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Abstract

The Square Kilometer Array will initiate a new era of radio astronomy by allowing 3D
imaging of the Universe during Cosmic Dawn and Reionization. Modern machine learn-
ing is crucial to analyze the highly structured and complex signal. However, accurate
training data is expensive to simulate, and supervised learning may not generalize. We
introduce a self-supervised vision transformer, SKATR, whose learned encoding can be
cheaply adapted for downstream tasks on 21cm maps. Focusing on regression and gen-
erative inference of astrophysical and cosmological parameters, we demonstrate that
SKATR representations are maximally informative and that SKATR generalizes out-of-
domain to differently-simulated, noised, and higher-resolution datasets.
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1 Introduction

The Square Kilometer Array (SKA) is a discovery machine that has recently seen first light. The
SKA-LOW part of the radio interferometer is sensitive to the 21cm background fluctuations of
neutral hydrogen during the Epoch of Reionization (EoR) and Cosmic Dawn (CD). Its large-
scale signal is sensitive to the thermal and cosmological evolution of the Universe, making it
a tracer also of primordial sources of radiation and fundamental physics [1–9].

The SKA will provide deep 3D-imaging of over 50% of the observable Universe. This to-
mography of the large-scale structure will produce data rates of several TB/s and archival
data of up to hundreds of PB/a [10]. At the same time, the SKA data suffers from a complexity
problem: foregrounds and systematics from interferometric reconstruction cannot be modeled
accurately for synthetic data; simulations via hydrodynamical and radiative transfer or approx-
imate hydrodynamical (semi-numerical) simulations suffer from model uncertainties [11–16];
and an analytical optimal summary to construct a likelihood does not exist.

Classical analyses use physics-motivated highly compressed summaries. Analyses based
on the power spectrum assume Gaussianity, motivated by CMB assuming standard cosmology.
This assumption breaks down for the highly non-Gaussian SKA signal. Beyond-Gaussian statis-
tics such as bispectra and morphological diagnostics improve constraints and reduce bias for
parameter inference from 21cm intensity maps [17, 18]; a picture which might revert when
faced with foregrounds, as these methods do not generalize [19].

Modern machine learning opens a path toward optimality in data-intensive analyses in
fundamental physics and cosmology [20–26], including optimal compression for robust per-
formance at downstream tasks such as inference [27]. Especially for SKA data we need to
bridge different simulators and assumptions on noise and systematics, while remaining maxi-
mally informative [28]. Supervised approaches may not generalize well enough, and the size
of realistic simulated datasets is limited.

We propose to use self-supervised learning to train a maximally-informative summary net-
work that can easily be adapted for downstream tasks without fine-tuning. Self-supervised
approaches based on contrastive learning or masking have been shown to generate expres-
sive representations, both in vision [29–37] and fundamental physics [38–41]. Similarly,
self-supervised learning has been shown to aid data compression and inference for galaxy
surveys [42, 43], including the use of pre-trained foundation models [44]. Given the large
volume probed, systematics from radio interferometric measurements, and the less known ad-
equate summary statistics for 21cm physics, we expect the benefits to be even larger for SKA
data.

In this analysis, we focus on regression and inference of a set of astrophysical and cos-
mological parameters from SKA lightcones. We first establish that Vision Transformers [45]
are a suitable network architecture by comparing with the current CNN benchmark [46, 47].
We then show that our self-supervised SKA Transformer (SKATR) learns a near-lossless com-
pression. In particular, a shallow MLP trained on frozen SKATR summaries matches the per-
formance of a ViT trained from scratch, at much higher efficiency. Using datasets simulated
at different resolutions, we find that SKATR generalizes well when faced with parameter in-
formation absent during the pre-training, as well as with instrumental and thermal noise and
foreground avoidance. Moreover, SKATR generalizes better than a summary pre-trained with
full supervision.
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The remainder of the paper is organized as follows. Section 2 details our simulated datasets
as well as the transformations we employ for preprocessing and data augmentation. In Sec-
tion 3 we introduce the network architecture and self-supervised training strategy that com-
prise SKATR. A series of results showing the benefit of SKATR are presented in Section 4. In par-
ticular, we show that the fixed SKATR summary a) matches supervised benchmark networks in
regression and inference tasks (Section 4.2 and Section 4.3), b) generalizes out-of-domain re-
garding noise and new parameter correlations present in higher resolution data (Section 4.4),
c) outperforms supervised baselines when data is limited (Section 4.5), d) performs well when
resolution adaptation is implemented (Section 4.6). Finally, we give concluding remarks in
Section 5.

2 Lightcones

We work with two lightcone (LC) datasets simulated with the semi-numerical code 21cm-
FASTv3 [48]. An LC is a discrete 3-dimensional field of 21cm brightness offset temperature
fluctuations δTb(x,ν) over on-sky coordinates x and frequency ν. For our analysis, we focus
on six model and simulation parameters, two determining the cosmology, two sensitive to EoR
astrophysics [46], and two to cosmic dawn astrophysics:

• mWDM ∈ [0.3,10]keV: the lower limit on the warm dark matter mass allows for a small
tension with cold dark matter (CDM), current astrophysical constraints point towards
the upper limit [49, 50]. Here, structure formation looks similar to CDM, because the
free-streaming length is inversely proportional to mWDM;

• Ωm ∈ [0.2, 0.4]: the dark matter density parameter controls structure formation. The
range for training is deliberately chosen wider than Planck limits [51] but encloses them;

• E0 ∈ [100,1500]eV: the X-ray energy threshold for self-absorption by host galaxies,
where X-rays with energies below E0 do not escape the host galaxy;

• LX ∈ [1038, 1042]erg s−1 M−1
⊙ yr: the specific integrated X-ray luminosity< 2 keV per unit

star formation rate that escapes host galaxies;

• Tvir ∈ [104, 105.3]K: the minimum virial temperature (related to a minimal virial halo
mass) needed for cooling within halos to enable star formation;

• ζ ∈ [10,250]: the ionization efficiency, given by

ζ= 30
fesc

0.3
f⋆

0.05

Nγ/b

4000
2

1+ nrec
, (1)

in terms of the escape fraction of ionizing photons into the intergalactic medium fesc,
the fraction of galactic gas in stars f⋆, the number of ionizing photons per baryon in stars
Nγ/b, and the typical number density of recombinations for hydrogen in the intergalactic
medium nrec.

Our simulations sample parameters points from flat priors in the ranges given above. For all
other cosmological parameters we refer to the Planck measurements, assuming flatness and a
cosmological constant. The central values are Ωb = 0.04897, σ8 = 0.8102, h = 0.6766, and
ns = 0.9665 [52].
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Table 1: Details of the high-resolution (HR), HR-downsampled (HRDS), and low-
resolution (LR) lightcone datasets.

Dataset HR HRDS LR

LC Shape (140,140, 2350) (28,28, 470) (28, 28,470)
Simulated resolution [Mpc] 1.42 1.42 2.84
Downsample factor - 5 2.5
Noised version available ✓ ✓ ✗
Filter valid LCs ✓ ✓ ✗
Total LCs 5k 5k 35k

2.1 Datasets

High-resolution (HR) The first of our datasets [27, 46] consists of 5k LCs with spatial size
200 × 200 Mpc2 and redshift range z ∈ [5, 35]. It is simulated at a spatial resolution of
1.42 Mpc, leading to LCs with 140 voxels along each on-sky axis and variable length (de-
pending on Ωm) in the redshift axis. To standardize the LC shapes, we keep the first 2350
voxels. Consequently, only LCs with Ωm = 0.4 entirely span z ∈ [5,35], while the rest end at
z < 35. Since the prior ranges given above are conservative, a small fraction of LCs display
unrealistic reionization histories. For example, some parameter combinations result in LCs
with a Thomson scattering optical depth inconsistent with Planck [52] at more than 5σ, or
late reionization such that the mean intergalactic-medium neutral fraction x̄HI is over 0.1 at
redshift z ∼ 5, in strong tension with Lyα forest observations [53]. Our 5k LCs are filtered to
satisfy these criteria.

Noised LCs Mock observed noised realizations of the 5k HR LCs are created by splitting each
LC into smaller coeval boxes than were used during simulation. Each coeval box corresponds to
a fixed redshift. At each redshift the expected noise power is estimated using 21cmSense [54,
55]. The thermal and instrumental noise estimate is based on ∼1000 hrs of SKA-Low stage 1
tracked observations, and the noise power is added to the Fourier-transformed coeval boxes.
We follow a foreground avoidance strategy where galactic and extragalactic foregrounds to
the 21cm signal are localized in k-space in the so-called 21cm foreground wedge [56,57]; we
assume the wedge covers the primary field-of-view of the instrument. These modes are zeroed
out before transforming the full boxes of signal plus noise to real space to obtain noised LCs.

Low-resolution (LR) A further 35k LCs were simulated using identical prior ranges for the
parameters, but with a coarser resolution of 2.84 Mpc. This yields lightcones with shape
(70,70, 1175). To alleviate computational demand, we then downsample these images by a
factor of 2.5 in each axis using transforms.resize from the skimage package. This results
in lightcones with shape (28,28, 470). Unlike the HR datasets, we do not make any selection
based on the validity of the reionization history.

HR-downsampled (HRDS) Finally, we construct a downsampled version of the HR dataset
with image size (28, 28,470) to match the LR dataset. This is achieved by averaging over
5×5×5 groups of voxels. This HRDS dataset is superior to the LR dataset, since the information
available to the forward simulation degrades with lower simulated resolution. As we will see
later, the main difference is that the LR dataset has no sensitivity to mWDM simply because
of its reduced simulation resolution. This parameter, as well as Tvir, place a threshold on
early star formation, via the Jeans mass for mWDM, and are thus degenerate. Because the LR
dataset does not include information on mWDM, the second parameter Tvir can be extracted
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perfectly without this parameter degeneracy present. Once limited knowledge about mWDM is
introduced into the HRDS dataset, the extraction of Tvir becomes much less precise and prone
to outliers. For further discussion, see Appendix A.

A summary of the three datasets is given in Table 1. In the LR dataset we reserve 1k LCs
for testing and 25k LCs for training, with the remainder used as validation. For the HR and
HRDS datasets, the testing splits consist of 750 LCs and up to 3.75k are used for training.

2.2 Preprocessing and augmentations

We perform simple shift and scale transformations to preprocess LC voxel values and parameter
labels into the range [0, 1],

x → x − xmin

xmax − xmin
. (2)

For the simulation parameters, the minimum and maximum values correspond to the prior
boundaries. For the voxels we use (xmin, xmax) = (−120,1) universally.

To boost the statistical power of the datasets, we employ data augmentation based on
symmetries of the LCs. At each training iteration we randomly sample a transformation by
composing 90◦ rotations around the redshift axis with an optional reflection in the spatial
axes. The identity is included in the set of possible transformations. These augmentations are
beneficial for every task discussed below.

3 SKATR

3.1 Vision transformer

Transformers are a powerful network architecture for processing sequence data [58] and have
proven useful in fundamental LHC physics [22, 59]. They can be adapted to non-sequence
data by using specialized positional encodings, which are necessary to break the permutation-
equivariance of the attention mechanism. For example, constructing encodings based on a grid
in two or more dimensions allows application to images, leading to the Vision Transformer
(ViT) [45,60].

Figure 1 shows how a ViT processes images. First, an image is divided into non-overlapping
patches of pixels. Each patch is embedded into a high-dimensional space using a shared linear
projection, then augmented with an encoding of the patch location in the image. The set of
patch representations are processed by an alternating sequence of multi-head attention and
feed-forward operations. Normalization layers and skip connections are also used to stabilize
optimization.

In a ViT, the patch size controls a trade-off between model expressivity and complexity.
While using smaller patches probes spatial correlations in the input image at finer scales, this

Transformer Blocks (×N)

Image

Patches + Positions

(0,0)
⊕

(0,1)
⊕

(1,0)
⊕

(1,1)
⊕

MultiHead
Attention

Dense
Network

Embeddings

Figure 1: Schematic diagram of a vision transformer encoder using 2× 2 patches.
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also leads to a larger number of elements entering the attention operation. In order to manage
the computational cost of a ViT, the patch size should be selected with an expected image
resolution in mind. In our analysis, we use patch sizes of (4,4,10) for downsampled LCs, and
(7,7,50) for full-resolution LCs in the HR dataset. We arrive at these values by hand; they
approximately maximize the total number of patches (with a similar number in each axis)
while remaining within memory limits.

Depending on the task, a loss can be calculated directly using the set of patch embeddings
output by the ViT. This is the case for our pretraining, to be presented in the following section,
as well as other common tasks such as segmentation or diffusion. For cases where a global
feature vector is needed, such as in regression, an aggregation step can be used to obtain a
single input for the task-specific head network. There are a number of possibilities for this
aggregation. A simple option is a mean over patch embeddings z followed by a two-layer
dense network

MLP(z)≡W2 ReLU(W1〈z〉) , (3)

where 〈z〉 is the average of z over patches, and W1 and W2 are weight matrices with respective
shapes d × d and 6 × d for transformer embedding dimension d. We use this setting for all
regression results in our analysis, where the output dimension 6 corresponds to the number
of target parameters. Another, more flexible, possibility is to learn a dynamic pooling function
using a cross attention layer,

XAttn(z)≡ Softmax

�
qT WKzp

d

�
WV z , (4)

with d × d key and value weight matrices WK and WV , and a learnable d × 1 input token q.
For the results in this work, we find the simple mean and MLP option to be sufficient.

3.2 Self-supervised pre-training

Lightcones are represented in a high-dimensional voxel space, which we expect to be com-
pressible. For any kind of analysis, we need encoders to map the voxels to a lower-dimensional
embedding space. The goal of self-supervised pre-training is to learn an encoding fθ (x) that
produces informative representations of the data x without using any labels or, in our case,
model parameters.

To train such an encoder, we adopt a self-supervised learning framework based on Joint
Embedding Predictive Architectures (JEPA) [36, 37]. Our SKA Transformer (SKATR) setup is
shown in Figure 2 and involves two ViTs: a context encoder fθ and a target encoder gϕ.
The networks share identical architectures and are initialized with the same weights. During
training, an LC (batch) is divided into a set of n patches x = {x i}ni=1. A masked view x̃ is
generated by dropping a sampled set of patch locations M

x̃ = {x i ∈ x | i /∈ M} ⊂ x . (5)

The masked and original LCs are embedded with the context and target networks respectively,

z̃ = fθ ( x̃) , and z = gϕ(x) . (6)

Finally, a transformer hψ with smaller hidden dimension than the encoders predicts the target
patch embeddings given the context embeddings,

p = hψ(z̃) . (7)
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Input x

x̃

Context
encoder

fθ

Target
encoder

gϕ

z̃

z

z̃

Predictor
hψ

p

LJEPA = |z − p|

Figure 2: Illustration of the pre-training. At each training iteration, a mask is sampled
that defines context (green) and target (red) patches. After training, the context
encoder is taken as the summary network.

The loss is the mean absolute error between p and z at the locations of the masked patches,

LJEPA =

®
1
|M |
∑
i∈M

���g i
ϕ(x)− hi

ψ( fθ ( x̃))
���
¸

pdata(x), pmask(M)

, (8)

where pmask(M) encodes a user-defined masking strategy (see Appendix B for details). Given
that the above loss is not contrastive, there is a risk of representation collapse if we optimize
it with respect to all parameters θ ,ϕ, and ψ. To avoid this, only the context encoder and
predictor parameters are updated via gradient descent. The target encoder parameters instead
follow the exponential moving average of the context encoder parameters,

ϕi+1 = τϕi + (1−τ)θi , (9)

where τ is a momentum hyperparameter controlling the rate at which the target encoder
parameters are updated.

Once trained, a global summary of an LC can be constructed by passing it through the
context encoder without a mask, then taking the mean over the resulting patch embeddings.
Throughout our analysis we always pre-train SKATR on the LR dataset, with an embedding di-
mension of 360. This leads to a highly-compressed SKATR representation in ∼ 103 times fewer
dimensions than the original LC. We summarize the proposed training pipeline in Figure 3.
For the complete set of hyperparameters, see Appendix B.

4 Results

To understand and quantify the behavior of SKATR as an SKA summary network we use regres-
sion and inference of six cosmological and astrophysical parameters, described in some detail
in Section 2,

y ≡ {mWDM,Ωm, E0, LX, Tvir,ζ } . (10)
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Freeze 
weights

SKATR

SKATR

MLP cINN
Train

Regression

vs

Pre-train

Low-res 

High-res + noise

ViT

MLP cINN

Init. from 
scratch

Fully-supervised 
pre-training

OR

Inference

Self-supervised 
Pre-training

Supervised 
Tasks

Figure 3: Summary of the pipeline for our self-supervised SKA Transformer (SKATR).
Red shading indicates that the SKATR backbone is frozen for supervised tasks.

The benchmark for this regression task is given by the 3D-21cmPIE-Net, a CNN [46,47]. This
network is also used as a summary network for the corresponding generative inference [27],
where it serves the same function with respect to data compression as a foundation model. In
all cases below, the SKATR network is pre-trained as described in Section 3, then frozen.

4.1 ViT performance

First, we demonstrate the power of the ViT by comparing with the established CNN [46, 47]
for the HR dataset. The CNN consists of a series of 3D-convolutional blocks that gradually
downsample input LCs, followed by global mean and a 4-layer MLP. We train both networks to
regress our six simulation parameters using the normalized mean absolute error (NMAE) loss,

NMAE=

����
ypred − ytrue

ymax − ymin

���� . (11)

We also measure performance in terms of the NMAE. This allows us to compare errors across
different parameters, irrespective of their magnitude or simulated prior range.

The regression results using the HR dataset are shown in Figure 4, where the predictions of
both networks are shown against the true value for the simulated lightcone in each parameter.
To improve visual clarity, points are binned by the true parameter label and the CNN and
ViT predictions are slightly offset from one another horizontally. The lower subpanels show
the NMAE following the same binning (without error bars), and the horizontal dashed line
indicates the mean error over all test points.

The ViT and the CNN benchmark both regress Ωm, LX and ζ well, while the remaining
parameters are more difficult. In particular, the LCs lose sensitivity to mWDM and E0 above
thresholds of 3 keV and 1 keV respectively. At these points the network predictions plateau. Tvir
is regressed poorly due to its degeneracy with mWDM, as discussed in Appendix A. Comparing
the two networks, we see that, the ViT indeed extracts information from the LCs at a level at
least as strong as the 21cmPIE-Net.
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Figure 4: Performance for our ViT (red) vs the CNN benchmark (blue), both trained
from scratch to regress simulation parameters on the HR dataset. Network predic-
tions on the test set are binned by the true parameter value, and points show the
mean±1σ in each bin. The sub-panel shows the mean absolute error per bin nor-
malized to the simulated parameter ranges.

4.2 SKATR regression

Now we examine the performance of the LC summary learned by SKATR. We again look at
parameter regression, but this time comparing a ViT (trained from scratch) to a lightweight
network trained on SKATR-summarized LCs using the LR dataset. Since the SKATR backbone
will not be trained in this stage, we evaluate the summary once on each LC and save the
resulting dataset. This dataset is then used to train the small network, whose architecture we
match with the 2-layer MLP from Eq. (3). To implement data augmentation in this scheme, we
also summarize all transformations of a given lightcone (see Section 2.2). The data loading is
then customized to select a random transformation in each batch during training.

The results for the LR dataset are shown in Figure 5. Due to the coarse resolution, mWDM
is no longer predictable at any point in the prior range. This resolves the correlations and
degeneracies present in the HR dataset and allows both networks to regress the Ωm, LX, Tvir,
and ζ parameters extremely precisely and slightly improve E0.

Comparing the ViT, trained from scratch, with the MLP acting on SKATR-summarized LCs,
the compressed representation achieves equal or smaller average error. This demonstrates
that the SKATR summary retains all relevant information. Further, because the MLP has so few
parameters, its training is more stable and converges much faster than the ViT. In Figure 6 we
illustrate this acceleration using the validation loss. For training alone, SKATR leads to a speed
enhancement by a factor of several hundreds, to reach the same performance as the ViT. Even
including the time to summarize the dataset, SKATR is roughly a factor 50 faster in training to
the final converged performance.
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4.3 SKATR inference

Next we test SKATR on a more challenging task — inference of the full 6-dimensional posterior
distribution p(y|x) of parameters y given data x . As in Ref. [27], we train conditional invert-
ible neural networks (cINNs) to approximate the posterior. The conditioning on LCs is always
via a summary and so the loss is

LcINN = −


log qϑ
�

y|Sφ(x)
��

pdata(x ,y) , (12)

where qϑ is the probability density defined by the cINN, and S is a summary which may be
fixed or trainable, with parameters φ.

For S, we consider two options. First, a ViT initialized from scratch with no head network.
In that case, the summary is the mean of learned patch embeddings. Second, we use the mean
embedding from a frozen pre-trained SKATR network. Again, no MLP head network is used
and the cINN is conditioned directly on the frozen summary.

To evaluate the constraining power and calibration of the networks, we show the posterior
likelihoods and coverage over the LR test set in Figure 7. The distributions of likelihoods
(left panel) are closely matched, though a narrow advantage is evident when training from
scratch with a ViT. The calibration panel (right) shows the cumulative distribution function
of the rank statistic, defined as the fraction of posterior samples with model likelihood larger
than the true label. In these terms, an under(over)-confident posterior lies above (below) the
diagonal. We see that the posteriors defined by each network are equally conservative, i.e.
slightly less precise parameter estimates than possible. In Figure 8 we show the parameter-
wise posterior predictions for a sample of LR test points, comparing the cINN with a ViT or
the frozen SKATR summary. Both networks perform comparably to the previous results for
regression. On average, the SKATR summary gives posterior means that are closer to the truth
value in each parameter than the ViT, meaning SKATR performs at higher accuracy.

4.4 Generalization

Next, we demonstrate that the performance of SKATR also extends to new datasets. In particu-
lar, we are interested in whether SKATR provides a benefit on LCs simulated at higher resolution
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Figure 8: Posteriors using a frozen SKATR summary vs the jointly-trained ViT
benchmark, acting as summaries for a cINN trained and tested on the LR dataset.
For a given test LC, each point shows the posterior mean with 1σ error bars over 5k
network samples.

than the pre-training set, and including those with a noise model. That would allow us to trans-
fer information from cheap simulations to expensive simulations. To this end, we repeat our
regression test with the noised HRDS dataset. Here there main challenge and interest will be
whether the shallow MLP can regress the mWDM parameter given the SKATR summary, as mWDM
cannot be predicted from the LR dataset used to train SKATR due to insufficient resolution.

In Figure 9 we compare the SKATR-MLP combination to a ViT trained from scratch on the
noised HRDS dataset. Once again, we see that the SKATR summary matches the regression
performance of a full ViT training. A slight advantage for the MLP is apparent in Ωm, likely
due to the large dataset used for SKATR pre-training. Since SKATR displays no obvious failures,
we conclude that the fixed summary is sufficiently general to capture new effects in the LCs due
to noise and new correlations in the parameters due to simulation resolution. In particular, the
SKATR-MLP combination has no trouble regressing mWDM, demonstrating that SKATR remains
informative outside the training domain.

4.5 Data efficiency

As mentioned above, one of the main reasons for pre-training SKATR is that it is extremely
efficient when it comes to training for the downstream task, in our case the regression of the
model parameters from some test dataset. To illustrate that gain, we emulate data-limited
scenarios by scanning a range of training split sizes within the HRDS dataset. In each case,
we train a ViT from scratch and compare its performance to a shallow MLP trained on SKATR-
compressed LCs. Figure 10 shows that the SKATR summary consistently yields smaller error
than the ViT trained from scratch. This is despite being pre-trained out of domain, on LR LCs.
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Figure 9: Performance for frozen SKATR summary vs ViT benchmark trained from
scratch on the noised HRDS dataset, SKATR is complemented with a trained 2-layer
MLP. The SKATR pre-training on LR dataset does not contain any information on
mWDM.

The most impressive improvement can be seen for little training data, where the ViT struggles
to capture the relevant information. The only exception is in LX, where SKATR is outperformed
on the largest training set. The improvement from SKATR over the from-scratch baseline is
smallest for Tvir, possibly due to the degeneracy with mWDM introduced in the HRDS dataset.
This kind of improvement can be important for SKA, because generating HRDS training data
is expensive and will eventually limit the actual data analysis.

To see the specific impact of the self-supervised JEPA training we introduce a second base-
line, pre-training a ViT with fully-supervised regression on the LR dataset. From this ViT we
drop the regression head and take the mean over patch embeddings as a summary. Also in
Figure 10 we see that for most parameters SKATR is significantly better than the supervised
backbone. The only exceptions are LX, where the improvement is only marginal, and E0,
where SKATR is slightly outperformed. Moreover, the fully-supervised summary network is
typically worse than the ViT trained from scratch. While in Ωm, E0, LX and ζ the MLP does
eventually achieve a lower error in the smallest training size, this is not the case for mWDM or
Tvir. Recalling that these parameters exhibit the greatest change in behavior between the LR
and HR datasets, this observation highlights the difficulty for supervised pre-training. Instead
of providing a generalizing summary, it encodes details of the correlations relevant for the
specific fully-supervised task. When these correlations are different for the test dataset, the
regression-pre-trained model does not generalize. We have also checked that the same results
hold for the pure HRDS dataset without noise.
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4.6 Resolution adaptation

So far, we have shown that a SKATR summary pre-trained on the LR dataset generalizes to new
correlations in the HRDS dataset which has been downsampled to match the LR resolution.
What remains to be seen is whether the LR-trained SKATR can perform on the full-resolution
HR dataset. Due to the factor 53 increase in the number of voxels between these datasets,
adapting the resolution comes with computational cost, one way or another. There are a
number of options to tackle this problem, which we now discuss in turn.

The most straightforward approach is to split the HR LCs using the same patch shape as
for pre-training. This requires no further training of the SKATR backbone, and so a summa-
rized dataset can be constructed. The larger number of resulting patches can be processed by
interpolating position encodings, to preserve the total LC size. However, for our HR dataset,
the attention operation between 53 times more elements is prohibitively expensive. Further,
the physical size of patches in this scheme differs from that used in pre-training, which is likely
suboptimal.

Taking the opposite approach, one can use patches with equivalent physical size to those
used in pre-training, but containing more voxels. Now, the computational bottleneck shifts
to a new embedding layer, which maps the larger patches into the hidden dimension of the
transformer. While a linear layer would introduce too many parameters, 3D-convolutional
layers provide a more efficient solution. However, this option uses trainable layers at the
input of the network, the transformer backbone must be called at every training iteration, and
so there is little efficiency gain.

Alternatively, if the target resolution is known we can pre-train a SKATR network by upsam-
pling LR LCs at each training iteration. The advantage of this approach is that one can select
a patch size for the ViTs that suits the target resolution, mitigating computing bottlenecks.
The downside is that pre-training must be run with the desired resolution in mind. However,
the trained SKATR network can be frozen and used to summarize LCs for a lightweight MLP.
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Figure 11 shows the result on the HR dataset using this setup. In the majority of parameters,
the SKATR-MLP combination has average errors on par with the ViT benchmark, with no clear
failure modes. However, the performance for ζ is not matched by the MLP. Here, a loss of
precision is evident, with the spread of predictions around the true value being larger for the
MLP.

Finally, a combination of the mentioned solutions might work best. The options that do not
repeat SKATR pre-training were not suitable in our example case primarily due to the large gap
in resolution between LR and HR. A joint approach would be to perform upsampled training at
a set of predefined resolutions then use the other methods to bridge any remaining resolution
difference.

5 Outlook

The complex structure of 21cm images, combined with the impressive data rate expected at
the upcoming Square Kilometer Array presents a new challenge to scientific analyses. Machine
learning is our only hope to optimally and completely analyze the SKA dataset. However, the
size of training datasets is limited by computational expense of high-resolution simulations, as
well as memory requirements.

We present SKATR, a vision transformer (ViT) that learns a highly informative summary
of 21cm lightcone data using self-supervision. Our analysis showed that SKATR is capable
of leveraging large volumes of relatively cheap data to gain performance on high-resolution
simulations.
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Figure 11: Performance for SKATR-summarized LCs, trained on the LR dataset, vs
ViT trained on the HR dataset, SKATR is complemented with a 2-layer MLP trained
on the HR dataset with LCs upsampled to high resolution at each iteration.
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SKATR finds optimal SKA data representations. Focusing on regression of astrophysical and
cosmological parameters, we first established that ViTs are at least as powerful as the previous
CNN benchmark (Figure 4), then demonstrated that SKATR-summarized lightcones contain all
information needed to reproduce this performance. In particular, a lightweight MLP trained
on frozen SKATR summaries matches the regression accuracy of a full ViT trained from scratch
(Figure 5). As a benefit of the SKATR compression, downstream training is extremely cheap,
with networks converging over 50 times faster than training from scratch (Figure 6). Also
for simulation-based inference, a generative network conditioned on a fixed SKATR summary
yields as constraining posteriors as a jointly-trained ViT (Figures 7, 8).

SKATR generalizes out-of-domain. Next we showed that the SKATR summary is also max-
imally informative out of domain, using datasets simulated at high resolution (HR) and low
resolution (LR), with and without noise. The combination of frozen SKATR with a small train-
able MLP matches the regression performance of a ViT even in the face of novel parameter
correlations and observational noise (Figure 9). This is especially important in radio astro-
nomical observations such as with the SKA, where residual systematics remain and always
lead to a data-simulation-gap. Summaries obtained through fully-supervised pre-training did
not generalise as well as SKATR and performed worse than a ViTs trained from scratch.

SKATR is data efficient. When considering regimes with limited training data, we find that
SKATR scales more favorably than fully-supervised networks (Figure 10). SKATR therefore rep-
resents a promising solution to data constraints related to high-resolution lightcones, namely
that they are expensive to simulate and have a large memory footprint.

Resolution adaptation for SKATR. Finally, we discussed ways to adapt SKATR to the full
resolution dataset. While solutions that customize image patching were not viable in our case
due to computational expense, we showed that upsampling the LR data during pre-training
produces an informative summary.

A number of interesting directions for future work remain. First, the advantages that SKATR

offers in terms of compression can be studied further. At high resolution, even a small dataset
of 5k lightcones amounts to almost 1TB of disk space. Large datasets of O(100k) lightcones
are therefore unlikely to fit in memory. When training a network from scratch, this will limit
the amount of data that can be used. However, SKATR could be trained on some fraction of
the data and used to compress all available lightcones, allowing a small network to leverage
the entire summarized dataset. It would then be interesting to determine whether the large
dataset retains its statistical power after being summarized by a network that was trained on
a small amount of data.

Secondly, our noise model assumed thermal and instrumental noise as well as a foreground
avoidance strategy based on the 21cm foreground wedge. Successful generalization for noise
models that include further effects such as radio frequency interference and foreground residu-
als in the EoR window remains to be shown. Given our model successfully transferred between
our noised and noiseless scenarios, we expect SKATR representations to remain informative.

Thirdly, the generalization of SKATR representations to new parameters can be further stud-
ied in future work, e.g. to lightcones simulated outside of the prior range. An ambitious limit-
ing case is to use a single cosmology for the pre-training, sampling different initial conditions.
The question is then whether inference based on this summary remains sensitive to newly
varied parameters. Success in this scenario would allow pre-training on SKA observations,
providing an implicit bias to combat large uncertainties in simulations.
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A Lightcone degeneracy in mWDM and Tvir

As discussed in the main text, HR-simulated LCs exhibit a degeneracy in the warm dark mat-
ter mass, mWDM, and the minimal virial temperature, Tvir. Both parameters bound early star
formation and when the limit from mWDM is stronger than that from Tvir, then no information
on the latter is available. Here we demonstrate this explicitly using regression and inference
results. Figure 12 shows a scatter plot of the predicted and true parameter values by a ViT re-
gressor on the HRDS dataset. Selecting points based on their normalized absolute error (NAE)
in Tvir reveals a corresponding cluster in mWDM. In particular, the outliers in Tvir correspond
almost directly to the points with low error in mWDM. This suggests that the two parameters
are not simultaneously predictable in HRDS lightcones. Figure 13 shows that same result is
apparent in the posteriors q(mWDM, Tvir|x) learned by a cINN + ViT combination. On the left
of the figure is a posterior for a test point with mWDM > 2.5keV. Here, the posterior tightly
constrains Tvir, but has almost maximal uncertainty in mWDM. On the right side of the figure,
the converse behavior is observed for an LC with mWDM < 2.5keV.
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Figure 12: Regression results for a ViT trained from scratch on the HRDS dataset.
Points are colored according to absolute error in Tvir.
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Table 2: Network and optimization hyperparameters used in SKATR pre-training, dis-
cussed in Section 3.

Encoders Predictor

Patch size (4, 4, 10) -

Embedding dim 360 48

Attention heads 6 4

MLP hidden dim 720 96

Blocks 6 4

Positional encoding Learnable sin/cos Fixed sin/cos

Parameters 6.3M 110k

EMA rate τ 0.9997

Learning rate schedule OneCycle

Max learning rate 0.001

Epochs 1000

Batch size 64

Optimizer AdamW

Weight decay 0.001

B Further training details and hyperparameters

Pre-training

A key component of the SKATR pre-training loss in Eq. (8) is the mask sampling procedure,
appearing as pmask(M). For this sampling, we follow the strategy outlined for video in Ref. [37].
This involves a combination of “long-range” and “short-range” masks, which both span the full
redshift (time) dimension of the LC, but have different spatial structure. Long range masks are
constructed by sampling three rectangles, each with an aspect ratio in the range [0.75, 1.5]
and 70% coverage of the spatial area, then taking their union. Short range masks are sampled
similarly, but using eight rectangles with 15% coverage. Again, the masks extend across the
entire redshift axis.
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Figure 13: Parameter degeneracy between mWDM and Tvir reflected in the posterior
distributions learned by a cINN + ViT in the HRDS dataset. The test LC in the left
plot has mWDM > 2.5 keV and the right plot has mWDM < 2.5 keV.
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In the predictor network hψ it is not necessary to apply a patching step. This is because
its input is already a set of embeddings—those of the context patches. In order to make pre-
dictions at the target locations, a set of “mask tokens” are added to the input set. These mask
tokens are constructed by summing a shared learnable vector with the positional encoding for
each target patch. The full set of patches (context and mask) are then embedded into the hid-
den dimension of the predictor using a shared linear layer. Similarly, at the predictor output
another linear layer projects into the embedding dimension of the target patches.

In order to improve efficiency in training, multiple masks can be sampled per LC. The loss
is then calculated for each mask and averaged before taking a gradient step. This saves one
evaluation of the context encoder per additional mask. In SKATR, we sample two long-range
and two short-range masks per LC.

In Table 2, we give the full list of hyperparameters for the SKATR networks presented in
this paper. With a single NVIDIA H100 GPU, pre-training takes about 50 hours and uses 45GB
of GPU memory at batch size 64.

Regression

Table 3 lists the hyperparameters we use when training ViTs for regression, including when pre-
training for the result in Figure 10. For MLPs trained on top of pre-trained summary networks,
a faster learning rate of 5 · 10−4 is used. Aside from this, the optimization hyperparameters
are shared with the ViT. Similarly, the CNN in Figure 4 is trained using the same optimization
settings, but a learning rate of 3 · 10−4. Its architecture matches exactly the description in
Ref. [46]. Training times for regression were measured using a single NVIDIA A30 GPU.

Note that the ViT architecture used in SKATR pre-training is larger than the ViTs trained
from scratch, with two extra blocks and a wider embedding dimension. We found that training
from scratch with the larger network resulted in overfitting and thereby reduced performance.
Using a smaller ViT for SKATR degraded performance slightly, but does not strongly affect the
results. We understand the lack of overfitting when pre-training to be a consequence of the
fact that the loss is based on masking. This means that a single lightcone can provide multiple
distinct training objectives, effectively increasing the data efficiency.

Inference

Table 4 lists the hyperparameters we use when training cINNs for posterior estimation. ViTs
trained as summary networks share the same architecture as for regression (Table 3), except
that no head network is used.

C Additional plots

Here we present a selection of supplementary plots:

• Training times for downstream regression on the HRDS dataset [Figure 14]. Similarly
to the timing result in the main text, we see more than 50× speed-up in convergence for
the MLP compared to training a ViT from scratch. The summarization time is also less
significant in this dataset.

• Posterior likelihoods and calibration:

– CNN vs ViT on HR dataset [Figure 15]. The ViT summary network yields higher
posterior likelihoods than the CNN on average. Both networks are well calibrated.
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Table 3: Network and optimization hyperparameters used to train ViTs for regression.
The MLP head architecture is given in Eq. (3).

LR/HRDS HR

Patch size (4, 4, 10) (7, 7, 50)
Embedding dim 144 96
MLP hidden dim 288 192
Attention heads 4
Blocks 4
Positional encoding Learnable sin/cos
Patch aggregation Mean
Head network MLP
Parameters 690k 540k

Loss Mean Absolute Error
Learning rate schedule Constant
Learning rate 10−4 3 · 10−4

Epochs 1000
Patience 50
Batch size 32
Optimizer AdamW
Weight decay 10−3

Table 4: Network and optimization hyperparameters used to train cINNs for posterior
estimation.

Bijector Rational quadratic spline
Spline bound [-10, 10]
Spline bins 10
Block type Coupling
Blocks 6
Layers per block 2
Layer dim 128
Channel mixing Fixed rotation
Latent distribution Unit Gaussian
Parameters 350k

Learning rate schedule Constant
Learning rate 10−4

Epochs 1200
Patience 100
Batch size 64
Optimizer AdamW
Weight decay 10−3

– ViT vs SKATR with and without XAttn pooling on HRDS dataset [Figure 16]. Us-
ing the XAttn pooling in SKATR slightly improves the average posterior likelihood,
though both approaches are very slightly outperformed by the ViT trained from
scratch. The calibration curves are all equally overconfident.
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Figure 14: Same as Figure 6, but for downstream training on the HRDS dataset.
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Figure 15: Same as Figure 7, but comparing CNN and ViT summaries on the HR
dataset.

• 1D posteriors

– CNN vs ViT on HR dataset [Figure 17]. The ViT summary network improves over
the CNN in all parameters, with the largest difference in E0.

– ViT vs XAttn[SKATR] on HRDS dataset [Figure 18]. Using an XAttn pooling to ag-
gregate SKATR summary patches gives marginal posteriors that are equally con-
straining as the ViT trained from scratch.

• 2D posteriors

– ViT vs SKATR on LR dataset [Figure 19]. The posteriors from both methods largely
agree.

– ViT vs XAttn[SKATR] on HRDS dataset [Figure 20]. The posterior from
XAttn[SKATR] constrains mWDM much more tightly than the ViT, but is slightly wider
in the other parameters.

21

https://scipost.org
https://scipost.org/SciPostPhys.18.5.155


SciPost Phys. 18, 155 (2025)

0 10 20

log q(y|S(x))
0

20

40

60

80

100

120

140

160

N
um

be
r

of
LC

s

cINN[SKATR]
cINN[ViT]
cINN[SKATR+ XAttn]

0.0 0.2 0.4 0.6 0.8 1.0

Credibility level

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

C
ov

er
ga

e

cINN[SKATR]
cINN[ViT]
cINN[SKATR+ XAttn]

HRDS Dataset

Figure 16: Same as Figure 7, but for the HRDS dataset and including a trainable
XAttn layer over frozen SKATR embeddings.
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Figure 17: Same as Figure 8, but comparing CNN and ViT summaries on the HR
dataset.

22

https://scipost.org
https://scipost.org/SciPostPhys.18.5.155


SciPost Phys. 18, 155 (2025)

2

4

6

8

10

N
et

w
or

k

mWDM

2 4 6 8 10
0.00
0.25
0.50

� �N
et
−T

ru
e

M
ax
−M

in

� � 0.20

0.25

0.30

0.35

0.40
Ωm

0.20 0.25 0.30 0.35 0.40
0.00
0.03
0.06

250

500

750

1000

1250

1500
E0

500 1000 1500
0.0
0.1
0.2

39

40

41

N
et

w
or

k

log10 LX

39 40 41

Truth

0.00
0.02
0.04

� �N
et
−T

ru
e

M
ax
−M

in

� �

4.2

4.4

4.6

4.8

5.0

5.2 log10 Tvir

4.5 5.0

Truth

0.00
0.08
0.16

50

100

150

200

250
ζ

50 100 150 200 250

Truth

0.000
0.025
0.050

HRDS Dataset cINN[SKATR + XAttn] cINN[ViT] (Benchmark)

Figure 18: Same as Figure 8 but for the HRDS dataset and including a trainable XAttn
layer over frozen SKATR embeddings.
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