of the peaks of ρ+− (for the Sz = −1 magnons) or ρ−+ (for
the Sz = 1 magnons), at fixed wave-vector q⃗. Analogously, magnon lifetimes are defined as
the inverse of the full width at half-maximum of the magnon peaks.

2.1 Mean-field results

An insulating altermagnetic state can be obtained by choosing U ≳ 3τ; however, for
3τ ≲ U ≲ 10τ the mean-field configuration belongs to an intermediate coupling regime, for
which the spin dynamics can not yet be properly described by a spin-only (Heisenberg-like)
model.1 Thus, to benchmark our fermionic model against a spin model, we chose U = 10τ,

1For a discussion of the partial failure of spin-only models for this case, we refer the reader to Appendix D. A
similar discussion appears in Ref. [19].
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together with the hopping values τ′ = 0.17τ and δ = 0.83. The self-consistent mean-field
solution gives the bands shown in Fig. 6 of appendix A, with a staggered magnetic moment
mA−mB = 1.86µB per unit cell. For the reciprocal space path we plotted in Fig. 6, the spin split-
ting is zero only along the line qy = qx . Along the line qy =

π
a − qx there is the characteristic

crossing between the ↑ and ↓ spin bands, associated with the altermagnetic symmetry.
The metallic altermagnetic state can be obtained either by tweaking the hopping param-

eters, as shown in ref. [18], or by reducing the Hubbard parameter U . We chose the latter
option to minimize the differences between the shapes of the electronic bands in the metallic
and insulating states. By setting τ′ = 0.17τ, δ = 0.83 and U = 2.5τ we obtain the metal-
lic altermagnetic bands shown in Fig. 6 of appendix A, with a staggered magnetic moment
mA−mB = 0.74µB per unit cell.

3 Magnons

To benchmark our methodology, we first analyze the spin excitations of the insulating alter-
magnet in the strong coupling limit (U = 10τ), for which the spin model results should be
valid [15,20]. By scanning the spectral densities ρ+− and ρ−+ in the (ħhΩ, q⃗) space we obtain
the dispersion relations for Sz = −1 magnons (+−) and for Sz = 1 magnons (−+), shown in
Fig. 2. The energy splitting between the two polarizations, one of the hallmarks of altermag-
netism, is clearly seen along high-symmetry directions in the Brillouin zone. We also show
the dispersion relation for (linearized) Holstein-Primakoff magnons, extracted from a Heisen-
berg model for the altermagnet, including up to third-neighbor exchange. As expected, the
agreement with the RPA treatment of the fermionic model is very good in this case.

Along specific lines within the Brillouin zone we observe a behavior analogous to the “band
inversion” associated with topologically non-trivial electronic bands. For instance, along the
reciprocal space path going from (πa , 0) to (0, πa ) there is a crossing between the Sz = −1 and
the Sz = 1 magnon branches. In the presence of spin-orbit coupling a gap may appear at
the crossing point ( π2a , π2a ), possibly accompanied by a finite Berry curvature. This crossing is
also associated with the peculiar directional behavior of altermagnetic magnons. If we focus
on magnons with one Sz value we see that the energy at the (πa , 0) point in reciprocal space
(thus, propagating along the x direction in real space with wavelength λ = 2a) is ∼ 10%
different from that of a magnon with the same wavelength propagating along the y direction,
as seen in Fig. 2. This difference can be as large as 40% for different values of the model
parameters, as illustrated in fig. 11 of the appendix E, where we plot the magnons spectral
densities as a function of propagation direction, for a fixed wavelength. Similar differences
are seen between the energies of the two magnon flavors in metallic altermagnets (Fig. 4).
Combined with the fact that, for sufficiently small wavelengths (typically smaller than ∼ 5a)
magnons with a well-defined Sz are strongly sublattice-polarized, this feature may be exploited
to guide magnons in spintronics devices.

3.1 Itinerant altermagnet

We now turn our attention to the behaviour of magnons in itinerant altermagnets. In con-
trast to the insulating case, it can be expected that their lifetime is limited by Landau damping
by Stoner modes [10, 11, 21]. Magnons with energies exceeding single-particle spin-flip ex-
citations (also known as Stoner excitations), can decay into the Stoner continuum [10]. The
magnon lifetime is inversely proportional to the density of Stoner modes, which is given by
the imaginary part of the mean-field transverse susceptibility χ̄⊥. The effect of damping for
a conducting altermagnet (U = 2.5τ) is seen in the evolution of the spectral weight of spin
excitations, shown along two different directions, (q, q) and (q, 0) with |q|< π

a , in Figure 3a,b.
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Figure 2: Dispersion relation for magnons in an insulating altermagnet in the strong
coupling regime (U = 10τ). The Heisenberg model used to fit the RPA energies
includes up to third-neighbor exchange.

For low energy, the spectral density has well defined peaks, whose position gives the magnon
energy and the inverse of its linewidth gives the magnon lifetime. As the energies are in-
creased, the peaks get broader and, above some energy threshold, they vanish into a con-
tinuum. Along the (q, q) direction, both Sz = ±1 excitations have the same spectral weight
(fig. 3a). In contrast, along the (q, 0) direction (fig. 3b), the Sz = −1 spin excitations have
Lorentzian spectral densities with relatively small linewidth in the whole wave number range,
whereas the spectral density associated with the Sz = 1 spin excitations has a behavior similar
to the (q, q) case. We thus find that, for itinerant altermagnets, magnons with a given Sz are
only well defined along certain directions.

To make the connection between magnon lifetimes and density of Stoner modes, it is useful
to plot both magnons’ and Stoner excitations’ spectral densities as color-coded functions of
energy and wave number, shown in fig. 4. By following the bright spots in the top left panel, it
is possible to trace dispersion relations for the Sz = −1 magnons, in analogy to the insulating
case. For the Sz = 1 magnon, the bright spots disappear around q ∼ 2π

5a . This can be correlated
with the boundaries of the Stoner continuum for Sz = 1 spin excitations, plotted in the bottom
right panel. In contrast, the density of Sz = −1 Stoner modes is uniformly small over the
whole wave number and energy ranges where Sz = −1 magnons exist. A detailed discussion
of the origin of the density of Stoner modes in terms of the geometry of the spin-polarized
Fermi surface pockets of the metallic altermagnet is presented in Appendix C.

The giant magnon-lifetime anisotropy is better seen in a color-coded polar plot of the
magnon spectral density, for a fixed wavelength. The angular variable indicates the propa-
gation direction, and the radial variable is the magnon energy. In fig. 5 we show such a plot
for λ = 10a

3 (wave number q = 3π
5a ). The top-left panel shows the spectral density ρ+−A for

Sz = −1 magnons, projected on sublattice A, and the top-right panel displays the equivalent
quantity for sublattice B (ρ+−B ). It is clear that Sz = −1 magnons are strongly suppressed
for angles ≳ 30◦, and the Sz = 1 magnons for angles ≲ 60◦. Such strong directionality is
rarely seen for quasiparticles and elementary excitations, and is potentially very useful for ap-
plications, especially when one considers the fact that magnons of wavelengths λ ≲ 4a live
preferentially in one of the sublattices. Thus, it is in principle possible to excite magnons along
specific directions by choosing their excitation frequency and the sublattice to excite. Selec-
tively addressing the sublattice may be challenging in systems where spin sublattices have
atomic size, but not so much in synthetic magnets, where spin sublattices are associated with
molecules containing tens of atoms [20,22].
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Figure 3: Top: spin excitation spectral densities in the metallic phase (U = 2.5τ),
along q⃗ = 1p

(2)
(q, q) (a) and q⃗ = (q, 0) (b), as a function of energy, for selected wave

numbers. To improve visualization, the spectral density has been multiplied by 100
for the three largest wavenumbers (q = 0.3, 0.4 and 0.5), by 50 for q = 0.25 and
by 5 for q = 0.2. In (b), solid lines correspond to ρ−+, associated with the Sz = 1
spin excitations, and dashed lines correspond to ρ+−, associated with the Sz = −1
spin excitations. Bottom: Lifetimes of the metallic magnons (U = 2.5τ) propagating
along the q⃗ = 1p

(2)
(q, q) (c) and q⃗ = (q, 0) (d), as a function of wave number, for

Sz = −1 (squares) and Sz = 1 (stars) spin excitations.

We have also considered the case of a doped insulating altermagnet, by choosing U = 3.5τ
and imposing an electronic occupation of 1.05 electrons per atomic site. In this case the
anisotropic suppression of magnons is observed for propagation angles 30◦ ≲ θ ≲ 75◦, as
shown in the bottom panels of fig. 5. Thus, whenever it is possible to dope an insulating al-
termagnet electrostatically, it is in principle also possible to control electrostatically the prop-
agation direction of magnons.

The effects of a giant spatial anisotropy in magnon lifetimes are likely to be noticed on
several transport coefficients of metallic altermagnets [23]. Electronic transport is expected to
be impacted by electron-magnon scattering, especially at low temperatures. Moreover, with
current high-resolution spin-polarized electron energy loss spectroscopy [24,25] it should be
possible to probe experimentally the lifetime anisotropy predicted by our theoretical analysis.
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Figure 4: Top: Spectral densities for Sz = −1 (ρ+−, left) and Sz = 1 (ρ−+, right)
metallic magnons (U = 2.5τ) propagating along the x direction, as a function of
wave number and energy. Bottom: Spectral densities for Sz = −1 (ρ̄+−, left) and
Sz = 1 (ρ̄−+, right) Stoner excitations (single-particle spin flips) propagating along
the x direction, as a function of wave number and energy.

We would like to emphasize that the lifetimes of magnons in itinerant magnets is related
to the frequency and wave-vector dependent spectral density of Stoner modes, as detailed in
the appendix B. The authors of a previous work [9] have estimated the relative intensity of
magnon damping, as a function of magnon wave vector only, by integrating the spectral density
of Stoner excitations over the whole magnon band width. This quantity can not be associated
with the lifetime of individual magnons, although it can give an idea of the overall importance
of Stoner excitations for the magnon spectrum. The relevant quantity for determining the
lifetime of a magnon with well-defined energy and momentum is the mean-field transverse
spin susceptibility calculated at the energy of the magnon (the pole of the RPA transverse spin
susceptibility), as discussed in appendix B.

4 Conclusion

We have studied the intrinsic damping of magnons in altermagnets. These collective modes
come with two values of Sz = ±1. Contrary to their counterparts in ferro- and antiferromag-
nets, we find a giant spatial anisotropy of magnon lifetimes in itinerant altermagnets. We find
that, for a given direction, only magnons with a given sign of Sz survive without melting due to
Landau damping by Stoner modes. The ultimate reason for this unique behaviour relies on the
existence of spin-polarized Fermi surface pockets that characterizes altermagnets. Therefore,
we expect our predictions are generic of all itinerant altermagnets, rather than model specific
and will have to be considered in future magnonic applications.
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Figure 5: Magnon spectral densities as functions of propagation angle, for a fixed
wavelength (10a

3 ). The radial variable represents energy (in units of the nearest-
neighbor hopping τ). ρ+−A corresponds to Sz = −1 magnons, ρ−+B corresponds to
Sz = 1 magnons. Top panels: metallic phase (U = 2.5τ); bottom panels: doped
insulating phase (U = 3.5τ, excess 0.1 electrons per unit cell).
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Figure 6: Electron energy bands for the strong-coupling insulating (left panel,
U = 10τ) and metallic (right panel, U = 2.5τ) mean-field ground state configu-
ration of the altermagnet Hamiltonian (eq. 1 of the main text), with τ′ = 0.16τ and
δ = 0.83. Red and blue lines represent ↑ and ↓ spin sub-bands. The black dashed
line marks the Fermi energy.

A Mean-field electronic structure

We present the electronic bands corresponding to the mean-field configurations considered in
the letter: strong-coupling insulating (U = 10τ, fig. 6, left panel), metallic (U = 2.5τ, fig 6,
right panel), and slightly doped insulating (U = 3.5τ, fig. 7, right panel). Both metallic and
insulating phases have half-filled bands (one electron per lattice site), whereas the doped phase
has 1.05 electrons per lattice site. Table 1 shows the values of the Hamiltonian parameters
associated with the different phases, as well as the mean-field staggered magnetic moment
per unit cell. We also show the intermediate-coupling insulating case (U = 3.5τ, fig. 7, left
panel).

B Relationship between the density of Stoner modes and the
magnon lifetime

The standard random phase approximation (RPA) applied to the transverse spin susceptibility
of a Hubbard Hamiltonian results in a relationship between the magnon Green function χ+−

and the mean-field Green function χ̄+−,

χ+−(q⃗,ħhΩ) =
χ̄+−(q⃗,ħhΩ)

1+ Uχ̄+−(q⃗,ħhΩ)
. (B.1)

Table 1: Values for the Hamiltonian parameters (in units of the nearest-neighbor
hopping τ) used in this work, and respective staggered magnetic moment per unit
cell, in units of Bohr magnetons µB.

τ′ δ U |m↑ −m↓|(µB)

Insulating (strong coupling) 0.16 0.83 10 1.86

Insulating (intermediate coupling) 0.16 0.83 3.5 1.28

Metallic 0.16 0.83 2.5 0.74
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Figure 7: Electron energy bands for the mean-field ground state configuration of
the altermagnet Hamiltonian (eq. 1 of the main text) in the insulating intermediate
coupling regime (U = 3.5τ) at half-filling (left panel) and away from half-filling
(1.05 electrons per lattice site, right panel). The values for the hopping parameters
are τ′ = 0.16τ, δ = 0.83. Red and blue lines represent ↑ and ↓ spin sub-bands. The
black dashed line marks the Fermi energy.

We would like to cast this expression in a form that resembles a Green function with a self-
energy correction,

G =
1

Ḡ−1 +Σ
, (B.2)

where Ḡ is the bare Green function and Σ is the self-energy. For this it is useful to split all
quantities into their real and imaginary parts, denoted below by R and I subscripts. The real
and imaginary parts of the magnon Green function then become (we will omit the energy and
wave vector arguments for now to avoid cluttering the expressions)

Re
�

χ+−
�

=
χ̄+−R (1+ Uχ̄+−R ) + U(χ̄+−I )

2

(1+ Uχ̄+−R )2 + (Uχ̄
+−
I )2

,

Im
�

χ+−
�

=
χ̄+−I

(1+ Uχ̄+−R )2 + (Uχ̄
+−
I )2

. (B.3)

Similarly,

Re [G] =
Ḡ−1 +ΣR

(Ḡ−1 +ΣR)2 +Σ2
I

,

Im [G] = −
ΣI

(Ḡ−1 +ΣR)2 +Σ2
I

. (B.4)

By comparing the imaginary parts of the generic Green function G to Im
�

χ+−
�

we notice
immediately a clear analogy between Uχ̄+−I and ΣI . Notice also that, as in the electronic case,
magnon damping is inextricably tied to shifts in magnon energy, through the real part of the
self-energy ΣR. It is clear, then, that the lifetime of a magnon with wave vector q⃗ and energy
ħhΩ(q⃗) is determinmed by the spectral density of Stoner modes with wave vector q⃗ and energy
ħhΩ(q⃗).

C Origin of the anisotropic magnon lifetime

To further shed light on the mechanism behind the lifetime anisotropy of metallic magnons,
it is useful to look at constant energy contours of the electronic bands in the mean-field al-
termagnetic configuration. The goal is to identify qualitatively the direction dependence of
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Figure 8: Contours of the electronic bands around the Fermi level; blue curves are
for ↑ spin bands, red curves for ↓. Left panel (↑−→↓): occupied ↑ states (shades of
blue, at energies EF − 0.5τ, EF − 0.25τ and EF ) and unoccupied ↓ states (shades of
red, EF , EF + 0.25τ and EF + 0.5τ). Right panel (↓−→↑): occupied ↓ states (shades
of red, at energies EF −0.5τ, EF −0.25τ and EF ) and unoccupied ↑ states (shades of
blue, EF , EF + 0.25τ and EF + 0.5τ).

single-particle spin-flip transitions that give rise to the anisotropic density of Stoner modes.
In figure 8 we show three constant energy contours for each spin direction, blue contours for
↑ spin electrons, red contours for ↓. In the left panel we show contours for occupied ↑ states
(including the Fermi contour at zero energy) and unoccupied ↓ states (also including the Fermi
contour at zero energy), relevant for Sz = −1 spin flips (↓−→↑). Thus, in the left panel we
can identify possible single-particle spin-flip transitions by connecting blue and red contours.
In the left panel we see that, apart from the very small pockets at (πa , πa ), there is no horizon-
tal line connecting blue and red contours. The consequence is that the density of Sz = −1
Stoner modes with wave vectors along the x direction is very small, and Sz = −1 magnons
propagating along the x direction are long-lived. On the other hand, there are plenty of con-
nections between blue and red contours at angles ≳ 30◦, meaning that magnons propagating
along those directions will be substantially damped. In the right panel we show the analogous
information for Sz = 1 spin flips (↓−→↑): occupied ↓ states (including the Fermi contour at
zero energy) and unoccupied ↑ states (also including the Fermi contour at zero energy). Now
it is clear that there are many possible single- particle spin-flip transitions with wave vectors
along x , whereas very few with wave vectors along y , thus meaning that Sz = 1 magnons are
strongly damped when propagating along x but long-lived when propagating along x .

D Insulating altermagnet in the intermediate coupling regime
(U = 3.5τ)

As mentioned in the main main text, the insulating altermagnetic phase of the model is ob-
tained for U ≳ 3τ. In this regime, although the electronic bands are clearly those of an
altermagnetic insulator (see the left panel of figure 7), the magnons bear marks of itinerant
magnetism, especially at short wavelengths. A clear signature of itinerant behavior is the fact
that the magnon lineshape acquires a finite linewidth and, at large enough energies, deviates
significantly from a Lorentzian shape. This is seen in fig. 10 for a short wavelength magnon
(λ= 2a) propagating along the x direction. The lineshape of the Sz = 1 magnon (right panel)
is very close to a Lorentzian (dashed orange line). In contrast, the lineshape of the higher
energy Sz = −1 magnon (left panel) is clearly not a Lorentzian.
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Figure 9: Dispersion relation for magnons in an insulating altermagnet in the inter-
mediate coupling regime (U = 3.5τ). The Heisenberg model used to fit the RPA
energies includes up to third-neighbor exchange.
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Figure 10: Spectral density of insulating magnons in the intermediate regime
(U = 3.5τ), for wave vector q⃗ = (πa , 0). The left and right panels correspond to
Sz = −1 and Sz = 1 magnons, respectively.

Another consequence of the coupling between magnons and Stoner excitations is a renor-
malization of magnon energies relative to those predicted by a localized spin model. In fig. 9
we compare the dispersion relation of magnons for the insulating altermagnet in the inter-
mediate coupling regime, extracted from the fermionica model, to the energies of linearized
Holstein-Primakoff magnons of a localized spins model, with exchanges up to third neighbors.
The exchange parameters of the localized spin model have been obtained from a fit to the
fermionic model energies. Although the main qualitative features of the dispersion are cap-
tured by the localized spins model, it does a poor job of matching quantitatively the magnon
energies over the whole Brillouin zone, since the spin only model cannot capture the renor-
malization of the magnon energies by Stoner excitations.
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To illustrate the effect of the coupling to the Stoner continuum we plot, in fig. 10, the
spectral densities for magnons with Sz = −1 (ρ+−) and Sz = 1 (ρ−+). Notice that the lineshape
of the Sz = −1 magnon (left panel) is clearly not a Lorentzian, whereas the Sz = 1 magnon is
well fitted by a Lorentzian with a finite linewidth, denoting a finite lifetime.

E Directionality of the magnon spectrum in the insulating regime
(intermediate coupling)

Here we illustrate the directional dependence of the magnon energies for the intermediate
coupling (U = 3.5τ) insulating case (figure 11). The main difference between this case and
the metallic and slightly doped cases is that the magnons appear as well-defined collective
excitation for all directions of propagations. In Fig. 5 of the main text, illustrating the metallic
case, it is clear that, for certain directions of propagation, the magnon feature in the spectral
density is suppressed. For the insulating intermediate coupling case magnons propagating
along all directions are well-defined, but their energies are strongly anisotropic, as illustrated
in Fig. 11. The smallest magnon energy for that wavelength (λ = 10a

3 ) is ∼ 0.65τ, whereas
the largest magnon energy is ∼ 0.9τ.
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Figure 11: Directionality of magnons in an insulator. We plot the magnon spectral
densities, as a function propagation angle, for a fixed wavelength (10a

3 ) for an insu-
lating altermagnet. The top panel shows ρ+−A (for the Sz = −1 polarization) and the
bottom panel shows ρ−+B (for the Sz = 1 polarization). The radial variable represents
energy (in units of the nearest-neighbor hopping τ).
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