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Abstract

The mode-shell correspondence relates the number IM of gapless modes in phase space
to a topological shell invariant IS defined on a closed surface – the shell – surrounding
those modes, namely IM = IS. In part I [1], we introduced the mode-shell correspon-
dence for zero-modes of chiral symmetric Hamiltonians (class AIII). In this part II, we
broaden the correspondence to arbitrary dimension and to both symmetry classes A and
AIII. This allows us to include, in particular, 1D-unidirectional edge modes of Chern in-
sulators, 2D massless Dirac and 3D-Weyl cones, within the same formalism. We provide
an expression for IM that only depends on the dimension of the dispersion relation of
the gapless mode, and does not require a translation invariance. Then, we show that the
topology of the shell (a circle, a sphere, a torus), that must account for the spreading
of the gapless mode in phase space, yields specific expressions of the shell index. Semi-
classical expressions of those shell indices are also derived and reduce to either Chern
or winding numbers depending on the parity of the mode’s dimension. In that way, the
mode-shell correspondence provides a unified and systematic topological description of
both bulk and boundary gapless modes in any dimension, and in particular includes the
bulk-boundary correspondence. We illustrate the generality of the theory by analyzing
several models of semimetals and insulators, both on lattices and in the continuum, and
also discuss weak and higher-order topological phases within this framework. Although
this paper is a continuation of Part I, the content remains sufficiently independent to be
mostly read separately.
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1 Motivation and brief summary

In the Part I of this work [1], we derived an explicit relation between a spectral invariant
that counts the chiral number of zero-modes, called mode index IM, and a shell index IS that
evaluates this number over a shell that surrounds the zero-modes in phase space. We called
this result the mode-shell correspondence. We then showed that in a semi-classical limit, where
the radius of the shell Γ → ∞, the shell index coincides with a (higher) winding number
defined on the shell. Those results dealt with chiral symmetric Hamiltonians Ĥ(x ,∂x) whose
Wigner-Weyl symbols H(x , kx) are gapped in phase space where the shell is defined, that is,
away from the Wigner representation of the zero-mode. Here, the meaning of “zero” in zero-
mode is twofold: it refers both to the zero-energy of the mode, owing to chiral symmetry, and
to the number of directions in which this mode disperses in k-space. We shall refer to the latter
as the “dimension of the mode” DM below. In other words, we focused in Part I on DM = 0
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Figure 1: Classification of gapless states according to DM and D⊥ within the mode-
shell correspondence picture, with illustrative examples discussed in Part I and Part
II of this study. The dimension D of the system and the dimension DS of the shell are
also specified. The mode-shell formalism provides explicit expressions for the mode
and shell invariants for each of these cases.

zero-energy modes, meaning that those modes have no dispersion relation, a basic example
being the boundary-mode of an SSH chain [2, 3]. For this reason, we will say, for short, that
IM is a zero-dimensional mode index in that case.

In this Part II, we introduce higher-dimensional mode indices IM for DM > 0 and discuss
their mode-shell correspondence. This generalization is motivated by cornerstone examples
in the literature. In particular, edge states of Chern insulators display a dispersion relation
with respect to one parameter, the momentum (or wavenumber) parallel to the boundary of
the system [4–9]. We thus would like to extend the definition of IM such that it incorporates
those unidirectional edge modes for DM = 1. Similarly, the dispersion relation of Weyl fermions
in dimension D = 2 and D = 3 consist of a Dirac/Weyl cone that lies respectively along 2 and
3 directions in momentum space [10–20]. Accordingly, we would like to assign them a mode
index IM for DM = 2 and DM = 3 respectively. We will therefore introduce, in this paper, a
general expressions of IM for arbitrary DM.

In the examples above, the attentive reader may have noticed that massless Dirac fermions
with DM = 2 can be described by a chiral symmetric Hamiltonian, similarly to zero-modes int
DM = 0 of Part I, while in contrast, the two other examples, corresponding to DM = 1 and
DM = 3, belong to a different symmetry class. Actually, our formalism consistently reproduces
the well-known staggered structure in the classification of topological insulating phases be-
tween the symmetry classes A and AIII with respect to the dimension D of the system [21–23].
In the particular case where IM describes the existence of boundary states of a (strong) topo-
logical insulator, the total dimension of the system verifies D = DM+1 and one recovers con-
sistently the shifted structure of the standard classification for those two symmetry classes.1

1Note that we shall not discuss other symmetry classes (real classes) in this paper, such as time-reversal sym-
metric Hamiltonians in class AII that also display massless Dirac fermions as surface states, and instead focus only
on A and AIII classes (complex classes).
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Figure 2: Brief summary of the mode-shell correspondence. A spectral index IM,
characterizing the existence of gapless modes of a parameterised operator Ĥ(λ) and
that disperse along DM directions, is introduced. This index is then re-expressed as an
index IS that only takes value on a shell (green) that surrounds the isolated gapless
mode (sketched in red) in phase space where Ĥ(λ) is gapped. This shell index can be
approximated, through a semi-classical expansion, as either a DS /2-Chern number
or a ⌈DS /2⌉-winding number depending on the parity of DM, and accordingly, on that
of DS too. Those indices are properties of the Wigner-Weyl symbol H(λ, x , k) of Ĥ(λ)
and characterize topologically the gapless modes of Ĥ(λ) in phase space.

The strength of our formalism is that, although IM can be seen as an edge index in the case
where the gapless mode is a boundary mode, it is not restricted to this interpretation. Actually,
IM more generally counts gapless modes that disperse along DM directions in phase space, and
that are confined in a specific region of phase space, i.e. position space, wavenumber space
or a mix of both. For instance, for DM = 2, IM accounts for massless Dirac states which are
either bulk modes in graphene, and thus confined in wavenumber space, or surface modes of
3D chiral symmetric topological insulators, which are confined in position space. So, the same
mode index should capture the topological modes of both 2D-semimetals and 3D-topological
insulators (see the column DM = 2 of figure 1).

Similarly to the case DM = 0 discussed in Part I, we show how to re-express the mode
indices into shell indices IS for DM > 0. The advantage is that shell indices are prone to a semi-
classical expansion that simplifies their expression into more familiar integral formulas over
the shell, that is a surface of dimension DS in phase space. Those semi-classical expressions are
more likely to be computable analytically than their IM counterpart. For DM = 0, we showed
in Part I that the semi-classical shell invariant associated to chiral zero-modes is a winding
number W in phase space. In this Part II, we show that the semi-classical shell invariant is also
a higher-dimensional winding number W⌈DS /2⌉ when DM is even, and a Chern number CDS /2
when DM is odd. Here the subscripts ⌈DS /2⌉ and DS /2 label the rank of the higher winding or
Chern numbers. More specifically, ⌈DS /2⌉ designates the round up integer above DS /2 when
DS is odd. The possible winding numbers W⌈DS /2⌉ =W1, W2, W3, . . . etc are respectively given
by an integral in DS = 1, 3, 5, . . . etc dimensions in phase space. Similarly, DS is always even
when DM is odd. In that case, the semi-classical invariants CDS /2 = C1, C2, C3, . . . etc are then
the first, second, third . . . etc Chern numbers obtained from an integral over DS = 2, 4, 6, . . . etc
dimensions in phase space. A brief summary of our theory is sketched in figure 2, and detailed
in section 4.

As we have just recalled, it is worth stressing here again that gapless modes of dimension
DM all have the same general mode index expression IM, but may differ by their shell index
IS. The reason is that the shell that surrounds them can span a different part of phase space,
depending on the nature of the mode (bulk mode, boundary mode, corner mode, ...). This
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results into winding numbers and Chern numbers given by integrals over wavenumber space,
position space, or a combination of both. In particular, the bulk-boundary correspondence
[7, 8, 24–32] is recovered when the gapless modes are localized on a boundary, such that the
shell then corresponds to the Brillouin zone. In that case, the semi-classical shell index is
exclusively given by an integral over wavenumber space and coincides with the usual bulk
topological invariant. In other words, the usual bulk-boundary correspondence is a particular
case of the mode-shell correspondence. The interest of our formalism is that it also captures
the topological nature of gapless modes confined in phase space in general, and not only those
confined in one direction of position space. A standard situation where this generalization is
for instance needed is that of continuous waves systems where the topology of gapless modes
localized at a domain wall is related to a shell invariant defined on a sphere in phase space
[9,28–30,33–38] instead of the usual Brillouin zone which is missing in the absence of a lattice
(see respectively subfigures c and b of figure 5).

Actually, if the topology of the shell (Brillouin torus, sphere, ...) is not fixed once DM is
given, neither is its dimension DS. In the case of strong topological insulators that we men-
tioned above, DM = D−1 is the dimension of the boundary which is one less than the dimension
of the bulk invariant, so that DS = DM+1 = D. As an example, for a Chern insulator, the sys-
tem is D = 2-dimensional, the chiral edge states correspond to DM = 1 modes, and the shell
corresponds to the Brillouin zone, so DS = 2. But in general, the gapless mode may not not be
a boundary mode, e.g. in topological semimetals or in higher-order topological insulators. In
fact, we will observe that D, DM and DS more generally satisfy

DM+DS = 2D− 1 . (1)

This relation can be seen as a kind of Kleman-Toulouse formula d ′ + r = d − 1 originally
used to classify topological defects in ordered phases of matter [39]. In the original formula,
d ↔ 2D is the dimension of the system, replaced here by the dimension of phase space,
d ′↔ DM is the dimension of the defect, and r ↔ DS is the dimension of the cage that sur-
rounds the defect. Our shell can thus be seen as the cage of a topological defect in phase
space, while the defects are the gapless modes, separated in phase space from other modes by
a gapped region.

The relation (1) provides us with a way to classify systems hosting topological modes, as it
allows us to account for other interesting physical situations beyond those of strong topo-
logical insulating phases. In particular, it accounts for weak and higher-order topological
insulators as discussed in Part I for DM = 0. In different ways, these two types of topolog-
ical phases share the property of hosting boundary modes whose dimension DM is such that
DM+1 < D. Compared to strong topological insulating phases strong topological insulating
phases, the dimension DS of the shell must increase to satisfy (1). More precisely, the relation
DM+n= DS−n+1= D defines nth order topological insulating phases in phase space. Strong
topological insulating phases are recovered for n = 1, while weak [40–49] and higher-order
topological insulators [50–53] both correspond to n > 1 (see figure 1). Meanwhile, topologi-
cal semimetals correspond to n= 0, i.e. DM = DS+1= D. For instance, a Weyl node in D = 3
disperses along DM = 3 directions and is characterized by the first Chern number given by the
integral of the Berry curvature over a DS = 2 surface that encloses the Weyl node in reciprocal
space [10, 11]. The strength of our formalism lies in the fact that all these situations can be
understood in a unified way.

In the rest of the paper, the increment of dimension n introduced above to distinguish the
different phases will be noted D⊥, as it is the complement to DM to recover the dimension of the
system, i.e. DM+D⊥ = D. In many situations, D⊥ can be interpreted as the number of spatial
directions x i along which the gapless modes do not disperse, but are, on the contrary, localized.
For example, D⊥ = 0 for topological bulk excitations, D⊥ = 1 for topological modes localised
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at edges and D⊥ ≥ 2 for corner or hinges modes of higher-order insulators, as summarized in
figure 1. The mode dimension DM remains important as it intervenes in the dimension on the
shell DS = DM+2D⊥ and so will affect the semi-classical limit of the shell invariant.

The generalization of the mode-shell analysis to arbitrary DM requires some precision re-
garding the Hamiltonian operator Ĥ, as the system is now almost systematically multidimen-
sional. It thus depends a priori on D pairs of non-commutative canonical conjugate variables
x = (x1, . . . , xD) and ∂x = (∂x1

, . . . ,∂xD
), and we should mean Ĥ(x ,∂x ) when referring to the

operator Hamiltonian Ĥ. Using the Wigner-Weyl transform (see e.g. appendix B [1] for an
introduction), we can also define the symbol Hamiltonian

Continuous case: H(x , k) =

∫

d x ′d



x + x ′/2
�

� Ĥ
�

�x − x ′/2
�

e−ikx ′ ,

Discrete case: H(x , k) =
∑

x ′




x + x ′
�

� Ĥ |x 〉 e−ikx ′ ,
(2)

where position x = (x1, . . . , xD) and wavenumber k = (k1, . . . , kD) coordinates now com-
mute. This picture will be particularly useful to define the shell invariant but also the location
of states |ψ〉 in phase space using the Wigner-Weyl transform ρψ(x , k) of the density matrix
ρ̂ψ = |ψ〉 〈ψ|. To define the mode index, we will use an intermediary picture using partial
Wigner-Weyl transform in only DM ⩽ D directions, such that we are left with a partial operator
Ĥ({x i , ki}, {x j ,∂x j

}), where i runs from 1 to DM and j runs from 1 to D⊥. This partial opera-
tor constitutes actually the starting point of our analysis in the main text, and will therefore
be simply referred to as the operator in the main text. We shall use the simplified notation
Ĥ(λ) where λ = (λ1, . . . ,λDM

) denotes the parameters along which the dispersion relation is
defined, and we shall not specify the D⊥ other directions in that notation. In a strict sense,
λi = ki , as it will be in most examples, but in full generality, the energy/frequency states may
vary with respect to other parameters, such as classical coordinates x i or external parame-
ters. Thus, to summarize, the mode indices IM introduced in the main text are associated
to Ĥ(λ), and the semi-classical analysis will be carried out over the D⊥ dimensions left. The
symbol Hamiltonian, indifferently noted H(λ, x⊥, k⊥) or H(x , k) is less ambiguous than its
Weyl operator counter-part as all the variables are classical and commute.

Of course, it is possible to define the mode indices at the full operator level, that is from
Ĥ(x ,∂x ), before any Wigner transform in a given direction is performed. Such an approach is
particularly useful to tackle topological modes in disordered systems where the semi-classical
analysis is not suited, and so are neither the semi-classical shell invariants. We thus also
provide such a non-commutative expression of the mode invariants for arbitrary DM. Since
those expressions are more involved as that associated to the partial operator Hamiltonian
Ĥ(λ), their discussion is postponed to appendix C.

This paper is organized as follows: In section 2, we introduce the mode invariant for the
case DM = 1, that is the spectral flow, and derive the mode-shell correspondence. We then show
that the semiclassical shell index is the DS /2-th Chern number. In section 3, we discuss various
examples hosting spectral flows, from 1D metals to 2D Chern insulators and 3D higher-order
and weak topological insulators. Next, we generalise the approach to arbitrary DM in section
4, where we discuss the general structure that relates the mode index to the semiclassical shell
index, according to DM, DS and D, and the symmetry class (A or AIII). We finally apply this
general theory in section 5 to models hosting DM = 2 and 3 gapless modes. The examples
cover lattice and continuous models, and illustrate the mode-shell correspondence on strong,
weak and higher-order topological phases as well as in topological semimetals.
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Figure 3: Example of evolution of the energies of the modes of a Hamiltonian de-
pending on λ. The positive crossing of the energy level E0 from below to above are
denoted in red and the negative crossing from above to below are denoted in blue.
The overall spectral-flow index of such system is therefore Is-f = 2− 1= 1.

2 DM = 1: Spectral flow and mode-shell correspondence

This section is dedicated to gapless modes in the case DM = 1. Those modes sometimes refer
to the spectral flow in the literature [9, 35, 36]. We will thus refer to IM as the spectral flow
index all over this section and write indifferently IM = Is-f.

2.1 Spectral flow index

The spectral flow is defined as a property of the spectrum of a Hamiltonian operator Ĥ(λ)
which depends on one parameter λ. Physically, such a parameter can either have an external
origin, as in a pumping process, or designate a coordinate in phase space. In this case, the
most common example is the wave number coordinate λ = k. This situation is encountered
both in continuous wave systems, for which k ∈R, and in lattice models where k is the Bloch
quasi-momentum k ∈ S1 and is instead bounded.2

The spectral flow is then defined as the number of eigenenergies E(λ) of Ĥ(λ) that alge-
braically cross a reference energy E0 when varying λ, that is

Is-f(E = E0) = (#crossings from E < E0 to E > E0)−(#crossings from E > E0 to E < E0) . (3)

A simple illustration is sketched in Figure 3. By construction, Is-f is obviously an integer.
However it is not obvious that it is a continuous function of the Hamiltonian Ĥ(λ) that is
robust to deformations. So, similarly to the chiral number of zero-modes discussed in the part
I, we want to formulate an equivalent but smooth formulation of the spectral index.

2.2 Smooth formulation of the index

To define a smooth version of the spectral index, we introduce, in the same fashion as in Part
I [1], a smoothly flatten version of the Hamiltonian, ĤF (λ) = f (Ĥ(λ)) that has the same
eigenmodes as Ĥ but with a smooth flattening of the energies to ±1 above some threshold
|E − E0| < ∆, and smoothly interpolating in between (see figure 4, where E0 = 0). Typically,
we choose the gap threshold∆ such that there is only a finite number of modes of Ĥ(λ) which
are gapless. Next, we introduce the unitary Û(λ) ≡ −eiπĤF (λ) to re-express the spectral flow
as the winding number of Û(λ) when λ spans either R or S1. Indeed, if a mode n participates

2In fact, translation invariance is not strictly required to invoke λ = ki , as such a continuous parameter can in
principle follow more generally from a valid Wigner-Weyl transform when a semi-classical limit makes sense in the
conjugate direction x i .
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Figure 4: a) Projected energy spectrum Sp(Ĥ) of a typical topological Hamiltonian
Ĥ(λ) and b) its full spectrum with respect to the parameter λ = k. United stripes
denote the gapped bulk bands, the red line denotes a gapless mode confined at the
edge with positive spectral flow. c) Sketch of a possible smooth flattening function.
d) Spectrum of the operator ĤF = f (Ĥ) where the bulk bands are flattened. e)
Spectrum of −eiπĤF , where all gapped modes are mapped to 1 and the gapless mode
of positive spectral flow is now mapped to the circle with positive winding number.

positively to the spectral flow, it means that its energy En(λ) bridges continuously the gap
that separates states of energy E < E0 −∆ to the states of energy E > E0 +∆, when varying
λ. Its rescaled energy f (En(λ)) then varies continuously from −1 to +1, so that the unitary
eigenvalue un ≡ −eiπ f (En(λ)) winds counterclockwise once around the unit circle, yielding a
winding number of +1 (see figure 4). Similarly, a mode that contributes negatively to the
spectral flow has an energy that bridges the gap in the opposite way when sweeping λ, so that
it contributes to a winding of −1. In contrast, gapped modes with an energy above the gap
E > E0 +∆ have a rescaled energy that maps to +1 on the unit circle, and therefore do not
yield any winding contribution. In the same way, gapped modes with an energy below the
gap E < E0 −∆ have a rescaled energy that also maps to +1 on the unit circle, and do not
contribute neither. The net spectral flow thus corresponds to the sum of the winding numbers

1
2iπ

∫

Λ
u†

n∂λun of all the rescaled energies of all the nodes n, that reads

Is-f =
1

2iπ

∫

Λ

dλTr
�

Û†(λ)∂λÛ(λ)
�

≡W1(Û) , (4)

with Λ = R or Λ = S1. Since Û = −eiπ f (Ĥ) is a smooth function of Ĥ, the index Is-f is a
continuous function of the Hamiltonian. It is therefore a topological integer stable to smooth
deformations of Ĥ.

However, in finite systems, similarly to what happens for zero-modes, the total winding
number is often zero, due to several contributions – e.g. from opposite edges when IM counts
edge states – that cancel out. Therefore, one would like to select the crossings in a sub-region
of phase space only (confined in position at an edge or an hinge, or confined in wavenumber).
This can be done in a very similar way by adding a cut-off θ̂Γ

Is-f =W1(Û) =
1

2iπ

∫

dλTr
�

Û†(λ)∂λÛ(λ)θ̂Γ
�

, (5)

where θ̂Γ is the identity in the sub-region we want to select, and vanishes in the other gapless
regions of Ĥ we wish to disregard. Γ is the characteristic distance in phase space from the
sub-region we want to select where θ̂Γ goes from one to zero. When the gapless regions
are separated enough from each other in phase space by a region where Ĥ is gapped, and

8

https://scipost.org
https://scipost.org/SciPostPhys.18.6.193


SciPost Phys. 18, 193 (2025)

Figure 5: Sketches of shells (green) with different topologies and dimensions de-
pending on the choice of the cut-off for DM = 1. The shell encloses a selected gapless
mode in phase space (red) and disregard possible other gapless modes (blue). a) For
a cut-off acting in the direction of the spectral flow parameter λ only (e.g. for 1D
quantum channels, section 3.1)), the shell reduces to points. b) For a cut-off acting
in position x only (e.g. lattice models of Chern insulators, section 3.2), the shell
consists in the Brillouin zone (kx ,λ = ky) ∈ [0, 2π]2. c) For a cut-off acring both in
position x and wavenumber kx ,λ spaces (e.g. 2D continuous interface or the valley
Quantum Hall effect, section 3.3), the shell is a sphere. d) For a cut-off acting in x
and y directions (e.g. higher-order topological insulators, section 3.5.1), the shell is
a 4D-sphere.

when Ĥ has a short-range behavior in the direction of separation, we expect the addition
of the cut-off not to alter the quantisation of the winding number which thus remains an
integer up to exponentially small deviations when Γ −→ ∞. This reasonable expectation is
motivated by a similar result rigorously demonstrated in 1D chiral systems [54]. Similarly
to what we discussed in Part I [1], the shape of the cut-off depends on the selected gapless
modes confined in one (topological insulator) or several directions (higher-order insulator) in
position, in wavenumber or in λ. These different choices of cut-offs implies different topologies
for the shell which is defined as the intermediate region where the cut-off goes from identity to
zero. Wigner-Weyl representations of various spectral flow modes with different confinements
in phase space and their associated shells are sketched in figure 5.

2.3 Relation with chiral symmetric systems

It is interesting to observe that the formulation of the spectral index IM when DM = 1, namely
the spectral flow, that captures a gapless topological property, can be formulated as a winding
number, while similarly winding numbers are also obtained in the context of semiclassical bulk
invariants IS, for gapped systems with chiral symmetry, as discussed in Part I. This is actually
the manifestation of a quite general link between invariants capturing gapless topology and
invariants describing gapped topology but in a different symmetry class that we will observe
later in this article. This link can be made more explicit by defining the operator Ĥ ′ such that

Ĥ ′ =

�

0 −e−iπĤF

−eiπĤF 0

�

= −σx e−iπσz⊗ĤF , (6)

which is chiral symmetric ({σz , Ĥ ′}= 0) and gapped because Ĥ ′2 = 1. Moreover its topology
is linked to that of Ĥ as we have

Is-f =
1

4iπ

∫

dλTr′(σz Ĥ ′(λ)∂λĤ ′(λ)θ̂Γ ) , (7)
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where Tr′ denotes the trace on the new Hilbert space which is now twice bigger. Such an
expression is similar to the expression of the bulk-index in 1D chiral systems encountered in
Part I [1]. This relation between Hamiltonians in symmetry classes A and AIII will be used in
the generalisation of our theory in section 4.

2.4 Mode-shell correspondence for spectral flow modes

Similarly to the chiral number of zero-modes discussed in details in Part I [1], the spectral flow
index also verifies a mode-shell correspondence. This means that it can be expressed, up to a
rearrangement of the terms, as an index which is defined on a shell surrounding the Wigner
representation of the spectral flow mode in phase space, where Ĥ is gapped.

To do so, we introduce the family of unitaries Ût = −ei t ĤF which interpolates between a
trivial state U0 = 1 of zero winding number and our target unitary Û1 = Û . The introduction

of this homotopy comes along with the chiral symmetric operator Ĥ ′t =
�

0 Û†
t

Ût 0

�

. Then, if we

differentiate the spectral flow-index (5) with respect to t and integrate by parts in ∂λ, we
obtain

Is-f =
1

4iπ

∫ π

0

d t

∫

dλTr′(σ̂z∂t

�

Ĥ ′t∂λĤ ′t
�

θ̂Γ )

=
1

4iπ

∫ π

0

d t

∫

dλTr′(σ̂z

�

∂t Ĥ
′
t∂λĤ ′t + Ĥ ′t∂t,λĤ ′t

�

θ̂Γ )

=
1

4iπ

∫ π

0

d t

∫

dλTr′(σ̂z

�

∂t Ĥ
′
t∂λĤ ′t − ∂λĤ ′t∂t Ĥ

′
t

�

θ̂Γ )− Tr′(σ̂z Ĥ ′t∂t Ĥ
′
t∂λθ̂Γ ) .

(8)

Next, by using the identity (Ĥ ′t)
2 = 1 and its differentiated version {Ĥ ′t ,∂t/λĤ ′t}= 0 we find

Is-f =
−1
4iπ

∫ π

0

d t

∫

dλ
1
2

Tr′(σ̂z Ĥ ′t∂t Ĥ
′
t

�

∂λĤ ′t[θ̂Γ , Ĥ ′t]− [θ̂Γ , Ĥ ′t]∂λĤ ′t
�

) + Tr′(σ̂z Ĥ ′t∂t Ĥ
′
t∂λθ̂Γ ) . (9)

This expression takes values on the shell since all its terms involve either a commuta-
tor of the cut-off [θ̂Γ , ĤF ] or a derivative ∂λθ̂Γ . Since Ĥ2

F = 1 in the shell, it follows that

−ei t ĤF = − cos(t) − i sin(t)ĤF and so Ĥ ′ = −σx cos(t) − σy sin(t)ĤF , which allows us to
express the spectral flow as a shell invariant IS given by

Is-f =
−1
4iπ

∫ π

0

d t

∫

dλi sin(t)2 Tr
�

ĤF

�

∂λĤF [θ̂Γ , ĤF ]− [θ̂Γ , ĤF ]∂λĤF

��

+ 2i Tr
�

ĤF∂λθ̂Γ
�

= −
∫

dλ
1
2

Tr
�

ĤF∂λθ̂Γ
�

+
1
4

Tr
�

ĤF∂λĤF [θ̂Γ , ĤF ]
�

≡ IS . (10)

The shell invariant is particularly prone to a semi-classical expansion in the limit Γ −→∞.
When this approximation is performed, the shell index reduces to a (higher)-Chern number

Is-f =
1

22D+1D!(−2iπ)D

∫

shell

Tr
�

HF (dHF )
2D
�

= CDS /2 , (11)

where 2D = DS is the dimension of the shell, which is in general even (otherwise, the Chern
number is zero), and where HF is the Wigner-Weyl symbol of ĤF . When DS = 2, C1 is the
usual first Chern number. When DS ≥ 4, the shell invariant is a higher-Chern number and
when DS = 0, i.e. it consists of a set of points on which Tr(HF ) is just the number of positive
energies minus the number of negative energies of H at those points.
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Figure 6: Summary diagram of the mode-shell correspondence when the mode in-
variant IM is the spectral flow Is-f. We use a smoothly flatten version ĤF of the
Hamiltonian Ĥ and introduce a unitary Û = −eiπĤF to define two indices: the wind-
ing number W1 associated to Û , that counts the spectral flow of Ĥ, a gapless property,
and IS measuring a topological property of the gapped system on the boundary of di-
mension DS enclosing the gapless mode (namely the shell) in phase space. This shell
index reduces, in a semi-classical limit, to a (higher) Chern number. The prefactor
aDS

of CDS /2 is given in (11). More specific examples of shells encircling the spectral
flow modes are given in figure 5.

Instead of working with the flatten Hamiltonian HF , one can also work with the Fermi
projector P on the negative bands of H. Since the Hamiltonian is gapped, we have the relation
HF = 1− 2P with P =

∑

i |ψi〉 〈ψi| where |ψi〉 are the bands selected by the projector, and it
follows that

Is-f =
−1

D!(−2iπ)D

∫

shell

Tr
�

P(dP)DS
�

= CDS /2 , (12)

which is a standard expression of the Chern numbers when using the Berry curvature formalism
[11,55–57].

3 Systems hosting a spectral flow and their mode-shell correspon-
dence

In this section, we illustrate the mode-shell correspondence through various examples exhibit-
ing a spectral flow (DM = 1). Among the most common ones are the edge states of a Chern
insulator (3.2) and its continuous counterpart consisting of a Dirac Hamiltonian with a space-
varying mass term (3.3). Both examples involve two-dimensional systems. We then elaborate
from these examples to construct higher-dimensional systems exhibiting a spectral flow, which
consist of either weak (3.4) or higher-order (3.5.1) topological insulators. But first, let us dis-
cuss the simplest example in D = 1, namely a quantum channel, that we interpret as a spectral
flow and revisit through the mode-shell correspondence.

3.1 Spectral flows as 1D quantum channels (DM = 1, D⊥ = 0)

Let us start with the simplest example which exhibits a spectral flow, the bulk of a 1D metal,
which typically exhibits a spectral flow at each point of the Fermi surface. To illustrate this
point, consider the simplest 1D Hamiltonian with only hopping terms t between neighbouring
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Figure 7: Schematic band dispersion of the 1D chain (13). The energy band crosses
the zero energy line at k = −π/2 and k = π/2 with respectively a positive and
negative spectral flow. A given spectral flow can be selected with a cut-off function,
as displayed in green.

sites
ĤQC =
∑

n

t/2(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) . (13)

This Hamiltonian is invariant by translation, so the Wigner-Weyl transform coincides with the
Bloch transform here

ĤQC(k) = t cos(k) . (14)

Note that, after this transform, there is no operator left in this simple example (D⊥ = 0), so
that the operator Hamiltonian, used to investigate the spectral flow, coincides with its symbol.
If we assume that the Fermi energy EF , which plays the role of E0, is zero EF = 0, we see that
the spectrum of the Bloch Hamiltonian crosses twice the Fermi energy, at k = −π/2 and at
k = π/2 (see figure 7). This Hamiltonian is therefore gapless and the associated material is a
metal. Focusing our attention on those individual crossings, we see that the one at k = −π/2
is a crossing of positive spectral flow Is-f = 1 (with flow parameter λ = k) while the one at
k = π/2 is associated to a negative spectral flow Is-f = −1. In that case the cut-off θ̂Γ should
act in wavenumber space (or quasi-momentum space) to separate one crossing from the other
(see figure 7).

In the meantime, in the semi-classical limit, the shell invariant becomes

IS = −
∫

dλ
1
2

Tr
�

ĤF∂λθ̂Γ
�

+
1
4

Tr
�

ĤF∂λĤF [θ̂Γ , ĤF ]
� S−C
−−→−
∫

dλ
1
2

Tr(HF∂λθΓ ) . (15)

Introducing P̂(k) = (1− ĤF (k))/2, the Fermi projector on eigenspaces of energy below the
Fermi energy EF = 0, and applying a sufficiently sharp cut-off θ̂Γ −→ 1[k0−Γ ,k0+Γ ] (where k0 is
the position of the crossing and Γ is the radius of the shell) the above expression reduces to
IS = Tr(P(k0 − Γ )) − Tr(P(k0 + Γ )). The shell invariant is therefore the number of negative
band eigenvalues on the left minus the number of negative eigenvalues on the right. It can
easily be checked that we indeed have that IS = 1 around k0 = −π/2 and IS = −1 around
k0 = π/2, and therefore the mode-shell correspondence is verified.

Both Is-f and IS remain quantised and topologically protected as long as there is a gap
which separates the two Fermi points in phase space, but also as long as the Hamiltonian is
short range in wavenumber. This is here insured by the fact that the Hamiltonian is invari-
ant by translation and hence diagonal in wavenumber. In general, we do not need perfect
invariance by translation and could allow the coefficients of the Hamiltonian to be slowly
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varying in position space (compared to the inter site distance) [58]. For example, phonons of
large wavelength (compared to the lattice wavelength) induce only small deformations of the
Hamiltonian, so the scattering they generate between the two valleys would be exponentially
small. 1D ballistic conductors are examples of materials where the mean free-path associated
to the scattering is small compared to the length of the material. In those materials, quantisa-
tion of the conductance, as predicted by Landauer [59], was indeed observed [60]. The main
limitation on the robustness of those unidirectional modes in practical applications in material
and meta-materials is short range disorder in the lattice structure (vacancies, impurities, ...)
induce perturbations which do not vary slowly compared to the inter-site distance. This can
therefore induce long range scattering between the two valleys and could therefore destroy
the topological protection.

In the next section, we discuss the case of Chern insulators where spectral flow modes
are separated in position space (chiral edge states). This separation provides an enhanced
topological protection compared to that in wavenumber space discussed here.

3.2 Spectral flows as edge states of a 2D Chern insulator (DM = 1,D⊥ = 1)

Semiclassical invariant as a bulk Chern number in the Brillouin zone In this section, we
show how the mode-shell correspondence coincides with the bulk-edge correspondence in the
case of Chern insulators.

Consider a Hamiltonian operator Ĥ of a Chern insulator defined on a lattice, and let us
call x and y the two spatial directions. For simplicity, we assume that the lattice is invariant
by translation in the y direction so that ky can serve as a spectral flow parameter λ. We
then consider that the lattice has an edge/interface at x = 0 where the Hamiltonian, which
becomes Ĥ(ky), may have gapless edge/interface states and is gapped far away from it. The
mode index Is-f thus counts the number of such chiral edge/interface states with chirality at a
given edge/interface, and in a given gap. We call Ĥ± the bulk Hamiltonians respectively far to
the right/left of the interface. Since we work on a lattice, wavenumbers must be understood
as quasi-momenta which are bounded, and so one can choose a cut-off which acts only in
position space, such as θ̂Γ = exp

�

−x2/Γ 2
�

or θ̂Γ = (1+ exp
�

x2 − Γ 2
�

)−1 for concreteness. The
transition region, where the cut-off drops from one to zero, consists of a domain in (x , kx , ky)
space such that x ∼ Γ .

As a result, the shell is a 2D torus spanned by kx and ky and located far from the edge
when Γ → ∞, as depicted in figure 5 (b). In other words, the shell is nothing but the 2D
Brillouin zone, and the semi-classical Hamiltonian H(kx , ky) obtained in that limit describes
the bulk of the system, and coincides with the Bloch Hamiltonian. In the case of an interface,
one needs to specify two such bulk Hamiltonians H±(kx , ky) to designate the right/left bulks
from the interface.

Since the cut-off does not depend on λ, the term Tr ĤF∂λθ̂Γ in the expression of the shell
invariant (10) vanishes, in contrast with the previous example. A semi-classical expansion of
the other term is performed by replacing the commutator by a Poisson bracket, and the shell
invariant becomes

IS =
−1
8iπ

∫ 2π

0

dky

∫ 2π

0

dkx

∑

nx

Tr
�

HF∂kx
HF∂ky

HFδnx
θΓ

�

. (16)

Summing over the discrete lattice coordinates nx in the direction x , and using
∑

nx>0δnx
θΓ = θΓ (+∞) − θΓ (0) = −1 and

∑

nx<0δnx
θΓ = θΓ (0) − θΓ (−∞) = 1, this ex-

pression reduces to the difference of Chern numbers, obtained by an integration over the
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Figure 8: Numerical computation of the QWZ model (18) with M = −1. (Left)
Dispersion relation along ky of Ĥ(ky), where the associated states are colored in
red/blue if they are both close to the Fermi energy E = 0 and located near the left-
/right edge, in grey otherwise. (Center) Wigner-Weyl transform of the two gapless
modes of Ĥ(ky) for ky = 0. The region selected by the cut-off is denoted in light
green, the intersection of the shell for ky = 0 is shown in dark green. (Right) Wigner-
Weyl transform of the modes of Ĥ(ky) of energy close to the Fermi-energy. The shell
is denoted in green and consists in a 2D Brillouin zone.

2D-Brillouin zone, far to the right of the interface/edge, where HF = HF,+, and to the left
where HF = HF,−:

IS =
−1
8iπ

∫

[0,2π]2
dkx dky Tr
�

HF,+∂kx
HF,+∂ky

HF,+

�

− Tr
�

HF,−∂kx
HF,−∂ky

HF,−

�

=
1
iπ

∫

[0,2π]2
dky dkx Tr
�

P+∂kx
P+∂ky

P+
�

− Tr
�

P−∂kx
P−∂ky

P−
�

≡ C+ − C− ,

(17)

where P is the Fermi projector satisfying HF = 1− 2P. Through theses explicit computations,
we therefore recover the expected bulk-edge correspondence [7, 8, 27], where the usual bulk
invariant (here the Chern number) is obtained as the semi-classical limit of the shell index,
that only involves an integral in reciprocal space in that case.

Example 1: The Qi-Wu-Zhang model We now more concretely discuss a well-known model
of a Chern insulator that exhibits a spectral flow, namely the Qi-Wu-Zang (QWZ) lattice model
[61] which is a 2D model with 2 pseudo-spin internal degrees of freedom. In a cylindrical
geometry, it is given by the operator Hamiltonian

Ĥ(ky) =
�

σz sin
�

ky

�

+σx

�

M + cos
�

ky

���

∑

nx

|nx〉 〈nx |+σ+
∑

nx

|nx + 1〉 〈nx |+σ−
∑

nx

|nx〉 〈nx + 1|

=
�

sin
�

ky

�

1
∑

nx
|nx + 1〉 〈nx |+
�

M + cos
�

ky

��

1
∑

nx
|nx〉 〈nx + 1|+
�

M + cos
�

ky

��

1 − sin
�

ky

�

1

�

, (18)

where ky is the quasi-momentum associated to the y direction and nx is a lattice coordinate
associated to the x direction.

Spectral flow occurs in this model when the lattice has an edge with an open boundary
condition. It manifests as a chiral edge state that bridges the two bands of this model, as shown
numerically in figure 8. The simplicity of this model allows us to also evaluate analytically
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Figure 9: Values of the total spectral flow index with respect to the parameter M .
When |M | > 2, ĤSSH(ky) is topologically trivial for both ky = 0 and ky = π so there
is no spectral flow. When −2 < M < 0, ĤSSH(ky) is topological at ky = 0 and trivial
at ky = π leading to a positive spectral flow. When 0 < M < 2, ĤSSH(ky) becomes
trivial at ky = 0 while becoming topological at ky = π leading to a negative spectral
flow.

the mode index Is-f by noticing that the Hamiltonian can be decomposed as a sum of a SSH
Hamiltonian with a ky -dependent term that breaks the chiral symmetry of the SSH model

Ĥ(ky) = σz sin
�

ky

�

+ ĤSSH(ky) , (19)

where ĤSSH(ky) is the SSH Hamiltonian as discussed in Part I [1], with hopping amplitudes
t ′ = 1 and t = M + cos

�

ky

�

, while σz is the chiral operator associated to this SSH model
{σz , ĤSSH(ky)}= 0. We therefore have

Ĥ2(ky) = sin
�

ky

�2
+ ĤSSH(ky)

2 , (20)

so we can only have modes
�

�ψ(ky)
�

crossing the zero-energy either if ky = 0 or if ky = π.
Moreover, those modes must be zero-modes of the SSH model, i.e. ĤSSH(ky) |ψ〉 = 0. With
our knowledge of the SSH model (see e.g. Part I [1]), we know that zero-modes only appear
when |t ′| = 1 > |M + cos

�

ky

�

| = |t| and are confined on the edges. We moreover know that,

on the left edge, the zero-mode is of positive chirality
�

�ψ(ky)
�

=
�

|ψ(ky )〉+
0

�

. It follows that, at
first order in ky around the crossing point, we have

Ĥ(ky)
�

�ψ(ky)
�

=

��

sin
�

ky

�

0
0 − sin
�

ky

�

�

+ ĤSSH(ky)

���

�ψ(ky)
�

+
0

�

≈ ±ky

�

�ψ(ky)
�

, (21)

where ±1 = +1 when the crossing point is located at ky = 0 and −1 when it is located at
ky = π. Therefore, the crossing point is associated respectively to a positive/negative spectral
flow. It follows that the overall spectral flow depends on whether ĤSSH(ky) is topological or
not at ky = 0 and at ky = π. If it is topological at neither ky , then there is clearly no spectral
flow, Is-f = 0. If it is topological at ky = 0 but not at ky = π, then there is a positive spectral
flow, Is-f = +1. Conversely, if it is topological at ky = π but not at ky = 0, then there is a
negative spectral flow, Is-f = −1. Finally, if it is topological at both ky = 0 and π, then the two
local spectral flows cancel each other and the net spectral flow vanishes, Is-f = +1 − 1 = 0.
Doing such an analysis using that ĤSSH(ky) is topological if and only if |t ′|> |t|, we obtain the
following phase diagram 9 depending on the M parameter.

The semiclassical shell/bulk invariant is then derived from the symbol/Bloch transform
H = H(kx , ky) of the operator Hamiltonian Ĥ(ky) that reads

H(kx , ky) =

�

sin
�

ky

�

e−ikx +M + cos
�

ky

�

eikx +M + cos
�

ky

�

− sin
�

ky

�

�

, (22)

from (16). This Chern number can be computed either using the degree formula [62] or
numerical methods to evaluate it [63]. With both methods, one consistently recovers the
same diagram as in figure 9.
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3.3 Spectral flows as domain wall interface states in 2D continuous inhomoge-
neous systems (DM = 1, D⊥ = 1)

Semiclassical shell invariant as a Chern monopole in phase space Another well-known
situation where a spectral flow appears is that of anisotropic two-dimensional continuous
systems, where a “mass term”, driving the amplitude of a gap of the symbol Hamiltonian
H(x , kx , ky), varies in space and changes sign [35, 36, 38, 64–72]. We apply the mode-shell
correspondence in such a situation, where the semiclassical shell invariant becomes a Chern
number over a sphere in phase space, thus providing an alternative demonstration of the re-
lation between this Chern monopole and the spectral flow [9, 28–30, 33–38, 65, 71, 72]. We
consider a continuous model with a mass term varying in the x direction and changing sign
once, thus forming a gap closure domain wall in the y direction. The spectral flow parameter
λ is given by the wavenumber ky ∈R, which is unbounded in continuous models. Therefore,
one needs to consider a cut-off which not only accounts for the confinement of the interface
states in the transverse direction x , but that also selects the spectral flow mode in wavenumbers
kx and λ = ky . A concrete choice could be for example θ̂Γ = (1+ exp

�

x2 − ∂ 2
x +λ

2 − Γ 2
�

)−1,
whose symbol is θΓ = (1 + exp

�

x2 + k2
x +λ

2 − Γ 2
�

)−1. The shell is located at the transition
region where the cut-off varies from 1 to 0, and that spans over x2 + k2

x +λ
2 ≈ Γ 2. The shell

is therefore now a sphere in phase space (x , kx ,λ) of radius Γ (see figure 5.c). Note that this
is different from the lattice case discussed above where the shell is a Brillouin zone in k-space
localized at bulk position in x .

The semi-classical limit of the shell index (10) gives3

IS =
−1

i16π

∫

x2+kx+λ2=Γ 2

Tr
�

HF (dHF )
2
�

, (23)

with differential dHF = ∂x HF d x + ∂kx
HF dkx + ∂λHF dλ.

Example 2: Generalised Jackiw-Rebbi model/2D Dirac fermion with varying mass A
canonical and simple two-band continuous model that exhibits a spectral flow is given by the
operator

Ĥ(ky) =

�

ky x + ∂x
x − ∂x −ky

�

, (24)

sometimes dubbed “normal form”, whose spectrum is recalled in figure 10. This minimal
model has been discussed in details and used in several studies, see e.g. [35,36,64,66]. It has
several interpretations such as, for instance, the Hamiltonian of a two-dimensional spin-1/2
Dirac fermion with a varying mass term m(x) ∼ x . The spectral flow then corresponds to a
unidirectional mode that propagates along the y direction where m(x) changes sign, and the
spectral flow parameter is then given by λ= ky in that case. This model is simple enough for
both mode and shell indices to be analytically computed.

Let us start with the mode index. Similarly to the spectral flow of the QWZ lattice model
that we inferred from a construction implying the lower dimensional SSH model in section 3.2,
we can also deduce analytically the spectral flow in this 2D continuous model from a similar
construction built on the simplest, chiral symmetric, 1D Jackiw-Rebbi model discussed in Part
I,

ĤJR =

�

0 x + ∂x
x − ∂x 0

�

. (25)

3Such semi-classical limit is more difficult to derive than its discrete counterpart of the previous section. This
is due to the fact that in the expression of the shell index (10), the terms in Tr

�

ĤF∂λθ̂Γ
�

no longer vanishes and its
semi-classical limit needs additional treatment. See section 4.3 for more detail.
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Figure 10: Characterization of the modified Jackiw-Rebbi model (25). (Left) Disper-
sion relation in ky of the eigenstates of Ĥ(ky). Modes are colored in red if they are
both close to the Fermi energy E = 0 and located close to x = 0, in grey otherwise.
(Center) Wigner-Weyl transform of the gapless mode of Ĥ(ky) in ky = 0, the inter-
section of the shell for ky = 0 is denoted in green. (Right) Wigner-Weyl transform of
the modes of Ĥ(ky) of energy close to the Fermi-energy. The shell is a sphere and is
displayed in green.

Indeed, the Hamiltonian (24) is nothing but a generalized Jackiw-Rebbi Hamiltonian (25),
where a term ky proportional to the chiral symmetric operatorσz of ĤJR has been added. Since
kyσz anticommutes with ĤJR, it follows that if a mode

�

�ψ(ky)
�

crosses zero-energy, then this
crossing must occur at ky = 0, and moreover,

�

�ψ(ky = 0)
�

must be a chiral zero-mode of ĤJR
captured by the mode index for DM = 0. Then, since the Jackiw-Rebbi model has exactly one
zero-mode (e−x2/2/

p
2π, 0)t of positive chirality, there is therefore exactly one crossing. Such

a crossing is thus associated to a positive spectral flow when increasing λ, and thus Is-f = +1,
in agreement with a brut force calculation (see figure 10).

To compute the shell index analytically, we first need to compute the symbol Hamiltonian
which simply reads

H =

�

ky x + ikx
x − ikx −ky

�

. (26)

The two band eigenvalues satisfying E2 = k2
x + k2

y + x2, we can write the flatten Hamiltonian
as

HF =
1
q

k2
x + k2

y + x2

�

ky x + ikx
x − ikx −λ

�

. (27)

The shell being the 2-sphere here, it is convenient to introduce spherical coordinates
ky = Γ cos(θ ), x = Γ sin(θ ) cos(φ), kx = Γ sin(θ ), cos(φ) so that

HF =

�

cos(θ ) sin(θ )eiφ

sin(θ )e−iφ − cos(θ )

�

. (28)

One can then compute Tr(HF dHF ∧ dHF ) = −4i sin(θ )dθ ∧ dφ which, once integrated on the
2-sphere, gives IS =

−1
16iπ

∫ π

0 dθ
∫ 2π

0 dφ4 sin(θ ) = +1, in agreement with the mode index. The
mode-shell correspondence is thus satisfied.

3.4 Weak topological insulators and their stacked topology (DM = 1,D⊥ = 2)

Weak topological insulators can be obtained by stacking many copies of the same topological
system. By doing so, one can construct topological systems with a large number of bound-
ary modes, that are also captured by the mode-shell correspondence. In this formalism, the
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stacking procedure consists in increasing D⊥ that becomes larger than 1, while keeping DM
constant. This consistently increases the dimension D of the system since DM+D⊥ = D.

In this section, we provide two examples to illustrate the mode-shell correspondence for
weak topological insulators with DM = 1 and D = 3, i.e. D⊥ = 2. The two models are math-
ematically constructed following a so-called multiplicative tensor product construction that
we discussed in Part I [1]. This procedure provides a simple and systematic way to construct
models for weak topology and that can be analyzed from their lower dimensional sub-blocks,
here 1D and 2D models exhibiting a spectral flow that we already discussed above.

Example 3: Stack of 2D Chern insulators A simple model with such a phenomenology is
made of N uncoupled stacked layers of some QWZ Chern insulator which reads

Ĥ(ky) = HQW Z(ky)⊗1N (29)

=
�

sin
�

ky

�

1
∑

nx
|nx + 1〉 〈nx |+
�

M + cos
�

ky

��

1
∑

nx
|nx〉 〈nx + 1|+
�

M + cos
�

ky

��

1 − sin
�

ky

�

1

�

⊗
N
∑

nz=1

|nz〉〈nz| ,

where m is the index of the layer and N is the number of layers. This model has a spectral
flow index Is-f = N . This result is straightforward for uncoupled layers, and can be extended
to coupled layers as long as the inter-layer couplings are not large enough to close the bulk
gap. Indeed, the (macroscopic) spectral flow, being a topological invariant, is preserved by
such perturbations.

Example 4: Stack of 1D metallic chains forming a 3D metal with disjoint Fermi-surface
One can also consider the stacking of uncoupled 1D quantum channels of section 3.1, which
can be performed in two transverse directions

Ĥ = ĤQC ⊗1N ⊗1N

=
∑

n

t/2 (|n〉 〈n+ 1|+ |n+ 1〉 〈n|)⊗
N
∑

m,m′=1

�

�m, m′
�


m, m′
�

� ,
(30)

where m and m′ are the layer indices in the two transverse directions. This model has therefore
a spectral flow index of Is-f = N2. Similarly to the previous example, considering uncoupled
chains is just for the sake of having quick-to-solve models. Inter-layer couplings can be added
without breaking the topological protection. The only constraint is that the coupling between
the layers must not be too large to close the gap in the region separating the modes of opposite
group velocity.4 In the case of the stack of 1D chains, the Fermi surface must keep the property
of being split into two distinct connected components, one of positive group velocity, and one
of negative group velocity.

In those two previous examples, the spectral flow is of order N or N2, so that the associated
conductance is proportional to N or N2 in units of the quantum conductance ħh/e2. It is thus
much larger than the conductance of a single layer which can be interesting for electronic
transport purposes. The main challenge to the use of those dissipation-less currents is still the
conditions required to obtain these unidirectional zero modes with topologically suppressed
scattering (induced by the separation in phase space). In the case of the quantum Hall effect or
of Chern insulators, this requires quite low temperature or/and high magnetic field [73–75]. In
the case of the 1D chain, the topological protection provided by the separation in wavenumber
is known to be weaker [60]: It may suppress the scattering by perturbations (like phonon) of
low wavenumber but is still sensible to the scattering of abrupt perturbations (like defects or

4This means that the coupling between the atoms must be quite anisotropic, strong inside the layer, and weaker
between them.
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short range interaction) which may generate dissipation. Therefore, the material would need
to be particularly pure to obtain good transport properties.

3.5 Higher-order topological insulators (DM = 1, D⊥ = 2)

Higher-order topological modes are confined in more than one direction. Although they are
physically two distinct phases, weak topological insulating phases and certain higher-order
topological insulating phases, actually correspond to the same D⊥ > 1 and DM in the frame-
work of the mode-shell correspondence. Their topology is therefore very similar.

Also, similarly to gapless modes of weak topological insulators, higher-order topological
modes can also be constructed from spectral flow modes. Indeed, there exists a procedure
to generate simple-to-analyze models that display higher-order topological properties. We
dubbed additive tensor product construction this method in Part I for chiral symmetric systems
(DM = 0) and re-discuss it here for the case DM = 1. The reader who wishes to maintain focus
on the mode-shell correspondence may skip this section and proceed directly to Example 5.

3.5.1 Additive tensor product construction ⊞

Let us consider two Hamiltonians ĤA and ĤB where HA is chiral symmetric with chiral sym-
metry operator ĈA. Then we introduce the additive tensor product construction ⊞ as

Ĥ⊞ = ĤA⊗ Id+ĈA⊗ ĤB . (31)

Unlike the additive construction of Part I, Ĥ⊞ is not chiral symmetric. However, one preserves
the useful relation

Ĥ2
⊞ = Ĥ2

A ⊗ Id+ Id⊗Ĥ2
B + {Ĥ1, Ĉ1} ⊗ Ĥ2 = Ĥ2

A ⊗ Id+ Id⊗Ĥ2
B , (32)

so that the spectrum of Ĥ⊞ is still of the form ±
Æ

(EA
n)2 + (EB

m)2 with EA/B
n eigenenergies of

ĤA/B. In particular, the zeros modes of Ĥ⊞ are a product
�

�ψA
n

�

⊗
�

�ψB
m

�

of zero modes of ĤA/B

which is confined in both the gapless region of ĤA and that of ĤB.
One important use of this construction is to take a chiral higher-order insulator and gener-

ate a higher-order insulator with spectral flow. In this case we want to take an Hamiltonian Ĥ
with chiral symmetry Ĉ that has topological zero mode and transform it into an Hamiltonian
with topological spectral flow. We use the additive construction using ĤA = Ĥ and ĤB = λ
which generate the Hamiltonian Ĥ ′.

Ĥ⊞(λ) = λ⊞ Ĥ ≡ λĈ + Ĥ . (33)

In the section 3.3, we already encounter a model of this type and argued that each zero-mode
of positive chirality IM = 1 of Ĥ is associated to a mode of positive spectral flow IS = 1 of Ĥ⊞
and vice-versa for zero-modes of negative chirality IM = −1 which are associated to a negative
spectral flow IS = −1.

In those constructions, the spectral flow dimension is unbounded. If we want a bounded
spectral flow parameter λ ∈ S1 as for wavenumber in discrete model, we need to tweak such
an expression. One way is to do replace k by sin(k) as

Ĥ⊞(λ) = sin(λ)⊞ Ĥ = sin(λ)Ĉ + Ĥ . (34)

This construction creates another zero mode of opposite spectral flow at k = π and which
is therefore separated only in wavenumber (see left of figure 11). If one wants to have a
model where the zero-modes are only separated in position, it is possible to use a slightly
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Figure 11: Localisation of the zero modes in phase space depending on the construc-
tion used. Modes zero-modes with positive/negative spectral flow are denoted in
red/blue. (left) regular additive construction of an SSH model using 34 (right) mod-
ified additive construction of an SSH model using 35.

more involved construction that we designate by ⊞̃. Fixing C = σz for simplicity, the new
Hamiltonian is defined as

Ĥ⊞̃(λ) = sin(λ)σz +σx + (Ĥ −σx)(1+ cos(λ))/2 . (35)

It exhibits the same spectral flow mode at λ= 0 as Ĥ⊞(λ) ≈
λ∼0

λσz + Ĥ. Moreover it is gapped

for λ ̸= 0 as sin(λ) ̸= 0 and has no spectral flow modes at k = π because Ĥ⊞̃(π) = σx so
that the Hamiltonian is now gapped (see right of figure 11). This is similar to the QWZ model
we encountered in section 3.2. We use the notation Ĥ⊞̃ = sin(k)⊞̃Ĥ to refer to this useful
construction.

If we instead take for Ĥ a chiral higher-order insulator, we obtain a higher-order insulator
with spectral flow.

Example 5: Continuous model of a 3D higher-order insulator A continuous model of a
3D higher-order topological insulator can be obtained from the 2D Jackiw-Rossy Hamiltonian
Ĥ2D−JR (see example 1 of section 4.3 of part I [1]) to which we add a λσz ⊗σz term (σz ⊗σz
is the chiral operator of the Jackiw-Rossy model) to transform it into a model with positive
spectral flow IM = 1. This gives the Hamiltonian

Ĥ(kz) = kz ⊞ Ĥ2D−JR =







kz y − ∂y x − ∂x 0
y + ∂y −kz 0 x − ∂x
x + ∂x 0 −kz −(y − ∂y)

0 x + ∂x −(y + ∂y) kz






. (36)

The Jackiw-Rossy Hamiltonian can itself be decomposed into two blocks of Jackiw-Rebbi
Hamiltonians Ĥ2D−JR = ĤJR⊞ ĤJR. Therefore, the full Hamiltonian can be decomposed as the
sum of 3 simple building blocks

Ĥ = kzσz ⊗σz + Ĥjr(x ,∂x)⊗ Id+σz ⊗ Ĥjr(y,∂y)≡ kz ⊞ ĤJR ⊞ ĤJR . (37)

The symbol of this operator Hamiltonian simply reads

H =







kz y − iky x − ikx 0
y + iky −kz 0 x − ikx
x + ikx 0 −kz −(y − iky)

0 x + ikx −(y + iky) kz






. (38)
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The shell is here the 4-sphere k2
z + x2 + y2 + k2

x + k2
y = Γ

2 (see figure 5.d), so it makes sense
to introduce spherical coordinates in four dimensions. In those coordinates, the symbol of the
flatten Hamiltonian is

HF = cos(θ2)
�

cos(θ1)
�

0 e−iφ1

eiφ1 0

�

⊗ Id+σz ⊗ sin(θ1)
�

0 e−iφ2

eiφ2 0

��

+ sin(θ2)σz ⊗σz . (39)

The shell index in that case is the second Chern number, that is obtained from the integration,
over the 4-sphere, of the 4-form curvature Trint(HF dH4

F ). The calculation can be carried out
analytically and one finds IS = −1/(256π2)

∫

S4 Trint(HF dH4
F ) = 1. The mode-shell correspon-

dence is thus verified.

Example 6: Lattice model of 3D higher-order insulator Let us construct a lattice model of
a higher-order topological insulator in D = 3 with spectral flow modes propagating along the
hinges, by a similar procedure, where we now start with the BBH model discussed in example
2 of section 4.3 of part I [1]

Ĥ(kz) = sin(kz) ⊞̃ ĤBBH . (40)

Since the BBH model is itself a sum of SSH Hamiltonians ĤBBH = ĤSSH,x ⊞ ĤSSH,y , the Hamil-
tonian (40) can be decomposed into three elementary blocks

Ĥ(kz) = sin(kz)σz ⊗σz +σz ⊗σx(1− cos(kz))/2

≡ sin(kz) ⊞̃ ĤSSH,x ⊞ ĤSSH,y

+ (1+ cos(kz))/2

��

0 t + t ′T †
x

t + t ′Tx 0

�

⊗ Id+σz ⊗
�

0 t + t ′T †
y

t + t ′Ty 0

��

,

(41)

where Tx =
∑

nx
|nx + 1〉 〈nx | is the translation operator by one lattice length in the x direction.

Because of the property of the additive construction, we therefore know that IM = 1 when
|t ′|> |t|.

It can also be decomposed as a sum of a QWZ Hamiltonian with an SSH Hamiltonian

Ĥ(kz) = (sin(kz) ⊞̃ ĤSSH,x) ⊞ ĤSSH,y = ĤQWZ,xz ⊞ ĤSSH,y . (42)

Similarly to the BBH or the QWZ model which are its building blocks, the shell invariant is
difficult to obtain explicitly without using the mode-shell correspondence or using numerical
methods. By evaluating the shell invariant IS numerically, one can find that IS = 1 when
|t ′| > |t|, recovering therefore the mode-shell correspondence. However the important mes-
sage is that tensor constructions are powerful tools to create an easy-to-analyse model of non
trivial topology Is-f ̸= 0.

4 Mode-shell correspondence for arbitrary DM

In this section, we generalize the construction of the mode index IM for arbitrary mode di-
mension DM. This construction depends on the parity of DM which is in a one-to-one corre-
spondence with the symmetry class of Ĥ here, either A or AIII. We then discuss how the mode
invariants are related to their shell invariants by providing explicit formulas, and finally show
their semi-classical expression in phase space. A summary of our theory is sketched in figure
12 and the derivation of the expressions of the invariants is provided in appendices A and B.
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4.1 General construction of the mode invariant

We now discuss how to construct the mode indices IM for arbitrary DM. Let us recall that the
starting points to address the cases DM = 0 and DM = 1 treated in details in Part I and in
section 2 of Part II, were the operator Hamiltonians Ĥ and Ĥ(λ) respectively. Our task is now
to construct IM from an operator Ĥ(λ) parameterised by DM parameters λ = (λ1, . . . ,λDM

).
Similarly to the spectral flow, those parameters can either have an external origin, as for a
pump, or designate a coordinate in phase space. In particular, we are motivated by the cases
DM = 2 and DM = 3 where the parameters are wavenumbers λi = ki , coming from a Fouri-
er/Bloch/Wigner transform of the operator Ĥ along DM ⩽ D directions. We will see specifically
in section 5 that the mode indices for DM = 2 and DM = 3 capture the number of 2D-Dirac
cones and 3D-Weyl cones in the spectrum of the Hamiltonian.

Although our original motivation is to provide a mode index that accounts for 2D Dirac
and 3D Weyl cones as topological modes on the same footing as chiral zero-modes and spectral
flows such as chiral edge states, it turns out that the generalization of the expression of IM to
arbitrary DM does not yield additional significant difficulties. Actually, the two cases DM = 0
and DM = 1 previously investigated are very instructive as they already unveil a pattern for the
definition of IM that will only depend on the parity of DM and will thus repeat straightforwardly
for higher mode dimension DM, that is

• when DM is even, as for zero-modes and 2D Dirac cones, we shall consider Hamiltonian
operators with a chiral symmetry Ĉ i.e. such that {Ĥ, Ĉ}= 0 (class AIII).5

• when DM is odd, as for spectral flows and 3D-Weyl cones, we shall consider Hamiltonian
operators with no particular symmetry (class A).

In both cases, we aim at describing gapless modes that are surrounded by a gapped region of
Ĥ(λ) in phase space.

The strategy we followed to define a mode index for DM = 1 in section 2.1 was to intro-
duce a unitary operator whose associated homotopy invariant (5) gave us the required spectral
index (after an appropriate cut-off was added). We build on this strategy for odd DM by intro-
ducing an auxiliary chiral symmetric Hamiltonian Ĥ ′ = Ĥ ′(λ) whose off-diagonal blocks are
those unitaries (and Hermitian conjugate). This systematic construction allows us to use both
the winding properties of the unitaries, as we did to tackle the spectral flow, and express the
mode invariant in terms of a chiral symmetric Hamiltonian, as we did for the zero-modes. In a
complementary manner, when DM is even, the operator Hamiltonian we consider to start with
is already chiral symmetric. Still, we shall nonetheless also introduce an auxiliary Hamiltonian
Ĥ ′ which this time is not chiral symmetric. The purpose of this manipulation is to establish
a uniform formalism with a clear pattern between the two symmetry classes and with the
dimension. The two constructions are given by

Ĥ non-chiral symmetric (class A): Ĥ ′ ≡
�

0 −e−iπĤF

−eiπĤF 0

�

= −σx e−iπσz⊗ĤF ,

Ĥ chiral symmetric (class AIII): Ĥ ′ ≡ sin
�

πĤF

�

− Ĉ cos
�

πĤF

�

= −Ĉ e−πĈ ĤF .

(43)

Note that the construction Ĥ → Ĥ ′ switches the symmetry classes A and AIII. This trick will
allow us to express the mode invariant for both symmetry classes A and AIII in an almost
similar form in terms of the auxiliary Hamiltonian, for any DM.

Let us now establish a useful property of the auxiliary Hamiltonians Ĥ ′. Since beyond the
gapless domain, i.e. where Ĥ is gapped, we have by construction Ĥ2

F = 1, then on can infer

5Dirac cones can also be protected by other symmetries [76–80], but we do not consider them here.
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that in this domain −e±iπĤF = 1. It follows that, in this gapped region, Ĥ ′ =
�

0 1
1 0

�

for Ĥ
in class A, and Ĥ ′ = Ĉ for Ĥ in class AIII. As a consequence, Ĥ ′ is topologically trivial in the
gapped region of Ĥ, or equivalently, the topologically non-trivial behavior of Ĥ ′ is concentrated
in the selected gapless region of Ĥ.

Besides, in both cases, Ĥ ′ is built in such a way that Ĥ ′2 = 1, so that it is a gapped operator.
We can thus apply the known theory of topological invariants on Ĥ ′ in order to express the
mode index IM associated to Ĥ as a (higher) winding number W or Chern number C as

IM =















W⌈DM /2⌉(Ĥ
′) = aDM

∫

Tr
�

σ̂z Ĥ ′(dĤ ′)DM θ̂Γ
�

, Ĥ in class A, DM odd,

CDM /2(Ĥ
′) = bDM

∫

Tr
�

Ĥ ′(dĤ ′)DM θ̂Γ
�

, Ĥ in class AIII, DM even,
(44)

where the integral runs over the DM parameters λi with typically λi ∈ S1 or λi ∈ R. ⌈DM /2⌉
denotes the round up integer above DM /2 when DM is odd and is thus equal to (DM+1)/2.
dĤ ′ =
∑

i ∂λi
Ĥ ′dλi is a differential 1-form, and (dĤ)DM is a DM-differential form that yields

an antisymmetrized sum of all possible products of derivatives ∂λi
. For example, in DM = 2,

(dĤ)2 yields the term ∂λ1
Ĥ∂λ2

Ĥ −∂λ2
Ĥ∂λ1

Ĥ. The operator θ̂Γ is a cutoff operator that selects
a particular gapless region of phase space of size Γ , similarly to the spectral flow case. Finally,
the pre-factor coefficients read

aDM
=

−((DM+1)/2)!
(DM+1)!(−2iπ)(DM+1)/2

, (45)

bDM
=

−1
2DM+1(DM /2)!(−2iπ)DM /2

. (46)

With this convention, W1 and C1 are, respectively, the usual winding number and the first
Chern number, while Wα and Cα for α > 1 are their higher-dimensional generalizations.

Remark about the mode index for DM = 0: We would like to comment about the consis-
tency between the expressions of the mode index given by (44) for DM = 0 and that introduced
in part I [1] that was dedicated to this case. The readers interested in the expressions of the
shell invariant in the semi-classical limit in higher dimension can skip this paragraph.

According to (44), the mode index for DM = 0 in the AIII symmetry class should read
IM = −

1
2 Tr Ĥ ′θ̂Γ . Actually, to match the definition of Part I, it is convenient to slightly change

this definition by subtratcting the chiral operator as

IM = −
1
2

Tr
�

(Ĥ ′ − Ĉ)θ̂Γ
�

, (47)

the difference between the two expressions being the term 1
2 Tr
�

Ĉ θ̂Γ
�

. This term, proportional
to the chiral polarization [1,81,82], vanishes when the Hilbert space has a balanced chirality.
It is specific to DM = 0, and was therefore not included in our general formalism for arbitrary
DM in this Part II. In fact, the mode indices for higher DM’s in the AIII class could be unharmly
redefined with this subtraction. But this modification would make the expressions unnecessar-
ily complicated since this term is only relevant for DM = 0. Thus, we prefer to simply slightly
change the definition for DM = 0 only.

Let us now check that the definition (47) is consistent with that of the mode index given
in Part I, that is IM = Tr

�

Ĉ(1− Ĥ2
F )θ̂Γ
�

. Substituting Ĥ ′ by its expression (43) leads to

IM = Tr
�

Ĉ
1
2
(cos
�

πĤF

�

+ 1)θ̂Γ

�

, (48)
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which has a similar form as the mode index introduced in part I, up to the substitution of
1− Ĥ2

F by 1
2(cos
�

πĤF

�

+1). Actually, both expressions capture the zero-modes because, in the
common eigenbasis of Ĥ2 and Ĉ (which commute thanks to chiral symmetry), both expressions
are of the form

IM =
∑

λ

Cλg(Eλ) 〈ψλ| θ̂Γ |ψλ〉 , (49)

where g(Eλ) is an even function of Eλ, is equal to one for zero eigenvalues, and vanishes for
eigenvalues outside the gap |E| ≥∆ Because of this last property, we are thus left with the zero
modes we would like to keep, and a priori other in-gap but non-zero modes. However, the
latest come by pairs of opposite chirality, due to chiral symmetry. Indeed |ψ〉 is an eigenmode
of both Ĥ2 and Ĉ with eigenvalues E2

λ
and Cλ then H |ψ〉 is also an eigenmode with eigenvalues

E2
λ

and −Cλ. Moreover, as Ĥ is short range, H |ψ〉 is in the same region of phase space as |ψ〉,
so with the same value of the cut-off. Therefore, both contributions of |ψ〉λ and H |ψ〉λ cancel
out two by two in the sum. The only contributions that remain are those of the zero-energy
modes Ĥ |ψλ〉= 0 that do not allow a valid way to construct a symmetric partner of opposite
chirality. So we end up with IM =

∑

λ,Eλ=0 Cλg(0) 〈ψλ| θ̂Γ |ψλ〉. As, g(0) = 1, this is exactly
the chirality of the zero-modes located inside the cut-off. Therefore, even if the functions g(Eλ)
differ, both expressions evaluate the same topological quantity and are therefore equivalent.
In the following, we shall refer to the mode index for DM = 0 as C0.

4.2 Mode-shell correspondence and its semi-classical limit

The mode indices (44) satisfy also a mode-shell correspondence

IM = IS , (50)

for arbitrary DM, where IS is a topological invariant defined on a shell of dimension DS in
phase space where Ĥ is gapped. We already proved the case DM = 1 of this correspondence
in section 2.4, the general derivation of this correspondence is provided in appendix A, and
leads to the following expression for the shell invariant

IS =











−bDM−1

∫

�

Tr
�

ĤF (dĤF )
DM−1dθ̂Γ
�

+ Tr
�

ĤF (dĤF )
DM[θ̂Γ , ĤF ]
��

, class A , DM odd,

−aDM−1

∫

�

Tr
�

Ĉ ĤF (dĤF )
DM−1dθ̂Γ
�

+ Tr
�

Ĉ ĤF (dĤF )
DM[θ̂Γ , ĤF ]
��

, class AIII , DM even.
(51)

This mode-shell correspondence is depicted by a horizontal double arrow in the summary
of figure 12. When those shell invariants admit a semi-classical limit (in a sense defined in
Part I), an important result is that they reduce to a Chern number or a winding number which
are given by an integral over the shell as

IS =















bDS

∫

shell

Tr
�

HF (dHF )
DS
�

= CDS /2(HF ) , class A , DM odd,

aDS

∫

shell

Tr
�

CHF (dHF )
DS
�

= W⌈DS /2⌉(HF ) , class AIII , DM even.
(52)

Those expressions also correspond to Chern and winding numbers, but the integral now
runs over the shell and the operator they are associated to is the semi-classical Wigner-Weyl
symbol of Ĥ. Thus, in the semi-classical limit, the number of gapless modes of Ĥ that disperse
along an odd number of directions, is given by the DS /2-Chern number, while the number
of gapless modes that disperse along an even number of directions is given by a (DS+1)/2-
winding number. The specific order of the Chern and winding numbers depends on the dimen-
sion of the shell, which is itself fixed by the set dimension of the system D and that of the mode
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DM. Indeed, according to the relation (1), a DS /2-Chern number is also a (D − (DM+1)/2)-
Chern number (with DM odd), and a (DS+1)/2-winding number is equivalently a (D−DM /2)-
winding number (with DM even).

Our theory, which again applies generally in phase space, gives in particular an alternative
constructive and systematic demonstration of the bulk-boundary correspondence for symmetry
classes A and AIII in arbitrary dimension D without the assumption of a crystalline structure,
and provides several explicit expressions of the topological invariants, given by (44), (51) and
(52). For instance, the edge states (DM = 1) of a Chern insulator (D = 2) are indeed given by
a D− (DM+1)/2 = 1 (i.e. first) Chern number that implies an integral over a close surface of
DS = 2 dimensions, and the surface states (DM = 2) of a chiral symmetric topological insulator
(D = 3) are given by a (D−DM /2) = 2 (second) winding number that implies an integral over
a close surface of DS = 3 dimensions, as expected from the bulk-boundary correspondence.
Since the dimension D of the system and that DM < D of the topological mode are independent,
our theory also provides for higher-order topological phases. As an exotic example, the semi-
classical invariant that constrains the existence of DM = 3-dimensional topological gapless
modes in a D = 5-dimensional system (say in synthetic dimensions) is given by the third Chern
number, and the Hamiltonian should be in class A. However, to show that the semi-classical
invariants are indeed those in the higher-order case (D⊥ ⩾ 2), it is preferable to first establish
a semi-classical expression of the mode index and then show the mode-shell correspondence.
This is the meaning of the left downward arrow in the summaries of figure 12, and we call
index semiclassical expansion the formal rule that allows this development.

4.3 Index semi-classical expansion in higher dimension

The equations (44) and (52) establish an equality between winding numbers and Chern num-
bers associated to the semi-classical Hamiltoninan and the auxiliary operator Hamiltonian in
different symmetry classes as

Ĥ ′ in class AIII W⌈DM /2⌉(Ĥ
′) = CDS /2(HF ) Ĥ in class A ,

Ĥ ′ in class A CDM /2(Ĥ
′) = W⌈DS /2⌉(HF ) Ĥ in class AIII .

(53)

This result can be understood relatively easily from the equations above for topological
semimetals and strong topological insulators, for which we have (D⊥ = 0, DS = DM−1) and
(D⊥ = 1, DS = DM+1) respectively. In those cases, the semi-classical index (52) basically
appears as the first order in the semi-classical expansion of respectively the first and second
term of (51), where we replace every product of operators by the product of their Wigner-Weyl
symbol, except for the commutator that is replaced by the differential of the symbol. However,
for higher-order topological insulators, where D⊥ ≥ 2, such a first order approximation is no
longer valid. To deal with these higher-order cases, we step back to the mode index and
introduce a new result that we call index semiclassical expansion.

Suppose that we have an operator Hamiltonian Ĥ(λ1, . . . ,λDM
;∂x⊥ , x⊥) with DM mode

parameters and one orthogonal dimension x⊥ along which Ĥ acts as a differential opera-
tor. In phase space, this orthogonal direction corresponds to two additional coordinates x⊥
and k⊥ and we can also define the Wigner symbol H(λ1, . . . ,λDM

, k⊥, x⊥) of this operator
Hamiltonian. The question is then the following: Does the mode index (44) associated to
the gapless modes of Ĥ(λ1, . . . ,λDM

), admit a semi-classical expression on its own in terms of
H(λ1, . . . ,λDM

, k⊥, x⊥), that is, without first expressing the index on the shell ? The answer to
that question is yes, and we find that this semi-classical expression takes the form of a higher
Chern/winding number in DM+2 dimensions (λ1, . . . ,λDM

, k⊥, x⊥) as

IM =

(

W⌈DM /2⌉(Ĥ
′
λ1,...,λDM

)=W⌈DM /2⌉+1(H ′λ1,...,λDM ,k⊥,x⊥
) , Ĥ in class A/DM odd,

CDM /2(Ĥ
′
λ1,...,λDM

) = CDM /2+1(H ′λ1,...,λDM ,k⊥,x⊥
) , Ĥ in class AIII/DM even.

(54)
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Figure 12: Summary diagram of the mode-shell correspondence in even (top) and
odd (bottom) mode dimension DM. The left red part shows the mode indices, while
the right green part shows the shell indices. The top part of each diagram gives the
expressions of mode and shell indices in terms of the operator Hamiltonian Ĥ and
auxiliary Hamiltonian Ĥ ′, and the bottom part gives their semi-classical expressions.
The explicit derivation provided in the appendix follows the solid arrows.

This important result is not obvious because the second index, which involves the Wigner
symbol H ′ of the operator Ĥ ′, is not just a first-order approximation of the first index. Below
we show a proof of the above statement in the simplest case C0(Ĥ ′) = C1(H ′k,x). This case will
contain all the important ideas which are then used in the general case proved in the appendix
B.

Proof of C0(Ĥ ′) = C1(H ′k,x): We start by introducing the identity i[∂x ,−i x] = 1 in the def-

inition of C0(Ĥ ′). For simplicity, we will remove the cut-off in the expression, as it does not
play any role in the derivation if we keep in mind that the non-zero contributions of the mode
index are only confined in the gapless region of phase space. We have

C0(Ĥ
′)≡ −

1
2

Tr
�

Ĥ ′ − Ĉ
�

= −
i
2

Tr
�

[∂x ,−i x](Ĥ ′ − Ĉ)
�

, (55)

and then use the “integration by parts” identity for commutators

Tr([A, B]C) =((((((Tr([A, BC])− Tr(B[A, C]) = −Tr(B[A, C]) ,
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to obtain

C0(Ĥ
′) =

i
2

Tr
�

−i x[∂x , Ĥ ′ + Ĉ]
�

=
i
2

Tr
�

−i x[∂x , Ĥ ′]
�

. (56)

Next, we insert the identity 1= (Ĥ ′)2 to get

C0(Ĥ
′) =

i
2

Tr
�

−(Ĥ ′)2i x[∂x , Ĥ ′]
�

, (57)

and use the general anti-commutation relation {Ĥ ′, [A, Ĥ ′]} = [A, (Ĥ ′)2] = [A,1] = 0 for
A= ∂x , to obtain

C0(Ĥ
′) = −

i
4

Tr
�

Ĥ ′[−i x , Ĥ ′][∂x , Ĥ ′]
�

= −
i
8

Tr
�

Ĥ ′
�

[−i x , Ĥ ′][∂x , Ĥ ′]− [∂x , Ĥ ′][−i x , Ĥ ′]
��

.
(58)

When the semi-classical limit holds, we can then apply the Wigner-Weyl transform to move
this expression into the symbol picture, where the commutators of operators are replaced by
the Poisson brackets of their symbols, and where the trace over the slow degrees of freedom
is replaced by an integral over phase space (see appendix B of [1]). In that limit, we obtain
the semi-classical expression

C0(Ĥ
′) =

∫

d xdk
−1

16iπ
Tr
�

H ′
�

∂kH ′∂x H ′ − ∂x H ′∂kH ′
��

≡ C1(H
′
k,x) , (59)

which is the desired equality and thus concludes the proof.
The index semiclassical expansion (54) can be used to tackle higher-order topological insu-

lators. For that we can apply (54) for each of the D⊥ perpendicular dimensions, increasing the
dimension of the mode index by 2 at each iteration. In the end, we obtain that the full semi-
classical limit of the mode index is a higher winding/Chern number of dimension DM+2D⊥.
Consistently, this semi-classical mode index also verifies the mode-shell correspondence (51),
as depicted by the bottom horizontal double arrow in figure 12. Indeed, since we have reached
the full semi-classical limit (i.e. there is no orthogonal direction x⊥ left along which the Hamil-
tonian acts as a differential operator), the symbol of the cut-off θΓ is just a scalar function with
vanishing commutators, so the second term of (51) vanishes and only the first term remains.
Then, if the transition of the cut-off from 1 to 0 (i.e. the shell) is made sharp in phase space,
dθΓ becomes a Dirac distribution on the shell so that the integral over the whole phase space
is replaced by an integral just on the shell, which gives the semi-classical shell index (52).6

Now that we have addressed the general theory of the mode and shell indices in arbi-
trary dimension, we illustrate how the mode-shell correspondence and its phenomenology are
verified in particular examples for DM = 2 and DM = 3.

5 DM = 2 and DM = 3: Models with 2D-Dirac or 3D-Weyl cones

In this section 5, we revisit minimal models and lattice models exhibiting Dirac and Weyl cones
through the prism of the mode-shell correspondence. It is well accepted that 2D-Dirac cones
and 3D-Weyl nodes are considered as topological, a characterization respectively given by a
winding number and a Chern number. Here, we identify those properties as being given by
the shell invariant in our formalism, and provide the expression of their associated and less

6This result also applies for the DM = 0 case that is studied in part I. In particular both appendix 4.1 and 4.3
imply the result proved in appendix F of the part I [1].
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Figure 13: Sketches of different shells (green) that surrounds a) a Dirac point
(DM = 2) confined in wavenumber space (D = 2) where the shell forms a circle,
b) a Weyl node (DM = 3) confined in wavenumber space (D = 3) where the shell
forms a sphere, and c) a Dirac point (DM = 2) confined at the surface of a 3D in-
sulator, where the shell consists of two 3D Brillouin zones located in the two bulks
“surrounding” the surfaces of the material in phase space.

common mode invariant. The mode-shell correspondence then justifies the use of those shell
invariants to count the “topological charge” of the modes and also provides a more general
expression of the invariant that does not require a semiclassical limit, or in particular the
translation invariance, as in crystals. The interest of this formalism is also that any 2D-Dirac
cone or any 3D-Weyl node is captured by the same mode invariant IM (respectively for DM = 2
and DM = 3) irrespective of whether they emerge as bulk or edge excitations. This contrasts the
usual topological description where, e.g., 2D Dirac cones are associated with a Berry winding
number when they appear as bulk excitations in a 2D semimetal, but are associated with a
higher-dimensional bulk topological invariant, through the bulk-edge correspondence, when
they emerge as surface modes of a 3D topological insulator. Those distinctions are captured
by the shell invariant that depends in particular of the topology of the shell in phase space,
as depicted in figure 13. Such examples are discussed below, for both 2D Dirac and 3D Weyl
nodes. In appendix D we also discuss additionally the case of a continuous model hosting
Dirac cones at its interface and discuss its mode-shell topology.

5.1 Single Dirac/Weyl cones

2D Dirac cone, DM = 2: The prototypical Hamiltonian of a 2D-Dirac cone is given by

ĤDirac =

�

0 kx − iky
kx + iky 0

�

, (60)

whose spectrum E± = ±
q

k2
x + k2

y indeed corresponds to a single a Dirac cone centered at
(kx , ky) = (0, 0). We can use the wavenumbers as parameters λ1 = kx and λ2 = ky . Since
there is no operators in other dimensions (i.e. D⊥ = 0), the model is already in a symbol formu-
lation, so that we could equivalently use the notation HDirac. Thus, since the Dirac Hamiltonian
(60) is chiral symmetric and depends on two parameters, its gapless modes (here the Dirac
point) are encoded into the mode index (44) that reads

IM = C1(H
′) = −

1
8iπ

∫

Tr
�

H ′(dH ′)2θ̂Γ
�

, (61)

with the cut-off θΓ = (1 + exp
�

k2
x + k2

y − Γ
2
�

)−1 and with H ′ = −Ce−πCHF, Dirac . This is a first
Chern number for the auxiliary Hamiltonian H ′. The integral is taken over kx and ky and
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extends over R2. This is may seem problematic to define a topological index, since R2 is not
a compact. However, the compactness is guaranteed here by the cut-off θ̂Γ that restrains the
plan into a disk of radius θ̂Γ at the boundary of which H ′ is single-valued (H ′ = C if Ĥ is
chiral, and H ′ = σx otherwise). Note that this expression only depends on the existence of
Dirac points in the dispersion relation, and not on the specific physical situation where those
Dirac points are encountered. The only difference comes from the definition of the cut-off θ̂Γ ,
which will be important when we will move on to the shell index as it changes the topology
of the shell.

We shall not evaluate this index directly, but instead use the mode-shell correspondence
(50) that tells us that this index also reads as a shell index whose semiclassical expression
is given by the formula (52). It corresponds here to the winding number W1 on the circle
k2

x + k2
y = Γ

2 that surrounds the Dirac point in phase space, so that DS = 1 (see figure 13.a).
This shell index corresponds to the usual topological description of Dirac points. To evalu-
ate this shell index, one notices that the Dirac Hamiltonian (60) is formally identical to the
symbol of the Jackiw-Rebbi Hamiltonian of section 3.3 of [1] for which the shell invariant
was computed, except that the part of phase space where the mode spreads is now (kx , ky)
instead of (x , k).7 The winding number of those two models are therefore identical, so that
W1(HDirac) = 1. This means that the simple model (60) can be considered as topological by
our shell index, and therefore by our mode index as well. Note that if one flips the sign of one
direction (say kx −→−kx), the shell index of the new Dirac Hamiltonian has opposite sign. In
the literature, the first Dirac Hamiltonian is said to have a “positive chirality” while the second
one is said to have a “negative chirality” [10]. Such a difference of chirality is captured by the
sign of IM. Therefore, with a slight abuse of notation, we can say that the 2D mode index IM
“counts” the number of 2D Dirac cones with chirality.

3D Weyl cone, DM = 3: The simplest Hamiltonian that exhibits a 3D Weyl cone is the fol-
lowing Weyl Hamiltonian

ĤWeyl =

�

kz kx − ikx
kx + iky −kz

�

, (62)

whose spectrum E± = ±
q

k2
x + k2

y + k2
z indeed consists in a single Weyl cone centered at

(kx , ky , kz) = (0,0, 0). The three wavenumbers can be taken as parameters λ1 = kx , λ2 = ky
and λ3 = kz , and there is no operator left in other directions, so that the model is already
in a symbol formulation (i.e. D⊥ = 0), and we could similarly use the notation HWeyl. Thus,
since the Weyl Hamiltonian (62) is not chiral symmetric and depends on three parameters, its
gapless modes (here the Weyl point) are encoded into the mode index (44) that reads

IM =W2(H
′) = −

1
48π2

∫

Tr
�

σzH ′(dH ′)3θΓ
�

, (63)

where we can choose θΓ = (1 + exp
�

k2
x + k2

y + k2
z − Γ

2
�−1

for the cut-off. This invariant is a
“second” winding number for the auxiliary Hamiltonian, where the integral is taken over the
three directions of R3. Similarly to the Dirac case, this domain becomes compact thanks to the
cut-off θΓ that limits it to the ball of radius Γ .

Again, we shall not evaluate this index directly, but instead use the mode-shell correspon-
dence (50) that tells us that this mode index also reads as a shell index whose semiclassical
expression, given by the formula (52), corresponds here to the first Chern number C1 over the

7A difference is however that x and k are only commuting variables in the semi-classical picture while kx and
ky are good quantum numbers which do not necessitate a semi-classical approximation. If the shell invariants are
the same, the gapless properties of the operator and the mode indices IM are different. The Jackiw-Rebbi model
has a single zero mode while the Dirac model has a Dirac cone.
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shell given by the 2-sphere k2
x + k2

y + k2
z = Γ

2 that surrounds the Weyl point in phase space, so
that DS = 2 (see figure 13.b). This shell index corresponds to the usual topological description
of Weyl nodes. The computation of this Chern number is formally identical to that of modi-
fied Jackiw-Rebbi model of Section 3.3 except that the part of phase space is now (kx , ky , kz)
instead of (ky , x , kx). The Chern numbers of those two models are therefore identical, so that
C1(HWeyl) = 1. This non-zero value means that this model is considered as topological by our
shell index and therefore by our mode index as well. Note that if one flips the sign of one
direction (say kx −→ −kx), the shell index of the new Weyl Hamiltonian has opposite sign. In
the literature, the first Weyl Hamiltonian is said to have a “positive chirality” while the second
one is said to have a “negative chirality” [10]. Such a difference of chirality is captured by the
sign of IM. Therefore, with a slight abuse of notation, we can say that the 3D mode index IM
“counts” the number of 3D Weyl nodes with chirality.

5.2 2D Dirac and 3D Weyl cones in lattice models

Dirac and Weyl cones may emerge either as bulk excitations of a semimetal, or as boundary
modes of an insulator. We now want to illustrate the mode-shell correspondence in both cases
with simple lattice models that we generate with the additive tensor product construction
adapted to this case. The reader who wants to remain focus on the topological invariants for
Dirac/Weyl nodes can skip the next paragraph that explains this construction.

5.2.1 Additive tensor product construction ⊞

Similarly to part I of this work and to the previous section 3.5, we will use an additive tensor
product construction to build simple-to-analyze models. In section 3.5, we rediscussed this
construction to generate higher-dimensional (non-chiral symmetric) Hamiltonians with spec-
tral flow. Here we introduce another additive tensor product construction to generate a chiral
symmetric Hamiltonian Ĥ⊞ from two non-chiral symmetric Hamiltonians ĤA and ĤB as follows

Ĥ⊞ = ĤA⊞ ĤB ≡ ĤA⊗1⊗σx +1⊗ ĤB ⊗σy , (64)

where σx and σy are the usual Pauli matrices and where 1⊗ 1⊗σz is a chiral symmetry of
Ĥ⊞.

In particular, if we take ĤB = ky , one can generate a model with a 2D-Dirac cone from a
Hamiltonian ĤA = Ĥ(kx) that exhibits a spectral flow like any of those treated in section 2.
This construction gives

Ĥ⊞(kx , ky) = Ĥ(kx)⊗σx + ky1⊗σy . (65)

Such a model will host a Dirac cones for each gapless mode |ψ(kx)〉 of Ĥ(kx) with spectral
flow. Indeed, because of the additive construction, zero modes of Ĥ⊞(kx , ky) must be of the
form |ψ(kx)〉 ⊗ |ψ±〉 where |ψ(kx)〉 is a zero mode of Ĥ(kx). If we project on this subspace,
the Hamiltonian then reduces to

sopH⊞(kx , ky) = E(kx)⊗σx + ky1⊗σy , (66)

which is just a Dirac cones model if we linearize E(kx) = kx∂kx
E with chirality depending on

the sign of the group velocity ∂kx
E.

When dealing with lattice models, this construction needs to be slightly modified, as in
section 3.5, to become

Ĥ⊞̃(kx , ky) = Ĥ(kx) ⊞̃ sin
�

ky

�

≡ (1+ (Ĥ −1)(1+ cos(kx))/2)⊗σx + sin
�

ky

�

1⊗σy , (67)

which avoids unnecessary doubling of the number of Dirac/Weyl cones at k = π/2. Indeed,
with this modification, the system is gapped at k = π because Ĥ⊞̃(k = π) = 1⊗σx .
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Similarly, the additive construction of section 3.5 can be used to generate models
Ĥ⊞(kx , ky , kz) hosting Weyl cones from model Ĥ(kx , ky) hosting Dirac cones

Ĥ⊞(kx , ky , kz) = Ĥ(kx , ky)⊞ kz = Ĥ(kx , ky) + kz .Ĉ . (68)

5.2.2 Bulk Dirac/Weyl modes in topological semimetals

A typical situation where Dirac/Weyl cones appear is as bulk excitations of semimetals. In
this case, they appear in pairs of opposite chirality. This is known as the Nielsen-Ninomiya
theorem [83,84]. This theorem can be easily understood with the mode-shell correspondence.
In systems where the set of parameter λi is bounded (as in the case of a Brillouin zone), the
total number of Dirac/Weyl cones is given by the mode index (44) with θ = 1. However, the
corresponding shell index is zero because both dθ and [θ , H] vanish in this case. Therefore,
the total numbers of Dirac/Weyl cones of positive and negative chirality must cancel each other
out.

Example 7: Semimetals with a single pair of Dirac/Weyl points There are many models
in the literature that host one pair of Dirac/Weyl cones, such as tight-binding systems for
graphene [85] in 2D. Here we use the modified additive construction ⊞̃ discussed above as a
systematic way to generate lattice models with only one pair of 2D Dirac or 3D Weyl cones.
We treat those two cases simultaneously. Following this construction, we have

Ĥ lattice
2-Dirac(kx , ky) = sin(kx)⊞̃ sin

�

ky

�

=
�

1+ (sin(kx)−1)(1+ cos
�

ky

�

)/2
�

σx + sin
�

ky

�

σy , (69)

and

Ĥ lattice
2-Weyl(kx , ky , kz) = sin(kx)⊞̃ sin

�

ky

�

⊞̃ sin(kz)

= sin(kz)σz +σx +
�

Ĥ lattice
2-Dirac(kx , ky)−σx

�

(1+ cos(kz))/2 , (70)

whose spectrum has 2 Dirac/Weyl cones (see Figure 14). Owing to the structure of the mod-
ified additive construction, the Dirac/Weyl cones must be centered at ky = 0 (respectively
ky , kz = 0 for the Weyl cones). For each model, one cone is then centered at kx = 0 and the
other at kx = π. By linearizing those two models, one can then check that the Dirac/Weyl
cones at kx = 0 is associated with a positive mode index IM = 1 while the one at kx = π is as-
sociated with a negative mode index IM = −1. Similarly the shell index can be computed on a
shell which is a small circle/sphere around the Dirac/Weyl point. In this limit the computation
of the shell index reduces to the one of the previous section.

Those examples constitute other instances where the topological modes are separated from
each other in k-space, similarly to zero-modes (DM = 0) and spectral flow modes (DM = 1)
discussed respectively in sections 3.2 and 3.4 of Part I [1] and in section 3.1 of the present
paper. As such, the cones are topologically protected as long as the Hamiltonian is short range
in wavenumber. So the Dirac cones are protected against perturbations of the Hamiltonian
which are slowly varying in position but not those that vary quickly in space as impurities in
the crystal structure. To enhance the protection of the Dirac/Weyl cones to such local per-
turbations, it would thus be preferable to separate those cones in position space instead. This
condition is realized when Weyl/Dirac cones appear as surface states of a topological insulator,
as we discuss below.
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Figure 14: Spectrum of the model (70) hosting 3D-Weyl cones for different values of
kz . The figure for kz = 0 also coincides with the spectrum of the model (69) hosting
2D-Dirac cones.

5.2.3 Boundary Dirac/Weyl cones of topological insulators

One can similarly construct lattice models of topological insulators in class A and AIII that host
2D Dirac or 3D Weyl modes at their boundaries, by using the modified additive tensor product
construction.

Example 8: 3D chiral topological insulator (class AIII) Let us start with chiral symmetric
topological insulators (class AIII), that host 2D-Dirac cones at their surfaces. A lattice model
for such an insulator is provided by the modified additive construction on a QWZ model (see
section 3.2) which itself can be constructed from an additive construction with the SSH model.

Ĥ3D-TI(ky , kz) = ĤQWZ(ky) ⊞̃ sin(kz)

= (1+ (ĤQWZ(ky)−1)(1+ cos(kz))/2)⊗σx + sin(kz)1⊗σy

= ĤSSH ⊞̃ sin
�

ky

�

⊞̃ sin(kz) .

(71)

This operator is indeed chiral symmetric with the chiral operator σz . By construction, gapless
modes can only appear at kz = 0 and ky = 0. In the vicinity of those points, the model reduces
to

Ĥ3D-TI(ky , kz) = ĤSSH ⊞
�

0 ky − ikz
ky + ikz 0

�

. (72)

Thanks to the structure of the additive construction, we know that the gapless modes of
Ĥ3D-TI must be of the form |ψDirac〉 = |ψ0〉 ⊗

�

|ψ〉+
|ψ〉−

�

where |ψ0〉 is a zero-mode of the SSH
model.

In order to evaluate the number of 2D Dirac cones (with chirality) on a given surface (say
the left one) of this 3D model, one thus takes |ψ0〉 as the zero-mode on the left boundary of the
SSH chain. As defined in Part I, this mode has a positive chirality. The projection of Ĥ3D-TI on
the two degrees of freedom |ψ〉± then just reduces to the Dirac model of section 5.1 where we
showed that IM = 1, which gives the number of Dirac modes (with chirality) on that surface.

Let us now comment on the shell index for 2D surface Dirac cones, that differs from that of
bulk Dirac cones in semimetals, although their mode index has the same expression. Indeed,
we now have D = 3 and DM = 2, which yields a shell of dimension DS = 3. Consistently,
the Hamiltonian operator (71) is not in its symbol form here, as one direction is left without
parameter, i.e. D⊥ = 1. The shell consists here of a 3D Brillouin zone (see figure 13 c)), and
the corresponding semi-classical index, given by (51), is the second winding number

IS =W2(HF ) = −
1

12(2π)2

∫

kx ,ky ,kz∈[0,2π]
dkx dky dkz Tr
�

ĈHF (dHF )
3
�

. (73)
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The mode-shell correspondence IM = IS therefore reduces to the bulk-edge correspondence
in that case, where the “bulk” topological invariant is our shell index (73).

Example 9: 4D topological insulator in class A We now construct a lattice model for a 4D
topological insulator with a single 3D-Weyl cone confined at each 3D boundary. We iterate
again the modified additive construction on the model of example 8, so that the evaluation of
IM, i.e. of 3D boundary Weyl nodes, simplifies to that of the zero-modes of the SSH model.
Following this construction, the operator Hamiltonian reads

Ĥ4D-TI(ky , kz , ku) = Ĥ3D-TI(ky , kz) ⊞̃ sin(ku)

= (σx + (Ĥ3D-TI(ky , kz)−σx)(1+ cos(ku))/2) + sin(ku)σz

= ĤSSH ⊞̃ sin
�

ky

�

⊞̃ sin(kz) ⊞̃ sin(ku) ,

(74)

and the gapless modes must therefore occur near ky , kz , ky ∼ 0, where the Hamiltonian can
be linearized as

Ĥ4D-TI(ky , kz , ku) = ĤSSH ⊞
�

ku ky − ikz
ky + ikz −ky

�

. (75)

Similarly to the previous example, the gapless modes must be of the form |ψ0〉 ⊗
�

|ψ〉+
|ψ〉−

�

for
which the Hamiltonian reduces to that of a single the Weyl node as described in section 5.1. It
follows that the number of Weyl cones (with chirality) on the left boundary is given by IM = 1.

Again, the shell index for 3D Weyl boundary modes differ from that of 3D bulk Weyl modes
in semimetals, although they both have a similar mode index. The system has now D = 4
dimensions, and the gapless Weyl modes correspond to DM = 3, so that the shell is of dimension
DS = 4. It consists of a 4D Brillouin zone (see figure 13 c)), and the corresponding semi-
classical index, given by (51), is the second Chern number

IS = C2(HF ) = −
1

256π2

∫

kx ,ky ,kz ,kt∈[0,2π]
dkx dky dkzdku Tr

�

HF (dHF )
4
�

. (76)

The mode-shell correspondence IM = IS therefore reduces to the bulk-edge correspondence
as a particular case, where the “bulk” topological invariant is our shell index (76).

In the case of 3D topological insulators, isolated Dirac cones have been experimentally
observed at the boundary of 3D topological insulators [86, 87]. Observing 3D-Weyl cones
confined at the edge of 4D material is however more difficult due to the fact that we live only
in a 3-dimensional world. However, the idea can still be explored as one can replace a physical
dimension by either a pumping parameter [88,89] or using internal degrees of freedom such
as spin or polarisation as a synthetic dimension [90]. Even if it is not a space dimension,
synthetic dimensions can play the same role and as long as the coupling in those dimensions
remains short range and the edge modes remain uncoupled in a way which may be stronger
than if they where separated in wavenumber.

6 Conclusion

In this work, a mode-shell correspondence is developed as a unifying framework for the under-
standing of the topological nature of certain gapless modes in arbitrary dimension. As such,
explicit expressions of Z−valued invariants counting the gapless modes are provided both at
the operator level and at the semiclassical level. We showed that this correspondence encom-
passes the well-known bulk-edge correspondence as a specific instance while extending, in a
unifying way, to more general scenarios in phase space. These include models with modes
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localized in wavenumber rather than position like topological semimetals, higher-dimensional
systems such as weak insulators exhibiting macroscopic spectral flow, and higher-order insu-
lating phases with modes topologically confined in multiple directions. We also examined the
topological aspects of 2D-Dirac and 3D-Weyl nodes, providing invariants that characterize their
topology and that verify the mode-shell correspondence. Through this, we highlighted the
similarity and difference in phenomenology between Dirac/Weyl cones confined in wavenum-
ber as in topological semimetals and those confined in position, like in 3D or 4D topological
insulators. To facilitate the analysis, we used additive tensor product constructions, under-
scoring their utility in constructing and analyzing topological systems. Together, these results
demonstrate the versatility and generality of the mode-shell correspondence as a framework
for understanding the topological properties of gapless modes across a wide range of physical
contexts. This common description of such a wide phenomenology within the same formal-
ism is made possible by the distinction, in our theory, of the space dimension D, the mode
dimension DM, and the shell dimension DS together with its topology.

This theory was developed to account for A and AIII symmetry classes, thus providing
explicit expressions of Z−valued indices. Possible extensions of this work for other symmetry
classes with Z2 invariants are left for future investigations.
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A Proof of the general mode-shell correspondence

In this appendix, the goal is to prove the mode-shell correspondence of the general mode index
defined in section 4.1 and, in particular, that it is equal to the shell index IS described in the
equation (51). We separate the proof of the chiral and non-chiral case. We start by the chiral
case.

A.1 DM even, Ĥ chiral

We start with the second equation of (44) which reads

IM ≡ C2D(Ĥ ′) = b2D

∫

Tr
�

Ĥ ′(dĤ ′)2Dθ̂Γ
�

, (A.1)

with 2D = DM.
If we introduce the path Ĥ ′t = −Ĉ e−t Ĉ ĤF , we can differentiate such expression and obtain

C2D(Ĥ ′)/bD =

∫ π

0

d t

∫

Tr
�

∂t Ĥ
′(dĤ ′)2Dθ̂Γ
�

+
D−1
∑

i=0

Tr
�

Ĥ ′(dĤ ′)i∂t(dĤ ′)(dĤ ′)2D−i−1θ̂Γ
�

. (A.2)
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If we then integrate by parts (in the derivative d) the second term, we obtain

C2D(Ĥ ′)/bD =

∫ π

0

d t

∫

Tr
�

∂t Ĥ
′(dĤ ′)2Dθ̂Γ
�

+
D−1
∑

i=0

(−1)i+1 Tr
�

(dĤ ′)i+1∂t Ĥ
′(dĤ ′)2D−i−1θ̂Γ
�

+
D−1
∑

i=0

(−1)i Tr
�

Ĥ ′(dĤ ′)i∂t Ĥ
′(dĤ ′)2D−i−1(dθ̂Γ )

�

=

∫ π

0

d t

∫ D
∑

i=0

(−1)i Tr
�

(dĤ ′)i∂t Ĥ
′(dĤ ′)2D−iθ̂Γ
�

+
D−1
∑

i=0

(−1)i Tr
�

Ĥ ′(dĤ ′)i∂t Ĥ
′(dĤ ′)2D−i−1(dθ̂Γ )

�

. (A.3)

Because (Ĥ ′)2 = 1 we can insert it in the first term between (dĤ ′)i and ∂t Ĥ
′. Using the anti-

commutation relations d(Ĥ ′)2 = 0 = {Ĥ ′, dĤ ′} as well as ∂t(Ĥ ′)2 = 0 = {Ĥ ′,∂t Ĥ
′}, we can

show that

C2D(Ĥ ′)/bD =

∫ π

0

d t

∫ D
∑

i=0

1
2

Tr
�

(dĤ ′)i Ĥ ′∂t Ĥ
′(dĤ ′)2D−i[θ̂Γ , Ĥ ′]

�

+
D−1
∑

i=0

Tr
�

(dĤ ′)i Ĥ ′∂t Ĥ
′(dĤ ′)2D−i−1(dθ̂Γ )

�

.

(A.4)

Because in this formulation we have terms with either commutator of the cut-off or differ-
ential of it, the index is localised on the shell and we can use that Ĥ2

F = 1 in this region and
so Ĥ ′t = sin(t)ĤF − Ĉ cos t. Using that therefore ∂t Ĥ

′ = cos(t)ĤF + Ĉ sin t, dĤ ′ = sin(t)dĤF

and [θ̂Γ , Ĥ ′] = sin(t)[θ̂Γ , ĤF ], this lead to

C2D(Ĥ ′)/bD = −
�∫ π

0

d t sin(t)2D+1

�∫

2D+ 1
2

Tr
�

Ĉ ĤF (dĤF )
2D[θ̂Γ , Ĥ ′]
�

−
�∫ π

0

d t sin(t)2D−1

�∫

2D Tr
�

Ĉ ĤF (dĤF )
2D−1(dθ̂Γ )
�

.

(A.5)

If we now use the that
∫ π

0 d t sin(t)2D−1 = 22D−1(D−1)!2

(2D−1)! and b2D =
1

22D+1D!(−2iπ)D , we have

that b2D

∫ π

0 d t sin(t)2D+1(2D+ 1)/(2D) = a2D−1/2 and bD

∫ π

0 d t sin(t)2D−12D = a2D−1 so we
obtain

IM ≡ C2D = −a2D−1

∫

�

Tr
�

Ĉ ĤF (dĤF )
2D−1(dθ̂Γ )
�

+
1
2

Tr
�

Ĉ ĤF (dĤF )
2D[θ̂Γ , Ĥ ′]
�

�

≡ IS , (A.6)

which is the wanted mode-shell correspondence (51).

A.2 DM odd, Ĥ non chiral

We start with the first equation of (44) which reads

IM ≡W2D−1(Ĥ ′) = a2D−1

∫

Tr
�

σ̂z Ĥ ′(dĤ ′)2D−1θ̂Γ
�

, (A.7)

with DM = 2D− 1
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If we introduce the path Ĥ ′t = −σx e−i tσz ĤF , we can differentiate such expression and
obtain

W2D−1(Ĥ ′)/a2D−1 =

∫ π

0

d t

∫

Tr
�

σz∂t Ĥ
′(dĤ ′)2D−1θ̂Γ
�

+
2D−2
∑

j=0

Tr
�

σz Ĥ ′(dĤ ′) j∂t(dĤ ′)(dĤ ′)2D− j−2θ̂Γ
�

.

(A.8)

If we then integrate by parts (in the derivative d) the second term, we obtain

W2D−1(Ĥ ′)/a2D−1 =

∫ π

0

d t

∫

Tr
�

σz∂t Ĥ
′(dĤ ′)2D−1θ̂Γ
�

+
2D−2
∑

j=0

(−1) j+1 Tr
�

σz(dĤ ′) j+1∂t Ĥ
′(dĤ ′)2D− j−2θ̂Γ

�

−
2D−2
∑

j=0

(−1) j Tr
�

σz Ĥ ′(dĤ ′) j∂t Ĥ
′(dĤ ′)2D− j−2(dθ̂Γ )

�

=

∫ π

0

d t

∫ 2D−1
∑

j=0

(−1) j Tr
�

σz(dĤ ′) j∂t Ĥ
′(dĤ ′)2D−1− jθ̂Γ

�

)

−
2D−2
∑

j=0

(−1) j Tr
�

σz Ĥ ′(dĤ ′) j∂t Ĥ
′(dĤ ′)2D− j−2(dθ̂Γ )

�

.

(A.9)

Because (Ĥ ′)2 = 1 we can insert it in the first term between (dĤ ′) j and ∂t Ĥ
′. Using the fact

the anti-commutation relations d(Ĥ ′)2 = 0 = {Ĥ ′, dĤ ′} as well as ∂t(Ĥ ′)2 = 0 = {Ĥ ′,∂t Ĥ
′},

we can show that

W2D−1(Ĥ ′)/aD =

∫ π

0

d t

∫ 2D−1
∑

j=0

−
1
2

Tr
�

σz(dĤ ′) j Ĥ ′∂t Ĥ
′(dĤ ′)2D−1− j[θ̂Γ , Ĥ ′]

�

)

−
2D−2
∑

j=0

Tr
�

σz(dĤ ′) j Ĥ ′∂t Ĥ
′(dĤ ′)2D− j−2(dθ̂Γ )

�

.

(A.10)

Because in this formulation we have terms with either commutator of the cut-off or dif-
ferential of it, the index is localised on the shell and we can use that Ĥ2

F = 1 in this re-
gion and so Ĥ ′t = sin(t)σy ĤF − σx cos t. There for we have ∂t Ĥ

′ = cos(t)σy ĤF + σx sin t,
dĤ ′ = sin(t)σy(dĤF ) and [θ̂Γ , Ĥ ′] = sin(t)σy[θ̂Γ , ĤF ] which leads to

W2D−1(Ĥ ′)/a2D−1 = i

�∫ π

0

d t sin(t)2D

�

2D

∫

Tr
�

ĤF (dĤF )
2D−1[θ̂Γ , ĤF ]
�

)

+ i

�∫ π

0

d t sin(t)2D−2

�

2(2D− 1)

∫

Tr
�

ĤF (dĤF )
2D−2(dθ̂Γ )
�

.

(A.11)

If we now use that
∫ π

0 d t sin(t)2D = π
(2D)!

22D D!2 and a2D−1 =
D!

(2D)!(−2iπ)D we obtain

a2D i
∫ π

0 d t sin(t)2D2D = −b2D−2/2 and a2D i
∫ π

0 d t sin(t)2D−22(2D−1) = −b2D−2 which leads
to

IM ≡W2D−1 = −b2D−2

∫

�

Tr
�

ĤF (dĤF )
2D−2(dθ̂Γ )
�

+
1
2

Tr
�

ĤF (dĤF )
2D−1[θ̂Γ , Ĥ ′]
�

�

≡ IS , (A.12)

which is the wanted mode-shell correspondence (51).
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B index semiclassical expansion

In this section we want to prove the equation (54) for the semi-classical expansion of the mode
index. To do that we will prove a similar statement, but at the operator level, which reduces
to such equation in the semi-classical limit. The statement we prove in this section is that the
mode indices verify the general equality

IM = bDM

∫

Tr
�

Ĥ ′(dĤ ′)DM θ̂Γ
�

= bD’(2π)
D⊥

∫

Tr
�

Ĥ ′[α̂, Ĥ ′]D’θ̂Γ
�

= aDM

∫

Tr
�

Ĉ Ĥ ′(dĤ ′)DM θ̂Γ
�

= aD’(2π)
D⊥

∫

Tr
�

Ĉ Ĥ ′[α̂, Ĥ ′]D’θ̂Γ
�

,

(B.1)

with D’= DM+2 D⊥ and where we use the notation
∫

Tr
�

Ĥ ′[α̂, Ĥ ′]D’θ̂Γ
�

=
D’
∑

j1,..., jD’=1

ε j1,..., jD’

∫

Tr

�

Ĥ ′
D’
∏

m=1

[â jm , Ĥ ′]θ̂Γ

�

,

∫

Tr
�

Ĉ Ĥ ′[α̂, Ĥ ′]D’θ̂Γ
�

=
D’
∑

j1,..., jD’=1

ε j1,..., jD’

∫

Tr

�

Ĉ Ĥ ′
D’
∏

m=1

[â jm , Ĥ ′]θ̂Γ

�

,

(B.2)

in which ε j1,..., jD’
is the totally anti-symmetric Levi-Civita tensor and where the operators â j

are defined such that for j ∈ [1, DM], â j = ∂λ j
with then âDM+2 j−1 = i x j and âDM+2 j−1 = ∂x j

in the continuous case or âDM+2 j−1 = −iT †
j n̂ j and âDM+2 j = T j in the discrete case. We will

use the convention [∂λ j
, A] ≡ (∂λ j

A) which is natural as we also have that commutators are

mapped to derivative in the semi-classical limit [∂x j
, Â]

S−C
−−→ ∂x j

A, [i x̂ j , Â]
S−C
−−→ ∂k j

A. In all the
computations of the proof, the differential acts mostly in the same way as a commutator which
allows such an abuse of notation.8

In general, in this section, we will use notation α when the object should be understood
as an anti-symetrised sum of all possible order of product of â j so it means that for arbitrary
operator A0, . . . , AD’ we have that

A0

D’
∏

m=1

αAm =
D’
∑

j1,..., jD’=1

ε j1,..., jD’
A0

D’
∏

m=1

â jmAm . (B.3)

It is relatively simple to see what the equality (B.2) reduces, in the semi-classical limit to
the result (54) described in the main text. Indeed, using the fundamental properties of the
Wigner-Weyl transform described in appendix B of [1], we know that, in the semi-classical
limit, the commutator [âDM+2 j−1 = i x j , Ĥ ′] are replaced by the derivative ∂k j

Ĥ ′ and that the

commutator [âDM+2 j−2 = [∂x j
, Ĥ ′] are replaced by the derivative ∂k j

Ĥ ′ (and similarly for dis-
crete dimensions). So the commutators are replaced by differential and we simply obtain that

IM =















bD’

∫

Tr
�

Ĥ ′(dĤ ′)D’θ̂Γ
�

,

aD’

∫

Tr
�

Ĉ Ĥ ′(dĤ ′)D’θ̂Γ
�

,

(B.4)

8The only difference is that the operators â j = ∂λ j
are only well defined when they appears in commutators

where we have the convention [∂λ j
, A] ≡ (∂λ j

A). This will be the case most of the time in the proof. There is
however some intermediary steps where α̂ does not appear in commutators which make the notation ill defined.
We nevertheless decided to keep them in the proof as they allows to decompose the proof in more elementary
steps which are easier to follow individually. In practice, in this proof, there is ways to skip those (ill-defined)
intermediary steps, avoid those problems and obtain the same results.
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with D’= DM+2D⊥ which is the result (54) for D⊥ = 1.
So the difficult part is to prove the equality (B.1). We will do that by induction. The case

D⊥ = 0 is obvious so we only need to prove the heredity. For that we will suppose that the
formula is true for a D⊥ and prove it for D⊥+1.

In all this proof, we can use that the cut-off commutes with any operator [Â, θ̂Γ ] = 0 as we
are manipulating a mode index, involving Ĥ ′ which, by construction, is only non-trivial in the
region where either θ̂Γ ≈ 1 or θ̂Γ ≈ 0.

We will prove the chiral and the non-chiral case separately.

B.1 DM even, Ĥ chiral

We start for the expression of the mode index for D⊥

IM = g

∫

Tr
�

Ĥ ′[α̂, Ĥ ′]D’θ̂Γ
�

, (B.5)

with the prefactor coefficient g = bD’(2π)D⊥ and where D’= DM+2D⊥.
If we introduce the canonical conjugate operators associated with the new dimension. So,

for a continuous dimension, âD’+1 = i xD⊥+1 and âD’+2 = ∂xD⊥ +1
and, for a discrete dimension,

âD’+1 = −iT †
D⊥+1n̂D⊥+1 and âD’+2 = TD⊥+1. In both cases, we have the commutation relation

[âD’+1, âD’+2] = −i1. So we have that

IM = i g

∫

Tr
�

[âD’+1, âD’+2]Ĥ
′[α̂, Ĥ ′]D’θ̂Γ
�

. (B.6)

We then “integrate by parts” the commutator using the identity9

Tr([A, B]C) =((((((Tr([A, BC])− Tr(B[A, C]) = −Tr(B[A, C]) ,

to obtain that

IM = −i g

∫

Tr
�

âD’+2

�

âD’+1, Ĥ ′[α̂, Ĥ ′]DM+2 D⊥−2
�

θ̂Γ
�

, (B.7)

and then expand the commutator with the product using the identity10

[AB, C] = [A, C]B + A[B, C] ,

which gives us

IM = −i g

∫

Tr
�

âD’+2[âD’+1, Ĥ ′][α̂, Ĥ ′]D’θ̂Γ
�

− i g

∫ D’
∑

j=1

Tr
�

âD’+2Ĥ ′[α̂, Ĥ ′] j−1[α̂, [âD’+1, Ĥ ′]][α̂, Ĥ ′]D’− jθ̂Γ
�

.
(B.8)

To continue we use the property that α[α, Ĥ ′] + [α, Ĥ ′]α= [α2, Ĥ ′] = 011 as α2 leads to anti-
symetrised product [âm, ân] which either vanishes or are proportional to the identity (when
the operators are conjugates). Therefore it commutes with Ĥ ′. This leads to the identity

[α, Ĥ ′] jα= (−1) jα[α, Ĥ ′] j , (B.9)

9Similar to the identity
∫

(dB)C =����∫ (d(BC))−
∫

B(dC) = −
∫

B(dC) for differentials.
10Similar to the identity d(BC) = (dB)C + B(dC) for differentials.
11Similar to the identity d2(B) = 0 for differentials.
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that we can use, together with the cyclicity of the trace, the fact that ε j1, j2,..., jDT
= −ε jD’, j1,..., jD’−1

(as D’ is even) and [α̂, θ̂Γ ] = 0= [α̂, âD′+2], to show that

IM = −i g

∫

Tr
�

âD’+2[âD’+1, Ĥ ′][α̂, Ĥ ′]D’θ̂Γ
�

− i g

∫ D’
∑

j=1

(−1) j Tr
�

âD’+2[α̂, Ĥ ′][α̂, Ĥ ′] j−1[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

,
(B.10)

that we can regroup into a single sum

IM = −i g
D’
∑

j=0

(−1) j
∫

Tr
�

âD’+2[α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

. (B.11)

Then we can insert the identity Ĥ ′2 = 1 in such expression to obtain

IM = −i g
D’
∑

j=0

(−1) j
∫

Tr
�

Ĥ ′2âD’+2[α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

. (B.12)

Then, if we use the identity Ĥ ′[A, Ĥ ′] + [A, Ĥ ′]Ĥ ′ = [A, Ĥ ′2] = 0 as Ĥ ′2 = 1, we obtain that

IM = −i g/2
D’
∑

j=0

(−1) j
∫

Tr
�

Ĥ ′(Ĥ ′âD’+2 + (−1)D’+1âD’+2Ĥ ′)[α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

= i g/2
D’
∑

j=0

(−1) j
∫

Tr
�

Ĥ ′[âD’+2, Ĥ ′][α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

, (B.13)

as D’+1= DM+2 D⊥+1 is odd as we are in the case where DM is even.
Using the cyclicity of the trace, and the anti-commutation relation, we can show that

IM =
i g

2(D’+2)

∑

j+k≤D’

(−1) j
∫

Tr
�

Ĥ ′[α̂, Ĥ ′]k[âD’+2, Ĥ ′][α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− j−kθ̂Γ

− Ĥ ′[α̂, Ĥ ′]k[âD’+1, Ĥ ′][α̂, Ĥ ′] j[âD’+2, Ĥ ′][α̂, Ĥ ′]D’− j−kθ̂Γ
�

, (B.14)

which is an anti-symetrised sum over all possible position of the operator âD’+1 and âD’+2 in
the product with a sign depending of the permutation. So in fact we have an anti-symetrised
sum over the D’+2 components of â j

IM =
−i g

2(D’+2)
Tr
�

Ĥ ′[α, Ĥ ′]D’+2θ̂Γ
�

. (B.15)

In a more detailed way, we can see that by decomposing the above expression using (B.2)
and then depending on which jm is equal to D’+1 or D’+2. We denote the n the m for which
jm = D’+1 and n′ the one for which jm = D’+2. We then have that

∫

Tr
�

Ĥ ′[α̂, Ĥ ′]D’+2θ̂Γ
�

=
D’+2
∑

j1,..., jD’+2=1

∑

n,n′
δ jn,D’+1δ jn′ ,D’+2ε j1,..., jD’+2

∫

Tr

�

Ĥ ′
D’+2
∏

m=1

[a jm , Ĥ ′]θ̂Γ

�

, (B.16)

that we decompose in two cases depending on if we have n< n′ or n′ > n. If n< n′, we have
that

ε j1,..., jn=D’+1,..., jn′=D’+2,..., jD’+2
= (−1)D’+2−n′(−1)D’+1−nε j1,..., jD’+2,D’+1,D’+2 ,
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where jn and jn′ are now omitted in the notation j1, . . . , jD’+2 in the expression
ε j1,..., jD’+2,D’+1,D’+2, so up to a relabeling we can denote them as j1, . . . , jD’ with
ε j1,..., jD’,D’+1,D’+2 = ε j1,..., jD’

. Moreover we have that

(−1)D’+2−n′(−1)D’+1−n = −(−1)−n′−n = −(−1)n
′−n ,

so

D’+2
∑

j1,..., jD’+2=1

∑

n<n′
ε j1,..., jn=D’+1,..., jn′=D’+2,..., jD’+2

∫

Tr

�

Ĥ ′
D’+2
∏

m=1

[a jm , Ĥ ′]θ̂Γ

�

(B.17)

= −
D’
∑

j1,..., jD’=1

∑

n<n′
(−1)n

′−nε j1,..., jD’

∫

Tr

�

Ĥ ′
n
∏

m=1

[a jm , Ĥ ′][âD’+1, Ĥ ′]

×
n′
∏

m=n+1

[a jm , Ĥ ′][âD’+2, Ĥ ′]
D’
∏

m=n′+1

[a jm , Ĥ ′]θ̂Γ

!

= −
∑

n<n′
(−1)n

′−n

∫

Tr
�

Ĥ ′[α, Ĥ ′]n[âD’+1, Ĥ ′][α, Ĥ ′]n
′−n[âD’+2, Ĥ ′][α, Ĥ ′]D’−n′ θ̂Γ

�

,

which up to the substitution n= k and n′ − n= j is just the second term of (B.14).
Similarly, for n> n′ we have that

D’+2
∑

j1,..., jD’+2=1

∑

n>n′
ε j1,..., jn=D’+1,..., jn′=D’+2,..., jD’+2

∫

Tr

�

Ĥ ′
D’+2
∏

m=1

[a jm , Ĥ ′]θ̂Γ

�

=
∑

n<n′
(−1)n

′−n

∫

Tr
�

Ĥ ′[α, Ĥ ′]n
′
[âD’+2, Ĥ ′][α, Ĥ ′]n−n′[âD’+2, Ĥ ′][α, Ĥ ′]D’−n′ θ̂Γ

�

,

(B.18)

which is the first term of (B.14). The sign difference come from the fact that the index
jn′ = D’+2 now appear before the index jn = D’+1 in the Levi-Civita tensor ε j1,..., jD’+2

and
so we need to exchange their order to obtain ε j1,..., jD’,D’+1,D’+2 creating an additional sign.

Now that we know that

IM =
−i g

2(D’+2)
Tr
�

Ĥ ′[α, Ĥ ′]D’+2θ̂Γ
�

, (B.19)

we just need to check the prefactor which is

−i g
2(D’+2)

=
−i bDM+2D⊥(2π)

D⊥

4(DM /2+D⊥+1)
= bDM+2(D⊥+1)(2π)

D⊥+1 , (B.20)

so we have obtained the wanted form of (B.1) for D⊥+1 which complete the proof in the chiral
case.

B.2 DM odd, Ĥ non-chiral

We start for the expression of the non-chiral mode index for D⊥

IM = g

∫

Tr
�

Ĉ Ĥ ′[α̂, Ĥ ′]D’θ̂Γ
�

, (B.21)

with the prefactor coefficient g = aD’(2π)D⊥ and where D’= DM+2D⊥.
If we introduce the canonical conjugate operators associated with the new dimension. So,

for a continuous dimension, âD’+1 = i xD⊥+1 and âD’+2 = ∂xD⊥ +1
and, for a discrete dimension,

40

https://scipost.org
https://scipost.org/SciPostPhys.18.6.193


SciPost Phys. 18, 193 (2025)

âD’+1 = −iT †
D⊥+1n̂D⊥+1 and âD’+2 = TD⊥+1. In both cases, we have the commutation relation

[âD’+1, âD’+2] = −i1. So we have that

IM = i g

∫

Tr
�

Ĉ[âD’+1, âD’+2]Ĥ
′[α̂, Ĥ ′]D’θ̂Γ
�

. (B.22)

We then “integrate by parts” the commutator using the identity

Tr([A, B]C) =((((((Tr([A, BC])− Tr(B[A, C]) = −Tr(B[A, C]) ,

to obtain that

IM = −i g

∫

Tr
�

Ĉ âD’+2

�

âD’+1, Ĥ ′[α̂, Ĥ ′]DM+2D⊥−2
�

θ̂Γ
�

, (B.23)

and then expand the commutator with the product using the identity [AB, C]=[A, C]B+A[B, C]
which gives us

IM = −i g

∫

Tr
�

Ĉ âD’+2[âD’+1, Ĥ ′][α̂, Ĥ ′]D’θ̂Γ
�

− i g

∫ D’
∑

j=1

Tr
�

Ĉ âD’+2Ĥ ′[α̂, Ĥ ′] j−1[α̂, [âD’+1, Ĥ ′]][α̂, Ĥ ′]D’− jθ̂Γ
�

.
(B.24)

To continue we use the property that α[α, Ĥ ′] + [α, Ĥ ′]α = [α2, Ĥ ′] = 0 as α2 leads to anti-
symetrised product [âm, ân] which either vanishes or are proportional to the identity (when
the variables are conjugates). therefore it commutes with Ĥ ′. This leads to the identity

[α, Ĥ ′] jα= (−1) jα[α, Ĥ ′] j , (B.25)

that we can use, together with the cyclicity of the trace and that ε j1, j2,..., jD’
= +ε jD’, j1,..., jD’−1) (as

D’ is odd), to show that

IM = −i g

∫

Tr
�

Ĉ âD’+2[âD’+1, Ĥ ′][α̂, Ĥ ′]D’θ̂Γ
�

− i g

∫ D’
∑

j=1

(−1) j Tr
�

Ĉ âD’+2[α̂, Ĥ ′][α̂, Ĥ ′] j−1[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

,
(B.26)

that we can regroup into a single sum

IM = −i g
D’
∑

j=0

(−1) j
∫

Tr
�

Ĉ âD’+2[α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

. (B.27)

Then we can insert the identity Ĥ ′2 = 1 in such expression to obtain

IM = −i g
D’
∑

j=0

(−1) j
∫

Tr
�

Ĉ Ĥ ′2âD’+2[α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

. (B.28)

Then if use the identity Ĥ ′[A, Ĥ ′] + [A, Ĥ ′]Ĥ ′ = [A, Ĥ ′2] = 0 as Ĥ ′2 = 1, we obtain that

IM = −i g/2
D’
∑

j=0

(−1) j
∫

Tr
�

Ĉ Ĥ ′(Ĥ ′âD’+2 + (−1)D’+2âD’+2Ĥ ′)[α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

= i g/2
D’
∑

j=0

(−1) j
∫

Tr
�

Ĉ Ĥ ′[âD’+2, Ĥ ′][α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− jθ̂Γ
�

, (B.29)
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as D’+2= DM+2 D⊥+2 is odd as we are in the case where DM is odd.
Using the cyclicity of the trace, and the anti-commutation relation, we can show that

IM =
i g

2(D’+2)

∑

j+k≤D’

(−1) j
∫

Tr
�

Ĉ Ĥ ′[α̂, Ĥ ′]k[âD’+2, Ĥ ′][α̂, Ĥ ′] j[âD’+1, Ĥ ′][α̂, Ĥ ′]D’− j−kθ̂Γ

− Ĉ Ĥ ′[α̂, Ĥ ′]k[âD’+1, Ĥ ′][α̂, Ĥ ′] j[âD’+2, Ĥ ′][α̂, Ĥ ′]D’− j−kθ̂Γ
�

, (B.30)

which is an anti-symetrised sum over all possible position of the operator âD’+1 and âD’+2 in
the product with a sign depending of the permutation. So in fact we have an anti-symetrised
sum over the D’+2 components of â j

IM =
−i g

2(D’+2)
Tr
�

Ĉ Ĥ ′[α, Ĥ ′]D’+2θ̂Γ
�

. (B.31)

The pre-factor coefficient is therefore

−i g
2(D’+2)

=
−iaDM+2D⊥(2π)

D⊥

2(DM+2D⊥+2)
= aDM+2(D⊥+1)(2π)

D⊥+1 , (B.32)

so we have obtained the wanted form of (B.1) for D⊥+1 which complete the proof in the chiral
case.

C Mode indices without partial semi-classical approximation

In the main text, we construct mode topological indices of Hamiltonian H(λi) depending of DM
independent parameters λi . In many important cases, those parameters are wavenumbers in
the directions where the gapless mode is delocalised. For example, we discussed that the mode
index describing the existence of unidirectional gapless modes at the edges of a 2D topological
insulator can be expressed as

IM =
1

4πi

∫

dky Tr
�

Ĥ ′(ky)∂ky
Ĥ ′(ky)θ̂Γ (x)
�

, (C.1)

where y is the direction parallel to the edge and the cut-off θ̂Γ (x) selects the gapless mode
confined in the orthogonal direction x .

In this expression, Ĥ ′(ky) is a partial Wigner-Weyl transform of the full operator Ĥ ′ on the
2D lattice. A Wigner-Weyl transform is performed only in the y direction, while the x direc-
tion is left unchanged. This expression is particularly meaningful when the original operator
Hamiltonian Ĥ is invariant by translation in the y direction, so that Ĥ(ky) is nothing but its
Fourier transform in y , but also if it varies slowly in the y direction.12 This is a problem for
studying disordered systems where slow variations are not necessarily assumed.

The goal of this appendix is to provide another formulation of the mode indices within the
full operator picture, such that it could be applied to disordered systems. The general principle
is to replace every derivative of Ĥ ′(k) in a wavenumber direction k j by a commutator with an
operator θ̂x j

which is diagonal in position and goes from zero to one in x j (see figure 15)
together with a 2πi prefactor.

1
2πi

∂k j
Ĥ ′(k) −→ [θ̂x j

, Ĥ ′(k)] . (C.2)

12Note that we only need this to be true in the y direction. Near the edge, the Hamiltonian varies strongly in the
x direction which is a typical situation where semi-classical limit is not possible. However this is not a problem as
we work in the operator formalism in that direction and do not rely on Wigner-Weyl transform in x .
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Figure 15: Example of a possible function θx that could be used to generate the
operator θ̂x .

For example, applying this substitution for the 1D-mode index (C.1) in the case of a topo-
logical insulator (where it represents an edge index), we obtain

IM ≡ Iedge =
1
2

Tr
�

Ĥ ′[θ̂y , Ĥ ′]θ̂Γ (x)
�

. (C.3)

Several important features characterize this expression. First, these indices are defined at the
operator level without requiring semi-classical approximations, making them applicable to
disordered systems. Second, when semi-classical approximations hold in the y-direction, the
commutator reduces to a Poisson bracket: [θ̂y , Ĥ ′] → i{θy(y), Ĥ ′(ky)} = iδyθy∂ky

Ĥ ′, and

the trace becomes Tr→ 1
2π

∑

y

∫

dky Tr, where the inner trace acts only on the partial symbol.
Integrating over y using

∑

y δyθy = 1 demonstrates that this expression reduces to the mode
index (C.1) in the semi-classical limit.

The corresponding shell/bulk index is meanwhile given by

IS ≡ Ibulk =
π

2
Tr
�

ĤF [θ̂y , ĤF ][θ̂Γ (x), ĤF ]
�

. (C.4)

Following the same procedure, a so-called non-commutative version of the other mode in-
dices discussed in the main text for symmetry classes A and AIII in arbitrary dimension can
then be obtained and reads

IM =















aDM
(i2π)DM

∫

Tr
�

σ̂z Ĥ ′[α̂, Ĥ ′]DM θ̂Γ
�

, Ĥ in class A , DM odd,

bDM
(i2π)DM

∫

Tr
�

Ĥ ′[α̂, Ĥ ′]DM θ̂Γ
�

, Ĥ in class AIII , DM even,
(C.5)

where differentials dĤ ′ =
∑

j ∂k j
Ĥ ′dk j of equations (44) are replaced by commutators

[α̂, Ĥ ′] =
∑

j[θ̂x j
, Ĥ ′]dk j .

Note that the two formulations, in terms of commutators [θ̂x j
, Ĥ ′] or with derivatives ∂k j

Ĥ ′,
similarly both verify a Leibniz rule (∂ (AB) = (∂ A)B + A(∂ B) and [C , AB] = [C , A]B + A[C , B])
and vanish when traced out/integrated (

∫

Tr(∂ (A)) = 0 and Tr([C , A]) = 0). Therefore, any
results obtained for the mode indices (44) after a partial Wigner-Weyl transform, as defined in
the main text, are also consistently obtained with the more general mode indices (C.5). Also,
the corresponding shell indices can be shown to read

IS=







−bDM−1(i2π)
DM

∫

�

Tr
�

ĤF [α̂, ĤF ]
DM−1dθ̂Γ
�

+Tr
�

ĤF [α̂, ĤF ]
DM[θ̂Γ , ĤF ]
��

, class A , DM odd,

−aDM−1(i2π)
DM

∫

�

Tr
�

Ĉ ĤF [α̂, ĤF ]
DM−1dθ̂Γ
�

+Tr
�

Ĉ ĤF [α̂, ĤF ]
DM[θ̂Γ , ĤF ]
��

, class AIII , DM even.
(C.6)

Example: Disordered Qi-Wu-Zhang model Let us now illustrate this formalism by applying
it to a disordered version of the Qi-Wu-Zhang model discussed in section 3.2. The Hamiltonian
reads

Ĥ(ky) = σz

�

M(x) + (Tx + T †
x )/2+ (Ty + T †

y )/2
�

+σx(Tx + T †
x )/2+σy(Ty + T †

y )/2 , (C.7)

43

https://scipost.org
https://scipost.org/SciPostPhys.18.6.193


SciPost Phys. 18, 193 (2025)

Figure 16: Convergence of topological invariants in a disordered QWZ model. Edge
(red) and bulk (blue) invariants are plotted versus the system’s size for a square
lattice with open boundary condition. The model has a fixed mass M0 = 1 and onsite
disorder strength δ = 0.2. Exponential convergence to identical quantized values
demonstrates the robustness of the mode-shell correspondence against disorder.

Figure 17: Spectrum of the Hamiltonian ĤDirac-JR. The model has one Dirac cones
while the other bands are gapped.

where we introduce a disordered mass term M(x) = M0 + δε(x), where M0 represents the
constant mass term and δε(x) denotes the disorder amplitude with values uniformly sampled
from [0,δ] at each lattice site, thereby breaking translation invariance. While this disorder
prevents semi-classical analysis, the generalized expressions for the mode invariant (C.3) and
bulk invariant (C.4) remain numerically computable. Our implementation demonstrates that
both invariants converge exponentially to identical quantized values with increasing system
size, even in the presence of disorder (see Fig. 16). The numerical implementation is available
at https://github.com/ljezeq/Code-Mode-shell-correspondence.

D Dirac/Weyl cones at interfaces of continuous system

In this appendix, we study models hosting Dirac cones which are confined in position space.
For that purpose, we consider a few continuous models which tend to be simpler to analyse
than their lattice counterpart discussed. A model with Dirac cones confined in position can
be obtained from the additive construction by combining a Dirac/Weyl Hamiltonian with a
Jackiw-Rebbi Hamiltonian which confines the mode in the new direction.
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Example: 3D model with a Dirac cone confined at an interface For the Dirac case, the
additive construction gives the Hamiltonian

ĤDirac-JR = ĤDirac ⊞ ĤJR,z = kx ⊞ ky ⊞ ĤJR,z

=







0 kx − iky z − ∂z 0
kx + iky 0 0 z − ∂z
z + ∂z 0 0 −kx + iky

0 z + ∂z −kx − iky 0






.

(D.1)

Since this model is obtained from an additive construction, we know that its eigenvalues
are of the form

q

k2
x + k2

y +λ2
n where λn are the eigenvalues of the Jackiw-Rebbi model (see

figure 17). Besides, since this model has a zero-mode ψ0 = (exp
�

−z2/2
�

, 0)T with λ0 = 0, it
follows that the model ĤDirac-JR has a Dirac cone centered in (kx , ky) = (0,0) and near z ∼ 0.
In particular, the reduced Hamiltonian for modes of the form ψ(kx , ky)⊗ψ0 is just the Dirac
Hamiltonian ĤDirac of positive chirality. So, the mode index of this model is Imodes = 1.

The shell index is, meanwhile, the higher winding number on the 3-sphere
k2

x + k2
y + z2 + k2

z = Γ
2 of the symbol

HDirac-JR =







0 kx − iky z − ikz 0
kx + iky 0 0 z − ikz
z + ikz 0 0 −kx + iky

0 z + ikz −kx − iky 0






. (D.2)

This symbol Hamiltonian is similar to the Jackiw-Rossi model we studied in the first example
of section 4.3 of part I [1]. Therefore, we know that the shell index is IS =W3(HF ) = 1. As a
consequence, the mode-shell correspondence is verified.

4D model with a Weyl cone confined at an interface For the Weyl case, the additive con-
struction provides the Hamiltonian

ĤWeyl-JR = ĤWeyl ⊞ ĤJR,u = kx ⊞ ky ⊞ kz ⊞ ĤJR,u

=







kz kx − iky u− ∂u 0
kx + iky −kz 0 u− ∂u
u+ ∂u 0 −kz −kx + iky

0 u+ ∂u −kx − iky kz






.

(D.3)

Since this model is obtained from an additive construction, we know that its eigenvalues
are of the form

q

k2
x + k2

y + k2
z +λ2

n where λn are the eigenvalues of the Jackiw-Rebbi model

(see figure 17). Besides, since this model has a zero- mode ψ0 = (exp
�

−u2/2
�

, 0)T with
λ0 = 0, the model ĤWeyl-JR has a Weyl cone centered in (kx , ky , kz) = (0, 0) and near u∼ 0. In
particular, the reduced Hamiltonian for modes of the form ψ(kx , ky , kz)⊗ψ0 is just the Weyl
Hamiltonian ĤWeyl of positive chirality. So, the mode index of this model is Imodes = 1.

In addition, the shell index is the higher winding number on the 4-sphere
k2

x + k2
y + k2

z + u2 + k2
u = Γ

2 of the symbol

HWeyl-JR =







kz kx − iky u− iku 0
ku + iku −kz 0 u− iku
u+ iku 0 −kz −ku + iku

0 u+ iku −kx − iky kz






. (D.4)

This symbol Hamiltonian is similar to the model for the higher-order topological phase
with spectral flow we studied in section 3.5.1. Therefore, we know that the shell index is
IS = C4(HF ) = 1. As a consequence, the mode-shell correspondence is verified.
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