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Abstract

In this paper, we show that a possible version of the swampland weak gravity conjecture
for higher spin (HS) massive topological AdS3 gravity can be expressed in terms of mass
Mhs, charge Qhs and coupling constant ghs of 3D gravity coupled to higher spin fields as
Mhs ≤

p
2QhsghsMPl. The higher spin charge is given by the SO(1, 2) quadratic Casimir

Q2
hs
= s (s − 1) and the HS coupling constant by g 2

hs
= 2/
�

M2
Pl

l2
AdS3

�

while the mass ex-

pressed like
�

lAdS3
Mhs
�2

is defined as
�

1+µlAdS3

�2
s (s − 1) +
�

1−
�

µlAdS3

�2
(s − 1)
�

.
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1 Introduction

With the purpose of investigating and deriving possible swampland constraints [1–3] on topo-
logical gravity [4,5] coupled to higher spin massive fields, we consider the three dimensional
AdS action with a negative cosmological constant in addition to a gravitational Chern-Simons
(CS) term to build up the higher spin topological massive gravity (HSTMG) theory [6]- [9].
Particularly, we are interested in the higher spin Bañados-Teitelboim-Zanelli (BTZ) black hole
solution [10,11] and its discharge.

This study is driven by several motives, mainly the non-supersymmetric AdS [12,13] con-
jecture and the weak gravity constraint [14–16]. In fact, it was stipulated that non supersym-
metric AdS spaces—as well as locally lookalike AdS geometries— are at best metastable; they
manifest a non perturbative instability and will ultimately decay [2, 3]. And since the BTZ
black hole is locally isometric to AdS3, it should also a priori exhibit a similar instability [4].

Actually, black holes in AdS spaces are of two types [17]: we either have large black holes
in equilibrium with their thermal bath, or small unstable black holes in need of discharging by
radiating away their charge. This aligns with the weak gravity conjecture, which requires the
emission of a super-extremal particle with a constraint on its mass to charge ratio. However,
it was argued in [17] that this mild version of the WGC, demanding a single super-extremal
state, is not sufficient and a lattice refinement of the constraint is more suitable. To insure
the decay of BTZ black holes in AdS3, one must guarantee that the emitted particles reach
the AdS3 boundary and don’t bounce back to form a self-interacting particle condensate that
could eventually become sub-extremal [17]. Indeed, the boundary conditions on the AdS3
cylinder can box the discharged particles enabling them to interact in a sub-extremal cloud of
emitted particles. Therefore, one must require instead a stronger version of the weak gravity
conjecture, a lattice WGC, where in each charge sector, there should be a super-extremal state
[17].

For unstable BTZ black holes in HSTMG, and in order to comply the super-extremality
constraint of the WGC, there must be a set of emitted super-extremal particles that ought
to be charged and massive higher spin particles. Now, is it possible to formulate such WGC
constraint for higher spin topological massive gravity to regulate the discharge of unstable
higher spin BTZ black holes?

To the best of our knowledge, this inquiry was never investigated in Literature. The WGC
constraint was only established for a disjointed setting, where the gravitational and gauge
sectors are separated by considering 3D gravity in addition to a U(1) gauge field [17,18] but
never for massive AdS3 gravity in CS formulation coupled to higher spin fields.

In this paper, we intend to fill in this gap by first reviewing known results on the D-
dimensional black holes and their WGC constraints to formulate our hypothesis about the
expected super-extremality bound for the HS-BTZ black hole (section 2). Then, we construct
the mass and charge operators to build the higher spin states (section 3). Once we have all the
tools needed, we derive the swampland constraint for higher spin BTZ black holes and com-
pute the tower of super-extremal higher spin states (section 4). And before concluding, we
discuss the relevance of our findings with regard to recent progress in the swampland program
Literature (section 5).

2 Weak gravity conjecture in D ≥ 4

This section aims to motivate a Swampland conjecture for higher spin massive AdS3 gravity
to regulate the discharge of higher spin BTZ black holes using commonly accepted arguments.
To pave the way for this 3D Swampland constraint, we intend to align it with the weak gravity
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conjecture (WGC) governing the decays of black holes in space dimensions D > 3 [14]. This
bridging between HS- AdS3 models and effective gauge theories coupled to D-gravity (EFFD)
is sustained by several facts and features; in particular:
(A) the existence of a Chern-Simons (CS) gauge formulation of higher spin AdS3 gravity

[19,20]. In this formalism, one uses standard gauge fields valued in the Lie algebra of the CS
gauge symmetry Ghs× G̃hs; this, as we will see, permits to replicate the construction of certain
constraints regulating the decay of D-black holes for unstable HS-BTZ black holes. For the
remainder of this investigation, we focus on higher spin BTZ black hole solutions in the CS
formulation with rank 2 gauge symmetries namely: (1) the higher spin SL(3,R) model [21]
having two spins s = 2,3 as a representative of the HS theory with SL(N,R) family [22]. (2)
The higher spin model with SO(2,3) group having also two spins s = 2,4 as a representative
of the HS ortho-symplectic families with gauge symmetries given by the real split forms of
BN , CN and DN Lie groups [23]. And (3) the exceptional G2 higher spin model [24] with
spin spectrum given by s = 2,6. As well, this G2 can be viewed as a representative of the
exceptional family of finite dimensional Lie algebras. Useful characteristic properties of these
HS topological gauge models are as follows

symmetry Ghs spin set JG generators dimGhs

SL(3,R) 2, 3 W (1)
m1
⊕W (2)

m2
3+ 5

SO(2, 3) 2, 4 W (1)
m1
⊕W (3)

m3
3+ 7

G2 2, 6 W (1)
m1
⊕W (5)

m5
3+ 11

(1)

with label m j taking integral values as − j ≤ m j ≤ j. The W ( j)
m j

are the generators of the spin
s j = j + 1; they form an isospin j representation of the principal sl(2;R) partitioning the Ghs
generators as exhibited by the two last columns of the above table.

The second feature supporting the EFTD-HS AdS3 cross over is (B) the AdS3/CFT2 cor-
respondence [28] allowing to relate topological aspects of HS- AdS3 gravity such as Wilson
lines with conformal highest weight representations and conformal observables; which will be
fundamental for the computation of the HS Swampland constraint. And lastly, the possibility
to (C) realise both the masses and the charges required by the WGC in terms of the quantum
numbers of the CS gauge symmetry, as well as the coupling constants and the Planck mass
MPl. The EFTD-HS AdS3 crossing is therefore based on matching the D- dimensional WGC
ingredients with those of 3D higher spin gravity as follows:

D > 3 D = 3

D-gravity + U(1) charged matter 3D gravity coupled to higher spin fields
Effective field models Higher spin Chern-Simons formulation

Electrically charged Black holes Higher spin BTZ black holes
Electric charge qe Spin charge Qhs

Mass m Mass of HS particles Mhs

(2)

We show throughout this paper that the emitted particle states |s; {λ}〉 of the 3D BTZ black
hole carry, in addition to the higher spins s, masses Mhs and charges Qhs which are functions
of s. These states will be denoted below like

|s; Mhs, Qhs > , (3)

where the masses Mhs, and the charges Qhs are eigenvalues of some function of commuting
observables Oi of the gauge theory with symmetry group Ghs × G̃hs. Candidates for these Ois
are given by the Cartan charge operators of Ghs × G̃hs and their Casimirs.
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In this regard, we restrict to the principal SL(2,R) symmetry observables within the gauge
symmetry Ghs; they are given by the Cartan charge L0 and the quadratic Casimir C2 with the
following commutation relations

[Ln, Lm] = (m− n) Ln+m , (4)

C2 = L2
0 − L0 − L+L− . (5)

Particularly, we are interested in the mass M̂hs and the charge Q̂hs operators with spectrums
as follows

Mhs := spect
�

M̂hs

�

,

Qhs := spect
�

Q̂hs

�

.
(6)

They can be expanded in terms of the commuting Cartan charge L0 and the Casimir C2 of the
principal SL(2,R) symmetry like

M̂2
hs = m0 L0 +m2C2 , (7)

Q̂
2
hs = q0 L0 + q2C2 , (8)

with some positive mi and qi to be determined later on. The mass M̂hs and charge Q̂hs observ-
able operators act on the higher spin-s particle |s;Mhs,Qhs > states as

M̂hs|s; Mhs, Qhs >= Mhs|s; Mhs, Qhs > ,

Q̂hs|s; Mhs, Qhs >= Qhs|s; Mhs, Qhs > .
(9)

Before proceeding any further, we pause to carefully examine and comment on the structure of
the operators (7-8) by leveraging well-known principles from the AdS3/CFT2 correspondence
[25,26] and SL2 isospin representation framework:

(1) for the M̂2
hs expansion (7), the block term generated by L0 can be attributed to the CFT2

relationship m ∼ h+ h̄ with the eigenvalue equations L0 |h〉 = h |h〉 and L̄0

�

�h̄
�

= h̄
�

�h̄
�

.
Regarding the block term generated by C2, it can be motivated by the Sugawara con-
struction of the conformal energy momentum tensor from the affine SL2 Kac-Moody
current [27].

(2) As for the expansion of the operator Q̂hs in (8), it can be restricted to the Casimir block
Q̂2

hs = q2C2 with some q2 > 0. This is because the Casimir operator C2 captures informa-
tion on the SL2 isospin ∆ while the charge operator L0 (thought of as Jz) captures data
on the isospin projection ∆z .

Taking all of the aforementioned into account, one might speculate that the mass M̂hs and
the charge Q̂hs operators are indeed linked to each other like

M̂2
hs = m0 L0 +

m2

q2
Q̂

2
hs . (10)

Such property justifies the interest in the search for a Swampland conjecture for higher spin
gravitational models. Moreover, by acting on the quantum states |∆, N〉 of (unitary) represen-
tations R±∆ of the SL(2,R) symmetry group with both sides of the above equation, we get the
following mass relation

R+∆ : M2
∆,N+

= +m0 (∆+ N) +
m2

q2
∆ (∆− 1) ,

R−∆ : M2
∆,N−

= −m0 (∆+ N) +
m2

q2
∆ (∆− 1) .

(11)
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The structure of the representations R±∆ and the properties of the states |∆±, N±〉 will
be thoroughly investigated in subsection 3.1. Meanwhile notice that the set of HS quantum
states |s;Mhs,Qhs > has a group theoretic basis; they can be perceived as the |∆, N〉 of the SL2
representation group theory which will be proven to be accurate.

Returning to the HS Swampland conjecture issue, we seek to show that the decay of small
HS- BTZ black holes in AdS3 gravity is accompanied by the emission of super-extremal higher
spin-s states |s; Mhs, Qhs > with spin dependent masses Mhs and charges Qhs constrained as
follows

Mhs ≤
p

2Qhs ghsMPl , (12)

with ghs standing for the higher spin coupling constant to be determined later. Below, we
refer to (12) as the Swampland higher spin conjecture (HSC) for massive AdS3 gravity. At first
impression, one might wonder about the interpretation of such constraint and whether this
inequality is a true swampland conjecture. However by way of construction, the swampland
HSC will prove to be a version of the WGC that regulates the discharge of higher spin BTZ back
hole solutions of HSTMG carrying charges beyond the usual U(1) of [17]. The HSC accounts
for 3D black holes solutions with different backgrounds than the ones already considered in
Literature [17,18], and can be therefore perceived as a complement to the work conducted in
AdS3 framework regarding the derivation of the WGC.

Moreover, the condition (12) has interesting properties shared by unstable D-black holes.
Particularly, the constraint (12) has a quite similar structure to the well known 4D weak gravity
conjecture formulated by the following inequality [14]

m ≤
p

2qg
U(1)

MPl . (13)

This well established constraint relation (13) will be used as a guiding principle for the deriva-
tion of the HSC (12). To avoid confusion between the 3D and 4D parameters, we use the
following convention notations

black hole mass charge coupling

4D charged BH m q g
U(1)

3D BTZ Mhs Qhs ghs

(14)

In dimensions D ≥ 4, the weak gravity conjecture (WGC) requires the existence of at least
one super extremal state |m, q〉 in the particle spectrum of the effective U(1) gauge theory
coupled to D- gravity with mass m and charge Q

U(1)
= qg

U(1)
satisfying the condition [2,14]

q2 g2
U(1)
≥

D− 3
D− 2

m2M2−D
Pl , (15)

where the gauge coupling constant g
U(1)

scales like MASS2−D/2 and MPl is the D- Planck mass.
This constraint relation puts a condition on the allowed space time dimensions as it requires
D ≥ 3; although the D = 3 is a critical value. By putting D=3, the relation (15) leads to a
trivial condition q2 g2

U(1)
≥ 0 with no reference whatsoever to the value of the mass m2. Even

with a reverse reasoning, if we consider instead m2 ≤ q2 g2
U(1)

M D−2
Pl (D− 2)/ (D− 3) , all we

learn is that m2 ≤∞ lacking any information on the value of q2.
However, to retrieve additional insights, we concentrate on the interesting four dimen-

sional theory (D = 4). The condition (15) reads like

m2 ≤ 2q2 g2
U(1)

M2
Pl , (16)

with

q =

∫

S2
Eu(1).dσ , (17)
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and where Eu(1) = −∇V − ∂tA is the usual electric field. For this U(1) abelian gauge theory,
gauge group elements U are given by eiQu(1) with generator

Qu(1) = gu(1)Q , (18)

acting on charged quantum states like

Qu(1) |m, q〉= qgu(1) |m, q〉 , M̂
2 |m, q〉=m2 |m, q〉 , (19)

where M̂ is the mass operator. In the upcoming section, we construct the higher spin homo-
logue of (19) for HS-AdS3 gravity.

3 Higher spin particle states

An essential key component to the derivation of the relation (12), is the set of emitted super
extremal particle states |s;Mhs,Qhs > . It is therefore crucial, before all else, to define these
states. We identify these particles as eigenstates of some higher spin charge operator defined
like Qhs = ghsQ analogously to the 4D charge operator Qu(1) = gu(1)Q given by eq(18). It acts
as follows

Qhs |s; Mhs, Qhs〉= ghsQhs |s; Mhs, Qhs〉 , (20)

where ghs is the higher spin coupling constant of the higher spin gauge theory, it will be com-
puted later on [ see eq(62)].

To manoeuvre the set of these states, we use the principal SL(2,R) representations since
all the rank 2 gauge symmetries Ghs× G̃hs we are considering can be obtained via the principal
embedding of SL(2,R). Therefore, we deem it necessary to briefly recall results on the principal
SL(2,R) subgroup of the gauge symmetry Ghs and its unitary representations.

3.1 Unitary representations of SL(2,R)

SL(2,R) is a non compact group homomorphic to the Lorentz SO(1,2) and generated by L0,
L± with commutation relations [Ln, Lm] = (m− n)Ln+m labelled by n, m= 0,±. It has several
families of irreducible representations that can classified into two sets [30, 31], non unitary
and unitary. The latter will be the focus of the upcoming discussion.

Unitary irreducible representations (UIR) are infinite dimensional, they are obtained by
requiring the hermiticity condition L†

n = L−n and the positivity of the quantum states norms;
i.e: ∥|ψ>∥ > 0. An interesting type of these UIRs is given by the discrete series denoted like
R±∆ [29–31]:

(1) Discrete series R+∆ are generated by the quantum states |∆, N〉 as follows

L+ |∆, N〉=
Æ

(N + 1) (N + 2∆) |∆, N + 1〉 ,

L− |∆, N〉=
Æ

N (N + 2∆− 1) |∆, N − 1〉 ,

L0 |∆, N〉= (N +∆) |∆, N〉 ,

C2 |∆, N〉=∆ (∆− 1) |∆, N〉 ,

(21)

where C2 is the SL(2,R) quadratic Casimir L2
0− L0− L+L−. From these relations, one can

compute useful quantities to draw several properties; in particular:

(i) the norm <∆, N |L+L−|∆, N > which is equal to N (N + 2∆− 1) . And its homologue
<∆, N |L−L+|∆, N > given by (N + 1) (N + 2∆) .
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(ii) The representation R+∆ is bounded from below indicating that L− |∆, N〉 = 0 and
requiring therefore N (N + 2∆− 1) = 0.

This latter constraint can be solved for N = 0, and the state |∆, 0〉 with positive definite
∆ is thus a lowest weight state obeying the following lowest weight relations

L− |∆, 0〉= 0 ,

L0 |∆, 0〉=∆ |∆, 0〉 , (22)

C2 |∆, 0〉=∆ (∆− 1) |∆, 0〉 .

With L+ acting on |∆, 0〉 as L+ |∆, 0〉=
p

2∆ |∆, 1〉.

(2) Discrete series R−∆ are also generated by the states |∆, N〉 and can be constructed as fol-
lows

L− |∆, N〉= −
Æ

(N + 1) (N + 2∆) |∆, N + 1〉 ,

L+ |∆, N〉= −
Æ

N (N + 2∆− 1) |∆, N − 1〉 ,

L0 |∆, N〉= − (N +∆) |∆, N〉 ,

C2 |∆, N〉=∆ (∆− 1) |∆, N〉 ,

(23)

from which we can compute:

(i) The norm < ∆, N |L+L−|∆, N > giving (N + 1) (N + 2∆) ; and the homologue
<∆, N |L−L+|∆, N > given by N (N + 2∆− 1) .

(ii) Conversely to the R+∆ representation, R−∆ is bounded from above with the constraint
L+ |∆, N〉= 0 requiring N (N + 2∆− 1) = 0.

Analogously, if we impose N = 0, the highest weight state |∆, 0〉 annihilated by L+
satisfies the relations

L+ |∆, 0〉= 0 ,

L0 |∆, 0〉= −∆ |∆, 0〉 , (24)

C2 |∆, 0〉=∆ (∆− 1) |∆, 0〉 ,

with L− action given by L− |∆, 0〉= −
p

2∆ |∆,−1〉.

Notice that the two discrete representations R+∆ and R−∆ are isomorphic; the isomorphism
ι : R+∆ →R−∆ is given by the 1:1 correspondence ι (Ln) = −L−n as manifestly exhibited by the
relations (21) and (23).

3.2 Higher spin AdS3 gravity

Focussing on HS- BTZ black holes with rank 2 symmetries of eq(1), the gauge theory is de-
scribed by the 3D HS gravity action SGRAV

0 given in terms of two copies of Chern-Simons (CS)
fields A and Ã as follows [19,20]

SGRAV
0 =

k
4π

∫

t r
�

AdA+
2
3

A3
�

−
k̃

4π

∫

t r
�

ÃdÃ+
2
3

Ã3
�

, (25)

with CS level k̃= k. This positive integer number is related to the AdS3 radius and the 3D New-
ton coupling constant like k= lAdS3

/ (4GN ) .Being a discrete relation, this quantity can be imag-

ined as a quantization relation of the 3D Newton constant expressed like G[k]N = lAdS3
/(4k),

showing in turns that G[1]N = lAdS3
/4.
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The conversion to the metric formulation is quite straightforward and mainly based on
expressing both the dreibein Eµ and the spin connection Ωµ in terms of the two CS gauge
potentials Aµ and Ãµ as follows

Gµν =
1
2

Tr
�

EµEν
�

,

Φµ1...µs
= Tr

�

E(µ1
...Eµs)

�

,

Eµ = Aµ − Ãµ ,

Ωµ = Aµ + Ãµ .

(26)

Notice also that here the 1-form gauge connections A and Ã as well as the E and Ω are non
abelian 3D fields; they are valued in the Lie algebra of the gauge symmetry Ghs × G̃hs and
satisfy the Grumiller-Riegler (GR) boundary conditions [32] for a more general set-up. The
field equations of motion of (25) are given by Fµν = 0 and F̃µν = 0 where the Fµν and F̃µν
are the gauge fields strengths reading as ∂µAν − ∂νAµ + [Aµ, Aν] and ∂[µÃν] + [Ãµ, Ãν].

Because of the vanishing value of the gauge field strengths, gauge invariants similar to the
4D electric field Eu(1) of (25) and the associated electric charge q =

∫

S2 Eu(1).dσ are unavailable
in the higher spin AdS3 gravity. Instead, there are alternative gauge invariants given by (i) the
Wilson loops

WR [γ] = TrR

�

P exp

�

∫

γ

A

�

P exp

�

∫

γ

Ã

��

, (27)

with R being a representation of the gauge symmetry, γ a loop in AdS3, A as well as Ã some
gauge connections expanding as Aµd xµ and Ãµd xµ. And (ii) topological defects given by line
operators constructed as [33,34]

WR
�

yi , y f

�

= 〈Ui| TrR



P exp

 

∫

Υi f

A

!

P exp

 

∫

Υi f

Ã

!





�

�U f

�

, (28)

where
�

yi , y f

�

are the end points of the curve Υi f parameterised by y and where U (y) is a
probe field on Υi f with boundary condition U (yi) = U

�

y f

�

= Iid . As illustrations, we give
the expansion of the potential Aµ for the SL(3,R) and G2 models in the higher spin basis. For
SL(3,R), we have the following splitting

SL(3,R) : Aµ =
1
∑

m1=−1

Am1
µ W (1)

m1
+

2
∑

m2=−2

Wm2
µ W (2)

m2

:=
1
∑

m=−1

Am
µ Lm +

2
∑

n=−2

Wn
µWn ,

(29)

with the commutation relations [36]
�

Li , L j

�

= ( j − i) Li+ j ,

[Li , Wm] = (m− 2i)Wi+m ,

[Wn, Wm] =
1
3
(n−m)

�

2m2 + 2n2 −mn− 8
�

Ln+m .

(30)

Similarly for G2, we can write

G2 : Aµ =
1
∑

m1=−1

Am1
µ W (1)

m1
+

5
∑

m5=−5

Wm5
µ W (5)

m5

:=
1
∑

m=−1

Am
µ Lm +

5
∑

n=−5

Wn
µWn ,

(31)
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with
�

Li , L j

�

= ( j − i) Li+ j ,

[Li , Wm] = (m− 5i)Wi+m ,

[Wn, Wm] = f (1,5)
m,n|2 Ln+m ,

(32)

where f (1,5)
m,n|2 are constant structures obtained by solving the Jacobi identities. Notice that in the

HS- basis, the 8 generators of SL(3,R) are split into two blocks 3+5 given by: (i) the three W (1)
m1

with label m1 = 0,±1; they are just the usual generators Lm of the principal SL(2,R). (ii) The
five W (2)

m2
≡Wn with index m2 = n= 0,±1,±2; they generate the coset space SL(3,R)/SL(2,R).

Quite similar relations can be written for the 14 generators of G2 that split as 3+ 11.
As far as these types of HS- expansions are concerned, notice the following features de-

picted for the case of SL(3,R) model: (i) The commutation relations of sl(3,R) in the HS basis
can be presented in a condensed form as follows

�

W ( j)
m j

, W (k)
nk

�

=
1
∑

r1=−1

f( j,k)nk ,m j |1
δ

r1
m j+nk

W (1)
r1
+

2
∑

r2=−2

f( j,k)nk ,m j |2
δ

r2
m j+nk

W (2)
r2

, (33)

with the constant structures f( j,k)m j ,nk|s
given by

f(1,1)
n1,m1|1

= m1 − n1 , (34)

f(1,2)
n2,m1|2

= m1 − 2n2 , (35)

f(2,2)
n2,m2|2

=
1
3
(n2 −m2)

�

2m2
2 + 2n2

2 −m2n2 − 8
�

. (36)

In general, we can express these commutations in a shorter form like
�

W (τ)
mτ

, W (σ)
nσ

�

=
∑

υ

∑

rυ

f(τ,σ)
nσ,mτ|υ

δ
rυ
mτ+nσ

W (υ)
rυ

. (37)

(ii) Higher spin theories are characterised by the spins- s of the principal SL(2,R) within
SL(3,R); it is defined by the usual commutation relations (4) where we have set Lm = W (1)

m1
.

As such, it is interesting to use the formal decomposition

SL(3,R) = SL(2,R)⋉
SL(3,R)
SL(2,R)

, (38)

to split the gauge potentials Aµ and Ãµ as follows

Aµ = Asl2
µ + A

sl3/2
µ , (39)

Ãµ = Ãsl2
µ + Ã

sl3/2
µ . (40)

4 Derivation of the HS Swampland conjecture

In this section, we target the derivation of the HS Swampland conjecture in AdS3 (12) which
can be articulated as in the following statement:
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Higher spin Swampland conjecture in AdS3

A higher spin BTZ black hole solution of 3D topologically massive gravity with a negative cosmo-
logical constant Λ< 0 should be able to discharge by emitting super-extremal higher spin particles
with mass Mhs and charge Qhs such that

Mhs ≤ α3Qhs ghsMPl , (41)

where ghs is the higher spin gauge coupling and α3 is some constant that we set as α3 =
p

2.
The constraint (41) bears a mighty resemblance to the inequality (16) regulating the decay

of charged 4D black holes,

3D HS-BTZ ↔ 4D charged BH,
Mhs ≤

p
2Qhs ghsMPl ↔ m ≤

p
2qg

U(1)
MPl ,

(42)

but instead of the abelian U(1) parameters, we must determine the higher spin Mhs, Qhs and
ghs quantities for the Ghs symmetry. For this purpose, we first promote the 3D gravity theory
described by the field action SGRAV

0 to a higher spin topologically massive AdS3 gravity [6, 8]
in order for our, as of yet, massless higher spin states to acquire mass.

The pure 3D gravity is known to be topological due to the absence of local degrees of
freedom, offering simple settings that allow for tractable studies of gravitational theories, in-
cluding those coupled to higher spin fields. This pure theory can be extended by incorporating
massive degrees of freedom, by deforming the AdS3 action with a gravitational CS term [6–9]:

SGRAV
1 =

MPl

2µ

∫

M3D

Tr
�

Γ dΓ +
2
3
Γ 3
�

, (43)

where Γ is the Christoffel symbol and where µ is a massive parameter. The modified equations
of motion are as follows:

Gµν +
1
µ

Cµν = 0 , (44)

where the Einstein tensor is given by:

Gµν = Rµν −
1
2

gµνR−
1

l2
AdS3

gµν , (45)

and the Cotton tensor by:

Cµν =
1
2
ϵαβµ ∇αRβν + (µ↔ ν) . (46)

The theory develops a diffeomorphism anomaly given by the difference between the right c+
and the left c− central charges as we will discuss more thoroughly in the next section.

Now, regarding the mass of the new massive mode of topologically massive spin 2 gravity
has been computed in [37,38] and is given by:

m2
(2) =

�

µ+
2

lAdS3

�2

−
1

l2
AdS3

=
1

l2
AdS3

�

µlAdS3
+ 3

� �

µlAdS3
+ 1

�

. (47)

It can also be written as:

m2
(2) =

(2− 1)
l2
AdS3

�

(2− 1)µlAdS3
+ (2+ 1)

� �

µlAdS3
+ 1

�

. (48)
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A possible generalisation of the s=2 formula for higher spin super extremal states Mhs is there-
fore a function of the parameter µ and the conformal spin s such that Mhs =M(s,µ). Following
the conjecture of [4,37,38], Mhs can be formulated as

M2
hs =

1+µlAdS3

l2
AdS3

(s− 1)
�

(s− 1)µlAdS3
+ (s+ 1)

�

. (49)

This is a remarkable relation that can be put into a covariant form using observables of the
principal SL(2,R) symmetry of the higher spin theory. In fact, by putting MAdS3

= 1/lAdS3
into

the above M2
hs relation and after rearranging the terms, we end up with the distinguishable

expression
M2

hs =
�

MAdS3
+µ

�2
s (s− 1) +

�

M2
AdS3
−µ2

�

(s− 1) , (50)

more thoroughly investigated below. The relationship between this conjectured mass formula
and those M2

∆,N+
and M2

∆,N−
given by (11), associated with the two unitary representations R+∆

and R−∆, will be commented in subsection 4.2. Before that, let us see how the swampland
constraint relation can be derived from (50).

4.1 From eq(50) towards eq(41)

Using the relation s = 1+ j, linking the values of the conformal spins- s of the higher spin AdS3
gravity to the isospin j representation weights of SL(2,R), the above conjectured mass relation
M2

hs becomes

M2
hs =

�

MAdS3
+µ

�2
j ( j + 1) +

�

M2
AdS3
−µ2

�

j

=

�

1+µlAdS3

lAdS3

�2

j ( j + 1) +

�

1−µ2l2
AdS3

l2
AdS3

�

j , (51)

exhibiting two well known quantum numbers of SL(2,R) representations namely the second
Casimir j ( j + 1) and the Cartan charge j of highest weight (HW) state. By framing (49)
in the form (51), the dependence on the second Casimir comes as no surprise especially in
holographic contexts like ours. In AdS/CFT, the mass spectrum of states is encoded in the
eigenvalues of the Casimir operator. In fact, the action of the quadratic Casimir is related to
the mass of the quantum states as follows [39–44]:

m2l2
AdS = C2 , (52)

exactly as given by the first half of (51) namely:

M̂2
hs = m2C2 . (53)

However, a state in the spectrum is uniquely identified once considering both the Casimir and
its Cartan charge ( j( j + 1), j). For example, states in the same HW representation share the
same Casimir value, so to distinguish between individual states within that representation, we
must take into account, in addition to the Casimir, the Cartan charge operator L0 as given in
(7):

M̂2
hs = m0 L0 +m2C2 . (54)
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Then, we use the conjecture to identify and established a formula of the coefficients m0 and
m2 in terms of the parameters of the HSTMG theory at hand, we have:

m2 =

�

1+µlAdS3

lAdS3

�2

, (55)

m0 =

�

1−µ2l2
AdS3

l2
AdS3

�

, (56)

giving thus (51).
Moreover, since j ≥ 1 due to the condition s ≥ 2, we have the property j ( j + 1)> j imply-

ing that the dominant term in the M2
hs formula is given by the block term

�

MAdS3
+µ

�2
j ( j + 1) .

Furthermore, we can note two additional valuable features:
(i) In the region of the parameter space of the higher spin theory where M2

AdS3
− µ2 is

negative definite ( i.e: 1−µ2l2
AdS3

< 0); we have

µ2 > M2
AdS3

⇔ µ2 >
1

l2
AdS3

, (57)

and then the mass formula (51) induces the following inequality

M2
hs <

�

MAdS3
+µ

�2
j ( j + 1) ⇔ M2

hs <

�

1+µlAdS3

lAdS3

�2

j ( j + 1) , (58)

which corresponds precisely to (41); thus offering a natural candidate for the swampland
conjecture regarding HS topological AdS3 massive gravity.
(ii) For the critical value µ2 = µ2

c = M2
AdS3

, the block term
�

M2
AdS3
−µ2

c

�

j in (51) vanishes;

and the mass formula M2
hs in (51) is equal to (M2

hs)c = 4M2
AdS3

j ( j + 1) .
So, using µ2 ≃ M2

AdS3
+δµ2 with positive δµ2, eq(51) becomes

M2
hs = 4M2

AdS3
j ( j + 1)−

�

δµ2
�

j , (59)

thus leading to the inequality

M2
hs ≤ 4M2

AdS3
j ( j + 1) ⇔ M2

hs ≤
4

l2
AdS3

j ( j + 1) . (60)

In comparison with (41) stipulating M2
hs ≤ 2Q2

hs g2
hsM

2
Pl, one can deduce the expressions of both

the charge Qhs and the coupling constant ghs; they are given by

Q2
hs = j ( j + 1) = s (s− 1) , (61)

g2
hs =

2M2
AdS3

M2
Pl

=
2

M2
Pll

2
AdS3

, (62)

with higher spin s = 1 + j. The expression of the coupling constant (62) can be presented
otherwise by using the CS level relation k= lAdS3

/(4GN ), which gives

g2
hs =

1

8k2G2
N M2

Pl

, (63)

where the dependence on the Chern-Simons coupling k, the Newton constant GN as well as
Planck mass MPl is exhibited. As these constant are interconnected, we can further unclutter
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the expression by using the relation MPlGN = 1/ (8π) to showcase that ghs is merely the inverse
of the Chern-Simons k:

g2
hs =

�

8π2
�

/k2 . (64)

To justify interpreting j( j + 1) = s(s− 1) as a higher spin charge, we draw connections to
results from the Literature on charged black holes in higher dimensions, including comparisons
with: (i) the extremality constraints for Kerr-Newman black hole in D-dimensions, and (ii) the
extremality constraint on HS-BTZ entropy.

We begin by recalling that the mass spectrum of charged states in D-dimensional effective
field theories coupled to gravity (D>3) can be categorised into two distinct regimes based on
their mass to charge ratios, as stipulated by the weak gravity conjecture [45]. These regimes
are referred to as sub-extremal and super-extremal, as described below:

(a)- sub-extremal regime:
This phase consists of massive charged states |MBH ,QBH〉 whose mass is bounded from be-

low like M2
BH ≥

g2
p

G
Q2

BH where g is the gauge coupling of the charge symmetry and G is the
“Newton” constant. These states correspond to black holes solutions and are to referred to as

sub-extremal. In the particular instance where
�

M2
BH

�

ex t is equal to g2
p

G

�

Q2
BH

�

ex t , the charged
black hole is said to be extremal; its mass is given by the charge, up to a multiplicative constant.

(b)- super-extremal regime:
This phase is composed of quantum particle states |m,Q〉 with mass bounded from above like

m2 ≤ g2
p

G
Q2. In this regime, the masses of the states satisfy m < MBH ; they describe super-

extremal particles emitted during the discharge of the black hole. The kinematical properties
of these states are governed by two main conservation laws: the total energy-momentum
conservation inducing the mass inequality

∑

i mi ≤ MBH and the charge conservation given by
the equation QBH =

∑

i Q i . Following [46], the presence of super-extremal particles ensures
the decay of the black hole by maintaining Q

m ≥ (
QBH
MBH
)ex t ∼ O (1). Notice that the existence

of super-extremal states is necessary for the consistency of the quantum gravity theory. It is

also worth noting that particle states with the particular mass m2 = g2
p

G
Q2 can be viewed as

BPS-like states.
In our setting, we similarly identify two distinct regimes (a) and (b). First, the sub-

extremal higher spin BTZ black hole corresponding to a state |MBH ,QBH〉 in regime-(a), char-

acterised by the inequality M2
BH ≥

g2
p

G
Q2

BH . The second regime-(b) concerns the super-extremal
higher spin particles |Mhs,Qhs > emitted by the unstable higher spin BTZ black holes. These
particle states have masses constrained by M2

hs ≤ M2
BH ; see eqs (3.34-3.35) and (3.75) in [46].

Additionally, they verify the WGC condition:

M2
hs ≤

�

1
lAdS3

+µ

�2

j ( j + 1)≤ M2
BH .

Comparing our conjecture (51) with the general super-extremality constraint for emitted par-
ticles, namely m2 ≤

�

g2/
p

G
�

Q2 [45], we identify a correspondence between
p

j ( j + 1) and
the quantised HS charge Qhs. Using this correspondence, we obtain Qhs =

p

s (s− 1) where
j = s − 1 as shown in eq(4.10). Moreover, for sufficiently large enough values of spin s, the
charge Qhs mirrors the spin in agreement with HS theory labeled by quantum numbers of
sl(2,R) and aligning with the CFT’s conserved currents at the boundary of AdS. Furthermore,
this spin-dependent charge Qhs is not novel in other physical contexts. For instance, in spin-
tronics, spin accumulation at the boundaries of a material creates a spin-dependent electric
field that links spin to the distribution of charges. This enables the conversion of a charge
current into a spin current through a process known as the Spin Hall effect [56] or conversely
through the inverse spin hall effect [57].
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(i)- Comparison with extremality conditions of Kerr-Newman type of Black holes
First, recall that the extremality constraint for Kerr-Newman black hole in D-dimensions (i.e.
(a)-regime black holes) with metric, [47]

ds2
KN = −

δ

ρ2

�

d t − aKN sin2 θdφ
�2
+
ρ2

δ
dr2 +ρ2dθ2 +

sin2 θ

ρ2

�

aKN d t −
�

r2 + a2
KN

�

dφ
�2

.

where δ = r2 − 2MKN r + a2
KN + Q2

KN and ρ = r2 + a2
KN cos2 θ , relates the black hole’s

mass MKN , its electric charge QKN and angular momentum aKN by the quadratic relation
M2

KN = Q2
KN + a2

KN [47]. This triangular identity highlights the interchangeable roles of the
electric charge Q2

KN and angular momentum a2
KN in the extremality condition (δ = 0), as the

permutation QKN↔ aKN leaves the extremal mass M2
KN invariant. Since the WGC bounds in

the (b)-regime reflects contributions from the same physical parameters as in the (a)-regime,
we expect an analogous triangular structure to emerge for the (b)-regime states, as conjec-
tured for the emitted higher spin particles Mhs. In our case, the HS-BTZ black hole possesses
a HS charge and momentum, both of which are similarly encoded in Mhs.
In this regard, we reference a WGC bound that has been proposed in [48] for Kerr-Newman
AdS black holes. It remarkably incorporates the extremal black hole’s parameters along with
the charge Q of particles in the vicinity of the black hole horizon. It is of the form:

QaKN (QKN )ex t

(MKN )ex t + 4a3
KN/l

2
≥ 1 .

For particles with charge Q = 1
aKN

and aKN
l << 1, the bound leads to the extremality constraint

(QKN/MKN )ex t ∼ O (1) . This suggests that imposing conditions on (b)-regimes particles can,
a priori, imply constraints on (a)-regime black holes. However, can a similar analysis be ex-
tended to HS-BTZ black holes in AdS3?

(ii)- Comparing (51) with an extremality constraint on HS-BTZ entropy:
We begin by recalling that for higher spin BTZ black holes in AdS3, an extremality constraint
was proposed for higher spin sl(3) gravity in [49], see also [50, 51]. It is based on deriving
entropy using holonomies of flat connections in Chern-Simons theory of the higher spin gravity,
and then imposing the reality condition, which requires the inequalities:

|W+| ≤ |η (L+)3/2 | , |W−| ≤ |η (L−)3/2 | , (65)

where (L+,W+) as well as (L−,W−) define the left and the right conserved currents at the
AdS3 boundary respectively. To precisely explore the connection between this extremality
condition on the (a)-regime black holes and our (b)-regime constraint on higher spin mas-
sive particles within the framework of higher spin topologically massive gravity (HSTMG), we
need:
(1)- A constraint relation analogous to the reality condition of entropy (65). Unfortunately, to
the best of our knowledge, extremality constraints for black holes in 3D higher spin massive
gravity have yet to be established.
(2)- To formulate an extremality bound for HS BTZ black holes in HSTMG. First, one must
consider theories beyond the standard massive gravity [54] used in our investigation. For
instance, minimal models [52], or chiral theories [53] could provide a much simplified frame-
work for entropy calculations. Then, extend these models to incorporate higher spin fields to
compute the entropy in terms of the CS flat connections, impose the reality condition, deduce
the extremality bounds and subsequently investigate the implications for the weak gravity
conjecture.

Given these challenges, we plan to pursue this as a direction for future research.
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4.2 Refining eqs(61-62) and the super-extremal tower

The emergence of quantum numbers of the SL(2,R) representations in the conjectured mass
formula (51) makes one ponder about other hidden facets of M2

hs. Below, we give two inter-
esting features allowing to refine the eqs(61-62):

The first feature concerns the algebraic interpretation of the expression M2
hs (51); in fact,

M2
hs can be perceived as the eigenvalue of a mass operator M̂2 acting on the quantum particle

states |∆, N〉 emitted by the HS-BTZ black hole as follows

M̂2 |∆, N〉= M2
hs |∆, N〉 , (66)

with positive inetegers ∆ and N. Acting on these quantum states |∆, N〉 by the mass operator

M̂2 =
�

MAdS3
+µ

�2 C2 +
�

M2
AdS3
−µ2

�

L0 , (67)

we get its eigenvalues in terms of the quantum numbers ∆ and N ; they read as follows

M2
∆,N =

�

MAdS3
+µ

�2
∆ (∆− 1) +

�

M2
AdS3
−µ2

�

(∆+ N) . (68)

Because N ∈ N, the quantum states |∆, N〉 define an infinite tower of states candidates for
the emitted particles of the HS-BTZ black hole. In this regard, recall that in AdS3 one must
upgrade the mild WGC to stronger forms like the lattice WGC of [17]. The refined HSC is
given by the tower WGC [58] occupied by super extremal higher spin states (68) fulfilling the
mass to charge constraint (41). In fact, the self-interacting particle condensate stills forms for
HSTMG because of the AdS3 boundary conditions, which can act as a box that reflects back
the emitted particles, enabling them to self-interact in a sub-extremal cloud. Our setting and
the physics therein, with the additional mass deformation, is still governed by the choice of the
boundary conditions, similar to the standard theory. This suggests that the same arguments
presented in the standard case [17] for the WGC refinement beyond the mild version are still
applicable.

However, there is another way to justify the need for a refined version for the class of
theories we are considering. Under diagonal boundary conditions, one can identify the higher
spin symmetry SL(N) × SL(N), with the affine U(1)2(N−1) asymptotically. This shows the
presence of multiple U(1) gauge fields at the boundary which further motivates the need for
a WGC formulation beyond the mild version involving a single U(1) [59–61].

Now which version of the refined WGC should we apply? Usually, in the presence of
multiple U(1)s, one can impose the convex hall condition [62]. However, it only requires
the emission of a super-extremal vector (a multi-particle state) which would be problematic
for the condensate in this case. Our proposed refinement is more natural as it is based on
the sl(2,R) representation. Since the emitted super-extremal states with masses (M2

−)∆,N are
closely related to the unitary SL2 representation R−∆, the tower of states fulfilling HS Swamp-
land conjecture was then given by the quantum states of R−∆. We therefore identified the
refinement of the WGC as the tower WGC.

The second feature regards the HS Swampland conjecture (42) namely Mhs ≤
p

2Qhs ghsMPl.
This inequality puts a constraint on the appropriate unitary representation of SL2 where the
tower of super extremal particle states |∆, N〉 emitted by the HS-BTZ black hole resides. Be-
cause M2

AdS3
− µ2 has an indefinite sign, we can distinguish three types of mass operators

according to the value of µ2 compared to M2
AdS3

. We have

(a) : µ2 > M2
AdS3

,

(b) : µ2 = M2
AdS3

,

(c) : µ2 < M2
AdS3

,

(69)
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these three phases are very common in the study of TMG theories [6, 7, 63, 64]. In fact by
considering the additional gravitational CS term (43), the massive HS gravity theory develops
a diffeomorphism anomaly given by the difference between the right c+ and the left c− central
charges

c± =
3lAdS3

GN

�

1±
1

µlAdS3

�

, (70)

leading to
1
µ
=

GN

6
(c+ − c−) . (71)

The value of µ is therefore a measure of the violation of parity in TMG. Additionally, one must
note that the central charges are positive definite when 1

µlAdS3
≤ 1. As for the critical value

µlAdS3
= 1, it implies the vanishing of the central charges c− and the resulting TMG theory

was shown to be dual to a logarithmic CFT [37].
For all three phases (69), the mass operator takes the following forms

(a) : M̂2
− =

�

MAdS3
+µ

�2 C2 −
�

�

�M2
AdS3
−µ2

�

�

� L0 ,

(b) : M̂2
0 = 4M2

AdS3
C2 ,

(c) : M̂2
+ =

�

MAdS3
+µ

�2 C2 +
�

�

�M2
AdS3
−µ2

�

�

� L0 .

(72)

Acting by these operators on the particle states |∆, N〉 , we obtain the eigenvalues

(M2
−)∆,N =

�

MAdS3
+µ

�2
∆ (∆− 1)−

�

�

�M2
AdS3
−µ2

�

�

� (∆+ N) ,

(M2
0)∆,N = 4M2

AdS3
∆ (∆− 1) ,

(M2
+)∆,N =

�

MAdS3
+µ

�2
∆ (∆− 1) +

�

�

�M2
AdS3
−µ2

�

�

� (∆+ N) ,

(73)

which for ∆> 1, they obey the inequalities

(M2
−)∆,N <

�

MAdS3
+µ

�2
∆ (∆− 1) ,

(M2
0)∆,N = 4M2

AdS3
∆ (∆− 1) ,

(M2
+)∆,N >

�

MAdS3
+µ

�2
∆ (∆− 1) ,

(74)

showing that (M2
0)∆,N is a critical mass. This feature allows to think about the (M2

−)∆,N in-
equality as follows

(M2
−)∆,N ≤ 4M2

AdS3
∆ (∆− 1) ⇔ Mhs ≤

p
2Qhs ghsMPl , (75)

from which we deduce the HS charge Qhs and the HS coupling constant ghs supported by the
representation theory,

Qhs =
Æ

∆ (∆− 1) ⇔ ghs =
p

2
MAdS3

MPl
. (76)

Notice finally that expressing eqs(73) as

(M2
±)∆,N =

�

MAdS3
+µ

�2
∆ (∆− 1)±

�

�

�M2
AdS3
−µ2

�

�

� (∆+ N) , (77)

we see that these masses (M2
±)∆,N are intimately related to the unitary SL2 representations

R±∆. The tower of states fulfilling HS Swampland conjecture (75) is then given by the quantum
states of R−∆.
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5 Piecing HSC in the WGC framework

The weak gravity conjecture is one of the seminal ideas in the swampland program, and may
very well be the most properly argued swampland criteria. It has been studied in numerous
settings with various parametrisations and configurations, giving many formulations that differ
both in their assumptions as well as in their regime of applicability, for an extensive review
refer to [45]. Pertaining to our concern, we will briefly look over some of its statements and
implications for AdS theories.

5.1 WGC in AdS background

A prerequisite of any potential WGC formulation in a curved AdSd space is the possibility to
recover the usual bound of the flat space once the curvature lAdSd

→∞ [45]. Unfortunately,
a general AdS formulation of the WGC is still a pending issue. However, there are many
proposals like the one in [65]:

δ2

l2
AdSd

≤
d − 2
d − 3

e2q2

G2
N

, (78)

where δ is the conformal scaling dimension related to the mass m via

δ =
d − 1

2
+

√

√(d − 1)2

4
+ l2

AdSd
m2 . (79)

In addition to the bound (78) having the d=3 singularity, it is not satisfied for all CFTs and
it is unclear why this particular condition is most likely to hold universally [45]. Another
Anti de Sitter WGC reformulation is given by the charge convexity conjecture [66], it imposes
bounds in terms of binding energy using the lowest dimension operator of the associated CFT.
Although the convex charge constraint is believed to be more general than the WGC, we dis-
regard it as it differs from the usual statements motivated by black holes decay or long range
forces.

To overcome the triviality of the constraint (78) for d=3, there is an alternative method
that exploits tools of the AdS3/CFT2 correspondence. In [17] and more generally in [18], the
weak gravity conjecture was indeed derived using a conformal approach by demanding the
partition function of the boundary CFT2 to be modular invariant. In a disjointed setting [18],
where the gravitational and gauge sectors are distinct by considering 3D gravity in addition
to a U(1) gauge field, it is possible to establish a constraint on the conformal dimension of the
lightest charged state as follows [18],

δ−δVAC ≃
c
6
+

3
2π
+O

�

1
c

�

. (80)

This bound is not optimal, and can be enhanced via additional symmetries. In fact, for 2D su-
persymmetric CFT with N = (1,1) supercharges, the constraint (80) on the conformal weight
improves to δ ≃ 1+O (1/c) .

However, the constraint (80) isn’t suitable for HS-TMG as it doesn’t consider charged higher
spin fields and only concerns U(1) charges.

Formulations
AdS

background
D=3

BH
solution

Massive
HS fields

HS charge

WGC in AdS [65] x - x - -
Convex Charge
Constraint [66]

x x - - -

WGC in AdS3 [17] x x x - -

(81)
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5.2 Beyond electric U(1) charges

There are other formulations of the WGC that experimented with parameters beyond the typ-
ical electric U(1) charges. For instance, the so called spinning weak gravity conjecture [67]
where quantum or higher derivative corrections lead to perturbed (BTZ) black holes obeying a
rotating version of the WGC that follows from the holographic c-theorem. Another interesting
case is the causality bounds on higher spin particles coupled to stringy gravity in 4D [68]. In
fact, in order for a 4D gravitational theory coupled to a tower of higher spin states to be causal,
a WGC-like constraint must be imposed on the lightest HS particle. The 4D causality bound is
reminiscent of the spin-2 conjecture requiring a cutoff on gravitational theories with massive
higher spin fields [69].

Formulations
AdS

background
D=3

BH
solution

Massive
HS fields

HS charge

WGC in AdS [65] x - x - -
Convex Charge
Constraint [66]

x x - - -

WGC in AdS3 [17] x x x - -
A spinning
WGC [67]

x x x - -

HS causality [68] - - x x -
Our HSC proposal x x x x x

(82)

As evidenced, the HSC addresses a setting with a particular configuration to investigate the
WGC. We derive a WGC-like constraint for black hole solutions of higher spin topological
massive gravity carrying higher spin charges. The HSC stems from the core SL(2) algebraic
representations and provides a constraint on the HS fields masses and charges to regulate
the discharge of the HS BTZ solutions. Before further discussing the difference between the
HSTMG and the more standard setup of the WGC with local U(1) degrees of freedom, let us
review some of the main similarities.

For a higher spin gravity theory with SL(N)×SL(N) symmetry, imposing diagonal bound-
ary conditions generates asymptotic symmetries governed by the U(1)(N−1)×U(1)(N−1) affine
algebra [59–61]. The higher spin particles, higher spin versions of the graviton, emerge
through composites of the U(1) photons via a twisted Sugawara construction at the boundary.
The BTZ black hole solution in this SL(N) higher spin gravity theory is therefore analogous
to a charged BTZ black hole solution in AdS3 Einstein gravity with SL(2)×SL(2) coupled to
U(1)(N−2) × U(1)(N−2) gauge fields. In this case, we introduced massless higher spin degrees
of freedom, endowing the BTZ black hole with higher spin charges which correspond to U(1)
charges in the diagonal representation.

However, with the inclusion of the gravitational Chern-Simons term, we induce a mass
deformation in the theory’s geometry. This is evident from the modified equations of motion
Gµν +

1
µCµν = 0 having non vanishing Cotton tensor Cµν ̸= 0 due to the presence of the CS

gravitational term. Therefore, unlike the additional gauge charges, the CS gravitational term
invokes a mass deformation, yielding massive higher spin degrees of freedom that effect the
geometry of the spacetimes and the associated metrics. It becomes necessary to adapt the
WGC to these new degrees of freedom that affect the black hole’s stability and dynamics.

Exploring swampland conjectures from the lens of holographic theories has been of great
interest recently. While we mainly focused on the WGC, there is a substantial body of work
relating the swampland distance conjecture to higher spin theories as in [70] and the ensuing
[71,72]. For instance in [70], it has been proposed that at infinite distances all theories possess
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an emergent HS symmetry in such a manner that certain proprieties of the conformal manifolds
can be written as a function of the HS spectrum.

6 Conclusion

In this paper, we investigated a well motivated inquiry regarding the discharge of higher spin
BTZ black holes in a higher spin topological massive gravity setting with Chern-Simons formu-
lation based on rank-2 higher spin gauge symmetries. We proposed a higher spin Swampland
conjecture to regulate the emission of super-extremal higher spin particles given by an upper
bound on their mass to charge ratio.

En route to derive the higher spin swampland conjecture, we first established a correspon-
dence between the massive higher spin AdS3 models and effective gauge theories coupled to
D-gravity (EFFD) to hypothesize a formulation of the swampland constraint for higher spin
BTZ black holes. Exploiting the principal SL(2,R) of the higher spin gauge symmetry, we con-
structed the charge (20) and the mass (67) operators as well as their eigenvalues (73, 61).
We also computed the higher spin gauge coupling constant (62) and showcased its relation to
the inverse of the Chern-Simons level k (64).

Furthermore by using the infinite dimensional unitary representations, particularly the
discrete series R−∆, we built a tower of higher spin states (77) occupied by the emitted higher
spin particles in accordance with the lattice refinement required for the AdS3 space. We must
note that the mass operator leading to the tower of higher spin states ensues from the phase
µ2 > M2

AdS3
assuring the positivity of the central charges (70) as well as the unitarity of the

CFT.
On a final note, we discussed the various WGC formulations especially for AdS backgrounds

in different settings to place the higher spin swampland conjecture within the WGC frame-
work as a way to emphasize the pertinence of our work regarding recent advancements in the
swampland program. Overall, the antecedent results may imply several interpretations:

(i) The inclusivity of topological massive gravity within the general Landscape of consistent
quantum gravitational theories.

(ii) Particularly, the established link between the higher spin conjecture and the WGC con-
straint conveys the validity of the later for topological massive higher spin gravitational
models.

(iii) The existence of the tower of higher spin states is strongly supported by algebraic prop-
erties of the core SL(2,R) of the HS gravity namely the discrete infinite unitary repre-
sentation R−∆.

Acknowledgments

Funding Information The work of R. Sammani is funded by the National Center for Scien-
tific and Technical Research (CNRST) under the PhD-ASsociate Scholarship- PASS.

19

https://scipost.org
https://scipost.org/SciPostPhys.18.6.173


SciPost Phys. 18, 173 (2025)

References

[1] C. Vafa, The string landscape and the swampland, (arXiv preprint)
doi:10.48550/arXiv.hep-th/0509212.

[2] E. Palti, The swampland: Introduction and review, Fortschr. Phys. 67, 1900037 (2019),
doi:10.1002/prop.201900037.

[3] M. van Beest, J. Calderon-Infante, D. Mirfendereski and I. Valenzuela, Lectures
on the swampland program in string compactifications, Phys. Rep. 989, 1 (2022),
doi:10.1016/j.physrep.2022.09.002.

[4] R. Álvarez-García, R. Blumenhagen, C. Kneißl, A. Makridou and L. Schlechter, Swamp-
land conjectures for an almost topological gravity theory, Phys. Lett. B 825, 136861 (2022),
doi:10.1016/j.physletb.2021.136861.

[5] M. Ashwinkumar, J. M. Leedom and M. Yamazaki, Duality origami: Emergent en-
semble symmetries in holography and swampland, Phys. Lett. B 856, 138935 (2024),
doi:10.1016/j.physletb.2024.138935.

[6] S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys.
Rev. Lett. 48, 975 (1982), doi:10.1103/PhysRevLett.48.975.

[7] S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys.
281, 409 (2000), doi:10.1006/aphy.2000.6013.

[8] B. Chen and J. Long, High spin topologically massive gravity, J. High Energy Phys. 12,
114 (2011), doi:10.1007/JHEP12(2011)114.

[9] S. M. Kuzenko and M. Ponds, Topologically massive higher spin gauge theories, J. High
Energy Phys. 10, 160 (2018), doi:10.1007/JHEP10(2018)160.

[10] M. Bañados, C. Teitelboim and J. Zanelli, Black hole in three-dimensional spacetime, Phys.
Rev. Lett. 69, 1849 (1992), doi:10.1103/PhysRevLett.69.1849.

[11] W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, J. High Energy Phys.
04, 082 (2008), doi:10.1088/1126-6708/2008/04/082.

[12] H. Ooguri and C. Vafa, Non-supersymmetric AdS and the swampland, Adv. Theor. Math.
Phys. 21, 1787 (2017), doi:10.4310/ATMP.2017.v21.n7.a8.

[13] B. Freivogel and M. Kleban, Vacua morghulis, (arXiv preprint)
doi:10.48550/arXiv.1610.04564.

[14] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and
gravity as the weakest force, J. High Energy Phys. 06, 060 (2007), doi:10.1088/1126-
6708/2007/06/060.

[15] R. Sammani, Y. Boujakhrout, E. H. Saidi, R. A. Laamara and L. B. Drissi, Finite-
ness of 3D higher spin gravity landscape, Class. Quantum Grav. 41, 215012 (2024),
doi:10.1088/1361-6382/ad7cba.

[16] M. Charkaoui, R. Sammani, E. H. Saidi and R. A. Laamara, Asymptotic weak grav-
ity conjecture in M-theory on K3×K3, Prog. Theor. Exp. Phys. 073B08 (2024),
doi:10.1093/ptep/ptae100.

20

https://scipost.org
https://scipost.org/SciPostPhys.18.6.173
https://doi.org/10.48550/arXiv.hep-th/0509212
https://doi.org/10.1002/prop.201900037
https://doi.org/10.1016/j.physrep.2022.09.002
https://doi.org/10.1016/j.physletb.2021.136861
https://doi.org/10.1016/j.physletb.2024.138935
https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1006/aphy.2000.6013
https://doi.org/10.1007/JHEP12(2011)114
https://doi.org/10.1007/JHEP10(2018)160
https://doi.org/10.1103/PhysRevLett.69.1849
https://doi.org/10.1088/1126-6708/2008/04/082
https://doi.org/10.4310/ATMP.2017.v21.n7.a8
https://doi.org/10.48550/arXiv.1610.04564
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1088/1361-6382/ad7cba
https://doi.org/10.1093/ptep/ptae100


SciPost Phys. 18, 173 (2025)

[17] M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, J. High
Energy Phys. 10, 159 (2016), doi:10.1007/JHEP10(2016)159.

[18] N. Benjamin, E. Dyer, A. L. Fitzpatrick and S. Kachru, Universal bounds on
charged states in 2d CFT and 3d gravity, J. High Energy Phys. 08, 041 (2016),
doi:10.1007/JHEP08(2016)041.

[19] A. Achúcarro and P. K. Townsend, A Chern-Simons action for three-dimensional anti-
de Sitter supergravity theories, Phys. Lett. B 180, 89 (1986), doi:10.1016/0370-
2693(86)90140-1.

[20] E. Witten, 2+ 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B 311, 46
(1988), doi:10.1016/0550-3213(88)90143-5.

[21] M. Gutperle and P. Kraus, Higher spin black holes, J. High Energy Phys. 05, 022 (2011),
doi:10.1007/JHEP05(2011)022.

[22] P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT
duals, J. High Energy Phys. 11, 061 (2011), doi:10.1007/JHEP11(2011)061.

[23] R. Sammani, Y. Boujakhrout, E. H. Saidi, R. A. Laamara and L. B. Drissi, Higher
spin AdS3 gravity and Tits-Satake diagrams, Phys. Rev. D 108, 106019 (2023),
doi:10.1103/PhysRevD.108.106019.

[24] B. Chen, J. Long and Y. Wang, Black holes in truncated higher spin AdS3 gravity, J. High
Energy Phys. 12, 052 (2012), doi:10.1007/JHEP12(2012)052.

[25] L. Eberhardt, M. R. Gaberdiel and R. Gopakumar, Deriving the AdS3/CFT2 correspondence,
J. High Energy Phys. 02, 136 (2020), doi:10.1007/JHEP02(2020)136.

[26] E. M. Sahraoui and E. H. Saidi, Metrics building of pp-wave orbifold geometries, Phys. Lett.
B 558, 221 (2003), doi:10.1016/S0370-2693(03)00279-X.

[27] P. Goddard, Vertex operators and algebras, in Superstrings, supergravity and unified theo-
ries, World Scientific, Singapore, ISBN 9789971500351 (1986), doi:10.1142/0221.

[28] J. D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic
symmetries: An example from three dimensional gravity, Commun. Math. Phys. 104, 207
(1986), doi:10.1007/BF01211590.

[29] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. Math. 48, 568
(1947), doi:10.2307/1969129.

[30] I. Benkaddour, A. El Rhalami and E. H. Saidi, Non-trivial extension of the (1+ 2)-Poincaré
algebra and conformal invariance on the boundary of AdS3, Eur. Phys. J. C 21, 735 (2001),
doi:10.1007/s100520100769.

[31] M. R. de Traubenberg and M. J. Slupinski, Nontrivial extensions of the 3D-Poincaré al-
gebra and fractional supersymmetry for anyons, Mod. Phys. Lett. A 12, 3051 (1997),
doi:10.1142/S0217732397003174.

[32] D. Grumiller and M. Riegler, Most general AdS3 boundary conditions, J. High Energy Phys.
10, 023 (2016), doi:10.1007/JHEP10(2016)023.

[33] A. Castro, Lectures on higher spin black holes in AdS3 gravity, Acta Phys. Pol. B 47, 2479
(2016), doi:10.5506/APhysPolB.47.2479.

21

https://scipost.org
https://scipost.org/SciPostPhys.18.6.173
https://doi.org/10.1007/JHEP10(2016)159
https://doi.org/10.1007/JHEP08(2016)041
https://doi.org/10.1016/0370-2693(86)90140-1
https://doi.org/10.1016/0370-2693(86)90140-1
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1007/JHEP05(2011)022
https://doi.org/10.1007/JHEP11(2011)061
https://doi.org/10.1103/PhysRevD.108.106019
https://doi.org/10.1007/JHEP12(2012)052
https://doi.org/10.1007/JHEP02(2020)136
https://doi.org/10.1016/S0370-2693(03)00279-X
https://doi.org/10.1142/0221
https://doi.org/10.1007/BF01211590
https://doi.org/10.2307/1969129
https://doi.org/10.1007/s100520100769
https://doi.org/10.1142/S0217732397003174
https://doi.org/10.1007/JHEP10(2016)023
https://doi.org/10.5506/APhysPolB.47.2479


SciPost Phys. 18, 173 (2025)

[34] E. H. Saidi, Quantum line operators from Lax pairs, J. Math. Phys. 61, 062301 (2020),
doi:10.1063/1.5121495.

[35] Y. Boujakhrout and E. H. Saidi, On exceptional ’t Hooft lines in 4D-Chern-Simons theory,
Nucl. Phys. B 980, 115795 (2022), doi:10.1016/j.nuclphysb.2022.115795.

[36] A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in
three-dimensional higher-spin gauge theories, J. High Energy Phys. 09, 113 (2011),
doi:10.1007/JHEP09(2011)113.

[37] S. Carlip, S. Deser, A. Waldron and D. K. Wise, Cosmological topologically massive
gravitons and photons, Class. Quantum Grav. 26, 075008 (2009), doi:10.1088/0264-
9381/26/7/075008.

[38] S. Carlip, S. Deser, A. Waldron and D. K. Wise, Topologically massive AdS gravity, Phys.
Lett. B 666, 272 (2008), doi:10.1016/j.physletb.2008.07.057.

[39] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string
theory and gravity, Phys. Rep. 323, 183 (2000), doi:10.1016/S0370-1573(99)00083-6.

[40] J. Penedones, TASI lectures on AdS/CFT, in New frontiers in fields and strings, World Sci-
entific, Singapore, ISBN 9789813149434 (2017), doi:10.1142/9789813149441_0002.

[41] M. R. Gaberdiel and R. Gopakumar, An AdS3 dual for minimal model CFTs, Phys. Rev. D
83, 066007 (2011), doi:10.1103/PhysRevD.83.066007.

[42] Y. Gobeil, Casimirs of the conformal group, MSc thesis, McGill University, Montréal,
Canada (2017).

[43] W. Rühl, The masses of gauge fields in higher spin field theory on AdS4, Phys. Lett. B 605,
413 (2005), doi:10.1016/j.physletb.2004.11.050.

[44] A. Zaffaroni, Introduction to the AdS-CFT correspondence, Class. Quant. Grav. 17, 3571
(2000), doi:10.1088/0264-9381/17/17/306.

[45] D. Harlow, B. Heidenreich, M. Reece and T. Rudelius, Weak gravity conjecture, Rev. Mod.
Phys. 95, 035003 (2023), doi:10.1103/RevModPhys.95.035003.

[46] B. Heidenreich and M. Lotito, Proving the weak gravity conjecture in perturbative
string theory, part I: The bosonic string, J. High Energy Phys. 05, 102 (2024),
doi:10.1007/JHEP05(2025)102.

[47] S. Hod, Extremal Kerr-Newman black holes with extremely short charged scalar hair, Phys.
Lett. B 751, 177 (2015), doi:10.1016/j.physletb.2015.10.039.

[48] J. Sadeghi, M. Shokri, M. R. Alipour and S. N. Gashti, Weak gravity conjecture from con-
formal field theory: A challenge from hyperscaling violating and Kerr-Newman-AdS black
holes, Chin. Phys. C 47, 015103 (2023), doi:10.1088/1674-1137/ac957b.

[49] C. Bunster, M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Generalized
black holes in three-dimensional spacetime, J. High Energy Phys. 05, 031 (2014),
doi:10.1007/JHEP05(2014)031.

[50] M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Hypersymmetry bounds and
three-dimensional higher-spin black holes, J. High Energy Phys. 08, 021 (2015),
doi:10.1007/JHEP08(2015)021.

22

https://scipost.org
https://scipost.org/SciPostPhys.18.6.173
https://doi.org/10.1063/1.5121495
https://doi.org/10.1016/j.nuclphysb.2022.115795
https://doi.org/10.1007/JHEP09(2011)113
https://doi.org/10.1088/0264-9381/26/7/075008
https://doi.org/10.1088/0264-9381/26/7/075008
https://doi.org/10.1016/j.physletb.2008.07.057
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1142/9789813149441_0002
https://doi.org/10.1103/PhysRevD.83.066007
https://doi.org/10.1016/j.physletb.2004.11.050
https://doi.org/10.1088/0264-9381/17/17/306
https://doi.org/10.1103/RevModPhys.95.035003
https://doi.org/10.1007/JHEP05(2025)102
https://doi.org/10.1016/j.physletb.2015.10.039
https://doi.org/10.1088/1674-1137/ac957b
https://doi.org/10.1007/JHEP05(2014)031
https://doi.org/10.1007/JHEP08(2015)021


SciPost Phys. 18, 173 (2025)

[51] M. Bañados, A. Castro, A. Faraggi and J. I. Jottar, Extremal higher spin black holes, J. High
Energy Phys. 04, 073 (2016), doi:10.1007/JHEP04(2016)073.

[52] M. R. Setare and H. Adami, Entropy formula of black holes in minimal massive
gravity and its application for BTZ black holes, Phys. Rev. D 91, 104039 (2015),
doi:10.1103/PhysRevD.91.104039.

[53] S. Ertl, D. Grumiller and N. Johansson, Erratum to ‘Instability in cosmological topo-
logically massive gravity at the chiral point’, J. High Energy Phys. 07, 134 (2009),
doi:10.1088/1126-6708/2008/07/134.

[54] Y. S. Myung, H. W. Lee and Y. W. Kim, Entropy of black holes in topologically massive
gravity, (arXiv preprint) doi:10.48550/arXiv.0806.3794.

[55] S. Hod, Extremal Kerr-Newman black holes with extremely short charged scalar hair, Phys.
Lett. B 751, 177 (2015), doi:10.1016/j.physletb.2015.10.039.

[56] M. I. Dyakonov and A. V. Khaetskii, Spin Hall effect, in Spin physics in semiconductors,
Springer, Berlin, Heidelberg, Germany, ISBN 9783540788201 (2008), doi:10.1007/978-
3-540-78820-1_8.

[57] K. Ando and E. Saitoh, Observation of the inverse spin Hall effect in silicon, Nat. Commun.
3, 629 (2012), doi:10.1038/ncomms1640.

[58] S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from
infrared consistency, Fortschr. Phys. 66, 1800020 (2018), doi:10.1002/prop.201800020.

[59] H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso,
Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93, 101503 (2016),
doi:10.1103/PhysRevD.93.101503.

[60] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo and R. Troncoso, Higher spin black holes
with soft hair, J. High Energy Phys. 10, 119 (2016), doi:10.1007/JHEP10(2016)119.

[61] R. Sammani and E. H. Saidi, Black flowers and real forms of higher spin symmetries, J.
High Energy Phys. 10, 044 (2024), doi:10.1007/JHEP10(2024)044.

[62] C. Cheung and G. N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev.
Lett. 113, 051601 (2014), doi:10.1103/PhysRevLett.113.051601.

[63] D. Grumiller and N. Johansson, Instability in cosmological topologically massive grav-
ity at the chiral point, J. High Energy Phys. 07, 134 (2008), doi:10.1088/1126-
6708/2008/07/134.

[64] A. Bagchi, S. Lal, A. Saha and B. Sahoo, Topologically massive higher spin gravity, J. High
Energy Phys. 10, 150 (2011), doi:10.1007/JHEP10(2011)150.

[65] Y. Nakayama and Y. Nomura, Weak gravity conjecture in the AdS/CFT correspondence,
Phys. Rev. D 92, 126006 (2015), doi:10.1103/PhysRevD.92.126006.

[66] O. Aharony and E. Palti, Convexity of charged operators in CFTs and the weak gravity
conjecture, Phys. Rev. D 104, 126005 (2021), doi:10.1103/PhysRevD.104.126005.

[67] L. Aalsma, A. Cole, G. J. Loges and G. Shiu, A new spin on the weak gravity conjecture, J.
High Energy Phys. 03, 085 (2021), doi:10.1007/JHEP03(2021)085.

23

https://scipost.org
https://scipost.org/SciPostPhys.18.6.173
https://doi.org/10.1007/JHEP04(2016)073
https://doi.org/10.1103/PhysRevD.91.104039
https://doi.org/10.1088/1126-6708/2008/07/134
https://doi.org/10.48550/arXiv.0806.3794
https://doi.org/10.1016/j.physletb.2015.10.039
https://doi.org/10.1007/978-3-540-78820-1_8
https://doi.org/10.1007/978-3-540-78820-1_8
https://doi.org/10.1038/ncomms1640
https://doi.org/10.1002/prop.201800020
https://doi.org/10.1103/PhysRevD.93.101503
https://doi.org/10.1007/JHEP10(2016)119
https://doi.org/10.1007/JHEP10(2024)044
https://doi.org/10.1103/PhysRevLett.113.051601
https://doi.org/10.1088/1126-6708/2008/07/134
https://doi.org/10.1088/1126-6708/2008/07/134
https://doi.org/10.1007/JHEP10(2011)150
https://doi.org/10.1103/PhysRevD.92.126006
https://doi.org/10.1103/PhysRevD.104.126005
https://doi.org/10.1007/JHEP03(2021)085


SciPost Phys. 18, 173 (2025)

[68] J. Kaplan and S. Kundu, Closed strings and weak gravity from higher-spin causality, J. High
Energy Phys. 02, 145 (2021), doi:10.1007/JHEP02(2021)145.

[69] D. Klaewer, D. Lüst and E. Palti, A spin-2 conjecture on the swampland, Fortschr. Phys. 67,
1800102 (2018), doi:10.1002/prop.201800102.

[70] E. Perlmutter, L. Rastelli, C. Vafa and I. Valenzuela, A CFT distance conjecture, J. High
Energy Phys. 10, 070 (2021), doi:10.1007/JHEP10(2021)070.

[71] A. Campoleoni, Infinite distances in multicritical CFTs and higher-spin holography, in Work-
shop on higher spin gravity and its applications, São Paulo, Brazil (2022).

[72] F. Baume and J. Calderon-Infante, On higher-spin points and infinite distances in conformal
manifolds, J. High Energy Phys. 12, 163 (2023), doi:10.1007/JHEP12(2023)163.

24

https://scipost.org
https://scipost.org/SciPostPhys.18.6.173
https://doi.org/10.1007/JHEP02(2021)145
https://doi.org/10.1002/prop.201800102
https://doi.org/10.1007/JHEP10(2021)070
https://doi.org/10.1007/JHEP12(2023)163

	Introduction
	Weak gravity conjecture in D 4
	Higher spin particle states
	Unitary representations of SL(2,R)
	Higher spin AdS3 gravity

	Derivation of the HS Swampland conjecture
	From eq(??) towards eq(??)
	Refining eqs(??-??) and the super-extremal tower

	Piecing HSC in the WGC framework
	WGC in AdS background
	Beyond electric U(1) charges

	Conclusion
	References

