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Abstract

We present a quantum transport theory for generic magnetic metals, in which magnetism
occurs predominantly due to exchange interactions, such as ferromagnets, antiferromag-
nets, altermagnets and p-wave magnets. Our theory is valid both for the normal and the
superconducting state and is based on the generalization of nonlinear sigma model to
such systems. We derive the effective low-energy action for each of these materials,
where the symmetries of the corresponding spin space group are used to determine
the form of the tensor coefficients appearing in the action. The transport equations,
which are obtained as the saddle point equations of this action, describe a wider range
of phenomena than the usual quasiclassical equations. In ferromagnets, in addition
to the usual exchange field and spin relaxation effects, we identify a spin-dependent
renormalization of the diffusion coefficient, and a correction to the Hanle effect. The
former provides a description of spin-polarized currents in both the normal and super-
conducting equal spin-triplet states. In the normal state, our equations provide a com-
plete description of the spin-splitting effect in diffusive systems, recently predicted in
ideal clean altermagnets. In the superconducting state, our equations predict a proxim-
ity induced magnetization, the appearance of a spontaneous magnetic moment in hybrid
superconductor-altermagnet systems. The distribution and polarization direction of this
magnetic moment depend on the symmetry of the structure, thus measurements of such
polarization reveal the underlying microscopic symmetry of the altermagnet. Finally, for
inversion-symmetry-broken antiferromagnets, such as the p-wave magnet, we show that
spin-galvanic effects may emerge. This effect is indistinguishable from the spin-galvanic
effect induced by spin-orbit coupling in the normal state, but they can be distinguished
through the temperature dependence in the superconducting state. Besides these ex-
amples, our model applies to arbitrary magnetic systems, providing a complete theory
for nonequilibrium transport in diffusive nonconventional magnets at arbitrary temper-
atures.
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1 Introduction

Transport in junctions that host both superconductivity and magnetism has been a longstand-
ing topic of research [1, 2], which amongst other things has paved the way for the field of
superconducting spintronics [3,4]. The discovery of unconventional types of magnetism such
as altermagnetism [5] and p - wave magnetism [6] has opened up new windows within this
field, garnering a lot of interest [7–25] because in such materials there is no preferential spin
direction and consequently no net exchange field that suppresses superconductivity.

The presence of magnetism considerably affects the proximity effect and therefore trans-
port through hybrid structures with superconductors (SC) and ferromagnets (F). A convenient
way to describe transport in hybrid mesoscopic systems is by using quasiclassical theories [26].
Within the framework of quasiclassical theories, ferromagnetism is usually implemented via an
exchange field, which accounts for interconversion between the singlet and triplet components
of the superconducting condensate. So far, the generalization of the theory to unconventional
magnets has only been achieved for a few specific types, namely antiferromagnetism [27–29]
and d-wave altermagnetism in materials with quadratic dispersion, in the limit of weak super-
conductivity [30], i.e., when the theory can be linearized with respect to the superconducting
order parameter. Moreover, these approaches are developed to describe equilibrium proper-
ties, such as supercurrents, and are therefore only valid in the superconducting state. Thus,
a transport theory of superconductivity and magnetism, describing the transport in junctions
with superconductors and unconventional magnets, ranging from temperatures well below
the critical temperature Tc to high temperatures well above Tc , is absent.

One of the main hurdles in developing such a theory is that to take into account any mo-
mentum dependent splitting of the bands one should go beyond the zeroth order terms in
quasiclassical approximation. This significantly complicates the derivations and implies that
the theory might depend on the properties of one specific realization of the phenomenon.
Generalization of the governing equations for specific cases to slightly other realizations is al-
ready a formidable task in approaches based on microscopic theories. An example of this is
the derivation of the diffusion equation for superconductors, known as the Usadel equation,
with different types of spin-orbit coupling (SOC), both extrinsic [31] and intrinsic [32], which
required extremely involved derivations. Recently, however, it was shown that this problem
can be circumvented by using a phenomenological approach in which symmetry arguments
are employed to determine the terms entering an effective action for diffusive systems, the
so-called nonlinear sigma model, allowed in a material up to the lowest orders in the SOC
strength. In this way, the Usadel equation was derived straightforwardly for arbitrary types of
SOC [33].

In this article, we follow a similar symmetry based approach to determine the diffusive
transport equations for materials with generic types of time-reversal symmetry breaking via
exchange. To identify the symmetry allowed terms we consider both the general symmetries
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of the underlying manifold, which should be obeyed in any material, and material specific
symmetries, which are the real space and spin space symmetries of the underlying lattice.
There are two main classifications for the latter type of symmetries, magnetic symmetry groups
[34, 35], in which rotations in real space and spin space have to come together, and spin
space groups [36–47], in which real space rotations and spin rotations can be implemented
independently. Thus, the spin space group classification is much broader, every magnetic space
group is a spin space group, but not vice versa.

Which of the two should be used depends on whether spin-orbit coupling is significant
in the material. Indeed, invariance of an operation under spin-orbit coupling requires rota-
tions in real space to come along with rotations in spin space, and consequently materials in
which spin-orbit coupling is important can only be described using magnetic space groups. On
the other hand, for materials with magnetic exchange interactions, such as ferromagnets and
antiferromagnets, spin-orbit coupling can usually be ignored because it is relativistic, while
exchange interactions are not relativistic and thus dominant. Therefore, in the description of
materials with exchange, the spin space groups are useful to identify those terms in the action
that are allowed without spin-orbit coupling.

These terms dominate the spin dependence of transport, while the additionally allowed
terms in the presence of spin-charge coupling are of relativistic magnitude and therefore ig-
nored in the rest of this paper. Using these symmetry characterizations, and the inherent
symmetries of the nonlinear sigma model, we provide the quantum transport theory in both
normal and superconducting states in materials with general types of spin space groups. Our
theory explains both the difference in conductance between different spins in ferromagnets,
and transverse effects in altermagnets. It illuminates the consequences of this effect in the su-
perconducting state, and provides the first full theory that can explain transport and nonequi-
librium properties in S / unconventional magnet junctions both far below, close to and above
the critical temperature.

The paper is structured as follows. In Sec. 2 we discuss the construction of nonlinear
sigma models in condensed matter physics and their intrinsic symmetries. Then in Sec. 3,
we derive the general action for materials with exchange interactions, Eq. (22) and the cor-
responding transport equations, Eqs. (23-25). In Sec. 4 we consider which form this action
takes for collinear ferromagnets. We show that, in addition to the Larmor precession that fol-
lows from the exchange field, our equations, see Eq. (42, 43) show that in the normal state
any electrical current through such a system is spin-polarized. We show using Eqs. (53, 54)
that in the superconducting state spin-polarized supercurrents arise if equal-spin triplets are
created, for example using different domains of ferromagnets. Using this we show that non-
reciprocal transport may appear in ferromagnetic structures, something that thus far could
not be captured using quasiclassical theories. Next, in Sec. 5 we consider materials without
a net exchange field, antiferromagnets and altermagnets. Our results indicate that while in
antiferromagnets there is only spin relaxation, in altermagnet, the diffusion constant becomes
spin dependent, and next to this, a gradient dependent Hanle effect exists. We show that in
hybrid junctions between a superconductor and an altermagnet this leads to a proximity in-
duced magnetization. The sign of the induced magnetization depends on the orientation of the
boundary, as summarized in Fig. 2. In Sec. 6 we extend our model to second order to higher
order to capture spin-galvanic effects in p-wave magnets. We show that this spin-galvanic
effect in the normal state is indistinguishable from its spin-orbit induced analog, but in the
superconducting state can be distinguished through its temperature dependence, as shown in
Fig. 3. We conclude our article with a summary of all effects in Sec. 7.
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2 Construction of the action

In the coming sections we construct the effective low energy action for different types of mag-
netic conducting materials in the diffusive regime, when the physics is dominated by the soft
modes described by the so-called nonlinear sigma model (NLSM). As explained in the intro-
duction, our derivation is based only on symmetry constraints, regardless of the electronic
structure and other microscopic details of specific materials and/or structures. In this way we
find all symmetry allowed terms in the action, and then study their physical implications for
different materials. For simplicity of notation, we use ħh= kB = c = 1 throughout the text.

To identify the main rules for the construction of the NLSM in the next sections we first an-
alyze a generic example of a free electronic disorder system with superconducting correlations.
Its microscopic action can be compactly written on a contour C in time-space as:

iS =
1
2

tr

�∫

C
d t

∫

dr Ψ̄ĽΨ
�

, (1)

where tr denotes tracing out the matrix degrees of freedom and the spatial integration is taken
over the whole system. For the contour C in time we choose to use the Keldysh contour, which
contains two branches, one that runs from −∞ to +∞ and one that runs in the opposite
direction. This choice of contour is suitable for the description of out-of-equilibrium properties
[48–51].

In the integrand in Eq. (1), we have introduced the bi-spinors in the so-called Nambu-spin
space [51, 52]. These bispinors combine the Grassmann spinors ψ and ψ̄ with their time-
reversed conjugates:

Ψ=







ψ↑
ψ↓
ψ̄↓
−ψ̄↑






, Ψ̄=
�

ψ̄↑, ψ̄↓, −ψ↓, ψ↑
�

. (2)

The operator Ľ is defined as
Ľ= iτ3∂̂t −τ3Ȟ , (3)

and the Hamiltonian Ȟ has following general structure in the spin-Nambu space, described in
this work by the Pauli matrices σ and τ respectively:

Ȟ = ξ̌− |∆|τ1eiτ3ϕ . (4)

Here, ξ̌ is the normal state Hamiltonian, which contains both the periodic crystal potential
and the disorder potential, while |∆| is the magnitude of the superconducting gap. There is
a symmetry inherent to this Hamiltonian and the action, Eq. (1). This symmetry stems from
the redundancy of the Hilbert space in the Nambu description, which involves the electronic
states and its time-reversal counterparts, see Eq. (2). Due to this constriction, the bispinors Ψ
and Ψ̄ are not independent, they are related via the charge conjugation operation [49,53,54]:

Ψ̄ = ΨT (iσyτ1) . (5)

Because this is an inherent symmetry of Nambu-space, we may restrict ourselves to op-
erators O that satisfy the charge conjugation relation, defined by following transformation
O→ τ1σyOTτ1σy . In particular, this holds true for the microscopic Lagrangian L̂ in Eq. (3)
satisfies:

L̂= τ1σy L̂Tτ1σy . (6)
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Since charge conjugation is a fundamental symmetry of the constructed space, it must be
present at any level of approximation, and we impose it as one of the conditions constraining
the form of the effective low energy theory.

For our purpose of describing magnetic systems we also introduce the time-reversal trans-
form for operators:

O −→ τ3σyOTτ3σy . (7)

The term in Eq. (4) describing the one particle normal state Hamiltonian, ξ̂ can then be
decomposed in time-reversal symmetric and antisymmetric parts,

ξ̂s =
1
2

�

ξ̂+σy ξ̂
Tσy

�

, ξ̂a =
1
2

�

ξ̂−σy ξ̂
Tσy

�

, (8)

such that the Hamiltonian Eq. (4) can be written as

Ȟ = ξ̂sτ3 + ξ̂a − |∆|τ1eiτ3ϕ , (9)

where ξs is invariant under Eq. (7), while ξa changes sign under this transformation. It is
known that the simultaneous presence of time-reversal and charge conjugation symmetries
implies a unitary, so-called chiral symmetry [55]. In the present case, the combination of the
operations Eqs. (6) and (7) leads to the chiral symmetry defined by the transformation

O→ τ2Oτ2 . (10)

We note, that this reflects a generic symmetry of Nambu spinors in time reversal symmetric
systems, which implies that the time-reversed partner of Ψ equals to iτ2Ψ, while the time-
reversed partner of Ψ̄ is −iΨ̄τ2. Terms in the operator L defined in Eq. (3) that preserve time
reversal remain unchanged after chiral transformation (10). Terms breaking time reversal,
such as iτ3∂̂t and τ3ξ̂a change their sign after applying Eq. (10).

In some materials time-reversal is intrinsically broken, like in ferromagnets, via an ex-
change field. In others time-reversal can be broken via an external magnetic field, or a charge
current. Thus, at the level of the Hamiltonian, time-reversal breaking is described in different
ways: either via the vector potential A, via exchange or Zeeman terms containing Pauli ma-
trices in the spin space σ, or through the superconducting phase ϕ. In fact, in Eqs. (1, 3, 9)
all terms that are antisymmetric with respect to time-reversal, i.e. ξ̂a, the phase ϕ and the
vectors A and σ, are accompanied by the matrix τ3 in Nambu space, consistent with the chiral
symmetry, Eq. (10). This structure has to be preserved when constructing the NLSM.

The Keldysh NLSM for disordered electron systems, has been derived microscopically in
many different situations using different formalisms [31,32,49,51,56–66]. In all of these the-
ories, the rapidly varying and random disorder is taken into account by performing a disorder
average. Using this approach, the soft diffusion modes are described in terms of the composite
matrix field Q(r , t, t ′), that is conjugate to the bilinear form Ψ(r , t)Ψ̄(r , t ′). The generating
function Z = eiS can be expressed in these Q-matrices via

Z =

∫

dQeiS[Q] , (11)

where S[Q] is the action of the NLSM. For systems in which the Fermi energy is the largest en-
ergy scale, and the elastic scattering rate is larger than any other energy, the main contribution
to this generating function stems from the soft-mode manifold characterized by the nonlinear
constraint Q2 = 1, and it is therefore sufficient to restrict Q to this manifold only.

The NLSM can be used for several types of calculations, including fluctuation calculations
and RG-type analyses. Here however, we are mostly interested in one specific property, namely
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that, because Q is the auxiliary field of ΨΨ̄, its expectation value 〈Q〉 =
∫

dQQeiS[Q] corre-
sponds to the quasiclassical Green’s function g(t, t ′). As usual, since the integral is dominated
by those values for which iS[Q] takes an extreme value, we may approximate g by the sad-
dle point configuration of the NLSM. From this we conclude that the saddle point equations
determine the quasiclassical Green’s function, that is, they can be identified as the quantum
kinetic equations, which in the diffusive regime are commonly referred to as the Usadel-type
equations.

Our strategy is first to derive all terms allowed to appear in the action of NLSM, and sub-
sequently to find the Usadel equation for g by requiring the stationarity of the action under
variations of Q that obey the soft mode manifold constraint.

For the NLSM in Nambu space, by virtue of Eq. (5) we must restrict the soft mode manifold
further. Indeed, by construction of Q, it inherits the symmetry properties of the bilinear form
Ψ(t)Ψ̄(t ′) [33]. Following Eq. (5), this means

Q(t, t ′) = τ1σyQT(t ′, t)σyτ1 , (12)

where T is used to denote matrix transposition in Nambu-spin space.
For the calculation of transport properties it is useful to describe the two branches of the

Keldysh contour as a matrix degree of freedom, the Keldysh space:

Q(t, t ′) =

�

Q(t+, t
′+) Q(t+, t

′−)
Q(t−, t

′+) Q(t−, t
′−)

�

, (13)

where the superscripts refer to the upper (+) and lower (-) branches of the Keldysh contour C.
It is customary to perform the following rotation in the space of contour branches Q 7→ Lρ3QL†,
where L = (1−iρ2)/

p
2 andρi are the Pauli matrices in the Keldysh space. This transformation

ensures that any causal function, such as the Green’s function g takes the form

g =

�

gR gK

0 gA

�

, (14)

where the subscripts R, A, K refer to the retarded, advanced and Keldysh components [49–51,
54]. In this rotated Keldysh space the charge conjugation symmetry reads

Q(t, t ′) = ρ1τ1σyQ(t ′, t)Tσyτ1ρ1 , (15)

where T denotes matrix transposition in Nambu-Keldysh-spin space. Next to this, the NLSM
contains one additional symmetry. Because the generator of evolution is Hermitian, the
chronological and antichronological propagators are related via Hermitian conjugation. How-
ever, in Keldysh space, the chronological and antichronological propagators are also related
through a matrix operation in Keldysh space. The equivalence of these two operations imposes
a symmetry on the action of the NLSM [33], which we call the chronology symmetry. Within
the rotated Keldysh basis, this symmetry requirement reads

iS[Q] = (iS[−ρ2τ3Q†τ3ρ2])
∗ . (16)

To illustrate the terms that appear in an NLSM action that obeys both symmetry require-
ments in Eqs. (15, 16), we write as an example the well-known action for a diffusive su-
perconductor in the presence of an exchange field [67, 68] and relaxation due to magnetic
impurities [69–71]

iS0[Q] =
πν

2
Tr
�

−
D
4
(∇Q− i[Aτ3,Q])2 + ω̂t,t ′τ3Q

+τ2|∆|eiτ3ϕ + ih ·στ3Q+
1

8τs
τ3σaQτ3σaQ
�

, (17)
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where Tr denotes tracing over all relevant matrix dimensions and integration over time and
space. Here and hereafter, summation over repeated indices is implied. As required, all of
these terms obey the charge conjugation symmetry Eq. (15) and chronology symmetry Eq.
(16). The action contains the usual kinetic term, the time derivative term ω̂t,t ′ = δ(t − t ′)∂t ,
the pair potential magnitude |∆|, exchange field h and a spin-relaxation term characterized by
the relaxation time τs, which is due to scattering on magnetic impurities. The density of states
per spin ν only enters as a prefactor, and therefore it does not enter the transport equations,
but instead it appears in the definition of the physical observables.

The action in Eq. (17) describes systems both in and out of equilibrium. Since we de-
scribe the system through the generating functional Z , in equilibrium, the obtained expres-
sions are naturally related to the free energy F of the system. Indeed, F is obtained by setting
ω̂t,t ′ −→ωn, whereωn = (2n+1)πT are the Matsubara frequencies and T is temperature, and
defining F = −T

∑

n iS[g,ωn], where g is the quasiclassical Green’s function in the Matsubara
representation [72]. This provides a link between the action of NLSM and the Luttinger-Ward
free energy functional of the quasiclassical Green function.

The NLSM action for weak ferromagnets in Eq. (17) contains four terms related to time
reversal symmetry breaking mechanisms. As mentioned before, all time-reversal symmetry
breaking terms, the vector potential, the exchange field, and the superconducting phase, enter
the action accompanied by a τ3, respectively via Aτ3, h · στ3 and ϕτ3. Next to this, the
relaxation term, 1/τs, is accompanied by two τ3’s. It originates from a time-reversal symmetry
breaking mechanism, exchange of the magnetic impurities, but does not change sign under
time-reversal itself because it is of second order.

The exchange field is only nonzero if there is a net magnetization, such as in a ferromagnet
or a ferrimagnet, or in a paramagnet that has a Zeeman coupling with an external field. In
the normal state this term leads to Larmor precession of a nonequilibrium spin-density [73],
whereas in the superconducting state, it is responsible for singlet-triplet conversion [74]. The
spin relaxation term is allowed in all materials with magnetic structure on the microscale,
and it is even under inversion of all atomic spins. In the normal state it leads to relaxation
of electron spin, while in the superconducting state it also leads to a pair breaking effect
[75]. We are interested in the transport equation, which is the saddle point equation of the
action, Eq. (17). Minimization of the action leads to the well-known Usadel equation for
weak ferromagnets [2]. However, as we show below, besides the exchange term, there are
more terms allowed in the action of magnetic materials.

In the coming sections we extend the action in Eq. (17) by adding all symmetry allowed
terms up to first order in spatial derivatives and τ3σ. We consider metallic systems, in which
particle hole symmetry breaking terms are small, and the energy dependence of the coefficients
in the action can be ignored.1 Subsequently we consider which form these terms may take in
several different types of materials; ferromagnets, antiferromagnets and altermagnets.

3 Action for materials with time-reversal symmetry breaking via
exchange

In this work we focus on materials with exchange interactions, such as ferromagnets, antiferro-
magnets, altermagnets and p - wave magnets. In such materials the spin-dependent fields are
nonzero. There are two types of such fields, magnetic type fields, which break time-reversal
symmetry, and spin-orbit type fields, which do not break this symmetry. While often both of
these types are present, the magnetic type fields usually dominate, because they are nonrela-
tivistic, unlike spin-orbit coupling.

1For a discussion about the incorporation of energy-dependent terms in the NLSM, see [56].
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Therefore, we focus on terms that are due to exchange interactions, that is, those in which
τ3 and spin-Pauli matrices are locked together, and construct all possible scalars using a given
amount of Qs, spatial derivatives, Pauli matrices and tensors. The number of terms is greatly
reduced by the facts that the trace is invariant under cyclic permutation and that the NLSM
is defined on the soft-mode manifold Q2 = 1, which allows one to contract multiple Q’s, and
rearrange the position of spatial derivatives through {Q,∂kQ} = 0. After this, we select the
terms that obey the charge conjugation and chronology symmetries. We start by analyzing
the simplest possible time-reversal odd scalars that are of the first order in τ3σ. The first fun-
damental requirement is that those terms are invariant under charge conjugation, that is, we
require them to satisfy iS[Q] = iS[ρ1τ1σyQTσyτ1ρ1]. This restriction imposes restrictions
on the tensors of the corresponding terms. In some cases these restrictions can only be met by
requiring the tensor to vanish, in which case a term is disallowed. To lowest order, i.e. without
spatial derivatives, we may construct one scalar, haσaτ3, the usual exchange field that already
appeared in Eq. (17). To first order in derivatives we may construct two scalars, Trαa jσaτ3∂ jQ
and Trκa jσaτ3Q∂ jQ. While the former, as elaborated in Appendix A, Eqs. (A.6) is allowed by
charge conjugation symmetry, the charge conjugation requirement on the second term yields

Tr
�

κa jσaτ3Q∂ jQ
	

= Tr
�

κa jσaτ3(ρ1τ1σyQTσyτ1ρ1)(ρ1τ1σy∂ jQ
Tσyτ1ρ1)
	

= −Tr
�

κa jσyσaτ3σyQT∂ jQ
T
	

= Tr
�

κa jσ
T
a τ3QT∂ jQ

T
	

= Tr
�

κa j∂ jQQσaτ3

	

= −Tr
�

κa jσaτ3Q∂ jQ
	

, (18)

where we used that for any matrix A we have Tr(A) = Tr(AT ). This condition is only satisfied
if κa j = 0, and therefore this term is not allowed to appear in the NLSM action.

Thus, there is only one term of first order in derivatives that is allowed by charge conjuga-
tion symmetry, iS1 ∼ Tr{αa jσaτ3∂ jQ}. This term however is a total derivative, and it can be
reduced to the modification of the exchange field at the boundary of the system. Therefore,
we disregard this term in our analysis. Up to second order in derivatives, as elaborated in
Appendix A.1.3, Eqs. (A.10, A.11) we may write the following contributions allowed by the
charge conjugation symmetry under the constraint Q2 = 1:

iS2a =
πν

2
Tr
�

γa jkτ3σa∂ jQ∂kQ
�

, (19)

iS2b =
πν

2
Tr
�

iχa jkτ3σaQ∂ jQ∂kQ
�

, (20)

where the factor πν2 was extracted for the uniformity of notation and γa jk and χa jk are third
rank time-reversal odd tensors with one spin index and two real space indices. By charge con-
jugation symmetry, they are required to be symmetric in the two real space indices, γa jk = γak j
and χa jk = χak j , as derived in Eqs. (A.10, A.11) in Appendix A.1.3. For each of the charge
conjugation allowed terms in the NLSM action, we then impose the chronology symmetry
requirement in Eq. (16) to determine whether the coefficients of the tensors are real or imag-
inary. For example, for the coefficient in Eq. (19) we have

Tr
�

γa jkσaτ3∂ jQ∂kQ
�

=
2
πν

iS2a[Q] =
2
πν

�

iS2a[−ρ2τ3Q†τ3ρ2]
�∗

=

�

Tr
�

γa jkσaτ3(−ρ2τ3∂ jQ
†τ3ρ2)(−ρ2τ3∂kQ†τ3ρ2)

�

�∗

= Tr
�

γ∗a jk∂kQ∂ jQτ3σa

�

= Tr
�

γ∗a jkσaτ3∂kQ∂ jQ
�

, (21)

where we used that for any matrix A,
�

Tr(A)
�∗
= Tr
�

A†
�

. Thus, chronology symmetry implies
that γa jk = γ∗ak j . By symmetry in the real space indices, this means γa jk is real. The deriva-
tion for the other term is similar, and also χa jk is real, see Appendix A.1.3, Eq. (A.13) for
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details. The allowed components of the tensor depend on the spin space group of the mate-
rial under consideration. Their magnitude is not restricted by symmetry considerations, but
our expansion in τ3σa assumes these coefficients are small compared to the usual diffusion
contribution. In the coming sections we discuss the restrictions on these tensors posed by the
crystal structure of the materials.

Thus, the general action up to first order in τ3σ for materials with exchange interactions
is

iSM [Q] =
πν

2
Tr

�

−
Djk

4
∂ jQ∂kQ+ ω̂t,t ′τ3Q+τ2|∆|eiτ3ϕQ+ ihaσaτ3Q

+
1
8
Γabτ3σaQτ3σbQ+ γa jkτ3σa∂ jQ∂kQ+ iχa jkτ3σaQ∂ jQ∂kQ

�

. (22)

where positive definite symmetric tensors Djk and Γab correspond to the tensors of the diffusion
coefficient and the spin relaxation rate, respectively [33]. As usual, in the following we assume
Djk = Dδ jk for clarity of presentation. The results can be straightforwardly generalized to
incorporate the matrix structure of D. This action is valid both in and out of equilibrium, and
even with time-dependent drives.

By variation of the action with respect to Q, under the constraint Q2 = 1 around the
saddle point, the Usadel equation is obtained. This saddle point can be identified with the
quasiclassical Green’s function g(t, t ′) of the system. As elaborated in Appendix B, the Usadel
equation can be conveniently expressed in terms of the current and the torques as

∂kJk = [g, ω̂t,t ′τ3 + i(haσa)τ3 + ∆̂] + Γab[g,τ3σa gτ3σb] + T , (23)

where we introduced ∆̂ as shorthand notation for the matrix pair potential The matrix current
Jk and torque T of the system are given by

Jk = −Dg∂k g +
1
4
γa jk{τ3σa + gτ3σa g, g∂ j g}+

i
4
χa jk[τ3σa + gτ3σa g,∂ j g] , (24)

while the torque becomes

T = 1
4
γa jk[τ3σa,∂ j g∂k g] +

i
4
χa jk[τ3σa, g∂ j g∂k g] . (25)

As elaborated in Sec. 2, the quasiclassical Green’s function g in the rotated Keldysh space has
the well known causality structure:

g(t, t ′) =

�

gR(t, t ′) gK(t, t ′)
0 gA(t, t ′)

�

, (26)

where gR,A(t, t ′) are the retarded and advance components describing spectral properties of
the system, whereas gK is the Keldysh component, which due to the normalization condition
g2 = 1 can be parameterized as [26]:

gK(t, t ′) =

∫ ∞

−∞
d t1 gR(t, t1)F(t1, t ′)− F(t, t1)g

A(t1, t ′) , (27)

with F being the matrix distribution function. Notice that all matrices gR,A,K and F are 4×4
matrices in Nambu-spin space.

Eqs. (22-25) provide the action and transport equations of general materials with magnetic
structures and describe all the effects discussed in this work. In the following sections, we
discuss the form the action and Usadel equation take in different materials, specifically, in
ferromagnets, antiferromagnets and altermagnets.
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3.1 Collinearity

To restrict the forms of the tensors γa jk and χa jk in Eq. (22) for the different types of magnetic
structure, we need to consider the symmetries of the materials under consideration. The first,
and most general important distinction we can make is based on the spin-only group [43,45,
46], which describes the invariance of the crystal under spin space symmetry operations that do
not involve real space. We may distinguish three different classes of magnetic structures with
different spin only groups, (i) collinear spins, in which case all spins point along a specific
axis and the spin-only group contains a rotation axis, (ii) coplanar spins, in which case the
spins together span a plane in spin space and the spin-only group contains a mirror operation,
(iii) noncoplanar spins, in which case the spins together span the whole spin space and the
spin-only group is the trivial group.

To understand the restrictions posed by the spin-only group, we consider a collinear ma-
terial whose spins are all along the z-axis. Such material is invariant under rotations in spin
space around this axis, and specifically under a π-rotation around this axis. Since this rotation
changes the sign of components with a = x , y in γa jk and χa jk, we may conclude that only the
components with a = z can be nonzero, and hence we may write them as the direct product of
the unit vector ẑ in spin space and a second rank tensor in real space. For generic orientations
Pa of the collinear axis we may write

γa jk =
D
4

PaT jk , (28)

χa jk =
D
4

PaK jk , (29)

where Pa is a vector parallel to the collinear axis, to be called the magnetic polarization vector,
and T jk and K jk are symmetric second rank tensors which are even under time reversal. Since
many magnetic structures are collinear, we use this form in the forthcoming discussion of
ferromagnets, antiferromagnets and altermagnets.

The specific structure of the tensors T jk and K jk is determined by the spin symmetry group
of the material. According to the general concept of the spin space groups [36–47], this struc-
ture is independent of the orientation of the collinear axis, but fully determined by the sym-
metries with respect to rotations and reflections. Depending on whether a specific rotation
or reflection in the spin symmetry group is accompanied with the spin flip (time reversal) or
not, the material tensors T jk and K jk should be either antisymmetric or symmetric under this
operation.

In the coming sections, Sec. 4 and 5, we explore three different collinear magnetic struc-
tures, ferromagnets, antiferromagnets and altermagnets. For each of these materials we iden-
tify the allowed terms in the action and their physical consequences. We then explore one
consequence of noncollinearity through the example of p - wave magnets in Sec. 6.

4 Collinear ferromagnets

In this section, we focus on collinear ferromagnets, i.e. materials with a nonvanishing net mag-
netization of a unit cell, pointing along a certain direction. They form the most well-known
class of magnetic structures. In such materials, both h and P in Eqs. (28) and (29), are re-
quired to be along the collinear axis, while the spin relaxation allows for two independent
components describing two different relaxation rates for spins parallel and perpendicular to
the local magnetization. The diffusion constant Djk and the tensors T jk, K jk in Eq. (22) in
ferromagnets satisfy the same set of symmetries. For illustrative purposes we consider a ma-
terial with cubic symmetry and choose them to be proportional to the identity matrix, that is,
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T jk = γδ jk and K jk = χδ jk. With this, the action in Eq. (22) adapted to ferromagnets becomes

iSF [Q] =
πν

2
Tr

�

−
D
4
(∇Q)2 + ω̂t,t ′τ3Q+τ2|∆|eiτ3ϕ + ih ·στ3Q

+
1
8
Γabτ3σaQτ3σbQ+ γ

D
4

Paσaτ3(∇Q)2 +χ
iD
4

Paσaτ3Q(∇Q)2
�

. (30)

Thus, we identify that in collinear magnets, next to the exchange field, there are two other
coefficients that can be nonzero, γ and χ. They do not appear in the usual Usadel equation
stemming from the action in Eq. (17), but since they are symmetry allowed, they are expected
to be nonzero in realistic ferromagnets

By variation of the action with respect to Q, we find that the Usadel equation reads

∂kJk = [g, ω̂t,t ′τ3 + ihaσaτ3 + ∆̂] + Γab[g,τ3σa gτ3σb] + T , (31)

where the matrix current and torque of the system are given by

Jk = −Dg∂k g +
D
4
γPa{τ3σa + gτ3σa g, g∂k g}+

iD
4
χPa[τ3σa + gτ3σa g,∂k g] , (32)

while the torque in ferromagnets reads

T = D
4
γPa[τ3σa, (∂k g)2] +

iD
4
χPa[τ3σa, g(∂k g)2] . (33)

Equations (31-33) describe the diffusive transport in metallic ferromagnets. Although this
system has been widely studied in both normal and superconducting states, to the best of
our knowledge, a derivation of these equations that is valid in both states and accounts for
magnetic polarization has not been previously presented, except in the limit of a strong ferro-
magnet [76]. Here, we show that this equation naturally arises from the NLSM by considering
all symmetry allowed terms up to second order in derivatives and first order in σ terms. In the
following subsections, we study physical implications of the new terms in the Usadel equation
by applying it to describe the spin-polarized transport in both normal and superconducting
states.

4.1 Diffusion equation for metallic ferromagnets

In this subsection we derive the diffusion equations for collinear ferromagnets from Eqs. (31-
33). In the normal state, the retarded and advanced components of g, cf. Eqs. (26-27), are
given by [77,78]

gR(t, t ′) = −gA(t, t ′) = τ3δ(t − t ′) , (34)

and consequently, the Keldysh component in Eq. (27), reads

gK(t, t ′) =

∫ ∞

−∞
d t1 gR(t, t1)F(t1, t ′)− F(t, t1)g

A(t1, t ′)

= 2F(t, t ′)τ3 . (35)

The matrix distribution function consists, in principle of 8 independent components, four of
them related to charge and spin properties (those proportional to τ3 and τ0σx ,y,z) and four
of them related to thermal and spin thermal properties (τ0 and τ3σx ,y,z) [79].

The substitution of Eq. (35) into the Usadel equation, Eq. (31), results into a diffusion
equation for the distribution matrix F . Here we are interested only on charge and spin trans-
port. Moreover, since g commutes with τ3, the Usadel equation does not explicitly contain
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t − t ′ and we may focus only on F(t, t), from which we may compute the observables. Next
to this, one can easily verify that, in the normal state, the torque in Eq. (33) vanishes due to
the trivial form of the retarded and advanced components, Eq. (34). Consequently, the charge
and diffusion equations are given by

∂tδn+ ∂k jk = 0 , (36)

∂tδSb + ∂k jska = −ΓabδSb , (37)

where the charge accumulation δn and spin accumulation δS are related to the chemical
potential µ, the spin-chemical potential µs and the quasiclassical Green’s function g via

δn= 2νµ=
πν

4
tr
�

gK(t, t)
�

=
πν

2
tr
�

τ3F(t, t ′)
�

, (38)

δSb = 2νµs
b =

πν

4
tr
�

τ3σb gK(t, t)
�

=
πν

2
tr
�

σbF(t, t ′)
�

. (39)

Using the general definition of the matrix current Eq. (32) we can relate the charge current,

jk =
πν

4
tr
�

τ3JK
k (t, t)
�

, (40)

and the spin current,

jska =
πν

4
tr
�

σaJK
k (t, t)
�

, (41)

to the gradients of the chemical and spin-chemical potentials,

jk = −σD∂kµ− γσDPa∂kµ
s
a , (42)

jska = −σD∂kµ
s
a − γσDPa∂kµ+χσDPbϵabc∂kµ

s
c , (43)

where σD = 2e2νD is the normal state conductivity. The term proportional to χ, appear-
ing only in the spin current expression, Eq. (43), describes a gradient correction to the Lar-
mor precession of a spin in a nonparallel field, and it is usually neglected. Moreover, in the
standard quasiclassical approach also γ = 0. This prevents any distinction between spin-up
and spin-down diffusion or conductivity. In spintronics, however, it is customary to describe
spin-dependent transport using simple phenomenological diffusion equations in which the
conductivities for spin-up and spin-down electrons differ. Our present approach shows that
such a distinction naturally arises by including the symmetry-allowed term γ in the action Eq.
(30). From Eq. (43), one can directly see that a charge current in a ferromagnet induces
a spin-polarized current, allowing us to define spin-dependent conductivities in terms of the
parameters of our model:

σ↑,↓ =
1
2
σD(1± γP) , (44)

where P is the magnitude of the vector Pa. Here ↑(↓) refers to up- and down electrons with
respect to the magnetization axis of the ferromagnet which is chosen parallel to the z-axis.

Thus, Eqs. (42-43) can be written more customarily:

jk = −σ↑∂kµ↑ −σ↓∂kµ↓ , (45)

jskz = −σ↑∂kµ↑ +σ↓∂kµ↓ , (46)

with µ↑,↓ = µ±µs
z .

The above example illustrates how adding second-order derivatives to the action enables
the description of spin-dependent transport coefficients in ferromagnets. This result is not
surprising, as it can be easily obtained from phenomenological considerations. However, our
action is also valid in the superconducting state. As we show in the next section, our model
becomes particularly useful in this context, providing new equations capable of describing
spin-polarized supercurrents in diffusive systems with magnetic sublattices.
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4.2 Spin-polarized currents in diffusive S / F systems

Since the prediction of triplet superconducting correlations in ferromagnets proximitized by
superconductors [2], the possibility of spin-polarized supercurrents has opened up a new re-
search field called superconducting spintronics [3, 4]. Most experiments in this field are con-
ducted with metallic diffusive hybrid S / F structures, while theoretical descriptions rely on
the Usadel equation. However, as in the normal state, the customary quasiclassical approach
does not allow for the description of spin polarization: in other words, all predictions of spin-
polarized supercurrents could not be described within the standard Usadel equation. This
section shows that physically expected spin-polarized supercurrents appear naturally if the
spin-dependent second-order derivative terms in the action, Eq. (30) are included.

We consider the superconducting proximity effect in ferromagnets in equilibrium situation.
In this case, transport is dissipationless, and instead of using the full Keldysh representation it
is enough to consider the retarded component of the Green’s functions, see Eq. (26). In the
superconducting state the retarded matrix is not any more diagonal in Nambu space, it takes
the form [77,78]

gR =

�

ĝ f̂
ˆ̃f − ĝ

�

, (47)

where the real part of ĝ describes the density of states of the material and f̂ , ˆ̃f are the pair
amplitudes. The theory developed above is, unlike the Ginzburg-Landau functional, valid for
any temperature, both well below and close to the critical temperature. In general, the re-
sulting Usadel equation is highly nonlinear. However, in certain limits, they can be linearized.
Close to the critical temperature, or for weakly transparent interfaces, the pair amplitudes are
small and one can expand the Green’s function in the pair amplitudes, f around its normal
state solution gR(t, t ′) ≈ τ3δ(t − t ′) + f (t, t ′). Here f is a 4×4 matrix in Nambu-spin space
given by

f =

�

0 f̂
ˆ̃f 0

�

, (48)

and f̂ , ˆ̃f are 2×2 matrices in spin space. We choose the collinear axis to be along the z-
direction. In that case it is convenient to write the pair amplitudes following Eq. (2) as

f̂ =

�

f+ f↑↑
f↓↓ f−

�

, ˆ̃f =

�

f̃+ f̃↓↓
f̃↑↑ f̃−

�

. (49)

The diagonal elements of this matrix of pair amplitudes can be written as f± = fs± ft , where fs
is the singlet component, and ft is the triplet with zero spin projection component. Meanwhile,
f↑↑ and f↓↓ correspond to the equal spin pairs with spin projection ±1 along the collinear axis

respectively. The components of ˆ̃f are defined in a similar way using Eq. (2).
We now substitute gR into the Usadel equations, Eqs. (31-33) and keep only terms up

to linear order in the pair amplitudes. In equilibrium we may go to the Matsubara represen-
tation by defining the Matsubara Green function as g(ωn) = gR(iωn), which corresponds to
the replacement ω̂t,t ′ −→ ωn in the Usadel equation, where ωn = (2n + 1)πT is the Mat-
subara frequency. In this representation, the approximate Green function takes the form
g(ωn)≈ τ3sign(ωn) + f (ωn), and we obtain the following set of linearized Usadel equations
for the pair amplitudes,

D(1± iPχsign(ωn))∂ j j f± = 2(|ωn| ± ihsign(ωn)) f± , (50)

D(1+ γP)∂ j j f↑↑ = 2|ωn| f↑↑ , (51)

D(1− γP)∂ j j f↓↓ = 2|ωn| f↓↓ , (52)
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and an identical set for the components of ˆ̃f . Firstly, from Eq. (50), it becomes clear that
f±, and hence the singlet and zero-spin triplet components, are suppressed by the exchange
field and are therefore commonly referred to as short-range. In contrast, equal-spin triplets,
which are unaffected by the exchange field, are usually denoted as long-range. As required by
charge conjugation symmetry, Eq. (15), the induced triplet pair amplitudes are odd-frequency,
consistent with previous works on triplet superconducting condensate in dirty materials [2,80].

Also note that the term proportional to χ in the equations above, simply renormalizes
the exchange field and mixes singlets with short-range triplets. Usually, this term is a small
correction to the exchange itself and can be safely neglected, as we did in the normal state.

More interesting are the terms proportional to γ in the above equations. These terms
are responsible for the spin-dependent conductivities in the normal state, as discussed in the
previous section. Similarly, in the superconducting state, the γ term leads to different diffusion
constants for up- and down-spin polarized pair amplitudes, while leaving the singlet and short-
range triplet components unaltered.

To illustrate this we consider a heterostructure including superconductors and ferromag-
nets, for example, an S / F / S Josephson junction, and compute the charge and spin super-
currents in the F region. These are obtained from Eq. (32) by taking the following traces,
e2 πν

2 tr(ρ1τ3Jk) and e2 πν
2 tr(ρ1σzJk), cf. Eqs. (40-41). Because we are focusing here on equi-

librium properties, we use the equilibrium distribution functions to convert the integration
over energies to a sum over Matsubara frequencies. The leading terms are second order in the
pair amplitudes:

I = 2πT
∑

n

�

σ↑ f↑↑∂x f̃↑↑ +σ↓ f↓↓∂x f̃↓↓ +
σD

2
( f+∂x f̃+ + f−∂x f̃−)− ( f ←→ f̃ )

�

, (53)

I s = 2πT
∑

n

�

σ↑ f↑↑∂x f̃↑↑ −σ↓ f↓↓∂x f̃↓↓ +
σD

2
( f+∂x f̃+ − f−∂x f̃−)− ( f ←→ f̃ )

�

. (54)

The second lines of each of these expressions describe the contribution to the current from the
singlet and short-range triplet components. Thus, if the F region in the S / F / S junction is
long enough, they can be neglected. The first lines describe the contributions from the equal-
spin pair amplitudes. Finite polarization of the supercurrent is only possible if γ is nonzero, or
equivalently if σ↑ ̸= σ↓. As discussed in [74, 81], such long-range equal spin triplet currents
can be created by using a ferromagnetic region with noncolinear domains.

The above example illustrates how to describe spin-polarized supercurrents and is the first
demonstration of this effect within the quasiclassical Usadel formalism.

Another feature that has not been captured using the standard quasiclassical formalism
without spin-charge coupling, is the appearance of anomalous currents, which are the super-
currents flowing even in the case of a uniform phase. Such effects may appear in the presence
of an exchange field in materials with broken inversion symmetry. Apparently, these conditions
are met in a setup with different types of ferromagnetic domains.

However, in a material with only exchange correlations, the anomalous supercurrents are
proved to be absent when described at the level of the theory defined by Eq. (17) [82]. The rea-
son is the so-called quasiclassical symmetry [82] of Green functions that follow from Eq. (17):

g(ωn, h) = σyτ1 g∗(−ωn,−h)σyτ1 . (55)
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Figure 1: A Josephson junction in which the weak link consists of three different
ferromagnets with mutually orthogonal orientations supports an anomalous current
I carried by long-range triplets that is proportional to the parameter γ that governs
the difference in diffusion constant for opposite spins.

This special symmetry of the standard quasiclassical theory forbids the existence of a current,
which appears to be even in h through,

j(h) = Tr
∑

ω

g(ω, h)∂k g(ω, h)

= Tr
∑

ω

σyτ1 g∗(−ω,−h)τ1σyσyτ1∂k g∗(−ω,−h)τ1σy

=
�

Tr
∑

ω

(g(−ω,−h))∂k g(−ω,−h)
�∗
= j(−h)∗

= j(−h) . (56)

This relation, when combined with the with the time-reversal symmetry j(h) = − j(−h), leads
to the vanishing anomalous currents at this level of the theory.

We note that the vanishing of the anomalous current in the usual Usadel equation is due to
a symmetry that is not a symmetry of the material, and instead of the theoretical framework.
Thus, by expanding the theoretical framework, a description of anomalous currents is possible.
Until now, describing purely magnetic anomalous currents within the Usadel formalism has
only been possible by assuming effective boundary conditions between the superconductor
and the ferromagnet, incorporating spin-filtering [82]. Within our theory, which includes the
spin-dependent second order derivative terms, we note that while the χ-term obeys Eq. (55),
the γ-term violates the quasiclassical symmetry. It naturally polarizes the pair amplitudes, and
therefore our generalized Usadel equations are capable of describing anomalous currents in the
presence of long-range triplets. Indeed, by solving Eq. (31) for S/F1/F2/F3/S structure with
the F region consisting of three domains with three different magnetizations m1,2,3, illustrated
in Fig. 1, one can demonstrate that the magnitude of the anomalous current due to the ϕ0-
effect is proportional to satisfies

jx ∼ γm3 · (m1 ×m2) . (57)

We refer to Appendix C for a derivation of this expression.

5 Altermagnets and antiferromagnets

So far, we have focused on ferromagnets, in which there is a net exchange field after averaging
over the unit cell. This however need not be the case. There exist magnetic materials in
which the magnetization at different sites inside the unit cell is locally nonzero, but it averages
to zero yielding a vanishing net exchange field. Examples of such materials, in which the
unit cell magnetization is identically zero for symmetry reasons, are antiferromagnets and
altermagnets.
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Since the nonlinear sigma model describes fields on mesoscopic scales, much larger than
the size of the unit cell, its coefficients appear as effectively averaged over the microscopic
scales due to the coarse-graining in the formulation of the low-energy theory. Similarly to
the macroscopic transport coefficients, the coefficients in NLSM reflect only the macroscopic
crystal symmetry. In particular, in materials with zero unit cell magnetization, no effective
exchange field should appear in NLSM, that is, ha = 0. The spin-relaxation term is allowed,
because it is of second order in τ3σ. Moreover, the terms containing the tensors T jk and K jk
that determine the spin-dependent gradient terms in Eq. (58) are also in general allowed
independent of presence of the net magnetization. The specific form of T jk and K jk can be
quite different for different classes of magnetic materials, and it is determined by the specific
spin space group, as discussed below.

Taking into account all these considerations, the effective action for a diffusive conductor
with vanishing magnetization of the unit cell, obtained from Eq. (22), takes the form:

iSA[Q] =
πν

2
Tr

�

−
D
4
(∇Q)2 + ω̂t,t ′τ3Q+τ2|∆|eiτ3ϕ +

1
8
Γabτ3σaQτ3σbQ

+
D
4

PaT jkσaτ3∂ jQ∂kQ+
iD
4

PaK jkσaτ3Q∂ jQ∂kQ

�

. (58)

By variation of the action with respect to Q, we find that the Usadel equation, expressed
in terms of currents and torques, reads

∂kJk = [g, ω̂t,t ′τ3 + ∆̂] + Γab[g,τ3σa gτ3σb] + T , (59)

where the matrix current and torque of the system are given by

Jk = −Dg∂k g +
D
4

PaT jk{τ3σa + gτ3σa g, g∂ j g}+
iD
4

PaK jk[τ3σa + gτ3σa g,∂ j g] , (60)

while the torque becomes

T = D
4

PaT jk[τ3σa,∂ j g∂k g] +
iD
4

PaK jk[τ3σa, g∂ j g∂k g] . (61)

Depending on the specific symmetry that ensures vanishing net magnetization, we may
distinguish several different types of collinear magnetic structures without net exchange field.
These are materials with crystal structures invariant under the product of the time-reversal
(T ) with either translation, inversion, or a rotation [7]. In the former two cases, the material
is called an antiferromagnet, in the latter case it is called an altermagnet.

Terms like those proportional to T jk and K jk in the action in Eq. (58), are first order in
τ3σa and second order in real space derivatives, and hence they are even under inversion and
odd under time-reversal. In other words, they can not appear in materials where an inversion
compensates time-reversal. Moreover, since the NLSM describes fields on a mesoscopic scale,
it is unaltered by translations on a microscopic scale. Thus, in antiferromagnets in which
a translation compensates time-reversal, all terms that are odd in T , i.e. that have an odd
number of τ3’s vanish. Consequently, for any antiferromagnet, T jk = K jk = 0 in the action in
Eq. (58). Thus, compared to a normal metal, the NLSM action of antiferromagnets contains
only one additional term, related to spin-relaxation [Γab in Eq. (58)]. By using a specific
microscopic model of antiferromagnetism, Ref. [27] showed that such a relaxation term may
appear due to virtual transitions to bands far away from the Fermi level. In Ref. [101] it
was shown that in altermagnets and, in fact, in any system with momentum dependent spin-
splitting, the spin relaxation appears naturally, in analogy with the Dyankonov-Perel relaxation
mechanism for spin-orbit coupling. To higher order in both τ3σ there exist additional terms in
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the action that describe the difference in diffusion constant that may appear for spins parallel
or perpendicular to the collinear axis of antiferromagnets [27,83].

Altermagnets are invariant under the combination of time-reversal with a rotation instead
of a translation or an inversion. This difference has important consequences for the transport
equations, because it allows the tensor K jk and T jk to be nonzero, and only imposes relations
between the different components of those tensors. In general, there are 10 spin space groups
which allow for collinear altermagnetism [5], see the second column in Table 1. We remind
that the left superscript (1 or 2) of a point group element R acting on the spatial coordinates
as x −→Rx , indicates whether the transformation of space goes together with spin-flip (2R),
or acts on the spins trivially (1R). As the spin-dependent gradient terms in the action Eq. (58)
contain the time reversal odd factor τ3σ, the invariance under the spin group operation of
type 2R implies antisymmetry of tensors T and K under its space part R: T = −RTR−1 and
K = −RKR−1. On the other hand, the symmetry with respect to the element of type 1R,
involving the identity operation in the spin space, translates to the conditions T = RTR−1

and K =RKR−1. This has to hold for all operations 1R and 2R in the spin space group.
In Appendix D we use the crystal symmetries to derive the allowed form of the tensors for

each of these 10 spin space groups. The results are summarized in Table 1, where we used
the real space basis characteristic of the real space lattice vectors. If another basis is used,
the form of T jk and K jk has to be appropriately altered using the standard transformation
rules for matrices in real space. For example, if a material with spin space group 2m2m1m is
used, but the chosen axes are rotated π/4 compared to the standard one, the only allowed
nonzero components are Tx x = −Ty y . We find that the tensors T jk, K jk can be nonzero for
collinear magnetic structures without a net exchange field if and only if the material is a d
- wave altermagnet, for which the structure of T jk and K jk is derived in Appendix D.1. For
g - wave and i - wave altermagnets, as discussed in Appendices D.2, D.3, the only effect on
transport is the existence of spin relaxation, they are indistinguishable from antiferromagnets
in their dirty limit transport properties. Therefore, from this point onwards we focus on d -
wave altermagnets.

5.1 Diffusion equation for d - wave altermagnets

In this section we derive the transport equations in diffusive altermagnets from Eqs. (59-61).
We first focus on the normal state. Following the same procedure as for ferromagnets, detailed
in Sec. 4.1, we arrive at the diffusion equations for altermagnets:

∂tδn+ ∂k jk = 0 , (62)

∂tδSb + ∂k jska = −ΓabδSb , (63)

with

jk = −σD∂kµ−σDPaT jk∂ jµ
s
a , (64)

jska = −σD∂kµ
s
a −σDPaT jk∂ jµ−σDPbK jkϵabc∂ jµ

s
c . (65)

These equations are another important result of our work. They describe the electronic trans-
port of diffusive altermagnets. The symmetry of the underlying magnetic structure is encoded
in the tensors T jk and K jk, see Table 1, which allows for identifying magnetic symmetries from
transport measurements in mesoscopic-sized devices.

As an example, if one applies an electric current jk to an altermagnet, from Eq. (65) we
directly read that in the normal state a spin-current is generated from a charge current via the
term T jk according to:

jsai = PaTki jk . (66)
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Table 1: The different types of altermagnetic spin space groups and the corresponding
allowed form of T jk and K jk, which obey the same symmetry constraints. The real
space basis used is determined by the conventional choice of real space lattice vectors,
the form of T jk and K jk has to be appropriately altered when using a different basis.
Only for d - wave altermagnets the tensors T jk and K jk can be nonvanishing. The last
column contains examples of conducting materials that belong to the mentioned spin
space groups [84–89]. All so-far predicted i - wave altermagnets are semiconductors
and thus not suitable for transport measurements.

Type Spin space group T jk, K jk Examples

2m2m1m









0 Tx y 0

Tx y 0 0

0 0 0









La2CuO4

d-wave

24/1m









Tx x Tx y 0

Tx y −Tx x 0

0 0 0









KRu4O8

24/1m2m1m









0 Tx y 0

Tx y 0 0

0 0 0









RuO2

22/2m









0 0 Txz

0 0 Tyz

Txz Tyz 0









NaPr2OsO6

g - wave

14/1m2m2m

0 CoF3

132m

26/2m

26/2m2m1m

i - wave
16/1m2m2m

0 -
1m132m

This spin current is spin-polarized in the direction of the altermagnet collinear axis. However,
its real space direction and magnitude depend on the direction of the charge current. The
spin-current may have a longitudinal components, like in the ferromagnet, but also transverse
components, if the direction of the charge current is not an eigenvector of T jk. As shown in
Appendix E, transversal spin currents lead to the normal state spin-splitter effect described for
clean systems in Ref. [90], in which spins with opposite orientation move to opposite sides of
the material, giving rise to spin accumulations on both sides, similar to the spin Hall effect.
These spin accumulations are odd under current reversal.

We now focus on the term proportional to K jk in Eq. (65). In a ferromagnet, this term leads
to a correction to the Hanle-like term proportional to the exchange field and was neglected in
Section 4.1. However, in altermagnets the effective exchange field vanishes, and this term is
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Figure 2: Three types of S / AM junctions in which a local magnetization is generated,
indicated using green (spin up) and orange (spin down) colors. (a): The normal to
the interface corresponds to a node direction of the altermagnet, which results in an
edge magnetization. (b): the normal to the interface corresponds to a nodal direction
of the altermagnet. There is no edge magnetization, only a corner magnetization
(c): SC island on top of an altermagnet. A magnetic moment is induced along the
interface between the superconductor and altermagnet, whose sign depends on the
position along the perimeter.

the leading order of the spin Hanle effect. It describes the precession of spins polarized along
noncollinear axes of the altermagnet.

To reveal such a precession, one can use a nonlocal spin valve as the ones used to detect
the spin Hall effect [73] in normal metals. It involves electrically injecting spins from a fer-
romagnet into an altermagnet by passing a charge current, and then measuring the nonlocal
voltage at a second ferromagnetic electrode used as a detector. The distance between the in-
jector and detector needs to be smaller than the spin-relaxation length. The nonlocal signal
depends on the distance between the injector and detector, the orientation of the wire axis to
the altermagnet crystallographic axis, and the polarization direction of the injected spins. In
contrast to normal metals, in an altermagnet, the spin precession occurs even in the absence of
an applied magnetic field. Equations (62-65) provide a complete tool to describe experiments
of this sort.

In short, Eqs. (62-65) represent new drift-diffusion equations for altermagnets that capture
various magnetoelectric effects, which can be measured in experiments, enabling the study of
underlying symmetries in magnetic materials through transport measurements. To the best of
our knowledge, these equations are unprecedented.

5.2 Superconductivity and altermagnets

We now exploit the fact that the action in Eq. (58) and Usadel equation in Eqs. (59-61) are also
valid in the superconducting case, and address altermagnets proximitized by superconductors
or superconducting altermagnets.

We first consider an altermagnet with one single domain. We choose the collinear axis
of the altermagnet to be along the z-direction. We assume a weak proximity effect from a
superconductor, such that we can linearized the Usadel equation, Eq. (59), with respect to
the condensate function f . This situation was also explored in Ref. [30]. However, below we
show that some predictions of this work differ from our findings.

To this end, we consider a boundary with a normal along the x-direction between a super-
conducting altermagnet that carries a phase gradient −q in the y-direction and vacuum. We
suppose that the boundary is oriented in such a way that Kx y is the only nonzero component.
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Since no current can leave the material, we obtain the following boundary condition from Eq.
(60):

0= ∂x fs + iPzKx y∂y ft , (67)

0= ∂x ft + iPzKx y∂y fs . (68)

If the altermagnetic term is small, the singlet component is approximately equal to its bulk
value fse

−iq y , while according Eq. (68), near the boundary triplets are generated with

ft ∼ qPzKx y . (69)

Because both Pa and q are time-reversal odd, this is a time-reversal even quantity. There-
fore, the triplets are time-reversal even. Therefore, they can not be responsible for a time-
reversal odd magnetization.

This consideration is confirmed by the nonlinear Usadel equation, Eqs. (59-61). Indeed, as
shown in Appendix F.1, for an altermagnet in the superconducting state with a phase gradient
we find

Mz(q) = Mz(−q) , (70)

that is, the magnetization is even under current reversal, in agreement with [91]. In other
words, there is no a superfluid analog of the normal state spin splitter effect. Also, for homoge-
neous phase gradients the current induced magnetization is even in the transverse coordinate,
that is, spins do not localize on opposite edges.

For the particular orientation, in which Kx y is the only nonzero component, an even
stronger statement can be made, as shown in Appendix F.2. Indeed, the equations for g are
invariant under g −→ σy gTσy , which means that if Kx y is the only nonzero component, the
magnetization satisfies

Mz = −i gµB
πν

4
tr(σz g) = −i gµB

πν

4
tr(σzσy gTσy) = i gµB

πν

4
tr(σz g) = −Mz , (71)

which is only possible if
Mz = 0 . (72)

Our results are also confirmed by the consideration of a Josephson junction, superconductor-
altermangent-superconductor, in Appendix F.3, where we show that Mz(ϕ) = Mz(−ϕ), with
ϕ the phase difference between the superconducting electrodes. That is, any induced magne-
tization is even with respect to the Josphson current; i.e. there is no spin-splitter effect.

In addition to phase gradients, spatially inhomogeneous systems, such as hybrid structures,
may also exhibit gradients in the magnitude of the pair amplitude. These gradients are not
associated with currents, but with pair breaking, and, in contrast to phase gradients, they are
time-reversal symmetric. Therefore, by replacing iq in Eq. (68) by ∂k| f | and keeping a more
general structure of K jk and boundary normal n j , we find the following expression for triplets
induced near the boundary of an altermagnet:

ft ∼ in jK jkPz∂k| f | . (73)

Because Pz is time-reversal odd, but ∂k| f | is time-reversal even, this is a time-reversal odd
quantity, and ft = f̃t . Therefore, gradients of the condensate magnitude in an altermagnet
should give rise not only to triplet correlations but also to spin accumulation. Such variation
occurs, for example, in a superconductor-altermagnet bilayer (see Fig. 2), where, via the
proximity effect, the superconducting condensate penetrates into the altermagnet and decays
over the thermal coherence length.
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To examine this proximity induced magnetization, we consider the proximity effect in an
S/AM junction with different orientations of the lobes of the d-wave with respect to the normal
of the interface. We always choose our axis such that the normal is in the x-direction, and
consequently need to modify the structure of T, K compared to Table 1. In the longitudinal
orientation, in which the lobe of the altermagnet is along the normal to the interface, Kx x ̸= 0,
Kx y = 0, and thus the equations, denoting the magnitude of the pair potential by |∆|, read

D(1± iPzKx xsign(ωn))∂x x f± = 2|ω| f± , (74)

D(1± iPzKx xsign(ωn))∂x f± = −γB
2|∆|
|ω|

, (75)

where γB is the Kuprianov Luckichev boundary parameter [92] which is proportional to the
inverse of the S/AM interface resistance. Meanwhile f̃ = f . In terms of singlets and triplets,
introduced as f± = fs ± i ftsign(ωn) these may be written as

D(∂x x fs − PzKx x∂x x ft) = 2|ω| fs , (76)

D(∂x x ft + PzKx x∂x x fs) = 2|ω| ft , (77)

D(∂x fs + PzKx x∂x ft) = −γB
2|∆|
|ω|

, (78)

D(∂x ft − PzKx x∂x fs) = 0 . (79)

From the last equation we infer that, for Kx x ̸= 0, triplets are induced close to the interface
between a superconductor and an altermagnet. For full expressions of these triplet pair am-
plitudes, see Appendix G.1, Eq. (G.6). Since the equations satisfy f = f̃ , the triplets induce a
magnetization, which reads to first order in Kx x :

Mz(x) = −i gµBπνtr (τ3σz g(x)) = −2gµB PzKx x
πν

4
γ2

B
|∆|2D
(πT )2
∑

n

1
(2n+ 1)3

e−
Ç

2πT (2n+1)
D 2x . (80)

Exactly at the interface the magnetization takes the value

Mz(x = 0) = −
7ζ(3)

4
gµB PzKx xπνγ

2
B D
|∆|2

(πT )2
, (81)

and then decays away from the boundary over a length scale
q

2D
πT due to the suppression

of both singlet and triplet pair amplitudes, as shown in Appendix G.1, Eq. (G.8). Thus, the
presence of triplets causes a nonzero spin accumulation, as illustrated in Fig. 2(a).

In the transverse orientation shown in Fig. 2(b), only Kx y is nonzero. If the system is finite
in the transverse direction, a finite spin accumulation is created at the transverse boundaries
of the altermagnet next to the superconductor, as shown in Fig. 2(b). For a calculation of
the magnitudes of the induced magnetization, see Appendix G.2. This magnetization is also

localized at the S / AM interface, decaying over a distance of the order
q

2D
πT . If the junction is

infinite in the transverse direction, the Green’s function does not depend on the y-coordinate,
and consequently Kx y drops out of Eq. (60). This means the singlets are decoupled from the
triplets, leading to zero spin density.

We stress that the proximity induced magnetization is entirely different from the spin-
splitter effect that appears in the normal state. Indeed, the effect arises in the absence of a
current. Thus, even in the absence of an external source and even though neither the super-
conductor nor the altermagnet has a magnetization on its own, a hybrid system containing the
two materials may show an equilibrium magnetization, whose details depend on the orienta-
tion of the lobes of the altermagnet. Such effects have been reported to appear in normal state
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nonmagnetic oxides due to surface reconstruction [93]. The effect predicted here however,
does not involve any reconstruction, but is a direct consequence of the proximity of the two
types of materials. We may understand the appearance of this effect by comparing the orien-
tations of the lobes in Fig. 2(a,b). In the orientation of (b), the lobes with spin up and down
have the same orientation with respect to the boundary, which means that the lobes remain
equivalent, and their contributions to the net magnetization cancel out, that is, there is no edge
magnetization. On the other hand, for orientation (a), the orientation of the lobes of alter-
magnetism with respect to the boundary is considerably different. Therefore, the equivalence
between the lobes is broken by the proximity effect and a net edge magnetization remains. A
similar consideration explains why in (b) a corner magnetization appears.

In fact, if a superconducting island is placed on top of an altermagnet, as shown in Fig.
2(c), our theory predicts a finite magnetization at the edges of the island, see Appendix G.3
for details. In particular, if the size of the island is large compared to the coherence length,
the boundaries locally resemble an infinite plane, and the induced magnetization follows the
directions of the lobes of the altermagnetic order, as shown in Fig. 2(c). The magnetization on
opposite sides of the island is the same, but opposite to the magnetization along perpendicular
directions, reflecting the d-wave symmetry of the altermagnet. The magnetization vanishes
along the node directions of the altermagnet.

Since the effect appears when the magnitude of the pair potentials varies in space, a mag-
netization does not only arise near SN interfaces, but also in and near the weak link of Joseph-
son junctions, or in materials in which superconductivity is locally suppressed due to strain or
temperature gradients.

The effects described above appear in monodomain altermagnets where singlets and
triplets with zero spin projections exist. In multidomains, with different collinear axes, there
are additional effects, because the other two pair amplitudes, the equal spin ones, can be
created. Alternatively, they can be created by using an altermagnet and a ferromagnet whose
polarization is not along the collinear axis of the altermagnet. In the linearized limit we obtain
the following Usadel equations for those equal spin pair amplitudes.

D(δ jk + T jk)∂ j∂k f↑↑ = 2|ω| f↑↑ , (82)

D(δ jk − T jk)∂ j∂k f↓↓ = 2|ω| f↓↓ . (83)

These equations are very similar to the equations for the spins in the normal state, and we find
that for nonzero Tx y the equal spin pairs, if created, localize on opposite sides and generate a
spin accumulation. On the other hand, if only Tx x is nonzero, only one type of spin may pass
through the altermagnet. This means that in a Josephson junction with two altermagnets with
different polarization axes (S/AM1/AM2/SC), the supercurrent is spin-polarized, in analogy
with the SC/F1/F2/SC junctions discussed in Sec. 4. Moreover, since altermagnets break time-
reversal symmetry, and using the three different domains inversion symmetry can be broken,
anomalous currents may be generated in the same manner as for a ferromagnet. However,
in an AM the spin dependence of the diffusion constant strongly depends on the direction in
real space. Indeed, we know that the material is invariant under a π/2 rotation accompanied
with a spin flip. Since a spin-flip changes the direction of the anomalous current, this means
that if along the x-direction the anomalous current is away from one of the superconducting
electrodes, in the y-direction it flows towards it. Therefore, at an angle π/4 the anomalous
current vanishes. This emphasizes the importance of the crystal orientation of the altermagnet
in such junctions.
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6 p - wave magnets

In this section, we present our last example: the recently predicted p-wave magnets [6,94–96].
These materials are similar to antiferromagnets, as they are invariant under the combination
of time-reversal and translation (T t ). However, they are noncollinear and break inversion
symmetry. In such materials, an odd-in-momentum splitting of the bands may arise, similar to
what occurs in spin-orbit coupling [6].

Following our discussion of antiferromagnets in Sec. 5, if a translation compensates the
time-reversal, all terms that are odd under T , i.e., those that contain an odd number of τ3’s,
vanish. Consequently, in the action given by Eq. (22), the terms proportional to ha, χa jk,
and γa jk all vanish. Thus, besides the relaxation term, the lowest-order invariants induced by
the exchange correlations are those of the second order in τ3σa and first order in derivatives.
Apparently, the presence of the first order derivative requires the broken inversion symmetry,
that is a characteristic feature of p-wave magnets. The charge conjugation and the chronology
symmetry conditions allow two terms with the above anticipated structure, and thus we find
that the effective action for p-wave magnets reads

iSP =
πν

2
Tr

�

D
4
(∇Q)2 + ω̂t,t ′τ3Q+ ∆̂Q+

1
8
Γabτ3σaQτ3σbQ

+
1
8
λab j∂ j(τ3σaQτ3σbQ) +

1
8
ϵabcβkcτ3σaQτ3σbQ∂kQ

�

. (84)

The last two invariants entering the action with real tensor coefficients λab j and βkc are ex-
pected to be responsible for the physics of p-wave magnets. As the term containing λabk is a
total derivative, its only effect is to modify the spin relaxation at boundaries. We therefore omit
it in the following. Instead, we focus on the βkc term which brings qualitatively new physics.
Following the symmetry arguments introduced in Sec. 5, the tensor βkc is nonzero only in
noncollinear magnets. In coplanar magnets, it can be represented as βka = Pank, where Pa is
a vector in spin space perpendicular to all spins in the material, and nk is a real space vector.

Since microscopically both p-wave magnets and inversion asymmetric materials with SOC,
such as Rashba systems, are characterized by an odd-in-momentum spin splitting of the elec-
tronic bands, their properties are similar in many ways [6, 16]. This similarity can also be
seen from NLSM of Eq. (84). Indeed, the β term in Eq. (84) differs from the spin-galvanic
term in systems with spin-orbit coupling in [33] only because of the appearance of τ3’s next to
the spin-Pauli matrices. Therefore, in the normal state, where g commutes with τ3, the spin-
galvanic effect in p-wave magnets is indistinguishable from the spin-galvanic effect in systems
with SOC. In contrast, as we show below, this similarity breaks down in the superconducting
state.

Let us now examine the consequences of the last term in the action Eq. (84) on the trans-
port properties of a p-wave magnet. We analyze both superconducting and normal states and
compare the results with those obtained in Ref. [33] for gyrotropic materials with SOC. By the
variation of the action with respect to Q, we find the following Usadel equation

∂kJk = [g, ω̂t,t ′τ3 + ∆̂] + Γab[g,τ3σa gτ3σb] + T , (85)

where the matrix current is given by

Jk = −Dg∂k g +
i

16
ϵabcβkc{[τ3σa, g],τ3σb + gτ3σb g} , (86)

and the torque

T = − i
8
ϵabcβkc[{∂k g, gτ3σa g},σb] . (87)
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We consider a p-wave magnet with homogeneous superconducting potential. This pair poten-
tial can either be intrinsic or, if the p-wave magnet is much thinner than the superconducting
coherence length, arise due to the proximity effect of a superconductor. Additionally, there is
an externally induced homogeneous Zeeman field h perpendicular to the spins in the p - wave
magnet. We choose the spins of the p - wave magnet to be in the xy-plane and h to be in the
z-direction, with magnitude h. If the material is infinite in all direction, g is independent of
position and equals

g =
1
2
(1+σz)

1
p

(ω+ ih)2 + |∆|2
((ω+ ih)τ3 + |∆|τ2eiτ3ϕ)

+
1
2
(1−σz)

1
p

(ω− ih)2 + |∆|2
((ω− ih)τ3 + |∆|τ2eiτ3ϕ) , (88)

independent of the strength of p - wave magnetism. Evaluating the spin δSz following Eq. (39)
and the current, combining Eqs. (40) and (86), to first order in the strength of the exchange
field, we have

δSz = h2πT
∑

ωn

|∆|2

(ω2
n + |∆|2)

3
2

, (89)

jx = βxzh2πT
∑

ωn

|∆|2ω2
n

(ω2
n + |∆|2)

5
2

. (90)

Or, equivalently

jx = β(T )δSz , (91)

β(T ) = βxz

∑

ωn

ω2
n

(ω2
n+|∆|2)

5
2

∑

ωn

1

(ω2
n+|∆|2)

3
2

. (92)

Thus, anomalous currents are generated in the presence of a spin accumulation in a super-
conducting p - wave magnet, and the coefficient governing this effect depends on temperature.
For lower temperatures the coupling between current and spin becomes weaker, although it
does not vanish, but instead converges to 1

3 of the normal state spin-galvanic coefficient as
the temperature goes to zero. This temperature dependence of β can be used to distinguish
the spin-galvanic effect originating from p-wave magnetism from that induced by SOC, for
which the spin-galvanic coefficient is independent of temperature. Thus, the difference arises
at low temperatures where the equations linearized in pair amplitudes can not be used. This
highlights the importance of using the nonlinear Usadel equation to describe low-temperature
effects.

7 Conclusions

We have presented the quasiclassical transport theory for materials with magnetic exchange
and superconducting correlations. Being derived from the Keldysh nonlinear sigma model,
our theory describes transport at arbitrary temperatures, both in the normal and supercon-
ducting states, as well as in equilibrium and nonequilibrium situations. We focus on different
types of magnetic ordering and discuss various effects that appear in ferromagnets, antifer-
romagnets, d-wave antiferromagnets, and p-wave magnets, both in the normal state and the
superconducting state.
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Figure 3: The magnitude of the spin-galvanic coefficient in the superconducting state
normalized its the normal state value, induced by p - wave magnetism or SOC. For
SOC there is no difference between the normal state and superconducting state, β
does not depend on temperature, while the exchange induced spin-galvanic effect is
weaker in the superconducting state than in the normal state, it varies continuously
and converges to 1/3 of its normal state value at low temperatures.

For example, our diffusive equation for the quasiclassical Green’s functions captures the
long-sought spin-dependent diffusion coefficient within quasiclassical theory. Our results show
that, in the normal state, a charge current is automatically accompanied by a spin current. On
the other hand, in the superconducting state, this is not the case for supercurrents, unless
equal-spin triplets are generated through a different mechanism.

We also show that the spin-splitting effect, predicted in clean systems [90], appears in the
normal state of altermagnets, even if the material is diffusive. In the superconducting state,
however, this effect vanishes, as dictated by the symmetry of our equations. The symmetry
allows only for magnetization that is even in the phase gradient, which contrasts to the pre-
diction in [30], but agrees with the clean limit results of Ref. [91]. Instead, our theory predicts
another experimentally verifiable effect: the proximity induced magnetization, that is, the gen-
eration of a magnetization near interfaces between superconductors and altermagnets, due to
the spatial dependence of the pair amplitude magnitude in the absence of supercurrents.

Next to this, we show that diffusive p - wave magnets exhibit spin-galvanic effects and find
that in the normal state, these effects are indistinguishable from spin-galvanic effects induced
by SOC. In contrast, in the superconducting state they behave qualitatively different; we show
that in p-wave magnets, in contrast to materials with SOC, the spin-galvanic coefficient is
temperature dependent. In this way we provide a method to distinguish the two types of
spin-galvanic effects.

Our symmetry-based derivation of the low-energy action sets the foundation for further
developments in deriving kinetic equations for multiband systems, magnetic materials with
strong magnetic interactions, and other hybrid systems. Specifically, it provides a framework
for studying nonequilibrium effects in a wide variety of systems that combine superconductors,
conventional magnets, and unconventional magnets. Moreover, our approach can be extended
to multiband materials with additional electronic degrees of freedom.
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Note During submission of our manuscript other articles addressing transport properties of
altermagnets appeared in arXiv, discussing the derivation of the normal state diffusion equa-
tions and spin-transfer from a microscopic tight-binding model [97], and a phenomenological
approach to the spin-transfer torque in normal state altermagnets [98]. Moreover, a few ar-
ticles discussing the interplay of superconductivity and p-wave magnetism in the clean limit
appeared [99,100].

A Construction of the effective action

In this Appendix, we show how to construct the general action, Eq. (22) for collinear mag-
nets, and Eq. (84) for p-wave magnets. Specifically, we construct the terms in the action
by considering the lowest orders in derivatives in τ3σ. The action is a scalar, and therefore
these resulting terms need to be contracted with tensors, whose structures depend on the spin
and spatial symmetries of the material under consideration. As explained in the main text,
the number of allowed terms is reduced by recognizing that several terms can be transformed
into one another and are hence equivalent, using the following operations: (i) cyclic permu-
tation of the trace, (ii) the soft-mode normalization condition Q2 = 1 and (iii) the identity
Q∂ jQ = −∂ jQQ, which is a consequence of (ii) holding throughout space.

Once all the different terms are identified, we apply the charge conjugation symmetry to
determine which components of the tensor are allowed to be nonzero, and the chronology
symmetry to identify whether the coefficients are real or imaginary.

In the next subsections, we explore the different terms up to second order in the exchange
field and various orders in derivatives.

A.1 First order in exchange

First we consider those terms up to first order in τ3σ and thus the tensor that is required is a
vector in spin space. They are time-reversal odd and change sign upon reversal of all spins.

A.1.1 Zeroth order in derivatives: Usual exchange term in ferromagnets and Zeeman
field

The first order term in τ3σ without any derivative is:

Tr (ihaσaτ3Q) . (A.1)

This is the only term we may write to this order, because any additionally added Q’s can be
eliminated via Q2 = 1. Applying charge conjugation symmetry, i.e. Q = ρ1τ1σyQTσyτ1ρ1
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we find the constraint

Tr (ihaσaτ3Q) = Tr
�

haσaτ3ρ1τ1σyQTσyτ1ρ1

�

= −iTr
�

haσyσaσyτ3QT
�

= iTr
�

haσ
T
a τ3QT
�

= iTr (haQσaτ3) = iTr (haσaτ3Q) , (A.2)

where we used τ1τ3τ1 = −τ3, σyσaσy = σT
a and invariance of the trace under both trans-

position and cyclic permutation. Thus, charge conjugation symmetry is satisfied without any
constraint on ha.

Chronology symmetry, iS[Q] = (iS[−ρ2τ3Q†τ3ρ2])∗, implies that

Tr
�

ihaσaτ3Q
�

=

�

iTr
�

haσaτ3(−ρ2τ3Q†τ3ρ2)
�

�∗

=

�

− iTr
�

haσaτ3Q†
�

�∗

= iTr
�

(ha)
∗Qσaτ3

�

= iTr
�

(ha)
∗τ3σaQ
�

, (A.3)

where we used that the trace of the Hermitian conjugate of an expression is the complex
conjugate of the trace of this expression. Thus, chronology symmetry implies ha is real.

A.1.2 First order in derivatives

We may write down two terms with a single derivative, which contain second rank tensors
with one spin index and one real space index:

iTr
�

αa jσaτ3∂ jQ
�

, (A.4)

Tr
�

κa jσaτ3Q∂ jQ
�

. (A.5)

These are the only two possible terms, since any additional Q’s can be eliminated via cyclic
permutation of the trace, and the identities Q∂ jQ = −∂ jQQ and Q2 = 1. The terms, Eqs.(A.4-
A.5) break both inversion and time-reversal, but are invariant under the product of these two
operations. By charge conjugation the first term has to satisfy

iTr
�

αa jσaτ3∂ jQ
�

= iTr
�

αa jσaτ3ρ1τ1σy∂ jQ
Tσyτ1ρ1

�

= −iTr
�

αa jσyσaτ3σy∂ jQ
T
�

= iTr
�

αa jσ
T
a τ3∂ jQ

T
�

= iTr
�

αa j∂ jQσaτ3

�

= iTr
�

αa jσaτ3∂ jQ
�

. (A.6)

This is automatically satisfied, and therefore this term is allowed. Chronology symmetry for
this term implies

Tr
�

iαa jσaτ3∂ jQ
�

=

�

iTr
�

αa jσaτ3(−ρ2τ3∂ jQ
†τ3ρ2)
�

�∗

=

�

− iTr
�

αa jσaτ3∂ jQ
†
�

�∗

= iTr
�

α∗a j∂ jQσaτ3

�

= iTr
�

α∗a jτ3σa∂ jQ
�

, (A.7)

which means that αa j is a real second rank tensor with one spin and one real space index.
However, as explained in the main text, this term is a total derivative, and therefore we disre-
garded from the action, Eq. (22).

The second term, Eq. (A.5), does not enter the action. Indeed, as explained in the main
text, charge conjugation symmetry implies κa j = 0, see Eq. (18). in Sec. 2.
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A.1.3 Second order in derivatives: Novel terms in the action of collinear ferromagnets
and altermagnets

Next, we consider terms linear in τ3σ with two derivatives. These terms contain third rank
tensors with one spin index and two real space indices. There exist two such terms, corre-
sponding to Eqs. (19) and (20) in the main text.

Tr
�

γa jkσaτ3∂ jQ∂kQ
�

, (A.8)

iTr
�

χa jkσaτ3Q∂ jQ∂kQ
�

. (A.9)

Again, adding more Q’s does not yield any new terms, as can be shown using cyclic permutation
of the trace and the identities Q∂ jQ = −∂ jQQ and Q2 = 1.

Charge conjugation on the first term leads to the constraint

Tr
�

γa jkσaτ3∂ jQ∂kQ
�

= Tr
�

γa jkσaτ3ρ1τ1σy∂ jQ
Tσyτ1ρ1ρ1τ1σy∂kQTσyτ1ρ1

�

= −Tr
�

γa jkσyσaσyτ3∂ jQ
T∂kQT
�

= Tr
�

γa jkσ
T
a τ3∂ jQ

T∂kQT
�

= Tr
�

γa jk∂kQ∂ jQσaτ3

�

= Tr
�

γa jkσaτ3∂kQ∂ jQ
�

= Tr
�

γak jσaτ3∂ jQ∂kQ
�

, (A.10)

while charge conjugation on the second term leads to the constraint

iTr
�

χa jkσaτ3Q∂ jQ∂kQ
�

= iTr
�

χa jkσaτ3ρ1τ1σyQTτ1ρ1σyρ1τ1σy∂ jQ
Tσyτ1ρ1

×ρ1τ1σy∂kQTσyτ1ρ1

�

= −iTr
�

χa jkσyσaσyτ3QT∂ jQ
T∂kQT
�

= iTr
�

χa jkσ
T
a τ3QT∂ jQ

T∂kQT
�

= iTr
�

χa jk∂kQ∂ jQQσaτ3

�

= iTr
�

χa jkσaτ3Q∂kQ∂ jQ
�

= iTr
�

χak jσaτ3Q∂ jQ∂kQ
�

, (A.11)

where it was used that Q anticommutes with both ∂ jQ and ∂kQ. Thus, for both both cases,
charge conjugation interchanges the spatial indices without introducing a minus sign, and
consequently both tensors are symmetric in the spatial indices, γa jk = γak j and χa jk = χak j .

Applying chronology symmetry to the first term we find, using that the trace of the Hermi-
tian conjugate of a matrix is the complex conjugate of the trace of the matrix itself, that

Tr
�

γa jkσaτ3∂ jQ∂kQ
�

=
�

Tr
�

γa jkσaτ3(−ρ2τ3∂ jQ
†τ3ρ2)(−ρ2τ3∂kQ†τ3ρ2)

��∗

= Tr
�

γ∗a jk∂kQ∂ jQτ3σa

�

= Tr
�

γ∗a jkσaτ3∂kQ∂ jQ
�

= Tr
�

γ∗ak jσaτ3∂ jQ∂kQ
�

, (A.12)

which implies γa jk = γ∗ak j . Since this tensor is symmetric in its spatial indices this means it is
real. Applying chronology symmetry to the second term we find

iTr
�

χa jkσaτ3Q∂ jQ∂kQ
�

=
�

iTr
�

χa jkσaτ3(−ρ2τ3Q†τ3ρ2)(−ρ2τ3∂ jQ
†τ3ρ2)(−ρ2τ3∂kQ†τ3ρ2)

�

�∗

=
�

− iTr
�

χa jkσaτ3Q†∂ jQ
†∂kQ†
�

�∗

= iTr
�

χ∗a jk∂kQ∂ jQQτ3σa

�

= iTr
�

χ∗a jkσaτ3∂kQ∂ jQQ
�

= iTr
�

χ∗ak jσaτ3Q∂ jQ∂kQ
�

, (A.13)

that is χa jk = χ∗ak j . Since χa jk is symmetric in its spatial indices j, k, it is real.
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A.2 Second order in exchange

Next, we consider those terms that are second order in τ3σ. These terms, even though they
can only be present if there are time-reversal symmetry breaking mechanisms in the materials,
are themselves even in time-reversal, they do not change upon reversal of all spins.

A.2.1 Zeroth order in derivatives: Spin relaxation term

Without derivatives, we may write down

Tr
�

Γabτ3σaQτ3σbQ
�

, (A.14)

By cyclic permutation of the trace the term is symmetric in the spin indices, i.e. Γab = Γba.
which is the usual spin-relaxation term in magnetic structures. By charge conjugation we find
the constraint

Tr
�

Γabτ3σaQτ3σbQ
�

= Tr
�

Γabτ3σaρ1τ1σyQTσyτ1ρ1τ3σbρ1τ1σyQTσyτ1ρ1

�

= Tr
�

Γabτ3σyσaσyQTτ3σyσbσyQT
�

= Tr
�

Γabτ3σ
T
a QTτ3σ

T
b QT
�

= Tr
�

ΓabQτ3σbQτ3σa

�

= Tr
�

Γabτ3σaQτ3σbQ
�

, (A.15)

which means charge conjugation does not impose any additional restrictions on the tensor. No
other terms with two τ3σ’s and no derivatives can be constructed using cyclic permutation of
the trace, and the normalization condition Q2 = 1.

Chronology implies

Tr
�

Γabτ3σaQτ3σbQ
�

=

�

Tr
�

Γabτ3σa(−ρ2τ3Q†τ3ρ2)τ3σb(−ρ2τ3Q†τ3ρ2)
�

�∗

= Tr
�

Γabτ3σaQ†τ3σbQ†
�∗
= Tr
�

Γ ∗abQτ3σbQτ3σa

�

= Tr
�

Γ ∗abτ3σaQτ3σbQ
�

, (A.16)

that is, Γab is real.

A.2.2 First order in derivatives: p-wave magnets

To first order in derivative, we require tensors with two spin-indices and one real space index.
Consequently, we may write

Tr
�

λab jτ3σaQτ3σb∂ jQ
�

, (A.17)

Tr
�

κab jτ3σaQτ3σbQ∂ jQ
�

. (A.18)

No other terms with two τ3’s and two spin-Pauli matrices can be constructed using cyclic
permutation of the trace, Q∂ jQ = −∂ jQQ and Q2 = 1. The charge conjugation constraints
read

Tr
�

λab jτ3σaQτ3σb∂ jQ
�

= Tr
�

λab jτ3σaρ1τ1σyQTσyτ1ρ1τ3σbρ1τ1σy∂ jQ
Tσyτ1ρ1

�

= Tr
�

λab jτ3σyσaσyQTτ3σyσbσy∂ jQ
T
�

= Tr
�

λab jτ3σ
T
a QTτ3σ

T
b ∂ jQ

T
�

= Tr
�

λab j∂ jQτ3σbQτ3σa

�

= Tr
�

λab jτ3σbQτ3σa∂ jQ
�

, (A.19)
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and

Tr
�

κab jτ3σaQτ3σbQ∂ jQ
�

= Tr
�

κab jτ3σaρ1τ1σyQTσyτ1ρ1τ3σbρ1τ1σyQTσyτ1ρ1

×ρ1τ1σy∂ jQ
Tσyτ1ρ1

�

= Tr
�

κab jτ3σaσyσaσyQTτ3σyσbσyQT∂ jQ
T
�

= Tr
�

κab jτ3σ
T
a QTτ3σ

T
b QT∂ jQ

T
�

= Tr
�

κab j∂ jQQτ3σbQτ3σa

�

= −Tr
�

κab jτ3σbQτ3σaQ∂ jQ
�

. (A.20)

Thus, charge conjugation implies that λab j is even in its spin indices, while κab j is odd in its
spin indices. For the first term this implies we may write it as

1
2
λa jk∂ j(τ3σaQτ3σbQ) , (A.21)

while for the latter it means we may write

Tr
�

ϵabcβkcτ3σaQτ3σbQ∂ jQ
�

. (A.22)

These are the terms appearing in the action for the p - wave magnet in Eq. (84).
Chronology symmetry implies

Tr
�

λab jτ3σaQτ3σb∂ jQ
�

=

�

Tr
�

λab jτ3σa(−τ3ρ2Q†ρ2τ3)τ3σb(−τ3ρ2∂ jQρ2τ3)
�

�∗

=

�

Tr
�

λab jτ3σaQ†τ3σb∂ jQ
†
�

�∗

= Tr
�

λ∗ab j∂ jQσbτ3Qσaτ3

�

= Tr
�

λ∗ab jτ3σbQτ3σa∂ jQ
�

= Tr
�

λ∗ba jτ3σaQτ3σb∂ jQ
�

, (A.23)

that is, λab j = λ∗ba j . Since the tensor is even in the spin indices a, b, this implies that λab j is
real.

For the second order term we find

iTr
�

β jcϵabcτ3σaQτ3σbQ∂ jQ
�

=

�

iTr
�

β jcϵabcτ3σa(−τ3ρ2Q†ρ2τ3)

×τ3σb(−τ3ρ2Q†ρ2τ3)(−τ3ρ2∂ jQρ2τ3)
�

�∗

= −
�

iTr
�

β jcϵabcτ3σaQ†τ3σbQ†∂ jQ
†
�

�∗

= iTr
�

(β)∗jcϵabc∂ jQQσbτ3Qσaτ3

�

= −iTr
�

(β)∗jcϵabcτ3σbQτ3σaQ∂ jQ
�

= iTr
�

(β)∗jcϵabcτ3σaQτ3σb∂ jQ
�

, (A.24)

and therefore also β jc is real.
In summary, all previous subsections reproduce all terms in the actions Eq. (22, 84). We

have shown that to lowest orders, there exist no other terms that are allowed in the action.
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B The Usadel equation: Identification of the currents and torques
from the action

In this section we discuss how to calculate the current and torque that appear in the Usadel
equation from the action of the nonlinear sigma model, that is, how to derive Eqs. (23-25)
from Eq. (22) in Sec. 3 of the main text, and Eqs. (31-33) from Eq. (30) in Sec. 4, and Eqs.
(59-61) from Eq. (58) in Sec. 5, and Eqs. (85-87) from Eq. (84) in Sec. 6.

The Usadel equation is the saddle point equation of the NLSM. Therefore, it can be found
by variation of the action that leave the normalization Q2 = 1 intact. In this case perturbation
of Q can be expressed as δQ = [α,Q]. Variation of the action leads to

δS =

∫

Ω

dVTr

�

δS
δQ
δQ+

δS
δ∂ jQ

δ∂ jQ

�

, (B.1)

where
∫

Ω
dV denotes integration over the entire volume. The stationary configuration of Q is

obtained by imposing δS = 0. After integration by parts we find
∫

Ω

dVTr

�

δS
δQ
− ∂ j

δS
δ∂ jQ

�

δQ+

∫

∂Ω

dSn jTr

�

∂ j
δS
δ∂ jQ

�

δQ = 0 , (B.2)

where
∫

∂Ω
dS denotes integration over the system boundary and n j denotes the local normal

vector to the boundary. Using that δQ = [α,Q] we find

∫

Ω

dVTr

�

δS
δQ
− ∂ j

δS
δ∂ jQ

�

[α,Q] +

∫

∂Ω

dSTr

�

∂ j
δS
δ∂ jQ

�

[α,Q]

=

∫

Ω

dVTr

��

Q,
δS
δQ
− ∂ j

δS
δ∂ jQ

�

α

�

+

∫

∂Ω

dSn jTr

��

Q,∂ j
δS
δ∂ jQ

�

α

�

= 0 . (B.3)

Since this must hold for any possible α, the expressions multiplied by α must vanish them-
selves. In the bulk we obtain
�

Q,
δS
δQ
− ∂ j

δS
δ∂ jQ

�

= −∂ j

�

Q,
δS
δ∂ jQ

�

+
�

Q,
δS
δQ

�

+

�

∂ jQ,
δS
δ∂ jQ

�

= 0 .

Here we identify the matrix current defined as J j = i[Q, δS
δ∂ jQ
] and the matrix torque

T = i[Q, δS
δQ ] + i[∂ jQ, δS

δ∂ jQ
]. Thus, the bulk equation reads

∂ jJ j = T , (B.4)

which is the continuity equation for the matrix current.
From second term in Eq. (B.3) we find at the boundary:

n j[Q,
δS
δ∂ jQ

]

�

�

�

�

∂Ω

= 0 , (B.5)

which defines the boundary condition as

n jJ j

�

�

∂Ω
= 0 . (B.6)

This condition reflects that no current can leave or enter the system if we do not introduce
source or sink terms in the boundary action.

Both the current and the torque contain Q evaluated at the saddle point, and are therefore
often presented in terms of its saddle-point value, the quasiclassical Green’s function g.
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Figure 4: The S / F1 / F2 / F3 / S junction studied in this Appendix, where the
three ferromagnets have mutually orthogonal orientations. The middle ferromagnet
is much thinner and longer than the other ferromagnets, so that these together with
the superconductors can be treated as reservoirs.

B.1 Matrix current from the vector potential

Above, we have identified J j as a matrix current. Here we show that J j really describes the
physical currents. To this end, we use that the physical currents, i.e. the charge and spin
currents of the system, are obtained from − δS

δA , where A is the matrix vector potential that
contains both the usual scalar electromagnetic potential and the vector electromagnetic po-
tential. This matrix vector potential enters the covariant derivatives ∂̂ j· = ∂ j · −i[A j , ·] [32].
Thus, the observable matrix current J j can be calculated from the action, keeping only terms
linear in δQ:

Tr
�

J jA j

�

:= −
δS
δA j

A j = −
�

S(Q,∂ jQ− i[A j ,Q])− S(Q,∂ jQ)
�

= −Tr

�

−i[A j ,Q]
δS
δ∂ jQ

�

= iTr

��

Q,
δS
δ∂ jQ

�

A j

�

= Tr
�

J jA j

�

. (B.7)

In the last equality we use the definition of J j introduced in the previous section. From the
fact that this must hold for any A j we deduce that

J j = J j , (B.8)

and consequently J j is the observable matrix current of the system.

C Anomalous currents in ferromagnetic structures

In this section we prove our claim in Sec. 4 of the main text. Namely, that from our Usadel
equation, Eq. (31), one can describe anomalous currents in Josephson junctions in which the
weak link consists of three magnetic domains with noncoplanar magnetizations, Eq. (57) in
the main text.

Consider a ferromagnet with magnetization m3, which we choose to be the z-direction,
that is proximitized sandwiched by two ferromagnets much thinner than the coherence length
at x = ± L

2 , with magnetizations m1 and m2, and two superconducting leads at |x |> L
2 .

For simplicity of calculation and notation, and to illustrate the effect, we assume that all
contacts are good, so that G is continuous, that the strength of the exchange field is the same in
all ferromagnets and that the middle ferromagnet has a much smaller width than the outer fer-
romagnets, so that the latter can, together with the superconductors, be treated as reservoirs.
This setup is illustrated in Fig. 4.

In this case, we may consider the outer ferromagnet/superconductor bilayers, as reservoirs
with a BCS like density of states split by the corresponding exchange fields pointing in the
direction of m1,2 respectively. At x = ± L

2 we impose that G equals the Green’s function of the
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reservoirs

G(x = −
L
2
) =

1
2
(1+m1 ·σ)⊗

1
p

(ω+ ih)2 + |∆|2

�

ω+ ih |∆|e−
iϕ
2

|∆|e
iϕ
2 −(ω+ ih)

�

+
1
2
(1−m1 ·σ)⊗

1
p

(ω− ih)2 + |∆|2

�

ω− ih e−
iϕ
2 |∆|

e
iϕ
2 |∆| −(ω− ih)

�

, (C.1)

G(x =
L
2
) =

1
2
(1+m2 ·σ)⊗

1
p

(ω+ ih)2 + |∆|2

�

ω+ ih |∆|e
iϕ
2

|∆|e−
iϕ
2 −(ω+ ih)

�

+
1
2
(1−m2 ·σ)⊗

1
p

(ω− ih)2 + |∆|2

�

ω− ih |∆|e
iϕ
2

|∆|e−
iϕ
2 −(ω− ih)

�

, (C.2)

where h is the effective exchange field induced by the outer ferromagnets. In the middle ferro-
magnet we obtain the following equations in case the pair amplitudes are small in magnitude:

D(1± iPχsign(ω))∂x x f± = 2(|ω| ± ihsign(ω)) f± , (C.3)

D(1+ Pγ)∂x x f↑↑ = 2|ω| f↑↑ , (C.4)

D(1− Pγ)∂x x f↓↓ = 2|ω| f↓↓ , (C.5)

while the equations for f̃± and f̃ take exactly the same form. Here, h is the exchange field
strength in the middle ferromagnet. If P is considerably large, the contribution of f± and f↓↓
to the current is negligible and consequently we may only keep f↑↑.

From Eqs. (C.1) we may compute f↑↑ and f̃↑↑ via

f↑↑(x = ±
L
2
) =

1
4

Tr
�

(τ1 + iτ2)(σx + iσy)G
�

x = ±
L
2

��

, (C.6)

f̃↑↑(x = ±
L
2
) =

1
4

Tr
�

(τ1 −τ2)(σx − iσy)G
�

x = ±
L
2

��

. (C.7)

We may write the solutions to the boundary value problem posed by Eqs. (C.3-C.7) as

f↑↑(x)=
i

sinh L
2ξ

Im
|∆|

p

(ω+ ih)2 + |∆|2

�

�

− (m2,x + im2,y)e
i ϕ2 e

L
2ξ − (m1,x + im1,y)e

−i ϕ2 e−
L

2ξ

�

e
x
ξ

+
�

(m1,x +m2,x)e
−i ϕ2 e

L
2ξ + (m2,x + im2,y)e

i ϕ2 e−
L

2ξ

�

e−
x
ξ

�

, (C.8)

f̃↑↑(x)=
i

sinh L
2ξ

Im
|∆|

p

(ω+ ih)2 + |∆|2

�

�

(−m2,x + im2,y)e
−i ϕ2 e

L
2ξ − (m1,x − im1,y)e

i ϕ2 e−
L

2ξ

�

e
x
ξ

+
�

(m1,x − im1,y)e
i ϕ2 e

L
2ξ + (m2,x − im2,y)e

−i ϕ2 e−
L

2ξ

�

e−
x
ξ

�

, (C.9)

where ξ=
r

D(1+γP)
2|ω| is the superconducting coherence length in the ferromagnet for ↑↑ pairs.

The current is given by

I = −σ↑i( f↑↑∂x f̃↑↑ − f̃↑↑∂x f↑↑)

=
2σ↑

ξ sinh L
2ξ

�

Im
|∆|

p

(ω+ ih)2 + |∆|2

�2

×
�

(m1,x m2,x +m1,y m2,y) sinϕ + (m1,x m2,y −m2,x m1,y) cosϕ
�

. (C.10)
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Thus, we find that the anomalous current is proportional to m1,x m2,y−m2,y m2,x = (m1×m2)z .
For a generic choice of axis, the anomalous current is proportional to m3 · (m1 ×m2), which
confirms Eq. (57) in Sec. 4 in the main text. The usual sinϕ contribution of the current is
given by m1 ·m2 − (m1 ·m2)z = (m1 ×m3) · (m2 ×m3).

D Explanation of table 1: Structure of tensors in altermagnets

In this section we derive the form that the tensors T jk and K jk may take in the different al-
termagnetic spin space groups, which are enumerated in Table 1 in the main text, and show
that they are only allowed to be nonzero in d - wave altermagnets. Since T jk and K jk obey the
same symmetries, we discuss the allowed terms in T jk and keep in mind that the same terms
are allowed in K jk.

We encounter two types of symmetries in the material. If the real space operation is not
accompanied by a spin flip, the tensor T jk is required to be invariant under this operation. On
the other hand, if the real space operation is accompanied by a spin flip, T jk needs to change
sign under the real space operation. We use the notation used in [5] for the symmetry elements
characterizing the altermagnetic symmetry groups.

D.1 d - wave altermagnets

There exist 4 collinear spin space groups with a d - wave altermagnet order parameter. The
first is 2m2m1m, which contains 3 independent mirror planes, the first two two of which need
to be accompanied by a spin flip. Thus, upon setting x −→ −x or y −→ y , all elements of T jk
should change sign, while upon setting z the tensor should remain invariant. There is only one
independent term that satisfies these requirements, Tx y . We conclude the tensor is allowed

and takes the form T = Tx y





0 1 0
1 0 0
0 0 0



.

The second is 24/1m, that is, there is fourfold rotational symmetry around the z-axis which
is accompanied by a spin flip, and a mirror symmetry in the xy-plane without spin flip. The lat-
ter disallows Txz and Tyz , since these change sign under this mirror operation. Since Tzz is in-
variant under rotations around the z-axis, 24 disallows this term. For the in-plane components

this symmetry implies Tx x = −Ty y . Thus, the allowed terms in T are T =





Tx x Tx y 0
Tx y −Tx x 0
0 0 0



.

The third d - wave altermagnetic group is 24/1m2m1m. The first two symmetries that char-
acterize this symmetry group are the same symmetries that appeared in the previous group,
which leaves Tx x and Tx y as the only possible independent components. However, this groups
contains two extra symmetries. The second mirror operation (yz-plane), which comes along
with a spin flip, implies that the tensor changes sign under x −→ −x , and hence Tx x = 0. The
third symmetry operation represents an independent mirror plane, that is, a mirror plane that
can not be obtained by the combination of any of the other symmetry operations. This mirror
plane is the (x+y)z-plane, which interchanges x , y . Since Tx y is indeed invariant under this

operation, it is allowed and T = Tx y





0 1 0
1 0 0
0 0 0



.2

2By defining axes differently, one may also choose the (x+y)z-plane as the second mirror plane, which is ac-
companied by a spin flip and the yz-plane as the third mirror plane, which is not accompanied by a spin flip. In
this case Tx x = −Ty y are the only possible nonzero elements.
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Next we consider the fourth d - wave altermagnet group, 22/2m. The first symmetry op-
eration is a two-fold rotation around the z-axis accompanied by a spin-flip. This means that
by setting x −→ −x and y −→ −y simultaneously, the tensor should change sign. This leaves
Txz and Tyz as the only possibilities. The second symmetry, a mirror in the xy-plane accom-
panied by a spin-flip indicates that the tensor should change sign upon sending z −→ z. This
requirement is satisfied by both components. Thus, there are two independent componenents

and T =





0 0 Txz
0 0 Tyz

Txz Tyz 0



.

Summarizing, in all of the d - wave altermagnets, the tensor can be nonzero, but which
elements are nonzero depends on the symmetry of the specific group. In fact, in two of the
groups, 2m2m1m and 24/1m2m1m, there is only one independent nonzero element, and con-
sequently, in those groups T jk and K jk differ only by a constant. On the other hand, in the other
two groups, 24/1m and 22/2m, there are two independent nonzero components, and conse-
quently, T jk and K jk are not related via constant. The results for d - wave superconductors are
summarized in the first rows in Table 1.

D.2 g - wave altermagnets

Next, we consider the g - wave altermagnets. There exist 4 collinear spin space groups that
allow for g - wave altermagnetism.

The first group is 14/1m2m2m. The fourfold rotational symmetry around the z-axis, com-
bined with the identity operator in spin space, implies that Tx y = Txz = Tyz = 0, and
Tx x = Ty y . This leaves two independent components, Tx x and Tzz that are possibly nonzero.
The first mirror symmetry, which implies invariance of T under z −→ −z, does not affect ei-
ther of them, but the second mirror symmetry implies the tensor should change sign under
x −→−x , which is not satisfied by either of these terms. Thus T = 0.

The second group is 13̄2m. The threefold rotational symmetry accompanied by real space
inversion implies Tx y = Txz = Tyz = 0 and Tx x = Ty y . Thus, like in the previous case, we
need to consider Tx x and Tzz The mirror symmetry with spin flip is on a mirror parallel to the
rotation axis. This implies the tensor should change sign under x −→−x , which both disallows
Tx x and Tzz . Hence, T = 0.

The third group is 26/2m. The sixfold rotation accompanied by spin-flip implies Tzz = 0
because this term can not change sign under rotations around the z - axis. Next to this, this
symmetry implies a threefold rotational symmetry without spin flip around the z-axis, which
means Txz = Tyz = 0. Moreover, by applying the rotation with spin flip three times, we get a π
rotation with spin-flip, which implies that the tensor should change sign under simultaneously
setting x −→ −x and y −→ −y . Therefore, Tx x = Ty y = Tx y = 0. With this we have exhausted
all independent components, and hence T = 0 for this group.

The fourth and last group is 26/2m2m2m. Since this contains the same sixfold rotational
symmetry with spin flip as the previous group, we immediately conclude T = 0.

In summary, for all g - wave altermagnets T = 0, that is, up to the order considered here, g
- wave altermagnets have the same transport properties as antiferromagnets, as summarized
in Table 1.

D.3 i - wave altermagnets

Lastly, we consider the i - wave altermagnets. There are two collinear spin space groups in
which this type of altermagnetism may appear. The first symmetry group is 16/1m2m2m.
This group is invariant under six-fold rotations around the z-axis. In particular, this means
invariance under a π rotation, which implies Txz = Tyz = 0. Comparing the transformation of
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the tensor under π/3 and −π/3 rotations, we conclude that also Tx y = 0, while Tx x = Ty y .
This leaves two independent terms, Tx x and Tzz . Both of these terms are invariant under the
first mirror axis, z −→−z as required. However, they do not flip sign under x −→−x , while this
is a requirement following the second mirror axis. Thus, T = 0.

The second group is 1m13̄2m, whose basis elements are a threefold rotation combined with
inversion, and two independent mirror planes that both contain the rotation axes, and one of
which contains a spin-flip. The invariance under the three-fold rotation axis plus inversion
implies Tx y = Txz = Tyz = 0, and moreover Tx x = Ty y . This leaves again Ty y and Tzz as
independent components. Both of the mirrors leave z invariant, but one of them (2m) is ac-
companied with a spin flip and the other (1m) is not, and this implies Tzz = −Tzz = 0. The first
mirror leaves Tx x invariant, but the second implies that T should change sign upon y ←→−y ,
which disallows Ty y , the last remaining possible term. We conclude T = 0, as summarized in
the last two rows of Table 1. Thus, for altermagnets that are not of the d - wave type, the dirty
limit transport properties can not be distinguished from those of antiferromagnets.

E Spin-splitter effect in altermagnets: Normal state

In this section, we present the details of the calculation of the normal state spin-splitter effect
discussed in Section 5.1. Specifically, we show that in a finite sample the induced spin current
following Eq. (66) leads to magnetization at the boundary of the sample. We consider three
different geometries. First we discuss a geometry that is infinite in the transverse direction,
to show the generation of a spin current from a voltage difference. Next we study a geometry
that is infinite in the longitudinal direction, but has boundaries in the transverse boundaries
to illustrate how a spin accumulation arises due to the presence of such boundaries. Lastly, we
consider the most realistic setup in which the geometry is finite in both directions and show
the spin-splitter effect.

Our starting point is the Usadel equation for collinear altermagnets, Eqs. (59-61) in the
main text:

∂kJk = [g, ω̂t,t ′τ3] + Γab[g,τ3σa gτ3σb] + T , (E.1)

where the matrix current and torque of the system are given by

Jk = −D

�

g∂k g +
1
4

PaT jk{τ3σa + gτ3σa g, g∂ j g}+
i
4

PaK jk[τ3σa + gτ3σa g,∂ j g]

�

, (E.2)

while the torque becomes

T = D
4

PaT jk[τ3σa,∂ j g∂k g] +
iD
4

PaK jk[τ3σa, g∂ j g∂k g] . (E.3)

In the normal state, the retarded and advanced components are given by
gR(t, t ′)=−gA(t, t ′)=τ3δ(t−t ′), while the Keldysh component satisfies gK(t, t ′)=2τ3F(t, t ′).
Here F(t, t ′) is the distribution function of the system, which contains τ0 and τ3 components.
It is easy to check that in the normal case both terms in the torque vanish. The Keldysh part
of the matrix current can be expressed in terms of the distribution function as

Jk = −D(∂kF +
1
2

PaT jkτ3{σa,∂ j F}+
i
2

PaK jk[σa,∂ j F]) . (E.4)

We choose the collinear axis to be along the z-direction everywhere. In this case g and J
necessarily commute with σz , and consequently, the K jk - term drops out of the equation.
From the above equation we can compute the charge current

je =
πν

4
Tr (τ3Jk(t, t)) , (E.5)
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and spin current

jsk,a =
πν

4
Tr (σzJk(t, t)) , (E.6)

in terms of the chemical potential

µ=
π

8
Tr
�

gK(t, t)
�

=
π

8
Tr (τ3F(t, t)) , (E.7)

and spin accumulation

µs
z =

π

8
Tr
�

τ3σz gK(t, t)
�

=
π

8
Tr (σz F(t, t)) , (E.8)

that are related to the excess charge and spin via δn= 2νµ and δSz = 2νµs
z .

In Eq. (E.1), we assume an isotropic relaxation term, Γab =
1
τsδab. A different structure

of Γab modifies the quantitative results, but does not lead to qualitative changes. By setting
Tx y = 1 as the only independent nonzero entry, we find from Eqs.(E.1-E.2):

jx = −σD(∂xµ+ Tx y∂yµ
s
z) , (E.9)

jy = −σD(∂xµ+ Tx y∂yµ
s
z) , (E.10)

jsx = −σD(∂xµ
s
z + Tx y∂yµ) , (E.11)

jsy = −σD(∂yµ
s
z + Tx y∂xµ) , (E.12)

∂k jk = 0 , (E.13)

∂k jsk = −
1
τs
δSz , (E.14)

where σD is the Drude conductivity. The above is the complete set of diffusion equations
describing charge and spin transport in diffusive antiferromagnets. Combined with appro-
priate boundary conditions, they can also describe transport in hybrid structures made of an
antiferromagnet attached to normal or ferromagnetic injectors and detectors, in any realistic
transport experimental setup. In the next subsections, we use them to describe the creation of
spin currents and spin accumulations through electric signals in different geometries.

E.1 Infinite altermagnetic stripe: Transverse voltage

We first consider a 2D geometry that is infinite in the y-direction. We impose a voltage ± V
2 at

x = ± Lx
2 , while the spin-voltages vanish at those positions. This fixes the boundary conditions

µ(± L
2 ) = ±

V
2 and µs

z(±
L
2 ) = 0. Thus, in this case, the solution to the Usadel equation Eq.

(E.14) is

µ=
V
Lx

x , (E.15)

µs
z = 0 . (E.16)

(E.17)

Thus, the voltage difference creates a charge current via Eq. (E.9) and transverse spin current
via the term proportional to Tx y in Eq. (E.12):

jx = −σD
V
Lx

, (E.18)

jsy = −Tx yσD
V
Lx

. (E.19)

As we show in the next sections, finite boundaries in the y-direction, will generate a spin-
accumulation at these boundaries.
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E.2 Infinite altermagnetic stripe: Electric field along the x-axis

Next, we consider another simple setup: An infinite 2D stripe with boundaries at y = ±L y/2.
We assume a constant electric field, along the x-direction. By translational symmetry µs

z does
not depend on x , while µ = Ex x . Thus, from Eqs. (E.9-E.14) and the fact that no current
may leave the system through the edges with vacuum at y = ± L y

2 , we obtain the following
boundary value problem for µs

z:

D∂y yµ
s
z =

1
τs
µs

z , (E.20)

∂yµ
s
z(y = ±

L y

2
) = −Tx y Ex . (E.21)

It is straightforward to obtain the solution of this problem. It reads:

µs
z = −Tx y Ex ls

sinh
�

y
ls

�

cosh
� L y

2ls

� , (E.22)

where ls =
p

Dτs is the spin diffusion length. Thus, we see that biasing a current via an electric
field leads to the creation of a spin accumulation at the boundaries in the transverse direction.

E.3 Finite system

We now consider consider a rectangular altermagnet that is finite in both the x and y direc-
tions. Combining the boundary conditions of the two previous problems, that is, using the
boundary conditions in the x-direction used in Sec. E.1 and the boundary conditions in the
y-direction used in Sec. E.2 we see that for the finite system Eqs. (E.9-E.14) become:

(∂x x + ∂y y)µ+ 2Tx y∂x∂yµ
s
z = 0 , (E.23)

(∂x x + ∂y y)µ
s
z + 2Tx y∂x∂yµ=

µs
z

l2
s

, (E.24)

µ(x = 0) = −
V
2

, (E.25)

µ(x = Lx) =
V
2

, (E.26)

µs
z(x = 0, x = Lx) = 0 , (E.27)

(∂yµ+ Tx y∂xµ
s
z)|y=± L y

2
= 0 , (E.28)

(∂yµ
s
z + Tx y∂xµ)|y=± L y

2
= 0 . (E.29)

Now, suppose that Tx y is small. For Tx y = 0 only µ is nonzero, with

µ=
V x
Lx

. (E.30)

Since µs has no zeroth order component, we find that µ does not have any first order correc-
tions, we may keep only the zeroth order in Tx y of µ, and solve for µs

z to first order in Tx y .
The resulting equations for µs

z read, keeping only terms of first order in Tx y and taking into
account that µ does not depend on y ,

∂x xµ
s
z + ∂y yµ

s
z =

1
(ls)2

µs
z , (E.31)

µs
z(x = 0, x = Lx) = 0 , (E.32)

∂yµ
s
z(y = ±

L y

2
) = −

Tx y V

Lx
. (E.33)
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We may exploit that boundary conditions in the x-directions to write

µs
z =

∞
∑

n=1

An(y) sin
�nπ

Lx
x
�

. (E.34)

The coefficients An(y y) have to satisfy the bulk equation. Using that

∫ Lx

0

sin
�nπ

Lx
x
�

sin
�mπ

Lx
x
�

=
Lx

2
δnm ,

we find that An has to satisfy

∂y yAn(y) = (
1
(ls)2

+
n2π2

L2
x
)An(y) , (E.35)

as can be obtained by multiplying Eq. (E.31) by sin
�

nπ
Lx

x
�

and then integrating over the x-
direction. A similar procedure applied to the boundary conditions in Eq. (E.33) gives the
following boundary conditions for An:

∂yAn(y)|y=± L y
2
= −

2Tx y V

nπLx
(1− cos(nπ)) . (E.36)

We note that for all even n = 2m, the expression on the right hand side vanishes and the
solution to the resulting problem is

A2m(y) = 0 . (E.37)

Thus, there is no contribution from even n. On the other hand, for odd n = 2m+ 1, m ≥ 0,
the boundary terms are nonzero and we have

A2m+1(y) = −
4Tx y V

(2m+ 1)πλ2m+1 Lx

sinh(λ2m+1 y)

cosh
�

λ2m+1
L y
2

� , (E.38)

λ2
2m+1 =

1
(ls)2

+
(2m+ 1)2π2

L2
x

. (E.39)

Thus,

µs
z = −

4Tx y V

πLx

∞
∑

m=0

1
(2m+ 1)λ2m+1

sinh (λ2m+1 y)

cosh
�

λ2m+1
L y
2

� sin
�

(2m+ 1)πx
Lx

�

. (E.40)

Thus, there is a nonzero spin accumulation with opposite polarizations at both edges,
y = ±L y/2. This is the spin-splitter effect in diffusive altermagnets discussed in Sec. 5.1
in the main text.

F Altermagnet with superconducting correlations: Absence of su-
perconducting spin-splitter effect

In this section, we show explicitly that in an superconducting altermagnet the spin-splitter
effect vanishes as claimed by symmetry considerations in Eq. (69-72) in Sec. 5.2 in the main
text. We show that triplet pairs do accumulate to the edges, but that these are time-reversal
symmetric correlations, that do not lead to any spin accumulation. For clarity of presentation,
we consider a 2D altermagnet.

40

https://scipost.org
https://scipost.org/SciPostPhys.18.6.178


SciPost Phys. 18, 178 (2025)

F.1 Altermagnetic stripe with superconducting correlations

We consider an altermagnet stripe, which has a finite size in the y-direction, and an infinite size
in the x direction. The stripe is superconducting or proximitized by a bulk superconductor. A
supercurrent is flowing in the x-direction, by imposing a phase gradient, that is,∆= |∆|e−2iqx .
We assume this phase gradient is uniform and along the x-direction.

Since we focus on equilibrium properties, we will use the Matsubara formulation and set
ω̂t,t ′ −→ω and g(ω) = ĝτ3 + f̂ τ1, where ω is an arbitrary Matsubara frequency.

In the collinear altermagnet the spin-relaxation tensor takes the form in which Γzz =
1
τs is

the only nonzero component. In this case we find the following Usadel based on Eqs. (59-61)
in Sec. 5.2 the main text:

∂x Jx + ∂y Jy = T , (F.1)

Jx = −Dg∂x g +
DTx y

4
σz{τ3 + gτ3 g, g∂y g}+

iDKx y

4
σz[τ3 + gτ3 g,∂y g] , (F.2)

Jy = −Dg∂y g +
DTx y

4
σz{τ3 + gτ3 g, g∂x g}+

iDKx y

4
σz[τ3 + gτ3 g,∂x g] , (F.3)

T = − 1
ω2 + |∆|2

[ωτ3 + |∆|τ2e±
i
2 qxτ3 , g] +

1
τs
[g,τ3σz gτ3σz]

+
DTx y

4
σz[τ3, {∂x g,∂y g}] +

iDKx y

4
σz[τ3, g{∂x g,∂y g}] , (F.4)

Jy

�

y = ±
dy

2

�

= 0 . (F.5)

Now consider g̃ = τ3 gTτ3. Denoting J̃x ,y and K as the corresponding torques, we find that
J̃x ,y = −τ3J T

x ,yτ3 and K = −τ3T Tτ3. Thus, the Green’s function g̃ satisfies the system of
equations

∂x J̃x + ∂y J̃y = T , (F.6)

J̃x = −Dg̃∂x g̃ +
DTx y

4
σz{τ3 + g̃τ3 g̃, g̃∂y g̃}+

iDKx y

4
σz[τ3 + g̃τ3 g̃,∂y g̃] , (F.7)

J̃y = −Dg̃∂y g̃ +
DTx y

4
σz{τ3 + g̃τ3 g̃, g̃∂x g̃}+

iDKx y

4
σz[τ3 + g̃τ3 g̃,∂x g̃] , (F.8)

T = − 1
ω2 + |∆|2

[ωτ3 + |∆|τ2e−
i
2 qτ3 , g̃]

+
DTx y

4
σz[τ3, {∂x g̃,∂y g̃}] +

iDKx y

4
σz[τ3, g̃∂x g̃∂y g̃] , (F.9)

J̃y

�

y = ±
dy

2

�

= 0 . (F.10)

This is exactly the same system of equations except for the negation of g. Thus, we have
g(q) = g̃(−q) = τ3 gT (q)τ3. Since g additionally commutes with σz , we find that this means

Mz(q) = gµb
πν

4
trτ3σz g(q) = gµb

πν

4
trτ3σzτ3 gT (q)τ3 = gµb

πν

4
trτ3σz g(−q) = Mz(−q) ,

(F.11)
that is, Mz is even in the phase gradient. This shows that there is no spin-splitter effect in the
superconducting state, the magnetization is invariant under a change of the current direction.

Moreover, we find that ḡ(x , y, q) = g(−x ,−y,−q), which implies that

Mz(x , y, q) = Mz(−x ,−y, q) = Mz(−x−, y, q) . (F.12)
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Since the equations translationally invariant in the current direction, we find that Mz must
be so too, and therefore Eq. (F.12) tells us that the magnetization is even in the transverse
direction, and therefore there is not even a difference in spin accumulation along the trans-
verse edges that is even in q. In Sec. F.3 we show that this latter property does not hold for
inhomogeneous phase gradients, by considering a junction geometry. However, first we will
show in Sec. F.2 that in the special orientation in which Kx y is the only nonzero component
of the K-tensor, the magnetization vanishes throughout the material.

F.2 Transverse orientation
We consider an altermagnet stripe, which has a finite size in the y-direction, and an infinite size
in the x direction. The stripe is superconducting or proximitized by a bulk superconductor. A
supercurrent is flowing in the x-direction, by imposing a phase gradient, that is,∆= |∆|e−2iqx .
We assume this phase gradient is uniform and along the x-direction.

Since we focus on equilibrium properties, we will use the Matsubara formulation and set
ω̂t,t ′ −→ω and g(ω) = ĝτ3 + f̂ τ1, where ω is an arbitrary Matsubara frequency.

We focus on the case in which χax y as only independent nonzero component. The phase
gradient is most easily taken care of by using a gauge transformation. As a result of this
transformation, we need to set ∂x · −→ ∂x · −iq[τ3, ·], while in this gauge ∆ and g(ω) do not
depend on x . Therefore, for the Green’s function in the y-direction we need to solve, taking
into account that σa commutes with τ3 and the Green’s function the following equations that
follow by substituting of ∂x g −→−iq[τ3, g] into Eqs. (59-61) in Sec. 5.2 the main text:

∂y J̃y = T , (F.13)

Jy = −D(g∂y g +
q
2
χax yσa[τ3 + gτ3 g, [τ3, g]]) , (F.14)

T = [−ωτ3 − |∆|τ1, g] +σa
Dq
4
χax y[τ3, g{∂y g, [τ3, g]}]− Dq2[τ3, gτ3 g] , (F.15)

where for simplicity of notation we absorbed all terms that do not belong to the current into
the torque.

We show that the solution g has to satisfy g = σy gTσy = g̃, and hence, there is no spin
accumulation anywhere. We have

σy J T
y σy = −Dσy(∂y gT gT )σy −

D
2
χax yσy[[g

T ,τ3],τ3σ
T
a + gTτ3σ

T
a gT ]σy

= Dσy gTσyσy∂y gσy −
D
2
[τ3σyσ

T
aσy + gTτ3σyσ

T
aσyσy gTσy , [τ3,σy gTσy]]

= Dg̃∂y g̃ +
D
2
[τ3σa + g̃τ3σa g̃, [τ3σa, g̃]] = −J̃y , (F.16)

where J̃y is obtained by setting g −→ g̃ in Jy and where it was used that σa = −σyσ
T
aσy . For

the torque we obtain

σyT σy = σy[g
T ,ωτ3 + |∆|τ1]σy +

Dq
2
χax yσy[{[gT ,τ3],∂y gT }gT ,τ3σ

T
a ]σy

+
−iDq

2
γax yσy[{[gT ,τ3],∂y gT },τ3σ

T
a ]σy − Dq2σy[g

Tτ3 gT ,τ3]σy

= −[ωτ3 + |∆|τ1, g̃] +
Dq
2
χax y[τ3σyσ

T
aσy , {[τ3,σy gTσy],σy∂y gT∂y}σy gTσy]

−
iDq
4
γax y[τ3σyσ

T
aσy , {[τ3,σy gTσy],σy∂y gT∂y}σyσy] + Dq2[τ3,τ3 g̃τ3]

= −[ωτ3 + |∆|τ1, g̃]−
Dq
2
χa jk[τ3σa, {[τ3, g̃],∂y g̃} g̃]

+
iDq
2
γa jk[τ3σa, {[τ3, g̃],∂y g̃}] + Dq2[τ3,τ3 g̃τ3] = −T̃ , (F.17)
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where we used that g̃ anticommutes with both ∂y g̃ and [τ3, g̃] and defined T̃ by setting g −→ g̃
in T .

Since J̃y = −σyJ T
y σy and T̃ = −σyT Tσy , we conclude that g̃ satisfies the same equation

as g. Hence,
g = g̃ = σy gTσy . (F.18)

Since the transformation σy ·T σy represents a spin-flip, this implies that there is no spin
generated in the system, the τ3 component of g is proportional to the identity matrix in
spin space. This shows that unlike SOC, altermagnetism can not be used in superconduct-
ing systems, to generate transverse spin accumulations from charge supercurrents. There
is also no spin current. Indeed, since g = g̃, Tr

�

σa g∂y g
�

= 0, while for any g we have
Tr (σa(σa[τ3 + gτ3 g, [τ3, g]])) = Tr ([τ3 + gτ3 g, [τ3, g]]) = 0 because it is a commutator.

Now we show that even if spin-accumulation cannot be induced by supercurrenst in an
altermagnet, triplet pairs do exist. For this it is convenient to work with the linearized Usadel
equation. For small pair amplitudes we have

g = τ3 +

�

0 f
f̄ 0

�

, (F.19)

where f and f̄ are matrices in spin space that can be parameterized as

f =

�

f+ 0
0 f−

�

, (F.20)

f̄ =

�

f̄+ 0
0 f̄−

�

. (F.21)

Substituting this parameterization in Eqs. (F.13-F.15), we find the following equations for the
scalar pair amplitudes f±:

D∂y y f± ± 2DqKy ysign(ω)∂y f± = 2|ω| f± − 2|∆| , (F.22)

D∂y f± ± 2DqKy ysign(ω) f±||y|= L y
2
= 0 , (F.23)

while f̄± satisfy

D∂y y f̄± ∓ 2DqKy ysign(ω)∂y f̄± = 2|ω| f̄± − 2|∆| , (F.24)

D∂y F̄± ∓ 2DqKy ysign(ω) f̄±||y|= L y
2
= 0 . (F.25)

There are two main conclusions that we may draw from this. First of all, f± = f̄∓, in line with
the symmetry arguments laid out above, and showing that spin is absent. Secondly, f+ ̸= f−,
that is, triplets are induced.

The induced triplets are odd-frequency, as expected from triplet s-wave correlations. The
solution of this equation is, keeping only terms linear in Ky y for simplicity

f± =
|∆|
|ω|
+ B± sinh (λy) , (F.26)

f̄± =
|∆|
|ω|
+ B∓ sinh (λy) , (F.27)

λ2 =
1
D

�

2|ω| − Dq2K2
y y

�

≈
2|ω|

D
, (F.28)

B± = ±
2qKy y

λ

|∆|
ω

. (F.29)

This shows that to first order in Ky y there are indeed odd-frequency triplet correlations that
have different sign near the top and the bottom of the material. However, these triplets do not
lead to spin accumulation because they satisfy f± = f̄∓.
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F.3 Junction geometry

The above results are seemingly in contradiction with the results of Ref. [30], in which the
authors claimed they one induces a spin accumulation at the transverse edges of a Josephson
junction made by an altermagnet and two superconducting electrodes, that is, a 2D S / AM / S
junction, by passing a supercurrent. We again describe the same orienation of the altermagnet,
that is, the normal of the interface corresponds to a node direction of the altermagnet and Tx y
and Kx y are the only nonzero components. The altermagnet has length Lx and width L y . At

y = ± L y
2 the altermagnet has boundaries with vacuum, while in the superconductors are of the

s-wave type and appear for |x | ≥ L y
2 and act as electrodes. We use the Kuprianov-Luckichev

boundary condition [92] at the boundary between the altermagnets and the superconductors.
They contain the boundary parameter γB, the ratio between the boundary conductance and
the conductance of the altermagnet in the normal state, which is assumed to be the same for
the two boundaries. The superconductors have a pair potential with magnitude |∆| and phase
±ϕ/2. In the collinear altermagnet the spin-relaxation tensor takes the form in which Γzz =

1
τs

is the only nonzero component. In this case we find the following boundary value problem
based on Eqs. (59-61) in Sec. 5.2 the main text:

∂x Jx + ∂y Jy = T , (F.30)

Jx = −Dg∂x g +
DTx y

4
σz{τ3 + gτ3 g, g∂y g}+

iDKx y

4
σz[τ3 + gτ3 g,∂y g] ,

(F.31)

Jy = −Dg∂y g +
DTx y

4
σz{τ3 + gτ3 g, g∂x g}+

iDKx y

4
σz[τ3 + gτ3 g,∂x g] , (F.32)

T = [g, ω̂t,t ′τ3] +
1
τs
[g,τ3σz gτ3σz]

+
DTx y

4
σz[τ3, {∂x g,∂y g}] +

iDKx y

4
σz[τ3, g{∂x g,∂y g}] , (F.33)

Jy

�

y = ±
L y

2

�

= 0 , (F.34)

Jx

�

x = ±
Lx

2

�

= ±
γB

ω2 + |∆|2
[ωτ3 + |∆|τ2e±

i
2ϕτ3 , g] . (F.35)

Now consider g̃ = τ3 gTτ3. Denoting J̃x ,y and K as the corresponding torques, we find that
J̃x ,y = −τ3J T

x ,yτ3 and K = −τ3T Tτ3. Thus, the Green’s function g̃ satisfies the system of
equations

∂x J̃x + ∂y J̃y = T , (F.36)

Jx = −Dg̃∂x g̃ +
DTx y

4
σz{τ3 + g̃τ3 g̃, g̃∂y g̃}+

iDKx y

4
σz[τ3 + g̃τ3 g̃,∂y g̃] ,

(F.37)

Jy = −Dg̃∂y g̃ +
DTx y

4
σz{τ3 + g̃τ3 g̃, g̃∂x g̃}+

iDKx y

4
σz[τ3 + g̃τ3 g̃,∂x g̃] , (F.38)

T = [ g̃,ωτ3] +
DTx y

4
σz[τ3, {∂x g̃,∂y g̃}] +

iDKx y

4
σz[τ3, g̃∂x g̃∂y g̃] , (F.39)

Jy

�

y = ±
L y

2

�

= 0 , (F.40)

Jx

�

x = ±
Lx

2

�

= ±
γB

ω2 + |∆|2
[ωτ3 + |∆|τ2e∓

i
2ϕτ3 , g̃] . (F.41)
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This is exactly the same system of equations. Thus, we have g(ϕ) = g̃(−ϕ) = τ3 gT (−ϕ)τ3.
Since g additionally commutes with σz , this means that there can not exist any spin accu-
mulation that is odd in the phase difference. Thus, there is no spin-splitter effect, in contrast
with example 1a) of [30], which considered the linearized Usadel equation in an electron gas
based altermagnets. We note that this consideration only shows there is no magnetization that
is odd in the phase, i.e. odd in the current. Indeed, following Eq. (73), in the junction there
might exist a proximity induced magnetization, which is independent of ϕ or even in ϕ.

G Altermagnet- superconductor hybrid structures: The proximity
induced magnetization

In this section we consider a bilayer between a superconductor and a altermagnet, that is, an
S / AM junction. We show that magnetization arise in the hybrid structure, even though both
materials that constitute the junction do not have any magnetization by themselves. These
results confirm the situation described in Fig. 2 in Sec. 5.2 of the main text.

We solve the Usadel linearized equation, that is, like in Sec. 5.2 of the main text, we
parameterize

gR =

�

sign(ω) f̂
ˆ̃f −sign(ω)

�

, (G.1)

where the real part of ĝ describes the density of states of the material and f̂ , ˆ̃f are the pair
amplitudes. Here f is a 4×4 matrix in Nambu-spin space given by

f =

�

0 f̂
ˆ̃f 0

�

, (G.2)

and f̂ , ˆ̃f are 2×2 matrices in spin space. We choose the collinear axis to be along the z-
direction. In that case it is convenient to write the pair amplitudes as

f̂ =

�

f+ f↑↑
f↓↓ f−

�

. (G.3)

We substitute these expressions in Eqs. (59-61) in Sec. 5.2. After linearization we obtain

equations for the anomalous matrices f̂ and ˆ̃f which we solve in three different situations
corresponding to the panels a-c of Fig. 2.

G.1 Longitudinal effect

First we consider a 2D junction between a superconductor (x < 0) and altermagnet (x > 0).
The junction is infinite in the y direction. We assume that the lobe of the altermagnet is along
the normal of the interface. In Fig. 2 this corresponds to panel a. In that case, by reflection
symmetry in the y-direction Kx y = 0, but Kx x is allowed to be nonzero. We assume that the
inverse proximity effect can be neglected and consider the superconducting proximity effect in
the altermagnet. The Usadel equation, supplemented with the Kuprianov-Lukichev boundary
conditions [92] reads in terms of f±:

D(1± isign(ω)Kx x)∂x x f± = 2|ω| f± , (G.4)

D(1± isign(ω)Kx x)∂x f±(x = 0) = −γB
|∆|
ω

, (G.5)
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where γB is the Kuprianov-Lukichev parameter [92]. The equations for f̃± are the same and
therefore f̃± = f±. The solutions to the boundary value problems are

f± = γB
|∆|
ω

ξ̃

1± isign(ω)Kx x
e
− x
ξ̃ , (G.6)

ξ̃=

√

√D(1± iKx x)
2|ω|

, (G.7)

and f̃± = f±. Thus, to second order in the pair amplitudes, the magnetization is given by

Mz = −i gµB
πν

4
Tr (τ3σz g)≈ 2gµB

πν

4
( f 2
− − f 2

+ )

= −2πT Kx x

∑

ω

2gµB
πν

4
γ2

B
|∆|2

ω2
Re

ξ̃

1+ iKx x
e
− x
ξ̃ Im

ξ̃

1+ iKx x
e
− x
ξ̃ . (G.8)

For any nonzero Kx y this expression is finite, which shows that the hybrid structure of two ma-
terials without magnetization, a superconductor and an altermagnet, yields a finite magnetic
moment at the boundary between the two materials.

To first order in Kx y this expression may be written as

Mz(x)≈ 2gµBKx y
πν

4
γ2

B
|∆|2

(πT )2
D
∑

n

1
(2n+ 1)3

e−
Ç

2πT (2n+1)
D 2x . (G.9)

Thus, at the boundary, x = 0 this reads, using that
∑

n(2n+ 1)−3 = 7ζ(3)
8 :

Mz(x = 0)≈
7ζ(3)

4
gµB

πν

4
γ2

B
|∆|2

(πT )3
D . (G.10)

Meanwhile, for x ≫ ξT =
q

D
πT we have

Mz(x ≫ ξT )≈ 2gµB
πν

4
γ2

B
|∆|2

(πT )2
De−

x
ξT , (G.11)

which shows that Mz decays over a distance ξT . This effect is illustrated in Fig. 2a in Sec. 5.2
in the main text.

G.2 Transverse effect

Next, we consider a similar setup, but now the lobes of the altermagnet are oriented in the
transverse direction. In this case the reflection y −→ −y changes the orientation of all spins,
and therefore Kx x = 0 but Kx y ̸= 0. This happens if the normal to the interface corresponds
to a node of the altermagnet, and consequently the system is invariant under a mirror in
the y-direction accompanied by a spin-flip. In Fig. 2 in the main text this corresponds to
panel b. If the geometry is infinite in the y-direction, the pair amplitudes do not depend on
the y-coordinate and consequently, K jk does not have any influence on the proximity effect,
and consequently there is no spin. This however changes, if we introduce boundaries in the
transverse y-direction. To this end, we consider a finite junction, with length Lx in the x-
direction and width L y in the y-direction.

We consider the following boundary value problem in fs, ft such that f̂ = fs + ft

D(∂x x + ∂y y) fs + 2iDsign(ω)Kx y∂x∂y ft = 2|ω| fs , (G.12)

D(∂x x + ∂y y) ft + 2iDsign(ω)Kx y∂x∂y fs = 2|ω| ft , (G.13)
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with boundary conditions

D∂x fs + iDsign(ω)Kx y∂y ft = −2γB D
|∆|
ω

, x = −
Lx

2
, (G.14)

D∂x fs + iDsign(ω)Kx y∂y ft = 0 , x =
Lx

2
, (G.15)

D∂x ft + iDsign(ω)Kx y∂y fs = 0 , x = ±
Lx

2
, (G.16)

D∂y fs + iDsign(ω)Kx y∂x ft = 0 , y = ±
L y

2
, (G.17)

D∂y ft + iDsign(ω)Kx y∂x fs = 0 , y = ±
L y

2
. (G.18)

We assume that Kx y is small and expand in this quantity. To zeroth order in Kx y we have
ft = 0. The solution is the usual solution for the proximity effect of a superconductor on a
normal metal:

fs = 2γBξ
|∆|
|ω|

cosh
x− Lx

2
ξ

sinh Lx
ξ

, (G.19)

ξ2 =
D

2|ω|
. (G.20)

Now, to first order in Kx y we obtain the following boundary value problem for ft , keeping in
mind that fs only depends on x , not on y:

D(∂x x + ∂y y) ft = 2|ω| ft , (G.21)

∂x ft = 0 , x = ±
Lx

2
, (G.22)

∂y ft = −iKx ysign(ω)∂x fs = −2iKx ysign(ω)γB
|∆|
|ω|

sinh
x− Lx

2
ξ

sinh Lx
ξ

, y = ±
L y

2
. (G.23)

Because of Eq. (G.22) we may apply a Fourier transformation and write

f = C0(y) +
∑

m>0

Cm(y) cos

�

mπ
x + Lx

2

Lx

�

. (G.24)

For the coefficients Cm(y) we obtain a 1D differential equations, which can be obtained my

multiplying Eqs. (G.21-G.23) by cos
�

mπ
x+ Lx

2
Lx

�

and integrating over the x-direction. Specifi-

cally, for C0 we get the equation

D∂y y C0 = 2|ω|C0 , (G.25)

∂y C0 = 2iKx ysign(ω)γB
ξ

Lx

|∆|
|ω|

tanh
L y

2ξ
, y = ±

L y

2
. (G.26)

This is a 1D diffusion equation, whose solution by virtue of the boundary conditions is anti-
symmetric in y:

C0(y) = 2iKx ysign(ω)γB
ξ2

Lx

|∆|
|ω|

tanh
L y

2ξ

sinh y
ξ

cosh
L y

2ξ

. (G.27)
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Meanwhile, for m> 0 we have

D∂y y Cm =

�

2|ω|+m2π2 D
L2

x

�

Cm , (G.28)

∂y Cm = 4iKx ysign(ω)γB
ξ

Lx

|∆|
|ω|

L2
x

L2
x +m2π2ξ2

tanh
L y

2ξ
, y = ±

L y

2
. (G.29)

Again this is a 1D diffusion equation whose solution needs to change sign upon inversion of
y . Thus, its solution is

Cm(y) = 4iKx ysign(ω)γB
ξξm

Lx

|∆|
|ω|

tanh
L y

2ξ

L2
x

L2
x +m2π2ξ2

sinh y
ξm

cosh
L y

2ξm

cos

�

mπ
x + Lx

2

Lx

�

. (G.30)

Inserting Eqs. (G.27) and (G.30) into Eq. (G.24), we find that ft is given by

ft(x , y) = 2isign(ω)
ξ

Lx
Kx yγB

|∆|
|ω|Lx

(G.31)

× tanh
Lx

2ξ

�

ξ
sinh y

ξ

cosh
L y

2ξ

+ 2
∑

m

L2
x

L2
x +m2π2ξ2

ξm

sinh y
ξm

cosh
L y

2ξm

cos
�

mπ
x + Lx

2

Lx

�

�

,

ξ−2
m = ξ

−2 +
m2π2

L2
x

. (G.32)

The magnetization Mz can then be calculated from this via

Mz = 2gµB
πν

4

∑

ω

Im( fs ft) ,

= gµBπν
ξ2

Lx
Kx yγ

2
B
|∆|2

ω2 Lx
(G.33)

× tanh
Lx

2ξ

cosh
x− Lx

2
ξ

sinh Lx
ξ

�

ξ
sinh y

ξ

cosh
L y

2ξ

+ 2
∑

m

L2
x

L2
x +m2π2ξ2

ξm

sinh y
ξm

cosh
L y

2ξm

cos
�

mπ
x + Lx

2

Lx

�

�

.

This is in general nonzero. Numerical evaluation of this expression for Lx = 2ξ and L y = ξ
results in Fig. 5. Our results show that in this orientation there is no magnetization averaged
over the entire edge, but instead magnetizations near the corners of the material arise. The
effect is schematically illustrated in Fig. 2b in Sec. 5 in the main text.

G.3 Superconducting island on top of an altermagnet

In the previous subsections we saw that if the normal of the interface corresponds to a lobe
direction of the altermagnet, a magnetization is induced. In contrast, if the normal of the
interface corresponds to a node direction of the altermagnet, there may only be a transverse
effect. Using these results, one can infer what happens if a circular superconducting island is
placed on top of an antiferromagnet, similar to the situation in panel c of Fig. 2 in the main
text. If the island radius R is much larger than the coherence length ξ, the boundary locally
resembles that of the extended junctions discussed in the previous subsections. Thus, a finite
magnetization will appear in those directions corresponding to the altermagnet lobes, positive
along one type of lobes, negative along the other. This occurs at distances of the order ξ around
the islands, as discussed in Sec. G.1. On other hand, along node directions, we conclude from
Sec. G.2 that the magnetization vanishes. This yields the magnetization pattern discussed in
Fig. 2c. A qualitative description of the proximity induced magnetization effect can be obtain
by solving Eqs. (59-61) in Sec. 5.2 in a 2D situation.
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Figure 5: The transverse spin accumulation in a finite size 2D altermagnet with
Kx y ̸= 0 and Kx x = 0, a boundary with a superconductor at x = − Lx

2 = −ξ and

a boundary with vacuum at x = Lx
2 = ξ and |y| = L y

2 =
ξ
2 . We normalized the mag-

netization by M0 = 2gµB = πνKx yξ
3γ2

B
|∆|2

(πT )2 L3
x

tanh Lx
2ξ , where ξ0 =

q

D
2πT .
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