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Abstract

We work out the unfolded formulation of the fields in the non-linear realisation of E;; .
Using the connections in this formalism, we propose, at the linearised level, an infinite
number of first-order duality relations between the dual fields in E;;. In this way, we
introduce extra fields that do not belong to E;; and we investigate their origin. The
equations of motion of the fields are obtained by taking derivatives and higher traces of
the duality relations.
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1 Introduction

E theory contains an infinite number of fields labelled by a level grading [1]. The only degrees
of freedom in E theory are those of the bosonic sector of supergravity, so in eleven dimensions
we have those of the graviton and the three-form field that are found at levels zero and one.
At higher levels, one finds fields which provide dual descriptions of these degrees of freedom.
Although these higher level fields have their own equations of motion, they also satisfy duality
relations which are first-order in derivatives, relating them to gravity or to the three-form.

The duality equations in E theory have been formulated as equivalence relations, that is,
they hold up to certain gauge transformations [2,3]. While this is a perfectly correct way to
proceed, the aim of this paper is to formulate these relations as conventional gauge-covariant
equations. We use the unfolded formalism' to achieve this, expressing the linearised equations
of the theory in terms of a set of interlinked equations? relating the space-time derivatives of
each field to a set of connections and zero-forms. Concretely, in this paper, we propose an
infinite set of duality relations for the dual fields in E theory, written using their associated
first-order connections. In this way we find, at the linearised level, the duality relations in the
form of conventional, gauge-covariant equations that do not receive any extra contribution
under a gauge transformation. This is possible since the unfolded formalism introduces extra
fields that compensate for the gauge freedom, and they can all be gauged away algebraically.
We also find that taking derivatives and higher traces of the duality relations leads directly to
the linearised E theory equations of motion.

Since these subjects are unfamiliar to many readers, we will now give a brief review of some
of the material. E theory is the non-linear realisation of the semi-direct product of E;; = Eg**
with its vector representation £, and it contains the bosonic fields and equations of motion of

IThe term ‘unfolding’ only started to appear explicitly in Vasiliev’'s work in [4], although the techniques were
already used earlier in [5, 6].

2This idea of expressing a set of PDEs as an exterior differential system is old. It was initiated by E. Cartan,
see [7] for a pedagogical exposition, although the introduction of the infinite-dimensional module of zero-forms
representing the propagating degrees of freedom came later and is due to Vasiliev. For a more detailed, modern
exposition, see [8] and references therein.
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all maximal supergravity theories [1-3,9]. For a review, see [10]. The adjoint representation
of E;; contains the fields of the theory, and they all depend on the generalised space-time
whose coordinates correspond to £, generators. At levels zero and one we find the graviton
and the three-form. At level two we find a six-form which is dual to the three-form, and at
level three we find a mixed-symmetry field hy ..o, , that is dual to the graviton. At higher levels
the number of fields grows rapidly, and their roles are mostly unknown, but precisely one field
at each level is understood to be dual to the original graviton or three-form. For example,
at level four we find A, ..o, b, b,bs » Bayay,byc» @0 Cqy.qpy b » the first of which is dual to the
three-form.

The structure of each equation is fixed by E;; symmetry. This has been worked out at
the full non-linear level up to level three, that is, for gravity, the three-form [1, 9], six-form
[2], and the dual graviton [11]. The equations of motion have also been also worked out
at the linearised level for the fields in E;; at level four [12]. The irreducible representation
corresponding to the dynamics of the theory has been worked out completely, and it shows that
the only dynamical degrees of freedom are those of the graviton and the three-form [13,14].
Thus, although the non-linear realisation contains an infinite set of dual fields, the only degrees
of freedom are those of maximal supergravity. If one restricts generalised space-time to be just
the usual space-time then the equations of motion agree precisely with those of supergravity
[2,3,12,15,16]. This restriction corresponds to the fact that one is considering a point particle
theory and not taking account of the presence of branes [17]. In this sense the dynamics is
completely known.

The large symmetries of the E;; non-linear realisation also leave invariant an infinite set
of duality relations which have so far been computed at low levels. In fact, acting with E;; on
the equations of motion and the duality relations at low levels, one generates the equations at
higher and higher levels. The enormous E;; symmetry fixes® the equations of motion and the
duality relations precisely, although this has only been carried out explicitly at low levels so far.
In particular, one can find unique quantities that are inert under rigid global E;; symmetries
and which also transform covariantly under the local symmetries of the theory. As such these
quantities can be set to zero while still preserving E;; symmetry. So far, work in E theory has
been to find the equations of motion and duality relations rather than an action principle.* The
Eq;-invariant duality relations between the three-form A, 4,4, and the six-form A, ..., [2,3]
and between the graviton h,? and the dual graviton hg,...qs,» [19] have been worked out at
the full non-linear level while the higher duality relation between the three-form and the
Aq,.aq,b,bybs field has been worked out at the linearised level [12]. Relations at higher levels
can be found in much the same way:.

While a classification of the generators, and hence fields, of E;; is unknown, the fields that
have no blocks of ten or eleven indices are known [20]. As well as the fields from levels zero to
three, that is h,”, Ag ayas s Aayag » A0 Ry .q  p » there is an infinite number of fields in E;; that
have additional blocks of nine antisymmetric indices, the first of which is Ag 3 = A, ...q) b, 5,5,
at level four. It was proposed in [20] that these fields are dual to the fields at levels zero
and one. In [21], analytic expressions relating the towers of dual fields in E;; were found. An
infinite set of dual action principles in the gravity sector were proposed in [22], and an infinite
set of first-order duality relations in the gauge field sector generalising the relation between
the three-form and Ag 3 was proposed in [23], supporting the conjecture of [20]. Relations
between dual fields in E;; were further discussed in [24].

Some of the fields in E;; have blocks of ten antisymmetric indices and these are the fields
responsible for all the maximally supersymmetric gauged supergravity theories in the different

3In each non-linear realisation, the form (i.e. the tensor structure and combination of terms) of the equations
is fixed by the global and local symmetries of the theory.
*However, we note the E;; pseudo-Lagrangian that was worked out in [18] using a different formalism.
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dimensions. In works carried out across a twenty year period all these theories were classified
(see [25,26] and references therein) and they can also be found in a simple way from E;;
[27,28]. The first example is the field By ..., b.c = Ba,--ay,(b,c) at level four whose reduction
from eleven to ten dimensions leads to a nine-form field [12] which is responsible for Romans
theory [29]. Key to the work of [25,26] was the tensor hierarchy construction [30] which
was also obtained in the E;; non-linear realisation [31,32]. Aside from all the fields that we
mentioned above, there remains an infinite number of fields in E;; whose meaning is as yet
unknown.

It is a result of the infinite set of duality relations that the theory only contains the de-
grees of freedom of the graviton and the three-form. In the context of E;; alone these duality
relations are equivalence relations meaning that they only hold modulo certain gauge transfor-
mations [2,3,33,34]. These have been worked out for the low level duality relations [2,3,12]
and they are also completely known at the linearised level [35]. As mentioned in [34], the
equivalence relations and the associated gauge transformations can be deduced by integrating
up the equations of motion that follow from E;; symmetry, as initiated in [23]. In the present
paper we will work out several examples of this integration. Thus at least in principle the
equivalence relations can be completely worked out solely in the context of E;; .

It was explained in the first paper on E;; [1] that the duality relation between gravity and
dual gravity could be written as a conventional equation rather than an equivalence relation
by adding a nine-form. However, this field is not among those in E;; . Although the duality
relations can be systematically and correctly given as as equivalence relations, it would be good
to have duality relations which are of a more conventional kind and for this to be the case one
must add fields in addition to those found in E;; . These fields do not contribute to the degrees
of freedom of the theory but they ensure that the duality relations are gauge-covariant rather
than equivalence relations. It is important to note that one does not need fields beyond those
already in E;; to formulate the equations of motion as these just involve the irreducible E;;
fields. For example, the dual gravity equation of motion involves just the irreducible hg,...q,
field which is subject to the condition hyg,..q, 51 = O, that is, the equation of motion does
not feature the extra nine-form field that is needed to write down a gauge-covariant duality
relation between the graviton and the dual graviton.

There are various interesting and elegant ways to present the equations of eleven-
dimensional supergravity [36]. A notable example is given by the rheonomic approach of [37]
—see [38,39] for reviews — as well as the on-shell constraint approach developed in [40-44],
see e.g. [45] for a review and recent developments involving pure spinors. Along those lines,
a duality symmetric superspace formulation of supergravity was worked out in [46] that in-
corporates the fermionic degrees of freedom. Adding fermions or supersymmetry to theories
with enormous Kac-Moody symmetries is an open problem. From the E theory perspective,
fermions can be introduced by taking them to transform under the Cartan involution subalge-
bra of E;; . Progress can be found in [14,47] (see also [48]) which followed corresponding
work on E;, [49-51].

It is also possible to write down duality relations in the context of a parent action which
contains implicitly the field and its dual. This is referred to as off-shell dualisation. One
can eliminate either of the fields from the parent action using their equations of motion to
obtain an action for the original field or an action for the dual field. In the first paper on
E;; such a parent action relating the graviton and the dual graviton was presented in any
dimension [1]. This led to the duality relation between them, the correct equation of motion
for the graviton, and also the well-known linearised action for the graviton. It also led to the
equation of motion for the dual graviton and the action for the dual graviton, although this
was not explicitly presented in [1]. This justified the use of the field h, ..., , 5 to describe the

1
dual graviton in D dimensions and explained the presence of hy,..q, , at level three in Ey; .
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This was made explicit and generalised to higher-spin fields in [52] where it was observed
that the dynamics of the dual graviton given in [1] agreed with the first account by Curtright
of the dual graviton in five dimensions [53] and in any number of dimensions [54].

Parent actions have been used in a number of different contexts. As mentioned previously,
dual action principles for all possible dual gravity fields were found in [22], where dualisation
was performed on empty columns of the Young tableau. A parent action relating the three-
form and the Ay ; field was given in [23]. Relatedly, the dual fields in the IIA theory contained
in the E;; approach were introduced in the corresponding parent actions in [55].

One advantage of this approach is that it begins with an action principle that is invariant
under gauge transformations in the conventional way, and the equations that follow do not
need to be thought of as equivalence relations. Thus in this approach one finds the fields
needed. The role of extra fields in preserving both gauge invariance and the propagating
degrees of freedom was spelled out in [56].

The tensor hierarchy algebra S(E;;) is a differential graded superalgebra, and it underlies
the construction of the dynamics of another E;; field theory [18,48,57]. At grade zero S(E;;)
contains E;; itself alongside a tower of highest weight representations. The original moti-
vation for tensor hierarchy algebras was to encode gauged supergravities into one algebraic
structure, including the embedding tensor and the hierarchy of form fields for form degree
up to and beyond the space-time dimension D [58,59]. The role of tensor hierarchy alge-
bras in extended geometry has been spelled out in [60-67]. Previous attempts to encode all
these form fields involved extending the global E;,_, symmetry either to E;; [27,31,32] or
to a graded Borcherds superalgebra B(E;;_p) [68-71] (see also [60]). In contrast to these
Borcherds algebras, tensor hierarchy algebras S(E;;_p) are constructed so as to preserve the
Hodge duality of form fields for 1 < p < D — 3 and extends this duality to as many grades
as possible. Both superalgebras can be ‘very-extended’ in the sense that we can work with
B(E;;) and S(E;;). One of the main aims of [57] was to work towards a theory based on
E;; which contains an enlarged spectrum of fields given by S(E;;) at grade zero, therefore
including fields belonging to E;; and to a tower of additional highest weight representations.

In the same way that the non-linear realisation of E;; encodes the maximal supergravity
theories, the non-linear realisation of the infinite-dimensional algebra AJ{++ generalises pure
gravity in four dimensions [19, 72,73]. Alongside the graviton, the non-linear realisation of
AJ{++ features the infinite tower of dual gravity fields in four dimensions and an infinite set
of fields whose role is less clear. The relationship between dual gravitons in A7** and dual
action principles for gravity was studied in our previous work [74].

Outline of the paper. We take a bottom-up approach by applying the unfolded formalism
[4-6,75,76] for mixed-symmetry fields in flat space [ 77-80] to the fields in E;; . The procedure
that we apply to each dual field can be summarised as follows: (1) introducing a set of unfolded
variables, i.e. connections; (2) writing down and solving the first few unfolded equations; and
(3) proposing duality relations between our dual fields in terms of the first-order connections.
This provides the extra fields required to formulate the E;; duality relations as conventional,
gauge-covariant equations. We also discuss the relation between the duality relations and the
equations of motion. Following the familiar path, we derive the equations of motion from
the duality relations, but we also show how to find the duality relations by integrating the
equations of motion for several important examples that occur in Eq; , as was initiated in [23].

The structure of this paper is as follows. In Section 2, we give a more detailed account of
the E;; non-linear realisation and we compute the gauge transformations of the fields at level
four. Then, in Section 3, we review the unfolded formalism and we apply it to the fields in
E;; up to level three: the graviton, three-form, six-form, and dual graviton. Linearised duality
relations between all these fields are obtained. In Section 4, we consider the higher dual
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three-form field Ag 5 at level four and we use the unfolded formalism to work out its equation
of motion and its duality relation with the three-form. We also unfold the B, ; ; field at level
four.

In Section 5, we work out the linearised equations of motion for all higher dual fields in the
E;; non-linear realisation. We propose an infinite number of first-order duality relations that
relate these fields. We also find all the gauge parameter constraints that must be imposed for
our proposed duality relations to be gauge-covariant. Linearised equations of motion for all
dual fields in E;; are worked out by taking derivatives and traces of the duality relations, and
these equations are then integrated back up to recover the duality relations with all the extra
fields. These equations and our proposed duality relations match those of the E;; non-linear
realisation at low levels where they have already been worked out, which justifies a posteriori
the choice of variables in the unfolded formulation of each field. We also discuss the spectrum
of extra fields and we investigate their origin inside representations of E;.

We perform a similar analysis in Section 6 for the AJ{++ non-linear realisation: unfolding
the dual fields, proposing linearised duality relations featuring extra fields, obtaining linearised
equations of motion, and investigating where the extra fields come from. In Section 7, building
upon [80], we provide explicit frame-like action principles for the higher dual three-form field
in E; and the higher dual graviton in A7**. This is followed by a discussion of our results in
Section 8. We provide tables of useful representations in Appendix A, and in Appendix B we
briefly unfold the dual fields in the K,, non-linear realisation [81].

Summary of notation. The i fundamental representation of the E;; algebra is denoted by
¢; and defined to be the highest weight representation whose highest weight is the fundamental
weight associated with vertex i in the Dynkin diagram of E;; below.

I 11
® L @ L L L L L L
1 2 3 4 5 6 7 8 9 10

Tables of generators for useful representations of E;; are given in Appendix A

Differential forms will often be written with their form degree as a subscript, although we
do not give a subscript to any zero-forms. Wedge products are omitted and are taken to be im-
plicit. In this paper Y[hy,...,h,] denotes an irreducible Young diagram with n columns, where
h; is the height of the i column. We use ®h,,..,n, to denote an irreducible mixed-symmetry
field that transforms in the representation associated with this diagram. For example, T35 1 1

denotes an irreducible rank-seven field T, 4,4, b,b,c,a Whose symmetry type is given by the
Young diagram

= Y[3,2,1,1]. 1)

Fields with blocks of symmetric or antisymmetric indices can be written as
Sa(n) = Sal"",an ~ Y[l,...,l], Aa[n] Z:Aal...an ~ Y[n] (2)

A reducible field transforms as a tensor product of irreducible representations, and we
denote their symmetry types by tensor products of Young diagrams. Blocks of antisymmetric
indices in a reducible field are separated by a comma if they belong to the same irreducible
component, and they are separated by a vertical bar if they belong to different components.
For example, we write Wy5 5 5 to denote a rank-eleven reducible field ¥ that transforms as

|
\Palaza3a4|b1b2b3,c1c2,d1d2 ~ E ® | = Y[4] ® Y[3,2,2]. 3)

6
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The first component is a four-form, and the mixed-symmetry nature of the second component
implies that ¥ obeys the following over-antisymmetrisation constraints:

\Ilalaza3a4|[b1 bybs,cilea,didy — \palazaga4|[b1b2b3|,c1c2,|d1]d2 = \Ijalazaga4|b1bzbg,[C1Cz,d1]d2 =0. )

The above diagrams are associated with GL(D) tensors if we work in D space-time dimensions.
As we implicitly did above, to a given irreducible tensor we usually prescribe a Young tableau
associated with the Young diagram depicted. If we consider SO(1, D —1) tensors instead, then
the irreducible fields also obey specific trace constraints.

2 The non-linear realisation of E;

The fields of the non-linear realisation are parameters of a generic E;; group element, although
we can gauge away everything at negative levels using the local symmetry given by the Cartan
involution invariant subgroup of E;; denoted by I.(E;;). As aresult, the group element belongs
to the Borel subgroup of E;; and the fields of the theory are in a one-to-one correspondence
with the generators of the Borel algebra. Up to level three the fields are the graviton and the
three-form together with their magnetic duals, namely the six-form and the dual graviton:

hab 5 A3 :Aa1a2a3 B A6 :Aal“'aB ) h8,1 = hal...ag’b . (5)

Every field in E;; is GL(11) irreducible, so they all obey over-antisymmetrisation constraints.
For example, the dual graviton hg ; is a mixed-symmetry field that satisfies h,,...q5 5] =0-

The fields of the theory all depend on an infinite number of coordinates that are associated
with the generators of the £; representation, but here we take them to depend only on the
usual coordinate x“ at level zero. This corresponds to the fact that we are constructing a
theory of point particles and not branes — see [17] for more details.

At levels four and above one finds an infinite tower of higher dual fields associated with
the fields in (5) [20]. Exactly one dual field appears at each level together with some fields
whose interpretations are less obvious, but many of them lead to the gauged supergravities
[27,31,32]. For instance, at level four in E;; there are three fields given by

Ags=A

ayagbybybs s B10,1,1 = Bayaggbic s Ci1,1 = Cayeayyb - (6)

The first field Ag 5 is a higher dual [ 20] that provides an equivalent description of the three-form
degrees of freedom, while the second field By ; ; is the eleven-dimensional origin of Romans
theory [12]. Indeed, reduction to ten dimensions leads to a nine-form By, ...q, := B, ...qy11,11,11
that in turn leads to a supergravity theory with a cosmological constant. Similarly, one can find
the next-to-top forms A, ..., , for the supergravities in dimension D and in each case these
lead to gauged supergravities with a cosmological constant. In this way one finds all such
theories and one can recover in a simple way their classification that was found over many
years. Such fields in lower dimensions can arise from fields in eleven dimensions that have
one block of ten indices since in D dimensions such a block can be made up of 11— D internal
indices and a next-to-top form with D—1 indices. However, fields with blocks of eleven indices
can not contribute in this way. Thus there are still many fields in the non-linear realisation
whose role we do not understand, such as the third field Cy; ; at level four.
At level five there are four fields in the adjoint:

Ages Bioa1s Ciizi, Crig- (7)

Recall that the subscripts are a shorthand for the symmetry types of each field. For example,
By,4,1 denotes the GL(11)-irreducible field By, 4, p,..b,,c - The first field Ag ¢ is a higher dual

7
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counterpart to the six-form, and the second field By 4, plays a role in gauged supergravity
theories in lower dimensions, as mentioned above [27].
At level six there are nine fields in the adjoint:

€)) (2)
hog1, Bioea2> Bioz1> Biog> Ciiaz> Cisiis Cigrs Ciiers Cuz- (8

The first field hg g, is a higher dual that propagates the degrees of freedom of the graviton
or the dual graviton, and the three fields with blocks of ten antisymmetric indices once again
play a role in the gauged supergravities [27]. The field Cy; ¢ ; appears in E;; with multiplicity
two, and we have used a superscript to label each of them.

At higher levels in E;; one finds three infinite families of higher dual fields at higher levels
with the following Young diagrams:

A9,...,9,3 ~op e P A9,...,9,6 ~o 5 h9,...,9,8,1 ~oL e . 9

It has been shown that these are all the fields in the non-linear realisation if we ignore fields
whose tableaux contain columns of height ten or eleven [20].

One can work out irreducible representations of I.(E;;) X £; [13,14]. At level zero this
reduces to the Poincaré group, so the procedure is similar to the Wigner method generalised
to eleven dimensions — see [82]. The massless particle representation for which only the usual
momentum is non-zero has been worked out in all detail. Despite the infinite number of fields,
one finds that the degrees of freedom in this representation are just those of gravity and the
three-form [13]. This representation corresponds to the free on-shell states in the non-linear
realisation. Higher level fields are related by rather trivial duality relations which are invariant
under the little group. Thus we conclude that the very many additional fields in E;; do not
lead to any further degrees of freedom. While this is apparent for the dual fields and the fields
that lead to gauged supergravities, it must also apply to the fields whose meaning we do not
yet understand.

The form of the full non-linear equations for the fields follow uniquely from the non-linear
realisation. This has been worked out for the graviton, three-form, six-form [2, 3], and more
recently the dual graviton [11,33,83]. In each case, these fields are taken to depend only on
the level zero coordinates at the end of the calculation, although to derive these results one
requires the fields to depend on the higher level coordinates. Linearised equations for the fields
at level four have also been found [12]. As such, the dynamics predicted by the non-linear
realisation is known, at least if we restrict fields to depend on the usual space-time. This has
been less completely worked out in lower dimensions [15,16] and for gauged supergravities,
but the conclusion is the same.

Duality relations that are first-order in derivatives relate all the dual fields to each other.
The prototypical example is the relation between the three-form and the six-form, but the full
non-linear duality relations have also been worked out between the three-form and six-form
and between gravity and dual gravity. The existence of such relations ensures that the non-
linear realisation contains only the degrees of freedom mentioned above and not, for example,
many copies of the graviton arising from the infinite tower of dual gravity fields at higher levels.

The symmetries of the E;; non-linear realisation lead uniquely to the equations of motion
which turn out to be gauge-invariant even though this symmetry was not used to construct
them. It is not understood why this happens. Integrating these equations one finds the duality
relations although these are not gauge-invariant but hold as equivalence relations. This means

8
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they hold up to some gauge transformations which also follow from the integration procedure.
Alternatively one can derive the duality relations directly using the symmetries of the non-
linear realisation but then one must take account of the gauge transformations.

The gauge transformations have parameters A which belong to the ¢, representation

A = {A% Agyays Nayass My b Mayoeags -} - (10)

Linearised gauge transformations for fields A, in the non-linear realisation have been deduced
from E;; [35] and they take the form

SpAq = (Dy)a" 0p\*, (11)

where [R%,1,] = —(D,)4B15 are the commutation relations for E;; x £, . Up to level two, we
find that the gauge transformations of the graviton, three-form and six-form are

5Ahab = a(aAb) > 5AAa1a2a3 = a[alAazag] > 5AAa1~~~a6 = a[alAaz-uad > (12)

where we only consider derivatives with respect to the coordinates at level zero. At level three
there are two gauge parameters AW and A®  and the dual graviton transforms as
aj...az,b aj...ag

1)
5Aha1~~~a8,b = a[alA(

a2~~~a

(2
+ 3[a1 a2 ag]b abAalwag . (13)
We have scaled the parameters as they appear in E;; by a factor of % .
Now we will work out the E;; gauge transformations of the fields at level four. At this level
we have six distinct gauge parameters:
1) () A®) (4 A®) A© (14)

al---ag,bl b2b3 2 al---ag,b,c ’ a1 ag,bl bz a1-~a10,b ’ a1 alo,b ’ al a11

Note that Ag‘(?l and A(lo)1 have the same symmetry type since ['®! € £, has multiplicity two.

The transformation of the Bjp,1,1 field contains three parameters and is given by

_ 756 A® 126 A® 11 (4)
6/\301"'5110;1”5 - 3 a2 ~ayg],b,¢ a[Cll ay-agol(be) Ea(b|Aa1malo,|C)

) [ PING
+6 (a[alAa2-~~a10](b,c) - Ea(blAalmach)) : (15)

The transformation of Cy, ; is given by

693, @ R PEING PO

10 la1}qyay;],b 10 a1 ayapp b 5 b A ay-dpp (16)

5ACa1~~~a11,b =

We have scaled the gauge parameters in 5, B1 1 ; and 6, Cy; ; by an inverse factor of 756,000.
The gauge transformation of the field associated with the higher dual three-form contains the
last two parameters and it is given by

©)) 9 (3)
O pAay-ag,bybyby = 128[“1Aa ~-dg],b1byby tz 5 (a[alAa2~~~a9][b1,b2b3 9a[b1| al -ag,|bybs ])' 17)

3 Unfolding E;; up to level three

3.1 A brief review of unfolding

In this section we review some basic aspects of unfolding [5, 6] (see e.g. [75,76]) with partic-
ular emphasis on mixed-symmetry gauge fields in flat space-time [77-79], see also Section 2
of [80]. Later in this section we will work out some examples at the linearised level.
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The unfolded formulation of a theory is a way to express its dynamics as a set of first-
order differential equations, thereby generalising the Hamiltonian formalism. In an unfolded
system, the fundamental variables are an infinite tower of differential forms Wy, 1% where p,,
is the form degree and «a is a set of indices. In practice, these variables are identified with
objects such as the vielbein, spin connection, field strengths, and so on.

We must distinguish between off-shell and on-shell unfolding. For a given system in eleven
dimensions with local degrees of freedom, unfolding off-shell means that the indices a of each
variable W, 1* are associated with an irreducible GL(11) representation. In contrast, on-shell
unfolding amounts to imposing appropriate trace constraints on the zero-form variables so
that they are valued in irreducible Lorentz representations. The strictness of these constraints
can vary. For many fields it is required that the zero-forms are all completely traceless. Later
we will observe that the on-shell unfolding of fields with complicated Young tableaux may
feature zero-forms satisfying higher trace constraints where some traces survive and others do
not.

The equations of an unfolded theory are a tower of first-order differential equations

F*:=dw*+Q%*(W)=0, (18)

where Q% are wedge product polynomials of the forms. Integrability of this differential system
leads to the conditions

«9Q" _
Q awe 0. (19)
Every differential form Wy, 1 is associated with a generalised curvature Fp, ,11* of form de-
gree p, + 1, and if p, > 1 then there is also a gauge parameter A, 1% of form degree
DPo—1. Using (19) and its differential consequences, one can show that the tower of unfolded

equations (18) is invariant under the gauge transformations

2Q*
OWB’

53 Wp, 1" = dAgp, 1" — A7 (20)
Of course, if p, is zero then the dA, _11” term is not present. Similarly, one can use (19) to
obtain the Bianchi identity
oQ*
owh
For variables with form degree p, > 1, the equation 6,W* = 0 can be satisfied identically,
and this expresses the fact that there are reducibility (gauge-for-gauge) parameters. One is
led to a chain of parameters A, _11%, ..., A[11* of some higher-order gauge transformations.
It is known how to unfold fields that are totally symmetric or antisymmetric, and here
we will outline the unfolding procedure for the most general mixed-symmetry fields. Con-
sider a tensor field ¢y, , whose subscript corresponds to the irreducible GL(11) tableau
Y[hy,...,h,] with n columns. In order to unfold ¢, 5 we must rewrite {Wp, 1*} (possi-
bly after a redefinition) as an infinite tower of zero-forms {C”} and a finite tower of forms
{X{n, 1%} with positive form degrees h; . The full tower can be written as

dF*—FP

0. 21

e[hl]“l , w[hz]az , X[hg]a3 s eees X[hn]a" , Cﬁl , Cﬁz s eeey (22)

-~

h;-form connections zero-forms

where Xp; 1% and X, are labelled ef, 1% and wrp,1*?, respectively. Unfolding off-shell,
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the forms Xp;, 1% and the zero-forms CPi are valued in the following GL(11) tableaux:

a, ~ Y[hz,...,hn], ﬂl ~ Y[h1+1,,hn+1], (233)
Ay ~ Y[h1+1,h3,...,hn], ﬂz ~ Y[h1+1,...,hn+1,1], (23b)
as ~ Y[h1+1,h2+1,h4,...,hn], ﬂs ~ Y[h1+1,...,hn+1,1,1], (23C)
a, ~ Y[hy+1,...,h,_; +1], P ~ Y[hy+1,...,h,+1,1,...,1]. (23d)

In order to unfold our generic field ¢, , we need to write down all the equations of
the theory as an integrable Pfaffian system (18) that relates each variable in the tower with
the differential of the one before it. The unfolded equations can be written schematically as

de® + 0 =0, dw®+X%=0, ..., dX®*+ch =0, dch+chr=0, ... (24

Unfolding the metric-like field ¢ | 5 on-shell amounts to imposing some trace constraints on
the infinite set of zero-forms {CP} such that the labels j3; effectively denote irreducible Lorentz
(spin-)tensors. Upon solving these unfolded equations, the zero-form trace constraints will be
equivalent to the equation of motion of ¢ 4. -

In order to write the unfolded equations in full, we need to define the background vielbein
one-form for Minkowski space-time in Cartesian coordinates h® := dx“6z and we write

ha[n] =hU " =R A ... ARD (25)

As such, a p -form wr,; is locally written as wp,1= pi! dxH1.-.dxtr w = pl! R .h% ¢

[REI a-ap*

3.2 Unfolding linearised gravity

Although it is well-known, it will be instructive to recall the unfolded formulation of linearised
gravity — see, for example, the reviews [75,76]. As explained above, one needs to introduce
the variables presented in (22):

b Cab,cd ,

e, o, ey (26)

where w[l]ab = w[l][ab] and Cccd = clabled — gabled] with the constraint Cl@b<ld = @
ensuring that the primary zero-form C?? is valued in the irreducible GL(11) representation

with Young diagram Y[2,2] = EH The first two variables are the usual Cartan connection
b

one-forms: the vielbein e[ = dx*e," and spin connection o)[l]“b = dx"w,*”. They are
followed by an infinite tower of zero-forms. Unfolding on-shell will require all these zero-forms
to be valued in irreducible representations of the Lorentz group SO(1,10) and consequently
Cb-<d will be traceless, but for now we unfold off-shell® and we will not impose any trace
constraints on the zero-forms. For the variables with positive form degree, one can think of
the lower indices as world or form indices and the upper indices as tangent space indices. Since
we are working at the linearised level in flat space-time, the distinction is less important.

Writing the schematic Pfaffian system in (24) completely using background vielbeins, the
first two® unfolded equations are

d€[1]a + hb a)[l]ab =0, (27a)
dwppy® +heq €1 =0. (27b)

>0Off-shell unfolding for non-linear Yang-Mills and Einstein gravity theories in flat space can be found in [84].
Off-shell unfolding in (A)dS background is discussed in [85].

5We say that these are the ‘first’ and ‘second’ unfolded equations because we are counting the number of deriva-
tives. The first equation constrains the torsion, and the second constrains the curvature.
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These equations are invariant under the gauge transformations

Se* =dA*+hya®t,  Swp*? =da, (28)

where a® = al®] 1t will be useful to express the unfolded equations in components as

Fralpic + ©lajpic =0, (29a)
a[a"‘)b]lcd + Cab,cd =0, (29b)

with gauge transformations
5€a|b :aalb—aab, 5wa|bc =3aabc. (30)

Decomposing e,;, into irreducible parts, we write
eal = hap +Aqp (D
where hgj, = h(qp) and Agp :A\[ab] . These fields have the transformations
Shap = OaApy,  OAgp = Grahp] — Aap - (32)

We can use a,, to set A, to zero. In order to preserve this choice, we may carry out residual
gauge transformations whereby a,, = J4A5], leaving only the graviton hg, .
Solving (29a) for w, ;. leads to

Walpe = 2 a[bhc]a - aaA\bc . (33)

This is the usual spin connection with the opposite sign. In the E;; non-linear realisation,
among the positive roots at level zero, we find the field h,;, with the gauge transformation
of (32). However, at level zero we also find the field A, which has the local I,(E;;) trans-
formation with parameter a,;, in (32). After solving (29a) and (29b) for Cgp, 4 in terms of
the irreducible fields, we find Cyp g = —2 G chqpp)- Off-shell, we interpret Cyp 4 as the
linearised Riemann tensor Ryp, 4 -

Now we show how to proceed from off-shell unfolding towards on-shell unfolding by im-
posing appropriate zero-form trace constraints. Working on-shell, the well-known Ricci-flat
equation of motion is equivalent to the primary zero-form being traceless:

Rac,bC =R,y =0 — Tr(cab,cd) =0. (34)

The zero-form C??? is now not only GL(11) irreducible but also Lorentz irreducible with the
same Young tableau Y[2,2]. On-shell, we interpret C?*¢ as the linearised Weyl tensor.

3.3 Unfolding dual gravity

The dual graviton at level three is represented by the irreducible field hg; = g, ... p and its
unfolded formulation requires the introduction of the variables

e[g]a , w[l]al---ag , Calmag’bl b s e (35)

For now we will unfold the dual graviton off-shell so that the zero-form Cg 5 = Cy, ...q, b, 5, dO€S
not obey any trace constraints. The first two unfolded equations are given by

deg)® + hypg) )" =0, (36a)
dw[l]a[9] + hb[2] Ca[9],b[2] =0, (36b)
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with gauge symmetries

Sepg)” = dAp® —hprg1 a1, Sy = da ). (37)
In components, the equations take the form”’

Ota,Cayag]lb + ©laylay-aglb = 0> (38a)
3[a1 Way by by + Cb1"'b9,a1az =0, (38b)

and the gauge transformations are given by
5ea1...a8|b = 3[alla2---a8]|b — Qg agh> 5wa|b1...b9 = 8aab1...b9 . (39)

The reducible fields and gauge parameters of the local transformations can be decomposed
into irreducible components as

~ 1 2
€q,aglb = hal---ag,b +Aq,agh Aa1~~~a7|b = A( ) + )\( ) (40)

al...a%b al.“a7b >

with Young tableaux

&, (41)

HEEEEN
(TTTT]

@
[(TTTTTTTT]
®
]

I

where A, ..q, 57 = 0 and Aaa = 0. In terms of all these fields and gauge parameters, the

7’b]
transformations of (39) become

_ ) 1 @) )
6hy,.aq,b = 9a, /laz,,,as]’b =35 (abxal,,,as — 8[alxa2._va8]b) , (42a)
> _ )
6Aq,. a0 = Tay Aggy) ~ Yy - (42b)

Using the gauge symmetry with the nine-form parameter aq in (39) we can set A\g to zero.

This choice is preserved under residual gauge transformations whereby ag,..q, = a[al;tffz{.ag]

and only the dual graviton field hg ; will remain with the transformation of (42a).
Choosing for the moment to keep this extra field 29 and its gauge symmetry, we can solve
(38a) for w[1]9 in terms of both the irreducible fields as

Cz)a|b1...b9 =-9 8[blhb2...b9],a - 8aﬁbl...b9 . (43)
Solving the second equation (38b) for the primary zero-form Cg 5 implies that
Cal"'a9’bl by = 9 a[bl 3[‘11h02"'a9],b2] : (44)
The linearised dual gravity equation of motion [1,12] is given by
a[ba[mhaz‘"asc]f] =0 g Tr(Cy2) =0, (45)

and this equation transforms in the irreducible GL(11) representation depicted by the Young
tableau Y[8,1]. Unfolding on-shell, the correct trace constraint is to take the zero-form Cg 5 to

’In this paper, we rescale the components of p -forms by a factor of p! whenever we write unfolded equations
in components.
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be completely traceless, which is equivalent to it being an irreducible Lorentz representation.
Note that we could have started by imposing this trace constraint inside the second unfolded
equation (36b) thereby encoding the equations of motion from the very beginning.

We now make contact with the E;; non-linear realisation. The field hg ; is the level three
field in the theory and it has the same gauge transformation as in (42a) [12]. As done in the
first papers on E;; [1,86], one can choose to add a nine-formﬁg with the gauge transformation
(42b). One can reverse the above steps by starting from the E;; field hg ; and then adding the
nine-form field A\g to build 6[8]1 as in (40) and then form the connection co[l]g with its shift
symmetry as in (43).

3.4 The dual gravity duality relation

In the first paper on E;; the duality relation

1
_ CqeC
wa|b1b2 = Zgblbz 1 gwa|cl...cg (46)

was proposed [1]. This has been written in terms of the connections in the unfolded formalism,
and it is invariant under the local transformations (30) and (39) provided we identify

1

= —€ blmbgabl...bg . (47)

a
a1ay 4 a1ay

By taking derivatives of (46) one obtains a Hodge duality between curvatures

9
29, e a1, = = 80,6, A, Gy Moy o) (48)

Taking the trace on a, and b, leads to the equation of motion for gravity (34). If we instead
contract both sides of (48) with %2b102d1ds then we find the linearised dual graviton equation
of motion (45).

Notice that (48) is really just a relation between primary (curvature) zero-forms

¢
Cal---ag,ble < €q;-aq B ZCclcz,blbz , (49)

under which their tracelessness and over-antisymmetrisation constraints are exchanged:

Tr(C =0, Co 5 is GL(11) irreducible,
(Cy2) } — { 9,2 is GL(11) irreducible 50)

Cy 5 is GL(11) irreducible Tr(Cy5) =0.

This is just an exchange between equations of motion and Bianchi identities under dualisation.
Going on-shell, one takes the trace of Cy, to find that the right-hand side of (49) vanishes,
recovering the dual gravity equation of motion (45). Similarly, eliminating the dual graviton
leads to the usual Ricci-flat equation for gravity (34) [12,87]. Thus the first-order duality
relation (46) can be used to deduce the linearised equations of motion for each field.

The dual gravity equation of motion (45) propagates the correct degrees of freedom in the
sense that it corresponds to the UIR of the Poincaré group ISO(1, 10) induced from the Y[8,1]
UIR of the Wigner little group SO(9) for a massless particle. Relatedly, Y[1,1] and Y[8, 1] are
two equivalent representations of the little group. See [88,89] for more details and [90,91]
for the general case.

Recalling that w[l]z and a)[l]g are solutions of the zero-torsion equations (29a) and (38a),
respectively, the duality relation (46) can be considered as a sum of two equations:

-9
28[b1hb2]a = Z€b1b2C1 C93C1h62...69’a, (513)

~ -1 wton T
aaAbl bz = _ZgbleCI 0 aclACz“'Cga * (Slb)
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Equation (51a) follows from the E;; non-linear realisation. While it is not gauge-covariant,
such equations were understood to be equivalence equations meaning that it only holds up to
gauge transformations of the form 9, a; 5, . We write = rather than = to denote such relations.
This is one of an infinite set of duality relations that are invariant under the symmetries of the
E;; non-linear realisation. The second equation (51b) contains the E;; field A, ,a, at level zero

which can be gauged away using the local I.(E;;) transformation with parameter a, 4, . It

also contains the extra nine-form field Xal...ag which does not belong to E;; and so it does not
appear in the non-linear realisation. This duality relation is invariant under the above local
transformations provided the gauge parameter constraint (47) holds.

We remark that (51a) forces the differential gauge parameters A; and Aéz) in (32) and
(40) to be related by

by-bg ab 7(,(2) (52)

8[alk 17 bye+bg

1

az] = _Z €aya,
As a result, it is impossible to relate these parameters to each other locally, but this problem
is circumvented with the introduction of extra fields. Returning to the unfolded picture, if we

decompose wmz into GL(11) irreducible components

_ @ (2 —
Walbb, = @, a T Paprb, 2 e H = Ej ® @, (53)
then we find
o _ 20,4 ~ @ ~
Opybya = 28 Meg1a = 5 (Behnn, =G Abte) s @y, = —Gehbn. (54

These components transform as

ISR —§ (uttiyb, = by @py1a) - By ) = ~Balh,p,1- (55)
Note that both sides of each irreducible component of (46) transform only with a, and a4 that
are related by (47). One could have chosen to work in a gauge where the extra fields A, and
A\g are set to zero, in which case (46) reduces to (51a) with residual gauge symmetry such that
the gauge parameters are related by a4 4, = Gq, Aq,] a0d g, ..qy = Fq, Aay-ay] -

Lastly, it is important to note that one can obtain the duality relation (46) by integrating
the curvature relation (49). The constants of integration describe the gauge freedom of this
duality relation. Introducing extra fields allows us to absorb these gauge terms so that we end
up with a duality relation that holds exactly and not just as an equivalence relation.

3.5 The three-form and six-form fields

Alongside gravity and dual gravity, the E;; non-linear realisation contains a three-form A; and
its dual six-form Ag at levels one and two, respectively. Their unfolded formulations were
worked out in [23] and here we provide a summary.

In order to begin unfolding the three-form and the six-form® fields, we write down their
first unfolded equations in terms of their respective field strengths F, and F» :

dA[g] + ha[4]Fa[4] =0, dA[6] + ha[7]Fa[7] =0. (56)
These equations are invariant under the usual gauge transformations

5A[3] - dl[z] B 5A[6] = dA[S] . (57)

8This analysis is only given to linear order. In the full non-linear theory, it would not be F, but rather
G, := F, — $A;F, (with all seven indices antisymmetrised) that is associated with the six-form potential.
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The dynamics of a propagating three-form or six-form field is known to require (see e.g.[23])
an infinite number of field strength gradients’

(n) — (n) —
Fa1a2a3a4,b1 ..... b, " abl o abn 3[a1Aa2a3a4] ? Fal---a7,b1 ..... b, abl o abn 3[a1Aa2-~~a7] : (58)
Writing Finl) _,and F;nl) _, in terms of the original three-form and six-form fields is possible

upon solving a tower of unfolded equations. For example, the first unfolded equations (56)
are solved by Fu4) = 4 G q,Aayaza,] A0 Fo[71 = 7 014, Aq,-a,] » SO the primary zero-forms are the
usual four-form and seven-form field strengths, while the second unfolded equations
dFit 4 py pal¥b =0, dral7l 4 py FU7Ib =0, (59)
o _ o _
are solved by Fa[4]’b = J(pFqr47) and Fa[7],b =
tion on Young tableaux associated with the diagrams Y[4,1] and Y[7,1]. Combining these
. . 1 1 )
first two solutions leads to Fi[i]’b = 40,0 q,Aqya5a,] a0d Fé[;]’b =7 0y0[a,Aq,-a,] - Notice that
the GL(11) irreducibility properties of F,; and F7; in (59) are equivalent to g4, Fq,..q.] = 0
and J4, Fy,..q;1 = 0 which are solved by writing the primary zero-forms as field strengths.
Integrability of the first unfolded equation leads to an infinite tower of unfolded equations
relating all the higher field strength gradients. Every such equation is a relation between
GL(11) irreducible zero-forms:

9 Far77) » where angled brackets denote projec-

dFal4lbrbpy — hy Fal4l.b1,.bp1,by ’ dFal71bibp hy Fal71.b1,bp1,by ’ (60)
which includes (59) for n = 1. In components, (60) can be expressed as

Fatalby,by1,by = O(b, Fal41,by, by ) 5 Fat71by,by1,by = Otb, Fal71,by, by ) 5 (61)

where angled brackets denote projection onto the irreducible tableaux

a1]by [+ [by a1[b[[b,]
a a

Faftlbrabn ™ g : Pyt ~ [ .62
a &

It is useful to define the unfolded modules of the three-form and the six-form which contain
an infinite number of irreducible zero-form variables:

T(As):= {F" | neN} = {F" F{),FP ..}, (63)
T(A) := {FY | neN} = {F, F{)F® ...} (64)

The unfolded equations (59) and (60) all now imply that every zero-form is an irreducible
projection of the gradient of the previous one. The first object in each module is a primary
zero-form, and we note that these modules are analogous to those of gravity and dual gravity
containing the primary (Weyl) zero-forms C, , and C , that were used earlier in this section:

0) ~(1 2

T(hy1) = {Cglz),w ne N} = {Cé,z)’ Cg,z),p C£,2),1,1’ R } > (65)
0) ~(1 2

T(hg ) = {Cglz),ln ne N} = {Cé,z)’ Cé,z),p Cé,z),l,l’ R } . (66)

All the descendants, i.e. the higher gradients Cy 5, 1 and Cy5; 1, are contained inside these
modules. The above zero-forms are all irreducible GL(11) tensors when unfolding off-shell.

°In particular, one considers [75] an expansion of the field in a neighbourhood of some point in space-time
using F™ as the Taylor coefficients. Thus higher-order gradients F™ describe the field at longer distances.
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Unfolding on-shell implies that all the zero-forms are irreducible Lorentz tensors and hence
all completely traceless. From equation (59) we see that the tracelessness of F, ; is equivalent
to the Maxwell equations

aaFab1b2b3 :O, aaFabl,,,bﬁ =0. (67)

The equation of motion and Bianchi identities for a dynamical three-form and all information
about higher gradients of its field strength are encoded in the Lorentz irreducibility properties
of the zero-forms in 7(A3). Similarly, the properties of the zero-forms in 7 (Ag) encode the
dynamics of the six-form. Note that space-time on which the Poincaré generators are realised
as differential operators has already been introduced. Even without this space-time, we could
still choose to work with unfolded modules containing irreducible tensors.

In order to ensure that the only propagating degrees of freedom are those of the original
three-form, we relate the field strengths of the three-form and six-form fields using the on-shell
duality relation that follows from the E;; non-linear realisation'® [92]:

— by-b
Fayoay = €ayoa, " P*Fp o, (68)
Their higher gradients are therefore also related with an infinite set of relations

— by-b.
Fa1~~~a7,c1 ..... ch £a1~~~a7 ! 4Fb1~~~b4,c1 ..... Ch* (69)

It was explained in [23] that, as expected, the equations of motion and Bianchi identities for
the three-form and six-form are exchanged through these relations. Equivalently, tracelessness
and over-antisymmetrisation constraints on all higher gradients are exchanged.

4 Unfolding E,; at level four

4.1 Unfolding the field Ag 3

Much of the unfolded description of Ag 3 was given in [23] and here we revisit and build upon
it by working out the gauge symmetries of all the irreducible fields. We introduce the objects

ad-a a;--a aq-+A1n.b1+b
123’ w[s]l 10, Cl 10-Y1 4,

€[9] e (70)

where the primary zero-form C,, 4., b,...5, 18 the first zero-form in the infinite tower

neN}={Cis Cros 1 Cronnr - (71)
In contrast to the unfolding of the fields at levels three and below, C;( 4 and its descendants
do not need to be completely traceless on-shell — see [23]. They will turn out to obey certain
higher trace constraints that ensure their equivalence with irreducible Lorentz tensors in (63)
and so the higher dual field Ag 5 will be dynamically equivalent to the three-form.

Unfolding off-shell for the moment, the first two equations are given by

TAg3) = {C%,)4,1n

degor*) + hy7y oy P17 = 0, (72a)
dw[g]a[lo] + hb[4] Ca[lO],b[4] =0, (72b)

10This duality relation is not only linearised but it is also a truncation of the full duality relation in the sense that
we drop any terms containing derivatives with respect to space-time coordinates at higher levels. We only retain
derivatives with respect to the original eleven-dimensional coordinates at level zero.
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with gauge transformations

56[9]a[3] = dk[g]a[S] + hb[7] a[z]a[S]b[7] y 5@[3]a[10] = da[z]a[lo] . (73)
In components (after rescaling and renaming the p-form components), the equations are
3[alea2~--a10]|b1b2b3 + w[a1a2a3|a4~~~a10]b1 bybs = 0’ (743)
a[al @azagay]lbybio + Cbl"'blo’al"'a4 =0, (74Db)
and the gauge transformations take the form

5601“'a9|b1b2b3 = a[al Aa2~~-a9]|b1 bybs — Aayaylaz--ag]bybybs s (75a)

5wa1a2a3|b1---b10 = a[al aa2a3]|b1---b10 : (75b)

We can decompose the parameter a[2]10 into irreducible components as

=12qW —3q? (76)

aa1a2|b1"'b10 b1~~-b10,a1a2 bl“‘blo[al,az] ’

and over-antisymmetrisation constraints for each component leads to

1) _ 1 o ) _1 o 77)

=——Qa a = —-a .
by bybs[a;-az,agag] 12 ayaglby,babs]”? by bybs[a;-ag,agl 3 ay++ag[byby,bs]

Equation (75a) can now be written in the convenient form

— (1 (2)
66‘11""19|b1bzb3 - a[al A512”'619]|b1 bybz T aﬂ1"'ﬂ9[b1,b2b3] - aaln-ag[bl by,bs]” (78)

Decomposing the fields and differential parameters into irreducible components, we find

~

ea1-~~a9|b1b2b3 :Aﬂl"'%,bl byb; +A(11""19[b1,b2b3:| +Aa1"'a9[b1 by,b3] > (793)
_ 1 (2) (3) 4)
Aa1~~~a8|b1b2b3 - Aal"'a8»b1b2b3 ay-+ag[by,bybs] + ay-+ag[byby,bs] + a;--agbybabs (79b)

It is direct to show that

—~ 11

a4yay,b = ?e[al“'a9|a10a11]b ) (80a)
Aqyeargybiby = %e[ay--agmm]bl by — %Zal...aw[bbbz]. (80b)
As a result, we obtain
BAq, g prbybs = B, AL + L (3[b A2 + 28[(1 A2 ) ., (81a)
1:09,b1byb3 17 ayag],bybybs T 79 11 ay-ag,lbybs] ™ 7 “la1™ayag][by,bybs]

—~ 35 (2) 1 (3) 10 (3)
61Aal"'alo,b1b2 - ga[alkaz---alo],blbz - g (a[bﬂkal---aw,lbg] - ?a[alkaQMaw][bl,bz] ? (81b)

~ 44 11
23 “)

038a+anb = e Aatayay1p ¥ 3 Aartayay o (81¢)

The first gauge transformation (81a) matches that of Ag 5 in the E;; non-linear realisation [12].
In addition, the extra fields can be eliminated using the algebraic symmetries

—~ 1 - )
50‘A01"'¢110,b1b2 = _a( ) 5aAa1'--a11,b = _a( ) (82)

ap-ayg,by by’ ar-ay,b’
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After having done so, there would still exist some residual gauge symmetry whereby the gauge
parameters are related to each other as

&) _35, o _1 ®) _105 @
Yayaro,brby T 36a[allaz"'a10],b1bz 5 (a[bll)tal“'alo;lbz] 9 a[allaz'”alo][blabz] ’ (83a)

2

ap-daig,

EAPRC) H, @
b= 25t + 5 O, A (83b)

az-aplb az-ap]b’

One can use the decomposition given in (79a) to solve for w3 104 terms of 6[9]3 as follows.
It is useful to define and work with 5[3]1 which is related to w[3]10 by

~

= ¢, Q%0 ~ — c
@ayazas|b 10! €p @ayazazle;-cio 2 @ayazas|by-byg €by-byy Pajazasfe (84)

Now rewrite equation (74a) in the form

__ octa;a — 3 d
0 = g4 o (aaleaz"'alolb1b2b3 €ay-aq9bybybyd Payayas) ) . (85)
This leads to 1
~ C__ _ = napan
Wpybye| = 318! ¢ aa1eaz"'alo|a11blbz : (86)

Substituting back, we see that
1
- 317!

and using equation (84) we obtain

3
~ 4 cap-+ajo _ _poapag; sC
wb1b2b3| (8 8[01602“'1110]|b1b2b3 88 5[b1 a[‘11€<12“‘alo|<111]bzb3] > (87)

Wa,ayas|by-+byg — 75 a[bleb2~~~b10]|a1a2a3 —45 a[611e[bl"‘bg|blo]€12‘13:| +405 8[bl6172“'179[01|C12as:|blo] - (88)

Then, decomposing e[9]3 with equation (79a) we conclude that

wa1a2a3|b1mb10 =120 a[blAb2~~~b10],a1a2a3 —12 a[al |Ab1~--bw,|a2a3] +3 8[‘11 |Ab1"'b10|‘12,‘13] : (89)

Now we will revisit the primary zero-form. Remaining off-shell, equations (89) and (74b)
imply that Cy( 4 can be expressed as the curvature tensor

Cayayo,by--bs = Oby TayAdy-—aze]bybsbsl s (90)

up to a factor. Unfolding on-shell will force Cy 4 to satisfy a higher trace constraint to ensure
that the propagating degrees of freedom are those of the three-form field. This constraint can
be found by relating the zero-forms Cy 41 ; in (71) to the zero-forms F, ; __; in the unfolded
module (63). Concretely, for the primary zero-form, we set

_ c
Cal"'al()’bl"'b4 = €q,ay Fbl--~b4,c P €2y

so that Cyg 4 is equivalent to F,; in 7(A3). It was shown in [23] that the antisymmetrisation
and trace constraints of C1o 4 and F, ; are exchanged under (91) as follows:

(92)

Tr4(C10,4) =0, F,; is GL(11) irreducible,
C10,4 is GL(11) irreducible Tr(F4,)=0.

In other words, the Lorentz irreducibility properties of the zero-form F,; which are equiva-

lent to the Bianchi identity G4, Fy,. o] = O and the Maxwell equation 0“Fg;.q = 0, are also

equivalent to C;, 4 being GL(11) irreducible and subject to the higher trace constraint
TI‘4(C10,4) = Cal"'a6b1"'b4’bl...b4 = 3[b1 8[a1Aa2...a6b1...b4] babsbsl — 0. (93)

>

This is the linearised equation of motion for the Ay 5 field in the E;; non-linear realisation [83].
Starting from the non-linear realisation one could take the field equation (93) and then work
backwards to obtain the relation between C;( 4 and F, ; in (91).
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4.2 Unfolding the field By ; ;

In the unfolding of By ; ; at level four, we introduce the variables

b -dq1,b -aq1,by b -aq1,by by,
e[lo]a , w[l]al ain , X[l]al ai11,01 2, Caidin b 251C2’ e, (94)

where e[lo]a’b = e[lo](a’b) and the primary zero-form Cj; 5 5 is the first in the infinite tower

neN}={c?,,c?,, ,c® ...} (95)

_ [~
7d(BIO,l,l)_ {611,2,2,1n 11,2,2> ¥11,2,2,1° ~11,2,2,1,1°

The first three unfolded equations are

der101” + hepioy wp @ =0, (96a)
deopy 10 4 X110 = 0, (96b)
dX[l]a[ll],b[Z] +hep) cal11b2lel2] — ¢ (96¢)
and they are invariant under the transformations
56[10]a,b _ dl[g]a,b — hegao) c1101@b) (972)
5w[1]a[11],b — daa[ll],b + hc ﬁa[ll],bc , (97b)
5X[1]a[11],b[2] — dpal11lei], 97¢)

We will briefly explain the gauge invariance of (96a). The left-hand side clearly vanishes
under the A part of the gauge transformation, while the a part is given by

6a (de[lo]a’b + hc[lO] w[l]c[IO](a,b)) — d(_hc[lo] ac[lO](a,b)) + hc[lO] dac[lO](a,b) =0. (98)
The f part also vanishes:
8p (depaoy™” + hepaoy oy ™M) = hygg prn@Den = 0. (99)

To see this, recall that $'? is irreducible, so it satisfies B4, ..q,, b,15, = 0. We can use this to
move the symmetrised indices into the second antisymmetric block, and therefore the 8 part
is zero. Similarly, notice that Y[11,2] is not an irreducible component of the tensor product
Y[11]® Y[1,1] and hence pler-cwo(@blenl yanishes.

In components, after the usual rescaling, (96a) is given by

a[aleaz”'all]|b"3 + w[a1|a2~~~a11](b,c) = 0’ (100)

and it is invariant under
66‘11""110|bxc = a[al Aaz---a10]|b,c - aal“‘alo(b,c) > (101)
5awa|b1...bn,c = aaabl...bu,c . (102)

We decompose the fields and parameters into irreducible parts

- B _ 1) (6)
€a;--aolb,c = Bal"'alo,b,c +Ba1~~~a10(b,c) ? Aal--~a9|b,c - Aalmag,b,c + Aal---ag(b,c) > (103)

with Young tableaux

®[[] = ®[l] = ; (104)

[TTTTTTTT]

[TTTTTT]

(TITTTTTTTT]

[(TTTTTTT]
[TTTTTTTTT

(ITTTTTT]
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where the over-antisymmetrisation constraints are given by

_3 _ ) _ 06 NG! _
Bla,-ay bl = Blajayb] = A =2 =2 0. (105)

[al"'ag,b],C al...ag’[b7c] [al...alo’b] =

The transformations of the irreducible fields are given by

_ (5) 11 (6) 10 (6)
5Ba1~~~a10,b,c - a[alkaznﬂlo],b,c - @ (a(blkal...alo’k) - ﬁ [alla2~~~a10](b,c) 5 (106a)
5B, 121 6) (106b)

al...au,b = 60 [Cl1 a2...a11]’b - aal..~a11,b .

Unfolding By ; ; has introduced an extra field §11’1 that we can eliminate using the a,; ; part
of (106b), leaving a residual gauge symmetry where the parameters are related by

121 6)

®q;-aqy,b = 60 lar™a;ap;1,b "

(107)

The field By, occurs at level four in the E;; non-linear realisation and (106a) matches its
gauge transformation [12]. Its unfolded formulation features the extra field §11,1 , and there
is a field with precisely this symmetry type in the non-linear realisation at level four, namely
the field C;; ; in equation (6).

We can solve for a)[l]“’l in equation (100). It will be useful to rewrite it in the form

1
Ota, Cay-anllbe ¥ 7 Plbllay-a o) = 0 (108)

Note that only the part of the connection that is symmetric in b and c appears, and one finds
that it is given by

W(allby by le) = —11 b, by Jlae = =11 b, Bbyby Lae =2 9(aBbybyy o) - (109)

Looking at the gauge transformations (97b) and (97c), we observe that Wla|lby-byy,lc] is pure
gauge, SO we can use

OB Wallby by lc] = Pby-byyac (110)

to set this component to zero. Solving (96b) for X(;7'"? in terms of wp;;'"! leads to

X¢1|b1"'b11aC1C2 =—22 a[Cl a[blez"'bn],Cz] a~ 2 aaa[CﬂBbl"'buJCz] : a1n

5

Then, solving (96¢) implies that Cy; 5 5 can be expressed as the curvature tensor

Cayaybibycre, = 8[01 a[bl a[alBaZ"'all];bz];CZ] ) (112)

up to a factor.

If we unfold on-shell, then the primary zero-form C;; 5, will obey a trace constraint. As
we discussed in Section 2, the By ; field at level four in E;; is related to the Romans field
and proagates no additional degrees of freedom. The equation of motion that follows from
E;; symmetry [12] can be expressed as the complete tracelessness of the curvature tensor:

Tr(Cll’z’z) == Tr(a[cl a[bl a[alBaz"'all];szCZ]) =0. (1 13)

This is equivalent to Cy; 5 » vanishing since it is now an irreducible Lorentz representation.
Although the primary zero-form Cyg4 of Ag3 is equivalent to F,; € T(A3), we do not

have such an equivalence for C;; 5, because By ; is not dual to any field at lower levels.

Therefore, Cy; 5 5 does not satisfy an unusual higher trace constraint analogous to (93).
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4.3 The higher dual three-form duality relation

The non-linear realisation of E;; contains three infinite families of higher dual fields and the
degrees of freedom of the theory are those of the graviton and the three-form. An infinite set
of duality relations that is invariant under the symmetries of the non-linear realisation ensures
that the degrees of freedom are preserved. The first higher dual field that we encounter is
Ag 3 at level four. Its unfolded description was given in [23] and we have built upon it by
working out the gauge transformations of the extra fields 210,2 and 211,1 in Section 4.1. These
extra fields appear explicitly in the connection w[3]10 after solving the first unfolded equation
(72a). However, after solving the second unfolded equation (72b) for the primary zero-form
C10,4 > we find that the two extra fields no longer appear and that C;( 4 can be written as the
curvature tensor of the Ag 5 field in equation (90).

The first-order duality relation in the non-linear realisation between Ay 5 at level four and
As at level one was found [12,23] to take the form!!

c
wa1a2a3|b1~~~b10 o< gbl"'blo FC a1azas - (114)

Note that we are working at the linearised level, so the coefficient in (114) can be absorbed in
a redefinition of the variables. At the full non-linear level, the coefficients would be fixed by
E;; symmetry since, as we explained in the introduction, E;; symmetry determines the tensor
structure and the precise combination of terms in all the equations of the theory.

In the E;; non-linear realisation, this duality relation between the three-form and the
higher dual field Ag 5 held up to some pure gauge terms, and in our proposed duality relation
(114) this gauge freedom has been soaked up by the two extra fields A\w,z and 211,1 . Using
equation (89) and taking a curl on the a[3] indices, we obtain the gauge-invariant relation

Ob; FarAay as0).bybsba] O 801"'“10C Oc Oty Abybyby] (115)

Then taking the fourth trace of both sides leads to the linearised equation of motion for the
Ag 5 field in the non-linear realisation:

olb1g, A b2bsbal =, (116)

ayaghy-+byl,

Similarly, contracting both sides of (115) with g%1--%10%1 leads directly to the Maxwell equation
0 ¢Ap,b,b,] = 0. Thus the equations of motion for the three-form and the higher dual field
follow directly from the duality relation (114) which is now gauge-invariant as a result of our
choice to include extra fields.

Equation (115) can also be written as a relation between (curvature) zero-forms (91),
ensuring that Cy 4 € 7(Ag 3) and F4 ; € T(A3) are equivalent Lorentz tensors. Following [23],
solving the unfolded equations allows us to express the zero-forms in terms of their respective
fields, and then the zero-form relation (91) takes the form of (115).

Working backwards, we can integrate (115) to obtain a first-order relation

a[‘hAaz‘“alo],bl bybs + a[blEbzb3]|a1“‘alo o< gal“‘awcaCAbl bybs > (117)

up to an arbitrary Zy;¢ term. It is useful to impose the shift

= = ¢
Saya|bybig T Sajag|bybyg + 3£b1"'b10 Aalazc ’ (118)

so that we can rewrite (117) as

- ¢
a[alAaz“'alo],mbzbs + a[bl':‘bzbsﬂal“'alo OC €q;ay F bybybs (119)

"Whenever we unfold an irreducible field with more than one block of antisymmetric indices, the first-order
variable is labelled w . If it has only one block, then the first-order variable is just the primary zero-form and it is
labelled F . Thus all the first-order duality relations in this paper take the form “w o< *w” or “w o< *F ”.
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=(2)
=11,10

Labelling the irreducible components of =y, as 5(11))2 and this relation becomes

:'(1) ':(2) c
a[alAaZ"’a10]7b1b2b3 + 8[b1|"'a1---a10,|b2b3] + a[bl|“‘a1---a10|b2,b3] OC €q)ayy F, bybybs (120)

As worked out in [23], taking a curl on the a[10] indices leads to

a[al a[bl E172173]|¢12""111] o< 801"'011 aCFC bybyb3 > (121)

which vanishes on-shell due to the Maxwell equation. As a result, we find

b, Zb,bsllayare = 9a, Ay Ebybsllay-are] > (122)

for some tensor £, whose components have the same tableaux as the differential parameters
of (81b) and (81c). The duality relation can now be written as

a[a1Aaz“'a1o],b1b2b3 + a[(11 a[b1£b2b3]|a2---a10] o< 8al“'alocFC bybybs (123)

Choosing for the moment not to express the = fields in terms of the smaller & fields, the

left-hand side of (120) will be proportional to w(3;' in (89) if we set 5(11)),2 = —1-A10, and
—@)

Elg = 4%211,1 . This justifies a posteriori our proposed duality relation (114) featuring extra
(1) (2)

fields. It transforms only with the parameters ®10.2 and ajy, as
Sw =125, " 351, a? =G, a (124)
ajazaz|by-+big [a11%b;-bg,lazas] [a11%b;-biglay,as] la; #aza3]by by >

where a[z]lo is the reducible gauge parameter in (76). The right-hand side of (120) is gauge-
invariant, and hence so is the left-hand side. We see that 4, @4,q,]5,--b,, = O is solved by

a[10] _

a[Z] da[l]a[lo] And C‘b1b2|al""110 =2 a[bl ab2]|‘11"'a10 > (125)

where amlo is a gauge-for-gauge parameter. It was expected that we would need a constraint

on our algebraic parameter. For example, the duality relation (46) between gravity and dual
gravity holds if the two-form parameter a, and the nine-form parameter agy are Hodge dual
to each other as in equation (47). However, it is interesting that (120) forces a[z]lo to be pure
gauge-for-gauge. Notice that e[9]3 no longer transforms with algebraic shift symmetries as in
(78) and the extra fields are necessary to make sense of (120). There must be more freedom
at the level of the fields when there are constraints on the parameters. The extra fields in the
duality relation (123) emerge in a way that is compatible with this freedom.

To be precise, the duality relation (123) features two dual fields, A; and Ag 5, as well as
some extra fields: €95, &191, and £;; . Demanding that our duality relation is gauge invariant,
we found that our gauge parameter a,|y¢ is built from two smaller parameters: ao; and a4 .
Thus we are only able to eliminate two of the three extra fields, and our final gauge-invariant
duality relation is given in terms of A3, Ag 5, and the last extra field &g 5 :

a[alAaZ"'alo]:bl bybs + a[bl a[al gaz"'alo],bzba] o< Eal"'alocFC bybybs (126)

This is exactly the duality relation in equation (3.2.12) of [23] that was found using a different
procedure. At higher levels, one should in principle be able to obtain the same kind of duality
relations with the a parameters constrained and some of the extra & fields left intact.

In Section 3.5 we gave the duality relation (68) between F, and F,. Then in Section 4.1
we wrote down the relation (91) between F, ; into Cyq 4 . After expressing F, ; in terms of the
three-form and Cy 4 in terms of the Ag 5 field, integrating (91) led to a duality relation (114)
between these fields featuring a pair of extra fields Km,z and 211,1 that we identify as those at
level one in the £, representation of E;; . Once again we find that extra fields are necessary
for our first-order duality relations to hold exactly and not as equivalence equations.
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5 Duality relations at higher levels

In this section we propose an infinite number of linearised first-order duality relations for
all higher dual fields in the E;; non-linear realisation. For each higher dual field, we will
follow the same procedure: (1) introducing a set of variables, i.e. connections and zero-forms;
(2) writing down the first few unfolded equations and their gauge transformations; and (3)
proposing gauge-covariant duality relations between the dual fields in terms of the first-order
variables.

Taking derivatives of our duality relations will lead to relations between primary zero-
forms (written as curvature tensors), and taking traces leads to the linearised equations of
motion. The equations of motion are expressed as constraints on the curvature. For any pair
of dual fields considered here, we see that the curvature tensors are related algebraically, and
so the constraints on one curvature directly lead to constraints on the other curvature, i.e. dual
equations of motion. Integrating back, we find the pure gauge terms up to which the E;
duality relations are expected to hold if the extra fields had not been included in our proposed
relations. At low levels where they have already been worked out, the duality relations and
equations of motion that we propose here match those of the non-linear realisation at the
linearised level.

5.1 Unfolding the field Aq ¢ at level five

At level five the idea is essentially the same as at level four, except now there are four fields in
the non-linear realisation: Ag ¢, B1g41, C1131,and Cyq 4. Only the higher dual six-form field
Ag ¢ will be unfolded here. We introduce an infinite set of variables

6[9]a1ma6 ’ w[G]al...alo ) Cal“'a10,b1"'b7 R (127)

where the primary zero-form Cy 7 is the first zero-form in the module

_ [~ _ [~ ~D @
T(Age) = {C18,7,1n ne N} = {C10,7> Clo.7,10 C10,7,1,10 } (128)
The first two unfolded equations are
de[g]a[6] + hb[4] w[G]a[6]b[4] =0, (129a)
dwpe) 1 + hyp, cHHOM =0 (129b)
with gauge transformations
56[9]a[6] — dl[s]a[ﬂ _ hb[4] a[S]a[6]b[4] , 6w[6]a[10] — da[s]a[lo] . (130)
In components, the unfolded equations are
3[alea2-~~a10]|b1~~b6 + Wlq,-aglayaio]bybg — 0, (131a)
3[a1 Way-a,]|bybyy T Cb1“'b10,01"'a7 =0, (131b)
and the gauge transformations are
5ea1~-a9|b1---b6 = a[allaz...agﬂbl...[% — Q[q;ag|agag]b;~bg > (132a)
5wa1"'ﬂ6|b1"'b10 = a[al aa2~~~a6]|b1---b10 : (132b)
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We can decompose e[9]6, A[g]() and a[5]10 in terms of irreducible components as

€a-ag|by+bg = Aaywag,by+bg T Aar-ag[by,by-bs] T Aay+aglby bbb 1> (133)
— @M (2 (3) C))
Aal"'aSIbl"'bﬁ - Aal"’aS:bl"'bG + Aal"'GS[bl’bz'"bé] + Aal"‘as[blbz’b3“‘b6] + Aal"'as[b1b2b3,b4b5b6] ?
(134)
— (2)
Qay-ayolby-+bs = aal'"alo,bl“'bs + aal"'alo[bl;bz'“bs] . (135)

The higher dual field Ag ¢ is contained inside the e[9]6 variable alongside two extra fields:
210,5 and 211,4 . The parameters a(lt)’s and a(lzl)’ 4 can be used to shift away the two extra fields,
and some residual gauge symmetry would remain wherein the a gauge parameters would be
related to derivatives of the A parameters.

We propose a first-order on-shell duality relation between the six-form Ag at level two and
the higher dual six-form Ag ¢ at level five in terms of the field strength F, € T(A¢) and the

first-order connection wpe;'® in (129a). This relation takes the form

c
Wa,-qg|by-byy O Eby-byg F, ay--ag * (136)

Again, as with (114), in a consistent extension of E theory featuring all the extra fields, E;;
symmetry would fix the precise combination of terms in the non-linear duality relations. Here
we are working at the linearised level, so the factor in (136) can be absorbed by a redefinition
of the fields. On the left-hand side, Ag ¢ appears inside w[6]10 with extra fields 210’5 and 211,4 .
The duality relation (136) is gauge-invariant when a[s]lo is subject to some constraint that is
analogous to (125) which forces a[5]1° to be pure gauge-for-gauge.

Taking a curl of (136) on the a[6] indices leads to the gauge-invariant relation

3[b1 3[a1Aa2~--a10],b2---b7] o< 8a1--~a10C 3c3[b1Abz...b7] . (137)
Taking the seventh trace of both sides leads to the equation of motion for the Ag ¢ field
d o a[alAazagb1'“b7],b2mb7] =0. (138)

Similarly, as with (115), contracting both sides with £%%0b1 directly leads to the expected
Maxwell equation 9“gAp,..,,) = 0, so the two equations of motion follow from (136). It
is also possible to integrate (137) to obtain the duality relation (136) in a form analogous to
(123) at level four, this time featuring a reducible tensor & 509 -

Alternatively, the equation of motion for Ay ¢ can be described as a higher trace constraint
for the primary zero-form Cyg; € T(Age). Solving (129a) and (129b) for Cy, 7 in terms of
the irreducible fields, we find that it can be expressed as the curvature tensor

Cal"'alo:bl"'b7 = a[bl a[alAaz"'alo],b2"'b7] > (139)

up to a factor. Similarly, we can solve the unfolded equations of the six-form field to express
Fy1 € T(A¢) as Fyi71 =7 O G, Aq,...a,) = 0. Thus we see that (137) can be rewritten as the
zero-form relation

Cal"'alo’bl“'b7 < €a1~~~a10CFb1~~~b7,c . (140)
This is analogous to the zero-form relation (91) between Cyp4 € T(Ag3) and Fy; € T(A3),
and it means that C;o7 and F;; are equivalent Lorentz tensors. As always, we really have an
infinite number of equivalences between zero-forms Cyp71 1 € T(Agg) and F7 11 1 € T(Ag)
but for our purposes it will suffice to consider only (140).
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On-shell, the (Lorentz) irreducibility properties of F;, are exchanged under (140) with
the analogous constraints on Cy, 7 as

Tr’ (C =0, F- 1 is GL(11) irreducible,
(Cro) } { 7115 GL(11) (141)

C10,7 is GL(11) irreducible Tr(F;,)=0.

This is essentially the same as (92). As a result, the equation of motion for Ay ¢ is equivalent
to the higher trace constraint

by--b b bo--b
Tt”(C10.7) = Caymaybyby, V%7 = 0181 Ag ga,b, 51,2 P71 = 0. (142)

Duality relation between Ags and Age. Using the zero-form relations (69), (91), and
(140), we find that the primary zero-forms Cq 4 and C; 7 are related by

[4] C

Ca101,607] ©< €b171" " Cal107,c[4] - (143)

Their on-shell properties are exchanged under (143) as

Tr*(c1%*) =0, Cc1'%7 is GL(11) irreducible,
(144)

C1%4 is GL(11) irreducible T’ (C1%7) = 0.

We can combine the three first-order duality relations equations (68), (114) and (136) into a
single relation between Ag 3 and Ag ¢ that takes the form

£61°°C10 oc b1 bel (145)

w a;--azby+bg *

[a1 a2a3a4]|c1---clo

It is useful to write this relation in the form
~ by-by ~
®Wlayayas]as] O €ay-ay W[py-bg|b,]> (146)

where 03[3]1 and 03[6]1 are defined in terms of w[g]lo and w[6]10 by

wa102a3|b = Sbclmclo wa1a2a3lcl“'510 5 5a1~~-a6|b = Ebclmcw wal“'a6|cl“'clo . (147)
Equations (68), (114), (136) and (146) populate the following array of duality relations:

Fy > wp®

I I (148)

F7 «—> a)[6]10

This will be extended infinitely in Section 5.4 where first-order on-shell duality relations for
all higher dual fields in the three-form and six-form sectors will be worked out.

5.2 Unfolding the field hy g, at level six

There are nine fields in the E;; non-linear realisation at level six: hgg 1, B1g 62> B10,71>B1os >
C1143,C1151,1,two copiesof Cy; ¢ 1 , and Cy; ;. Here we will obtain the unfolded formulation
of the higher dual gravity field hg g, . In order to do so, we introduce a set of variables

a;--ag,b

yo,b wayg,by++b -ay0,b1+*+bo,
6[9] , w[g]al i ) X[l]al Q10,01 9, C%1di0,01 9C152, e, (149)

where the primary zero-form Cyg g 5 is the first zero-form in the module

neN}={c9 . ct),,c?

_ (™
T(hgs1) = {Cig10 1092 C109.2,1:Clo9,2,1,10+ - } - (150)
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The first three unfolded equations are

de[9]“[8]’b + hc[Z] w[s]c[Z](a[B],b) =0, (151a)
dw[g]a[lO],b + hc[g]X[l]a[lo]’c[S]b =0, (151b)
dX[l]a[lo],b[9] + heay cal101,6[91c[2] _ ¢ (151¢)
In (151a) the angled brackets denote the projection of the final nine indices of wg;'®' onto
the GL(11) irreducible Y[8, 1] tableau. It may be clearer to rewrite (151a) as
degoy " +he,c, (g 124 — copgy 12k b]) = 0. (152)
The gauge transformations of the above equations are given by
56[9]61[8],1’ — dk[g]“[s]’b _ hc[z] a[7]C[2](a[8],b) , (153a)
50)[8]&[10],1) — da[7]a[10]’b _hc[S] ﬁa[IO],C[S]b , (153b)
5X[1]a[10],b[9] — dpal103.blo] (1530)

Schematically, we once again decompose everything in terms of irreducible components:

1 —~ —~ —~ —~
ero)”! = hg,e)m +A10,71 T A108 TA11,61 TA11,7, (154a)
8,1 _ 4(1) (2) (3) 4 (5) (6) (7)
1[8] - 7‘8,8,1 + A9,7,1 + 7‘9,8 + 110,6,1 + 7“10,7 + 111,5,1 + All,6 > (154b)
10,1 _ (1) (2) 3) 4
a7 = 071 T Ao T %161 T 17 (154¢)

8,1

The variable efo)™" contains the irreducible field hg g, alongside four extra fields: 210,7,1 ,

Ajos,A1161,and Ay ;. These extra fields can be set to zero using the components of ag;;'%!
so that only hg g ; remains, whereafter there will remain some residual gauge symmetry and
the a parameters will be related to first derivatives of the A parameters.

It is useful to denote the number of higher dualisations with a superscript, distinguishing
the first higher dual graviton h(;s);,l at level six from the dual graviton hg ; at level three. Here

1)

we propose a first-order on-shell duality relation between the fields h ¢ ;

their first-order connections:

and hg ; in terms of

(1) d
wal---aglbl---bw,c X Epybyy Pclay-agd - (155)

As for all the duality relations that we propose in this paper, we are working at the linearised
level so the constant of proportionality can be absorbed by a redefinition of the fields. However,
the tensor structure and the precise coefficients in the full non-linear relations would be fixed
by E;; symmetry, as explained in the introduction.

In the same way that (114) and (136) hold exactly when the parameters are constrained
to be pure gauge-for-gauge, our higher duality relation (155) holds exactly in a gauge where
B9 is related to amm’l and o’ via the constraint!?

d
3[a10£a2...a8]|b1...b10,c - ﬁbr"bw,ar“asc OC €p, by acaalwasd s (156)

where the constant of proportionality is the same as that of (155). This constraint is invariant

under gauge-for-gauge transformations. As at previous levels, the constraints on the gauge

parameters lead to extra freedom at the level of the fields, hence the extra fields in (155).
Taking derivatives of (155) leads to a gauge-invariant relation

) d
a[cl a[bl a[Cllhazo--aw:|,b2---b9],c2:| OC €q;ay ada[cl a[blhbz“'bg],cz] : (157)

12As5 in previous sections, we rescale p-forms by factors p! when writing equations in components.
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The equation of motion for hg ; was given in (45) and under (157) it is equivalent to

L 4 =o. (158)

a
ay-+ajpl,by-bgd],
Moreover, going back to (157), antisymmetring d with b[9] or c[2] causes the right-hand side
to vanish, leading to two on-shell constraints for the hg g ; field:

816,01 8la, ) 4 P 1 =0, 9198, g ) ©l=0. (159

@17"by-+by ], 1" ay--ageyca] by by,
Together, (158) and (159) are the equations of motion for the higher dual graviton hglg , Whose
Young tableau contains more than two columns. As such, we have more than one equation of
motion for the hg g ; field, each with three derivatives, and they are independent of each other.
Solving equations (151a), (151b) and (151c) for the primary zero-form Cyg95 € 7 (hgg1)

in terms of h(;g , and the extra fields, we find that it is given by the curvature tensor

Ca = a[01 a[bl a[alha2~~~a10],b2~~~b9],c2] ’ (160)

17+@10,b1bo,c1C0

up to a factor. Since we are unfolding on-shell, Cy( g , obeys higher trace constraints that will
be equivalent to the h&g’l equations of motion. Moreover, Cg , and its descendents Cg 5 1 1 are
irreducible Lorentz representations, so they are traceless and satisfy over-antisymmetrisation
constraints for GL(11) irreducible tensors. It is useful to rewrite (157) as a relation between
C109,2 € T(hgg1) and Cy 51 € T (hg ;) where we recall that Cy , ; is really a projection of the

gradient of the primary zero-form Cg , :

Ca1“‘a10’b1“‘b9,5152 = Eal..AaIO Cbl“'bg,ClCz,d . (161)

Under this relation, the on-shell properties of the zero-forms are exchanged as

Try3(Cro02) =0, ) Try5(Cop,1) =0,
023(C10,0,2) =0, 01,2(Co21) =0,
(Tr13)*(C109,2) =0, QDI 023(Co21) =0, (162)
(Tr;2)°(C1092) =0, 013(C921)=0,
01,2(C10,02) =0, Try3(Co21) =0,
013(C10,02) =0 ) Try3(Co 1) =0.

We use Tr; ; to denote a trace on columns i and j, and o; ; denotes over-antisymmetrisation
of column i with one index in column j > i. For example, one can write o' 5(hgg ;) in place
Of Afq,...qp),by~bg,|c] - A Mixed-symmetry field ¢ is GL(11) irreducible if and only if o; j(¢) =0
for all i and j with i < j. Thus the higher trace constraints

(Tr12)°(Cr092) =0, (Tl’1,3)2(c10,9,2) =0, Try 3(Ci0,92) =0, (163)

are equivalent to the linearised equations of motion (158) and (159) of the higher dual field
hgs)m when the primary zero-form Cy ¢ , is expressed as the curvature tensor (160).

Before moving on, we will clarify the linearised equations of motion (163). It may seem
strange that we have three independent third-order equations rather than just one second-
order equation, but this is unsurprising from the perspective of reference [90]. The idea is that
the higher dual field hgg’l propagates the correct degrees of freedom when its curvature obeys
all three equations. Two of the equations arise from the Bianchi identities for the dual graviton

hg ; and the third equation appears when taking a gradient of the dual gravity equation (45).
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Note that By ; ; at level four also has three blocks of indices and hence more than one equation
of motion, i.e. the complete tracelessness of its curvature Cq; 5, in (113).

Note that a Lagrangian formulation would be different. Higher dual action principles re-
quire extra fields in addition to the irreducible higher dual field alone, so instead of one equa-
tion of motion for the higher dual field, there are several. An action in four dimensions for
the higher dual graviton that is second-order in derivatives was found in [74]. We found that
an extra field is present inside this action, and neither of the two could be eliminated. There
were two standard second-order equations of motion, one for each of the two field.

Working backwards, we can integrate the b[9] column of (157) and use the Poincaré
lemma again on c[2] to obtain

(1) = d
a[C1|a[alhaz---aw],blvv-b8,|c2] + a[C1|a[bl“‘bz‘“bsﬂal""110;|Cz] o< €a;--ayp ada[cﬂhbl“'bg’kz] ’ (164)

up to some arbitrary Z);; tensor field. Imposing the shift

_ - d
Ebybylayage T ':'bl---b7|a1~~~a10,c_8€a1~~~a10 hbl--~b7d,c’ (165)

allows us to write equation (164) as

€y = d
G911 Ry by ey + Fler1 b Bbbilar s lea] OF Eayasy (9 e FaP, 1)) - (166)
The c[2] column can now be integrated, leading to a first-order relation

1 —
a[alh( ) + a[bl*:‘b2~~~b8]|a1~--aw,c o< €a1...a10d (9 8[dhb1-~~b8],c + ac(adbl---bg) . (1e7)

ayagpl,by-bg,c

Comparing this with the previous duality relation in the gravity sector (46), we identify the
terms in the parentheses with the connection w[l]s in (36a). Moreover, O, is identified with
the extra field Ag in (40) and the irreducible components of E7)10,1 are identified with the extra
fields in (154a). Solving (151a) for w[g]m’l = O)(l)[g]lo’l (again using a superscript to denote
the number of higher dualisations) leads to

1) @

wa1~~~a3|b1-~b10,c = a[blhbz“'blo],al"'ag,C + a[alz'a2~~~a8]|bl~--b10,c >

(168)

on the left-hand side of (167) up to certain factors, while the quantity on the right-hand side
in parentheses is the solution (43) of equation (36a). Thus we have integrated up from the
equations of motion to obtain the duality relations.
Looking back at equation (166), one can antisymmetrise a[ 10] with ¢; to obtain
a[al a[blEbz'“baﬂaz“'au],c o< €ay--ay Tflda[cl a[dhbl“'ba];cz] ’ (169)

which vanishes on-shell due to the dual gravity equation of motion (45). This implies that

a[blEbz“'bs]|al"'alo,C = a[al a[bl gbz---b8]|a2~~~a10],c 4 (170)

for some tensor &9 ; whose irreducible components have the same Young tableaux as all but
one of the irreducible differential gauge parameters in (154b) and (153a). Importantly, these
are the only parameters in the gauge transformations of the extra fields (154a), and (167) can
now be written in the form

1
8[a1h( ) + 8[(11 8[b1£b2...b8]|a2...aw],c < 8a1...a10d (9 a[dhbl...bg],c + 8C®db1"'bg) . QA7)

ay--ayol,by-+bg,c

We propose that the gravity sector of the non-linear realisation of E;; should be extended
to include the on-shell duality relations (46) and (155) that are summarised as follows:

60[1]2 “—> (,()[1]9 “—> a)(l)[g]lo’l. (172)
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We will extend this chain of dualities infinitely to higher levels in Section 5.4. In the non-linear
realisation, the duality relations are equivalence relations that only hold up to pure gauge
terms. So far, we have worked out these gauge terms for the duality relations up to level six.
These relations were written using the unfolded variables that are associated with each Eq;
field, and they hold exactly in the sense that they are gauge-covariant. The difference between
the duality relations found here and those of the non-linear realisation is that our proposed
duality relations necessarily include extra fields that absorb all the gauge freedom.

5.3 Unfolding the field Ay 4 ; at level seven

In this section we will unfold the second higher dual three-form Ag g 5 at level seven. This will
allow us to work out a first-order duality relation between this field and the first higher dual
three-form Ag 5 at level four. The unfolded variables are

epor M) (opg 10031 al101B10]  cal10]b[10del4] (173)

The first three unfolded equations are

de[g]a[9],b[3] + hc w[g]c(a[9],b[3]) =0, (174a)
daogeyT1OME3] 4 Xy @100l = (174b)

where the angled brackets denote the projection of the final twelve indices of w[9]10’3 onto the
irreducible Y[9, 3] tableau. As usual, the primary zero-form C;q 1 4 belongs to the tower

neN}={c{,,.c

_ [~ (2)
7-(A9,9,3)— {C1o,1o,4,1n 10,10,4° 10,10,4,1>C1o,1o,4,1,1’~~-}~ (175)

The unfolded equations are invariant under the gauge transformations

5e[g]a[9],b[3] — dk[g]“[glbm +h, a[s]c(a[9],b[3]> , (176a)
§epo) MM = dag) TP + b p7) gy O, (176D)
5X[3]a[10],b[10] — d/j[z]“[lo]’b“o] . (176¢)

As for any set of unfolded equations involving higher-degree forms, for each parameter there
is a family of reducibility (gauge-for-gauge) transformations

5510 M) = dA gy M) 4 kg clelOMH3) 1772)
5a[8_k]a[10],b[3] — da[7_k]a[10],b[3] + hc[7] ﬁ[l_k]a[lo],b[S]c[ﬂ , (177b)
5ﬁ[2_k]a[10],b[10] — dﬁ[l_k]a[lO],b[lo] , (177C)

where k = 0,1,...,7 in (177a) and (177b), and k = 0,1 in (177¢). It is understood that a
p-form with negative form degree is identically zero.
The irreducible fields and connections are given by

9,3 _ = =~ = s ~
91" =Ag93+A1083+A1002+A11,73 T A1182 T A11015 (178a)
103 _
Wig] T = w1093t Wi0,102 T W1183 T Wi192 T W1110,1> (178b)
10,10 _
X[3] = X10,10,3 ¥ X11,10,2 - (178¢)
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The variable 6[9]9’3 contains the irreducible field Ag ¢ 5 alongside five extra ﬁeldSA\lo’&g , 210’9’2 ,
211’7’3 R 211’8’2 , and 211,9’1 . The irreducible gauge parameters are

93 _ 4(1) (2) (3) 4 (5) (6) 7 (8) )
Atg] " = Agg3tAggrtAgrstAgg0 T Al001 T A1 63 T AT 70 T A1 T AT
(179a)
10,3 __ (1) (2) 3) (@] (5) (6) (7)
ag] " =83t Ap90T Ag 100 T X173 T Aiga T Fig1 %1000 (179b)
10,10 _ (1) (2)
B2 = Pio102 t P11101- (179¢)

Now we will explain the role of each of each component. The five extra fields in (178a) can
be set to zero using the gauge parameters

W 2) ) (5) ©) (180)

A10,83> *10,93° %1173 %1820 %1191

After all the extra fields are eliminated, there will still exist some gauge symmetry in terms of
the a%),1o,1 and a(171)’10 parameters. It seems that we are trying to gauge away two fields that

do not exist. However, the reducibility transformation

5 g 10MH13] = deyp a100B3] 4 ) gy l1OLBIIEL7] (181)

in (177b) tells us that ag%)’lo’l and a(171)’10 can both be shifted away using the components of
the gauge-for-gauge parameter f;;'% in (1790).

In equation (178b) the connection w[9]10’3 is decomposed into five irreducible compo-
nents. Two of them can be set to zero using the parameter ﬁ[z]lo’lo in (176b) and the other
three are used to express a)[g]lo’B in terms of (de)[10]9’3. Now notice that (dcu)[lo]lo’3 has
three components. One of them vanishes as a result of the Bianchi identity (dze)[11]9’3 =0
and the other two are used when X[3]10’10 is expressed in terms of (da))[w]lo’3 . In exactly
the same way, one of the two components of (dX )[4]10’10 vanishes due to the Bianchi iden-
tity (dzw)[ll]g’B = 0, while the other one is used to express Cy( 104 in terms of (dX)[4]10’10 .
Consequently, after solving the unfolded equations and using the Bianchi identities and gauge
symmetries, the primary zero-form Cg 104 in (174c) can be expressed entirely in terms of the
Ag g 5 field.

Recall that the components of a[8]10’3 either shift away the extra fields or are shifted away
themselves using the reducibility parameter fq; 10,10 Therefore, we find that all the gauge and
gauge-for-gauge parameters account for each other except for the field Ag g 5 itself, the gauge

parameters {kgg’g, 1(9?3’2} , and a small set of reducibility parameters {4 73, A9 g2,49971,-.-}.

We now propose a first-order duality relation between the first higher dual three-form
A(g,l’; at level four and the second higher dual three-form A(92,;,3 at level seven. As previously
explained, the superscripts denote the number of higher dualisations. Our duality relation
takes the form

(1)(2) d (1)(1) (182)

XX € .
ay-aglby-+byg,c1coC3 by-b1o c1caczldayag

All the irreducible components of e[9]9’3 in (178a) appear inside equation (182). Importantly,
this on-shell duality relation holds exactly. Equation (182) is gauge-invariant when the gauge
parameters ', ajg'®?, and a1 for the connections in (182) are related by

d
a[al Qay---ag]|by-+byg,cicaes T ﬁ[alaz||bl"'b10,|as“‘a9]clczc3 OC Ep, by aC1 QAcyeslday-ag > (183)

which is analogous to (156). The constant of proportionality is the same as (182). Recall
that the previous duality relation (114) is gauge-invariant under the constraint (125) which
forces a[z]lo to be pure gauge-for-gauge. Under (183), this constraint now implies a further
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10,10

constraint on apg)'%? and f[y which leads to the first-order connection w®[91'%* being

gauge-invariant:

a[alOtaz"'¢19]|b1'“blo,ClCzCs + ﬂ[alazl|b1~~~b10,|a3~~-a9]c1c2c3 =0. (184)

The gauge parameter constraints at higher levels will continue to enforce the gauge invariance
of all the first-order on-shell duality relations.
Taking derivatives of (182) leads to the relation

(2) (1)
8[Cl a[bl 3[‘11Aa2---a10],b2-~~b10],c2c3c4] OC €q;ay 8(18[61 a[blAbz---blo],c2c354] . (185)
Working on-shell, the Ag 5 equation of motion (93) is equivalent under (185) to
[c (2) C5C3Ca]
a 16 bla Cl] ag:: alo] bz b6C1 C4:| = 0 ' (186)

In addition, antisymmetrising d with b[10] or c[4] causes the right-hand side of (185) to
vanish, so the left-hand side is subject to some further on-shell constraints:
b (2) by-+biol, _ (2) —
a[ﬁa[ la[blAbzn-blo], 2buo) cac3cq] — 0, 3[61 a[b1 a[alAaz---%cl---c4],b2~~~b9],CZC3C4] =0. (187)
Equations (186) and (187) are the equations of motion for the A( ﬁeld

Solving the unfolded equations (174a), (174b) and (174c) for the primary zero-form, we
find that Cy 19 4 can be expressed up to a factor as the curvature tensor

Cal'“aloabl"'bIO:cl"'C4 = a[cl a[171 a[alAaz'“alo]abZ“'bIO]:C253C4] : (188)
We can now rewrite (185) as a relation between Cy 194 € 7‘(A9 o3)and Cigq1 € T(A(l))
Cal"'a101b1"'b10:C162C3C4 o< eal"'alo Cbl"'b10,01C203C4,d : (189)
As a result, Cy( 19 4 inherits the constraints
(Try3)*(C10104) =0,  023(Ci0104) =0, (190)
and the remaining constraints are exchanged under (189) as
(Try2)'°(C10,104) =0, 01,3(Ci041) =0
Tr13)*(C =0, 0y5(C =0
(Tr1,3)"(C10,10,4) 2,3(C10,4,1) (191)
01,2(C10,104) =0, Try,3(C10,41) =0
013(C10,104) =0 Try3(Ci0,41) =0.

We can combine the zero-form relations (189) and (91) to obtain a new relation between
2)
C10,104 € T(Ag3) and Fz(nl €T(As3):

= d dy ;(2)
Caytrgbrbrocracses = Eaymarg  Ebybig F eicaeacy,drdy - (192)

Taking a curl on the c[4] indices gives

a[elCalmalo,bl~~b10,|c1~~~c4] = Ealwamdlgblmblodz a[eF(z)cl...C4],d1’d2 . (193)

Equation (61) tells us that Ff’l) 11 € T(A3) is really the GL(11) irreducible projection of the
gradient of the adjacent zero-form Fg(,zl) 1 € T(A3), so equation (193) becomes

a[€|Cﬂl"'alo;bl"'b10,|C1“'C4] = Eal"'alodlgbl sz [c1cql,dy,dasle] = (194)
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The generalised Poincaré lemma [90] applied to (194) implies that Cy 19 4 can be expressed
as the curvature tensor (188). This method will be useful when we consider fields at all higher
levels since it allows us to express primary zero-forms and their gradients in terms of E;; fields
without needing to solve an arbitrary number of unfolded equations.

Now we will present an equivalent method of obtaining the linearised equations of motion,

i.e. the higher trace constraints. On-shell, all the zero-forms Finl) 1 € T(A3) are irreducible

Lorentz representations, and as a result the properties of F‘(‘zl) , are exchanged under (192)
with constraints on the curvature tensor Cyg 19 4 as follows:

(Tr12)"(C10,104) =0, ) [ Trys(F411)=0,

(Tr13)*(C10,104) =0, 01,2(F41,1) =0,

(Try3)*(C )=0, o4 3(F =0,
2,3) ' (C10,10,4 } { 1,3(F411) (195)

01,2(C10,104) =0, 023(F411) =0,

01,3(Ci0,104) =0, Try9(F41,1) =0,

02,3(C10,104) =0 Try3(F41,1) =0.
Our notation Tr; ; and o, ; is the same as in (162). Thus the postulated relation (192) leads

to the higher trace constraints:

(Try,2)"°(C10104) =0, (Tr13)*(C10,104) =0, (Try3)*(Cr0.104) = 0. (196)

When Cj 1 4 is expressed as the curvature tensor (188), these trace constraints are equivalent

to the equations of motion (186) and (187) forA(;g 5+ Even if we unfold off-shell without these

constraints, it is immediate to see that Cj 1 4 is invariant under the gauge transformation

€)) 2)

ay--a9,by-+bo,c16503 = [a[bllAal"'09;|b2"'b9]:C15253 + [Cl|Aal"'a9,b1“'b9,|62€3]]9,9,3 ?

0A (197)

where [ -+ ]g 9 3 denotes a projection onto the GL(11) irreducible Y[9,9, 3] tableau.
Working backwards from the third-order curvature relation (185), we can integrate b[10]
to introduce an arbitrary Zg); 5 tensor, and then we can shift it as

= - d 4(1)
By orebglayayec1cacs T Sbybglagayg,cicacs T 2 Eayeayg by--bed,c;cacs ’ (198)

leading to a second-order relation

(2) = d €))
a[Cl|a[ A + a[C1|a[171“'172"'1’9]|611""110:|525364] o< Eal"'alo (10 a[C1 8[dA ) ’

@1" "ay-+aygl, by +bg,lcacsey] by-+bol,caczcy]

(199)

where we have used the Poincaré lemma again on c[4] to make the curl on these indices
explicit in every term. Integrating on c[4] now gives us the first-order relation (182) in the
form

a[alAgzzz)maw],b1~~b9,c1c2c3 + b, Ebyee-bollay—agoscicacs O Eal...awd (10 a[dA(bl])"'bg],C1C2C3 + 3[C19C263]‘db1...b9) .
(200)
The irreducible components of ©,;( are identified with the two extra fields in (79a) and the
irreducible components of Zg|;( 5 are identified either with the set of extra fields in (178a) or
with the components of a[8]1o,3 that can be set to zero using the gauge-for-gauge parameter
Br1y' 1% in (1770).
The duality relation (182) holds exactly. However, it can be written as an equivalence
relation between the first terms on the left-hand and right-hand sides of (200). The precise
meaning of this equivalence relation is explained in (200) which is found by integrating either

. . €)) (2)
the equation of motion of Ay 0r that of Aggs-
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5.4 Unfolding and duality relations at higher levels

In this section, we restrict our attention to the irreducible fields {A(gn.)“ 93 ,A(9n) 96> h,(;n.)._ 08 1} in
(9) whose blocks of antisymmetric indices are no larger than nine, and we propose first-order
duality relations between them at arbitrarily high levels. As discussed at lower levels, we found

that they are relations between the first-order connections associated with each field.

(n)

Unfolding higher dual three-forms. In order to unfold the n™ higher dual Ay 5 in Eq; at
level 3n+ 1, we introduce the following variables:
6[9]9"*1,3 , w[9]10,9"*2,3 , X[9]102,9"*3,3 o X[g]lo"*l,a* , X[S]loﬂ ) C10",4’ ... (201)
Schematically, the first two unfolded equations can be written as
n—1 n—2
de[9]9 3 + h1 w[9]10,9 3= 0, (202a)
n—2 2 gn—3
dw[9]10’9 34 th[g]lo 93 ) (202b)
and they are invariant under the gauge symmetries
n—1 n—1 n—2
Serg)” ° =dAg)” P +hyagg'* 7, (203a)
n—2 n—2 2 gn—3
56()[9] 10,9"43 — da[8]10,9 )3 + hl /5[8]10 9" 3 , (203]3)
2 gn—3 2 gn—3
5X[9]10 97703 dﬁ[s]lo ,9"7°,3 . (203C)
The primary zero-form Cygn 4 is the first in the tower
M y_ M (V) &) (2)
7-(A9n,3) - {C10H,4,1m |meN} = {C10H,4’ Clon4,1 Clon 41,10 b (204)

9

. . . n—1 . . .
The first variable in the tower efq; 2 decomposes into irreducible components as

o3 _ 4(m) ¥ A A ) 7y
6[9] _Agn’3 +A10,9"_1,8,3 +A10,9n—1’2 +A11’9n—2’7,3 +A11,9”_2,8,2 +A11’9n—1’1 i (205)

where we can see the higher dual field A(9',ﬁ)3

unfolded equation, the second variable cwrq;
these six fields.

When two fields are related by electromagnetic duality, there must be a bijection between
their zero-form modules. For example, the six-form in E;; at level two is the magnetic dual of

the three-form at level one, and the zero-forms F‘(‘nl) 1 € T(A3) are related to the zero-forms

F§n1)1 € T(Ag) via (68) and (69) that we reproduce here:

alongside five extra fields. Upon solving the first

n—2 . . . . .
10,9753 will be given in terms of derivatives of

F —g . brebsp n=0,1,2,... (206)

A1°A7,C150sCp ai-dz bybgsC1yensCp ?

These relations are different in the case of higher (gradient) dualisations. For example, Ag 5 is

the first higher dual three-form field, and the zero-forms Cf'& 1n € T(Ag 3) are related to the
zero-forms Ff;;ﬂ € T (A3) by the shifted relations
(n) _ d o(n+1)
Cal‘~-a10,b1~~~b4,c1,...,c" = €ayay Fbl---b4,c1,...,cn,d : (207)

This is not a bijection since F; = Fio) does not correspond to any zero-form in 7 (Ag 3).
As explained in [23], considering only the three-form sector for the sake of definiteness,
we need all the zero-forms in 7(A3) at a point in space-time x, together with the infinite
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tower of unfolded equations (56), (59) and (60) in order to reconstruct an on-shell dynamical
three-form field in some open neighbourhood around x; using the Taylor expansion

a1a;a3(by,bs,..

oo
1 -1
Aqg31(x) = Aqr31(xo) + Zl —e—xo) e xg) ) (o). (208)
n=

If we were to write down a Taylor expansion for Ag 3 analogous to (208), the coefficients that

© 1) @

are usually given in terms of the tensors {C ..} would instead be given

10,4> ©10,4,1° ©10,4,1,1°
in terms of {Ffl) ,Fizl) l,Ff’l) 11>---}. Notice that the zero-form Fio) in the linear term of the

three-form expansion is no longer present. Thus the first higher dual Ag 5 describes the on-shell
dynamical three-form beyond first-order, i.e. at long distances. This truncation only omits one
of the zero-forms in 7(A3;) and the field equations can still be reconstructed by integrating
Bianchi identities.

Duality relations for higher dual three-forms. We have already found a duality relation
between A(92’;,3 and A(gl’; in equation (182) and now we propose, in the context of the unfolded
formalism, an infinite number of first-order on-shell duality relations for the entire three-form
sector. In particular, we relate pairs of adjacent higher dual fields A(QZ’B and Ag:ll,)g forn> 2.
These higher relations have a different form to (182) between the first and second higher dual
three-forms. The duality relations at all higher levels are

0™ 4ro1b1101.c[91.d1[9)....dw-3[9%el3] O €n1017 @ a0llpe[o.d[O],...dn-3[9Te[3] 5 (209)

n—2 . . . .
10,9"23 are the first-order connections associated with A"

where w(”)[g] on 5 in (202a).
We require that our duality relations are gauge-covariant, so taking the gauge transforma-
tion of both sides leads to a relation between a[g)'%*?, Brg;'>1%?, ag1'*?, and By for

n=3:

Aa, Aay--ag]b[10],c[91,d[3] F Playagl|b[10] lagJc[91,d[3]

) (210)
O< €p[10] (8[<11 Qg,--ag]|pe[91,d[3] T lj[alazl|pc[9],|a3~~-a9]d[3]) :
For the higher duality relations with n > 3, we have the constraints

a[al Qay--ae]|b[101,¢[9],d1[9],...,d"3[9],e[3] + ﬂ[al~~ag||b[10],|a9]c[9],d1[9] ..... dn—3[9],e[3] (211)

Thus for all our duality relations to be gauge-covariant, we need to impose an infinite tower
of gauge parameter constraints for n > 3, each of which follows from the previous one:

Oray Aay-ag|b[101,c[91,d1[9], .., d"3[9T,e[3] T Play-agl|b[10],Ja1c[91,d1[9],....d"3[9],e[3] = O (212)

These constraints create more field degrees of freedom, and they force every connection ™ to
be gauge-invariant. Consequently, we have an infinite set of extra fields that appear explicitly
in the tower of duality relations.

Taking derivatives of (209) leads to the gauge-invariant relation

... (n)
Otb, Aar| a[a%Aa;..a}O] ..... |aZi--al, ], bybsby]

) . (213)
o< 8a1[10] 8C3[b18[aT| .. -B[a%A 9 9

az--a3yl,...lahal 1,babyby]”
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Now we want to show that taking appropriate traces leads to the equations of motion for each
(n—1)

field. For this we suppose that the equations of motion for A, , , are
N9 om0 By G- - AN =0 214)
(b1 “la)™"] lay alal ], laital 1], by byby] ’

naibl e na‘itb4 a[bl a[ail—ll R a[a%A(r;_l) O’ (215)

aloeal ]lal a1 ] bybybs]
foralli and j with 1 <i < j<n—1. These equations generalise (116), (186), and (187) that
we found earlier for low values of n. From this, A(9T:,)3 inherits
aiaj‘_. ai.al (n) —
nt 7100 a[b1 a[a'f| a[a%Aa;~~~a%0],...,Ia;‘mai‘o],bzb3b4] =0, (216)
NP4 Gy gy 3[a%AEz?

wealyLeslalal 1 babgby]

0, (217)

for 2 <i < j <n. Antisymmetrising ¢ with a'[10] in (213) for 2 < i < n leads to

1, 1 J
N4 00 By, Oan - Gt Ay =0, (218)

2"'a%o]r":lag‘“a?o]’bszb4]

while antisymmetrising ¢ with b[4] leads to

1 1
"')alb1 e n“‘*b“ a[b1a[a§l| T a[a}Aizn; =0. (219)

~ajyllag-aly]babsbs] T

Thus for n > 2 we have shown inductively that the equations of motion of Ag,?g are (216) and

(217) for 1 <i < j < n, and that they all follow from the infinite chain of dualities (209).

Reformulation in terms of zero-forms. The discussion above is quite cumbersome. Here
we will express everything in terms of the zero-forms in the unfolded formalism, and this will
once again give us extremely compact forms of the curvature relations and equations of motion.

€ T(A3) and C © 7™ ) analogous to

We introduce a zero-form relation between F{" 1on 4 on 3

4,1n
equations (91) and (192) at lower levels:

C(O)al[lo],...,a"[lo],b[4] = 8al[1o]dl : "Ea"[lo]an(n)b[4],d1,...,dn . (220)
This is one of an infinite number of shifted zero-form relations

C(m)al[lo] ..... a"[101,b[4],c1,... cm:8a1[10]d1"'Ea”[lo]dnF(n+m)b[4],d1,...,dn,c1 ..... . (221)

As a result, if we write down a Taylor expansion for Ag,ll)g

0) 1) ®) - . .
on4 Clona 1> Ciona 1,10+ } will instead be given in terms

of {F‘(‘nl)n, F‘(‘nltﬂ, Fi”ltfg, ...}. The first n zero-forms {F‘(‘O), Fill) yenns Fi”ljff} do not appear in the

Taylor expansion of A(9r,?3 around a point in space-time. Therefore, higher dual fields Ag,?g for
increasing n describe the original three-form at higher and higher orders, meaning at ldnger
and longer distances. The same is true for the higher dual six-forms Ag,? ¢ and gravitons h(gr,?s 1
As before, only a finite set of zero-forms is omitted, and integrating the Bianchi identities leads
to all the original equations of motion.

Returning to the zero-form relation (220), taking a curl on the b[4] indices gives

analogous to (208), the coefficients

that are usually given in terms of {C{

d d
a[elC(O)al[10],...,a“[10],|b1~~~b4] = €q1[10] ' " €an[10] "a[eF(n)bl~~~b4],d1,...,dn’ (222)

but the zero-form Finltﬂ € T(A3) is irreducible, so (222) becomes

a[elC(O)al[10],...,a”[10],|bl---b4] = Eal[lo]dl - 'ga”[10]an(n+1)[b1---b4|,d1,...,dn,|e] =0. (223)
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(0)
10"

The generalised Poincaré lemma implies that C;, , can be expressed as the curvature tensor

COoit101, . anf101,5041 = A, Az G2 3[a}A(n)a;~~.a}0],a§~~-afo] Jaa 1bybgby] > (224)

.....

for the n™ higher dual three-form Agi)g . This is precisely what one would find by solving the

first n + 1 unfolded equations, but here we have finished in one step. It is immediate to see
that this curvature is invariant under

_ 1 2
SA™ 41101, . anonb[3] = [3[a;|7t( )al[9],...,an—1[9],|a;-~ag],b[s] + G, A )a1[9],...,a"[9],|b2b3]]9,1’3, (225)
where [ -+ Jon 3 denotes a projection onto the GL(11) irreducible Y[9", 3] tableau.

(n)
F 4,1n

properties of Fi”l)n are exchanged under equation (220) as follows:

Working on-shell, the zero-forms are all irreducible Lorentz tensors. The irreducibility

(Tr; ;})'°(C10n4) =0, Tri41,j+1(F412) =0,

Tr; 4 C n =0 5 01 Fyq1n)= O,

( l,n+1) ( 10 ,4) 1,1+1( 4,1 ) (226)
0;j(Cion4) =0, Oir1,j+1(F410) =0,

Oin+1(Cions) =0 Try,i41(F410) =0.

where 1 <i < j <n. The primary zero-form C;o. 4 now obeys the higher trace constraints

(Tr ) (Crona) =0, (Tryp1)*(Crong) =0,  1<i<j<n. (227)
Thus the irreducibility properties of Finl)n € T(A3) led to an extremely compact form (226) of

the linearised equations of motion (216) and (217), where Cion 4 is the curvature (224).
The zero-form relations (220) for adjacent values of n imply a new relation between the
primary zero-forms C © e T(A(n) ) and c S T(A(n_l) ):

1074 9n,3 1071,4,1 9n-13
C(O)al[lo],aZ[lo] ..... an[101,b[4] = eal[lo]dC(l)az[10],..‘,a”[10],b[4],d . (228)
When these zero-forms are expressed in terms of the original fields using (224), we find that
(228) reproduces the curvature relation (213). Under (228), the zero-form C%i 4 inherits
) :
from Clon—l, 41 the constraints
(Tri,j)lo(clO"A) = (Tri 1) (Crons) = 0;,j(Cron4) = T n41(Cron 4) =0, (229)
for 2 <i < j <n. The remaining constraints are exchanged as
(Tr1.)*(Ci0n4) =0, Oi—1,n+1(Cron141) =0,
Tr H(Crna) =0, o Cion- =0,
(Try,n41)"(Cron4) nn+1(Cron1,4,1) (230)
01,i(Ci0n4) =0, Tri1 n41(Cron141) =0,
01,041(C1on4) =0 Try,n1(Cron-141) =0.

Integrating curvature relations. Working backwards from the higher curvature relations
(213), we can integrate a?[10], introduce an arbitrary tensor Eg|10,9n-2,3 and impose the shift

- - (1)
Ba2(8]|a1[101,03[9),...a[91,b[3] " E2[81|al[10},a%[9],...an[91,b(3] + 9 Ea1[10] Agagie a3pol....anolp3]? (231D

.....

to obtain

(n) =
Ab%arl "+ Aa3 T Agafo1) 2197 3197, .. anoT,bi3]) T ATl " Aa?| T Ea2[8]]la’ [10][a3[91],...

.....

(n—1)
< Eal[lo]c (10 a[ba[an| e 3[a3 8[CAa2[9]],ﬂ3[9]] ..... |a”[9]],b[3]]) .

a"[9]1,b31]
(232)
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Integrating a®[10], we introduce an arbitrary tensor ©g|10,9n-3,3 on the right-hand side:

)
OtpFan " a[a“la[a““al[9]],az[91,as[9],|a4[9]],...,|an[9]Lb[3]]

+ b 0an| " Tat | a2Ea2[8]11a1[10],a3[91|a[9]].....|a[9]1,b[3]]

c (n—1)
o< £q1110]°(10 &p e+ 8041 AeA o) 43091, a4 [97)...lar[95(31]

+ O Fan) *** Fa% a2 Oa[8]]Ica2[91|a (91, e[0T b(3]1) - (233)

The reducible tensor Zgj; gn2 3 contains the extra fields
{A10,0n2,8 3, A10,9n1,2,A11,9n2,7,3,A11,0n2,8 2, A11 9011}, (234)

that are associated with the AE;,?B field, while ©gj1( gn-s 5 contains those that are associated with

(n-1) g
the Agn_l’3 field.

Integrating the a*[10],...,a"[10] columns produces a sequence of tensors, each of which
is absorbed into the previous one since we can swap all these columns with each other and
also with a?[10] and a®[10]. The result of this repeated integration is

.....

(n-1)
o< £a11101° (10 31 FteA o) aa7o)....anpe bz T Ab1as CadtsTlcatonato), arfon bra1) - (235)

.....

Integrating one final time and introducing an arbitrary Y510 ¢n1 tensor, we obtain

(n) =
AarAgifoq.a2[9]....arfo1b[3] T Aa2Za2(8Tlal[101,a2(9),...an[91,603] T b Vb[211la2[10],02(9],.......an[9]

.....

(n—1)
x €a1[10]c(10 a[CAar;[g]]’QB[g] an[9],b[3] + a[a3®a3[8]]|ca2[9],a4[9] ..... a”[9],b[3]) . (236)

.....

These duality relations would have been equivalence equations in the E;; non-linear realisa-
tion meaning that they would only hold up to certain pure gauge terms. By integrating the
equations of motion, we have found relations that hold exactly when the gauge parameters are
subject to certain constraints. The gauge freedom is absorbed by extra fields. This is an elabo-
ration of (both the computation and the result of) the duality relations in equation (3.5.14) of
reference [23], but now the extra fields ©gj; gn-3 3 are explicit. Every term in (236) needs to
be projected onto the GL(11)-irreducible representation associated with the Y[10,9,...,9,3]
diagram.

The first-order connections w(")[g] 2 and w(”_l)[g] in the duality relations

(209) are variables that come from the unfolded formalism. Notice that Zgj;ggn-2 3 in (236)
10,9"72,3

10,9"2 10,9733

has the same structure as the gauge parameter afg) in (203a). Some components of

. o . X . n—1 . o .
Egj10,0n-2 3 are identified with the extra fields in 6[9]9 3 and the others are identified with

1093 that can be shifted away with the gauge-for-gauge parame-

10%,9"3

the components of ag;
ter ﬁ[7]102,9“*3,2
a gauge-for-gauge-for-gauge parameter }/[6]103’9#4’3 , and so on. Looking back at (236), it is
unclear where (or if) Yy1ogn2 originates in the unfolded formalism, so it is not included in
the duality relation (209).

In summary, equations (182) and (209) extend the set of duality relations (146) to include
the entire three-form sector.

. Some components of S 2 may subsequently be shifted away using

F4 s w(1)[3]10 s w(Z)[g]lO,S ; w(S)[9]10,9,3 10,993

I I (237)

F, w(l)[6]10

— a)(4)[9]
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Unfolding higher dual six-forms. We will now consider the six-form sector of the theory.
Our analysis will be similar to that of the three-form sector, so we will not dwell on all details.

To unfold the Ag?6 field in E;; at level 3n + 2, we introduce the following variables:

6[9]9”’1,6, w[9]10,9”’2,6’ X[9]102,9H,6’ o X[9]10”’1,6, X[6]10", ClO",7’ ... (238)
Schematically, the first two unfolded equations are

degg)”" 0 +hy we %" 0 =0, (239a)
dw[9]10,9”_2,6 + th[9]102,9”_3,6 =0, (239b)

and they are invariant under the gauge symmetries

n—1 n—1 n—2
56[9]9 6 — d)(.[g]g 6 4 h, ayg] 10,9"7,6 , (240a)
n—2 n—2 2 gn—3
5w[9]10’9 6 — da[8]10,9 64 h, /5[8]10 ,9 ,6’ (240b)
2 gn—3 2 gn—3
5X[9]1° 926 dﬂ[g]lo 96 (240¢)

The primary zero-form Cygn 7 is the first in the tower

MmN _ [~m) _{~0 (1) (2)
T(Agng) = {C10f1,7,1m |me N} - {C10",7’ Clon7,00 Cron 71,10+ } : (241)

Duality relation between A(;; 6 and A(glé . Before proceeding to arbitrarily high levels, it
is useful to consider the first-order duality relation between the first and second higher dual
six-forms in terms of their first-order connections:
&) d (1)

wal"'a9|bl"'bIO:Cl"'Cé o< €pybyg wc1-~~c6|da1---a9 . (242)
Requiring this to be gauge-invariant leads to a gauge parameter relation analogous to (183).
The constraint associated with the previous duality relation (136) told us that the parameter
a[s]lo is pure gauge-for-gauge, leading to the next constraint associated with (242):

a[(11 aaz"'a9]|b1"'b10,C1“‘C6 + /j[al"'a5||b1’"b10:|a6"'a9]cl"'C6 =0. (243)

This gauge parameter constraint allows the extra fields to appear explicitly in (242).
Taking derivatives of the duality relation (242) leads to

() d (1)
a[c1 3[b13[a1Aa2---a10],b2~~~b10],c2~~~c7] X €q,-aq 8da[cl a[blAbz---blo],c2~~~c7] > (244)

and taking appropriate traces leads either to the equations of motion for A(glé that were found
to be (138), or to the following equations of motion for the AE)Z; 6 field:
2
3p, 81 G AL | by =0, (245)
[ 2) wer]
a a a[bl a[alAaz"'alo],bzb3C1"'C7],C2 7= 0 . (246)

We can also reformulate these equations in terms of the zero-forms in the unfolded formalism.

The techniques used to do this for the three-form sector show that Cig)lo - can be expressed

as the curvature of A? The curvature relation (244) then becomes

9,9,6

0 — d~(1
C( )al~~~a10,b1~~~b10,c1-~~c7 = Eal...alo C( )bl"'blo;cl“'c%d 5 (247)
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and the higher trace constraints

(Tr12)'°(C10,107) =0, (Tr;,3)*(C10,007) =0, (Try3)*(Cr0.107) =0, (248)

are equivalent to the linearised equations of motion for A(QZ; 6"

As always, we can integrate up the equations of motion to obtain first-order relations with
extra fields appearing explicitly. Writing (247) in terms of the gauge potentials, integrating
this equation twice leads to

() =
8[(11 ay++aqgl,by-+bo,ci-ce + a[bl‘_‘bz”'b9]|‘11""110,01"'%

(1)
chal"'alo (103[dA ]Cl C6+a[cl cyr 56]|db] bg) (249)

The irreducible components of Zgj;9 ¢ and Oy include the extra fields associated with A?

9,9,6
and A(l)

9.6 respectively.

Duality relations for higher dual six-forms. In exactly the same way that we were led to
(209) in the three-form sector, here we propose first-order on-shell duality relations between

adjacent higher dual six-form fields Agfl)é and A(; ! )6 forn>2:

0™ aro1b1101.c[91.d1[91....dw-3[9%el6] O En101” @D aollpe[on.d[0],...dn-3[9Tcl6] - (250)

X . n—2 . .
The first-order connections {a)(“)[g]w’g 6} are the unfolded variables that appear in (239a).
For these duality relations to be gauge-invariant, we need to impose the constraints

Aa; Ray-ag]|b[101,c[91,d1[9],....d"3[91e[6] F Play-as|[b[10],lagJc[9],d1[9],....dn3[9Te[6] = O-  (251)

These are essentially the same as the constraints for the three-form sector.
Taking derivatives leads to the gauge-invariant relations

... (n) c - (n 1)
8[b1 8[a{‘l a[a%Aa;-~~a%0],...,|ag~~-a?o],b2---b7] X €q41[10] acg[blg[all a[ A a3-a)],...|alaly ] by-by]

- (252)

. . . . n

and taking appropriate traces leads to the equations of motion for the Agng field
I Y T SO S\ ~0 (253)
(b1 “Ia]l [a; aleealyLeslal--aly by by ] ’

aiby .. ,alb (n) —

noteeemTy a[bla[aﬁll a[a%Aa;---a%O],...,Iag~~~a;’0],b2~~~b7] =0, (254)

forl<i<j<n.

Reformulation in terms of zero-forms. As we did i 1n the three-form sector, we relate the

primary zero-form c® e T (Agn 3) to the zero-form FW e T (Ag) through the relation

10,4 7, 1”

Cup101,...ant1016071 = 101 Ean101 " F V7, 5 (255)

which mirrors (220). This is one of an infinite number of shifted zero-form relations
C™ 1010, 1016 Tercn = Eatf10] " €arf10) ™ b ds e - (256)
Taking a curl of (255) on the b[7] indices, using Lorentz irreducibility of F (n+1) o T(Ag), and

7’1n+1
(0)

applying the generalised Poincaré lemma, we find that C,, , is the curvature tensor

(257)

a2 alo] a% a10]> :laz a]o] bZ b7]’

C(O)al[lo],.,.,an[10],b[7j| = a[bla[a’fl" 8 28[alA

40


https://scipost.org
https://scipost.org/SciPostPhys.18.5.149

e SciPost Phys. 18, 149 (2025)

for the n™ higher dual six-form A(gr,?

- Itis immediate to see that this is invariant under

where [ -+ Jgn ¢ denotes a projection onto the GL(11) irreducible Y[9", 6] tableau.

(n)
7,1n
of F;"l)n are exchanged with constraints on Cﬁ)),)1 7 under (255) as in (226) where all the fours
are replaced by sevens. Therefore, Cygn 7 obeys higher trace constraints

Working on-shell, the zero-forms F. -, are all irreducible Lorentz tensors. The properties
(Tr; ;)'°(Crpn7) =0, (Tt; n41)"(Cron7) =0, 1<i<j<n, (259)

which are equivalent to the linearised equations of motion for all higher A((;) ¢ fields.
Considering equation (255) for adjacent values of n , we find a zero-form relation between

Cﬁ;i; eT( A(Q)Z)’6) and Ci(l)l_l’m eT (A(gr:ll’)f)) which takes the form
C(O)al[10],a2[10],...,a"[10],b[7] = Eal[lo]dC(l)az[10],...,a"[10],b[7],d : (260)

0)
0,7

1)

on-1.7.1 the constraints

Under this relation, C§ inherits from C§

(Tri,j)lo(clonj) = (Tri,n+1)7(C10”,7) =0 j(Cion7) = i nt1(Cion7) =0, (261)

for 2 <i < j < n, and the remaining constraints are exchanged as in (230) where all the fours
are once again replaced by sevens.

Integrating curvature relations. Repeated integration of the curvature relation (252) leads
to a first-order on-shell duality relation

(n) —
AarAgifo1).a2001....an[01.006] T Fa2Za(81lIal[101,3[9),....an[91,b[6] T T b Tb[51)la2[10],a2[9],......a"[9]
-1

o< £411101°(10 3[CA(;[9])],a3[9],,..,an[9]’|b[f,] + 303Ou3(8]) ca2[9L,a4[9],..an[o)bl6]) »  (262)
featuring arbitrary tensors Zgjig gn26, Ogj10,9n3,6, and Ysj19on-1 . Note that (262) must be
projected onto the GL(11) irreducible Y[9,...,9,6] tableau. The tensors Z and © are clearly
identified with extra fields since they have the same symmetry types as the a parameters in the
unfolded equations, but once again it is not known if the irreducible fields in Ts}; g» Originate
from the unfolded equations and gauge symmetries.

Duality relations between A(gr,‘l)3 and Ag,'l)G . It is now straightforward to obtain relations
between the n™ higher dual three-form and six-form fields for n > 2. They constitute the

rungs of the ladder in the diagram below.

w(n)[9]10,9“_2,3
I (263)
C()(;1)[9]10,9“*2,6 —
These duality relations take the form
a(n)[aﬂazas%] S “"111"'a4b1mb7 6(n)[b1|b2"'b7]’ (264)
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where the definitions of & co | ) and & coll 6 depend on the parity of n:

(T)(Zm) (2m) c[9],d[9], el[9], e™2[9], (265)

alb[k] *= @ 7d[9][c[9]a, el[9], -,em=2[9], b[k]>

~ — 1 m—2
CO(Zm l)alb[k] = 86[10]a w(Zm 1) ([o]le[10], c[9], [9],d [9]’...,(1'"*2[9],‘1 [9],b[k] ) (266)

Setting k = 3 or k = 6 gives the appropriate definition for each sector.

We now have an infinite ladder of first-order on-shell duality relations. One of the rails of
the ladder is populated by higher duality relations for the three-form sector: (114), (182) and
(209). The other rail of the ladder is populated by those of the six-form sector: (136), (242)

and (250). Lastly, the rungs of the ladder are populated by electromagnetic dualities: (68),
(146), and (264). This is summarised as follows:

10 10,3 10,9,3 10,9,9,3

F, «— a)(l)[g] — w(2)[9] — w(3)[9] — w(4)[9]

I I I I I @67

10,6

—>

10,9,9,6

F7 w(l)[6]10 N 60(2)[9] —s w(3)[9]10,9,6 —s

Unfolding higher dual gravitons. Lastly, we will sketch the unfolding of the gravitational

sector of the theory at all levels. In order to unfold the second higher dual graviton h9 9,81 10

E; at level nine, we introduce a tower of variables
6[9]9,8,1 , w[9]10,8,1 , X[8]10,10,1 , Y[1]10’10’9 . clot92 (268)

The first four unfolded equations are

d6[9]a[9]’b[8]’c + hd w[g]d(a[9],b[8],c) =0, (269a)
daog)@1OVVIELe 1 o X al10102100810) — o (269b)
dX[B]a[lo],b[lo],c + hd[8] Y[l]a[lo],b[lo],d[s]c =0, (269¢)
dy}el100b00Lel9) 1 p o cal1032110]el9)d12] — (269d)

where angled brackets denote projection onto the obvious irreducible Young tableaux, and
these equations are invariant under the gauge symmetries

56[ o] a[9],b[8],c _ dl[s]a[Q],b[S],c + hd a[g]d(a[9],b[8],c) , (270a)
5(0[ a[10],b[8],c — da a[lO],b[S],c —h d[2 ]/5[ a[10],d[2](b[8],c) , (270b)
5X[ ]a[lO [10],c dﬂ a[lO ,b[10],c __ h a[10],b[10],d[8]c , (270¢)

5y[1]a[10],b[10 ,c[9] — d,},a[lo ,b[10],c[9] ) (270d)

Moreover, in order to unfold the n™ higher dual graviton K
n > 3, we introduce a tower of variables beginning with

on, 8 1 in Eq; at level 3n+ 3, where

o181 10,9"72.8,1 102,9"73.8,1 10%,9"74,8,1
6[9] , a)[g] 5 X[g] 5 X[g] 5 e (271)

Schematically, the first two unfolded equations are

de[9]9"_1,8,1 +h, w[9]10,9”_2,8,1 -0, (272a)
dw[9]10,9"_2,8,1 + th[9]102,9”_3,8,1 =0, (272b)
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and they are invariant under

n—1 n—1 n—2

5e[9]9 8,1 dk[g]g 81 hy a[8]10,9 8,1 ) (273a)
5w[9]10,9”_2,8,1 — da[8]10,9"—2,8,1 +hy ﬁ[8]102,9”_3,8,1 ) (273b)
5X(o) 1081 = 4 10981 2730)

The tower (271) continues as

., X[9]10”’2,9,8,1 ) X[g]loH,SJ ) X[8]1o",1 ) X[l]1o",9 . ocwomee (274)
where the primary zero-form Cygn ¢ 5 is the first in the tower
(n) (m) (0) 1) (2)
T(hgng1) = 1{Cigngz1m | M EN}={Cign g9 Cron o215 Crono21,107 -} - (275)

In order not to repeat the details of the three-form and six-form sectors, we simply state

(0

that the primary zero-form Cy, 4

o can be expressed as the curvature tensor

C(O)al[10],...,a”[10],b[9],c[2] = G, b, a[aﬂ e 8[(1% a[a%h(")a;,,,a%o],a%...afo] (276)

..... lag--afyl,bar+bolica]?

. . (n)
for the higher dual graviton hgn 81"
for C§Ol o in terms of h(n ‘g1 Or by using the generalised Poincaré lemma. It is immediate to
see that this curvature is invariant under

This can be shown either by solving the unfolded equations

o )
(n) _ | @aitai..., am-1[9],]a...a3],b[8],c * Obu A qifo),...an(9} b by e
Oh iy, . an = i - @77
al[9],...,an[9],b[8],c +0.23
,,,,, an[9],b[8]

9n,8,1

where [ -+ ]on g 1 denotes a projection onto the GL(11) irreducible Y[9",8,1] tableau.

Duality relation between hgzg g, and hglg - As before, we will first propose the duality

relation between hgg , and h(923 g1 Since it has a different form to the duality relations at higher

levels. This duality relation takes the form

2 p,,(1
W g ag|bybygscyrcgd OF Ebyoby. @8 ¢peecglpa; ao,d - (278)

Similar to what we found in the three-form and six-form sectors, this relation is gauge-
covariant when the parameters obey the constraint

a[al Qay--agllby b1 --cg,d ﬁ[a1-~-a7||b1~-~b10,|a8a9]c1---c3,d o< 5a1~~~a9p,b1~--b10 O aCl"'Csp ’ 279

[n]

where 6] 410 denotes 57" with all the indices lowered. We have used the previous con-

pln]
straint (156) to obtain the new constraint (279), which does not tell us that (J)(z)[g]lo’&l needs

to be gauge-invariant, but only that its gauge transformation is related to the dual gravity
nine-form parameter o’ that we introduced in Section 3.3.
Taking derivatives of the duality relation (278) leads to a gauge-invariant relation

2 1
8[dl a[C1 a[bl a[alh( )az"'alo],bz"'blo],Cz“'Cd,dz] o< 8(11""110683 a[d1 a[Cl a[blh( )bz"'blo],CI"Cg]’dz] ’ (280)

and taking appropriate traces leads to the equations of motion for each field. In terms of the
curvature tensor C° the equations of motion for h9 0.8.1 that follow from (278) are

10,10,9,2 >
(Tr1,2) (C10,10,9,2) =0, Tr3 4(C10,10,0,2) =0
(Trl,a)g(C10,10,9,2) =0, (Tr1,4)2(C10,10,9,2) =0, 1<i<j<n. (281)

(Trz,a)g(C10,10,9,2) =0, (Tr2,4)2(C10,10,9,2) =0
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Equation (280) can be expressed in terms of Cig)lo 99 € 7'(h(922J g1) and CSJ)Q 51 € T(h(glg ok

c©® e ec(1)

ay-+ayg,by-++b1o,c1++cg,d1da — €ay-ag by-byg,cq-Co,drd,e *

(282)

Integrating this three times leads to the first-order relation

(2 =
8[a1h ayeayg],by by cg,d T a[b1“‘bz“'b9]|a1"'alo,Cl"'Cs,d + adTal"'alo;bl"'bf):cl'"CB
1
o< 8“1"‘51106 (10 a[eh( )bl"'b9]’cl"'C8:d + 8[c1ecz~~~58]|eb1"'b9,d) . (283)

The arbitrary tensors Zg|10g1 and ©y);; have the same structure as a[g)'%®! in (273a) and
a[7]10,1 in (153a), respectively, so their components are interpreted either as the extra fields

that are associated with hgzg g1 and hglg , or as the components of a[s]lo’s’l and amlo’l that can
be shifted away with gauge-for-gauge symmetries. The field Ty, ¢ g does not seem to originate

from the unfolded equations or gauge symmetries.

Duality relations for higher dual gravitons. We now propose first-order on-shell duality

relations between h(g?s , and hg;% , that take the form

0™ [0 b[101.c[O1d[9],...dm-3[0Tel8].f O Ebr10) @ P aolpelold 1[0, .dn3[ol el f - (284)

The gauge parameter constraints for these higher duality relations are given by

P1 D2 Ps3 Pn—1 p (285)
O €p[10]" €py (91 2 Epadi[917 7 Epypdn=3[91"" Ep,,_al9] " O Ae[81p, -

In contrast to the three-form and six-form sectors of the theory where gauge-invariance of
the duality relations forces the gauge-invariance of all first-order connections w for the higher
dual fields, here we find that the gauge parameter constraints do not force the first-order
connections in the gravity sector to be gauge-invariant, but instead their gauge variations are
all related to the dual gravity parameter a’ in Section 3.3.
Taking derivatives leads to
Bte, b, Bty Gpah ™y

ay--ajyllag--afylbybolics]

< 8a1[10]dad 8[C1 a[b1 a[ath cee 5’[a%h(”_1) 2 (286)

ag++a3yl....|a5ajy],by-rbolicy]

and taking traces leads to the equations of motion of each field. Expressing ngz 90 € T(hg}g »)

(n)

ong,q Can be written

) (n—1) . .
and C1on—1,9,2,1 € T(hgn_l’&l) as curvatures, the equations of motion for h

in the compact form

(Tr; )" °(Cron92) =0,  (Trip11)°(Crpn92) =0,

1<i<j<n. (287)
(Trin2)*(Cron02) =0, Trpi1p42(Cron92) =0,

(n—1)

on1 g 1 and others are due to the

Some of these are inherited from the equations of motion of h
irreducibility properties of the curvature tensors.

Reformulation in terms of zero-forms. The primary zero-form C m e T(h(") ) is re-

107,9,2 on.8,1
lated to ¢

o.5.1n € T(hg 1) through the zero-form relation

COarpi0),...arr101,b19%c12] = Earf101™ * * €an(10] " C P bo1cr21,dy, . ndy - (288)
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This mirrors (220) and (255) in the three-form and six-form sectors, and generalises (161) to
higher levels. As before, (288) is one of an infinite number of shifted relations

¢ (m)al[lol ,,,,, an[10],b[9].c[2] €1l — Earf101™ - Ean107™C (n+m)b[9],c[2],d1,...,dn,el,...,em . (289)
Working on-shell, Cénz) 1n € T (hg 1) are all irreducible Lorentz tensors, and their properties are

exchanged under (288) with constraints on C§8?1 99 € T(hg?s 1) as follows:
(Tri,j)lo(C10”,9,2) = O) ( Trl‘+2’j+2(C9’2’1n) = 0,
(Tr; n11)°(C10n92) =0, 01,i42(Cy212) =0,
(Tr; n12)*(C1on92) =0, 05,:42(C9012) =0,
Tr (Cigng2)=0, Tri9(Cg91n) =0,
n+1,n+2(C10m,9,2 ! { 1,2(Co2.1n) (290)
Ui,j(ClO”ﬁ,Z) =0, Ui+2,j+2(C9,2,1n) =0,
Oint1(Crong2) =0, Try,i42(Co210) =0,
0in+2(Ciong2) =0, Try;12(Co1n) =0,
Ons1,n+2(Ciong2) =0 ) 01,2(Cg1n) =0,

where 1 <i < j < n. Therefore, Cygn g, Obeys higher trace constraints (287) which are the
linearised equations of motion for the hg?s , field.
Another way to proceed would have been to notice that the zero-form relation (288) for

the higher duals A and ATV imply a new relation between C © e 7M™ ) and

on.8,1 gn-1g1 107,9,2 on.8,1
1 -1
Ci 02_1’9’2,1 eT (h((;_l’;’l) of the form
d
CO pip10102010),...ar[10609%.c12] = Earr10)° CPa2r107, . an[10]b[07.c[20.d - (291)
) 0 . . 1) )
The primary zero-form Cionoa inherits from C10n71,9,2,1 the constraints
(Tri,j)lo(C10”,9,2) =0, 0 j(Cion92) =0, (292)
(Tr; 111)°(Cion02) =0, Oint1(Ciong2) =0, (293)
(Tri,n+2)2(C10n,9,2) =0, Oin+2(Ciong2) =0, (294)
Trpi1p42(Crong2) =0, O ns1,n+2(Cion92) =0, (295)
for 2 <i < j < n, and the remaining constraints are exchanged as follows:
(Tr1,)"%(Cron0,2) =0, [ 0i_1n12(Cron1921) =0,
(Tr1,041)°(Cron 9.2) = 0, Onn+2(Crom1921) =0,

Tr 2(Cygng2) =0, o Cron- =0,
(Try,n42)°(Cron9.2) } < n+1,n+2(Cron-1,9.2.1) (296)
Gl,i(C10",9,2) =0, Tri—l,n+2(C10”*1,9,2,1) =0,
01,n+1(C1on92) =0, Try n42(Cron1921) =0,
01,n+2(C1on02) =0 ) \ Trys1,n42(Cron1921) =0.

Integrating curvature relations. Repeatedly integrating equation (286) and applying an
appropriate shift leads to a set of first-order duality relations with extra fields made explicit:

+ 0. Ya11103,a2[9],.......an[91,5[8] T b ITb7701a [101,02[9],........a7[ 9],
o< £q1110) (10 Ggh" ™ aaponya2(91,...an[01,576] + A Oa?(8]1da2[9L,a4 [0}, o[0T b8 Y ) - (297)
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Some of the components of the arbitrary tensors Zgj1 gn-2 g 1 and Og|19 gn-s3 g 1 are interpreted as

) (n—1)
srandhg, g,

as components of the parameters a[g]lo’gn_z’&l and a[8]10,9"_3,8,1 in (273a) that can be shifted
away with a gauge-for-gauge symmetry. The other arbitrary tensors Yy gn-1 g and Iy, 911
once again have no obvious origin in the unfolded equations and symmetries, so they are not
featured in (284). All these higher duality relations for n > 2 are depicted as follows:

the extra fields associated with h,(; respectively, and the others are interpreted

10,9",8,1 10,9"18,1

— oD, — oMy — ... (298)

Finally, the infinite tower of duality relations given by (46), (155), (278), and (284) can be
glued together in the same diagram:

- c0(2)[9]10,8,1 - w(3)[9]10,9,8,1 —s o (299)

(,()[1]2 — w[l]‘) —s w(l)[g]lo,l
Summary. In this section we have proposed an infinite number of duality relations between
all the higher dual fields in the E;; non-linear realisation. By taking derivatives and traces we
have obtained all their linearised equations of motion. These duality relations and equations of
motion match those of the non-linear realisation up to the level where they have been worked
out. The presence of extra fields and constrained gauge parameters ensures that these duality
relations all hold exactly and not as equivalence relations up to pure gauge terms. Integrating
the equations of motion has led to first-order duality relations with extra fields explicit.

Of course, the non-linear realisation contains much more than the higher dual three-forms,
six-forms, and gravitons. The first field beyond these three families is the Romans field By ; ;
at level four. There is also a field By 91 ; at level seven, and we speculate that this should be
interpreted as a higher dual Romans field. Examining E;; level-by-level, it seems that every
field either (1) belongs to an infinite family of higher dual fields associated with a field at lower
levels, or (2) starts a family of its own with all higher dual counterparts appearing at higher
levels. It may be possible to derive duality relations analogous to those summarised in (267)
and (299) for the Romans field By ; ; and all other fields in E;; with columns of height ten. It
is less clear how to construct higher duality relations for fields with columns of height eleven,
such as a relation between Cy; ; at level four and one of the Cy; 9 fields at level seven.

5.5 Counting extra fields in representations of E;;

So far we have worked out the unfolded formulation of every dual field in the E;; non-linear
realisation, i.e. the fields with at most nine antisymmetric indices in each block. In Section 4,
we unfolded the Ag 5 and By ; ; fields at level four, and we will now briefly sketch the unfolded
formulation of the fields with at most ten indices in each block up to level seven. We will find
that the fields required to unfold these fields are not all contained in E;; itself.

We calculated the linearised equations of motion for all dual fields by taking derivatives and
traces of the infinite set of first-order duality relations that we proposed earlier in this section.
These equations of motion hold exactly and they are only given in terms of the irreducible E;;
fields. Hence if one is only concerned with the equations of motion then E;; contains all the
required fields. The duality relations in the E;; non-linear realisation are equivalence relations
in the sense that they only hold up to pure gauge terms, and this contrasts with the duality
relations that we proposed here in terms of the unfolded variables since these relations all hold
exactly. This difference is due to the extra fields appearing in our proposed duality relations.
For example, the duality relation (46) between the graviton h; ; and the dual graviton hg ;
features an extra two-form A, and nine-form 29 which soak up the gauge freedom of (51a).
We have also integrated up the equations of motion to obtain first-order duality relations which
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relate all the higher dual fields up to generic gauge transformation terms. Thus we have found
the precise meaning of the equivalence equations in non-linear realisation.

In this section we will catalogue all the extra fields that appear in the unfolded formalism
compared with those in the E;; non-linear realisation up to level seven. We proceed level by
level, listing the extra fields in each case.

Unfolding the graviton at level zero led to an extra two-form field that can be eliminated
using the I.(E;;) transformation at level zero, i.e. local Lorentz symmetry. At levels one and
two we find the three-form and six-form fields, and their unfolded formulations introduce no
extra fields. In Section 3.3 we unfolded the dual graviton at level three, and this introduced
an extra nine-form field. A field of precisely this type features in the duality relation (46).

In Table 1, we summarise the unfolded spectrum associated with the graviton, three-form,
six-form, and dual graviton in the E;; non-linear realisation at levels zero, one, two, and
three, respectively. The first column contains the first unfolded variable e, {* for each Ejy
field that we unfold, and the second column lists the symmetry types of all their irreducible
components. The E;; column counts the number of fields of each symmetry type contained
inside Eq; itself. It may be possible for E;; fields to play (at least partially) the role of extra
fields. The number of fields that we have after unfolding is given in the unfolding column.
The net column gives the number of extra fields, i.e. the deficit of E;; fields compared with
the new unfolded spectrum. In other words, it counts how many more fields there are inside
the unfolded spectrum compared with the non-linear realisation. A negative number —n in the
net column tells us that we need to add n fields to the non-linear realisation. It might be the
case that these extra fields are really just other E;; fields, but they also may belong to highest
weight representations of E;; that need to be added to the theory in a consistent way. The last
column describes the content of the £, representation. We note that the I.(E;;) symmetry at
level zero can be used to shift away the antisymmetric part Kz at level zero. This corresponds
to the local transformation of the vielbein. At level three we see that the £, representation
begins with a nine-form that matches the symmetry type of the extra field associated with the
dual graviton.

Analysis up to level six. In the E;; non-linear realisation there are three fields at level four:
the higher dual field Ag 5 which is dual to the three-form at level one, the Romans field By 1 1 ,
and Cy; ; . In Section 4 we found that unfolding Ag 5 led to a pair of extra fields 210’2 and 211,1 ,
while unfolding By ; ; led to one extra field ]/3\11,1 . Thus we find three extra fields beyond the
original fields in the non-linear realisation at level four: 210’2 , 211,1 , and ]/3\11,1 . Notice that we
also have a third field C; ; in the non-linear realisation, and it has the same GL(11) symmetry
type as two of the extra fields at this level. It is possible that Cy; ; plays a role in unfolding
the other two fields Ag 5 and By ; at level four, and to see if this is true one would need to
compute the non-linear realisation up to level four and see how C;; ; occurs.

At level five there are four fields the non-linear realisation: Ag ¢, B1g 4,1, C1131,and Cyq 4.
In Section 5.1 we found that the higher dual six-form Ay ¢ is accompanied bygloj and 211’4 in
its unfolded formulation. If we were to unfold the second field By 4 then this would lead to
another pair of extra fields 1§11’3’1 and ]/3\11’4 . To see this explicitly one can their first unfolded
variables into GL(11) irreducible components:

efo1® =Aoe ® Ajgs @ Apy, (300a)
er101”! =B1o41 @ Biis1 @ Biig. (300Db)
In total, then, there are four extra fields at level five: 210’5 , 211,4 , §11’3’1 , and §11’4 .

There are nine fields in Eq; at level six: hgg 1, B1o62, B10,7,1 B1o,g > and five other fields
with blocks of eleven indices. In order to unfold the fields of height ten or less, we introduce
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Table 1: Counting extra fields up to level three.

| erp, 1" | fields ” Ei | unfolding | net ” l, |

ey’ | hia | 1 1 oo

A |1 1 oo

Ars) As 1 1 0| o

Al | Ae 1 1 0o

e’ | hs1 | 1 1 oo

A || o 1 1| 1

the following variables:

6[9]8’1 = hog1 @ 210,7,1 ® A\10,8 ® A\11,6,1 ® 211,7’ (301a)
6[10]6’2 = Bioe2 @ §11,5,2 o §11,6,1, (301b)
6[10]7’1 = Bioy1 @ §11,6,1 & §11,7: (301¢0)
et10]° = Biog ® Bi1. (301d)

Thus there are nine extra fields at level six: 2\\10’7,1 , 210,8 , 211’6’1 , A\HJ , §11,5,2 , §11,6’1 (two
copies), and 511,7 (two copies).

In Table 2 we have summarised the unfolded spectrum associated with different sets of E;;
fields in the theory at levels four, five and six. The first column denotes each type of field that
we encounter in the unfolding procedure with their Young tableaux indicated explicitly as a
subscript. The second column tells us the multiplicities of the fields in E;; . We observe from
the table that all fields in the first column of each index structure occur in E;; if we include
those with multiplicity zero, the first examples of which are Aq at level three and B, , at level
four. We do not list all the fields of multiplicity zero, for example Ag ¢ at level six and By 10,2 2
at level eight, since these ones do not play a role in unfolding. The last column gives us the
squared length of the E;; root associated with each field.

In the third column U(qy we list all the fields produced by unfolding all the E;; fields which
have no blocks of ten or eleven indices. These fields are the graviton, three-form, six-form, dual
graviton, and the higher dual fields in (9) which contain more blocks of nine indices, i.e. the
fieldsAg  o3,A9 . 96,andhg g¢g;.In the fourth column ¢4,y we list all the fields produced
by unfolding all the fields which have no blocks of eleven indices, and in the fifth column 44
we have those produced by unfolding all the fields in E;; . Note that unfolding the fields with
blocks of eleven indices leads to no extra fields, so the I{(;1) column is obtained from the I/,
column by adding to it the fields in E;; with blocks of eleven indices. In the 14;) case, none
of the fields in E;; can play the role of an extra field since they are all unfolded. The sixth
column U(,2—9) counts the fields produced by unfolding the fields in E;; associated with real
roots of the E;; algebra. Lastly, in the seventh and eighth columns, we list the multiplicities of
all the fields in the £, and ¢, representations of E; .

Since all the degrees of freedom are contained in the fields with blocks of at most nine
indices, we find that U contains all the degrees of freedom and so £, seems to be sufficient
to encode the dynamics. Here we are only unfolding dynamical fields. The fields with blocks
of ten or eleven indices do not contain the degrees of freedom, but nevertheless they can play
an important role, the first example being By ; ; at level four which is responsible for Romans
theory. Unfolding only the fields with blocks of at most nine indices produces extra fields that
can all be found in the £, representation, at least up to level six. This holds whether or not we
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Table 2: Unfolding different sets of E;; fields from levels four to six.

fields | Eyy || Upoy | Uno) | Unny | Uier=2) || €2 | tao || &* |

Ags 1 [ 1 1 1 1 oo [ 2
Biois | 1| O 1 1 1 oo | 2
By, | O || 1 1 1 1 10| o0
Chp | 1| 1 2 3 2 1)1 | -2
Agg 1 || 1 1 1 1 ol o[ 2
Byar | 1 | O 1 1 1 oo | 2
Bys | 0 || 1 1 1 1 1|0/ o
Cisi | 1 ]| O 1 2 1 1|0/ o0
Chga | 1| 1 2 3 2 1)1 | -2
hos: | 1 | 1 1 1 1 ol o[ 2
Biez | 1 | O 1 1 1 oo | 2
Byos1 | 1| 1 2 2 1 1|0/ o0
Bys | 1 || 1 2 2 1 1|0 | -2
Cihas | 1]l O] O 1 1 oo | 2
Chsia| 1] 0o o 1 1 oo | 2
Cisz | O || O 1 1 1 1|0/ o
Crer | 2 || 1 3 5 2 21 || =2
Chy | 1| 1 3 4 1 201 || -4

allow some E;; fields to play the role of extra fields. In other words, if we include E;; fields
that are not unfolded, then we do not need ¢, at all.

We see that all the fields in I{(;) can either be found in the set of fields in E;; that are not
unfolded, or inside the £, representation. It is slightly tricky now because some of the fields in
E;; have the same Young tableaux as two of the extra fields that appear when we unfold the
hg g 1 field — see equation (301a). As worked out in Section 4, unfolding Ag 5 leads to two extra
fields, 210)2 and 12{11,1 , one of which has the same symmetry type as the extra field ]§11’1 that
appears when unfolding the B ; ; field. It is possible that C; ; at level four in E;; could play
the role of one of these extra fields, and the other one could come from the ¢, representation.
If we allow some E;; fields to play the role of extra fields, such as C;; ; and so on, then ¢,
is once again more than sufficient to account for the unfolded spectrum. If it turns out that
the fields in E{; cannot be used to unfold other fields then we would need to look beyond ¢,
to find all the extra fields. In this case, our counting shows that the £, representation of E;;
would be a good candidate for a source of extra fields beyond the £, representation.

So far, nothing has required us to unfold every field at every level. Part of the problem is to
understand which fields need to be unfolded and which do not. If we unfold every field in E;;
as in the U(41) case, then all the extra fields would need to come from additional representations
of Eq; . In the U1y column we have counted all the fields in this maximal unfolded spectrum,
and we notice that there is a perfect match up to level six between the number of extra fields
and the £, and {,, representations. In numbers, this means that the entries of the {(;;) column
are equal to the sum of those of the E;;, £, and £, columns. This is somewhat misleading:
we will see that this perfect match breaks down at level seven.

In the U,2—5) column we proceed by unfolding only the E;; fields that correspond to real
E;; roots, i.e. the roots a whose squared length is equal to two. The last column tells us the
squared length of each root. Once again, we find that the fields in E;; that are not unfolded
and the fields in £, are more than enough to account for this unfolded spectrum of fields.
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Analysis at level seven. In the non-linear realisation there are twenty-four fields at level
seven: A9,9’3 5 B10’774 B B10,8,2,1 N 310,8,3 5 B10,9,1,1 , tWo COpieS OfBl(),g’z 5 BlO,lO,l B and also sixteen
fields with columns of height eleven. In order to unfold, we introduce the following variables:

ero)”® = Aggs ® Ajggs ® Ajgos ® A1 73 ® Ajigs © Ao, (302a)
6[10]7’4 = Bio7,4 @ §11,6,4 ® §11,7,3, (302b)
er101>>" = Bioga1 @ §11,7,2,1 & §11,8,1,1 ® §11,8,2: (302¢)
er101>® = Biogs @ §11,7,3 ® Eu,s,z, (302d)
6[10]9’1’1 = Bi1o9,11 ® §11,8,1,1 ® §11,9,1, (302e)
6[10]9’2 = Bjoo2 @ §11,8,2 ® E11,9,1» (302f)
er10]'" = Bio101 @ §11,9,1 ® §11,10- (302g)

Note that two copies of 6[10]9,2 are needed since there are two By ¢, fields in Ej; .

In Table 3 we summarise our analysis at level seven. We find that unfolding only the
higher dual field Ag ¢ 5 produces extra fields that can all be taken either from £, or from E; .
Unfolding fields with blocks of at most ten indices leads to more extra fields, and most but not
all of them can be taken from £, . The rest can be taken either from E;; or from an additional
representation like £, and in either case there are more than enough fields to account for the
unfolded spectrum. If we were to unfold all E;; fields, we would find that the perfect match
up to level six breaks down. In particular, £, and £, contain more than enough fields. Lastly,
we consider unfolding only the fields in E;; that are associated with real roots. In this case at
level seven we do not even need ¢, and we can take all the extra fields from E;; itself.

Analysis at level eight. We conclude by examining the unfolded spectrum at level eight in
the non-linear realisation. There are sixty-seven fields at this level: Agg¢, B1g77, B1ogs1>
Biosg6> Biog3z2, two copies of Biggg, two copies of Bigos, Big102,1,1, tWo copies of
B10,10,3,1 > two copies of By 19 4, and fifty-three fields with columns of height eleven.

e[o)”° = Aggs ® Alnge ® Algos ® Aj176 ® Ajigs © Ao, (303a)
er10)”” = Biogy @ Biizg, (303b)
er101>>" = Biogs1 @ §11,7,5,1 ® §11,8,4,1 ® §11,8,5: (303¢)
e101>® = Bioge @ §11,7,6 ® Eu,s,s: (303d)
3[10]9’3’2 = Bi1o932 ® §11,8,3,2 ® B\11,9,2,2 ® §11,9,3,1 ) (303e)
6[10]9’4’1 = Bjo941 ® §11,8,4,1 ® §11,9,3,1 ® §11,9,4: (303f)
er10]”” = Biogs @ §11,8,5 ® §11,9,4a (303g)
6[10]10’2’1’1 = Bjo,102,1,1 @ §11,9,2,1,1 & §11,10,1,1,1 ® E11,10,2,1, (303h)
er10] > = Big1031 @ §11,9,3,1 ® §11,10,2,1 & §11,10,3, (3031)
er10] >t = Bio104 @ §11,9,4 ® §11,10,3~ (303))

In Table 4 we continue our analysis at level eight. Unfolding only the higher dual field
Ag g ¢ produces five extra fields which can all be taken from either E;; or £, . If we unfold the
fields with blocks of at most ten indices, then we find that all the extra fields can be taken
from E;; and ¢, . It should be noted for this case that an additional representation such as £,
needs to be added if E;; fields are not allowed to play the role of extra fields.
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Table 3: Unfolding different sets of E;; fields at level seven.

| fields | Eyy || Upo) | Unoy | Uan) | Uter=o) || €2 | f10 || & |

Agos | 1 | 1 1 1 1 o]0 [ 2
B4 | 1 | O 1 1 1 oo | 2
Biosz1| 1 || O 1 1 1 oo | 2
Biss | 1 | 1 2 2 1 1/0/| o0
Bio11| 1 || O 1 1 0 10 o
Bios | 2 | 1 3 3 1 1]0 | —2
Biowoa | 1 || O 1 1 0 210 || —4
Crhgsi| 1| 0| o 1 1 oo | 2
Cries | 1 || O 1 2 1 10| o0
Crgon| 1 || O 1 2 1 10 o
Cizs | 2 || 1 3 5 2 21 || -2
Chgi1| 3 | 0 | 2 5 1 21 || =2
Ciga | 3 || 1 5 8 2 411 | —4
Cho1 | 4 || 1 5 9 1 5| 2 || -6
Cho | 1| O 1 2 0 301 | -8

Table 4: Unfolding different sets of E;; fields at level eight.

| fields | By || Uy | Uno | Uy | U=y | €2 | tao || &° |

Agoe 1] 1 1 1 1 0] 0] 2
Bysy, | 1| O 1 1 1 0| 0| 2
Bioss: | 1 || O 1 1 1 00| 2
Buse | 1 | 1 2 2 1 1o o
Bioosz | 1 || O 1 1 1 0| 0| 2
Buowar | 2 || O | 2 2 0 1o o
Bios | 2 | 1 3 3 1 10| —2
Biotoz11| 1 || O 1 1 1 0| o0 2
Biowsi | 2 || O | 2 2 0 20 | —2
Bows | 2 || O | 2 2 0 2|0 | —4
Cheer | 1| O] O 1 1 0| 0| 2
Chgaz | 1| 0] O 1 1 0| o0 2
Chgsy | 1| O 1 2 1 101 o
Cize | 2 || 1 3 5 2 2|1 | —2
Crgsii | 1 ]| 0] 0 1 1 0| o0 2
Chgsz | 1| O 1 2 1 1101 o
Chgar | 4| 0| 3 7 1 3|1 | —2
Cihgs | 3 || 1 5 8 2 411 || —4
Criooin | 1] O 1 2 1 1o o
Crosz | 2 | O 1 3 1 10| —2
Chos: | 6 | 0| 5 | 11 1 6| 2 | —4
Cioa | 7 || 1 7 | 14 1 712 -6
Crio11a | 2 | O 1 3 1 2|1 | —2
Cir1021 | 7 || 0 | 3 | 10 1 8| 2 | —6
Chis | 6 | 0| 4 | 10 0 10| 3 || -8
Ciyi11n | 3 ]| 0 | O 3 0 5|3 | -8
Chne | 5] 0] 0 5 0 8| 3 | —10
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The perfect match that we noticed when we unfolded all E;; fields in the theory up to
level six was broken at level seven, and it continues to be broken at level eight. We notice a
perfect match between E;; @ {, @ £, and the maximal unfolded spectrum in the {(;1) column
for sixteen of the twenty-seven types of field in Table 4. The fields for which £, is not needed
since E7; and {, alone match the unfolded spectrum are By, g 41 and Byj g 4. Furthermore,
the fields for which E;; and £, are already larger than needed are By ¢ 41, B10,10.3,1 > B10,10.4 »
B119315B11,101,1,15 B11,102,1 > B11,10,3> B11,11,1,1> and By 11 5 - As at level seven, it seems that
we need to pick and choose which fields to unfold rather than unfolding everything at once.
If we unfold only the fields corresponding to real roots, it is clear from the {/42—5) column in
Table 4 that all the extra fields can be taken either from E;; or from £, .

It would be interesting to have a maximal set of E;; fields whose unfolded spectrum is a
subset of Eq; and the {, representation. This way one would not need to worry about £, or
any further highest weight representation that might need to be added at much higher levels.
Moreover, even if we unfold all Eq; fields, the extra fields do not ‘fill up’ £, and £, . If we were
to include both of these representations while desiring a perfect match then we would need
to add even more irreducible tensor fields to the unfolded spectrum, and it is not clear where
such fields would even come from.

6 Unfolding AT™" at low levels

The non-linear realisation of is known to contain and extend gravity in four dimensions
to a theory featuring an infinite number of fields, including all higher dual gravitons [19, 74].
In order to make contact with this theory, we will unfold the fields in A up to level three.
The Dynkin diagram of AT*™ is given by

+++
A

—o —@
1 2 3 4

At level zero the only field is the graviton h; ; and its unfolded formulation is identical to that
given in Section 3.2, where all the zero-forms are now valued in irreducible representations of
GL(4) rather than GL(11). Unfolding on-shell, all the zero-forms will be valued in irreducible
representations of the Lorentz group SO(1,3). At level one there is only one field, the dual
graviton h(loi , and its unfolded formulation is exactly the same as that of the graviton at level
zero since fhey are both symmetric rank-two tensors in four dimensions. At higher levels we
find an infinite number of fields, including the family of higher dual fields containing the first
higher dual graviton R atlevel two, and more generally we find the n® higher dual graviton

2,1,1
h(zr,?l , atlevel n+1 for arbitrary n > 2.

hig ~ 1, W) ~ 11, W~ HeEH. (304)

The graviton and the dual graviton both transform with a vector gauge parameter in their
unfolded formulations, and an extra two-form is introduced alongside each of them. The first
two-form can be eliminated with an I, (A{J’*) transformation at level zero, i.e. a local Lorentz
transformation. The second two-form is analogous to the extra nine-form in Section 3.3, and it
was shown in any number of space-time dimensions that this extra field can be eliminated from
the action for dual gravity using the (Hodge dual of the) Lorentz gauge parameter, leaving an
action only in terms of the dual graviton [52].

The zero-forms in the unfolded module of the graviton have the same tableaux as they did
in equation (65). In four dimensions the graviton and dual graviton have the same tableau,

52


https://scipost.org
https://scipost.org/SciPostPhys.18.5.149

e SciPost Phys. 18, 149 (2025)

so their unfolded equations look the same and the zero-forms in their unfolded modules have
the same symmetry types:

T(hl,l) — {C(O) C(l) C(Z)

0)y _ (70 =(1) =(2)
2,222,212 2,2,1,1""}’ T(hl,l)_{C2,2’62,2,1’C2,2,1,1""}' (305)

In the non-linear realisation of A}*™ it was found [19] that the first-order on-shell duality
relation between gravity and dual gravity takes the form

0

@ a1b[2]

2
o< gppa P wg 2 (306)
where w;, and co(l(')% are the first-order connections associated with the graviton and the dual
graviton, respectively. Taking derivatives leads to the on-shell curvature relation

a[bl a[alh(O)az],bz] o< gbl b2C1C2 a[cla haz],Cz] : (307)

[a

This can equivalently be expressed in terms of primary zero-forms in a similar way to equation
(49) in eleven dimensions:

C(O)alaz,bzbz o< &p, bZClCZC(O)alaz,clcz . (308)

0) ~(0)
2 and Cz’2

to the curvature tensors Jy, Jq,q,],6,]1 a0d Frp, Gq 1h(°)a ,1,b,] > respectively. Taking traces leads
to the linearised equations of motion for gravity and dual gravity:

The unfolded equations allow us to write the primary zero-forms Cé as proportional

a[ca[cha]b] == O, a[ca[ch(o)a]b] =0. (309)

The first higher dual graviton hgli 1~ H:D is the only A7*™ field at level two. The first

three unfolded equations are given by

dega)®” + hega copy 121 = 0, (3102)
dw[l]a[B],b + hCX[l]a[S],bc =0, (310b)
dX[l]a[S],b[Z] + hc[Z] Ca[3],b[2],c[2] =0, (310¢)

and their gauge transformations are

Bepa) ™" = dAp ™" —hepay 2@, (311a)
5w[1]a[3]’b = dgal3lb 4 h, /50[3]’176 , (311b)
5X[1]a[3],b[2] = dpal3Lhbl2l, (3110

The primary zero-form Cs 5 5 is the first in the tower

T(h(zg,l = {Cglz),z,ln Ine N} = {ng?z),z’ C?E,lz),z,l’ CIE,22),2,1,1’ e } . (312)
Decomposing the fields and parameters into irreducible components, we obtain
€qya,lb,c = hgibb,c +Aq ay(b,c) At =AW p e+ A (313)
H@@:Eﬂj@_[, DelM]=[T1eH]. (314)
and the irreducible fields trans;)rm as
Sh e = Aa A ey e + %%aﬂ(z)az](b,c) - ga(b@(z)alaz,k): (315a)
8Au 0,000 = za[all(z)azag],b — Qg aya5,b - (315b)
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The purpose of the a3 ; parameter is to shift away the extra field, but this is very different from
the off-shell picture [74] where ;{3,1 cannot be eliminated from the higher dual action, and

where both 6 hgi ,and 523’1 also include strange terms containing the vector gauge parameter
of the dual gra\’/ifon at level one. The gauge transformations found above match the those of
the AJ{++ non-linear realisation up to certain factors, but neither of these frameworks is able to
reproduce the strange intertwined gauge transformations in the higher dual action principle for
linearised gravity in four dimensions. There is an extra two-form field at level one and an extra
A\&l field at level two, and these fields precisely match the generators of the £, representation

of AT** at levels zero and one [74].

(0)
h1,1

, at level two was found [74] to take the form

The first-order duality relation between the dual graviton

dual graviton hgli

at level one and the higher

€y

al|b[3],c (316)

0
o< gp31” w®

w clap’

where w(l)[lf’l is the first-order connection in the hgl)

1, unfolded equations (310a) and

(310b). Taking derivatives leads to a curvature relation between the primary zero-form C:goz) 5
of hgi’l to the zero-form 5512)1 € T(h(l(’)i) :
C(O)a1a2a3,b1 by,cicy — EalazaBdE(l)blbz,clcz,d . (317)

This is analogous to (162) in eleven dimensions, and it is the same as equations (2.33) and

(4.36) in reference [74] that we worked out, respectively, from the AJ{++ non-linear realisa-

6D)]
2,1,1

writing the zero-forms in terms of their respective fields, we find the h
expressed as trace constraints on its curvature:

and 23,1 . Working on-shell and

(1)
2,1,1

tion and a higher dual action principle featuring both h

equations of motion

0 0 0
(Trl’z)Z(Cé’z),z) = (Trl,?,)z(c:g’g)’z) =0, Tr2,3(C§’2)’2) =0, (318)
where Cé?z),z is proportional to the curvature tensor g, Iy, G4 1h(1)a ,as],b,],c,] - The first of these

linearised equations was found in the A7** non-linear realisation and both of them have been
obtained from a higher dual action — see equations (2.38), (4.37) and (4.38) in [74].
At level three there are two fields in the A{++ non-linear realisation: the second higher

dual graviton hgz; 1, and a non-dynamical field Bj 5 ; that has not yet been studied. The first

few unfolded equations for the h(z?%,m field are given by
depy1 120 + hy wpppdl@l2hoe) =, (319a)
dewpa1 B0 4 Ry X 1HARI0A) = o (319b)
dX[l]“[g]’bB]’C +hy Y[l]“B]’b[B]’dc =0, (3190)
dy[l]a[B],b[BJ,C[ZII +Rypa) cal3lbl3lel2)dl2] — ¢ (319d)

and their gauge transformations are

e 2t = dpp 12 4 hy qpypdtal2hbe) (320a)
5w[2]a[3],b,c — da[l]a[S],b,c —hgp palsldl2lve) (320b)
5X[1]a[3],b[3],c = dpalslblsle 4 p  yal3lol3lde (320¢)
5Y;L3b1Lel2] = gyal3lolalel2] (320d)
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where (---) denotes a projection onto the GL(11) irreducible Y[2,1, 1] tableau. Decomposing
all the fields into irreducible components, we find
6[2]2’1’1 = hyoi11 + 23,1,1,1 + A\B,Z,l + A\4,1,1~ (321)
[T | N
HeHH=H{e[o ® ® (322)
Similarly, decomposing the gauge parameters leads to
[]
Ayt = 1(22,1,1 +7L(22,1 +Ag,1 , OeH= ® I o ,» (323)
[T | -
ap> = a(32,1,1 + 0@,1 + afi,l » e Ej:] = ® ® M (324)

The extra fields {23’1,1,1,23,2,1,24,1,1} are known to appear inside the action principle for the
second higher dual graviton [74] and they are found in the £, representation of AJ{++ at level
two. Similarly, the gauge parameters are found in the £; representation of A7 at level three.
The extra fields can all be set to zero using the components of the a[l]z’l’l parametetr.

Now consider the second field Bs 5 ; at level three. The first three unfolded equations are

dega)?? + hepa) oy P = 0, (3252)
daog) M0 + by X4 =0, (325b)
dXpyg TR oy CoLALBEBL2] — o (325¢)
and their associated gauge transformations are given by
Bery P = dApy TP — Ry agy PRI, (3262)
S = dapy T — hop) peHO, (326b)
5X[1]a[4],b[3] — dﬂa[4],b[3] , (326¢)

where (---) denotes a projection onto the Y[2,1] tableau. Decomposing the fields and gauge
parameters, we find

R R l [] |
6[3]2’1 =Bs391+B411+Bsoa, @ ® Ej = @ ] @ ] ‘, 327)
10 [
APt =280, 420,429, HeH I =HFed e, @3
o - | [] |
0‘[1]4’1 =0477T 09, []1® = @ | (329)
As before, the extra fields are found in the ¢, representation of A;™* and they can both be set

to zero using a[1]4’1 . The components of 1[2]2’1 are found in the £, representation.

In the same way that fields beyond E;; and its £, representation may need to be added
to the E;; non-linear realisation, at level three in A7* we notice that there is only one field
of symmetry type Y[4,1,1] in the £, representation of A;™* while the unfolded spectrum has
two of them, one for each of the fields that we unfold at level three. It may be possible that
these two extra fields are one and the same, or that one of them must lie beyond A’{JFJr and
its £, representation. In order to be certain we would need to extend the A7™" non-linear
realisation to incorporate dynamical £, fields, but that is beyond the scope of this paper.
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Unfolding at higher levels. Now we extend our analysis to arbitrarily high levels. In order

)
1,1

to unfold the n™ higher dual graviton hgﬁ
we introduce a tower of variables

at level n+ 1 in the A7 non-linear realisation,

n—1 1

o1, 10,9"72,8,1 102,9"3.8,1 10%,9"4 8,1
6[9] , (.()[9] N X[9] N X[g] 5 e (330)

Schematically, the first unfolded equation is
depy) ™M +hy M =0, (331a)
and it is invariant under the gauge symmetries

n—1 n—1 n—2
Bepy)” M =dApy® P Ry (3322)
60)[2]3’2“_2’1’1 — da[1]3,2“—2,1,1 ) (332b)
The tower (330) continues as

n—2 n—1 n n
X[2]3 ,2,1,1 , X[2]3 ,1,1 , X[1]3 ,1 , X[1]3 2 , C3 ,2,2 S (333)

ey

where the primary zero-form Css 5 5 is the first in the tower

() y_ (M _ [~ 1) (2)
T(hzn,m = {Csn,z,z,m IneN}= {Csn,z,z’ Cana01Cano1,100 } . (334)
We can use the generalised Poincaré lemma to express C?ES)Z , as the curvature tensor
0 —
COua,anta1piater2] = 8e, A, Al -+ - A2 Fat M atada2ad),..olagal b La] (335)

One immediately notices that this curvature is gauge-invariant under

5h™ 1), an(21,bc = [a[a';|lu)al[z],..,,an—l[z],|ag],b,c + 3cl(2)a1[2],...,an[z],b]Zn 1 (336)
The unfolded formulations of the graviton h; ; , dual graviton h(loi , and higher dual gravi-
tons hg,?l , involve first-order connections
n—2
w[l]z ’ C()(0)[1]2 ’ w(l)[1]3’1 ’ C0(2)[2]3,1,1 , w(B)[Z]S,Z,l,l o w(”)[z]B’z o
(337)

and we use all these variables to write our infinite tower of first-order on-shell duality relations,
starting with (306) and (316), followed by the duality relation

2

@a21p[3],e,d € ep3)” wE|1;3a[2],d (338)
between hg’l’l at level three and hgil at level two. Taking derivatives leads to
By ey by iay NP ayay 1 bsby s Lids] O Bty Oe ity Oy Ob, ' My, 1101 5 (339)
and taking appropriate traces leads to the equations of motion for the hg’l’l field in terms of
its curvature tensor C:g?g),z,z :

(Trl,z)g(cs,s,z,z) =0, (Trl,s)z(cs,s,z,z) =0, (sz,s)z(c3,3,2,2) =0,

9 9 (340)
Tr34(C3322) =0,  (Tr14)°(C5322) =0,  (Try4)°(C3322)=0.
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(0)
C3322

Equation (339) can be written in terms of eTl (hgzg 1,) and Célz) 51 € T(hgli ok

0 _ e (1
c )alazag,b1b2b3,c1c2,d1d2 = €aya,a, c )b1b2b3,6152,d1d2,e : (341)

Integrating three times leads to the first-order relation

a[alh(Z)azaﬂ,bl by,c,d + a[b15b2]|a1a2a3,c,d o< Salazﬂse (a[eh(l)lh by],c,d + 8(C|®f3b1 b2,|d)) . (342)

The arbitrary tensors Zyj3 1 ; and ©3 ; have the same tensor structure as a[1]3,1,1 in (324) and
as in (315b), respectively, so we identify ©3; with the extra field 23’1 at level two that is
shifted away by as ; , and we identify the components of =5 ; ; with the extra fields in (321)
at level three that are shifted away using the a[1]3’1’1 parameter.

Now we will propose a chain of first-order duality relations for higher dual gravity fields

h(zr,?l 1 for n > 2 in terms of their first-order connections in (337).

(3) (2)
War2lbi3lcl2).de € Sb[3]pwa[2]|pc[2],d,e’ (343a)

(4) (3)
Dapabis]el2dizles O BT Caf2iper2]dl2]e s (343D)

(n) (n—1)

@ 1201b[3Le[2],d [2],...dm3[2]e,f €b[3]pwa[2]|pc[2],d1[2] ..... dn3[2],e,f * (343¢)
Taking derivatives leads naturally to relations between zero-forms c§2)22 € T(h(zri 1 1) and

c (”)2’2’1,1 S T(h(l()i) that are analogous to (288) in eleven dimensions:

COara),..antarbi2re2) = Eaiar™ - €ana) ™ C ™) cl2)dynd, - (344)
Working on-shell, the Lorentz irreducibility properties of C. () are exchanged under (344)

2,2,1n

. . 0
with constraints on C?En)z 95

equations of motion for the hg,?l , field:

(Tr; ;) )*(C3002) =0,  (Trip41)*(C3022) =0,
Trpi1,n42(Can22) =0, (Trin12)*(Cang0) =0,

including higher trace constraints that we interpret as the linearised

1<i<j<n. (345)

The zero-form relations (344) for adjacent higher duals A and KD together imply

2m,1,1 2n-111
a new relation between Cég)z , € T(hgﬁ)l ) and ng] 991 € T(hg,:l)l Nk
(0) _ d~(1)
Ca1[3],a2[3] ..... an[3],b[2],c[2] — €al[3] Ca2[3] ..... an[3],b[2],c[2],d * (346)

Using (335) to express these zero-forms in terms of their respective dual fields, (346) becomes
the on-shell duality relation

aya31,a5a3],....|a5 a3 1,bslc5]

e, 0oy e+ P20t h™

< 8a1[3]dad a[cl a[bl B[ar” cee 3[a%h(n_1)a2a§] (347)

2
Repeated integration of (347) for n > 2 leads to
a[alh(n)a;aél,aZ[Z] ..... ar[2],be T a[aZEa§]|a1[2’>],a3[2] ..... an2,b,c T b1 Ya[3],a2(2],..an(2] c)

1
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Table 5: Unfolding different sets of AT*™ fields from levels one to four.

| fields | AT™ || Uy | Uy | Uy | Uiar—a) | L2 | @* |

h©) 1 11 |1 1 o] 2
B, o | 1] 1|1 1 1] o
AN 101 |1 1 o] 2
By, o | 1] 1|1 1 1] -2
S 11 |1 1 [of 2
Biiig | O || 1T | 1] 1 1 |1 o
Bipy | 1 || 1| 2] 2 1 1] —4
Carn | O | 1] 2] 2 1 1] -6
Ca o o] 1|1 o |1 -8
K] 1 101 |1 1 o] 2
Bisnan| 1 || 1] 2| 2 1 1] -2
Bisor | 2 || 1| 3] 3 1 2] -6
Bisin | 1 | O] 1] 1 o |11 -8
Bssy | 1 | O | 1|1 o | 1f-10
Carnan| O | O | 1 |1 o |1 —4
Cazin | 1 | 1| 5|6 1 | 4] -10
Capo | O | O] 3] 3 o |l 2] -12
Casn | 1 | 0] 2] 3 0o |2 -4

It is clear that Z;5 o2 1 1 and ©y)3 9n-3 1 1 have the same structure as the a gauge parameters
in (332a), so their components are identified with the extra fields in 6[2]2"—1,1,1 and 6[2]2“—2,1,1 ,
respectively, or with the components of the gauge parameters that can be shifted away using
gauge-for-gauge transformations.

The first relation (306), similar to (46) in eleven dimensions, was found in the non-linear
realisation [ 19] and it can also be worked out by integrating (307) in the unfolded formulation
of gravity and dual gravity. The two-form gauge parameters need to be related by a Hodge
duality analogous to (47). At the next level, (316) is the duality relation between the dual
graviton hg(’)i and the first higher dual graviton hgil , and it can be obtained by integrating the
curvature relation (317). Up to pure gauge terms which are absorbed here by the introduction
of extra fields, (316) matches the duality relation in the non-linear realisation — see equation
(2.31) of [74]. Then we have equation (338) which is the duality relation between the first
and second higher dual gravitons. Lastly we have an infinite family of duality relations (343a),
(343b), and (343c) relating adjacent pairs of higher dual gravitons at arbitrarily high levels.
All the duality relations hold exactly and not as equivalence relations up to pure gauge terms,
and the parameters must obey constraints that relate them like the constraints in Section 5.
Similar to our duality relations in eleven dimensions, there is no clear origin of Y3 ;-1 ; in the
unfolded equations and gauge symmetries, so they are not included in duality relations (343a),
(343b), or (343c). We summarise this infinite tower of duality relations with a diagram:

o c()(0)[1]2 - w(1)[1]3,1 - w(z)[2]3,1,1 - w(s)[2]3,2,1,1 s . (349)
Let us conclude this section with a counting, similar to that of Section 5.5, of the extra fields
that appear when unfolding A7*" at low levels. In Table 5, the columns labelled U5y, U(3),
U4y » and U(42—y) count the unfolded spectra when we unfold: (1) fields with blocks of at most
two antisymmetric indices (i.e. hy 57 1), (2) fields with blocks of at most three indices, (3)
fields with blocks of at most four indices (i.e. all A7*™ fields), and (4) the fields corresponding
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+++
A

to real roots. The spectra Uy and U(42—5) are the same here (since the first a? = 2 field

more than accounted for by and ’it,s’éz representation. The other two spectra U3y and
U4y already surpass A7 and £, at level three: there is only one Cy ; ; in £, but we need two.
At the next level we find three fields in £, that are unused in {4y : B3 391, B331,1,,and B3 .
We also find that more fields need to be added, namely one C4,,; and one C, 55 .

+++
Ay

7 Frame-like actions for higher dual fields

7.1 Higher dual three-form in eleven dimensions

Another motivation for the introduction of higher connections in the unfolded formulation of
various dynamical systems is that they are needed off-shell — at the level of actions. If it is
true that, on-shell, these connections are either pure gauge or expressed as successive deriva-
tives of the metric-like potential, then off-shell they are independent fields and instrumental
in the construction of an action principle from which the dynamics follows. Until now, we
have worked entirely at the level of unfolded equations of motion, but here we extend our
analysis off-shell by completing the construction of an action principle for the Ag 5 field that
was initiated in [23] along the lines of [80]. A parent action for Ag 3 was presented in [23]
in terms of the (frame-like) variables of the unfolded formalism, and here we obtain a sim-
ple and transparent form of the higher dual action. This provides a direct link between the
unfolded formulation of Ag 5 and the action presented here. We will use these techniques
again in Section 7.2 to work out an analogous frame-like action for higher dual gravity in four
dimensions.

Our starting point is the Maxwell three-form action in the Palatini formulation. There are
two independent fields: a scalar-valued three-form field A3 and a zero-form F 4] yalued in
the rank-four antisymmetric Lorentz representation. The action is given by

1
S[A,F]= J (dAgs+ ShapaF I )F 0, (350)
Mll
where Hy4 is the seven-form %sbwcmhcm and M; denotes our eleven-dimensional space-
time. The three-form action (350) is invariant under the usual gauge transformation
5A[3] = d?t[z] 5 (351)
and its equations of motion are given by

dA[3] + ha[4]Fa[4] =0, (352a)
dri*H,y=0. (352b)

The second equation is equivalent to the on-shell relation
dFel#l 4 py pal4hb — o (353)

where the zero-form F4}? transforms in the irreducible Lorentz representation Y[4,1]. To
be precise, the equation of motion for F*4 is (352a) and it implies OaFpcde] = 0, while the
equation of motion for Ars; is the Maxwell equation 0“F,p,.q = 0. These two constraints are
equivalent to the Lorentz irreducibility properties of FA4-? | It is important that (352a) and
(353) reproduce the first two unfolded equations for the three-form (56) and (59).
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From the action (350), we construct the parent action

1
S[A, Eye, t] = J I:(dA[g] + Eha[4]Fa[4] + ha[g]t[l]a[g])FbH]HbH] + t[l]a[B] de[g]a[S]] , (354)
M

featuring the one-form t[l]“[g] and nine-form e[g]“[3] along with the original fields Af3; and
F4) | This parent action is invariant under the following gauge transformations:

5Ap31 = dAra) + hypap 3, (355a)
5Fa[4] =0, (355b)
5t[1]a[3] — d¢a[3] ) (3550)
Sepo)" = d g (355d)

As for any p-form gauge theory, there are gauge-for-gauge (reducibility) transformations for
Aoy and 71[8]‘1[3] . Note that we do not identify the independent fields in the parent action (354)
with the analogous objects in Section 4.1 since they do not transform in the same way. For
example, none of the irreducible components of e[9]“[3] can be shifted away from the parent
action since it only transforms with the differential gauge parameter 71[8]“[3] .
The equations of motion of (354) lead to the on-shell relations

dApz) + hopag FU + syt =0, (356a)
dFt 4y PP =0, (356b)

el =0, (356¢)

de[g]a[B] _ha[3]b[7](*p)b[7] =0, (356d)

where (xF )p[7] = %ebmch <141, The field e[g]a[B] effectively acts as a Lagrange multiplier for
the constraint (356c¢) that is solved identically (albeit locally) by

ty 3 = dg, (357)

a3

for some zero-form ¢%®1. When the above expression for tr lis substituted inside the parent

action, t[l]a[3] effectively drops out from the action upon absorbing the three-form h,31¢ al3] jn
a redefinition of A;37. The parent action (354) therefore reduces to the usual frame-like action
for the three-form field (350). As a general rule, the actions obtained from the parent action
upon the elimination of (generalised) auxiliary fields only propagate the degrees of freedom
of the original field that is being dualised.

Now we will work out a frame-like action for the higher dual field Ay 5 that will propagate
the degrees of freedom of the three-form by construction. The first observation is that F,4] is
auxiliary, so it can be expressed algebraically in terms of other fields through its equations of
motion. The second observation is that the original three-form A3 can be completely gauged
away using the %3] parameter, leaving a residual gauge symmetry whereby the residual
gauge parameters Ary) and 3] are related as

lpa[i%] = _a[al )Lazag] . (358)
In this gauge, one eliminates the auxiliary field F¥*] through equation (356a), yielding

ha[4]Fa[4] = _ha[S] t[l]a[?’] . (359)
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This means.that Fo,aya5a, 18 set eql}al to the antisymmetric component t[.a1|a2a3a4] in the gauge
where Apgy is zero. The parent action (354) now reduces to the dual action

12
Sle,t]= f [—ﬁ empagh™ ! e b 0+ tragars) de[91a[3]] : (360)

Even now having eliminated the A3 field, the nine-form e[g]a[g]

for the constraint dt;;;%3] = 0 that is solved by t;;;9L%]
original Maxwell three-form and its second-order action.
Our dual action can be written in the form

is again a Lagrange multiplier
= dA?3] | thereby resurrecting the

4! 1
S[e,t]:Jdllx[ta|blb2b3(5t[a|b1b2b3]+ TR Cm,blbzbs)}. (361)

This is a first-order action principle for e[g]a[?’] which contains the higher dual field Ag 5 as one
of its irreducible components. As explained in [23], the independent field t, ;37 plays the
role of the spin connection. Our dual action now takes the form (de + %U_colw) of a generic
frame-like action for mixed-symmetry fields [78]. This is more obvious if we define

Wayayaslb += tb|a1a2a3 > (362)

so that the roles of the form and frame indices are exchanged. Dualising the vector index as in
(84) leads to the connection w3 ]“[10 Eliminating t[l]“m produces a second-order action for
6[9] al3] featurmg all its irreducible components: the higher dual field Ag 5 and two extra fields
AlO , and AH 1. It was possible in Section 4.1 to gauge away these extra fields using algebraic
shift symmetries. However, in [74] we observed that it is not possible to eliminate extra fields
from higher dual action principles, so they must remain here too.

Looking at our parent action (354), notice that its last equation of motion (356d) can be
expressed as the first unfolded equation (72a) for the Ag 5 field if we define

1
w[g]a[S]b[ﬂ — - ha[S]gb[7]c[4]FC[4]_ (363)

In components this is equivalent to

41

- C
ayazas|by-byg — 10! €by-byg Fca1a2a3 ’

w (364)
as given in [23]. Thus the unfolded formulation of the higher dual field Ag 5 in Section 4.1 is
compatible with our dual action principle (361) provided we interpret (364) as a first-order
duality relation between the three-form A3 and the Ag 5 field. The difference between (364)
and (114) is that equation (364) is automatically gauge-invariant, while (114) was only gauge-
invariant when a[z]lo is constrained to be pure gauge-for-gauge.

Lastly, we will decompose t[l]a[g] into irreducible components:

|
tap(3) = Favrz] + Yo[3gas L® @ = E ] . (365)

As mentioned previously, in the gauge where we set the three-form A3 to zero, there is still
some residual gauge symmetry enjoyed by t,p[37 such that it transforms as

Stqlp[3] = —0aOb, Abybs]- (366)
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Consequently, the mixed-symmetry component Y3 ; inherits all the gauge symmetry:

6Fq41=0, 61316 = =0 Fa, Aagas] - (367)

Our dual action can now be written as

12
S[e, F, Y] = f [ - ﬁ hb[ll]gb[ll]Fa[4]Fa[4] + (Fab[B] + Yb[3]’a)ha de[g]b[s]] . (368)

The equations of motion for this action are

5[2]a1a2a3 = hb (dyalazag,b — dFala2a3b) =0 s (369&)
gmaxazb . hbde[g]a1a2a3 —h[bde[9]a1a2a3] =0, (369Db)
£0a2a304 . — h[a1 d€[9]a2a3a4] _ % hb[ll]gb[ll]Fa1a2a3a4 =0. (369¢)

Solving the first equation of motion (369a) once again revives the Maxwell three-form and
its second-order action principle. The second and third equations (369b) and (369c) are two
orthogonal projections of the equation of motion for t[l]a[?’] in the dual action (361). The third
equation on its own is just a projection of the first unfolded equation (72a) where we impose
the duality relation (364). Separately, the second equation is an unusual differential equation
for the e[g]a[g] field. It is only by taking (369b) and (369c) together that we obtain the first
unfolded equation (72a).

7.2 Higher dual gravity in four dimensions

We conclude by working out an action principle for the first higher dual graviton h, ; ; along
the lines of Section 7.1. This will shed light on the gauge symmetries that we found using the
metric-like formulation of higher dual gravity [74]. Our starting point is the frame-like action
for dual gravity

1
Sle,w] = f (de[l]a + Ehb a)[l]ab) w[l]CdHacd , (370)
M,

where M, is our four-dimensional space-time. The equations of motion of (370) are equiva-
lent to the on-shell relations

depy1® +hy wpp*? =0, (371a)
dwpy® +hg €1 =0. (371b)

Moreover, (370) is invariant under the gauge symmetries

Sep11" =de” +hy, a’? (372a)
Swp" ™ =da?l. (372b)

Importantly, these match the relations and gauge symmetries of the unfolded formulation of
gravity in Section 3.2, and they are equivalent to those of dual gravity in four dimensions.
From the action principle (370), we construct the parent action

~ 1 ~
S[e, w,t, 6] = f [(dE[l]a + Ehb w[l]ab + hb t[l]a’b) co[l]CdHacd + t[l]a,b d€[2]a’b:| , (373)
M,
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for which the equations of motion are equivalent to the on-shell relations

depy)® +hy w13® +hy 1) =0, (3742)
deopy 12 4 gy CO2I2) = 0 (374b)
dip™? =0, (374¢)
dep® — 2 C (x0)y P, =0, (374d)

where (xw)7%H = 364251 w11%2). The parent action is invariant under the gauge sym-
metries

Sepny® =de® +hy a®® +hy @, (375a)
Sy =da?, (375b)
St =dy®?, (375¢)
~ ab_ 3~ _ab c(a b) ~ ab _ gzab
56[2] = dE[l] + 2hY (xa) c» 56[1] =dée*?, (8375d)

where (xa)? = %ea[z]b[z] all?], The equation of motion (374c) implies that t[l]a’b =dpeb
for some symmetric tensor f%? and so t[l]a’b can be gauged away using ¥®? in (375¢). As a
result, the parent action (373) reduces to the usual frame-like Fierz-Pauli action (370).

The equations and gauge symmetries found here are very different to those of [77, 78]
where Labastida fields with generic Young tableaux were unfolded. The Labastida field with
tableau Y[2, 1, 1] in four dimensions has the same symmetry type as our higher dual graviton,
but the towers of p-forms and their gauge symmetries in their unfolded formulations are not
the same, and accordingly the propagating physical degrees of freedom are different.

Now we will derive from our parent action a frame-like action for the higher dual graviton.
The symmetric and antisymmetric components of e[;;* can be gauged away using a®® and
@b | so the whole field er11” can be shifted away leaving residual symmetry to be discussed
below. In this gauge, imposing the equation of motion (374a) allows us to write

hb t[l]a’b = _hb (O[l]ab , (376)

and the parent action then reduces to

1 ~
S = J (_Ehb C()[l]aba)[l]CdHacd + t[l]a,b de[z]a’b) . (377)
M,

In the last term it should be understood that some components of t are to be expressed in
terms of w according to (376). In other words, t is not completely independent of w in (377).
The independent fields are €, the totally symmetric part of ¢, the totally antisymmetric part
of w, and the mixed-symmetry parts of t and w which are the same due to (376).

As mentioned above, w[l]“[z] and t[l]a’b still enjoy some residual gauge symmetry that
leaves the gauge e[;;” = 0 unchanged. The residual gauge parameters are related by

a®t = glaghl Y®b = _—pgagh) (378)
The components of these one-forms
(J)[l]ab = hc (x)clab , t[l]a’b = hc tcla’b , (379)
transform under this residual symmetry as

56()a|bc — aaa[bec], 5ta|b,c — _aaa(bec) . (380)
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Equation (378) implies that the gauge transformation (375d) becomes

5ér™? = dép P — R ;0% (381)

or in components, o
8€abjc,d = Fa€blic,d T Ma(cEd)b]ijO € - (382)

Now decompose é[z]a’b and é[l]a’b into irreducible fields and parameters:

éablc,d :Aab,c,d +Aab(c,d) ) éalb,c = Aa,b,c + Ya(b,c) - (383)

H@[jszjjea_ [, D@Dj:[jjjean. (384)

These fields can be expressed in terms of '5[2]“’1’ as

. 3 ) )
Agbed = 5 Elableld Aabed = 5 €abled T €a(cld)b]» (385)

and we find that the gauge transformations of the irreducible fields are

1 3 1 - .
0Aabcd= FQatbled + Za[a.ub](c,d) - ga(clnuab,\d) + En[a(cgd)b]ijalej + chdgabijalej , (386a)
~ 9 3 o
5Aabc,d = ga[anufbc],d - an[agbc]ijalej . (386b)

Up to factors, these are precisely the gauge transformations of the higher dual graviton A, ; ;
and the extra field 23’1 in the metric-like action for higher dual gravity [74]. The extra field
is once again crucial to the propagation of the correct degrees of freedom. The dual gravi-
ton transforms with a vector gauge parameter € and it was unexpected that the higher dual
graviton would also transform with it. However, in this section we have found that € arises
naturally as a consequence of residual gauge symmetry.

8 Conclusion

In this paper we applied the unfolded formalism to the fields in E;; . We proposed first-order,
gauge-invariant, on-shell duality relations for the infinite set of higher dual fields in the Eq;
non-linear realisation which contain the dynamical degrees of freedom. These relations are all
expressed in terms of the first-order connections that are used in the unfolded formulation of
each higher dual field in the gravity, three-form, and six-form sectors of the theory. Although
one can formulate the duality relations as equivalence relations, it is interesting to formulate
them as conventional equations that are gauge-invariant. The unfolded formalism introduces
extra fields into the duality relations which ensures that they are gauge-covariant provided
that we impose an infinite tower of gauge parameter constraints that were obtained in this
paper.

Taking derivatives of these first-order duality relations led to an infinite number of duality
relations between the curvatures associated with higher dual fields in E;; . Working on-shell,
we found that the constraints on these curvatures are exchanged, corresponding to the usual
exchange between the equations of motion and Bianchi identities between dual fields. Taking
traces of these curvature relations led to the linearised equations of motion for all higher dual
fields in the E;; theory. For dual fields at higher levels, there are more and more independent
equations of motion (i.e. higher trace constraints on the curvature) for one and the same field.
However, there is only one relation, an algebraic redefinition in fact, between the curvatures
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of any pair of dual fields. We have shown how to integrate these curvature relations to find
first-order duality relations, where the precise meaning of the extra fields becomes apparent.

There are two sources of ambiguity when applying the unfolded formalism to the non-
linear realisation of E;; . The only degrees of freedom in the theory are those of the graviton
and the three-form, and these are related to an infinite number of dual fields by first-order
duality relations. It is in this way that the infinite number of duality symmetries in E;; is
realised. While one must unfold all these fields associated with the dynamical degrees of
freedom, it is not so clear which other fields in E;; need to be unfolded. Should one, for
example, unfold the fields with one block of ten antisymmetric indices which lead to the gauged
supergravities? The prototypical example is the By ; ; field at level four which leads to Romans
theory. The other ambiguity stems from the fact that one could use fields in E;; with blocks of
ten or eleven indices in the unfolding process rather than introducing extra fields.

The origin of the extra fields in the theory was discussed in Section 5.5. An extension of the
non-linear realisation featuring these extra fields found in the unfolded formalism needs to be
compatible with E;; symmetry, so it made sense to search inside highest weight representations
of E;; . If only the fields associated with the dynamical degrees of freedom are unfolded, then
the £, representation by itself is able to provide all the extra fields. The lowest level field that
it contains is a nine-form, precisely the field that needs to accompany the dual graviton in its
duality relations.

In Section 6, the non-linear realisation of was analysed in the same way. We unfolded
the fields up to level three, all the higher dual fields h, _ ,;; at arbitrarily high levels, and
we wrote down first-order duality relations between them leading to linearised equations of
motion for all the higher dual fields. We then integrated all these equations to find the most
general first-order duality relations between the fields. Then we discussed the origin of the
extra fields and, similar to the E;; case, we observed that the £, representation of A} is the
natural candidate for a source of extra fields. Duality relations for the recently constructed
non-linear realisation of K,; = D; 4++ [81] were quickly proposed in Appendix B. A consistent
extension of the non-linear realisations of Ey; , A7, and K, , featuring the ¢, representations
of each algebra, should contain the duality relations that we gave in this paper.

First-order actions have been worked out in Section 7 for the higher dual three-form Ag 5
in E;; and the higher dual graviton h,;; in A7™*. A second-order ‘metric-like’ higher dual
action for the latter was previously given in [ 74], where we obtained intertwined gauge trans-
formations between the higher dual graviton and the extra field that came with it. In the
present paper we have shown that these intertwined gauge transformations emerge in a very
elementary way due to residual gauge symmetry.

In this paper we have not used E;; symmetry to formulate the dynamics. Rather, we have
taken the E;; fields and worked out their unfolded formulations. It would be interesting to
have an unfolded formalism with E;; symmetries built into it so that the resulting equations
and gauge transformations would automatically respect E;; symmetry. This would necessarily
involve extending space-time to the generalised E;; space-time [9] rather than the usual eleven
dimensions that we have considered here.

First-order duality relations for E;; fields were also proposed in [18,48,57] and one may
ask whether or not there is a link between those and the relations proposed in the present
paper. Moreover, fully non-linear equations of motion and duality relations were neither con-
sidered nor constructed here. The non-linear dual graviton equation of motion was obtained
in terms of the components of the E;; Maurer-Cartan form in [14]. It would be interesting
to extend the infinite set of the duality relations proposed here to the non-linear level. One
way to do this would be to use an E;;-invariant unfolding formalism since they would au-
tomatically include all the extra fields. In the full non-linear theory, a non-linear extension
of the first-order connections should feature in the duality relations. For example, the field

+++
Al
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strength F, of the six-form field Ag would be replaced by G, := F, — %A3F4 (with seven indices
antisymmetrised), and this non-linearity is built into the E;; non-linear realisation from the
start. For example, the component of the E;; Maurer-Cartan form at level two is G, . A possi-
ble non-linear completion of our linearised analysis should incorporate all E;; Maurer-Cartan
form components and all the necessary extra fields into our unfolded equations.
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A Representations of E;

For the convenience of the reader, here we give tables of generators of E;; and some of its most
important representations, computed using SimpLie [93]. Generators of the i fundamental
representation £; are obtained as follows. First we extend E;; to the algebra Egll) by attaching
a new vertex denoted x to the i™ vertex of the E;; Dynkin diagram using a single edge. Then
we must restrict the Kac label of the new vertex to be equal to one. In other words, a generic
generator in E(i) is associated with a root a = Z.H k;a;+k,a, and then the integer coefficient

k. must be fixed equal to one, so that in the decomposition E; ( ) — E;; we consider level one.
Taking the usual decomposition E;; — GL(11) leads to generators at each level written as Ay
tensors. This procedure can be used to work out more general highest weight representations
by adding more vertices and restricting the simple root coefficients to the Dynkin labels of the
representation being considered. The u column gives the multiplicity of each generator.

Table 6: The adjoint representation of E;; from level zero to level six.

[ 1] A;o weight | Eq; oot a | o | p| field |
0([1,0,0,0,0,0,0,0,0,1] (,1,1,1,1,1,1,1,1,1,0) 2 |1 Bb
0|1[0,0,0,0,0,0,0,0,0,0]| (0,0,0,0,0,0,0,0,0,00) |0 |1]| ™a
1|[0,0,0,0,0,0,0,1,0, 0] (0,0,0,0,0,0,0,0,0,0,1) 2 |1 As
21([0,0,0,0,1,0,0,0,0,0] (0,0,0,0,0,1,2,3,2,1,2) 2 |1 Ag
3([0,0,1,0,0,0,0,0,0, 1] (0,0,0,1,2,3,4,5,3,1,3) 2 |1 h8,1
4[0,1,0,0,0,0,0,1,0,0] (0,0,1,2,3,4,5,6,4,2,4) 2 |1 Ag 3
41[1,0,0,0,0,0,0,0,0,2] | (0,1,2,3,4,56,7,4,1,4 | 2 | 1| Bioas
4110,0,0,0,0,0,0,0,0,1] (1,2,3,4,5,6,7,8,5,2,4) 211 Ci11
51([0,1,0,0,1,0,0,0,0,0] (0,0,1,2,3,5,7,9,6,3,5) 2 |1 Age
51([1,0,0,0,0,0,1,0,0,1] 0,1,2,3,4,5,6,8,5,2,5) 2 | 1| Bioan
5/[0,0,0,0,0,0,0,1,0,1] | (1,2,3,4,5,6,7,8,5,2,5 | 0 | 1| Cpyas,
51([0,0,0,0,0,0,1,0,0,0] (1,2,3,4,5,6,7,9,6,3,5) —2 11 Ci14
6([0,1,1,0,0,0,0,0,0,1] | (0,0,1,3,5,7,9,11,7,3,6) 2 |1 hg g1
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6([1,0,0,0,1,0,0,0,1,0] | (0,1,2,3,4,6,8,10,6,3,6) 2 1| Bioez2
6([1,0,0,1,0,0,0,0,0,1]| (0,1,2,3,5,7,9,11,7, 3, 6) 0 1| Bioy1
6([1,0,1,0,0,0,0,0,0,0](0,1,2,4,6,8,10,12,8,4,6) | —2 | 1 Bios
6([0,0,0,0,0,0,1,1,0,0] | (1,2,3,4,56,7,9,6,3,6) 2 | 1| Cia3
6([0,0,0,0,0,1,0,0,0,2]| (1,2,3,4,5,6,8,10,6,2,6) 2 11 Cii511
6[0,0,0,0,1,0,0,0,0,1] | (1,2,3,4,5,7,9, 7,3,6) | =2 | 2| Ci161
6([0,0,0,1,0,0,0,0,0,0]((1,2,3,4,6,8,10,12,8,4,6) | —4 | 1 Ci1y
Table 7: The £, representation of E;; from level zero to level four.
| l | A;o weight | E(1) root a | a? | w | coordinate
0([1,0,0,0,0,0,0,0,0,0]|(0,0,0,0,0,0,0,0,0,0,0,1) | 2 1 x4
1][o0,0,0,0,0,0,0,0,1,0] | (1,1,1,1,1,1,1,1,0,0,1,1) | 2 1 Z9
2([0,0,0,0,0,1,0,0,0,0]((1,1,1,1,1,1,2,3,2,1,2,1) | 2 1 Zs
3([0,0,0,1,0,0,0,0,0,1]((1,1,1,1,2,3,4,5,3,1,3,1) | 2 1 271
3/[0,0,1,0,0,0,0,0,0,0](1,1,1,2,3,4,5,6,4,2,3,1) | 0 |1 Zg
41[0,0,1,0,0,0,0,1,0,0] | (1,1,1,2,3,4,5,6,4,2,4,1) | 2 |1 Zg 3
4[0,1,0,0,0,0,0,0,0,2] | (1,1,2,3,4,5,6,7,4, 1,41 | 2 |1 %911
411[0,1,0,0,0,0,0,0,1,0]|(,1,2,3,4,5,6,7,4,2,4,1) | 0 |1 299
411[1,0,0,0,0,0,0,0,0,1] | (1,2,3,4,5,6,7,8,5,2,4,1) | —2 | 2 2101
4110,0,0,0,0,0,0,0,0,0] 1| (2,3,4,5,6,7,8,9,6,3,4,1) | 4| 1 211
Table 8: The £, representation of E;; from level zero to level three.
| l | A, weight | Eﬁ) root a | a? | u | field |
off[o0,1,0,0,0,0,0,0,0,0] | (0,0,0,0,0,0,0,0,0,0,0,1) | 2 1 o2
11[1,0,0,0,0,0,0,0,1,0]| (0,1,1,1,1,1,1,1,0,0,1,1) | 2 1 (]510’2
1{[0,0,0,0,0,0,0,0,0,1] | (1,2,2,2,2,2,2,2,1,0,1,1) | 0 | 1| ¢11,
2[11,0,0,0,0,1,0,0,0,0] | (0,1,1,1,1,1,2,3,2, 1,2, 1) | 2 | 1| 105
21[0,0,0,0,0,0,0,1,0,11 1 (1,2,2,2,2,2,2,2,1,0,2,1) | 2 1 q§11’371
2(1[0,0,0,0,0,0,1,0,0,0] | (1,2,2,2,2,2,2,3,2,1,2,1) | 0 | 1| ¢114
31[1,0,0,1,0,0,0,0,0,1] | (0,1,1,1,2,3,4,5,3,1,3,1) | 2 | 1] ¢1971
3([1,0,1,0,0,0,0,0,0,0]|(0,1,1,2,3,4,5,6,4,2,3,1) | 0 |1 ¢10,8
31[0,0,0,0,0,1,0,0,1,0] | (1,2,2,2,2,2,3,4,2,1,3,1) | 2 1 ¢11,5,2
3([0,0,0,0,1,0,0,0,0,111(1,2,2,2,2,3,4,5,3,1,3,1) | 0 | 2 ¢’11,6,1
3([0,0,0,1,0,0,0,0,0,0]1|(1,2,2,2,3,4,5,6,4,2,3,1) | —2 | 2 (]511’7
Table 9: The {,, representation of E;; from level zero to level two.
| | A, weight | Eﬁo) root a | a? | u | field |

[0,0,0,0,0,0,0,0,0,1] | (0,0,0,0,0,0,0,0,0,0,0,1) | 2 | 1| ¢111
[0,0,0,0,0,0,1,0,0,0] | (0,0,0,0,0,0,0,1,1,1,1,1) | 2 | 1| ¢114
[0,0,0,0,1,0,0,0,0,1] | (0,0,0,0,0,1,2,3,2,1,2,1) | 2 | 1| ¢1161
(0,0,0,1,0,0,0,0,0,0] | (0,0,0,0,1,2,3,4,3,2,2,1) | 0 | 1| ¢117

N N —|Of| —~
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B Unfolding K,, at low levels

In this appendix we will briefly sketch the unfolding of dual fields in the non-linear realisation
of Kyy = D; 4++ which was recently constructed in [81]. This algebra was conjectured a long
time ago to be the symmetry of the closed bosonic string [1]. The non-linear realisation fea-
tures the graviton h; ; and the dilaton ¢ at level (0, 0), the Kalb-Ramond two-form A, at level
(0,1), and its electromagnetic dual A,, at level (1,0). The dual graviton hy3 ; and dual dila-
ton ¢, are found at level (1,1), and among the infinite number of fields at higher levels the
The level is a pair of integers since K,; is decom’p;)sed with rési)ect to its Agg subalgeﬁré, and
the pair of Kac labels associated with the remaining two vertices in the Dynkin diagram be-
come the level. The non-linear realisation contains duality relations between the graviton,
dilaton, two-form, and their electromagnetic duals. Equations of motion for these three fields
were computed by taking derivatives of the duality relations, and they were separately derived
from K,, symmetry.

The unfolded formulation of the dual graviton is essentially the same as that of Section 3.3.
The first two unfolded equations of the dilaton and the Kalb-Ramond field are

d¢ +h,F* =0, dApo) + Ry F Bl =0, (B.1)
dF® +h,F** =0, draBlb 4 g, pelBl =0, (B.2)

and they take the same form as the unfolded equations (56) and (59) for the three-form in
eleven dimensions. The zero-forms F, and F,3; are the field strengths of the dilaton ¢ and
the two-form A, ,, , and they are the first of two infinite towers of zero-forms that one needs
in order to write down all the unfolded equations:

T()={F", IneN}={F,Fy1,F1;1,...}, (B.3)
T(Ay) ={F{"), In€N}={F3,F31,F;;1,...}. (B.4)

Solving the higher unfolded equations, one finds that these zero-forms can be expressed as

F(n) a oC aal ...aan(l)’ F(n) < 8b1 "'abna[alA

a1a203,b1,...,b,

apas] - (B.5)
The first unfolded equations for the dual dilaton ¢,, and dual Kalb-Ramond field A,, are
doaa) + hapas1FP 1 =0, dApg +hapasF? =0, (B.6)

where Fy95) and Fg[,3) are the first zero-forms in the zero-form towers

T(¢2a) ={Fg InEN},  T(Ap)={F{) . IneN}. (B.7)

So far, we have found first-order variables are F, and F,[,s] in the dilaton sector, and F,[37 and
Fg[237 in the two-form sector. The obvious duality relations that we can write down are

by--b by---b
Fa X g, 1 ZSFbl---bZS , Falazag o< €a1a2a3 1 Zngl'“bzg . (B8)

Taking derivatives leads to the linearised equations of motion
BaFa=0, a4 abl---b24:O) 8‘1Fab1b2b3 :0, 8“Fab1...b22 =0. (B9)

At the linearised level, these duality relations and equations of motion match those of the K,
non-linear realisation [81].
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Higher dual dilatons. At higher levels one might want to unfold the n higher dual dilaton

gj} = 52)... ,4 > and for this purpose we introduce a tower of objects
n—1 n—2 2 94n—3 n—1 n
{ 6[24]24 , 60[24]25’24 y X[24]25 24 s eee X[24]25 y C25 s eee } . (B].O)

We propose first-order duality relations for the higher dual dilaton fields:

1
wi[)24]lb[25] Sb[25]pra[24] > (B.11a)

(2) @]
@ ar24)pl25],c[24] € gb[25]pwa[24]|pc[24]’ (B.11b)
(3) (2)
@ r24]1b[25],c[24],d[24] € gb[25]pwa[24]|pc[24],d[24]’ (B.11¢)
™ o< Pt~ . (B.11d)

a[24]|b[25],c[24],d1[24]....,d"—2[24] €p[25] wa[24]|pc[24],d1[24] ..... dn—2[24]

Taking derivatives leads to the expected gauge-invariant on-shell curvature relations between

zero-forms Fz(g,)1 o € T(qbéz)n) and ngl)ln € T (¢o4) of the form

) pi... n (M
Fatasy,...anas) pizs) O Carrzs)” Earlas]  Fopasyp,...p, (B.12)

The trace and over-antisymmetrisation constraints on Fés)ln lead to the linearised equations

of motion for the higher dual fields, expressed as trace constraints on the primary zero-form:

(Tr; )®(Fo5n) =0, 1<i<j<n. (B.13)

Higher dual Kalb-Ramond fields. For the first higher dual fields A(l) and A(za)zz in the
two-form sector, we introduce their corresponding towers of unfolded Varlables

{6[24]2, wig”®, C*2, }, (B.14)

{6[24]22, w[zz]zs; c2, } (B.15)

..........

n—1 n—2
{3[24]24 2, wpy® 2, }, (B.16)

{6[24]24"—1,22’ a)[24]25’24"_2’22, } (B.17)

We propose duality relations for the higher dual Kalb-Ramond fields A 4n , of the form

1)

@gaqipras) O br2s)’ Fpal2) (B.18a)
2 p, ()
©ar24)pl25]c[2] O EbI251 ©c[a)jpaf24]’ (B.18b)
(3) p, (2
Cl)a|:24]|b[25],C|:24],d|:2:| OC €p[2s] wa[24]|pc[24],d[2] P (B.18c)
(n) )
D 24]ibl25) cl24]d [24],...d[24Tef2] O E61251 Papaallpel2alai2a], . an3(2alef2]:  (B-18D)
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Similarly, our relations for the ‘magnetic’ higher dual Kalb-Ramond fields A(zrfn 5 are

1
”Ez[)zzm[zs] o< €pp25)" Fpaf22]» (B.19a)
(2) 1)
@ [24]1b[25],c[22] ¢ Eb[25]pwc[22]|pa[24]’ (B.19b)
(3) (2)
@ [24]1b[25],c[24],d[22] € Sb[25]pwa[24]|pc[24],d[22]’ (B.19¢)
(n) p, (n—1)
@ [24][b[25],c[24],d [24],....dn—3[24],e[22] O EBI25] Py[24]|pc[241,d1[24],....d"-3[24],e[22] (B.19d)
As before, taking derivatives leads to relations between Fégz 5 € T(A(z'z)n ,) and Fénl)n eT(Ay):
©) P1... Pap(
Farfas),...antas)brzs) O €a't2s) ' Eani2s) " Fopasyp, ., o (B.20)
and also between FO . e T(A™, . Yand F™., € T(A,,):
25123 241,22 23,1n 227 -
(0) (M)
F sy, an[25],6[25] O Eq1[25)" ** Ean[2s]” Fyas1pyp, (B.21)

The irreducibility properties of the zero-forms in 7(A,) and 7 (A,,) lead to the linearised

equations of motion for the all higher dual fields AW

24n o 10 the Ky7 non-linear realisation:

(Tri’j)25(F25n’3) = 0, (Tri’n+1)3(F25n’3) = 0, 1 < 1< ] <n. (B.22)

o . ' (n)
Similarly, the higher dual fields Azrgn

5, Obey the linearised equations
(Tri,j)zs(Fzsn,%) =0, (Tripne1)> (Fasno3) =0, 1<i<j<n. (B.23)

As in Section 5, integrating up these equations of motion would lead to the most general first-
order on-shell duality relations which coincide with those that we presented in this appendix.
Given the relevance of K,, symmetry to effective theories of closed strings, one might like to
investigate the role of these higher duality symmetries in the full theory.
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