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Abstract

Coupling N large m minimal models and flowing to IR fixed points is a systematic way
to build new classes of compact unitary 2d CFTs which are likely to be irrational, and
potentially have a positive Virasoro twist gap above the vacuum. In this paper, we build
on the construction of [1], establishing that, for spins less than 10, additional currents
transforming in non-trivial irreducible representations of the permutation symmetry SN
are not conserved at the IR fixed points. Along the way, we develop a finer understanding
of the spectrum of these theories, of the special properties of the N = 4 case and of non-
invertible symmetries that constrain them. We also discuss variations of the original
setup of [1], some of which can exist for smaller values of the UV central charge.
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1 Introduction

Two-dimensional conformal field theories (CFTs) play a privileged role in the space of quantum
field theories (QFTs). Among them, there are examples of interacting QFTs whose spectrum [2]
and correlation functions of local operators [3,4] and even of extended operators [5,6] can be
computed exactly.1 Exactly solvable unitary 2d CFTs fall into two main classes of examples:2

• Rational CFTs, which by definition have a finite number of primary operators of their
chiral symmetry algebra, and are in particular compact, meaning they have a discrete
spectrum. The archetypical examples of such theories are the Virasoro minimal models.

• Non-compact irrational CFTs, i.e. CFTs with a continuous spectrum of primaries. The
key example here is the Liouville family of CFTs parametrized by the central charge
c [10,11].

Instead of discussing the many interesting generalizations of these two classes of exactly solv-
able models, we want to ask about the missing middle:

Q1: What is the space of compact irrational CFTs?

Theories with a discrete but infinite set of primary operators span the known space of unitary
CFTs in higher dimensions. Instead, in two dimensions, they are sometimes portrayed as
generic and other times as esoteric, ill-defined objects, much like transcendental numbers on
the real line. One class of compact irrational CFTs can at least easily be proved to be so,
even if their spectrum and correlation functions are hard to determine: theories that lie in the
same conformal manifold as an RCFT. In these cases we can make use of Vafa’s theorem [12]:
RCFTs have scaling dimensions and central charges that are rational numbers. In a conformal
manifold, starting from a rational point, as long as any scaling dimension changes continuously,
it is guaranteed to take irrational values somewhere. The compact boson at an irrational radius
and supersymmetric non-linear sigma models at generic points on the moduli space fall into
this class.3 Of course, these models are either free or supersymmetric and in the spirit of
genericity we would like to refine our question to

Q2: What is the space of interacting compact irrational CFTs with no extended chiral symmetry?

1Supersymmetric QFTs (including in higher spacetime dimensions) also possess certain observables that can be
computed exactly but none of them can be solved to the extent of 2d CFTs.

2See however the work of [7–9] for progress in the solution of loop model families of non-unitary 2d CFTs.
3The authors of [13] showed that irrational central charges also arise from a generalization of the Sugawara

construction. This suggestion has not led to any concrete model since the action of L0 =
∑

m>0 ℓabJ a
−mJ b

m on a
module of the current algebra is hard to diagonalize when ℓab is not a Killing form.
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In an attempt to answer this question, in [1] we investigated infrared (IR) fixed points of N
coupled minimal models preserving a permutation symmetry SN . This is an old construction,
that was often considered in the context of disordered systems and the replica trick, leading
to a replica symmetry SN , where one is ultimately interested in the N → 0 limit. These studies
typically involved coupled Ising and q-state Potts models [14–17], and made significant use
of the (q − 2) expansion. In particular, the authors of [18], using several numerical methods
including Monte Carlo and transfer matrix techniques, established the existence of an infrared
fixed point for N = 3 coupled 3-state Potts models with a central charge c ≈ 2.377. This
is incompatible with known RCFTs with the correct symmetry, suggesting that it is a simple
example of an isolated compact irrational CFT.4 The precise coupling is

S =
3
∑

i=1

S i
q−Potts + g

∫

d2 x
∑

i< j

εiε j . (1)

As discussed in [20], CFT data in ultraviolet (UV) theory is conveniently specified in terms
of a coupling constant f such that q = 2 + 2 cos(π f /2). The critical and tricritical q-state
Potts models, which annihilate at q = 4, are described in the range q ∈ [0,4] by the branches
f ∈ [2, 4] and f ∈ [4,6] respectively. In this notation, εi starts off with the holomorphic
dimension 3

f −
1
2 which means εiε j is only classically marginal for q = 2. Although the tensor

product CFT in (1) is solvable and unitary for q = 3, the renormalization group (RG) flow
away from it is strongly coupled. To make it weakly coupled, we must give up unitarity by
taking q to be close to 2.

The construction of [1] extends the range of potential unitary infrared CFTs by instead
coupling minimal models indexed by m and using 1/m as an expansion parameter, leading to
infinite sequences of unitary weakly coupled fixed points as 1/m approaches 0.5 A key prop-
erty of these fixed points is that additional SN singlet currents of the UV tensor product theory
(checked up to spin J ≤ 10) stop being conserved in the infrared. Evidence for the break-
ing of chiral symmetry is, at the same time, evidence for irrationality because these models
are modular invariant with c > 1. The growth estimates in [21, 22], showing that there are
infinitely many Virasoro primaries, are therefore applicable meaning that an RCFT is not pos-
sible without an extended chiral algebra. In this work, we extend the results of [1] in several
directions:

1. We emphasize that analyzing singlet currents is sufficient to establish irrationality when
gauging the SN symmetry of the original model.

2. When the symmetry is ungauged, making use of refined partition functions, we classify
the currents in all non-trivial representations of SN and show that those below spin 10
acquire anomalous dimensions. We further argue that this should remain true at large
but finite m.

3. For the N = 4 system, we show that it preserves a large class of non-invertible symmetries
and give a non-perturbative argument for the integrability of an associated deformation.

4. We construct other systems of coupled minimal models which additionally include some
copies at fixed m, and can even exist for central charges smaller than the model of [18].

In broad strokes, this work demonstrates the importance of being able to systematically
search a large space of operators which are computationally intensive to construct. Lessons
from this approach have already become apparent in other contexts, including [23] which

4See [19] for a recent attempt to bootstrap this model.
5In the convention we use, the first unitary minimal model (the critical Ising model) corresponds to m= 3.
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(a) Coupled q-state Potts models. (b) Coupled m’th minimal models.

Figure 1: Schematic diagrams of RG flows from the UV (violet) to IR (red). The ones
written with dashed lines are non-unitary.

revisited the problem of describing black hole microstates. In the present case, an algorithmic
search has led to strong evidence that the models we proposed are irrational CFTs with chiral
symmetry given by a single copy of the Virasoro algebra. Although the extra symmetry is
broken very weakly in the perturbative regime studied here, the fact that it is broken at all
opens the door to various types of numerical simulation, some of which have had recent success
at observing chaos at high energies [24].6 We expect that the ability to find similar models at
smaller values of the central charge will be helpful for making this route more accessible.

This paper is organized as follows. In section 2, we review the SN symmetric models of [1]
and the technique that was used to decide between conservation and non-conservation of the
singlet UV currents. In particular, we advocate for a more thorough check which goes beyond
the SN singlet sector. Next, in section 3, we sharpen our expectations regarding the non-singlet
sector with the use of torus partition functions and SN representation theory. Section 4 then
uses this understanding to develop algorithms which are able to perform the desired more
powerful check. This leads to the result that there are still no signs of any chiral symmetry be-
yond Virasoro. Extensions of the models studied here along with an analysis of non-invertible
symmetries in both the original and extended models are discussed in section 5 before we give
an outlook on future directions in section 6.

2 Review of singlets

2.1 The model

The models considered in [1], which this paper will study in more detail, have been designed
to circumvent the problem with the left diagram of Figure 1 in favour of the right diagram.
There are many tensor products of solvable CFTs which allow one to construct weakly coupled
RG flows to less familiar fixed points. But simply constructing flows which become arbitrarily
short is not enough. The theories from which they emanate must also be unitary if one is to
have a hope of reaching the physically interesting case of a compact unitary irrational CFT
with minimal chiral symmetry. This makes it quite natural to take minimal models as our seed
theories and work in the regime where unitary minimal models accumulate, namely m→∞.
This gives us access to large-m perturbation theory which was first used in [26, 27] and later
in [28,29] for different purposes.

6See also [25] for recent progress on the understanding of chaos in 2d CFTs.
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To fix notation, the unitary diagonal minimal model labeled by the integer m ≥ 3 has
central charge

c = 1−
6

m(m+ 1)
, (2)

and finitely many Virasoro primaries φ(r,s). These have the weights h= h̄= h(r,s) for

h(r,s) =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
=
(r − s)2

4
+

r2 − s2

4m
+

s2 − 1
4m2

+O(m−3) , (3)

and integer (r, s). To be precise, φ(r,s) is identified withφ(m−r,m+1−s) and (r, s) is in the so called
Kac table [1, m−1]×[1, m]. Analytically continuing in m leads to the concept of a generalized
minimal model [30, 31] (see also [32, 33]). Generalized minimal models are labeled by a
parameter b ∈ C and have a central charge and spectrum agreeing with (2) and (3) when
b2 = −m+1

m .7 Minimal model structure constants C(r1,s1)(r2,s2)(r3,s3) can be recovered as well if
we take ri , si ≪ m but otherwise this is a subtle issue [34]. To see why, consider the truncation
of the fusion rules which occurs in a unitary diagonal minimal model.

φ(r1,s1) ×φ(r2,s2) =
r1+r2−1
∑

r3=|r1−r2|+1

s1+s2−1
∑

s3=|s1−s2|+1

φ(r3,s3)

→
min(r1+r2,2m−r1−r2)−1
∑

r3=|r1−r2|+1

min(s1+s2,2m+2−s1−s2)−1
∑

s3=|s1−s2|+1

φ(r3,s3) .

(4)

This states that minimal model structure constants vanish when r0 ≥ m or s0 ≥ m+ 1 for

r0 =
r1 + r2 + r3 − 1

2
, s0 =

s1 + s2 + s3 − 1
2

. (5)

Conversely, the generalized minimal model structure constants do not always have this prop-
erty. In terms of

Pr(x) =
r
∏

i=1

Γ (1+ i x)
Γ (−i x)

,

Qr,s(b) =
r
∏

i=1

s
∏

j=1

(i b+ j b−1)2 ,

Rr,s(b) =
Γ (−r b2 − s)Γ (−r − sb−2)
Γ (r b2 + s)Γ (r + sb−2)

,

(6)

they are presented as

C(r1,s1)(r2,s2)(r3,s3) =

√

√

√

R1,1(b)
∏3

i=1 Rri ,si
(b)

(−b2)r0−s0 fr1,r2,r3
fs1,s2,s3

Pr0
(b2)Ps0

(b−2)Qr0,s0
(b)

×
3
∏

i=1

Pri−1(b2)Psi−1(b−2)Qri−1,si−1(b)

Pr0−ri
(b2)Ps0−si

(b−2)Qr0−ri ,s0−si
(b)

,

(7)

in [32].8 Here, fr1,r2,r3
and fs1,s2,s3

are 1 when the non-truncated fusion rules (first line of (4))
are obeyed and 0 otherwise. To check whether we also recover the truncated fusion rules, it

7If one simply wants a minimal model (finitely many primaries) but does not care about unitarity, b2 = − p
p′ for

relatively prime integers p and p′ is also an option.
8Although we will not do so here, it is common to absorb the square root into two-point functions instead so

that all correlation functions are meromorphic functions of the central charge.
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Table 1: The behaviour of denominator factors in (7) for all four copies of the Kac
table that can be reached by (r0, s0). Minimal models have vanishing structure con-
stants in all but the upper left copy. Generalized minimal models, on the other hand,
can have them be non-vanishing in the lower right copy due to the cancellation be-
tween Qr0,s0

(b) and Pr0
(b2)Ps0

(b−2).

r0 < m r0 ≥ m

s0 < m+ 1 Pr0
(b2)→∞

s0 ≥ m+ 1 Ps0
(b−2)→∞ Pr0

(b2), Ps0
(b−2)→∞,Qr0,s0

(b)→ 0

helps to notice that ri < m ⇒ r0 − r1 < m and si < m + 1 ⇒ s0 − si < m + 1. This means
all factors in the second line of (7) are innocuous. Looking at the first line however, (ri , si)
being in the Kac table only restricts (r0, s0) to the first four copies of the Kac table. Table 1
then shows that minimal model and generalized minimal model structure constants disagree
in one of these copies.9

Having committed to m ≫ 1, in order to have both a sensible analytic continuation and
perturbative control, we should identify relevant operators which can be used to initiate a flow.
This can be done in three steps.

1. According to (3), φ(r,r), φ(r,r+1), φ(r,r+2) and φ(r,r−1) are all relevant.

2. To get a weakly relevant operator by coupling more than one model, there should be
an integer multiple of h(r,s) which is slightly less than 1 instead of slightly more. This
narrows the above list down to φ(r,r+1) and φ(r,r+2).

3. In order to have perturbative control, it is also important to work with a finite set of
relevant operators which does not generate new ones under repeated OPEs. According
to (4), this finally narrows the list down to φ(1,2) and φ(1,3).

It is now clear that we should take a tensor product of N ≥ 4 minimal models and deform
using a sum of φ(1,3) operators and a four-fold product of φ(1,2). Demanding SN symmetry
leads to the formal action10

SCMM =
N
∑

i=1

S i
m +

∫

d2 x (gσσ+ gεε) , (8)

where

σ ≡
�

N
4

�− 1
2

N
∑

i< j<k<l

φ i
(1,2)φ

j
(1,2)φ

k
(1,2)φ

l
(1,2) , ε≡ N−

1
2

N
∑

i=1

φ i
(1,3) . (9)

We have taken all φ(r,s) to be unit-normalized so that the Zamolodchikov metric,

NI J ≡



OI(0)O j(∞)
�

, (10)

is trivial. This makes C (r3,s3)
(r1,s1)(r2,s2)

, which is what naturally enters in conformal perturbation
theory, the same as C(r1,s1)(r2,s2)(r3,s3) from (7). The cases we will need are

C (1,3)
(1,2)(1,2) =

p
3

2
+O(m−1) , C (1,3)

(1,3)(1,3) =
4
p

3
+O(m−1) . (11)

9For non-diagonal minimal models in the D-series, there is actually an analytic continuation which does not
have this issue but on the other hand it is non-compact [35].

10This action was first considered by [16] in the context of disordered models. Unfortunately, we only became
aware of this work (which appears to be almost uncited) after publication of [1].
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Figure 2: Schematic diagram of the fixed points reproduced from [1]. The tricritical
fixed points FP∗± given by (14) are the conjectured examples of compact unitary ir-
rational CFTs with only Virasoro symmetry.

A leading order analysis in conformal perturbation theory [36] is now straightforward. For
the deformation

∫

d2 x g IOI , we will define g̃ I ≡ (1−hI)g I so that the summation convention
may be used in the well known expressions for the beta-function and the c-function in [37,38].
They read

β I = 2 g̃ I −πC I
JK gJ gK +O(g3) ,

∆c = −2π2NI J gJ (3 g̃ I −πC I
K L gK g L) +O(g4) .

(12)

After computing three-point functions in the tensor product theory, the first line of (12) be-
comes

βσ =
6
m

gσ −
4π
p

3
p

N
gσgε − 6π
�

N − 4
2

��

N
4

�− 1
2

g2
σ ,

βε =
4
m

gε −
4π
p

3N
g2
ε −

2π
p

3
p

N
g2
σ ,

(13)

up to O(g3) terms. Setting (13) to zero leads to four fixed points. The obvious ones are
(g∗σ, g∗ε) = (0,0)which is fully unstable and (g∗σ, g∗ε) =

�

0,
p

3N
mπ

�

which is fully stable (following

immediately from the fact that it is a decoupled fixed point).11 The latter is nothing but N
copies of the minimal model with m replaced by m− 1 [26, 27]. The more interesting fixed
points FP∗± are

g∗σ± = ±
p

(N − 3)4
πm
p

2P(N)
, g∗ε± =

±Q(N) +
p

3P(N)

2πm
p

P(N)/N
, (14)

with

P(N) = 3N4 − 53N3 + 357N2 − 1069N + 1194 , Q(N) = 3N2 − 27N + 60 . (15)

These have one stable and one unstable direction, corresponding to one positive and one

negative eigenvalue of ∂ β
I

∂ gJ . The picture that emerges is Figure 2.
At this point, some related studies like [28] have recalled Vafa’s theorem [12] which states

that the modular T -matrix acting on the characters of a rational CFT must have finite order.

11Stable and unstable here are being used in the RG sense. It is expected that all coupled minimal model fixed
points have a stable vacuum because they are not perturbations around a free theory.
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As recalled in the introduction, this implies that the central charge and all conformal weights
are rational numbers. Motivated by this result, [1] pointed out that irrational numbers appear

in the leading order results for ∆c and the eigenvalues of ∂ β
I

∂ gJ . Without strong assumptions
about the FP∗± fixed points belonging to analytic families, this curiosity cannot hope to show
that the CFTs are irrational because it ignores higher loop effects.

2.2 Anomalous dimensions of singlet currents

To find evidence of irrationality which is actually convincing, [1] undertook a search for gen-
erators of an extended chiral algebra in the IR and found none. Due to its large VirN chiral
algebra, the UV has many such currents but none of them were found to still be conserved
in the IR. Specifically, this check was done for spin J ≤ 10 currents in the singlet represen-
tation of SN which transform as primaries under the diagonaldVir generated by the sum of
stress tensors. SincedVir remains unbroken in the IR, local operators must arrange themselves
into representations with respect to this symmetry. Within a given multiplet, the anomalous
dimensions (if any) are the same for the primaries and descendants so it is sufficient to only
check the former. On the other hand, the singlet assumption will be relaxed very soon.

When a UV current transforming as a primary underdVir fails to be conserved in the IR,
this means that its anomalous dimension is non-zero. Computing this anomalous dimension
directly requires conformal perturbation theory at two loops. Indeed,




T KOT L
�

= 0 when-
ever T K is a spin-J current and O ∈ {σ,ε} is a deforming operator. Fortunately, [1] was
able to avoid a two-loop calculation by using a more modern method which exploits the non-
conservation equation

∂̄ T K = b̄(gσ)
K
LV L , b̄(gσ)

K
L = bK

L gσ +O(g2
σ) , (16)

and its consequences for conformal multiplets. This method, which we will now describe, was
developed in [39] and has since become standard in the study of weakly broken higher spin
symmetries [40–58].

The initial observation is that when the operator content of the theory changes continu-
ously, taking gσ → 0 in (16) leaves behind a short multiplet with (h, h̄) = (J , 0) and a long
multiplet with (h, h̄) = (J , 1). For a given spin J , it is conceptually straightforward to enumer-
ate a basis of (h, h̄) = (J , 0) operators whose elements will be denoted T K . These are what we
have been referring to as (UV) currents. It is similarly possible to produce a basis for the space
of (h, h̄) = (J , 1) operators with elements V K . In practice, one should regard these bases as
arbitrary which means they are almost certainly not nice enough to yield T K and V K operators
which match up one-to-one. As such, the divergence of a given T K at one loop is a non-trivial
linear combination of the V K whose coefficients are encoded in the all-important matrix bK

L .
Before this linear combination is taken, the V K will be referred to as divergence candidates of
a spin-J current.12

The multiplets described above must recombine when the coupling gσ is turned on and
this leads to a concrete algorithm for determining which currents lift. This revolves around
computing bK

L which yields the precise linear combination of divergence candidates that enters
in (16). It also fixes the anomalous dimension γ of the broken current since

g2
σbK

L bK ′
L′

¬

V L(z1, z̄1)V
L′(z2, z̄2)
¶

=
¬

∂̄ T K(z1, z̄1)∂̄ T K ′(z2, z̄2)
¶

= ∂̄1∂̄2
δKK ′

z2J+γ
12 z̄γ12

.
(17)

12Since we are studying the lifting induced by σ, one more condition we will often impose is that four copies of
φ(1,2) must be present in the expression for V K to make it a divergence candidate.
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In order to find the matrix bK
L , we can use the fact that the first perturbative correction to




∂̄ T K(z1)V L(z2, z̄2)
�

is

gσ

∫

d2z3




∂̄ T K(z1)V
L(z2, z̄2)σ(z3, z̄3)

�

, (18)

where the integrand is a three-point function in the undeformed theory. On the other hand,
(16) turns the same correlator into

gσbK
L′

¬

V L′(z1, z̄1)V
L(z2, z̄2)
¶

= gσbK
L

1

z2J
12 z̄2

12

. (19)

Setting (18) equal to (19), we can solve for bK
L by performing a calculation at one-loop instead

of two. Moreover, the three-point function at zero loops that we are instructed to integrate
vanishes at separated points due to ∂̄ T K(z1). This leads to the appearance of a delta function
which makes the integral trivial, yielding the relation

bK
L = πCK

Lσ +O(1/m) , (20)

where CK
Lσ is the OPE coefficient for




T K(z1)V L(z2, z̄2)σ(z3, z̄3)
�

. Due to the simplification of
this quantity, one can observe a key fact which is that the only way for T K to stay conserved is
to have bK

L = CK
Lσ = 0 for all L. While bK

L ̸= 0 for a single L is sufficient to conclude that T K

is not a dilation eigenstate with weights of (h, h̄) = (J , 0) in the IR, we are more interested in
establishing this for arbitrary linear combinations of the T K . As such, the check to undertake
is that bK

L is a matrix whose rank is equal to the number of rows. This is what led to the
conclusion in [1] that SN singlets up to spin-10 for N = 5,6, 7 all lift. The next two sections
are about applying the same strategy to non-singlets.

2.3 When are singlets enough?

The restriction to singlets in [1] was motivated by the following fact. Whenever the IR fixed
point has a chiral operator T K in some representation of SN , normal ordered products of T K

contracted with invariant tensors are necessarily chiral as well. This means that if singlet
currents do not exist up to J = 10 then arbitrary currents do not exist up to J = 5. The
problem with this argument of course is that singlet currents do exist up to J = 10 — they
are just in thedVir identity multiplet. A search for non-singlet currents, going beyond [1], is
therefore preferable for two reasons. First, the bound J = 5 is not particularly high and one
would like to go higher. Second, there is a “finely tuned” way to have non-singlet currents
even below J = 5 and it needs to be checked whether or not coupled minimal model fixed
points take advantage of this mechanism.

On the other hand, there is a related setup in which the search for singlet currents can be
considered complete. Instead of deforming a tensor product of minimal models as in (8), one
can instead deform their symmetric product orbifold. As reviewed in [59], states of the original
tensor product theory which survive the orbifold (or discrete gauging) procedure are the ones
invariant under SN permutations. In addition to this, new states are included so that the
resulting torus partition function can still be modular invariant. These are SN invariant states
with twisted boundary conditions along the spatial circle. There is one twisted sector for each
conjugacy class, namely each choice of non-negative integers (lk) such that

∑N
k=1 klk = N [60].

Within a given sector,

h, h̄≥
c

24

N
∑

k=1

lk

�

k−
1
k

�

, (21)
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where c is the single-copy central charge in (2). In particular, all conserved currents are in the
untwisted sector and therefore coincide with the ones that were examined in [1]. An important
point is that the gauging described here fails for symmetries that have a ’t Hooft anomaly due
to an ambiguity in how one prepares gauge invariant states with twisted boundary conditions.
As explained in [61], one can diagnose this by looking for spins J /∈ Z2 in the modular images
of the partition function with a topological defect line inserted [62]. This can happen for any
global symmetry G with non-trivial H3(G, U(1)) but not for a permutation symmetry which
acts between copies. Indeed, there is a formula

∞
∑

N=0

tN ZSN
(τ, τ̄) = exp

�∞
∑

k=1

tkTkZ(τ, τ̄)

�

, (22)

due to [63] which computes the partition function of any symmetric product orbifold using
Hecke operators which act on the partition function of the seed theory according to

TkZ(τ, τ̄) =
∑

d|k,a= k
d

d−1
∑

b=0

Z
�

aτ+ b
d

,
aτ̄+ b

d

�

. (23)

The defining property of Hecke operators now ensures that modular invariance of ZSN
(τ, τ̄)

follows immediately from modular invariance of Z(τ, τ̄).13 The orbifold by SN is therefore
well defined for any tensor product CFT.

Before developing technology for non-singlet currents, which will be important for the non-
orbifold theory, let us point out that conformal perturbation theory for symmetric orbifolds has
recently come to play a large role in studies of AdS3/C F T2. In the most well established exam-
ple [64,65], the seed theory is a sigma model for K3 or T4 and the subsequent deformation is
by an exactly marginal operator in the twisted sector. In this case, higher-spin currents (and
other short multiplets) are again lifted but the deformed theories have more than just Virasoro
symmetry since they are supersymmetric. Some work in this direction, including the iden-
tification of Regge trajectories, has been done in [66, 67]. A less supersymmetric version of
AdS3/C F T2 using N = 2 minimal models, which has been proposed in [68–70], also exhibits
lifting of higher-spin currents as one moves toward irrational SCFTs on the moduli space. A
possible inverse to this phenomenon, wherein one encounters new rational points, has been
studied perturbatively in [71,72].

3 Permutation symmetry and charged currents

The technique in section 2.2, which alleviates the need for direct two-loop conformal pertur-
bation theory, makes it crucial to understand the spaces of both UV currents and the operators
with the right quantum numbers to recombine with them. Virasoro characters provide an effi-
cient starting point for this task. In particular, they allow us to obtain the dimension of either
space for arbitrarily high spins and to refine this dimension by SN representations. This sec-
tion will explain the steps involved focusing mostly, but not exclusively, on the large m regime
where perturbative computations are most reliable.

3.1 Crash-course in SN representation theory

The systems of coupled models we work with exhibit a discrete global symmetry G ⊃ SN
along with extra Z2 factors depending on whether m is even or odd and whether N is equal

13To see that Tk Z(τ, τ̄) is modular invariant, note that (23) is a sum over upper triangular matrices M with
determinant k. When computing Tk Z(γτ,γ, τ̄) for γ ∈ SL(2,Z), Mγ is no longer upper triangular but it can be
brought back to this form by acting with another SL(2,Z)matrix on the left. This preserves Z(τ, τ̄) by assumption.
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to or larger than 4. For all cases, the permutation symmetry is present and therefore the
spectrum organizes itself into irreducible representations of SN . Since part of our work involves
explicitly constructing operators transforming in these representations, we will quickly review
their structure for convenience of the reader. A useful reference is [73].

Irreducible representations of SN are in one-to-one correspondence with integer partitions
of N which can be denoted either by a tuple λ = (λ1, . . . ,λN ) with λ1 ≥ λ2 ≥ · · · ≥ λN and
∑

i λi = N or by a Young diagram with at most N rows and a non-increasing number of left-
justified boxes in each row. The dimension of each representation is given by the hook length
formula

dim(λ) =
N !
∏

i, j hλ(i, j)
, (24)

where the product runs over i, j which label the cells of the Young diagram, and for each cell
one computes the hook length hλ(i, j) which is given by the number of cells to the right plus
the number of cells below (i, j), counting the cell itself once.

Let us illustrate this by considering simple representations which appear universally in the
models of interest and determining their dimension. Consider first the trivial partition (N)
corresponding to the Young diagram with N boxes in a single row

(N) = . . . . (25)

Clearly the hook length formula gives dim(N) = 1, and this is just the singlet representation.
The next-to-simplest partition is given by

(N − 1,1) =
. . .

. (26)

Now the hook formula gives dim(N−1, 1) = N−1. This is the so-called standard representation
of SN . This representation can be realized by any object transforming as a vector of O(N), say
X i with i = 1, . . . , N , subject to the SN traceless condition

∑

i X i = 0, which eliminates the
degree of freedom associated to the singlet

∑

i X i . This simply means that the fundamental
representation of O(N) decomposes into a standard representation and a singlet of SN . This
can be formulated in terms of an additional SN invariant tensor ei = (11 . . . 1), which can
be used remove additional traces. With this mind, we will often think of SN irreps as O(N)
tensors, which are labeled by the Young tableau where the top row is removed, since this still
determines the partition uniquely. The relation between SN and O(N) irreps is often known
as Schur-Weyl duality.

In the tensor product theory, we build operators/states by multiplying building blocks
which carry a fundamental index i = 1, . . . , N , for example, we can build the two index object

L i
−2 L j
−2|0〉 , (27)

which we need to understand how to decompose into irreducible representations. More gen-
erally, we want to determine how tensor products of irreducible representations decompose
into direct sums of irreducible representations. For our purposes, it is sufficient to determine
how to take n-fold tensor products of the standard representation. Indeed, for the state above,
we need to determine

((N)⊕ (N − 1,1))⊗ ((N)⊕ (N − 1,1)) =? (28)

The tensor products with the singlet representation are trivial, as it acts as the identity ele-
ment, i.e. (N)⊗ λ = λ. Therefore, in this case we only need to determine the square of the
standard representation. More generally, it is enough to compute tensor products of the form
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(N − 1,1)⊗ λ, which obey a simple rule. The result contains all representations obtained by
moving the position of one box in the young tableau λ, with multiplicity one along with λ
itself with a multiplicity given the number of different row lengths of λ minus one. For the
two-index case at hand, this means

(N − 1,1)⊗ (N − 1,1) = (N)⊕ (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1,1) , (29)

where we introduced the symmetric two-index representation (N − 2,2) of dimension
N(N − 3)/2 and the anti-symmetric two-index representation (N − 2,1, 1) of dimension
(N − 1)(N − 2)/2. To compute higher-fold tensor products, we simply take (N − 1,1) and
continue performing the tensor product with the resulting representations. For example,

(N −1,1)⊗ (N −2,2) = (N −1,1)⊕ (N −2, 2)⊕ (N −2, 1,1)⊕ (N −3,3)⊕ (N −3,2, 1) , (30)

where we now have a symmetric three-index tensor (N − 3, 3) and a hook-like tensor
(N − 3, 2,1). Since L i

−1 |0〉 = 0 (and any occurrence of L i
−1 can be moved to the right with

the Virasoro commutation relations), each additional O(N) index will increase the spin of a
current by at least 2. Hence, to reach the spin-10 currents studied by [1], we need to consider
up to 5-fold tensor products of the standard representation. For the divergences we can go up
to an 8-fold tensor product.

3.2 Counting currents and divergences

To understand whether all currents lift in the infrared fixed point, we need to systematically
account for all of them, as well as a sufficient number of their associated divergence candidates.
To this end, it is useful to study the partition function in the UV where the theory factorizes.
We have

ZCMM, UV(τ, τ̄) = Zm→∞(τ, τ̄)N , (31)

where Zm→∞ denotes the partition function of the m’th minimal model in the large m limit.
In this limit the Virasoro characters

χ
(c)
h (τ) = TrVc,h

(qL0−
c

24 ) , q ≡ exp(2πiτ) , (32)

simplify dramatically, as the nested null module structure of minimal model characters be-
comes dominated by the leading null states. We find

χ
(c→1)
(1,1) (τ) =

q−
1
24

φ(q)
(1− q) , χ

(c→1)
(r,s) (τ) =

qhr,s−
1

24

φ(q)
(1− qrs) , (33)

such that the partition function of a single diagonal minimal model approaches

Zm→∞(τ, τ̄) =
∞
∑

1≤r≤s

�

�

�χ
(c→1)
(r,s) (τ)
�

�

�

2
. (34)

On the other hand, as a c = N theory, the decoupled models also admit an expansion of the
partition function in terms of the corresponding characters:

ZCMM, UV(τ, τ̄) =
∑

h,h̄

dh,h̄χ
(c=N)
h (τ)χ(c=N)

h̄
(τ̄)

⊃
∞
∑

n=0

dn,0χ
(c=N)
n (τ)(1+O(q̄)) + dn,1χ

(c=N)
n (τ)(q̄+O(q̄2)) ,

(35)
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Table 2: List of degeneracies for all diagonal-Virasoro primary currents in the tensor
product theory. Note that J = 10 has been included here even though lifting for some
irreps has only been checked up to J = 9.

J dJ ,0 d(N=4)
J ,0 d(N=5)

J ,0 d(N=6)
J ,0

0 1 1 1 1
1 0 0 0 0
2 N − 1 3 4 5
3 0 0 0 0
4 N(N − 1)/2 6 10 15
5 (N − 1)(N − 2)/2 3 6 10
6 (N + 4)N(N − 1)/6 16 30 50
7 (3+ 2N)(N − 1)(N − 2)/6 11 26 50
8 (N(15+ N) + 2)N(N − 1)/24 39 85 160
9 (N(13+ 3N)− 26)N(N − 1)/24 37 95 200

10 (N(N(36+ 3N) + 81)− 74)N(N − 1)/120 89 226 481

where in the last line we highlighted the contributions of operators corresponding to the ad-
ditional conserved currents, with weights h = n, h̄ = 0, and the corresponding divergences of
weights h= n, h̄= 1. We note that now the c = N characters read

χ
(N)
h (τ) =

qh− N
24

φ(q)
, φ(q) =

∞
∏

k=1

(1− qk) , (36)

since no null states exist in non-vacuum Virasoro representations with c > 1. Matching the
left- and right-hand sides of equation (31), we find

∞
∑

n=0

dn,0χ
(c=N)
n (τ) =
�

χ
(c→1)
(1,1) (τ)
�N

,

∞
∑

n=0

d ′n,1χ
(c=N)
n (τ) =
�

N
4

�

�

χ
(c→1)
(1,1) (τ)
�N−4 �

χ
(c→1)
(1,2) (τ)
�4

,

(37)

where the prime in the second sum denotes that we selected only operators that contain four
φ(1,2) constituents, since only these are relevant for the subsequent computations of anomalous
dimensions. Expanding both sides at small q allows us to determine the degeneracies to an
arbitrarily high order, but we were not able to guess a closed form expression. We therefore
list the degeneracies up to spin 10 for arbitrary N in Table 2. These degeneracies turn out to
be a polynomial in N of degree ⌊J/2⌋.

Clearly, the multiplicities must be expressible as a non-negative integer combination of di-
mensions of representations of SN . It is of course very important to understand the refinement
of the spectrum under global symmetry irreps. While the next subsection will introduce a re-
fined partition function which achieves this decomposition, it is already possible to compute
the multiplicities of irreps for some low spins in Table 2. For example, for J = 4 and N generic
we know from the explicit construction in [1] that there is one singlet. Writing an Ansatz in
terms of representations whose dimensions are a polynomial of at most degree 2 in N ,

N(N − 1)
2

= d(N−2,2)
4,0 dim(N−2,2)+d(N−2,1,1)

4,0 dim(N−2,1, 1)+d(N−1,1)
4,0 dim(N−1, 1)+1 , (38)

has the unique integer solution d(N−1,1)
4,0 = d(N−2,2)

4,0 = 1 , d(N−2,1,1)
4,0 = 0.Similarly, it is easy to

work out that for J = 5 we have a single representation d(N−2,1,1)
5,0 = 1 and that for J = 6 we
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Table 3: List of degeneracies for all diagonal-Virasoro primary divergences built out
of four φ(1,2) constituents in the tensor product theory.

J d ′J+1,1 d ′(N=4)
J+1,1 d ′(N=5)

J+1,1 d ′(N=6)
J+1,1

0
�N

4

�

1 5 15
1 3

�N
4

�

3 15 45
2

�N
4

�

(N + 1) 5 30 105
3

�N
4

�

(4N − 6) 10 70 270
4
�N

4

�

(N(N + 11)− 18)/2 21 155 630
5

�N
4

�

(N(5N + 1)− 8)/2 38 305 1335
6
�N

4

�

(N(N + 34)− 18)(N − 1)/6 67 590 2775
7
�N

4

�

(N(N(2N + 13)− 29) + 14)/2 117 1110 5550
8
�N

4

�

(N(N(N + 71) + 142)− 192)(N − 1)/24 197 2015 10725
9
�N

4

�

(N(N(7N + 137) + 34)− 168)(N − 1)/24 326 3585 20250

have d(N−3,3)
6,0 = 1, d(N−2,2)

6,0 = 2, d(N−2,1,1)
6,0 = 1, d(N−1,1)

6,0 = 3 along with 2 singlets.14 For J ≥ 7,
the unrefined partition function is no longer enough. However, already at spin 6 we notice an
interesting phenomenon for low N . The representation (N −3, 3) only exists for N ≥ 6 and its
dimension

dim(N − 3, 3) =
N(N − 1)(N − 5)

6
, (39)

vanishes for N = 5 and is negative for N = 4. In fact this phenomenon becomes more and
more frequent as we increase spin and start accessing representations of higher rank. Remark-
ably, at J = 6 we find that the multiplicities for N = 5 remain unchanged, while for N = 4
the multiplicity d(2,2)

6,0 = 1 is reduced by one. It would be interesting to understand whether
identities of the type

dim(N − 3, 3)|N=4 = −dim(N − 2, 2)|N=4 , (40)

can be properly understood in the context of the analytic continuation of SN representa-
tions [74], the so-called Deligne categorygRep SN allowing predictions for low N degeneracies
without having to check them in a case by case basis as we did in this work.

We can similarly count the multiplicities of divergences which we present in Table 3. These
grow much faster and are polynomials in N of degree ⌊J/2⌋+ 4, which is already quite sug-
gestive that currents have a very high chance of lifting, especially as N increases. However,
not only must the number of divergences match or exceed the number of currents, it must do
so for each individual irreducible representation of SN . We will soon see that this is the case
for all spins, irreducible representations and values N except for a single case. For J = 3 and
N = 4, we find that the multiplicities are d ′(4)4,1 = 1, d ′(3,1)

4,1 = 2, d ′(2,1,1)
4,1 = 1, accounting for

the ten states. However, there are no divergences in the (2,2) representation that are candi-
dates to recombine with the corresponding spin 4 current! For the pure σ deformation, this
is a non-perturbative constraint ensuring the presence of additional currents. In fact, this is
simply a global symmetry refined version of Zamolodchikov’s famous counting argument for
the integrability of deformed minimal models [26,75].15 However, for our infrared CFTs, both
gσ and gε are non-vanishing meaning that operators built on top of φ(1,3) might recombine

14To argue this for J = 6, we also need to know that d(N−3,1,1,1)
6,0 = 0. This is clear because we can only have three

indices for a spin-6 current if all of them are on L−2 charges, the anti-symmetrization of which will give zero.
15The possibility of φ(1,3)-type operators recombining with the current along the RG flow of the pure σ defor-

mation is forbidden at finite m by dimensional analysis. This complements the approach of [76] which established
integrability via a Toda field theory construction. See also section 5.2.
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with the current. In ordinary conformal perturbation theory this would manifest itself at third
order, with one ε and two σ insertions which should generically be non-vanishing. There is
therefore no reason to expect that the current should remain conserved at the fixed point, even
for this special case.

3.3 Refined partition functions

While in practice we will have to explicitly construct the currents and candidate divergences
in each representation of SN to check if anomalous dimensions are non-zero, it is still valuable
to perform the counting without having to construct them. To do this we define a partition
function refined by the irreducible representation under which the operators transform

Zλ(τ, τ̄) = TrHλq
L0−

c
24 q̄ L̄0−

c
24 =
∑

h,h̄

dλ
h,h̄

qh− c
24 q̄h̄− c

24 , (41)

where Hλ is the Hilbert space of operators transforming in the irrep λ16 and dλ
h,h̄

are the

sought-after degeneracies of operators with weights (h, h̄) in irrep λ. We claim that the refined
partition function can be computed through the following formula

Zλ(τ, τ̄) =
1
|SN |

∑

g

χλ(g)Z(τ, τ̄; g) =
1
|SN |

∑

[g]

|[g]|χλ([g])Z(τ, τ̄; [g]) , (42)

where |SN | = N ! is the order of the symmetric group [g] denotes the conjugacy class of the
group element g and |[g]| is the size of this class. Additionally we introduced the twisted
partition function

Z(τ, τ̄; g)≡ TrH(q
L0−

c
24 q̄ L̄0−

c
24 g) =
∑

h,h̄,λ

dλ
h,h̄

qh− c
24 q̄h̄− c

24χλ(g) , (43)

where χλ(g) are the SN characters of representation λ. The last equality follows from the
definition of χ as a trace and the fact that the global symmetry commutes with the conformal
algebra, by definition. The twisted partition functions are easy to compute directly in terms of
their untwisted counterpart since the group element g acts by permuting the copies. Indeed,
for a conjugacy class [g] labeled by a partition of N encoded in the row lengths λi of the
associated Young tableau with n rows we find17

Z(τ, τ̄; g) = Z(τ, τ̄; [g]) =
n
∏

i=1

Z(λi τ,λi τ̄) . (44)

For example, for a permutation (12)(3)(4), labeled by the partition (2,1, 1) we have

Z(τ, τ̄; [(12)(3)(4)]) = Z(2τ, 2τ̄)Z(τ, τ̄)2 . (45)

To show why (44) holds, we make explicit use of the factorized Hilbert space. Using |i1, . . . , iN 〉
as a shorthand for

�

�hi1 , h̄i1 , . . . , hiN , h̄iN

�

, we have

Z(τ, τ̄; g) =
∑

i1,...,iN

〈i1, . . . , iN |qL1
0+···+LN

0 −
c

24 q̄ L̄1
0+···+ L̄N

0 −
c

24 |g · i1, . . . , g · iN 〉

=
∑

i1,...,iN

qhi1+···+hiN−
c

24 q̄h̄i1+···+h̄i1−
c

24δi1,g·i1 . . .δiN ,g·iN (46)

=
∑

i1,...,in

qλ1(hi1−
c

24 )q̄λ1(h̄i1−
c

24 ) . . . qλn(hin−
c

24 )q̄λn(h̄in−
c

24 ) =
n
∏

i=1

Z(λi τ,λiτ̄) .

16This is well defined since the global symmetry commutes with the stress-tensor and the dilatation operator is
therefore block diagonal with each block associated to an irrep λ.

17See also [8] for a derivation of the twisted partition functions in the case of the q-state Potts model, where the
Sq symmetry acts on the single-site Hilbert space on a lattice.
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Table 4: Character table for S4 with the conjugacy classes labeled by a representative.
The identity element is denoted by empty parentheses.

S4 [()] [(12)] [(12)(34)] [(123)] [(1234)]
Class Size 1 6 3 8 6
χ(4) 1 1 1 1 1
χ(3,1) 3 1 -1 0 -1
χ(2,2) 2 0 2 -1 0
χ(2,1,1) 3 -1 -1 0 1
χ(1,1,1,1) 1 -1 1 1 -1

It is now straightforward to derive (42) using the character orthogonality formula

1
|SN |

∑

[g]

|[g]|χλ([g])χλ′([g]) = δλ,λ′ . (47)

Indeed, using the form (43) for the twisted partition function, we can multiply by a character
χλ′(g) and sum over all group elements. Then, using the orthogonality relation (47), we
immediately find the explicit form for the refined partition function (41), proving the master
formula (42).

As an application let us write down the refined partition functions and degeneracies for the
case N = 4. Degeneracies for higher values of N are listed in Appendix A. First, we recall the
character table of S4 in Table 4. Then, we make use of the master formula (42) and of (44) to
derive the refined partition functions for the singlet (4) and symmetric (2,2) representations

Z(4)(τ, τ̄) =
1
4!

�

Z(τ, τ̄)4 + 6Z(2τ, 2τ̄)Z(τ, τ̄)2 + 3Z(2τ, 2τ̄)2 + 8Z(3τ, 3τ̄)Z(τ, τ̄) + 6Z(4τ, 4τ̄)
�

,

Z(2,2)(τ, τ̄) =
1
4!

�

2Z(τ, τ̄)4 + 6Z(2τ, 2τ̄)2 − 8Z(3τ, 3τ̄)Z(τ, τ̄)
�

, (48)

with similar formulae for the remaining irreps. It is then straightforward to expand these
into characters, obtaining the degeneracies in Table 5 for currents and Table 6 for divergence
candidates below.

Table 5: List of degeneracies for all N = 4 diagonal-Virasoro primary currents dis-
tinguished by irreducible representations in the tensor product theory. We count the
number of irreps using the same notation as (38). The number of states is obtained
by multiplying by appropriate representation dimensions.

J d(4)J ,0 d(3,1)
J ,0 d(2,2)

J ,0 d(2,1,1)
J ,0 d(1,1,1,1)

J ,0
0 1 0 0 0 0
1 0 0 0 0 0
2 0 1 0 0 0
3 0 0 0 0 0
4 1 1 1 0 0
5 0 0 0 1 0
6 2 3 1 1 0
7 0 1 1 2 0
8 4 6 4 3 0
9 1 5 2 5 2
10 6 14 8 8 1
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Table 6: List of degeneracies for all diagonal-Virasoro primary divergence candidates
built from four φ(1,2) operators distinguished by irreducible representations in the
tensor product theory.

J d ′(4)J+1,1 d ′(3,1)
J+1,1 d ′(2,2)

J+1,1 d ′(2,1,1)
J+1,1 d ′(1,1,1,1)

J+1,1
0 1 0 0 0 0
1 0 1 0 0 0
2 0 1 1 0 0
3 1 2 0 1 0
4 2 3 2 2 0
5 2 6 3 4 0
6 5 10 6 6 2
7 7 17 9 13 2
8 12 27 18 21 5
9 18 46 25 37 9

3.4 Comments on finite m

A reasonable worry about the analysis of [1] is whether the lifting of currents is expected to
persist when the spins J of the currents start scaling with some positive power of m. Indeed,
conformal perturbation theory presumably breaks down when this happens. We claim that the
physics at sufficiently large but finite m should not be modified substantially when compared
to the large-m expansion. Indeed, the fundamental mechanism that ensures the lifting of
currents is the overwhelming growth of divergence candidate with which they can recombine.
As we showed in the subsection above, at fixed J the degeneracies of divergences d ′J ,1 when
compared to the degeneracies of currents dJ ,0 scale as

d ′J+1,1

dJ ,0
∼ N4 , (49)

at large N , and are substantially larger at fixed N .
When we take m to be finite, the spectrum is modified by the appearance of additional null

states. This reduces the number of divergence candidate but also of initial currents. A simple
exercise in Virasoro characters and counting shows that this effect has negligible consequences
on the ability for the currents to recombine with their divergence candidates. We recall that
the for the m’th minimal model, the Virasoro character for a doubly-degenerate primary reads

χ
(cm)
(r,s) (τ) =

q−cm/24

φ(q)

�

qhr,s +
∞
∑

k=1

(−1)k(qhr+mk,(−1)k s+(1−(−1)k)(m+1)/2 + qhr,k(m+1)+(−1)k s+(1−(−1)k)(m+1)/2)

�

. (50)

To illustrate what we just described let us specialize to the case of coupled tricritical Ising
models, i.e. m= 4. In this case new null states for currents appear only at J ≥ 12, while new
null states for divergences appear at J ≥ 9. However, the reduction of states is very mild. We
list the degeneracies for N = 5 and m ∈ {4,∞} for both currents and divergences in Table
7. We see that the putative divergences continue to vastly outnumber the currents even for
J = m2 = 16. In fact, at large N one observes that the reduction in the number of states is
suppressed by at least 1/N4 compared to the overall number of states both for currents and
divergences. This counting can be refined for each individual irreducible representation as
detailed in section 3.3 and the mechanism that ensures lifting of the currents should therefore
remain robust at large but finite m.
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Table 7: List of degeneracies for diagonal-Virasoro primary currents and divergences
built out of four φ(1,2) for N = 5 and m = 4 as well as the corresponding values for
m=∞.

J dJ ,0(m= 4) dJ ,0(m=∞) d ′J+1,1(m= 4) d ′J+1,1(m=∞)
9 95 95 3565 3585
10 226 226 6190 6250
11 294 294 10530 10670
12 588 593 17605 17950
13 815 815 28970 29750
14 1480 1500 46990 48600
15 2116 2136 75220 78460
16 3584 3654 118980 125255

4 Broken conservation and the fate of the infrared

We will now explain how to turn the above results into a concrete algorithm for strengthening
the evidence that coupled minimal model fixed points are irrational. This leads to the main
result of this paper which is that currents of spin strictly less than 10 outside thedVir identity
multiplet all lift for N = 5,6, 7.18 The steps below will be similar to those that were used (and
explained very tersely) in [1] but without any assumptions about the currents or divergences
being singlets of SN .

4.1 Construction of operators

The previous section has given an algorithm to determine dJ ,0 which is the dimension of the
(h, h̄) = (J , 0) Verma module in the UV theory. Individual multiplicities of irreps dλJ ,0, satisfying
∑

λ dλJ ,0dimλ = dJ ,0, were also calculated. To go further, it is important to actually build the
currents in this Verma module so that their fate in the infrared can be determined by the
aforementioned recombination technique. We have done this in a two step process — first by
generating a set of currents that form a basis when N is arbitrarily large and second by filtering
the resulting list for finite values of N . At large N , the number of linearly independent currents
for each irreducible representation and spin are given in Table 8.

Let us now describe the first step in more detail. Each term in a singlet current is built
from a strings with b j Virasoro charges in the j’th one as

N
∑

i1,...,ia=1

a
∏

j=1

b j
∏

k=1

L
i j
−n j,k

, (51)

where the sum runs over tuples (i1, . . . , ia) of distinct elements.19 In the notation of [1], this
is written as

�

ΣL−n1,1
. . . L−n1,b1

�

. . .
�

ΣL−na,1
. . . L−na,ba

�

. (52)

It is straightforward in principle to take a linear combination of all terms such that the total
spin is J and fix coefficients by demanding that the state is annihilated by L1

1 + · · ·+ LN
1 and

18Once N is raised beyond a critical value (which depends on the spin and is 7 for spin 10), the number of UV
currents does not change. It is therefore possible to run the N = 5, 6, 7 algorithm for general N and make stronger
conclusions. The obstacle here is simply that calculations are slower because coefficients that operators need to be
primary are no longer numbers but rational functions of N .

19As a typographical note, the subscript of the Virasoro charge is n j,k. We need both j and k because there are
multiple copies and potentially multiple Virasoro charges being multiplied for each copy.

18

https://scipost.org
https://scipost.org/SciPostPhys.18.4.132


SciPost Phys. 18, 132 (2025)

Table 8: The degeneracies of spin J ≤ 10 currents which are relevant for the first
step of our algorithm for constructing operators. They have been refined by SN rep-
resentation under the assumption that N ≫ 1. These can be predicted by following
the finite N techniques of section 3 by raising N until the numbers stabilize. Note
that the final analysis has been limited to J ≤ 9 due to memory constraints.

. . .
J 4 5 6 7 8 9 10

d(N)J ,0 1 0 2 0 4 1 7

. . .
J 9 10

d(N−3,1,1,1)
J ,0 2 1

. . . J 2 3 4 5 6 7 8 9 10

d(N−1,1)
J ,0 1 0 1 0 3 1 7 5 16

. . . J 8 9 10

d(N−4,4)
J ,0 1 0 2

. . . J 4 5 6 7 8 9 10

d(N−2,2)
J ,0 1 0 2 1 6 4 15

. . . J 9 10

d(N−4,3,1)
J ,0 1 2

. . . J 5 6 7 8 9 10

d(N−2,1,1)
J ,0 1 1 2 3 6 10

. . . J 10

d(N−4,2,2)
J ,0 1

. . . J 6 7 8 9 10

d(N−3,3)
J ,0 1 0 2 2 7

. . . J 10

d(N−5,5)
J ,0 1

. . . J 7 8 9 10

d(N−3,2,1)
J ,0 1 2 3 8

L1
2 + · · ·+ LN

2 . In the non-singlet case, we need to modify the above construction to allow for
c free indices as well:

�

L i1
−n1,1

. . . L i1
−n1,b1

�

. . .
�

L ic
−nc,1

. . . L ic
−nc,bc

�

,
�

ΣL−nc+1,1
. . . L−nc+1,bc+1

�

. . .
�

ΣL−nc+a,1
. . . L−nc+a,bc+a

�

.
(53)

Again, there is no loss of generality in taking (i1, . . . ia) to all be different from each other. The
simplest example is of course the multiplet of spin-2 currents in the standard representation
corresponding to the individual Virasoro symmetries which break in the infrared. These can
be expressed in the above notation as

L i
−2 −

1
N
ΣL−2 . (54)

Notice that there are terms with both zero free indices and one free index. When we are
interested in a representation with up to c free indices, we can generate higher spin analogues
of (54) in a loop from 0 to c. In a given iteration, we generate strings of charges which have
the desired number of indices but do not necessarily have a total spin of J . We then make up
the remaining units of spin by combining each such string with a singlet in all possible ways.
Before applying L1

1 + · · · + LN
1 and L1

2 + · · · + LN
2 to this type of an Ansatz, one should also

account for index symmetry. For the totally symmetric or totally anti-symmetric irreps, this is
easy to do. For hook-like irreps, we need to choose whether to symmetrize or anti-symmetrize
indices first since these operations do not commute. If we symmetrize first in the example of
i j
k

T i jk 7→ T i jk + T jik − T k ji − T jki , (55)

which is what should be padded with singlets on the last (c = 3) iteration of the loop. For
the earlier iterations, terms that still have hook symmetry with fewer indices are generated by
deleting one of the positions in (55). Deleting the second and third lead to

T ik + T jk − T ki − T ji ,

T i j + T ji − T k j − T jk ,
(56)
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respectively. If we also delete the first, the terms this generates will be in the span of (56) due
to symmetrization. Redundant terms can also appear in less trivial ways so we have chosen to
(i) symmetrize first, (ii) delete positions in all inequivalent ways, (iii) pad these strings with
singlets and (iv) check linear independence by explicit row reduction before adding such newly
generated terms to the Ansatz. Enforcing primality of this Ansatz can be done in a runtime
which is independent of N due to the crucial assumption that none of (i1, . . . , ia) are the same.
Indeed,

N
∑

i=1

L i
1 L j
−n1

. . . L j
−nb
=
�

L j
1, L j
−n1

. . . L j
−nb

�

+ L j
−n1

. . . L j
−nb

N
∑

i=1

L i
1 ,

N
∑

i=1

L i
1ΣL−n1

. . . L−nb
= ΣL1 L−n1

. . . L−nb
+ (ΣL−n1

. . . L−nb
)ΣL1 ,

(57)

can be used repeatedly and the same goes for L2. Examples of primaries we have produced in
this way are

T1 = (ΣL−2)(ΣL−2)−
5
9
ΣL−2 L−2 +

1
3
ΣL−4 ,

T2 = L i
−2 L i
−2 −

3
5

L i
−4 −

27
5

L i
−2ΣL−2 +

1
2
ΣL−2 L−2 −

3
10
ΣL−4 ,

T3 = 2L i
−2 L j
−2 − (L

i
−2 + L j

−2)ΣL−2 +
5

27
ΣL−2 L−2 −

1
9
ΣL−4 ,

(58)

for N = 4. An important comment at this stage is that nothing in the algorithm we have
outlined so far guarantees that it will produce irreps. Indeed, the element of (58) which is in
the (2,2) irrep is not T3 but T3+3T1. When constructing primaries that have c free indices and a
prescribed index symmetry, the resulting basis for the kernel of L1

1+ · · ·+ LN
1 and L1

2+ · · ·+ LN
2

generally mixes primaries in all irreps compatible with this symmetry where the number of
free indices may be less than c. The second step of our procedure, to be discussed next, makes
it possible to determine the linear combinations that correspond to irreps. Given a set of UV
currents and divergence candidates which form a basis for finite N , one can proceed iteratively
in c by computing two-point functions and reaching irreps by demanding orthogonality. The
main roadblock here is that going from an infinite N basis to a finite N basis only appears to
be practical for the currents. For this reason, we have chosen to simply verify the lifting of
currents without sorting them into irreps.20

The second step, which we will perform for currents but not divergences, is about making
sure that the operators we have generated remain linearly independent when the finiteness
of N is taken into account. Two things to do in this regard are quite obvious. Some repre-
sentations of SN expressed in terms of N simply do not exist for N small enough so currents
containing these components never need to be generated in the first place. As an example, the
(N − 3, 3) irrep first exists for N = 6 leading to the spin-6 primary

T4 = 6L i
−2 L j
−2 Lk
−2 − 3(L i

−2 L j
−2 + L i

−2 Lk
−2 + L j

−2 Lk
−2)ΣL−2

+ (L i
−2 + L j

−2 + Lk
−2)ΣL−2ΣL−2 −

14
15
ΣL−2 L−2 L−2 +

5
32
ΣL−3ΣL−3 (59)

−
343
240
ΣL−3 L−3 −

1
4
ΣL−4ΣL−2 +

119
30
ΣL−4 L−2 +

97
60
ΣL−6 ,

20An aesthetically pleasing (but also computationally intensive) alternative would be projecting currents in the
kernel onto irreducible representations after the fact. The projectors would have to be formed from invariant
tensors of SN which can be counted with the techniques of [77].
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for N = 6 and no equivalent for N = 4, 5. It is also possible to save some effort by never
generating terms which multiply a > N strings of Virasoro charges. These vanish because of
our assumption that copy indices are all different but this phenomenon cannot occur below
spin 10. These tricks only get us so far and we must ultimately take a more brute force approach
to discarding currents which are not linearly independent. As with the discussion under (56),
this involves representing the currents as rows in a matrix and then reducing it. What makes
this matrix especially large is that it cannot be formed from currents which are stored in a
format independent of N . The data structures for the currents need to be unpacked so that
the sums over N are completely explicit. As such, the runtime of this procedure does depend
on N but we have been able to carry it out for currents up to spin 10 without much difficulty.
The result is that we have to remove

J = 10 : (4,3) , (60)

for N = 7,
J = 10 : 2(3,3)⊕ (4,2) ,

J = 8 : (3, 3) ,
(61)

for N = 6,
J = 10 : 2(2, 2,1)⊕ 2(3, 2)⊕ (4,1) ,

J = 9 : (2,2, 1) ,

J = 8 : (3,2) ,
(62)

for N = 5 and
J = 10 : 2(2,1, 1)⊕ 6(2,2)⊕ (3,1) ,

J = 9 : (2,1, 1)⊕ 2(2,2) ,

J = 8 : 2(2,2)⊕ (3,1) ,

J = 6 : (2,2) ,

(63)

for N = 4, in keeping with the degeneracies in Appendix A. We can say more about the simplest
example by considering the spin-6 currents with four copies. Those in the singlet representa-
tion (4), first constructed in [1], are

T5 =
97
50
ΣL−6 +

119
25
ΣL−4 L−2 −

1
2
ΣL−2ΣL−4 −

343
200
ΣL−3 L−3

+
5

16
ΣL−3ΣL−3 −

28
25
ΣL−2 L−2 L−2 +ΣL−2ΣL−2ΣL−2 ,

T6 =
193
50
ΣL−6 +

236
25
ΣL−4 L−2 −

3
2
ΣL−2ΣL−4 −

667
200
ΣL−3 L−3

+
9

16
ΣL−3ΣL−3 −

57
25
ΣL−2 L−2 L−2 +ΣL−2ΣL−2 L−2 .

(64)

Adding currents in the standard representation (3,1) to this list does not produce any over-
completeness but one can instead add

T7 = 2L i
−3 L j
−3 +

16
9

L i
−2 L j
−2(L

i
−2 + L j

−2)−
8
3
(L i
−2 L j
−4 + L i

−4 L j
−2)

+
4
5
ΣL−2(L

i
−4 + L j

−4)−ΣL−3(L
i
−3 + L j

−3)−
96
5
ΣL−2ΣL−2(L

i
−2 + L j

−2)

+
16
9
ΣL−2 L−2(L

i
−2 + L j

−2)−
4
15
ΣL−4(L

i
−2 + L j

−2) +
9056
1125

ΣL−2 L−2 L−2 − 2ΣL−3ΣL−3

+
42226
3375

ΣL−3 L−3 +
16
5
ΣL−2ΣL−4 −

116464
3375

ΣL−4 L−2 −
47416
3375

ΣL−6 ,
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T8 = 2ΣL−2 L i
−2 L j
−2 −ΣL−2ΣL−2(L

i
−2 + L j

−2) +
28
75
ΣL−2 L−2 L−2 −

5
48
ΣL−3ΣL−3

+
343
600
ΣL−3 L−3 +

1
6
ΣL−2ΣL−4 −

119
75
ΣL−4 L−2 −

97
150
ΣL−6 , (65)

which both appear to have a (2, 2) component in this notation. To check whether this is really
true, we must appreciate the fact that the 8 types of terms written in (64) and the further 9
types of terms with free indices in (65) can only be regarded as independent abstract quantities
when N is sufficiently large. Since N = 4 here, we must represent these operators as vectors
in a space of dimension 50 instead of 17. The basis is comprised of 4 L i

−6 terms, 10 L i
−3 L j
−3

terms, 16 L i
−2 L j
−4 terms and 20 L i

−2 L j
−2 Lk
−2 terms. Once T5 and T8 are written in this higher

dimensional format, it becomes easy to see that T8 always comes out to be −1
3 T5 regardless of

which values are chosen for its free indices i and j. We therefore verify the last line of (63) by
noticing that one operator designed to be new was secretly proportional to a singlet generated
in a previous step.

Once operators in the (h, h̄) = (J , 0) Verma module have been constructed using the two
step process above, we need to repeat at least the first step for operators in (h, h̄) = (J + 1, 1)
built using four copies of φ ≡ φ(1,2). This introduces a few ingredients which were not present
for the currents. In particular, when we loop the number of free indices in a given term from
0 to c, there is a further loop over how many of these free indices should appear on strings
that include a copy of φ. Whether φ is part of a string with a free index or the singlet needed
to achieve a spin of J − 1, it should not be acted upon by L−2 since it has a null state at level
2. As already anticipated in Table 3, the number of divergence candidates can easily be in
the thousands due to the number of admissible terms in the Ansatz being similarly large. To
apply L1

1 + . . . LN
1 and L1

2 + . . . LN
2 to this Ansatz more quickly, it is possible to only account

for index symmetrizations (obtained from deleting positions in a master symmetrization) at
the very end. Given a single term like T i jk, one can apply L1

1 + . . . LN
1 and L1

2 + . . . LN
2 and

then add the necesssary orbits under index permutations instead of doing this first. Even with
this optimization however, our code for some irreps of interest ran out of memory at J = 10
thus forcing us to stop at J = 9. To remove redundant degrees of freedom from the space of
divergence candidates, we have only implemented the trivial methods for this — focusing on
irreps which actually exist at finite N and omitting terms with a > N strings. The explicit row
reduction needed to find a basis for the divergences is very slow and fortunately not necessary.
The extra operators in our collection just do one of two things.

1. For values of N and J which allow a current to stay conserved, these operators increase
the number of three-point functions which need to be computed in order to verify this.

2. For values of N and J such that all currents lift, these operators potentially increase the
number of three-point function computations although this depends on the order we
choose for them. In practice this is only a slight slowdown.

In contrast to the divergences, removing redundant currents was crucial. If one of the oper-
ators in (60) through (63) were kept, there would be a linear combination of currents in our
list which vanishes. A vanishing operator clearly has a vanishing anomalous dimension and
therefore leads to a false positive in our search for currents that stay conserved.

4.2 Lifting from three-point functions

With explicit (h, h̄) = (J , 0) primaries in hand, our goal is to show that none of them remain
conserved in the IR for N > 4. In other words, the anomalous dimension matrix for each
J should have all non-zero eigenvalues at some loop order. This order is guaranteed not
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to be O(gσ) because of chirality. It is also guaranteed not to be O(gn
ε ) for any n since the

pure ε deformation leaves minimal models decoupled. This leaves O(g2
σ) as the next simplest

possibility which turns out to be the correct one. Once it is established that currents lift at
this order, higher orders will not be able to restore conservation since we are working with
asymptotically large m and therefore small coupling.

The recipe of conformal perturbation theory tells us to show that there is no spin-J current
T such that 〈T (0)σ(z, z̄)σ(1)T (∞)〉 integrates to zero as a principal value. As advertised pre-
viously, conformal representation theory leveraged as in [39] shows that this can be replaced
with a technically simpler check — we can equivalently show that there is no spin-J current T
such that



T (z1)V L(z2, z̄2)σ(z3, z̄3)
�

vanishes for all spin-(J −1) divergence candidates V L . In
practice, the algorithm described above produces dJ ,0 operators T K and more than d ′J ,1 oper-
ators V L because duplicates are slow to remove at finite N . From these data, we can proceed
to compute the matrix

CK
Lσ = z2J−1

12 z13z23z̄2
23




T K(z1)V
L(z2, z̄2)σ(z3, z̄3)

�

, (66)

and stop as soon as it becomes impossible to find a vanishing linear combination of the rows.
In favourable cases, one can conclude this by computing only dJ ,0 out of the more than d ′J ,1

columns and seeing that this is already enough to give the matrix full rank.21 Since the neces-
sasry matrix elements do not need to be computed in any particular order, it makes sense to
write parallelized code for this purpose. Nevertheless, this task is not embarrassingly parallel
because, even though the N copy three-point functions are all different, they share a depen-
dence on many of the same single-copy two-point and three-point functions. These building
blocks should be memoized in a way that makes them accessible to each process.

We will now discuss the reduction to single-copy data. In



T K(z1)V L(z2, z̄2)σ(z3, z̄3)
�

, the
first two operators are of course sums of several terms. For instance, (54) is a sum of 2 and (59)
is a sum of 13. Looping over the terms in T K and the terms in V L will produce complicated
three-point functions with each iteration but they will necessarily assemble into a three-point
function of quasiprimaries at the end of the calculation. This will have the standard Polyakov
form which guarantees that (66) is a pure number. A given term in V L will consist of a certain
number of strings each of which is associated with a different copy. This number was called a
in the previous subsection. These strings should be paired up with strings from the T K term
or strings from σ ≡ 1

4!

�N
4

�

(Σφ)4 or both. This is what leads to the set of two-point and three-
point functions mentioned above. We can account for all such pairings by taking σ and the
T K term to have a fixed ordering while permuting the V L term with respect to them. Table 9
shows some allowed and disallowed permutations for

T i j = L i
−2 L j
−2ΣL−2 ,

V i j = L i
−3φ

j(ΣL−1φ)(ΣL−1φ)(Σφ) .
(67)

When these terms are taken from T K and V L operators that both have two indices, these
operators actually give four chances to increase the rank of the matrix. The single term three-
point function can have fully matching, partially matching or disjoint indices as in




T i jV i jσ
�

,



T i jV ikσ
�

,



T i jV k jσ
�

and



T i jV klσ
�

.
After we generate all of the permutations which are not eliminated by the conditions dis-

cussed in Table 9, they need to be weighted with the right combinatorial factors. For this, we
simply count the number # of pairings where at least one of the copy indices is fixed (not
part of a sum). The fourth case of Table 9 would have # = 3 because of the (ΣL−2, Lk

−3) and

21Clearly, it would be even more favourable to also sort the operators involved into SN irreps since these give
(66) a block structure. We have had to skip this step because our methods are unable to ensure that all divergence
candidates are linearly independent in a reasonable amount of time.
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Table 9: A list of ways to permute the V k j strings in the



T i jV k jσ
�

three-point func-
tion. The first is disallowed because strings with φ are not matched. The second is
disallowed because the strings with a free index of j are not matched. The third is
disallowed because strings with i ̸= k indices are matched. The fourth is allowed.
Note that all would be disallowed if V k j were shorther than T i j or longer by more
than 4 strings.

L i
−2 L j

−2 ΣL−2

Σφ φ j Lk
−3 ΣL−1φ ΣL−1φ

Σφ Σφ Σφ Σφ

✗

L i
−2 L j

−2 ΣL−2

ΣL−1φ ΣL−1φ Lk
−3 Σφ φ j

Σφ Σφ Σφ Σφ

✗

L i
−2 L j

−2 ΣL−2

Lk
−3 φ j Σφ ΣL−1φ ΣL−1φ

Σφ Σφ Σφ Σφ

✗

L i
−2 L j

−2 ΣL−2

Σφ φ j Lk
−3 ΣL−1φ ΣL−1φ

Σφ Σφ Σφ Σφ

✓

(L i
−2,Σφ) and (L j

−2,φ j) pairings. Going through all of the other pairings, the first comes with
a factor of N −#, the second comes with a factor of N −#− 1 and so on until we run out.

The algorithm above expresses a single term of



T K(z1)V L(z2, z̄2)σ(z3, z̄3)
�

as a sum over
permutations. We have seen that copy indices play a role in determining which permutations
are absent from this sum and that the number of copies affects the coefficients for all remaining
permutations. The rest of our task is insensitive to the index structure and the value of N
because it boils down to evaluating the terms of the sum which are products of single-copy
correlators. These correlators come in three types.

1. Two-point functions where the primaries are φ,φ and Virasoro descendants are only
taken in the first position.

2. Three-point functions where the primaries are 1,φ,φ and there are Virasoro descen-
dants in the first two positions.

3. Two-point functions with primaries 1,1 and descendants of both.

Correlators of the first type are by far the easiest. With all of the Virasoro charges hitting one
operator, they can be pulled out one-by-one with



L−n1
. . . L−nb

φ(z2, z̄2)φ(z3, z̄3)
�

= L−n1




L−n2
. . . L−nb

φ(z2, z̄2)φ(z3, z̄3)
�

,

L−n1
≡

n1 − 1
4(z3 − z2)n1

−
∂3

(z3 − z2)n1−1
,

(68)

where we have used hφ =
1
4 . For correlators of the second type, it is only possible to use

(68) if φ(z2, z̄2) comes with either no Virasoro charges or simple powers of L−1 which act as
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derivatives. In general, this is not the case and we need to resort to a full evaluation of
*

b1
∏

i=1

L−n1,i
(z1)

b2
∏

j=1

L−n2, j
φ(z2, z̄2)φ(z3, z̄3)

+

(69)

=
b1
∏

i=1

∮

z1

d x i

2πi
(x i − z1)

1−n1,i

b2
∏

j=1

∮

z2

d y j

2πi
(y j − z2)

1−n2, j

*

b1
∏

k=1

T (xk)
b2
∏

l=1

T (yl)φ(z2, z̄2)φ(z3, z̄3)

+

.

A slight optimization is to pull out whichever copies of L−1 are present as derivatives first. The
inner correlation function is computed iteratively with the Virasoro Ward identity and then
the contour integrals are performed using the residue theorem. Even when this is done using
specialized routines for rational functions, this is where the bulk of the computation time lies.
For correlators of the third type, it is never possible to use (68) and we must return to (69)
every time.

This concludes the list of operations that must be carried out in this approach to verify that
UV currents lift. The arXiv submission for the latest version of this paper includes Python code
for this purpose. It is sufficient to verify that anomalous dimensions are non-zero for the cases
we have tested which are J < 10 and N = 5, 6,7. It is worth emphasizing that these results
are exact since the entries of (66) have been computed using rational numbers. With more
resources, one could avoid having to stop at N = 7 (or indeed any fixed value) by working
with rational functions of N .

5 Related constructions

5.1 More couplings: Adding fixed minimal models

An advantage of the construction in [1] is that it can be modified in a number of ways. Based
on the mass lifting of both singlet and non-singlet currents exhibited here, it is reasonable to
expect that further study along these lines will keep uncovering irrational CFTs with minimal
chiral symmetry. Similar to what has been done for multiscalar CFTs close to the upper critical
dimension [78–86], it is possible to consider couplings more general than (9) which fully or
partially break SN . We have previously mentioned orbifolds of coupled minimal models and
these could again be considered for the subgroups of SN that are preserved. Additionally,
similar constructions can be found which start from a tensor product of rational CFTs which
each have c > 1. Here we would like to discuss something more conservative — a flow which
preserves SN factors and stays within the domain of Virasoro minimal models.

The point is that for a product of operators from decoupled CFTs to become marginal from
below as m→∞, not all of the individual scaling dimensions need to depend on m. For the
φ(1,2) operator in the m’th minimal model, which we will now write as φ(1,2)(m), one option
is combining this with three other copies of itself. But another is to combine it with φ(1,3)(7)
from the hexacritical Ising model. Indeed, since

h(1,2)(m) =
1
4
−

3
4m
+O(m−2) , h(1,3)(7) =

3
4

, (70)

there is a new coupling which can be added when we take N1 copies of the large m minimal
models and N2 copies of the fixed one. Let us therefore amend the action (8) to be

Snew =
N1
∑

i=1

S i
m +

N2
∑

i=1

S i
7 +

∫

d2 x gσσ+ gεε+ gχχ , (71)
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with

σ ≡
�

N1

4

�− 1
2

N1
∑

i< j<k<l

φ i
(1,2)(m)φ

j
(1,2)(m)φ

k
(1,2)(m)φ

l
(1,2)(m) ,

ε≡ N1
− 1

2

N1
∑

i=1

φ i
(1,3)(m) ,

χ ≡ (N1N2)
− 1

2

N1
∑

i=1

N2
∑

j=1

φ i
(1,2)(m)φ

j
(1,3)(7) .

(72)

To see the new fixed points introduced by χ, we do not need to know any OPE coefficients
that are specific to the hexacritical Ising model. We can simply apply combinatorics to (12)
once more to arrive at the beta-functions

βσ =
6
m

gσ −
4π
p

3
p

N1
gσgε − 6π
�

N1 − 4
2

��

N1

4

�− 1
2

g2
σ ,

βε =
4
m

gε −
4π
p

3N1

g2
ε −

2π
p

3
p

N1
g2
σ −

π
p

3

2
p

N1
g2
χ ,

βχ =
3

2m
gχ −

π
p

3
p

N1
gχ gε .

(73)

It appears that for most values of N1, the only fixed points with g∗χ ̸= 0 happen to have g∗σ = 0.
In particular, they have the expressions

g∗ε± =

p

3N1

2πm
, g∗χ± = ±
p

2N1

πm
. (74)

The only exceptions are N1 = 4 with

g∗ε± =
p

3
πm

, g∗χ± = ±
2
πm

q

2−π2m2 g2
σ , (75)

and N1 = 5 with

g∗ε± =
p

15
2πm

, g∗χ± = ±
p

2
πm

q

5− 2π2m2 g2
σ . (76)

These apparent lines of fixed points without supersymmetry are most likely resolved at higher
loops. For different examples of approximate conformal manifolds, see [87, 88]. Perhaps a
more important point for us is that (74) can exist for N1 < 4 because the σ operator is not
involved. For (N1, N2) = (1, 1), (N1, N2) = (1, 2) and (N1, N2) = (2, 1), the fixed points for
m→∞ have central charges of 53

28 , 39
14 and 81

28 respectively. All of these are smaller than the
UV central charge of five tricritical Ising models which appear in the most optimistic way to
get a CFT with low central charge and no enhanced symmetry by following [1]. The first one
is also smaller than the central charge of three 3-state Potts models (1).

Continuing with this logic, it is not hard to see that we can also construct perturbative
unitary flows by coupling N1 large m minimal models to N2 ordinary critical Ising models.
This time,

h(1,2)(3) =
1

16
, h(1,3)(3) =

1
2

, (77)
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are both important for building weakly relevant operators. The full system of beta-functions
will involve couplings for

O1 ∼
N1
∑

i< j<k<l

φ i
(1,2)(m)φ

j
(1,2)(m)φ

k
(1,2)(m)φ

l
(1,2)(m) , O2 ∼

N1
∑

i=1

φ i
(1,3)(m) ,

O3 ∼
N2
∑

i< j

φ i
(1,3)(3)φ

j
(1,3)(3) , O4 ∼

N2
∑

i1<···<i16

φ
i1
(1,2)(3) . . .φ i16

(1,2)(3) ,

O5 ∼
N2
∑

i1<···<i12

N1
∑

j=1

φ
i1
(1,2)(3) . . .φ i12

(1,2)(3)φ
j
(1,2)(m) ,

O6 ∼
N2
∑

i1<···<i8

N1
∑

j<k

φ
i1
(1,2)(3) . . .φ i8

(1,2)(3)φ
j
(1,2)(m)φ

k
(1,2)(m) ,

O7 ∼
N2
∑

i1<···<i4

N1
∑

j<k<l

φ
i1
(1,2)(3) . . .φ i4

(1,2)(3)φ
j
(1,2)(m)φ

k
(1,2)(m)φ

l
(1,2)(m) ,

O8 ∼
N2
∑

i1<···<i4

N2
∑

j=1

N1
∑

k=1

φ
i1
(1,2)(3) . . .φ i4

(1,2)(3)φ
j
(1,3)(3)φ

k
(1,2)(m) ,

O9 ∼
N2
∑

i=1

N1
∑

j<k

φ i
(1,3)(3)φ

j
(1,2)(m)φ

k
(1,2)(m) .

(78)

This makes it quite difficult to find the most general fixed points but it could also be useful to
examine special cases. One of these involves the last operator O9 with (N1, N2) = (2, 1), which
forms a closed OPE subsector along with O2. The UV for this theory has c = 5

2 which is again
smaller than the central charge of five tricritical Ising models. It is slightly larger than that of
three 3-state Potts models but it may well be possible to make it smaller by taking m below 11
in this construction and staying within the conformal window. An analysis of broken currents,
as in this paper but for SN1

× SN2
, will be important for learning more about these models.

5.2 Other probes of enhanced symmetry

Let us return to a discussion of the model (8) in the special case of N = 4. This is the one
case we have found which has currents outsidedVir that stay conserved to two loops. For the
representation (4), examples were constructed in [1] while this paper has additionally built
conserved currents in (2, 2). Two points about this are worth emphasizing. First, the need
for such operators (in some SN representation) is clear from integrability results. By mapping
the N = 4 model onto an integrable Toda field theory, [76] showed indirectly that there must
be enhanced symmetry when the pure σ deformation is used to flow to a gapped phase. The
currents that generate it must therefore survive the O(g2

σ) check we have done even if the
ε deformation is able to lift them at a higher loop order. Second, the (2,2) representation
happens to lead to much stronger results than (4). As already mentioned, coupled minimal
models do not yield any candidates for the divergences of such currents which means that they
must be preserved by the σ flow with either sign non-perturbatively.

There is another sense in which N = 4 preserves more symmetry than N > 4 and this
comes from the notion of generalized symmetry [89]. Symmetry actions on local operators
are implemented by topological operators of codimension 1 and in 2d these are topological
defect lines [62]. If the fusion rules for topological defect lines take the form of a group law
then they reproduce ordinary symmetries but more generally one must appeal to the concept
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φ(r,s) L(r ′,s′) = φ(r,s) L(r ′,s′)

Figure 3: The condition for a non-invertible symmetry L(r ′,s′) to be preserved by a
deforming operator φ(r,s).

of a fusion category.22 In particular, a topological defect line does not need to have an inverse.
Minimal models have non-invertible symmetries implemented by Verlinde lines L(r,s) which
are labeled by the same integers as the primary operators and obey the same fusion rule.23

L(r1,s1) ×L(r2,s2) =
min(r1+r2,2m−r1−r2)−1
∑

r3=|r1−r2|+1

min(s1+s2,2m+2−s1−s2)−1
∑

s3=|s1−s2|+1

L(r3,s3) . (79)

Also in analogy with local operators, Verlinde lines associated to different decoupled copies
in an N -fold tensor product fuse trivially into a line that we will call Li

(r1,s1)
L j
(r2,s2)

. In the
following, we will show that certain types of these product lines are preserved along the flow
only when N = 4.

Fortunately, there is a simple formula for how the line L(r ′,s′) acts on the primary φ(r,s) in
terms of the modular S-matrix

S(r ′,s′)(r,s) = (−1)rs′+r ′s+1

√

√ 8
m(m+ 1)

sin
�

πr r ′
m+ 1

m

�

sin
�

πss′
m

m+ 1

�

. (80)

The left side of Figure 3 picks up a factor of S(r ′,s′)(r,s)/S(1,1)(r,s) while the factor on the right
side is the same but with (1, 1) in place of (r, s). As reviewed in [90], we can set these equal
to each other for (r, s) = (1,3) to find the equation

sin2
�

πs′
m

m+ 1

�

= sin2
�

π
m

m+ 1

�

. (81)

To solve this within the standard Kac table, we need s′ = 1 which restricts us to the subalgebra
given by L(r ′,1). Since ε in (8) is a sum of φ i

(1,3) operators, it is clear that any product of lines

which moves past ε trivially must be of the form
∏N

i=1 L
i
(ri ,1)

. A single other line in position

j would cause φ j
(1,3) to pick up a non-trivial factor. Things are more interesting when we

consider the σ operator. Writing down the analogue of (81) for (r, s) = (1,2) leads to

cos
�

πs′
m

m+ 1

�

= cos
�

π
m

m+ 1

�

(−1)r
′−1 . (82)

22The data of a fusion category can be used to identify the obstructions to gauging which were previously men-
tioned in section 2.3.

23To mention the simplest example, the critical Ising model (m= 3) has a single non-invertible Verlinde line and
its action on local operators is the well known Kramers-Wannier duality.
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In addition to the s′ = 1 condition that we already derived, we further need r ′ to be odd for
each φ i

(1,2) to commute with L(r ′,s′) individually. It is now easy to see that the N = 4 case

allows
∏4

i=1 L
i
(ri ,1)

to include the even line L(2k,1) an even number of times. As we commute

this past the full product φ1
(1,2)φ

2
(1,2)φ

3
(1,2)φ

4
(1,2), signs from (82) will show up in pairs and

therefore cancel. This is not true for N > 4. As long as φ i
(1,2)φ

j
(1,2)φ

k
(1,2)φ

l
(1,2) are allowed

to have certain copies missing, there will only be two ways to prevent some such terms from
picking up a sign. Namely acting on them with only L(2k+1,1) lines or the product

∏N
i=1 L

i
(ri ,1)

where all of the ri are even. A similar analysis can be done for the fixed minimal model cases
of the previous subsection.

• For the model (71), it is easy to see that all preserved lines must be built out of L(2k+1,1).
This is because χ has a φ(1,2)(m) operator appearing linearly.

• For an action which includes the operators O2 and O9 from (78),
∏N1

i=1 L
i
(ri ,1)

are again
forced to have the ri be all even or all odd. This time, the minimal case of N1 = 2 is not
singled out as special.

The existence of such non-invertible lines in the presumably irrational CFTs in the IR of
coupled minimal model flows was anticipated in [62] for the case of two-copy interactions
and we see how this nicely generalizes to our four-copy case. It is also worth mentioning the
work of [91] which establishes the existence of such lines for irrational supersymmetric CFTs
that lie in the same conformal manifold as a rational CFT. Combined, these results give further
credence to the expectation that non-invertible symmetries are ubiquitous in 2d CFTs and not
just an artifact of rationality or exact solvability.

Another point we can make for general N is that when σ is used to flow to a TQFT in the
IR, it is guaranteed to have degenerate vacua. This follows from the existence of topological
defect lines which have a non-integer expectation value (empty circle) [62]. In such cases, [90]
showed that the standard statement of crossing symmetry generically fails and needs to be
replaced by a modified crossing equation which takes the normalizations of different vacua
into account. A related phenomenon had previously been observed for Chern-Simons matter
theories in [92]. It is therefore possible that integrable or non-integrable S-matrices which are
reachable from coupled minimal models can be bootstrapped along the lines of [93].24

6 Outlook

While our understanding of compact irrational CFTs is very limited as it is, there is a further
refinement of this space of theories that is even less understood and that is theoretically even
more important: the space of interacting compact irrational CFTs with a twist gap. The twist
gap is defined as the infimum of τ = ∆− J over the spectrum of Virasoro primaries. In our
work, we have given credible evidence that all operators in the IR CFT have positive twist, but
we have not addressed how this twist behaves at large spin. While the general expectation
based on arguments of convexity is that twist should increase with spin, it is a logical possibility
that the twist actually decreases with spin such that the twist gap vanishes.25 The existence
of a positive twist gap is a key assumption of many modern universal results about 2d CFTs.
The lightcone modular bootstrap [97–100] establishes the existence of families of operators
whose weights approach (c − 1)/24 and the Virasoro lightcone bootstrap [101, 102] further

24See also [94,95] for closely related work.
25In fact, for theories with a u(1) chiral algebra it can be proven that the u(1) twist gap vanishes [96].
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establishes the existence of deformed double-twist trajectories.26 Isolating the leading Regge
trajectory in our models and understanding its shape will require intensive computations of
full anomalous dimension matrices but will be important for answering whether or not we
have identified CFTs that satisfy the assumptions of these key results. This could also allow us
to test these predictions, guided by how a detailed numerical understanding of the 3d Ising
model led to a verification of the power and accuracy of the analytic bootstrap in d > 2 [107].

Having slightly expanded the class of models we can study systematically in the 1/m ex-
pansion, it is also worth discussing just how far we might be able to push this logic. A straight-
forward step is to loosen the restriction of SN symmetry and allow for an arbitrary coupling to
each set of copies. Concretely, we could consider the action

S =
N
∑

i=1

S i
m +

∫

d2 x
N
∑

i< j<k<l

ai jklφ
i
(1,2)φ

j
(1,2)φ

k
(1,2)φ

l
(1,2) +

∫

d2 x
N
∑

i=1

biφ
i
(1,3) , (83)

and do brute force searches for fixed points of the couplings ai jkl and bi in the spirit of [82]
or attempt to constrain their general properties in the spirit of [79]. Additional parameters
can be introduced by taking slightly different large m limits for each copy, i.e we can take
mi = mγi for different values of the constants γi . Furthermore, it is also possible to consider
other classes of exactly solvable rational conformal field theories to be coupled in the UV. A
straightforward example is to take the D-series minimal models, which also admit the σ and
ε deformations. Working at large but finite m, our analysis goes through since the same set
of currents and divergence candidates is present. However, analytic continuation between
the D-series minimal models appears to be more challenging. One therefore needs to keep
in mind potential (but unlikely) cancellations between terms of different orders in the large-
m expansion. A richer generalization can be obtained by coupling minimal models of ADE
type W-algebras. In this case a classification of weakly relevant couplings is possible, but
additional OPE coefficients must be determined to write down the beta-function equations. In
this context, additional Virasoro primary currents are present because of the W-symmetry. A
relevant question is whether a diagonal copy of this symmetry can be preserved or whether
only the Virasoro algebra survives. For example, it would be interesting to understand what
the fate of diagonal W3 symmetry is in the coupled Potts models studied in [18].

Finally, to go beyond evidence and actually prove that the models in question are compact
irrational CFTs with just Virasoro symmetry, we need to complement the brute force checks
at finite spin by gaining some control over the large spin currents. One conceivable strategy
is to bootstrap chiral algebras with a large spin gap between the stress-tensor and the first
non-trivial generator, that is chiral algebras of the type W(2, J , J ′, . . . ), for J larger than the
values we can explicitly check.27 Some hope comes from considering what happens in the
case of chiral algebras with a single non-trivial generator, W(2, J). While such algebras can
exist for large values of J , they are only unitary for finitely many values of c, except when
J ≤ 6 [110]. In our case, if some enhanced chiral symmetry remains, it should do so at
least for a small interval of c below each integer N , where the chiral algebra is guaranteed
to be unitary. Therefore, by studying the crossing equation for the four-point functions of the
generators, and assuming unitarity in a range of values of c, it is conceivable that an upper
bound on J for W(2, J , J ′, . . . ) algebras exists. Such a bound would allow us to stop our checks
at finite spin and finally prove minimal chiral symmetry and hence irrationality.

26Along with trajectories of analytically continued scaling dimensions, a twist gap also influences the behaviour
of averaged OPE coefficients involving heavy operators [103]. For boundary and crosscap analogues of this result,
see [104–106].

27For previous examples of the numerical bootstrap being done with Virasoro blocks, see [108,109].
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A Further degeneracy tables

In this appendix we list irrep-refined degeneracies for N = 5,6 using the methods of section
3.3.

Table 10: Degeneracies for all N = 5dVir primary currents.

J d(5)J ,0 d(4,1)
J ,0 d(3,2)

J ,0 d(3,1,1)
J ,0 d(2,1,1,1)

J ,0 d(2,2,1)
J ,0 d(1,1,1,1,1)

J ,0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0

3 0 0 0 0 0 0 0

4 1 1 1 0 0 0 0

5 0 0 0 1 0 0 0

6 2 3 2 1 0 0 0

7 0 1 1 2 0 1 0

8 4 7 5 3 0 2 0

9 1 5 4 6 2 2 0

10 7 15 13 10 1 6 0
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Table 11: Degeneracies for all N = 5dVir primary divergence candidates.

J d ′(5)J+1,1 d ′(4,1)
J+1,1 d ′(3,2)

J+1,1 d ′(3,1,1)
J+1,1 d ′(2,1,1,1)

J+1,1 d ′(2,2,1)
J+1,1 d ′(1,1,1,1,1)

J+1,1

0 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0
2 1 2 2 1 0 1 0
3 2 5 3 4 1 1 0
4 4 9 8 7 2 5 0
5 5 16 15 16 5 9 0
6 12 31 29 28 11 19 2
7 17 53 52 57 23 37 2
8 32 93 96 98 44 72 7
9 50 160 164 182 85 126 13

Table 12: List of degeneracies for all N = 6dVir primary currents. Additional irreps
have zero degeneracy up to spin 10.

J d(6)J ,0 d(5,1)
J ,0 d(4,2)

J ,0 d(4,1,1)
J ,0 d(3,1,1,1)

J ,0 d(3,2,1)
J ,0 d(3,3)

J ,0 d(2,2,2)
J ,0

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0
5 0 0 0 1 0 0 0 0
6 2 3 2 1 0 0 1 0
7 0 1 1 2 0 1 0 0
8 4 7 6 3 0 2 1 0
9 1 5 4 6 2 3 2 0
10 7 16 14 10 1 8 5 1

Table 13: List of degeneracies for N = 6dVir primary divergence candidates built
from four φ(1,2) operators. Operators in irreps with no current to recombine with are
not listed.

J d ′(6)J+1,1 d ′(5,1)
J+1,1 d ′(4,2)

J+1,1 d ′(4,1,1)
J+1,1 d ′(3,1,1,1)

J+1,1 d ′(3,2,1)
J+1,1 d ′(3,3)

J+1,1 d ′(2,2,2)
J+1,1

0 1 1 1 0 0 0 0 0
1 0 1 1 1 0 1 1 0
2 1 3 3 2 0 2 1 1
3 2 6 6 6 2 5 3 0
4 5 12 15 11 4 13 6 3
5 6 22 27 26 11 28 13 5
6 15 45 57 49 24 58 25 14
7 22 78 103 100 54 119 50 25
8 44 145 199 183 106 231 92 57
9 69 255 352 349 215 438 173 102
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