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Abstract

We establish rigorous inequalities between different electronic properties linked to op-
tical sum rules, and organize them into weak and strong bounds on three characteristic
properties of insulators: electron localization length ℓ (the quantum fluctuations in po-
larization), electric susceptibility χ , and optical gap EG. All-electron and valence-only
versions of the bounds are given, and the latter are found to be more informative. The
bounds on ℓ are particularly interesting, as they provide reasonably tight estimates for
an ellusive ground-state property – the average localization length of valence electrons –
from tabulated experimental data: electron density, high-frequency dielectric constant,
and optical gap. The localization lengths estimated in this way for several materials
follow simple chemical trends, especially for the alkali halides. We also illustrate our
findings via analytically solvable harmonic oscillator models, which reveal an intriguing
connection to the physics of long-ranged van der Waals forces.
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1 Introduction

The low-frequency electronic conductivity,

σaa(ω) = Reσaa(ω) + iImσaa(ω) , (1)

displays sharply different behaviors in metals and in insulators. To characterize those behav-
iors one may define

Daa = π lim
ω→0

ω Imσaa(ω) , (2a)

ε0χaa = − lim
ω→0

ω−1 Imσaa(ω) , (2b)

where ε0 is the vacuum permittivity. The Drude weight Daa is finite in metals and vanishes
in insulators, whereas the clamped-ion electric susceptibility χaa is finite in insulators and
diverges in metals. The 1/ω divergence of Imσaa(ω) in perfect conductors is due to the
acceleration of free electrons under an applied electric field, and its linear decrease with ω in
insulators reflects the polarization of bound electrons in reaction to the field.

In 1964, Kohn proposed electron localization as the essential property of the insulating
state, and showed that it leads directly to its distinctive electrical behavior [1]. He argued
that the ground-state wave function Ψ(r1, . . . , rN ) of an insulator in a periodic supercell breaks
up into a sum of functions, Ψ =

∑

M ΨM , which are localized in disconnected regions of con-
figuration space and have essentially vanishing overlap. Kohn went on to show that the dis-
conectedness of Ψ allows for the definition of an effective center-of-mass operator X/N , even
though the bare center-of-mass operator operator (1/N)

∑N
i=1 ri is ill-defined under periodic

boundary conditions. The operator X is based on sawtooth functions, whose discontinuities
are placed in regions of configuration space where Ψ becomes exponentially small [2].

The importance of X can be seen from the fact that its ground-state expectation value yields
the electronic contribution to the macroscopic electric polarization (P),

Pe = −|e|〈X〉/V , (3)

where V is the supercell volume. Thanks to the development of the modern theory of polar-
ization, P is now understood as a fundamental bulk property of crystalline insulators, indepen-
dent of surface termination modulo a discrete quantum of indeterminacy. In particular, within
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a single-particle band picture, Eq. (3) reduces to a sum over the Wannier centers (Kohn’s dis-
connected wave function pieces ΨM can be viewed as “many-body Wannier functions”), or
can be equivalently written as a Berry phase in momentum space [3,4]. Crucially, this theory
asserts that bulk polarization is a property of the wave function and not of the charge density,
in line with Kohn’s view on electron localization.

In addition, Kohn’s center-of-mass operator allows for the definition of an electron local-
ization tensor [5]

ℓ2ab =
1
N
[〈XaX b〉 − 〈Xa〉〈X b〉] . (4)

The diagonal entries of this symmetric tensor carry the interpretation of a localization length
squared, averaged over the total number of electrons, along the corresponding direction. In
high-symmetry crystals, the localization tensor becomes isotropic:

ℓ2ab = δabℓ
2 . (5)

As in the case of P, the localization tensor enjoys an elegant formulation in the framework of
band theory, where it can be written as a quantum metric tensor [6] of the valence Bloch mani-
fold [5,7,8], whose Cartesian trace is related to the Wannier spread [9]: see Appendix A. First-
principles studies of the localization tensor have been carried out for tetrahedrally-coordinated
semiconductors [10] and oxides [11].

Kohn did not directly relate the degree of wave function localization to any physical ob-
servable. An important step in that direction was taken shortly before the modern theory of
polarization was developed. In Ref. [12], Kudinov proposed to quantify electron localization in
insulators via the quantum fluctuations in the ground-state polarization [Eq. (4)], connecting
them to the optical absorption spectrum by means of a fluctuation-dissipation relation. For a
bulk crystal, such relation at zero temperature takes the form [5]

ℓ2ab =
ħh

πe2ne

∫ ∞

0

dωω−1 ReσS
ab(ω) , (6)

where ne = N/V is the electron density, the superscript S denotes the symmetric part of
the conductivity tensor, and the integral spans the positive-frequency optical absorption spec-
trum.1 The trace of the localization tensor diverges in conductors by virtue of their nonzero
DC Ohmic conductivity, while in insulators it remains finite.

The fluctuation-dissipation relation written above assumes a vanishing macroscopic elec-
tric field E, as appropriate for transverse long-wave excitations. The needed generalization to
accomodate more general electrical boundary conditions was given by Resta [13]. In particu-
lar, for longitudinal excitations where E= −P/ε0 (D= 0), the fluctuation-dissipation relation
becomes a sum rule for the energy-loss spectrum,

ℓ̃2(q̂) =
ħhε0

πe2ne

∫ ∞

0

dω Im
�

−ε−1(q̂,ω)
�

, (7)

where the integrand is the (generally direction-dependent) q → 0 limit of the longitudinal
inverse dielectric function. The quantum fluctuations encoded in the localization tensor de-
pend on the electrical boundary conditions, and it is only under E = 0 as assumed in Eq. (6)
that its trace discriminates between insulators and metals [13]. In the following, we will deal
mostly with the transverse localization tensor; when referring to longitudinal quantities, we
will denote them with a tilde as done above.

1The conductivity tensor can be decomposed in three different ways: real and imaginary parts, Reσ and Imσ;
symmetric and antisymmetric parts, σS and σA; Hermitian and anti-Hermitian parts, σH and σAH. The Hermitian
part of σ (and hence ReσS) is dissipative, while the anti-Hermitian part is reactive.
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Table 1: Overview of the sum-rule inequalities on ℓ discussed in the present work.
Those inequalities relate the electron localization length ℓ defined by Eqs. (4) and
(5) to the optical gap EG, the clamped-ion electric susceptibility χ, and the electron
density ne. The last column contains equivalent energy relations involving the local-
ization gap EL and the Penn gap EP, which will be defined shortly [see Eq. (11)].

Length relations References Comments Energy relations

ℓ≤ ℓ++ [5] ℓ2++∝ 1/EG EL ≥ EG

Weak upper bound

ℓ− ≤ ℓ [14,15] ℓ2−∝ χEG/ne E2
P/EG ≥ EL

Lower bound

Sum-rule derivation in [15]

ℓ≤ ℓ+ [16,17], ℓ2+∝
p

χ/ne EL ≥ EP

this work Strong upper bound

ℓ+ ≤ ℓ++ This work Equivalent to ℓ− ≤ ℓ+,ℓ++ EP ≥ EG

ℓ− ≤ ℓ≤ ℓ+ ≤ ℓ++ This work Chained inequalities E2
P/EG ≥ EL ≥ EP ≥ EG

Although Eq. (6) provides a way of extracting the transverse localization length ℓ from
the optical absorption spectrum, we are not aware of any experimental work in that direction.
As discussed in Ref. [15], an alternative is to estimate ℓ via rigorous upper and lower bounds
involving readily-available experimental data: electron density ne, clamped-ion electric sus-
ceptibility χ, and minimum optical gap EG (see Table 1). This strategy was used recently to
estimate 2πneℓ

2 (the quantum metric of the filled bands) for a number of materials [17,18].
In this work, we employ a sum-rule approach to establish weak and strong bounds on ℓ, χ,

and EG. We give two formulations of the bounds – all electron and valence-only – and argue
that the valence-only formulation, even if approximate, is more informative. This is confirmed
by an explicit evaluation of the bounds on ℓ for a series of materials; the strong bound is
found to be much tighter than the weak one, and the valence-only formulation reveals simple
chemical trends. To illustrate the impact of long-ranged electrostatics on the polarization fluc-
tuations [13], we apply our formalism to analytically solvable systems of harmonic oscillators.
This exercise reveals an intriguing connection to the physics of van der Waals (dispersion)
forces, and clarifies the central role of electron-electron correlation in the determination of
the optical bounds.

The manuscript is organized as follows. In Sec. 2 the inverse moments of the optical ab-
sorption spectrum are introduced, the sum rules for the three leading moments are stated,
and average optical gaps are defined. In Sec. 3, sum-rule inequalities are established for the
inverse moments and for the average gaps; the latter are then organized into chained inequal-
ities, from which various bounds on ℓ, χ, and EG are deduced. In Sec. 4 those bounds are
examined for several exactly-solvable models, including harmonic oscillator models coupled
by dispersion interactions. In Sec. 5 the localization length ℓ is estimated for several materials
using the all-electron and valence-only varieties of the bounds, and the observed trends are
discussed. We conclude in Sec. 6 with a summary, and provide some accessory results in three
appendices.

4

https://scipost.org
https://scipost.org/SciPostPhys.18.4.127


SciPost Phys. 18, 127 (2025)

2 Sum rules and average gaps

For light with linear polarization along direction n̂, we define the inverse moments of the
positive-frequency optical absorption spectrum at zero temperature as

Ip(n̂) =
2
π

∫ ∞

0

dωω−p ReσS
ab(ω) n̂a n̂b , (8)

where p ≥ 0, a summation over repeated Cartesian indices is implied, and the 2/π factor was
included for convenience in writing the sum rules below. For simplicity we will assume cubic
symmetry or higher so that σS

ab = δabσ
S, rendering Ip independent of n̂,

Ip =
2
π

∫ ∞

0

dωω−p ReσS(ω) . (9)

The inverse spectral moments with p = 0, 1,2 satisfy

I0 =
e2ne

me
≡ ε0ω

2
p , (10a)

I1 =
2e2

ħh
neℓ

2 , (10b)

I2 = ε0χ ≡ ε0 (ε− 1) , (10c)

where we have introduced the static electronic permittivity ε (often denoted as ε∞), and
the plasma frequency ωp.2 The above identities are respectively the oscillator-strength sum
rule, the fluctuation-dissipation relation of Eq. (6) [with ℓ2 given by Eq. (5)], and the electric-
susceptibility sum rule. All three sum rules converge for insulators, while in metals I1 and I2
diverge as a result of the nonzero DC conductivity. Equations (10a) and (10c) follow from the
Kramers-Krönig relations, which in the case of (10a) must be combined with the observation
that at sufficiently high frequencies the medium responds to an electromagnetic disturbance
like a free-electron gas [20, 21]. The corresponding sum rules for atomic systems are well
known [22–24]. In solid-state physics, atomic-like sum rules have been used to characterize
F centers in alkali halide crystals [25]; in particular, from the ratio between the I1 and I0
moments of the F-center absorption band one can deduce, under the effective-mass approxi-
mation, its mean radius in the ground state.

To proceed, we find it useful to define a “localization gap” EL and a “Penn gap” EP as [15]

E−1
L =
ħh−1 I1

I0
, E−2

P =
ħh−2 I2

I0
. (11)

These average inverse excitation energies weighted by the transition strength [24] will be
denoted as (inverse) “average gaps.” Using Eq. (10) and writing ħh2/2me as a2

0 Ry (a0 is the
Bohr radius and Ry is the Rydberg unit of energy), we obtain

EL =
ħh2

2meℓ2
⇔
�

ℓ

a0

�2

=
Ry
EL

, (12)

2In general, the frequencyωp defined by Eq. (10a) does not correspond to a physical resonance of the medium.
The physical meaning of the parameterωp is provided by the free-electron-like behavior of the dielectric function at
frequencies far above the deepest core-level resonance [19,20]: ε(ω)/ε0 ≃ 1−ω2

p/ω
2. In a real plasma, electrons

are free and the range of validity of this formula is very broad, including ω < ωp [19]. In that case, ωp does
correspond to a physical resonance of the medium.
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and

χ =

�

ħhωp

EP

�2

, (13)

the latter being the standard definition of the Penn gap in semiconductor physics [26,27].
As shown below and already indicated in Table 1, the inequalities of interest can be ex-

pressed concisely as relations among three characteristic energy scales of the band structure:
optical gap EG (the energy threshold for optical absorption), Penn gap, and localization gap.

3 Sum-rule inequalities

If the unperturbed system is in thermodynamic equilibrium, we have [20]

σS(ω)≥ 0 , for ω> 0 . (14)

From this condition, one can readily obtain two types of inequalities involving different spectral
moments [24]. The first type are of the form

Ip+q ≤
ħh
EG

Ip+q−1 ≤ . . .≤
�

ħh
EG

�q

Ip , (15)

where q > 0; the second,
I2
p ≤ Ip−1 Ip+1 , (16)

follow from the Cauchy-Bunyakovsky-Schwarz inequality

�∫ ∞

0

dω f (ω)g(ω)

�2

≤
�∫ ∞

0

dω f (ω)2
��∫ ∞

0

dω g(ω)2
�

, (17)

by setting f (ω) = ω−(p−1)/2
p

ReσS(ω) and g(ω) = ω−(p+1)/2
p

ReσS(ω). Both types of
inequalities saturate in the limit of a narrow absorption spectrum concentrated at EG [24].

The average gaps introduced in Eq. (11) satisfy

EL ≥ EP ≥ EG , E2
P ≥ EGEL , (18)

with the relation EL ≥ EP coming from Eq. (16) and the others from Eq. (15); as expected, the
average gaps EL and EP cannot be smaller than the minimum gap EG. Equation (18) allows to
bracket EL as E2

P/EG ≥ EL ≥ EP ≥ EG and EP as E2
L ≥ E2

P ≥ EGEL ≥ E2
G; combined with Eqs. (12)

and (13), these chained inequalities yield

ε0χEG

2e2ne
≤ ℓ2 ≤

ħh
2|e|

√

√ ε0χ

mene
≤
ħh2

2meEG

�

ℓ2− ≤ ℓ
2 ≤ ℓ2+ ≤ ℓ

2
++

�

, (19a)

4e2meneℓ
4

ε0ħh2 ≤ χ ≤
2e2neℓ

2

ε0EG
≤
ħh2e2ne

ε0meE2
G

. (19b)

We will refer to ℓ− as the lower bound on ℓ, and to ℓ+ and ℓ++ as the strong and weak upper
bounds, respectively; the same terminology will be used for the bounds on χ. The weak upper
bounds on ℓ [5] and on χ [28] reflect the intuitive notion that wide-gap materials tend to have
more localized and less polarizable electrons.

The bounds on ℓ are particularly interesting, as they only involve parameters that are tabu-
lated for many materials: electron density, electric susceptibility, and optical gap. Since ℓ itself
is not commonly measured, those bounds provide a simple and practical way of estimating its
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value. Note that the weak upper bound ℓ++ only depends on the inverse minimum gap; this
is a delicate quantity, especially for narrow-gap semiconductors, and it is not representative of
the entire spectrum (the nature of the electron system can be very different for materials with
the same minimum gap). The localization length is instead a global property of the electron
system, and the value of EG is not its most relevant descriptor; for example, ℓ++ diverges in the
same way for all materials as EG is tuned to zero. We therefore expect ℓ++ to give a relatively
poor estimate for ℓ in real systems. The strong upper bound ℓ+ depends instead on χ and
ne via the average Penn gap, which is much more representative of the entire spectrum. As
for the lower bound ℓ−, it depends on both EG and EP; there is still some dependence on the
minimum gap, but it is a smaller effect than for ℓ++.

The relations in Eq. (18) can also be arranged as EG ≤ E2
P/EL ≤ EP ≤ EL to place bounds

on the optical gap,

EG ≤
2e2neℓ

2

ε0χ
≤ ħh|e|
√

√ ne

meε0χ
≤
ħh2

2meℓ2
. (20)

It is significant that there are several upper bounds, but no lower bound. This is consistent
with the existence of electronic systems without an energy gap that are strict insulators [1,2].

Although our focus has been on transverse long-wave modes, similar results hold for lon-
gitudinal modes [17,28]. The only changes to Eqs. (19) and (20) are (see Appendix B)

EG→ ẼG , ℓ→ ℓ̃ , χ → 1− ε−1 , (21)

where ẼG is the minimum energy for long-wave longitudinal excitations (plasmon gap), and ℓ̃
was introduced in Eq. (7) (in high-symmetry crystals, ℓ̃ does not dependend on q̂). The lower
and strong upper bounds on ℓ̃2 are given in Ref. [17] (in terms of 2πneℓ̃

2), and the weak upper
bound on 1− ε−1 is given in Ref. [28].

In closing, we comment on the applicability of the above relations to Chern insultors (CIs).
The general character of the sum rules in Eq. (10) suggests that the inequalities deduced from
them remain valid for CIs. The subtlety is that CIs occupy a middle ground between metals
and ordinary insulators [4], and the I1 and I2 sum rules diverge for metals. On the other hand,
all three sum rules involve the symmetric (time even) part of the optical conductivity, whereas
the distinction between ordinary and Chern insulators rests with the antisymmetric (time odd)
part; from this we can conclude that the inequalities obtained above do apply to CIs, even if
such materials fall outside the scope of Kohn’s theory of the insulating state. Indeed, while
the total Wannier spread diverges in a CI, its gauge invariant part proportional to ℓ2 remains
finite [29], consistent with the weak upper bound on ℓ2. Likewise, the weak upper bound on χ
implies that the susceptibility remains finite in CIs, even though the concept of spontaneous
polarization requires special care [30].

4 Analytically solvable models

To build intuition on the bounds obtained above, we will now apply them to several models that
can be treated analytically. For the first few examples dealing with finite systems, we introduce
a polarizability per electron via the relation d= NαE0; here d is the dipole moment induced on
the N -electron system by the applied electric field E0. To use the bulk relations (19) and (20),
we place the system in a periodic supercell. In the limit where the supercell dimensions far
exceed those of the system, the applied field E0 generates a macroscopic field E = E0 in the
effective medium; from P = ε0χE = d/V we get χ = neα/ε0 +O(V−1), where the additional
terms (originating from the Clausius-Mossotti relation, see Sec. 4.4) vanish in the assumed
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limit of large V . Plugging this expression for χ into Eqs. (19) and (20) gives

αEG

2e2
≤ ℓ2 ≤

ħh
2|e|

√

√ α

me
≤
ħh2

2meEG
, (22a)

4e2meℓ
4

ħh2 ≤ α≤
2e2ℓ2

EG
≤
ħh2e2

meE2
G

, (22b)

EG ≤
2e2ℓ2

α
≤
ħh|e|
p

meα
≤
ħh2

2meℓ2
. (22c)

At this point we make contact with known results for atoms and molecules. The strong
upper bound on α, with EG replaced by a mean excitation energy ∆E and 3e2ℓ2 expressed as
the dipole fluctuation 〈d2〉 − 〈d〉2, becomes

α≈
2
3
〈d2〉 − 〈d〉2

∆E
. (23)

This estimate for the polarizability is discussed in Ref. [31], along with its relation to the
fluctuation-dissipation relation. That textbook also gives an estimate for α in terms of the
weak upper bound in Eq. (22b), invoking the oscillator-strength sum rule.

4.1 Hydrogen atom

Introducing the polarizability volume α′ = α/4πε0 [31], Eq. (22) becomes

1
4
α′

a3
0

EG

Ry
≤
ℓ2

a2
0

≤
1
2

√

√

√

α′

a3
0

≤
Ry
EG

, (24a)

4
ℓ4

a4
0

≤
α′

a3
0

≤ 4
Ry
EG

ℓ2

a2
0

≤ 4
Ry2

E2
G

, (24b)

EG

Ry
≤ 4

a0ℓ
2

α′
≤ 2

√

√

√a3
0

α′
≤

a2
0

ℓ2
, (24c)

where every fraction is dimensionless. For the nonrelativistic hydrogen atom we have [32,33]

EG = 0.75Ry , α′ = 4.5a3
0 , ℓ2 = a2

0 , (25)

which plugged into Eq. (24) gives

27
32
≤
ℓ2

a2
0

= 1≤

√

√9
8
≤

4
3

, (26a)

4≤
α′

a3
0

= 4.5≤
16
3
≤
�

8
3

�2

, (26b)

EG

Ry
= 0.75≤

8
9
≤

2
p

4.5
≤ 1 . (26c)

The lower and strong upper bounds on α′ are given in Ref. [24], and the latter is also discussed
in Ref. [32] and in other textbooks. Interestingly, both bounds can be improved by means of
correction terms involving positive moments of the absorption spectrum [24].

Taking the average of the lower and strong upper bounds on ℓ2 and on α′ produces the
reasonably accurate estimates ℓ2 ≈ 0.952a2

0 and α′ ≈ 4.(6)a3
0. The estimates ℓ2 ≈ 1.089a2

0
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and α′ ≈ 5.(5)a3
0 obtained by taking the average of the lower and weak upper bounds are

much less accurate, especially for α′. We also note that the strong upper bound ℓ+ is closer
to ℓ than the lower bound ℓ−. This supports the notion that ℓ+, being based solely on the
average Penn gap, is more representative of the entire absorption spectrum than ℓ−, which
also depends on the minimum gap. Further evidence that ℓ+ tends to track ℓ more closely
than ℓ− will be presented in Sec. 5 for crystalline materials.

4.2 Isotropic harmonic oscillator

For an electron trapped in an isotropic harmonic potential of frequency ω0 the parameters
are [31,32]

EG = ħhω0 , α=
e2

meω
2
0

≡ α0 , ℓ2 =
ħh

2meω0
≡ ℓ20 , (27)

saturating all the inequalities in Eq. (22). This can be understood from the selection rules for
the harmonic oscillator: as the only allowed dipole transition from the ground state is to the
first excited state, the entire spectral weight is at EG, producing the saturation.

4.3 Van der Waals dimer model

So far we have only discussed one-electron systems. To analyze the effect of electron corre-
lations, we now consider a system of two identical harmonic oscillators 1 and 2 separated by
R. We think of these oscillators as vibrating electrical dipoles in which the +e charges (ions)
are held in the position of equilibrium while the −e charges (electrons) vibrate about these
equilibrium positions, their displacements being r1 and r2. In the limit where r1, r2≪ R, this
provides a simple model for the van der Waals interaction [31,34].

The interaction term is

H12 =
e2

4πε0

�

1
R
+

1
|R+ r1 − r2|

−
1

|R+ r1|
−

1
|R− r2|

�

. (28)

In the approximation r1, r2≪ R we expand Eq. (28) to obtain in lowest order

H12 ≃
e2

4πε0
r1ar2b

�

δab

R3
− 3

RaRb

R5

�

, (29)

which is in the form of a dipole-dipole interaction. Orienting the Cartesian frame such that
R= Rx̂ leads to

H12 ≃
e2

4πε0

�

−
2
R3

x1 x2 +
1
R3

y1 y2 +
1
R3

z1z2

�

≡ H∥12 +H⊥12 , (30)

where H∥12 denotes the first term and H⊥12 the other two.

For oscillations along R the only surviving term in Eq. (30) is H∥12, and we recover the 1D

model of Ref. [34]. Denoting by H0 the Hamiltonian of the two uncoupled oscillators, H0+H∥12
is diagonalized by the transformation

x± =
1
p

2
(x1 ± x2) , (31)

together with a similar transformation for the momenta, resulting in two decoupled oscillators
with frequencies

ω
∥
± =ω0

√

√

1∓
2α′0
R3

, (32)
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where α′0 is the polarizability volume of a single oscillator.
For unrestricted 3D oscillations, the interaction term is given by the full Eq. (30). Now

instead of two modes we have six modes. By following through the same derivation, we can
split also the y and z modes into symmetric and antisymmetric combinations with frequencies

ω⊥± =ω0

√

√

1±
α′0
R3

, (33)

thus for transverse oscillations the symmetric modes have higher frequency than the antisym-
metric ones.

In the 3D model the parameters EG, α, and ℓ2 are anisotropic, carrying labels ∥ or ⊥. To
evaluate the ∥ components, note that the interaction with a field E∥ = Ex̂ is described by
eE(x1 + x2) =

p
2eEx+, and that ℓ2∥ is defined via (4) in terms of X ≡ x1 + x2 =

p
2x+. This

means that only the symmetric mode participates, and with a simple calculation one finds that
the three parameters are obtained by replacing ω0 with ω∥+ in Eq. (27),

E∥G = ħhω
∥
+ ≃ ħhω0

�

1−α′0/R
3
�

, (34a)

α∥ =
e2

me

�

ω
∥
+

�2 ≃ α0

�

1+ 2α′0/R
3
�

, (34b)

ℓ2∥ =
ħh

2meω
∥
+

≃ ℓ20
�

1+α′0/R
3
�

. (34c)

The ⊥ components are obtained by sending ω∥+→ω
⊥
+ and α′0→−α

′
0/2 in these expressions.

In conclusion, the van der Waals interaction reduces the optical gap and increases both the
polarizability and the localization length in the axial direction of the dimer, and the opposite
happens in the perpendicular directions. As the antisymmetric modes are dipole inactive, the
entire spectral weight for light polarized along R or perpendicularly to it is concentrated at
a single frequency ħhω∥+ or ħhω⊥+ , respectively. In both cases the bounds in Eq. (22) remain
saturated, just like for a single oscillator.

We emphasize that the explicit treatment of electron correlations is essential to obtain a
qualitatively correct physical picture. For example, it is easy to show that the fluctuation-
dissipation sum rule fails if the electron-electron interaction is treated at the mean-field level,
e.g., within Hartree-Fock theory. Within Hartree-Fock, the dielectric susceptibility of the system
of interacting oscillators is described exactly; nonetheless, the localization length is unaffected
by the interaction and corresponds to that of the isolated monomer. This implies that the
correct description of the macroscopic polarization fluctuations goes hand in hand with the
ability of the theory to capture dispersion interactions between isolated bodies.

4.4 Van der Waals crystal model

As an extension of the dimer model, we now consider a periodic array of oscillators coupled
by dipole-dipole interactions. The potential energy reads

U =
1
2

meω
2
0

∑

R

�

�rR
�

�

2
+

e2

4πε0

∑

R

∑

R′ ̸=0

rR
a rR+R′

b

2

�

δab

R′3
− 3

R′aR′b
R′5

�

, (35)

where rR denotes the displacement of an electron away from its equilibrium position R, taken
to be a point on a Bravais lattice. A similar model was discussed in Ref. [28]; the only difference
is that the positive charges, instead of being point charges placed at the lattice points, are
smeared into a uniform background.
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4.4.1 Dynamical matrix

As in the dimer model, the electrons are assumed to be strongly localized in the sense that the
quantum fluctuations are small compared to the separation between the ions. The resulting
potential bears many similarities to the form that appears in the context of lattice vibrations;
we will therefore borrow the same terminology in discussing the relevant contributions to the
electronic Hamiltonian.

To determine the normal modes of the system we first evaluate the force-constant matrix

DaR,bR′ ≡
∂ 2U

∂ rR
a ∂ rR′

b

= Da0,bR′−R , (36)

to find

Da0,bR = meω
2
0δabδR0 +

e2

4πε0
(1−δR0)
�

δab

R3
− 3

RaRb

R5

�

, (37)

and then convert it into a dynamical matrix using

Dab(q) =
1

me

∑

R

Da0,bR e−iq·R . (38)

The result is
Dab(q) =ω

2
0δab + Cab(q) , (39)

where

Cab(q) =
e2/me

4πε0

∑

R̸=0

e−iq·R
�

δab

R3
− 3

RaRb

R5

�

. (40)

To carry out the above lattice sum it is convenient to work in reciprocal space, where the
interaction can be recast as a rapidly converging Ewald summation,

Cab(q) =
e2/me

4πε0

�

4π
Ω

′
∑

G

KaKb

K2
e−

K2σ2
4 −δab

4
3
p
πσ3

�

, K= G+ q , (41)

with Ω the volume of a primitive cell. The primed sum excludes the divergent G+ q= 0 term,
and the second term removes the self-interaction of the dipole in the origin cell; the result is
independent of the Ewald parameter σ provided that σ≪ R for all R ̸= 0.

By diagonalizing the 3×3 matrix C(q) at every point in the Brillouin zone, we have rewrit-
ten the problem as a set of independent oscillators. In particular, we have three modes at each
q with frequencies

ω2
i (q) =ω

2
0 +λi(q) , (42)

where λi(q) are the eigenvalues of C(q).
In Appendix C, we calculate the zero-point energy of this model by collecting the contri-

butions from all normal modes across the Brillouin zone.

4.4.2 Long-wave limit

The q→ 0 limit is particularly relevant to our discussion, since it corresponds to the collective
displacement of the electronic center of mass. For a cubic lattice we find two TO modes and
one LO mode where

λTO = −
1
3
ω2

p , λLO =
2
3
ω2

p , (43)

with ω2
p = e2/ε0meΩ. To obtain this result note that the matrix C(q) is traceless so that

2λTO +λLO = 0, and that λLO = λTO +ω2
p, where ω2

p is the contribution from the G = 0 term
in Eq. (41) when q→ 0.
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The dielectric susceptibility and permittivity are readily given in terms of the TO mode
frequency,

χ =
ω2

p

ω2
TO

, ε= 1+χ . (44)

Then, based on the above, we can quickly verify that the following results hold,

ε=
ω2

LO

ω2
TO

,
ε− 1
ε+ 2

=
α0

3ε0Ω
. (45)

The first result is the Lyddane-Sachs-Teller relation [34], valid for a single-mode dielectric.
The second is the Clausius-Mossotti relation [34], linking the macroscopic permittivity to the
molecular polarizability α0.

For the TO modes we have

EG = ħhωTO , χ =
ω2

p

ω2
TO

, ℓ2 =
ħh

2meωTO
. (46)

When plugged into Eqs. (12) and (13) these parameters give EL = EP = EG, saturating all the
bounds in Eqs. (19) and (20). The parameters for the LO modes are

ẼG = ħhωLO , 1− ε−1 =
ω2

p

ω2
LO

, ℓ̃2 =
ħh

2meωLO
, (47)

and again the corresponding bounds, obtained by modifying Eqs. (19) and (20) according to
Eq. (21), are saturated.

5 Real materials

Starting from experimental data, we have evaluated the bounds on ℓ in Eq. (19a) for a number
of materials. To visualize the results, it is helpful to bring that equation to the form

Ry
EP

√

√ EG

Ry
≤
ℓ

a0
≤
√

√Ry
EP
≤
√

√Ry
EG

, (48)

which suggests plotting the data as shown schematically in Fig. 1. Given a data point (large
blue dot), the range [ℓ−,ℓ+] in units of a0 is obtained by drawing horizontal and vertical line
segments from it to the diagonal dashed line; its projection on that line (small black dot) yields

ℓ≈ (ℓ+ + ℓ−)/2 , (49)

which we will refer to as the “strong bound” estimate, as opposed to the “weak bound” estimate
obtained by replacing ℓ+ with ℓ++ in the expression above.

In the following, we use Eqs. (48) and (49) to estimate the electron localization length in
different classes of materials. The needed experimental data are the optical gap (the lowest
energy for optical absorption), the electron density, and the clamped-ion electric susceptibility;
the last two enter via Eq. (13) for the Penn gap.
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Figure 1: Schematic representation of the strong bound on ℓ in Eq. (48). For the
weak bound, replace EP → EG on the horizontal axis; since EG ≤ EP, the data point
(blue dot) will move to the right, resulting in a wider range [ℓ−,ℓ++].

5.1 Rocksalt alkali halides

Figure 2 shows the results obtained for alkali halides with the rocksalt structure. Consider
first the top panels, where EP was calculated from the total electron density ne including inner
core electrons. Such “all-electron” bounds inevitably provide average localization lengths that
include those tight inert states; as a consequence, the bounds are rather loose not only on the
left panel (weak bound) but also on the right panel (strong bound). On the left panel the upper
bound is independent of ne, and hence it is insensitive to the different localization lengths of
valence and core electrons. This is not the case for the right panel, where the tighter upper
bound containing ne narrows down the estimates for ℓ; nevertheless, the data points are still
quite far from the diagonal.

To rationalize the results for the strong bound, note that

ℓ+ − ℓ−
a0

=

√

√Ry
EP

�

1−
√

√ EG

EP

�

, (50)

and thus the range [ℓ−,ℓ+] gets tighter and tighter as EP gets closer to EG. Since EP∝
p

ne,
the inclusion of core electrons goes in the opposite direction, and the range [ℓ−,ℓ+] tends to
increase as we move down the periodic table. This can be seen in the top-right panel of Fig. 2,
where the distance from the diagonal line increases from the fluorides to the chlorides, from
these to the bromides, and from these to the iodides.

It would be much more relevant for physical properties if one could estimate the average
localization length of the valence electrons only. Here, we take the simple approach of replac-
ing EP in Eq. (48) with a valence Penn gap calculated from the valence electron density.3 The
bounds on ℓ obtained in this manner are presented in the bottom panels of Fig. 2. As a result

3Such replacement assumes that valence-only versions of the sum rules in Eq. (10) can be formulated, which
requires the excitation energies of core electrons to be well separated in energy from those of valence electrons [21].
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Figure 2: Bounds on ℓ for the rocksalt alkali halides, plotted using the scheme out-
lined in Fig. 1. The weak and strong bounds are represented on the left and right
panels, respectively, while the top and bottom panels show all-electron and valence-
electron results, respectively, with EP defined accordingly in each case.

of discarding the core electrons the data points move closer to diagonal line (the bounds get
tighter), and their projections on that line move further up (the average localization lengths
increase). Most interestingly, simple trends emerge in this valence-only formulation, with ℓ
increasing from the lighter to the heavier halogens; this agrees with the intuition on chemical
bonding in strongly ionic crystals [35]. The trend is most visible in the bottom right panel
displaying the strong bound. The valence-only values for ℓ−, ℓ+, and ℓ++ are compiled in
Table 2.

5.2 Tetrahedrally-coordinated materials

Figure 3 and Table 3 show the valence-only results obtained for materials with the diamond or
the zincblende structure from groups IV, III-V, and II-VI in the periodic table. The trends are not
as uniform as in the case of the halides because there is a larger range of gaps and susceptibil-
ities. Nevertheless, one observes that the values of ℓ estimated from Eq. (49) tend to decrease
with increasing ionicity, e.g., along the isoelectronic series Si→ AlP and Ge→ GaAs→ ZnSe,
as also found in Ref. [10]; this is consistent with the intuition that ionic bonding yields more
localized electrons than covalent bonding. Accordingly, the estimated localization lengths in
Table 3 tend to be larger than those in Table 2 for the strongly ionic alkali halides.
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Table 2: Bounds on ℓ for the valence electrons in rocksalt alkali halides, estimated
from experimental data: lattice constant a (the electron density is ne = 32/a3, corre-
sponding to eight valence electrons per formula unit), electronic permittivity ε, and
optical gap EG. The values for a and ε are from Ref. [35], and those for EG corre-
spond to the lowest absorption peaks in Ref. [36]; the exceptions are LiF and LiI, for
which EG are the excitonic gaps reported in Refs. [37] and [38], respectively.

Crystal a (�A) ε EG (eV) ℓ− (a0) ℓ+ (a0) ℓ++ (a0)
LiF 4.02 1.96 12.6 0.40 0.65 1.04
NaF 4.62 1.74 10.6 0.31 0.59 1.13
KF 5.35 1.85 9.8 0.34 0.63 1.18

RbF 5.64 1.96 9.5 0.30 0.60 1.20
CsF 6.01 2.16 9.25 0.30 0.60 1.21
LiCl 5.13 2.78 8.6 0.50 0.80 1.26
NaCl 5.64 2.34 7.9 0.41 0.73 1.31
KCl 6.29 2.19 7.8 0.40 0.72 1.32

RbCl 6.58 2.19 7.5 0.34 0.68 1.35
LiBr 5.50 3.17 7.2 0.41 0.75 1.37
NaBr 5.97 2.59 6.7 0.35 0.70 1.43
KBr 6.60 2.34 6.7 0.34 0.70 1.43

RbBr 6.58 2.19 7.5 0.31 0.67 1.44
LiI 6.00 3.80 5.62 0.39 0.78 1.56
NaI 6.47 2.93 5.6 0.34 0.72 1.56
KI 7.07 2.62 5.8 0.34 0.72 1.53

RbI 7.34 2.59 5.7 0.31 0.70 1.54
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Figure 3: Same as the bottom two panels of Fig. 2, but for materials with the diamond
or the zincblende structure. On the left panel, the data point for InAs is out of bounds.

How well do the ℓ values estimated from experimental data via Eq. (49) compare with
those obtained from first-principles calculations? To address this question, in Fig. 4 we com-
pare them with the ab initio values reported in Ref. [10]. The correlation is quite satisfactory,
although the theoretical values tend to be somewhat larger. To explain this trend, one could
invoke the band gap underestimation in density functional theory, which may well lead to a
systematic overestimation of the calculated localization lengths. Since expressing ℓ as the av-
erage of ℓ− and ℓ+ is an approximation, however, it is difficult to draw definitive conclusions,
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Table 3: Same as Table 2, but for materials with the diamond or the zincblende
structure. We assume four valence electrons per atom on average, so that ne = 32/a3.
The experimental data is from Ref. [39], where EG is the direct gap.

Crystal a (�A) ε EG (eV) ℓ− (a0) ℓ+ (a0) ℓ++ (a0)

C 3.57 5.7 7.1 0.68 0.97 1.38

Si 5.43 11.97 4.19 1.51 1.65 1.80

Ge 5.66 16.00 0.90 0.87 1.84 3.89

3C-SiC 4.36 6.38 6.0 0.91 1.17 1.51

c-BN 3.62 4.46 14.5 0.86 0.91 0.97

AlP 5.46 7.5 3.63 1.09 1.45 1.94

AlAs 5.66 8.2 3.13 1.12 1.53 2.08

AlSb 6.14 10.24 2.3 1.23 1.73 2.43

GaAs 5.65 10.86 1.52 0.91 1.65 2.99

InAs 6.06 12.37 0.42 0.57 1.80 5.71

ZnSe 5.68 5.7 2.82 0.86 1.38 2.20

especially for cases like Ge where ℓ− and ℓ+ are rather different. Yet, it is interesting to note
that the upper bounds in Fig. 4 essentially fall on the diagonal in all cases, which means that
they closely match the available theoretical data. (The lower bounds, involving the minimum
gap, display a much larger scatter.) This gives further credit to our earlier statements that ℓ+
is a more robust indicator of the polarization fluctuation amplitude compared to ℓ−.

6 Conclusions

The use of sum-rule inequalities to estimate the electronic polarizability is well established in
atomic and molecular physics [24, 31]. The extension of those ideas to crystals and to other
physical properties is not equally developed, and the results are scattered in the literature. In
this work, we provided a unified perspective on several sum-rule inequalities for bulk systems,
and organized them into chained inequalities providing bounds on three electronic proper-
ties of insulators: localization length ℓ, static susceptibility χ, and optical gap EG. As they
are based on exact sum rules, those inequalities remain valid for correlated, disordered, and
topological insulators, and in the presence of relativistic effects including spin-orbit coupling.
The extension to low-symmetry crystals with anisotropic localization and susceptibility ten-
sors is also straightforward. As an application, we estimated ℓ (a ground-state property) from
readily available experimental data on the response properties χ and EG, together with the
electron density. By focusing on the valence electrons, we obtained meaningful estimates for
their average localization length that follow simple chemical trends.

The study of several exactly solvable models, from the hydrogen atom to isolated and
coupled oscillators, provided useful insights. In particular, the coupled oscillator models il-
lustrated how the fluctuation-dissipation relation breaks down at the mean-field level and
critically requires an explicit treatment of dynamical correlations.
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Figure 4: Comparison, for tetrehedrally-cordinated materials, between the ℓ values
for valence electrons estimated from experimental data (Table 3), and those calcu-
lated from first principles in Ref. [10] using a pseudopotential method. The error
bars indicate the range [ℓ−,ℓ+].
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A Polarization and localization in band insulators

In Eqs. (3) and (4), the electronic polarization and the electron localization tensor were written
down for a generic bulk insulator (possibly correlated and/or disordered) using Kohn’s center-
of-mass operator. Alternatively, those expressions can be recast in terms of the Berry phase
and quantum metric defined by the change in the many-body ground state under twisted
boundary conditons [5, 40]. Here we specialize to the single-particle picture, and review the
corresponding formulas for uncorrelated crystalline insulators.
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The electronic polarization of a band insulator takes the form of a Berry phase of the cell-
periodic Bloch states in momentum space [3,4],

Pe =
−|e|
(2π)3

∫

d3k
J
∑

n=1

Ann(k) ; (A.1)

here Amn(k) = i〈umk|∇kunk〉 is the Berry connection matrix, the integral is over the first Bril-
louin zone (BZ), and the summation is over the valence bands. Alternatively, Pe can be written
as [3,4]

Pe =
−|e|
Ω

J
∑

n=1

〈r〉n , (A.2)

where 〈r〉n is the center of charge of a Wannier function constructed for band n.
The localization tensor can be obtained from the fluctuation-dissipation relation in Eq. (6).

Using the Kubo-Greenwood formula for the optical conductivity, one finds the sum rule [5,8]
∫ ∞

0

dωω−1 ReσS
ab(ω) =

πe2

(2π)3ħh

∫

d3k
J
∑

n=1

gab,nn(k) . (A.3)

On the right-hand side, g(k) is the quantum metric tensor [6] of the valence manifold [4,9],

gab,mn(k) =
1
2
〈∂aumk|Qk|∂bunk〉+

1
2
〈∂bumk|Qk|∂aunk〉 , (A.4)

with ∂a = ∂ /∂ ka and Qk = 1−
∑J

n=1 |unk〉〈unk|. Inserting Eq. (A.3) in Eq. (6) gives

ℓ2ab =
1

(2π)3ne

∫

d3k
J
∑

n=1

gab,nn(k) , (A.5)

which expresses the bulk localization tensor as a ground-state quantity.
For a one-dimensional (1D) insulator the localization tensor reduces to a scalar, and

Eq. (A.5) can be written in terms of maximally-localized Wannier functions as

ℓ2 =
1
J

J
∑

n=1

�

〈x2〉n − 〈x〉2n
�

, (A.6)

which follows from the relation between the BZ integral of the metric and the quadratic Wan-
nier spread [9]. Thus, in 1D the localization tensor is equal to the average spread of the
maximally-localized Wannier functions. More generally, in d dimensions its Cartesian trace
equals the gauge-invariant part of the average Wannier spread, which for d > 1 is smaller
than the actual spread in any gauge [9].

In summary, electronic polarization is related to the Wannier centers of the valence bands,
and the electron localization length squared (polarization fluctuations) gives a lower bound
to the average Wannier spread.

B Longitudinal optical bounds

Here, we outline the extension to long-wave longitudinal modes [17,28] of the analysis carried
out in Secs. 2 and 3 for transverse modes. We again assume cubic symmetry or higher so that
εab(ω) = δabε(ω), and define the moments of the energy-loss spectrum as

Mp =
2
π

∫ ∞

0

dωωp Im
�

−ε−1(ω)
�

. (B.1)
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The moments with p = 1, 0,−1 satisfy the relations

M1 =ω
2
p , (B.2a)

M0 =
2e2

ħhε0
neℓ̃

2 , (B.2b)

M−1 = 1− ε−1 , (B.2c)

where ε−1 stands for ε−1(0). These are respectively the longitudinal counterpart of the
oscillator-strength sum rule (10a) [21], the longitudinal fluctuation-dissipation relation (7),
and the longitudinal counterpart of the Kramers-Krönig relation (10c).

Next, we introduce average gaps for longitudinal excitations by analogy with Eqs. (11-13),

ẼL =
ħhM1

M0
, Ẽ2

P =
ħhM1

ħh−1M−1
, (B.3)

ẼL =
ħh2

2meℓ̃2
⇔
�

ℓ̃

a0

�2

=
Ry

ẼL
, (B.4)

1− ε−1 =

�

ħhωp

ẼP

�2

. (B.5)

Since the loss function appearing in Eq. (B.1) is positive semidefinite, one can immediately
write down inequalities analogous to those in Eqs. (15), (16), and (18),

Mp−q ≤
ħh
ẼG

Mp−q+1 ≤ . . .≤
�

ħh
ẼG

�q

Mp (B.6)

(ẼG is the plasmon gap),
M2

p ≤ Mp−1Mp+1 , (B.7)

and
ẼL ≥ Ẽp ≥ ẼG , Ẽ2

P ≥ ẼG ẼL . (B.8)

Finally, by forming the chained inequalities

Ẽ2
P/ẼG ≥ ẼL ≥ ẼP ≥ ẼG , (B.9a)

Ẽ2
L ≥ Ẽ2

P ≥ ẼG ẼL ≥ Ẽ2
G , (B.9b)

ẼG ≤ Ẽ2
P/ẼL ≤ ẼP ≤ ẼL , (B.9c)

and combining them with Eqs. (B.4) and (B.5), we obtain weak and strong bounds on ℓ̃2,
1− ε−1 and ẼG, respectively. Those bounds are given by Eqs. (19) and (20), with the replace-
ments indicated in Eq. (21).

C Zero-point energy of the van der Waals crystal model

In this appendix we return to the van der Waals crystal model of Sec. 4.4, and calculate its
zero-point energy in two different ways. First we use a Brillouin-zone integral,

E =
ħh
2
Ω

(2π)3

∫

d3q
∑

i

ωi(q) . (C.1)
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Figure 5: Convergence of the reciprocal- and real-space sums for the dispersion in-
teraction energy using meshes of dimension 2n. The plotted values correspond to
Eqs. (C.4) and (C.6) for a simple-cubic lattice, in units of ω−3

0 Ω
−2 using Hartree

atomic units (a. u.).

To verify that the normalization factors are correct, note that in the absence of interactions we
recover the correct result for the isolated 3D oscillator,

E0 =
3
2
ħhω0 . (C.2)

The interaction is regarded as a small perturbation, so we can Taylor-expand the square root
of Eq. (42) for ω2

i (q),

ωi =
q

ω2
0 +λi ≃ω0 +

1
2
λi

ω0
−

1
8

λ2
i

ω3
0

. (C.3)

As the C(q) matrix defined by Eq. (40) is traceless for all q, the second term above drops out
from Eq. (C.1). The leading correction is then given by the third term,

∆E = −
ħh

16ω3
0

Ω

(2π)3

∫

d3q
∑

i

λ2
i (q) . (C.4)

Overall, the interaction energy is negative and in view of Eq. (43) it appears to scale as Ω−2,
which at first sight seems consistent with van der Waals. This is confirmed by a numerical
evaluation of Eq. (C.4) for a simple-cubic lattice (Fig. 5), which shows a Ω−2 behavior for ∆E
in the limit of a dense q mesh.

As further validation, we have computed the same energy as a real-space sum of pair
interactions. We start from the interaction energy of the 3D dimer model of Sec. 4.3, which is
obtained by expanding Eqs. (32) and (33) according to Eq. (C.3). The result [31]

∆E12 = −
3
4

�

α′0
R3

�2

ħhω0 , (C.5)

which is enhanced by a factor of 3/2 relative to that of the 1D dimer model [34], leads to a
crystal energy of

∆E = −ħh
�

e2/me

4πε0

�2
3

8ω3
0

∑

R̸=0

1
R6

. (C.6)
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(Note the additional factor of 1/2 to avoid double counting of the pair interactions.) As shown
in Fig. 5, the converged value of this real-space summation agrees with that of the reciprocal-
space summation (C.4). The plotted quantity is ∆E/(ω−3

0 Ω
−2) in Hartee atomic units, and its

converged value is precisely −(3/8)A6, where

A6 ≡
′
∑

i, j,k

(i2 + j2 + k2)−3 ≃ 8.40192 (C.7)

(with i = j = k = 0 excluded), is a lattice sum tabulated by Lennard-Jones and Ingham [41].

References

[1] W. Kohn, Theory of the insulating state, Phys. Rev. 133, A171 (1964),
doi:10.1103/PhysRev.133.A171.

[2] W. Kohn, Metals and insulators, in C. DeWitt and R. Balian (eds.), Many-body physics,
Gordon and Breach, London, UK, ISBN 9780677127002 (1968).

[3] R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev.
B 47, 1651 (1993), doi:10.1103/PhysRevB.47.1651.

[4] D. Vanderbilt, Berry phases in electronic structure theory, Cambridge University Press,
Cambridge, UK, ISBN 9781316662205 (2018), doi:10.1017/9781316662205.

[5] I. Souza, T. Wilkens and R. M. Martin, Polarization and localization in insulators: Gener-
ating function approach, Phys. Rev. B 62, 1666 (2000), doi:10.1103/PhysRevB.62.1666.

[6] J. P. Provost and G. Vallee, Riemannian structure on manifolds of quantum states, Commun.
Math. Phys. 76, 289 (1980), doi:10.1007/BF02193559.

[7] R. Resta and S. Sorella, Electron localization in the insulating state, Phys. Rev. Lett. 82,
370 (1999), doi:10.1103/PhysRevLett.82.370.

[8] I. Souza and D. Vanderbilt, Dichroic f -sum rule and the orbital magnetization of crystals,
Phys. Rev. B 77, 054438 (2008), doi:10.1103/PhysRevB.77.054438.

[9] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for com-
posite energy bands, Phys. Rev. B 56, 12847 (1997), doi:10.1103/PhysRevB.56.12847.

[10] C. Sgiarovello, M. Peressi and R. Resta, Electron localization in the insulating
state: Application to crystalline semiconductors, Phys. Rev. B 64, 115202 (2001),
doi:10.1103/PhysRevB.64.115202.

[11] M. Veithen, X. Gonze and P. Ghosez, Electron localization: Band-by-band
decomposition and application to oxides, Phys. Rev. B 66, 235113 (2002),
doi:10.1103/PhysRevB.66.235113.

[12] E. K. Kudinov, Difference between insulating and conducting states, (arXiv preprint)
doi:10.48550/arXiv.cond-mat/9902361.

[13] R. Resta, Polarization fluctuations in insulators and metals: New and old theories merge,
Phys. Rev. Lett. 96, 137601 (2006), doi:10.1103/PhysRevLett.96.137601.

[14] C. Aebischer, D. Baeriswyl and R. M. Noack, Dielectric catastrophe at the Mott transition,
Phys. Rev. Lett. 86, 468 (2001), doi:10.1103/PhysRevLett.86.468.

21

https://scipost.org
https://scipost.org/SciPostPhys.18.4.127
https://doi.org/10.1103/PhysRev.133.A171
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1017/9781316662205
https://doi.org/10.1103/PhysRevB.62.1666
https://doi.org/10.1007/BF02193559
https://doi.org/10.1103/PhysRevLett.82.370
https://doi.org/10.1103/PhysRevB.77.054438
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.64.115202
https://doi.org/10.1103/PhysRevB.66.235113
https://doi.org/10.48550/arXiv.cond-mat/9902361
https://doi.org/10.1103/PhysRevLett.96.137601
https://doi.org/10.1103/PhysRevLett.86.468


SciPost Phys. 18, 127 (2025)

[15] R. M. Martin, Electronic structure: Basic theory and practical methods, Cam-
bridge University Press, Cambridge, UK, ISBN 9780511805769 (2004),
doi:10.1017/CBO9780511805769.

[16] N. Verma and R. Queiroz, Instantaneous response and quantum geometry of insulators,
(arXiv preprint) doi:10.48550/arXiv.2403.07052.

[17] Y. Onishi and L. Fu, Quantum weight: A fundamental property of quantum many-body
systems, (arXiv preprint) doi:10.48550/arXiv.2406.06783.

[18] I. Komissarov, T. Holder and R. Queiroz, The quantum geometric origin of capacitance in
insulators, Nat. Commun. 15, 4621 (2024), doi:10.1038/s41467-024-48808-x.

[19] J. D. Jackson, Classical electrodynamics, Wiley, New York, USA, ISBN 9780471309321
(1999).

[20] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, Pergamon, Oxford,
UK, ISBN 9780080302751 (1984).

[21] F. Wooten, Optical properties of solids, Academic Press, Cambridge, USA, ISBN
9780127634500 (1972), doi:10.1016/C2013-0-07656-6.

[22] U. Fano and J. W. Cooper, Spectral distribution of atomic oscillator strengths, Rev. Mod.
Phys. 40, 441 (1968), doi:10.1103/RevModPhys.40.441.

[23] R. Jackiw, Intermediate quantum mechanics, CRC Press, Boca Raton, USA, ISBN
9780429493645 (2018), doi:10.1201/9780429493645.

[24] M. Traini, Electric polarizability of the hydrogen atom: A sum rule approach, Eur. J. Phys.
17, 30 (1996), doi:10.1088/0143-0807/17/1/006.

[25] M. Brauwers, R. Evrard and E. Kartheuser, Sum rules for F centers in alkali halides, Phys.
Rev. B 12, 5864 (1975), doi:10.1103/PhysRevB.12.5864.

[26] D. R. Penn, Wave-number-dependent dielectric function of semiconductors, Phys. Rev. 128,
2093 (1962), doi:10.1103/PhysRev.128.2093.

[27] P. Y. Yu and M. Cardona, Fundamentals of semiconductors, Springer, Berlin, Heidelberg,
Germany, ISBN 9783642007095 (2010), doi:10.1007/978-3-642-00710-1.

[28] Y. Onishi and L. Fu, Universal relation between energy gap and dielectric constant, Phys.
Rev. B 110, 155107 (2024), doi:10.1103/PhysRevB.110.155107.

[29] T. Thonhauser and D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane
model, Phys. Rev. B 74, 235111 (2006), doi:10.1103/PhysRevB.74.235111.

[30] S. Coh and D. Vanderbilt, Electric polarization in a Chern insulator, Phys. Rev. Lett. 102,
107603 (2009), doi:10.1103/PhysRevLett.102.107603.

[31] P. Atkins and R. Friedman, Molecular quantum mechanics, Oxford University Press, Ox-
ford, UK, ISBN 9780199541423 (2005).

[32] J. J. Sakurai, Modern quantum mechanics, Addison-Wesley, Boston, USA, ISBN
0201539292 (1994).

[33] L. D. Landau and E. M. Lifshitz, Quantum mechanics, Pergamon, Oxford, UK, ISBN
9780080209401 (1977), doi:10.1016/C2013-0-02793-4.

22

https://scipost.org
https://scipost.org/SciPostPhys.18.4.127
https://doi.org/10.1017/CBO9780511805769
https://doi.org/10.48550/arXiv.2403.07052
https://doi.org/10.48550/arXiv.2406.06783
https://doi.org/10.1038/s41467-024-48808-x
https://doi.org/10.1016/C2013-0-07656-6
https://doi.org/10.1103/RevModPhys.40.441
https://doi.org/10.1201/9780429493645
https://doi.org/10.1088/0143-0807/17/1/006
https://doi.org/10.1103/PhysRevB.12.5864
https://doi.org/10.1103/PhysRev.128.2093
https://doi.org/10.1007/978-3-642-00710-1
https://doi.org/10.1103/PhysRevB.110.155107
https://doi.org/10.1103/PhysRevB.74.235111
https://doi.org/10.1103/PhysRevLett.102.107603
https://doi.org/10.1016/C2013-0-02793-4


SciPost Phys. 18, 127 (2025)

[34] C. Kittel, Introduction to solid state physics, Wiley, New York, USA, ISBN 9780471415268
(2004).

[35] N. Ashcroft and N. D. Mermin, Solid state physics, Saunders College Publishing, Philadel-
phia, USA, ISBN 9780030839931 (1976).

[36] K. Teegarden and G. Baldini, Optical absorption spectra of the alkali halides at 10◦K, Phys.
Rev. 155, 896 (1967), doi:10.1103/PhysRev.155.896.

[37] D. M. Roessler and W. C. Walker, Electronic spectrum of crystalline lithium fluoride, J. Phys.
Chem. Solids 28, 1507 (1967), doi:10.1016/0022-3697(67)90280-6.

[38] R. Z. Bachrach, The optical absorption of lithium iodide, Phys. Lett. A 30, 318 (1969),
doi:10.1016/0375-9601(69)91018-4.

[39] O. Madelung, Semiconductors: Data handbook, Springer, Berlin, Heidelberg, Germany,
ISBN 9783642623325 (2004), doi:10.1007/978-3-642-18865-7.

[40] G. Ortiz and R. M. Martin, Macroscopic polarization as a geometric quantum phase: Many-
body formulation, Phys. Rev. B 49, 14202 (1994), doi:10.1103/PhysRevB.49.14202.

[41] J. E. Lennard-Jones and A. E. Ingham, On the calculation of certain crystal potential con-
stants, and on the cubic crystal of least potential energy, Proc. R. Soc. A 107, 636 (1925),
doi:10.1098/rspa.1925.0047.

23

https://scipost.org
https://scipost.org/SciPostPhys.18.4.127
https://doi.org/10.1103/PhysRev.155.896
https://doi.org/10.1016/0022-3697(67)90280-6
https://doi.org/10.1016/0375-9601(69)91018-4
https://doi.org/10.1007/978-3-642-18865-7
https://doi.org/10.1103/PhysRevB.49.14202
https://doi.org/10.1098/rspa.1925.0047

	Introduction
	Sum rules and average gaps
	Sum-rule inequalities
	Analytically solvable models
	Hydrogen atom
	Isotropic harmonic oscillator
	Van der Waals dimer model
	Van der Waals crystal model
	Dynamical matrix
	Long-wave limit


	 Real materials
	Rocksalt alkali halides
	Tetrahedrally-coordinated materials

	Conclusions
	Polarization and localization in band insulators
	Longitudinal optical bounds
	Zero-point energy of the van der Waals crystal model
	References

