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Abstract

We study fermionic non-invertible symmetries in (1+1)d, which are generalized global
symmetries that mix fermion parity symmetry with other invertible and non-invertible in-
ternal symmetries. Such symmetries are described by fermionic fusion supercategories,
which are fusion π-supercategories with a choice of fermion parity. The aim of this paper
is to flesh out the categorical Landau paradigm for fermionic symmetries. We use the for-
malism of Symmetry Topological Field Theory (SymTFT) to study possible gapped and
gapless phases for such symmetries, along with possible deformations between these
phases, which are organized into a Hasse phase diagram. The phases can be charac-
terized in terms of sets of condensed, confined and deconfined generalized symmetry
charges, reminiscent of notions familiar from superconductivity. Many of the gapless
phases also serve as phase transitions between gapped phases. The associated fermionic
conformal field theories (CFTs) can be obtained by performing generalized fermionic
Kennedy-Tasaki (KT) transformations on bosonic CFTs describing simpler transitions.
The fermionic non-invertible symmetries along with their charges and phases discussed
here can be obtained from those of bosonic non-invertible symmetries via fermionization
or Jordan-Wigner transformation, which is discussed in detail.
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1 Introduction

Over the past few years, there has been a lot of interest in understanding generalized global
symmetry structures [1] involving non-invertible or categorical symmetries [2–157], see e.g.
[36,93,100,158–160] for recent reviews. Various applications of these symmetries have been
proposed. This paper explores applications of generalized symmetries to understand possible
gapped and gapless phases of quantum systems. We focus on finite non-invertible symme-
tries in 1+1 spacetime dimension. In [2–6], this program has been carried out for bosonic
non-invertible symmetries, which are described by fusion categories [10–12, 161]. Here we
extend their analysis to fermionic non-invertible symmetries, which are non-invertible sym-
metries involving a Z f

2 fermion parity symmetry generated by (−1)F (which is taken to be
non-anomalous with the gravitational anomaly being 0 mod 16). As we will discuss, such
symmetries are described by fusion π-supercategories with a choice of fermion parity.

We will see that the structure of phases for both fermionic and bosonic symmetries is sim-
ilar, and can be summarized as follows. Let S be a bosonic or fermionic symmetry in (1+1)d.
Local operators may form various representations of S,1 which we refer to as charges of S. The
set of charges is labeled as Z(S). Two operators with charges q1, q2 ∈ Z(S) may be mutually
non-local, i.e. their correlation function may shift when one of them is transported in a circle
around the other. The mutual non-locality is a function only of q1 and q2, independent of the
precise identity of the operators involved. Now, a gapped/gapless phase P with symmetry S
is characterized by a subset QP ⊂ Z(S), which are the charges of operators condensed in the
phase P . Note that the charges in QP must all be mutually local. Just like in the Meissner
effect, any operator with a charge mutually non-local with some charge in QP gets confined
and is invisible in the infrared (IR). On the other hand, any charge not in QP and mutually
local with all charges in QP remains deconfined.

Let us label the set of deconfined charges in phase P as DP . The deconfined charges are
the charges that must be carried by gapless excitations in phase P . As long as we perform S-
symmetric deformations on a system in phase P without condensing or uncondensing charges,
we cannot gap out all excitations with a charge q ∈ DP . Consequently, a gapped phase is a
phase P having no deconfined charges DP = 0. In such a phase all gapless excitations are
uncharged and hence can be gapped out via S-symmetric deformations.

Starting from an arbitrary phase P , we can further condense a subset QP ′,P ⊂ DP
of charges to deform the phase P to a phase P ′ for which the condensed charges are

1More precisely, at least in the bosonic case, point-like operators form representations of the tube algebra of
S [2,7,92].
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QP ′ = QP ∪ QP ′,P and the set of deconfined charges DP ′ is the subset of DP which is mu-
tually local with QP ′,P . In this way, all possible gapped/gapless phases with symmetry S and
possible S-preserving deformations between them are captured [5, 162], which can be ar-
ranged into a phase diagram that is partially ordered, or in other words, a Hasse diagram [6].
The partial order describes various possible sequential condensation patterns of charges.

Some of the gapless phases may be viewed as certain transitions between other gapped and
gapless phases. For example, if a gapless phase can be deformed to two gapped phases, then it
can act as a transition between the two gapped phases. As discussed in [5] for the bosonic case,
some of these transitions can be described by degenerate gapless states (or universes) in the
IR, with each gapless state described by either a well-known conformal field theory (CFT) like
Ising CFT or 3-state Potts CFT, or a CFT obtained by gauging a discrete symmetry of these CFTs.
Here in the fermionic case we will find that some such transitions can be described similarly
by degenerate gapless states, with each gapless state described either by a well-known bosonic
CFT like Ising or 3-state Potts, or a fermionic CFT [163–166] like the Majorana CFT, or finite
gaugings/bosonizations/fermionizations thereof.

In this way, the essential input for understanding phases and transitions for S symmetry
boils down to the set of charges for S and their mutual (non-)locality properties. For a bosonic
symmetry S, it was understood in [2, 7, 92] that the corresponding charges can be identified
with anyons of a bosonic (2+1)d topological field theory (TFT) Z(S) associated to S, which
is referred to as the Symmetry TFT (SymTFT) for S [167]. The mutual (non-)locality proper-
ties of the charges are encoded in the mutual braidings of these anyons. Mathematically the
anyons and their braidings are described by a modular tensor category (MTC) Z(S) referred
to as the Drinfeld center of S. The possible sets QP of condensed charges are encapsulated
mathematically as possible condensable algebras AP in the category Z(S) [162], using which
gapped and gapless phases P for symmetry S were studied in [3–6]. A deformation from a
phase P1 to a phase P2 is possible only if the first condensable algebra is a subalgebra of the
second AP1

⊂AP2
. Here, a deformation is an S-symmetric perturbation that does not close the

energy gap of S-charges, i.e., gapped degrees of freedom with S-charges remain gapped under
deformations. A gapped phase P corresponds to a condensable algebra AP that is Lagrangian
(or maximal).

In this paper, we observe that the charges for a fermionic symmetry S = S f are also en-
coded in a bosonic (2+1)d TFT. In other words, just as for bosonic symmetries, the SymTFT
Z(S f ) for a fermionic symmetry S f is also a bosonic TFT. This has been proposed for gen-
eral non-invertible symmetries in [168]. For invertible fermionic symmetries, this has been
proposed and studied in [8]. Returning to the general non-invertible case, the anyons of the
SymTFT may be viewed as forming the Drinfeld center Z(S f ) for the fusion supercategory
S f .2 The gapped and gapless phases for fermionic symmetry S f are thus characterized by
condensable algebras in Z(S f ), and deformations between the phases are characterized by
the inclusion of condensable algebras.

A quick argument for the SymTFT of a fermionic symmetry being bosonic is as follows.
Since we take the fermion parity to be non-anomalous, we can always bosonize (or perform
GSO orbifolding) using it.3 This converts the fermionic (non-invertible) symmetry S f to a
bosonic (non-invertible) symmetry S, for which the SymTFT Z(S) is bosonic. Now recall that
gauging of bosonic symmetries does not modify SymTFT [8]. Since bosonization is analogous
to gauging [171–175], we do not expect it to modify the SymTFT either, hence leading to the
conclusion Z(S f ) = Z(S).

2Precisely, the Drinfeld center Z(S f ) contains a transparent fermion in addition to anyons of the SymTFT. In
other words, Z(S f ) describes the bosonic SymTFT stacked with a trivial fermionic TFT, see Section 3 for more
details.

3Here, we suppose that the gravitational anomaly vanishes mod 16. When the gravitational anomaly vanishes
only mod 8, gauging the fermion parity symmetry leads to another fermionic system [8,169,170].
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A consequence of the above is that all the gapless and gapped phases, and transitions, for a
fermionic symmetry S f are fermionizations of the gapless and gapped phases, and transitions,
for the bosonized symmetry S. That being said, the fermionization/bosonization procedure
may not be straightforward to implement. The fermionization procedure for general non-
invertible symmetries was discussed in detail in [9]. Here we extend that analysis to describe
how the fermionization procedure is implemented on the phases.

The paper is organized as follows. In Section 2, we discuss the general structures of
fermionic non-invertible symmetries in 1+1d, which are described by fusionπ-supercategories
with a choice of fermion parity. We will see that the choice of a fermion parity in a fermionic
π-superfusion category is affected by stacking a 2d fermionic invertible TFT known as the Arf
TFT. We also discuss how the fermionic symmetries are obtained as fermionizations of bosonic
non-invertible symmetries described by ordinary fusion categories. In Section 3, we develop a
general framework of the symmetry TFT for fermionic non-invertible symmetries. It turns out
that the symmetry TFT for a fermionic non-invertible symmetry is a bosonic TFT that admits
a fermionic topological boundary. Such fermionic boundaries are characterized by fermionic
Lagrangian algebras up to stacking with the Arf TFT. In Section 4, we discuss generalized
charges of fermionic non-invertible symmetries. As in the case of bosonic symmetries, gener-
alized charges are labeled by anyons of the symmetry TFT. Their structure can be obtained by
fermionizing the charges for bosonic symmetries. In Section 5, we apply the symmetry TFT
construction to study fermionic gapped and gapless phases with fermionic symmetries. We
also discuss phase transitions between these fermionic phases. We describe how these phases
and transitions can be obtained by fermionizing phases and transitions for bosonic symmetries.

Note added: While nearing completion of this paper, we became aware of a related work
[149], which studies the symmetry TFTs for 1+1d fermionic systems with finite invertible (i.e.,
group-like) symmetries. We also learned that there is another related paper [176], which
has some overlaps with our results. The symmetry TFTs for fermionic symmetries are also
discussed from the point of view of 4d Crane-Yetter TFT and the 4-category of braided fusion
categories in [177,178].

2 Fermionic symmetries in 1+1 dimensions

In this section, we describe the general structure of finite non-invertible symmetries of 1+1d
fermionic systems. In particular, we clarify that such a symmetry is described by a fusion
π-supercategory with a choice of fermion parity. This is analogous to the fact that finite non-
invertible symmetries of 1+1d bosonic systems are described by fusion categories [10–12,
161]. The bosonic and fermionic symmetries are related by operations of fermionization and
bosonization. An interesting feature of fermionic symmetries is that they appear in pairs re-
lated by stacking with the 2d fermionic invertible TFT known as the Arf TFT.

2.1 Fusion supercategories

Let us begin with a brief review of fusion supercategories. For more details of fusion supercat-
egories, we refer the reader to [179–182]. See also [9,17,49,183,184] for these symmetries
in the context of two-dimensional quantum field theories.

A fusion supercategory S consists of topological lines and topological point-like defects
between topological lines. A trivial (i.e., invisible or identity) line is denoted by 1, while a
trivial point-like defect on a topological line X is denoted by 1X . Topological point-like defects
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between topological lines X and Y form a finite dimensionalC-vector space,4 which is denoted
by Hom(X , Y ). The vector space Hom(X , Y ) is equipped with a Z2-grading that represents the
fermion parity of point-like defects. The Z2-grading of f ∈ Hom(X , Y ) is denoted by | f |, which
is 0 if f is bosonic and 1 if f is fermionic. This Z2-grading is compatible with the fusion of
point-like defects in the sense that

|g ◦ f |= | f |+ |g| mod 2 , (1)

for any homogeneous f ∈ Hom(X , Y ) and g ∈ Hom(Y, Z).5 Note that 1X is bosonic for all X .
A point-like defect f ∈ Hom(X , Y ) is called an isomorphism if there exists a point-like defect
f −1 ∈ Hom(Y, X ) such that f −1 ◦ f = 1X and f ◦ f −1 = 1Y . We note that an isomorphism f
can be either bosonic or fermionic. When there is an isomorphism between topological lines
X and Y , we say that X and Y are isomorphic to each other and write X ∼= Y . In the study of
fermionic symmetries, it is often useful to track objects only up to bosonic isomorphism.

The fusion of topological lines X and Y defines a tensor product X ⊗ Y . This tensor prod-
uct is compatible with the Z2-grading of point-like defects living on topological lines. More
specifically, the Z2-grading of a point-like defect f ⊗ g ∈ Hom(X ⊗ X ′, Y ⊗ Y ′) is given by

| f ⊗ g|= | f |+ |g| mod 2 , (2)

for any homogeneous f ∈ Hom(X , X ′) and g ∈ Hom(Y, Y ′). Here, the tensor product f ⊗ g of
point-like defects is defined by

f ⊗ g := ( f ⊗ 1Y ′) ◦ (1X ⊗ g) = (−1)| f ||g|(1X ′ ⊗ g) ◦ ( f ⊗ 1Y ) , (3)

where the sign (−1)| f ||g| encodes the anti-commutation relation of fermionic point-like defects.
Pictorially, this fermionic anti-commutation relation can be depicted as

= (−1)| f ||g| . (4)

Any topological line in a fusion supercategory can be decomposed into a finite direct sum
of indecomposable topological lines. The space Hom(x , x) of topological point-like defects on
an indecomposable topological line x is isomorphic to either C1|0 or C1|1, where Cp|q denotes
the (p+q)-dimensional super vector space of superdimension (p, q). An indecomposable topo-
logical line x is called an m-type line if Hom(x , x) is isomorphic to C1|0 [181], i.e. if x cannot
have a fermionic point-like defect on it. On the other hand, an indecomposable topological
line x is called a q-type line if Hom(x , x) is isomorphic to C1|1 [181], i.e. if x can have a
fermionic point-like defect on it. We note that the trivial line 1 is m-type.

The fusion of indecomposable topological lines x and y can be decomposed as

x ⊗ y ∼=
⊕

z
N z

x yz , N z
x y ∈ Z≥0 , (5)

where the direct sum on the right-hand side is taken over (representatives of isomorphism
classes of) indecomposable topological lines. Here, the number of (isomorphism classes of)
indecomposable topological lines is supposed to be finite. The equation (5) is known as the
fusion rules. The fusion x⊗ y of topological lines x and y is also denoted as x y in subsequent
sections. In this paper, we write fusion rules up to bosonic isomorphisms unless otherwise
stated. Furthermore, bosonic isomorphisms will also be written simply as an equality by abuse
of notation.

4In this paper, all vector spaces are C-vector spaces.
5A point-like defect is said to be homogeneous if it has a definite Z2-grading.
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A network of topological lines can be locally deformed by using the F -move defined by

=
∑

v

∑

ρ,σ

(F x yz
w )(u;µ,ν),(v;ρ,σ) , (6)

where (F x yz
w )(u;µ,ν),(v;ρ,σ) is a complex number called the F -symbol. The first summation on

the right-hand side of eq. (6) is taken over representatives of isomorphism classes of simple
objects, while the second summation is taken over bases of the spaces of topological point-like
defects. Precisely, the left-hand side of eq. (6) is an element of a vector space

V x yz
w
∼=
⊕

u
Hom(u, x ⊗ y)⊗Hom(u,u) Hom(w, u⊗ z) , (7)

while the right-hand side of eq. (6) is an element of

V x yz
w
∼=
⊕

v
Hom(w, x ⊗ v)⊗Hom(v,v) Hom(v, y ⊗ z) . (8)

The tensor product over Hom(u, u) and Hom(v, v) is implicit in the diagrams, see [181, Sec-
tion 8] for more details.6 The F -symbols have to satisfy the consistency condition known as
the fermionic pentagon identity [180–182], which is the fermionic analogue of the ordinary
pentagon identity, where the fermionic anti-commutation relation (4) is taken into account.

Another important property of a topological line is that it can be bent freely to the left and
right. This implies that the pair (x , x∗) of a topological line x and its orientation reversal x∗

is equipped with bosonic topological point-like defects called the evaluation and coevaluation
morphisms, which are denoted by evL/R

x and coevL/R
x in the following diagrams:

, , , . (9)

These point-like defects enable us to define the quantum dimension of each topological line
as follows:

dim(x) = = . (10)

The quantum dimension is a topological point-like defect on the trivial line 1, which can be
canonically identified with a complex number because we have Hom(1,1) = C. In this paper,
we suppose that the left and right quantum dimensions agree with each other as in eq. (10),
i.e., we suppose that a fusion supercategory is spherical.

We note that a topological defect may or may not be isomorphic to its orientation rever-
sal. A topological defect x is said to be self-dual if it is isomorphic to its orientation reversal
x∗. When x is a self-dual m-type topological line, the isomorphism x ∼= x∗ is unique up to
scalar multiplication. This isomorphism can be either bosonic or fermionic. An example of a
fermionic symmetry that has a self-dual m-type line x with a fermionic isomorphism x ∼= x∗ is
a Z2 ×Z

f
2 symmetry with a Gu-Wen anomaly, which we will encounter later.

2.2 Fermionic fusion supercategories

Any fermionic system has a Z2 symmetry called a fermion parity symmetry Z f
2 , which we

suppose to be non-anomalous in this paper. In addition, any fermionic system in 1+1d has
another “Z2 symmetry” denoted by Zπ2 , which is generated by a 0+1d fermionic invertible

6This complication does not play any role in this paper.

7

https://scipost.org
https://scipost.org/SciPostPhys.18.6.194


SciPost Phys. 18, 194 (2025)

topological field theory (i.e., a quantum mechanical system).7 On the other hand, a fusion
supercategory introduced in the previous subsection does not necessarily contain both Z f

2 and
Zπ2 subgroups. This implies that not every fusion supercategory can describe the symmetry of
a fermionic system in 1+1d. Fusion supercategories realized as symmetries of 1+1d fermionic
systems will be called fermionic fusion supercategories or fermionic symmetries in this paper.
In what follows, instead of giving a precise definition of the fermionic fusion supercategory,
we discuss some basic structures that every fermionic symmetry should have. See [177, 178]
for a more precise definition of the fermionic fusion supercategory.

As mentioned above, a fermionic fusion supercategory contains a Zπ2 subgroup generated
by a 0+1d fermionic invertible TFT. Here, we recall that 0+1d fermionic invertible TFTs are
classified by Z2: the trivial class is given by a bosonic state, while the non-trivial class is
given by a fermionic state. The generator π of Zπ2 can be regarded as the worldline of a lo-
cal fermion in 0+1d, which implies that a π line can have a (topological) fermionic endpoint
Oπ ∈ Hom(1,π). This endpoint Oπ defines a fermionic isomorphism between the trivial line
1 and the π line. If we fuse a π line with an indecomposable topological line x , we obtain
another indecomposable topological line πx := π⊗ x that is isomorphic to x via a fermionic
isomorphism Oπ ⊗ 1x . When x is m-type, this is the unique (up to scalar) isomorphism be-
tween x and πx . On the other hand, when x is q-type, there is also a bosonic isomorphism
Oπ ⊗ fx , where fx ∈ Hom(x , x) is a fermionic isomorphism from x to itself. In particular, an
indecomposable topological line x is q-type if and only if there is a bosonic point-like defect
(acting as a bosonic isomorphism) between x and πx . A fusion supercategory that is equipped
with a π line is called a fusion π-supercategory [179].

In a fusion π-supercategory, the quantum dimension of any q-type object x satisfies
dim(x) ≥

p
2. This is because when x is q-type, a fermionic automorphism of x ⊗ x∗ implies

that x⊗ x∗ contains 1 and π at the same time, meaning that dim(x)2 ≥ dim(1⊕π) = 2. On the
other hand, the quantum dimension of any m-type object y satisfies dim(y)≥ 1 as in the case
of bosonic symmetries. Here, we supposed that the quantum dimensions are non-negative real
numbers, which is satisfied if the fusion (super)category is unitary.

A fermionic fusion supercategory is a fusion π-supercategory together with a choice of a
fermion parity line (−1)F .8 In this paper, we suppose that the fermion parity symmetry gen-
erated by (−1)F is non-anomalous, meaning that the F -symbols involving only (−1)F and 1
are all trivial. In particular, the isomorphism between (−1)F ⊗ (−1)F and 1 has to be bosonic
because otherwise the F -symbols cannot be trivial due to the fermionic anti-commutation re-
lation. We note that the choice of a fermion parity line (−1)F is not unique for a given fusion
π-supercategory. Specifically, if (−1)F is eligible to be a fermion parity line, π(−1)F is equally
eligible to be a fermion parity line. As we will see in Section 2.3, different choices of a fermion
parity line give rise to symmetries of different fermionic systems.

The fermion parity line (−1)F and the π line has a canonical junction J between them.
This junction is specified by the condition that (−1)F acts as −1 on the fermionic endpoint
Oπ:

= (−1) . (11)

7In most of the literature, Zπ2 is not regarded as the symmetry of a 1+1d fermionic system. This is presumably
because the action of Zπ2 is almost trivial. Nevertheless, it turns out that Zπ2 plays a crucial role in the description
of fermionic symmetries. We will further comment on this point later.

8The choice of a fermion parity line is not arbitrary. For example, in the case of invertible symmetries, (−1)F

should generate a central Z f
2 subgroup. Even in the case of more general non-invertible symmetries, the fermion

parity subgroup Z f
2 has to be central in an appropriate sense [177,178].
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More explicitly, the canonical junction J can be written as

= (−1) . (12)

The action of the π line on the (−1)F -twisted sector is also defined by using the same canonical
junction as follows:

= (−1) . (13)

The above equation shows that the π line acts as −1 on point-like operators in the (−1)F -
twisted sector. On the other hand, the π line acts as +1 on local or untwisted sector operators.
Equivalently, π acts as −1 on the Ramond (R) sector, while it acts as +1 on the Neveu-Schwarz
(NS) sector. This is because point-like operators living at the end of (−1)F correspond to states
in the R sector, while local operators correspond to states in the NS sector.9 The π line thus
measures the spin structure. In later sections, point-like operators living at the end of (−1)F

are sometimes called local operators in the R sector.

2.3 Stacking with Arf TFT

As already discussed briefly above, given a fermionic fusion supercategory S f with a choice of
fermion parity, we obtain another fermionic fusion supercategory eS f whose underlying fusion
π-supercategory is the same as S f but the choice of fermion parity is modified by π

(−1)F
eS f
= π(−1)FS f

. (14)

Note that S f and eS f may be equivalent fermionic symmetries, meaning that there may be a
supertensor autoequivalence of the fusion π-supercategory underlying S f that maps (−1)FS f

to π(−1)FS f
.

Given a (1+1)d fermionic systemT f with S f symmetry, there exists a closely related system
eT f which carries eS f symmetry. eT f is obtained by stacking T f with the Arf TFT

eT f = Arf⊠T f . (15)

Let us recall that the Arf TFT is an invertible 2d TFT carrying fermionic parity symmetry gen-
erated by10

(−1)FArf = π . (16)

After stacking the two systems together we modify the (−1)F to be the diagonal of the (−1)F

symmetries of the two systems, which results in the change of fermionic symmetry from S f to
eS f .

We thus say, as a figure of speech, that the fermionic symmetry eS f is obtained from the
fermionic symmetry S f by stacking with the Arf TFT and write

eS f = S f ⊠Arf . (17)
9The spin structure induced on a small circle around the end of (−1)F is R (i.e., non-bounding), while the spin

structure induced on a small circle around a local operator is NS (i.e., bounding).
10In fact, the only indecomposable topological lines (upto bosonic isomorphisms) in the Arf TFT are 1 and π.
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2.4 Fermionization and bosonization

In general, a fermionic fusion supercategory is obtained by the fermionization of a bosonic (i.e.,
ordinary) fusion category that contains a non-anomalous Z2 subgroup. This is because any
fermionic system with a non-anomalous Z f

2 symmetry can be obtained by the fermionization
of its bosonization [173–175], which has a dual non-anomalous Z2 symmetry.

Let us discuss this in more detail as it plays a crucial role in the rest of the paper. Consider
a bosonic theory T in (1+1)d with a non-anomalous Z2 symmetry. Let us call the topological
line operator implementing the Z2 symmetry by P. To fermionize this system, we first regard
the bosonic system T trivially as a fermionic system and stack the Arf TFT on top of it. The
combined system is now

Arf⊠T . (18)

We now gauge the Z2 symmetry generated by the topological line operator

(−1)FArfP = πP , (19)

of the combined system, which we label ZπP
2 . The fermionization T f of T is defined as the

theory obtained after this gauging

T f :=
Arf⊠T
ZπP

2

, (20)

with the fermionic parity symmetry implemented by

(−1)F = πη , (21)

where η = ÓπP is the topological line operator implementing the dual Z2 symmetry of the
gauged theory. This procedure implementing

T −→ T f , (22)

is referred to as fermionization in this paper. Understanding fermionization as the condensa-
tion of an algebra object 1⊕πP was first proposed in [17, Appendix G]. This fermionization
procedure can be regarded as the Jordan-Wigner transformation in a generalized sense. In-
deed, just as the traditional Jordan-Wigner transformation [185], our fermionization maps a
trivial bosonic TFT with an unbroken Z2 symmetry to a trivial fermionic TFT, while it maps a
bosonic TFT with a spontaneously broken Z2 symmetry to the Arf TFT. The inverse procedure
implementing

T f −→ T , (23)

is referred to as bosonization.
When the original bosonic system T has a fusion category symmetry S, its fermioniza-

tion T f has the corresponding fusion supercategory symmetry, which we denote by S f . The
fermionic fusion supercategory S f depends on the choice of a Z2 subgroup of S. The general
relation between S and S f was studied in [9].

Let us describe how the fermionization acts on various kinds of local operators in T: [173–
175]

1. Consider an uncharged local operator O of T in the untwisted sector of Z2 symmetry.
With respect to ZπP

2 symmetry of Arf ⊠ T, the operator O is also uncharged and un-
twisted. Under a Z2 gauging, an untwisted uncharged operator goes to an untwisted
uncharged operator for the dual Z2 symmetry. Thus, after gauging of ZπP

2 , the operator
O is uncharged under η and is in the untwisted sector of η symmetry. Equivalently, O
is uncharged under (−1)F = πη and is in the untwisted sector of (−1)F symmetry. In
other words, O becomes a bosonic operator in the NS sector of the fermionization T f .
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2. Consider a charged local operator Oe of T in the untwisted sector of Z2 symmetry. With
respect to ZπP

2 symmetry of Arf ⊠ T, the operator Oe is also charged and untwisted.
Under a Z2 gauging, an untwisted charged operator goes to an uncharged operator in
the twisted sector for the dual Z2 symmetry, i.e. it is an operator uncharged under
dual Z2 symmetry but attached to the topological line operator bP generating the dual
Z2 symmetry. Thus, after gauging of ZπP

2 , the operator Oe is uncharged under η and
is attached to η line. Equivalently, Oe is a bosonic operator attached to η line. Let us
convert it into an operator

Oπe :=Oe ⊗Oπ , (24)

obtained by fusing Oe with the topological local operator Oπ, which let us recall is the
canonical fermionic operator arising at the end of π line.

Oπe =

Oe Oπ

η π

=

Oπe

(−1)F

. (25)

The operator Oπe is attached to πη = (−1)F line and will be referred to as the fermion-
ization of the operator Oe of T. In other words, the fermionization converts Oe into a
fermionic operator in the R sector.

3. Consider an uncharged local operator Om of T in the twisted sector of Z2 symmetry.
This can be converted into an operator

Om,π :=Om ⊗Oπ , (26)

of the Arf⊠T theory, which is attached to the πP line and is charged under πP since Oπ
is charged under (−1)FArf = π of the Arf factor. Under a Z2 gauging, a twisted charged
operator goes to a twisted charged operator for the dual Z2 symmetry. Thus, after gaug-
ing of ZπP

2 , the operator Om,π is charged under η and is attached to η line. Equivalently,
Om,π is charged under (−1)F = πη and hence a fermionic operator attached to η line.
Then, the operator

Oπm,π :=Om,π ⊗Oπ , (27)

is a bosonic operator attached to (−1)F line and will be referred to as the fermionization
of the operator Om of T. In other words, the fermionization converts Om into a bosonic
operator in the R sector.

4. Consider a charged local operator O f of T in the twisted sector of Z2 symmetry. This
can be converted into an operator

O f ,π :=O f ⊗Oπ , (28)

of the Arf⊠T theory, which is attached to the πP line and is uncharged under πP. Under
a Z2 gauging, a twisted uncharged operator goes to an untwisted charged operator for
the dual Z2 symmetry. Thus, after gauging of ZπP

2 , the operator O f ,π is a fermionic
operator in the NS sector, i.e. charged under (−1)F but unattached to (−1)F line. The
operator O f ,π will be referred to as fermionization of the operator O f of T.

Succinctly the fermionization rules for local operators are

Untwisted, Uncharged −→ NS sector, Boson,

Untwisted, Charged −→ R sector, Fermion,

Twisted, Unharged −→ R sector, Boson,

Twisted, Charged −→ NS sector, Fermion.

(29)

11

https://scipost.org
https://scipost.org/SciPostPhys.18.6.194


SciPost Phys. 18, 194 (2025)

Alternate convention for fermionization. There is another convention for fermionization
that one may adopt, which implements

T −→ fT f , (30)

but we do not adopt this convention in this paper. In this convention, the fermionized theory
eT f is again

eT f =
Arf⊠T
ZπP

2

, (31)

but the fermionic parity symmetry is implemented by

(−1)F = η , (32)

instead of πη.
The alternate fermionization acts on local operators according to

Untwisted, Uncharged −→ NS sector, Boson,

Untwisted, Charged −→ R sector, Boson,

Twisted, Unharged −→ R sector, Fermion,

Twisted, Charged −→ NS sector, Fermion.

(33)

The two fermionic theories are related by stacking of Arf TFT

eT f = Arf⊠T f . (34)

Applying the original bosonization map (23) to fT f we obtain a bosonic theory eT. The map

T −→ eT , (35)

is the bosonic gauging of the Z2 symmetry of T [173–175,186]

eT= T/Z2 . (36)

Finally, the operation that maps
T f −→ eT , (37)

is known as the Gliozzi-Scherk-Olive (GSO) projection [187].11 The relation between four
systems T, T f , eT, and fT f can be summarized in a diagram shown in Figure 1.

2.5 Examples

Let us now discuss simple examples of fermionic fusion supercategories and the corresponding
bosonic fusion categories whose fermionization they are.

11In the original context, the GSO projection generally means summing over spin structures for left-movers and
right-movers independently. In this paper, we do not consider the situations where left-movers and right-movers
are coupled with different spin structures.
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Figure 1: The fermionization and bosonization in 1+1d. JW stands for the Jordan-
Wigner transformation and GSO stands for the GSO projection.

2.5.1 Z f
2 symmetry

The simplest example of a fermionic fusion supercategory is the one that describes only the
fermion parity symmetry. The non-trivial indecomposable lines of this fusion π-supercategory
are (−1)F , π, and their fusionπ(−1)F .12 These topological lines form a fusionπ-supercategory
sVecZ2

:= sVec ⊠ VecZ2
, where sVec is the fusion π-supercategory (of super vector spaces)

generated by π and VecZ2
is the ordinary fusion category (of Z2 graded vector spaces) gen-

erated by (−1)F . When no confusion can arise, the symmetry described by sVecZ2
will be

simply denoted by Z f
2 and called the fermion parity symmetry. The fermion parity symmetry

Z f
2 described by fusion π-supercategory sVecZ2

is the fermionization of a non-anomalous Z2
symmetry described by ordinary fusion category VecZ2

.

2.5.2 Z f
4 and Zπ f

4 symmetries

Another simple example of a fermionic fusion supercategory is the one that describes the spin
Z4 symmetry, which is a Z4 symmetry whose Z2 subgroup is the fermion parity symmetry Z f

2 .
By definition, a generator P of the spin Z4 symmetry satisfies P2 = (−1)F . The fusion π-
supercategory that describes this symmetry is sVecZ4

:= sVec⊠VecZ4
, where sVec is again the

fusion π-supercategory generated by π and VecZ4
is the ordinary fusion category generated by

P. The spin Z4 symmetry, described by sVecZ4
with the choice (−1)F = P2, is simply denoted

by Z f
4

There is also a variant of the spin Z4 symmetry, which we denote by Zπ f
4 . This is a Z4 sym-

metry whose generator P satisfies P2 = π(−1)F rather than P2 = (−1)F . The two symmetries
are related by stacking with Arf TFT in the sense of section 2.3

Zπ f
4 = Z f

4 ⊠Arf . (38)

The Z f
4 symmetry is the fermionization of a non-anomalous Z4 symmetry described by

ordinary fusion category VecZ4
. Let us for brevity denote the generator of this bosonic Z4

symmetry also by P. We want to fermionize with respect to the non-anomalous Z2 generated
by P2. The fact that we have a Z4 symmetry means that we have a trivalent junction formed

12An indecomposable topological line x is said to be non-trivial if there does not exist a bosonic isomorphism
between x and 1.
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by two incoming P lines and one outgoing P2 line

P2

PP

. (39)

The local operator describing this trivalent junction may be viewed as an uncharged (due
to non-anomalous nature of Z4 symmetry) and twisted sector operator for this Z2 symmetry
which, as discussed in (29), fermionizes to an R-sector bosonic operator attached to two in-
coming P lines. Thus the fermionized symmetry is such that two P lines fuse to form (−1)F

with a bosonic operator sitting at the corresponding trivalent junction, or in other words the
fermionized symmetry is Z f

4 .

The Zπ f
4 symmetry is the fermionization of Z2×Z2 symmetry with mixed ’t Hooft anomaly,

which is obtained by bosonically gauging the Z2 subgroup of the non-anomalous bosonic Z4
symmetry. Let us denote the generators of this Z2 × Z2 by P and P ′. We want to fermionize
with respect to the non-anomalous Z2 generated by P ′. The fact that we have a mixed ’t Hooft
anomaly means that a trivalent junction formed by two incoming P lines and one outgoing
identity line is charged under P ′

1

P ′

PP

= −

1

PP

. (40)

The local operator describing this trivalent junction is thus a charged untwisted sector operator
for P ′ which, as discussed in (29), fermionizes to an R-sector fermionic operator attached to
two incoming P lines. Thus the fermionized symmetry is such that two P lines fuse to form
π(−1)F with a bosonic operator sitting at the corresponding trivalent junction, or in other
words the fermionized symmetry is Zπ f

4 .

We emphasize that Z f
4 and Zπ f

4 are different fermionic symmetries because there is no
autoequivalence of the underlying fusion π-supercategory sVecZ4

that maps (−1)F to π(−1)F .

Equivalently, the bosonization of Z f
4 and that of Zπ f

4 are different symmetries because they
have different group structures and anomalies.

The fact that Z f
4 and Zπ f

4 symmetries are different is also consistent with the classification

of 1+1d SPT phases with these symmetries. It is known that 1+1d SPT phases with Z f
4 sym-

metry are classified by the second group cohomology H2(Z4,U(1)) as a set [188, 189]. Since
H2(Z4, U(1)) vanishes, Z f

4 symmetry admits only one SPT phase, which is a trivial phase. This
classification implies that the stacking of this SPT phase and the Arf TFT is not an SPT phase
with Z f

4 symmetry. This can be understood as a consequence of the fact that stacking the Arf

TFT changes the symmetry from Z f
4 to Zπ f

4 .

2.5.3 Rep(S3) f and Rep(S3)π f symmetries

Simple examples of non-invertible fermionic symmetries are given by fusion π-supercategory

sVec⊠Rep(S3) . (41)

14

https://scipost.org
https://scipost.org/SciPostPhys.18.6.194


SciPost Phys. 18, 194 (2025)

Rep(S3) denotes the fusion category formed by representations of S3, which has two non-trivial
topological lines P and E, where P is an invertible line corresponding to a one-dimensional
irreducible representation of S3, while E is a non-invertible line corresponding to a two-
dimensional irreducible representation of S3. The fusion rules of these topological lines are
given by

P2 ∼= 1 , PE ∼= EP ∼= E , E2 ∼= 1⊕ P ⊕ E . (42)

This supercategory gives rise to two fermionic symmetries Rep(S3) f for which

(−1)F = P , (43)

and Rep(S3)π f for which
(−1)F = πP . (44)

Rep(S3) f is obtained by fermionizing Rep(S3) with respect to P. To see this, note that a
trivalent junction involving two E lines and a P line fermionizes to a trivalent junction involv-
ing two E lines and a (−1)F line, which means that the fermionized symmetry has the same
fusion rules as Rep(S3) with fermion parity being P. In general, the fermionization of Rep(G)
symmetry is described by sRep(G) := sVec⊠Rep(G) [9].

On the other hand, Rep(S3)π f is obtained by fermionizing S3 group symmetry. Let us label
elements of S3 as

S3 = {1, a, a2, b, ab, a2 b} , a3 = b2 = 1 , ba = a2 b . (45)

We can fermionize S3 with respect to b. The non-simple line a ⊕ a2 before fermionization
becomes a simple line E after fermionization, since b exchanges a and a2. Let 1a and 1a2 be
identity local operators along a and a2 respectively. Then the local operator 1a − 1a2 lives on
a ⊕ a2 and may be regarded as a charged twisted operator with respect to the Z2 symmetry
being fermionized. The fermionization of this operator is a fermionic operator providing a
trivalent junction between two E lines and one (−1)F line, or equivalently a bosonic operator
providing a trivalent junction between two E lines and one π(−1)F line. This reproduces
fusion rules for Rep(S3)π f .

Lattice models with Rep(S3) f and Rep(S3)π f symmetries were studied recently in [151,
Appendix G].

2.5.4 Z2 ×Z
f
2 symmetry with a Gu-Wen anomaly

A simple example of an anomalous fermionic symmetry is Z2 × Z
f
2 symmetry with a Gu-Wen

anomaly [190]. To describe this symmetry, we first recall the classification of anomalies of
Z2×Z

f
2 symmetry in 1+1 dimensions. Anomalies of Z2×Z

f
2 symmetry in 1+1d are classified

by Ω3
spin(BZ2) ∼= Z8 [191–194]. An anomaly ν ∈ Z8 is called a bosonic anomaly when ν = 4

because the anomaly in this case descends from the anomaly of an ordinary Z2 symmetry,
which can be realized in purely bosonic systems. An anomaly ν is called a Gu-Wen anomaly
when ν = 2 mod 4 because this anomaly can be realized on the boundary of a (2+1)d Gu-
Wen SPT phase [190]. An anomaly ν is called a beyond Gu-Wen anomaly when ν is odd,
which can be realized on the boundary of a (2+1)d SPT phase beyond Gu-Wen type [192].
A Z2 × Z

f
2 symmetry with an anomaly ν = 1 is realized in the quantum field theory of a

massless Majorana fermion, where the first Z2 of Z2 × Z
f
2 is the fermion parity symmetry of

the left moving fermion (−1)FL . In a UV lattice Majorana model, a ν = 1 anomaly is realized
as an LSM anomaly between lattice translations (where a translation unit cell contains a single
Majorana operator) and fermion parity [195, 196]. In the IR, translation by a single unit cell
flows to (−1)FL . Since the anomaly is additive under the stacking of QFTs, a Z2×Z

f
2 symmetry

with an anomaly ν ∈ Z8 is realized in the field theory of ν massless Majorana fermions.
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The fusion π-supercategory that describes an anomalous Z2×Z
f
2 symmetry depends on the

anomaly ν ∈ Z8. When the anomaly is bosonic, i.e., when ν= 4, the fusion π-supercategory is
just the product sVec⊠VecωZ2

⊠VecZ2
, where VecωZ2

represents an ordinary Z2 symmetry with

a non-trivial anomaly ω ̸= 0 ∈ H3(Z2,U(1)) ∼= Z2. We do not discuss this bosonic anomaly
in this paper. The fusion π-supercategory that describes a Z2 × Z

f
2 symmetry with a Gu-Wen

anomaly will be discussed shortly, while the fusion π-supercategory that describes a Z2 × Z
f
2

symmetry with a beyond Gu-Wen anomaly will be discussed in the next example.
A Z2 × Z

f
2 symmetry with a Gu-Wen anomaly ν = 2 mod 4 is the fermionization of Z4

symmetry with an anomaly ω = 2 ∈ H3(Z4, U(1)) ∼= Z4 [172, 175]. This fermionic symmetry
is generated by three topological lines π, η+, and η− := η+(−1)F , which obey the following
fusion rules: [173]

η2
+
∼= η2

−
∼= π . (46)

Here, the isomorphisms in the above equation are all bosonic. Equivalently, we have fermionic
isomorphisms η2

+
∼= 1 and η2

−
∼= 1, which means that the junction of two incoming ηi lines

(i = +,−) is fermionic. This also implies that η+ and η− are self-dual with fermionic isomor-
phisms η+ ∼= η∗+ and η− ∼= η∗−.

The fermionic pentagon equation implies that the F -symbols (Fη+η+η+η+
)11 and (Fη−η−η−η−

)11
are either +i or −i [173]. Furthermore, since the fermion parity symmetry generated by
(−1)F = η+η− is non-anomalous, (Fη+η+η+η+

)11 and (Fη−η−η−η−
)11 should have the opposite signs.

Thus, without loss of generality, we can choose

(Fη+η+η+η+
)11 = +i , (Fη−η−η−η−

)11 = −i . (47)

The fusion π-supercategory that describes this symmetry is S+⊠sVec S−, where Si is the fusion
π-supercategory generated by π and ηi , and ⊠sVec denotes the Deligne tensor product over
sVec, which essentially means that we identify together the two π lines coming from the two
Si factors. We note that Z2×Z

f
2 symmetries with anomalies ν= 2 and ν= 6 are described by

the same fusion π-supercategory S+⊠sVecS−. The only difference between these symmetries is
the choice of the generator of Z2 symmetry. More specifically, if we choose η+ as the generator
of Z2, the full Z2 ×Z

f
2 symmetry has an anomaly ν = 2. On the other hand, if we choose η−

as the generator of Z2, the full Z2 × Z
f
2 symmetry has an anomaly ν = 6. In the example

of ν massless Majorana fermions, η+ and η− correspond respectively to the fermion parity
symmetries of the left and right mover.

We note that Z2×Z
f
2 symmetry with a Gu-Wen anomaly is invariant under stacking the Arf

TFT. This is because its bosonization, i.e., a Z4 symmetry with an anomaly ω= 2, is invariant
under gauging the non-anomalous Z2 subgroup, cf. Figure 1.

2.5.5 Z2 ×Z
f
2 symmetry with a beyond Gu-Wen anomaly

A Z2×Z
f
2 symmetry with a beyond Gu-Wen anomaly has two q-type objects q and q′ := q(−1)F

[17]. These q-type objects obey the following Ising-like fusion rules [9]:

q2 ∼= (q′)2 ∼= 1⊕π . (48)

Here, the isomorphisms in the above equation are supposed to be homogeneous (e.g., bosonic).
Each q-type object together with π generates a fusion π-supercategory whose underlying cat-
egory is either the Ising category Ising+ or the other Z2 Tambara-Yamagami category Ising−.13

We denote these fusion π-supercategories by SIsing+
and SIsing−

respectively. When ν= 1 or 7,

13The underlying category of a fusion supercategory S is a fusion category consisting of all objects and all bosonic
morphisms of S [179]. The categories Ising± are the only fusion categories with the Ising fusion rules [197].
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both q-type objects q and q′ generate SIsing+
, corresponding to the fact that Z2×Z

f
2 symmetry

with this anomaly is the fermionization of Ising+ symmetry [172, 175]. On the other hand,
when ν = 3 or 5, both q-type objects q and q′ generate SIsing−

, corresponding to the fact that

Z2 ×Z
f
2 symmetry with this anomaly is the fermionization of Ising− symmetry [175]. In par-

ticular, Z2 ×Z
f
2 symmetries with anomalies ν= 1 and ν= 7 are described by the same fusion

π-supercategory. Similarly, Z2×Z
f
2 symmetries with anomalies ν= 3 and ν= 5 are described

by the same fusion π-supercategory. In the example of ν massless Majorana fermions, two
q-type objects q and q′ are the fermion parity lines for the left mover and the right mover.
We note that the fermion parity lines for the left mover and the right mover generate the
same fusion π-supercategory even though they have different anomalies. These anomalies
are distinguished by more subtle data that are necessary to mathematically define fermionic
symmetry [178].

We emphasize that the q-type objects q and q′ are non-invertible in the sense that there are
no topological lines q−1 and (q′)−1 such that qq−1 ∼= q−1q ∼= 1 and q′(q′)−1 ∼= (q′)−1q′ ∼= 1. In
particular, the quantum dimensions of q and q′ are both

p
2. However, the non-invertibility of

these topological lines is rather mild. Indeed, the fusion rules (48) imply that the correspond-
ing symmetry operators Dq and Dq′ acting on NS sector local operators obey the Z2 group-like
fusion rule up to normalization:

(Dq)
2 = (Dq′)

2 = 2 . (49)

Here, the last equality follows from the fact that the π line acts as +1 on NS sector local
operators. Therefore, the symmetry operators divided by their quantum dimensions

(−1)FL =Dq/
p

2 , (−1)FR =Dq′/
p

2 , (50)

look as if they generate Z2 symmetries. As such, the symmetry generated by q and q′ is often
called an anomalous Z2 × Z

f
2 symmetry in the literature even though the generator of this

symmetry is non-invertible.
Naively, Dq and Dq′ square to zero in the R sector because the π line acts as −1 on R sector

operators. To avoid this, we can modify the symmetry operators in the R sector by putting
a fermionic point-like defect on them, which is possible because q and q′ are q-type objects.
As a result, these symmetry operators anti-commute with (−1)F in the R sector. This anti-
commutation relation was observed in the example of massless Majorana fermions [172,174,
198].

It should be noted that the q- and q′-twisted sectors are well-defined as vector spaces
of integral dimensions, while the (−1)FL - and (−1)FR-twisted sectors are not because of the
factor of

p
2 in eq. (50). In particular, the dimensions of the q- and q′-twisted sectors are

even integers because the fermionic automorphisms of q and q′ imply the same numbers of
bosonic states and fermionic states. Accordingly, the dimensions of (−1)FL - and (−1)FR-twisted
sectors are formally given by integer multiples of

p
2. In the literature, the factor of

p
2 is also

understood as the formal dimension of a single Majorana fermion in 0+1d.
In some cases, treating this symmetry as if it is invertible appears totally fine. For ex-

ample, the above Z2 × Z
f
2 symmetry with a beyond Gu-Wen anomaly falls into the classifica-

tion of anomalies of invertible symmetries via bordism groups Ω3
spin(BZ2) ∼= Z8 [191–194].

Nevertheless, in this paper, we regard this symmetry as a non-invertible symmetry due to its
non-invertible fusion rules (48).

We note that a Z2×Z
f
2 symmetry with a beyond Gu-Wen anomaly is invariant under stack-

ing the Arf TFT. This is because its bosonization, which is either Ising+ or Ising−, is invariant
under gauging its non-anomalous Z2 subgroup.

Another point to be noted is that regarding this fermionic symmetry as an invertible symme-
try leads to the notion that the bosonic Ising± symmetries are not intrinsically non-invertible.
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However, this conclusion should be avoided as technically the fermionic symmetry is non-
invertible, and hence the bosonic Ising± symmetries should be regarded as intrinsically non-
invertible symmetries.

2.5.6 Bosonic symmetries as special cases of fermionic symmetries

A bosonic symmetry described by an ordinary fusion category S trivially gives rise to two
fermionic symmetries. Both of them are based on the fusion π-supercategory

sVec⊠S . (51)

One of the fermionic symmetries S f is obtained by choosing (−1)F to be trivial, i.e. (−1)F = 1,
while the other fermionic symmetry eS f is obtained by choosing (−1)F = π. We note that all
objects of sVec⊠S are m-type.

S f is obtained by fermionizing S with respect to trivial Z2 symmetry generated by P = 1,
and eS f is obtained by fermionizing the multi-fusion category

S ⊠Mat2(Vec) , (52)

where Mat2(Vec) is a multi-fusion category formed by 2× 2 matrices valued in the category
Vec of finite dimensional vector spaces. The Z2 symmetry for the fermionization is generated
by off-diagonal matrix with each entry being 1-dimensional vector spaces, which we may label
as 101 ⊕ 110.

Let T be a bosonic system with symmetry S. The symmetry S f is carried by the system T f

obtained by stacking T with trivial fermionic 2d TFT. On the other hand, eS f is carried by the
system eT f obtained by stacking T with Arf TFT.

3 Symmetry TFT

In this section, we first briefly review the symmetry TFT construction of 1+1d bosonic systems
with general fusion category symmetry following [2, 7, 92], see also [8, 12, 15, 199, 200] for
earlier discussions and [140] for a mathematical formulation. The symmetry TFT is also called
a symmetry topological order [34,71,107,162,201,202] or topological holography [48,203,
204] in the condensed matter literature.14

We then proceed to discuss SymTFTs for fermionic symmetries. As we will see, the symme-
try TFTs for fermionic symmetries remain bosonic, while their symmetry boundaries are taken
to be fermionic. Since the symmetry TFTs are bosonic, one can readily apply the methods
developed in [3–6] to the study of fermionic gapped and gapless phases with non-invertible
symmetries, which will be the subject of later sections.

3.1 SymTFTs for bosonic symmetries

Let us first review the case of bosonic symmetries. Let S be a fusion category specifying a
bosonic symmetry, i.e. a symmetry of bosonic theories. The symmetry TFT associated to S
is a 3d bosonic TFT Z(S) that admits a bosonic topological boundary condition B

sym
S , such

that the topological line operators living on B
sym
S form the fusion category S. This TFT can

be obtained by performing the Turaev-Viro-Barrett-Westbury [205, 206] construction with S
as the input category and has the property that the topological line defects of the 3d TFT, also
known as anyons, form the MTC Z(S), known as the Drinfeld center of S.

14The symmetry TFT was originally called a categorical symmetry in [201,202].
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By a bosonic topological boundary condition we mean a topological boundary condition
which does not carry a fermion parity symmetry, or in other words the fermion parity symmetry
acts trivially and is generated by (−1)F = 1. In particular this implies that any topological local
operator arising at an end of an anyon a ∈ Z(S) along the boundary (and not attached to any
topological line living on the boundary) is a boson, i.e. 2π rotations centered on such a local
operator do not change correlation functions. This implies that any anyon a that can end along
the boundary must have trivial topological spin. Such an anyon is also referred to as a boson.

Note that there may be multiple different bosonic topological boundary conditions of Z(S)
carrying the fusion category S. In what follows, we fix one such boundary condition to be
B

sym
S and refer to it as the symmetry boundary.

The connection of the 3d SymTFT Z(S) to 1+1d theories with S symmetry is as follows.
Any S-symmetric 1+1d bosonic theory T can be constructed as an interval compactification of
Z(S), with one of the ends of the interval occupied by the symmetry boundary B

sym
S , while the

other end occupied by a not necessarily topological boundary condition B
phys
T , that captures

the dynamical information of the system T. We call Bphys
T as the physical boundary. The

topological line operators of T implementing the S symmetry arise as images of topological
line operators living on B

sym
S under this interval compactification.

T is gapped if Bphys
T is gapped, while it is gapless if Bphys

T is gapless. In particular, 1+1d
bosonic gapped phases with symmetry S are obtained by choosing the physical boundary to be
topological [3,4,12], and are more precisely identified with deformation classes of topological
boundary conditions of the SymTFT Z(S). The construction described above is known as the
symmetry TFT construction or sandwich construction in the literature.

Consider now an arbitrary topological boundary condition Btop of the SymTFT Z(S). The
topological lines of Btop form a fusion category S ′ that is Morita equivalent to S [207]. The
boundary Btop can be produced from B

sym
S by performing a gauging of the S symmetry of

B
sym
S corresponding to an indecomposable module category M over S, which is the category

formed by topological lines lying at an interface between B
sym
S and Btop. We express this

gauging as
Btop =B

sym
S /M . (53)

The symmetry S ′ of Btop is a combination of the residual symmetry left from the gauging
procedure and the dual symmetry obtained after gauging, which can be expressed as [10]

S ′ = S∗M , (54)

where S∗M is the fusion category formed by S-module endofunctors of M [161]. Performing
the sandwich construction by replacing the symmetry boundary B

sym
S with Btop while keeping

the physical boundary B
phys
T fixed leads to the (1+1)d theory

T′ = T/M , (55)

obtained by gauging the symmetry S of T according the module category M.

3.2 SymTFTs for fermionic symmetries

Whatever we have discussed so far extends straightforwardly to fermionic symmetries. Let
S f be a fermionic fusion supercategory specifying a fermionic symmetry, i.e. a symmetry
of fermionic theories. The symmetry TFT associated to S f is again a 3d bosonic TFT Z(S f )
that admits a fermionic topological boundary condition B

sym
S f

, such that the topological line

operators living on B
sym
S f

form the fermionic fusion supercategory S f . The anyons of Z(S f )
form an MTC that we label as Z(S f ), which can be understood as the Drinfeld center of S f .
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By a fermionic topological boundary condition we mean a topological boundary condition
on which the fermion parity symmetry (−1)F may act non-trivially. This includes bosonic
topological boundary conditions as sub-cases where the action of (−1)F is trivial. Moreover,
each bosonic topological boundary B gives rise to a fermionic topological boundary

eB f =B⊠Arf , (56)

which is obtained by stacking B with the 2d Arf theory, on which (−1)F acts non-trivially
as (−1)F = π. We say that eB f is a non-bosonic fermionic topological boundary obtained by
adding an Arf term to the bosonic topological boundary B.

We may also have fermionic topological boundary conditions for which (−1)F ̸∈ {1,π}.
Such topological boundaries may be referred to as genuinely fermionic. On a genuinely
fermionic topological boundary we necessarily have at least one topological local operator
arising at the end of some non-trivial anyon a of the bulk 3d TFT (and not attached to any
topological line living on the boundary) which is a fermion i.e. a local 2π rotation centered
on the local operator changes a correlation function by a non-trivial sign. This implies that the
anyon a carries topological spin −1. Such an anyon is referred to as a fermion.

More generally, a fermionic topological boundary condition satisfies the following prop-
erty: any topological local operator arising at an end of an anyon a ∈ Z(S f ) along the bound-
ary (and not attached to any topological line living on the boundary) is either a boson or a
fermion.

Again, there may be multiple different fermionic topological boundary conditions of Z(S f )
carrying the same fermionic fusion supercategory S f . In what follows, we fix one such bound-
ary condition to be B

sym
S f

and refer to it as the symmetry boundary.

The connection of the 3d SymTFT Z(S f ) to 1+1d theories with S f symmetry is analogous
to the bosonic case. Any S f -symmetric 1+1d fermionic theory T f can be constructed as an
interval compactification of Z(S f ), with one of the ends of the interval occupied by the sym-
metry boundary B

sym
S f

, while the other end is occupied by a not necessarily topological bosonic

boundary condition B
phys
T f

, that captures the dynamical information of the system T f . We call

B
phys
T f

as the physical boundary. The topological line operators of T f implementing the S f

symmetry arise as images of topological line operators living on B
sym
S f

under this interval com-

pactification. This construction of 1+1d fermionic systems was originally proposed in [8] with
a particular focus on the case of invertible symmetries.

T f is gapped if Bphys
T f

is gapped, while it is gapless if Bphys
T f

is gapless. In particular, 1+1d
fermionic gapped phases with symmetry S f are obtained by choosing the physical boundary to
be a bosonic topological boundary, and are more precisely identified with deformation classes
of bosonic topological boundary conditions of the SymTFT Z(S f ). This construction described
above may be referred to as the fermionic symmetry TFT construction or fermionic sandwich
construction.

Consider now an arbitrary fermionic topological boundary condition B
top
f of the SymTFT

Z(S f ), which may actually be bosonic, i.e. the fermionic parity may act trivially on it. Such
a boundary can be obtained from B

sym
S f

by performing a fermionic gauging of the S f sym-

metry of B
sym
S f

. By a fermionic gauging we include all possible combinations of gaugings,

fermionizations and bosonizations. Such a fermionic gauging corresponds to an indecompos-
able supermodule category M f of S f , which is the category formed by topological lines lying
at an interface between B

sym
S f

and B
top
f . We express this gauging as

B
top
f =B

sym
S f
/M f . (57)
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The symmetry formed by topological lines of B
top
f , which is a combination of the residual

symmetry left from the gauging procedure and the dual symmetry obtained after the gauging
procedure, is (S f )∗M f

, which is the fermionic fusion supercategory formed by S f -supermodule
endofunctors of M f . Performing the sandwich construction by replacing the symmetry bound-

ary B
sym
S f

with B
top
f while keeping the physical boundary B

phys
T fixed leads to the (1+1)d theory

T′f = T f /M f , (58)

obtained by a fermionic gauging of the symmetry S f of T f according the module category
M f .

Note that there always exists a bosonic topological boundary condition of Z(S f ), obtained

simply by bosonizing B
sym
S f

, which is possible since we assume that Z f
2 subsymmetry of S f is

non-anomalous. When Z f
2 is anomalous, this is no longer possible and the bosonic symmetry

TFT for such a fermionic symmetry is no longer non-chiral, that is does not admit a bosonic
topological boundary condition. More precisely, the symmetry TFT for an anomalous Z f

2 sym-
metry with an anomaly n ∈ Z16 is the Spin(n)1 Chern-Simons theory [8, 170], which is a 3d
chiral bosonic TFT. The Z f

2 symmetry with an anomaly n is realized, for example, by n copies
of a chiral Majorana fermion, which cannot be put on the lattice due to its anomaly [208].

We mention that when S f is group-like, the symmetry TFT Z(S f ) is given by the gauged
fermionic SPT phase in 2+1d [149]. More generally, gauging the symmetry of a fermionic
symmetry-enriched topological phase would lead to the symmetry TFT for a fermionic sym-
metry.15

3.3 Bosonic topological boundaries

In light of the above discussion, let us discuss how one can characterize bosonic and fermionic
topological boundaries of a 3d TFT Z whose anyons form MTC Z. For bosonic boundaries,
it is well known that they are characterized by Lagrangian algebras in Z [207, 216–218]. A
Lagrangian algebra A is an object in Z of the form

A=
⊕

a∈Z
Naa , Na ∈ Z≥0 , N1 = 1 , (59)

where the summation is taken over all simple anyons a in Z. This object is additionally
equipped with a commutative multiplication (which is a morphism A ⊗A → A in Z) and
satisfies

dim(A)2 =
∑

a

dim(a)2 . (60)

Practically, in the examples that we will discuss in later sections, Lagrangian algebras are
uniquely determined by their underlying objects (59) and thus we will not specify their algebra
morphisms explicitly.

Each Lagrangian algebra A characterizes a one real parameter family of (unitary) topo-
logical bosonic boundary conditions. Let B be one of these boundary conditions. Then the
Lagrangian algebra A describes how the anyons of Z can end along B. More precisely, Na
describes the dimension of the vector space formed by topological ends of the anyon a on
the boundary B (with no residual boundary line attached to any of the ends). Since we are
considering bosonic topological boundary conditions, all anyons a for which Na ̸= 0 in A are
bosons.

15The classification and construction of fermionic SPT phases in 2+1d are discussed in [191, 209–212], while
those of fermionic SET phases are discussed in [182,213–215].
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The whole family of topological boundary conditions associated to A can be generated
from B by stacking an Euler term Tλ giving rise to boundary conditions

Bλ =B⊠Tλ . (61)

An Euler term is an invertible bosonic 2d TFT whose partition function on a 2d closed manifold
with genus g is e−λ(2−2g). The fusion category formed by topological lines living on B, that
we call S, is determined by the Lagrangian algebra A as

S = ZA , (62)

where ZA is the category of right A-modules in Z [218]. There is a bulk to boundary map

F : Z → S = ZA , (63)

taking bulk lines in Z to boundary lines in S (simply by stacking them onto the boundary),
which is simply

F(a) = a⊗A , (64)

viewed as a right A-module.
If we choose S to be our starting bosonic symmetry, then we can choose B to be the

symmetry boundary
B

sym
S =B , (65)

in which case A is referred to as the symmetry Lagrangian algebra and denoted as Asym

Asym =A . (66)

3.4 Fermionic topological boundaries

Now we extend the above discussion to fermionic topological boundaries. Such boundaries
are characterized by Lagrangian superalgebras in Z [219], which is an object A f in Z

A f =
⊕

a∈Z
Naa , Na ∈ Z≥0 , N1 = 1 , (67)

equipped with a super-commutative multiplication and satisfying the condition

dim(A f )
2 =
∑

a

dim(a)2 . (68)

Each Lagrangian superalgebra A f characterizes a Z2×R set of (unitary) topological fermionic
boundary conditions of the 3d TFT Z. Let B f be one of these boundary conditions. The La-
grangian superalgebra A f describes how the anyons of Z can end along B f with Na describing
the dimension of the vector space formed by topological ends of the anyon a on the boundary
B f (with no residual boundary line attached to any of the ends). Since we are considering
fermionic topological boundary conditions, all anyons a for which Na ̸= 0 in A are either
bosons or fermions, and we can express A f as

A f =
⊕

b∈Z
Nb b⊕
⊕

f ∈Z
N f f , (69)

where b and f label bosonic and fermionic anyons respectively. The Nb number of ends of b
are all bosonic, and the N f number of ends of f are all fermionic.
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We can alternatively express A f as a Lagrangian algebra in the modular tensor supercat-
egory16 sVec⊠Z, where the sVec factor adds the π line to the list of bulk topological lines.
Note that the π line is itself a fermion. Then A f can be expressed as

A f =
⊕

b∈Z
Nb b⊕
⊕

f ∈Z
N f (π f ) , (70)

where the terms involving fermions in (69) are converted into terms involving bosons in (70)
by multiplying with the π line.

Physically, passing from the expression (69) to the expression (70) involves converting the
fermionic ends of f along B f into bosonic ends of π f along B f by stacking each fermionic
end of f with the canonical fermionic end Oπ of the π line

π
f

Oπ
π f . (71)

Thus the expression (70) captures the information of all bosonic topological ends of bulk
topological lines along B f . In the examples appearing in this paper, we will use the expression
(70) for A f , and refer to such an A f as a fermionic Lagrangian algebra in Z.

The other topological boundary conditions described by A f can be generated from B f by
adding Euler and Arf terms and can be expressed as

B f ,λ =B f ⊠Tλ , B f ,λ ⊠Arf . (72)

The fusion π-supercategory formed by topological lines living on B f , that we call S f , is de-
termined by the fermionic Lagrangian algebra A f as

S f = (sVec⊠Z)A f
, (73)

where (sVec ⊠ Z)A f
is the category of right A f -modules in sVec ⊠ Z. There is a bulk to

boundary map
F : sVec⊠Z → S f , (74)

taking bulk lines in sVec⊠Z to boundary lines in S f (simply by stacking them onto the bound-
ary) that is simply

F(a) = a⊗A f , (75)

viewed as a right A f -module.
We expect that any S f obtained in this way has exactly two special simple objects (upto

bosonic isomorphisms) Pf and πPf , whose corresponding boundary lines on B f act trivially
on the topological ends of bosonic anyons b in A f , and by a non-trivial sign on the topological
ends of fermionic anyons f in A f . This action is encoded in the fact that the half-braiding
of any such b with Pf and πPf is +1 and the half-braiding of any such f with Pf and πPf
is −1. The precise choice B f of fermionic topological boundary condition corresponds to
choosing either Pf or πPf as the fermionic parity symmetry (−1)F . Without loss of generality,

16Lagrangian algebras in modular tensor supercategories are known to characterize topological boundary condi-
tions of 3d fermionic TFTs [220–222]. Here we are regarding the bosonic 3d TFT Z as a special case of a fermionic
3d TFT whose topological lines are given by modular tensor supercategory sVec ⊠ Z and the fermion parity is
trivial (−1)F = 1.
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let’s say (−1)F = Pf is the choice corresponding to B f . Then, the other choice (−1)F = πPf
corresponds to the fermionic topological boundary B f ⊠Arf.

If we choose S f with (−1)F = Pf to be our starting fermionic symmetry, then we can choose
B f to be the symmetry boundary

B
sym
S f
=B f , (76)

in which case A f is referred to as the symmetry fermionic Lagrangian algebra and denoted as
Asym

f

Asym
f =A f . (77)

Before moving on, we mention that the condensation of more general fermionic condens-
able algebras is also studied in the literature [223]. The condensation of such algebras gives
rise to topological interfaces between the bosonic TFT and a fermionic TFT. When the con-
densable algebra is Lagrangian, the fermionic TFT obtained by the condensation becomes
trivial. Accordingly, the topological interface reduces to a fermionic topological boundary of
the bosonic TFT.

3.5 Examples

3.5.1 Z f
2 symmetry

The symmetry TFT for the Z f
2 symmetry is the Z2 (untwisted) Dijkgraaf-Witten theory [224],

which describes the low energy limit of the Toric Code Hamiltonian [225]. The anyon content
of this TFT is described by the Drinfeld center of VecZ2

, which has four simple objects

Z(VecZ2
) = {1, e, m, f } . (78)

Here, f = em is a fermion, while the other three anyons are bosons.
The bosonic Lagrangian algebras are

Ae = 1⊕ e , Am = 1⊕m , (79)

both of which describe topological boundary conditions carrying non-anomalous bosonic Z2
symmetry.

There is a single non-bosonic fermionic Lagrangian algebra17 in Z(VecZ2
) given by

A f = 1⊕π f . (80)

Let B f be a topological boundary associated to A f . Then we have the bulk to boundary
map given by18

F(1) = 1 , F(e) = πP , F(m) = P , F( f ) = π , (81)

where P generates a Z2 symmetry on the boundary, i.e, P2 = 1, because e obeys the Z2 group-
like fusion rule and F preserves the tensor product structure.

This implies that the fusion π-supercategory formed by lines living on B f is

S f = sVecZ2
, (82)

which as discussed earlier describes the fermion parity symmetry. There are two possible
choices for the fermion parity line:

(−1)F = P , or (−1)F = πP . (83)
17From now on, when discussing examples, by a fermionic Lagrangian algebra we will mean a non-bosonic

fermionic Lagrangian algebra.
18Here and in what follows, bosonic isomorphisms are written as equalities.
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Let us choose B f such that the choice

(−1)F = P , (84)

is realized. Then, such a B f is obtained as fermionization of a topological boundary Be asso-
ciated to Ae. To see this note that an end of m on B f is a bosonic topological local operator
attached to the boundary line P = (−1)F , or in other words the end of m is a boson in R-sector.
Recall from (29) that the bosonization of such an operator is a twisted sector operator for the
Z2 symmetry which is uncharged under the Z2 symmetry [165, 173]. Indeed, an end of m
along Be has precisely these properties. One could derive this conclusion also by consider-
ing instead an end of m on B f , which is a bosonic topological local operator attached to the
boundary line π(−1)F , or equivalently a fermionic topological local operator attached to the
boundary line (−1)F . In other words, the end of e is a fermion in R-sector. The bosonization
of such an operator is an untwisted sector operator which is charged under the Z2 symme-
try [165, 173]. Indeed the e line ends on Be without being attached to a boundary line and
such an end is charged under the Z2 symmetry living on Be.

On the other hand, the boundary

eB f :=B f ⊠Arf , (85)

corresponds to the choice
(−1)F = πP . (86)

By the same arguments as above, we see that eB f is obtained as fermionization of a topological
boundary Bm associated to Am.

3.5.2 Z f
4 and Zπ f

4 symmetries

The symmetry TFT for Z f
4 and Zπ f

4 symmetries is the Z4 (untwisted) Dijkgraaf-Witten theory,
whose anyon content is described by the Drinfeld center of VecZ4

:

Z(VecZ4
) = {eamb | a, b = 0,1, 2,3} . (87)

Here, both e and m are bosons and they have non-trivial mutual braiding i. The spin of eamb

is given by θeamb = iab.
There are three bosonic Lagrangian algebras

Ae = 1⊕ e⊕ e2 ⊕ e3 , Am = 1⊕m⊕m2 ⊕m3 , Ae2,m2 = 1⊕ e2 ⊕m2 ⊕ e2m2 , (88)

and two fermionic Lagrangian algebras

Aem2 = 1⊕πem2 ⊕ e2 ⊕πe3m2 , Ae2m = 1⊕πe2m⊕m2 ⊕πe2m3 . (89)

The bosonic symmetries corresponding to Ae and Am are both non-anomalous Z4, and the
one corresponding to Ae2,m2 is Z2 × Z2 with mixed ’t Hooft anomaly. On the other hand, the
fusion π-supercategory corresponding to both Aem2 and Ae2m is sVecZ4

. The bulk-to-boundary
functor for Aem2 is given by

F(e) = πP2 , F(m) = P , (90)

where P generates a Z4 symmetry on the boundary, i.e., P4 = 1, which is determined using
F(e2) = 1 and F(em2) = π following from the expression for Aem2 . The bulk-to-boundary
functor for the other fermionic Lagrangian algebra Ae2m is obtained by exchanging e and m.

As in the previous example, there are two choices for the fermion parity line, namely,

(−1)F = P2 , or (−1)F = πP2 . (91)
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The former choice leads to Z f
4 symmetry, while the latter choice leads to Zπ f

4 symmetry.

A fermionic boundary
�

Aem2 , (−1)F = P2
�

carrying Z f
4 symmetry is obtained as fermion-

ization of bosonic boundary Ae, while
�

Aem2 , (−1)F = πP2
�

carrying Zπ f
4 symmetry is ob-

tained as fermionization using one of the Z2s on the bosonic boundary Ae2,m2 . These two
fermionic boundaries are related by stacking with the Arf TFT. Similarly, a fermionic boundary
�

Ae2m, (−1)F = P2
�

carrying Z f
4 symmetry is obtained as fermionization of bosonic boundary

Am, while
�

Ae2m, (−1)F = πP2
�

carryingZπ f
4 symmetry is obtained as fermionization using the

other Z2 on the bosonic boundary Ae2,m2 . Again, these two fermionic boundaries are related
by stacking with the Arf TFT.

3.5.3 Rep(S3) f and Rep(S3)π f symmetries

The symmetry TFT for Rep(S3) f and Rep(S3)π f symmetries is the S3 (untwisted) Dijkgraaf-
Witten theory. The anyons of this TFT are labeled by pairs ([g], R), where [g] is a conjugacy
class in S3 = {ai b j | i = 0,1, 2 j = 0,1, ba = a2 b} and R is an irreducible representation
of the centralizer subgroup C(g) = {h ∈ S3 | gh = hg} of an element g ∈ [g]. Concretely, the
anyon content of the S3 Dijkgraaf-Witten theory is given by

(1,1) , (1, P) , (1, E) , (a, 1) , (a,ω) , (a,ω2) , (b,+) , (b,−) , (92)

where P and E are non-trivial one-dimensional and two-dimensional irreducible representa-
tions of S3 respectively, ω denotes a non-trivial one-dimensional representation of C(a)∼= Z3,
and − denotes the sign representation of C(b) ∼= Z2. In the above equation, the conjugacy
class of g is simply written as g by abuse of notation.

There are four bosonic Lagrangian algebras

AP,E = (1,1)⊕ (1, P)⊕ 2(1, E) , AP,a = (1, 1)⊕ (1, P)⊕ 2(a, 1) ,

AE,b = (1,1)⊕ (1, E)⊕ (b,+) , Aa,b = (1, 1)⊕ (a, 1)⊕ (b,+) ,
(93)

and two fermionic Lagrangian algebras

Ab−,E = (1, 1)⊕π(b,−)⊕ (1, E) , Ab−,a = (1, 1)⊕π(b,−)⊕ (a, 1) . (94)

AP,E and AP,a describe S3 symmetry, while AE,b and Aa,b describe Rep(S3) symmetry. On the
other hand, Ab−,E describes Rep(S3) f and Rep(S3)π f symmetries depending on the choice of
(−1)F , and Ab−,a also describes Rep(S3) f and Rep(S3)π f symmetries.

The bulk-to-boundary functor for Ab−,E is given by

F(1, 1) = 1 , F(1, P) = P , F(1, E) = 1⊕ P ,

F(a,ωp) = E , F(b,+) = πP ⊕πE , F(b,−) = π⊕πE ,
(95)

where p ∈ {0,1, 2}, and the objects P and E on the RHS are the simple objects of the fusion
π-supercategory sVec⊠Rep(S3) formed by topological lines living on a topological boundary
associated to Ab−,E . These boundary lines have the fusion rules described in (42). The above
equations (95) and the fusion rules can be derived from the fact that (1) F preserves the tensor
product structure and (2) the condensed anyons are those in Ab−,E . The bulk-to-boundary
functor for the other fermionic Lagrangian algebra Ab−,a is obtained by exchanging (1, E) and
(a, 1). Possible choices for the fermion parity line are

(−1)F = P , or (−1)F := πP . (96)

The former choice leads to Rep(S3) f symmetry, while the latter choice leads to Rep(S3)π f

symmetry [9].
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The bosonizations of these genuinely fermionic boundaries are as follows:
�

Ab−,E , (−1)F = P
�

−→AE,b ,
�

Ab−,a, (−1)F = P
�

−→Aa,b ,
�

Ab−,E , (−1)F = πP
�

−→AP,E ,
�

Ab−,a, (−1)F = πP
�

−→AP,a .
(97)

This is quickly seen for Ab−,E by analyzing F(1, E) = 1 ⊕ P. In one case, this becomes
F(1, E) = 1⊕(−1)F , meaning that there are two topological ends of (1, E) along the boundary:
one of them is an NS-sector boson, while the other is an R-sector boson. Bosonizing them we
obtain an untwisted sector operator uncharged under dual Z2 and a Z2-twisted sector oper-
ator uncharged under dual Z2. These are precisely the properties of the ends of (1, E) along
AE,b [3]. In the other case, this becomes F(1, E) = 1⊕ π(−1)F , meaning that there are two
topological ends of (1, E) along the boundary: one of them is an NS-sector boson, while the
other is an R-sector fermion. Bosonizing them we obtain an untwisted sector operator un-
charged under dual Z2 and an untwisted sector operator charged under dual Z2. These are
precisely the properties of the ends of (1, E) along AP,E . For determining bosonizations of
Ab−,a, we simply interchange (1, E) and (a, 1) in the above argument.

3.5.4 Z2 ×Z
f
2 symmetry with a Gu-Wen anomaly

The symmetry TFT for Z2 × Z
f
2 symmetry with a Gu-Wen anomaly ν = 2 mod 4 is the Z4

Dijkgraaf-Witten theory with a twist ω = 2 ∈ H3(Z4, U(1)) ∼= Z4. The anyon content of this
TFT is described by the Drinfeld center Z(VecωZ4

) of VecωZ4
:

Z(VecωZ4
) = {eamb | a, b = 0,1, 2,3} . (98)

Here, e is a boson, while m is an abelian anyon with spin θm = eiπ/4. The mutual statistics
between e and m is i. Thus, the spin of anyon eamb is

θeamb = eiπb(2a+b)/4 . (99)

There are two bosonic Lagrangian algebras

Ae = 1⊕ e⊕ e2 ⊕ e3 , Aem2 = 1⊕ em2 ⊕ e2 ⊕ e3m2 . (100)

The symmetry categories on the corresponding bosonic boundaries are both Z4 with an
anomaly ω= 2 ∈ H3(Z4,U(1)) = Z4.

There is also a unique fermionic Lagrangian algebra

Am2,e2 = 1⊕πm2 ⊕ e2 ⊕πe2m2 . (101)

The bulk-to-boundary functor for the fermionic Lagrangian algebra Am2,e2 is

F(e) = P , F(m) = η , (102)

with the fusion rules
P2 = 1 , η2 = π . (103)

The above fusion rules imply that the symmetry category on the fermionic boundary is Z2×Z
f
2

with a Gu-Wen anomaly, cf. eq. (46). There are two choices for the fermion parity line, i.e.,

(−1)F = P , or (−1)F = πP , (104)

both of which lead to the same fermionic symmetry because a Z2×Z
f
2 symmetry with a Gu-Wen

anomaly is invariant under stacking the Arf TFT as we discussed in Section 2.5.4. Fermionic
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boundary (Ae2,m2 , (−1)F = P) is the fermionization of bosonic boundary Aem2 , while the other
fermionic boundary (Ae2,m2 , (−1)F = πP) is the fermionization of bosonic boundary Ae. Thus,
from the point of view of SymTFT the two fermionic boundaries related by stacking of Arf TFT
are also related by the action of a 0-form symmetry of the 3d TFT acting on anyons as

e→ em2 , m→ m , (105)

which also explains why stacking with Arf TFT does not change the fermionic symmetry.

3.5.5 Z2 ×Z
f
2 symmetry with a beyond Gu-Wen anomaly

The symmetry TFT for Z2 × Z
f
2 symmetry with a beyond Gu-Wen anomaly ν = 1,7 mod 8 is

the doubled Ising TFT, whose anyon content is described by

Z(Ising+) = Ising⊠ Ising , (106)

where Ising = {1,ψ,σ} denotes the modular tensor category describing the anyons of the
Ising TFT, and Ising = {1,ψ,σ} is the Ising category with the opposite braiding statistics. The
fusion rules of these anyons are given by

σ2 = 1⊕ψ , ψσ = σψ= σ . (107)

This TFT has a unique bosonic Lagrangian algebra

Aσσ = 11⊕ψψ⊕σσ . (108)

The symmetry category on the corresponding bosonic boundary is Ising+.
The above TFT also has a unique fermionic Lagrangian algebra given by

A f

ψ,ψ
= 1⊕πψ⊕πψ⊕ψψ . (109)

The bulk-to-boundary functor for this fermionic Lagrangian algebra A f

ψ,ψ
maps the bulk

anyons to

F(ψ) = F(ψ) = π , F(σ) = q , F(σ) = q , (110)

which obey the following fusion rules:

q2 = q2 = 1⊕π , πq = qπ= q , πq = qπ= q . (111)

The above fusion rules imply that both q and q are q-type objects whose quantum dimensions
are dim(q) = dim(q) =

p
2.

To see the relation between q and q, we consider their fusion qq. First of all, qq cannot be
a simple object because Hom(qq, qq) is neither C1|0 nor C1|1:

Hom(qq, qq) ⊃ Hom(q, q)⊗Hom(q, q) = C1|1 ⊗C1|1 ∼= C2|2 . (112)

Furthermore, since the quantum dimension of qq is dim(qq) = dim(q)dim(q) = 2, it has to
be a direct sum of two m-type objects of quantum dimension 1.19 In addition, since qq has a
fermionic automorphism, we find

qq = P ⊕πP , (113)

19We recall that the quantum dimension of a q-type object cannot be less than
p

2.
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where P is an m-type object with dim(P) = 1. By multiplying q on both sides of the above
equation, we obtain

q = qP = Pq . (114)

This equation together with the fusion rules (111) implies that P2 is either 1 or π. Since the
symmetry category should contain a non-anomalous fermion parity symmetry, we conclude

P = (−1)F , or P = π(−1)F , (115)

which is consistent only with P2 = 1.
Summarizing, we find that the symmetry category on a boundary associated with the

fermionic Lagrangian algebra (109) consists of topological lines {1,π, P,πP = Pπ, q, Pq = qP}
that obey the following fusion rules:

P2 = 1 , q2 = 1⊕π . (116)

This shows that the fermionic boundary of the doubled Ising TFT indeed realizes Z2 × Z
f
2

symmetry with a beyond Gu-Wen anomaly. The underlying category of the subcategory Sq
consisting only of {1,π, q} is equivalent to the Ising fusion category Ising+ because q originates
from the Ising anyon σ in the bulk. Similarly, the underlying category of the subcategory Sq
consisting only of {1,π, q = Pq} is also equivalent to Ising+ as a fusion category. Therefore,
the anomaly of this Z2 ×Z

f
2 symmetry is ν= 1, 7 mod 8, cf. Section 2.5.5.

We note that there are two choices for the fermion parity line as shown in eq. (115). These
two choices lead to the same fermionic boundary. In other words, the fermionic boundary
associated with fermionic Lagrangian algebra A f

ψ,ψ
is invariant under stacking with the Arf

TFT. This invariance follows from the fact that its bosonization Aσσ is invariant under gauging
the Z2 subgroup of Ising+ symmetry on the boundary.

When the anomaly of Z2×Z
f
2 symmetry is ν= 3, 5 mod 8, the symmetry TFT is the Drinfeld

center of Ising−

Z(Ising−)∼= Z(Rep(SU(2)2))∼= Rep(SU(2)2)⊠Rep(SU(2)2) , (117)

rather than the doubled Ising TFT Z(Ising+). This TFT has a unique bosonic Lagrangian al-
gebra (108), which describes a bosonic topological boundary with symmetry category Ising−.
Similarly, the above TFT also has a unique fermionic Lagrangian algebra (109). The symmetry
category on the corresponding fermionic boundary is determined in the same way as above.
In particular, the topological lines on the fermionic boundary have the same fusion rules as
eq. (116). However, the underlying categories of the subcategories Sq and Sq are equivalent
to Ising−

∼= Rep(SU(2)2) rather than Ising+. Thus, the symmetry category on the fermionic
boundary of Z(Ising−) is indeed Z2 ×Z

f
2 with a beyond Gu-Wen anomaly ν= 3,5 mod 8.

4 Generalized charges

4.1 General setup

The charges of a symmetry are encoded by bulk anyons of its associated SymTFT. This applies
to both bosonic and fermionic symmetries. Since the bosonic case is a special subcase of
the fermionic case, we treat everything fermionically in what follows, extending the detailed
presentation of the bosonic case appearing in [2].
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Let S f be a fermionic symmetry. A simple anyon a of the SymTFT Z(S f ) describes an
irreducible multiplet of local operators charged under S f . Here irreducibility of the multiplet
means that the existence of any of the local operators lying in such a multiplet guarantees the
existence of all other local operators participating in the multiplet.

The different local operators in the multiplet correspond to topological ends EY
a of the

anyon a along the symmetry boundary B
sym
S f

attached to a simple boundary topological line
Y ∈ S f . All the possible local operators in the multiplet are obtained by spanning over all
simple Y and all possible EY

a

aEY
a

Y

B
sym
S f

. (118)

Let T f be an S f -symmetric 2d theory and M a multiplet20 of local operators in T f carrying
charge a. The multiplet M corresponds to a local operator EM lying at the end of the anyon
a along the physical boundary B

phys
T f

. The local operators OY
a of T f in the multiplet M are

constructed using the sandwich construction where the anyon a stretches between the sym-
metry and physical boundaries, ending on the symmetry boundary in EY

a and on the physical
boundary in EM (See 119). An operator OY

a arising from an end EY
a lives in Y -twisted sector,

i.e. it is attached to the topological line implementing the symmetry Y of T f . The operators
OY

a are all topological or non-topological if EM is topological or non-topological respectively.

Y

OY
a

T f

aEY
a EM

Y

B
sym
S f

B
phys
T f

Z(S f )

= .
(119)

The symmetry S f acts on the local operators OY
a by linking. A linking action of a simple line

X ∈ S f on Y -twisted sector operator OY
a can land in Y ′-twisted sector. Such an action is

specified by a choice of a topological local operator in S f lying at a junction where the line X
crosses Y converting it into Y ′, as in

Y ′
Y

OY
a

T f

X aEY
a EM

Y

X

Y ′

B
sym
S f

B
phys
T f

Z(S f )

= .
(120)

Squeezing the X -loop on top of the operator OY
a results in a linear combination of local oper-

ators OY ′
a , which is the result of such a linking action on OY

a .

20This should not be confused with a S-module category, which was also denoted by M above.
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Such a linking action is entirely captured by the SymTFT as it lifts to a linking action of
topological line X living on symmetry boundary B

sym
S f

on the topological end EY
a of a along

B
sym
S f

. In particular, the action does not depend on the choice of physical boundary. As dis-

cussed in detail in [2], such a linking action can be computed in terms of the half-braiding of
the anyon a with the boundary line X , which is encoded in the realization of a as an object of
the Drinfeld center Z(S f ) of S f .

In this way, the charges of local operators under a symmetry S f are captured by anyons of
the SymTFT Z(S f ). The fusions of the anyons describe the possible charges that can be carried
by operators arising in the operator product expansion (OPE) of two charged operators. On
the other hand, the braiding of anyons describes the mutual non-locality between two charged
local operators, i.e. the changes in correlation functions induced by moving a charged operator
around another charged operator in a circle. Thus the whole structure of the modular tensor
category Z(S f ) formed by the anyons is crucial for the description of generalized charges of
the symmetry S f .

4.2 Examples

4.2.1 Z f
2 symmetry

The SymTFT and symmetry boundaries are discussed in section 3.5.1. Taking B f to be the
symmetry boundary, the generalized charge interpretation of the SymTFT anyons is:

• 1 describes a bosonic local operator in the untwisted sector (NS sector).

• e describes a fermionic local operator in the (−1)F -twisted sector (R sector).

• m describes a bosonic local operator in the (−1)F -twisted sector (R sector).

• f describes a fermionic local operator in the untwisted sector (NS sector).

This is straightforwardly obtained by applying the fermionization map (29) to the generalized
charge interpretation of the anyons for a boundary corresponding to the Lagrangian algebra
Ae. Here, we recall that the choice of (−1)F on B f is fixed as in eq. (84). If we take B f ⊠Arf
to be the physical boundary instead, the roles of e and m are exchanged, i.e., e describes a
bosonic local operator in the (−1)F -twisted secor and m describes a fermionic local operator
in the (−1)F -twisted sector.

4.2.2 Z f
4 and Zπ f

4 symmetries

We choose symmetry boundaries for these symmetries to be given by the fermionic Lagrangian
algebra Aem2 , cf. section 3.5.2. The anyons of the Z4 Dijkgraaf-Witten gauge theory, which is
the SymTFT, act as the following generalized charges for both Z f

4 and Zπ f
4 symmetries:

• e describes a P2-twisted sector (R sector) local operator with charge 1 (mod 4) under P.
In particular, such an operator is charged under P2 and πP2,21 and hence is a fermion
for both cases Z f

4 and Zπ f
4 .

• m describes a P-twisted sector local operator which is uncharged under P . In particular,
such an operator is a boson.

• eim j describes a P2i+ j-twisted sector local operator with charge i (mod 4) under P . Such
an operator is a boson if i is even and a fermion if i is odd.

21Adding a π line does not change the charge.
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Note that from the point of view of P, the above generalized charges have a uniform description
irrespective of whether we are working with Z f

4 symmetry or Zπ f
4 symmetry. However, the

charges differ from the point of view of (−1)F subsymmetry of these two symmetries. For
example, consider the e charge. For Z f

4 symmetry, it describes a fermionic local operator in

(−1)F -twisted sector. On the other hand, for Zπ f
4 symmetry, it describes a fermionic local

operator in π(−1)F -twisted sector, which is equivalent to a bosonic local operator in (−1)F -
twisted sector.

These results can be easily derived from fermionization. For example, consider a fermionic
boundary associated to Aem2 which carries Z f

4 symmetry. As we discussed, it is obtained by
fermionizing a bosonic boundary associated to Ae carrying bosonic Z4 symmetry. From the
point of view of this Z4 symmetry, the e anyon describes an untwisted sector local operator
carrying charge 1 (mod 4) under the Z4 symmetry generator P. The charge remains preserved
through fermionization, but the operator after fermionization has to be an R-sector operator,
cf (29). On the other hand, the m anyon describes a P-twisted sector local operator carry-
ing charge 0 (mod 4) under the Z4 symmetry generator P, which are properties that remain
preserved through fermionization.

4.2.3 Rep(S3) f symmetry

We take the symmetry boundary to be the one corresponding to fermionic Lagrangian algebra
Ab−,a, cf section 3.5.3. The anyons of the S3 Dijkgraaf-Witten gauge theory, which is the
SymTFT, act as the following generalized charges for Rep(S3) f symmetry.

• (1, P) describes a bosonic (−1)F -twisted sector (R sector) local operator which is un-
charged under E.

• (1, E) describes a multiplet of two operators.22 One of them is an E-twisted sector
bosonic local operator, and the other is a bosonic local operator converting E line oper-
ator into (−1)F line operator. Both of these are uncharged under E.

• (a, 1) describes a multiplet of two operators. One of them is an untwisted sector (NS
sector) bosonic local operator, and the other is a (−1)F -twisted sector (R sector) bosonic
local operator. The two operators are mixed by the action of E in the same way as
discussed in equation (5.16) of [3] (with P replaced by (−1)F ).

• (a,ω) and (a,ω2) both describe multiplets of two operators. Both of them are bosonic
operators in the E-twisted sector. The two operators are mixed by the action of E in
a way quite similar to equation (5.16) of [3]. The coefficients involve in this mixing
differentiate between the (a,ω) and (a,ω2) multiplets. We leave the determination of
these coefficients to an interested reader, following the methods described in [3].

• (b,+) describes a multiplet of three operators. One of them is a fermionic (−1)F -twisted
sector (R sector) local operator. Another is an E-twisted sector fermionic local operator,
and the last one is a fermionic local operator converting E line operator into (−1)F line
operator. The action of E mixes the three operators.

22Naively one might think that there is a single operator in the multiplet as the bulk to boundary functor takes
bulk line (1, E) to boundary E line without any multiplicity. If we view the symmetry boundary as coming from
fermionization of S3 boundary (up to stacking of Arf), then it is preferable to consider two operators in the (1, E)
multiplet, because the S3 boundary carries two operators in this multiplet. From the point of view of Rep(S3) f

boundary, the two operators are related by a trivalent junction comprising of two E and one P line in the Rep(S3) f

symmetry category.
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• (b,−) describes a multiplet of three operators. One of them is a fermionic untwisted
sector (NS sector) local operator. Another is an E-twisted sector fermionic local operator,
and the last one is a fermionic local operator converting E line operator into (−1)F line
operator. The action of E mixes the three operators.

These can be derived by fermionizing the Aa,b boundary which carries bosonic Rep(S3) sym-
metry. From the point of view of this symmetry, the various generalized charges, which are
discussed in [3], are indeed bosonizations of the above ones. Let us discuss a few examples:
(1, P) describes an uncharged P-twisted sector operator for Rep(S3) symmetry. (1, E) describes
an uncharged E-twisted sector operator and an uncharged operator converting E line to P line.
(a, 1) describes an untwisted sector and a P-twisted sector operator, both uncharged under P
and mixed by the action of E as in equation (5.16) of [3].

4.2.4 Z2 ×Z
f
2 with a Gu-Wen anomaly

As described in Sec. 3.5, systems with a fermionic symmetry Z2 ×Z
f
2 with a Gu-Wen anomaly

ν = 2, 6 mod 8 can be obtained via fermionization of bosonic systems with an anomalous Z4
symmetry VecωZ4

, where ω = 2 ∈ H3(Z4 , U(1)) = Z4. An anomaly ω = 2 trivializes upon
restricting to Z2 ⊂ Z4, implying that this Z2 subgroup is non-anomalous and hence can be
fermionized. Consequently, the SymTFT for the Z2 ×Z

f
2 Gu-Wen anomalous symmetry is the

Z4 Dijkgraaf-Witten TFT with the topological action ω.
The anyon content of this SymTFT is given by the Drinfeld center

Z(VecωZ4
) = {eamb | a , b = 0 ,1 ,2 , 3} . (121)

The topological spin and S-matrix are

θeamb = exp
§

iπb(2a+ b)
4

ª

, Seamb ,ea′mb′ = exp
§

2πi(ab′ + a′b+ bb′)
4

ª

. (122)

There are two bosonic gapped boundaries corresponding to the following Lagrangian algebras

Ae = 1⊕ e⊕ e2 ⊕ e3 , Aem2 = 1⊕ em2 ⊕ e2 ⊕ e3m2 , (123)

and a single fermionic topological boundary (up to Arf term) corresponding to the algebra

Am2,e2 = 1⊕πm2 ⊕ e2 ⊕πe2m2 . (124)

The fermionic symmetry is generated by η and P which are obtained via the bulk-to-boundary
functor for the fermionic Lagrangian algebra Am2,e2 as

F(e) = P , F(m) = η . (125)

These lines have the fusion rules

P2 = 1 , η2 = π . (126)

We may choose (−1)F = P or (−1)F = πP. We choose (−1)F = P. The other choice can be
worked out analogously.

First, we describe the generalized charges for the fermionic symmetry which are labeled by
objects in Z(VecωZ4

). Each line a ∈ Z(VecωZ4
) in the SymTFT corresponds to a point operator

denoted as Oa that can be characterized by (i) the twisted sector it belongs to and (ii) its
charge under P and η which we denote as the tuple (qP , qη).
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• 1 is a local bosonic operator in the untwisted (NS) sector with a symmetry charge (1 , 1).

• e2 is a local bosonic operator in the untwisted (NS) sector with symmetry charge (1,−1).

• m2 is a local fermionic operator in the untwisted (NS) sector with a symmetry charge
(−1 ,−1). Here qP = −1 follows from the fact that πm2 is condensed on the fermionic
symmetry boundary and therefore m2 has a bosonic interface to theπ line or equivalently
a fermionic interface to the identity line. This is consistent with the fact that the braiding
of e with m2 is −1. The charge qη = −1 follows from the mutual-braiding of m-lines in
the SymTFT.

• e corresponds to a bosonic P-twisted (i.e., R sector) operator which carries a symmetry
charge (1, i).

• m corresponds to an η-twisted operator which carries a charge (i, i).

All the remaining charges can be obtained by taking the product of these charges. We note
that an η line acts on the (−1)F -twisted sector operators as ±i. Similarly, a fermion parity line
(−1)F acts on the η-twisted sector operators as ±i. These actions are related to each other via
the exchange of space and time, i.e., a modular S-transformation.

It is illustrative to instead deduce these generalized charges by fermionizing the symmetry
on the bosonic boundary Aem2 . The category of lines on this boundary is VecωZ4

generated by
X . The bulk to boundary map denoted as Fem2 acts as

Fem2(m) = X , Fem2(m2) = Fem2(e) = X 2 . (127)

To obtain the fermionic symmetry with (−1)F = P described above, we fermionize the non-
anomalous Z2 symmetry generated by X 2. Doing so, we naturally obtain a dual fermionic
symmetry generated by (−1)F and the residual Z4/Z2

∼= Z2 generated by X (which we call η
as a fermionic symmetry). Recall the map of sectors from the bosonic theory to the fermionic
theory summarized in 29 Using this fermionization map and (127), we can now describe the
bosonic generalized charges and what they map to under the fermionization.

• 1 is a local uncharged operator which maps to an untwisted (NS) sector boson uncharged
under the fermionic symmetry group.

• e2, being in Aem2 , becomes a local operator. This carries a charge −1 under X due to
the bulk braiding of −1 between e2 and m. This operator is uncharged under X 2 and
therefore in the uncharged untwisted sector with respect to the symmetry being gauged.
Under the fermionization we obtain an NS sector local boson with charge (1,−1) as
previously found.

• m2 is an X 2 twisted sector operator. Its charge under X is−1 due to the braiding between
m2 and m. Meanwhile its charge under X 2 is also -1. This follows from the braiding
between the bulk lines e and m2. Note that in general there is a relation qX 2 = −q2

X on
the X 2 twisted sector owing to the anomaly in the bosonic symmetry category.

X 2

X 2

X 2

= ω−1(X 3, X 3, X ) X 2

X

X

X

X

,

where we use the explicit choice of cocycle

ω(X a, X b, X c) = e
πi
4 a(b+c−[b+c]4) , (128)
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with [b+ c]4 = b+ c mod 4. Being in the twisted charged sector, this operator maps to
the untwisted (NS) sector fermion with symmetry charges (−1,−1) as we found earlier.

• e corresponds to an X 2 twisted sector operator. Its charge qX = i which follows from
the bulk braiding between m and e. Meanwhile its X 2 charge is −q2

X = +1. This is
in agreement with the trivial braiding of e with itself. Being in the twisted uncharged
sector, this operator maps to a twisted (R) sector boson with symmetry charge (1, i), as
expected.

• m is an X -twisted sector operator with qX = qX 2 = i. This follows from the self-braiding
of m and the mutual braiding of e with m. Under the fermionization map, this maps to
an η-twisted sector with symmetry charges (i, i).

We thus recover the expected generalized charges from fermionization.

4.2.5 Z2 ×Z
f
2 symmetry with a beyond Gu-Wen anomaly

As discussed in Section 3.5.5, the symmetry TFT for Z2×Z
f
2 symmetry with a beyond Gu-Wen

anomaly ν= 1, 7 mod 8 is the doubled Ising TFTZ(Ising+). We choose the symmetry boundary
of this TFT to be the one associated with the unique fermionic Lagrangian algebra A f

ψ,ψ
, see

eq. (109). This fermionic boundary is invariant under stacking the Arf TFT, meaning that two
choices (−1)F = P and (−1)F = πP of a fermion parity line give rise to the same fermionic
boundary.

From the expression of A f

ψ,ψ
, we find that the anyons of the doubled Ising TFT Z(Ising+)

act as the following generalized charges for Z2×Z
f
2 symmetry with an anomaly ν= 1,7 mod

8:

• 11 describes a bosonic operator in the untwisted sector (i.e., the NS sector) with charge
+
p

2 under the action of q.

• ψψ describes a bosonic operator in the untwisted sector (i.e., the NS sector) with charge
−
p

2 under the action of q.

• 1ψ describes a fermionic operator in the untwisted sector (i.e., the NS sector) with the
charge +

p
2 under the action of q.

• ψ1 describes a fermionic operator in the untwisted sector (i.e., the NS sector) with
charge −

p
2 under the action of q.

• 1σ describes a multiplet of two operators in the q(−1)F -twisted sector, one of which is
bosonic and the other is fermionic. These operators are exchanged by the action of a q
line decorated by a fermionic point-like defect.

• σ1 describes a multiplet of two operators in the q-twisted sector, one of which is bosonic
and the other is fermionic. These operators are exchanged by the action of a q line
decorated by a fermionic point-like defect.

• ψσ describes a multiplet of two operators in the q(−1)F -twisted sector, one of which
is bosonic and the other is fermionic. These operators are obtained by the fusion of
operators with generalized charges ψ1 and 1σ.

• σψ describes a multiplet of two operators in the q-twisted sector, one of which is bosonic
and the other is fermionic. These operators are obtained by the fusion of operators with
generalized charges σ1 and 1ψ.
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• σσ describes a multiplet of two operators in the (−1)F -twisted sector (i.e., the R sector),
one of which is bosonic and the other is fermionic. These operators are exchanged by
the action of a q line decorated by a fermionic point-like defect.

5 Phases and transitions

5.1 General theory

The SymTFT Z(S f ) associated to a fermionic symmetry S f can be used to understand the
structure of possible gapped and gapless phases with symmetry S f , along with some of the
transitions between the gapped phases. This is an extension of the bosonic case discussed
recently in [3–6].

A gapped or gapless phase for S f , referred to simply as a phase for S f in what follows,
is by definition a set of possible IR physical phenomena compatible with the existence of S f
symmetry. More precisely, in (1+1)d a phase can be characterized by the confinement of a set
QC of charges, which means that a system lying in such a phase has no states in the IR and no
local operators mapping between the IR states (referred to simply as IR local operators) that
carry any of the charges lying in the set QC . Due to the lack of all possible charges in the IR, the
symmetry S f does not quite act faithfully on the IR theory, and phases may thus be equivalently
characterized by possible choices of S f symmetry with varying degrees of faithfulness.

Condensed charges. Let us begin with the canonical gapless phase, which exists for every
fermionic symmetry S f . This corresponds to having no confined charges, meaning that all
the generalized charges for S f appear in the IR, and the S f symmetry acts fully faithfully on
the IR.23 Any other phase is obtained by condensing a set Q of charges. This means that we
give non-zero vacuum expectation values (vevs) to some local operators carrying charges lying
in the set Q. This results in the IR carrying topological local operators that form multiplets
transforming in charges lying in the set Q. The set Q is quite constrained:

• First of all, any charge a ∈ Q must only describe bosonic local operators OY
a . This may

be understood as imposing the requirement of having a Lorentz invariant vacuum in the
IR.24

• Any charge a that is mutually non-local with some other charge b ∈Q has to be confined.
This is a generalization of Meissner effect. Consequently a cannot be condensed, i.e.
a ̸∈Q. Thus, all charges in Q have to be mutually local.

Recalling that charges are identified with anyons of the SymTFT, we consider the above two
conditions in the context of SymTFT. These conditions essentially describe what is known as a
bosonic condensable algebra A in the MTC Z(S f ) formed by SymTFT anyons. This is a (not
necessarily simple) object of Z(S f ) equipped with a commutative multiplication A⊗A→ A
that does not necessarily satisfy the condition (60). We can express the object underlying A
as

A=
⊕

a∈Z(S f )

Naa , Na ∈ Z≥0 , N1 = 1 , (129)

Then the set Q of condensed charges is the set of anyons having Na ̸= 0.
23A simple (and uninteresting) way to construct such a gapless phase on the lattice is to build a fermionic

analogue of the anyon chain model, choose the data such that all the generalized charges exist in the model, and
pick the Hamiltonian to be constant. This model is gapless as all the states are at the same energy level. Obviously,
this model can be deformed to any other gapped and gapless phases by perturbing the Hamiltonian such that some
of the generalized charges condense.

24A special case of this may be familiar from the study of relativistic QFTs, where only scalar fields are allowed
to acquire non-zero vevs.
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Confined and deconfined charges. Given the set Q, we can compute the set QC of confined
charges as the set of charges that are mutually non-local with at least one charge in Q. In
terms of SymTFT, this is the set of anyons braiding non-trivially with at least one anyon in A.

On the other hand, there may be a set QD of non-condensed charges that remain deconfined
in the phase. These are charges that are mutually local with all the charges in Q. In terms of
SymTFT, this is the set of anyons braiding trivially (or local) with all anyons in A but are not
themselves in A. Such charges have to be carried by non-topological operators and gapless
states in the IR theory. Thus, if QD is non-empty then the phase under discussion is a gapless
phase. However, if it is empty then the phase is a gapped phase in the sense that it can be
realized by gapped systems with S f symmetry.25

Reduced topological order formed by deconfined charges. As discussed above, the de-
confined charges correspond to anyons local with the condensable algebra A. Mathematically,
we can characterize deconfined charges in terms of local modules for the algebra A in the
MTC Z(S f ). As discussed in [218], such modules form a smaller MTC Z ′ denoted as

Z ′ = Z(S f )
loc
A , (130)

and referred to as reduced topological order (TO).
Let us call the 3d TFT associated to Z ′ as Z′. Then the condensable algebra characterizes

a topological interface I from Z(S f ) to Z′. The interface I is specified only up to stacking
by invertible topological codimension-1 defects of Z′, or in other words up to the action of 0-
form symmetries of Z′. The anyons appearing in A can topologically end on I without being
attached to any other topological line, but no anyon of Z′ can end topologically on I in this
fashion. See figure 2. The coefficient Na of an anyon a in A is the dimension of the vector
space formed by such topological ends of a.

By reflecting Z′ across the interface, I can be viewed as a bosonic topological boundary of
the 3d TFT

Z(S f )⊠ Z′ , (131)

where Z′ is the orientation reversal of Z′. Thus I is associated to a bosonic Lagrangian algebra

L ∈ Z(S f )⊠Z ′ , (132)

where Z ′ is the MTC formed by anyons of Z′. The condensable algebra A can be recovered as
the subalgebra of L involving only elements from the subfactor Z(S f ) of Z(S f )⊠Z ′. We call
L as a Lagrangian algebra completion of the condensable algebra A.

As described in [5], the information of L can be used to construct a functor

ZL : Z ′→ Z(S f ) , (133)

which describes the anyons of Z(S f ) that can be produced by passing the anyons of Z′ through
the interface I. See figure 2. The image of ZL captures precisely the set QD of deconfined
charges.

Gapped vs gapless phases. As discussed above, a gapped phase is characterized by an empty
set QD of deconfined anyons, meaning that the reduced topological order Z′ is the trivial 3d
TFT. In other words, I is a topological boundary condition of the SymTFT Z(S f ). This means
that the condensable algebra A is actually a bosonic Lagrangian algebra in Z(S f ) satisfying

25It should be noted that a phase with empty QD may also be realized by gapless systems, where all the gapless
excitations and IR non-topological local operators do carry trivial charges under S f . Such a gapless phase can be
deformed to a gapped phase while preserving the S f symmetry.
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I

Z(S f ) Z′

a

ZL(a′) a′

Figure 2: The interface I implements a map of lines from Z ′ to Z(S f ). A line a ∈A
can end end on the interface from the left. Meanwhile a simple line a′ ∈ Z ′ maps to
a possibly non-simple line ZL(a′) ∈ Z(S f ).

S f
TQFT

T f B
sym
S f Bphys = I

Z(S f )

=

Figure 3: A 2d S f symmetric fermionic TFT T f constructed as the interval com-
pactification of the SymTFT Z(S f ) with symmetry boundary B

sym
S f

and the bosonic

topological boundary Bphys = I on the other end.

the condition (60). A Lagrangian algebra is a maximal condensable algebra and describes a
maximal set Q of condensed charges.

Thus, gapped phases for fermionic symmetry S f are characterized by bosonic Lagrangian
algebras formed by anyons of the SymTFT Z(S f ), while the gapless phases for S f are char-
acterized by bosonic non-Lagrangian condensable algebras formed by anyons of the SymTFT
Z(S f ).

IR theories for gapped phases. The IR theory describing an S f symmetric fermionic system
in a gapped phase associated to a Lagrangian algebra A is a 2d S f symmetric fermionic TFT
T f which is constructed as the interval compactification of SymTFT Z(S f ) with symmetry
boundary B

sym
S f

on one end, and the bosonic topological boundary I on the other end, which

is also referred to as a topological physical boundary and denoted as Bphys (see Fig. 3)

Bphys = I . (134)

Let us describe the general structure of T f and realization of the symmetry S f on it. Let n
be the number of vacua of T f . This manifests as T f carrying an n-dimensional vector space
of topological NS sector local operators or states on a circle. Such local operators of T f are
constructed by taking simple anyons a in Lagrangian algebras A and Asym (describing B

sym
S f

)
and letting them completely end topologically (without being attached to other topological
lines) on the topological boundaries Bsym

S f
and Bphys. The fusions of these operators can then

be determined by using various consistency conditions with the action of topological lines
living on the boundaries Bsym

S f
and Bphys. The vacua can be identified with idempotents of the

algebra formed by these local operators under fusion. Let us label the vacua by an index i.
The TFT T f in vacuum i may reduce either to Triv⊠Tλi

or to Arf⊠Tλi
, where Tλ is an Euler
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term. The relative Euler terms λi j = λ j − λi are protected by the action of symmetry S f if
T f is an irreducible S f -symmetric 2d TFT, but it is possible to shift all the Euler terms by the
same constant λi → λi + r without breaking the S f symmetry. Thus, the information of the
overall Euler term does not enter an S f -symmetric (1+1)d gapped phase, but the information
of relative Euler terms does.

The full set of topological line operators of the 2d TFT T f forms a fermionic multi-fusion
π-supercategory S f (T f ). First of all, we have indecomposable lines living in each vacuum i,
which are simply 1ii and πii . If there is no relative Arf term between two vacua i and j, then
the indecomposable lines from vacuum i to vacuum j are 1i j ,πi j , which are exchanged by the
action of πii ,π j j

πii ⊗ 1i j = 1i j ⊗π j j = πi j , πii ⊗πi j = πi j ⊗π j j = 1i j . (135)

The linking action of 1i j ,πi j on vacuum vi results in a multiple of vacuum v j determined by
the relative Euler term between i and j

1i j ,πi j : vi → e−(λ j−λi)v j . (136)

See section 2.3 of [3] for an explanation. This linking action may also be referred to as the
quantum dimension of the lines 1i j ,πi j . On the other hand, if there is a relative Arf term
between vacua i and j, then there is only one indecomposable q-type line Si j from vacuum i
to vacuum j satisfying

1ii ⊗ Si j = Si j ⊗ 1 j j = Si j , πii ⊗ Si j = Si j ⊗π j j = Si j . (137)

The line Si j describes the end of Kitaev chain, and its quantum dimension is

Si j : vi → e−(λ j−λi)
p

2v j . (138)

Other non-zero fusions of these lines are

1i j ⊗ 1 jk = πi j ⊗π jk = 1ik , πi j ⊗ 1 jk = 1i j ⊗π jk = πik , 1i j ⊗ S jk = πi j ⊗ S jk = Sik ,

Si j ⊗ 1 jk = Si j ⊗π jk = Sik , Si j ⊗ S jk = 1ik ⊕πik . (139)

The fermionic parity symmetry of S f (T f ) is

(−1)FT f
=
⊕

i

Πii , (140)

whereΠii = 1ii if the vacuum i comprises of Triv⊠Tλi
, andΠii = πii if the vacuum i comprises

of Arf⊠Tλi
.

The fermionic symmetry S f is described by a subset of the topological lines of T f , which
is described by a supertensor functor [179,180]

σ : S f → S f (T f ) , (141)

constrained to satisfy
σ
�

(−1)F
�

= (−1)FT f
. (142)

The information of σ is determined as follows. We consider the NS sector local operators
arising from interval compactifications of anyons. These are acted upon by X ∈ S f line living
on B

sym
S f

. This provides us with the action of X on the vacua. Then σ(X ) ∈ S f (T f ) is the line
that acts on vacua in the same way.

A symmetry X ∈ S f is said to be spontaneously broken in a vacuum i if σ(X ) contains
topological line operators taking the vacuum i to some other vacuum j.
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IR theories for gapless phases. As mentioned at the starting of this section, a gapless phase
by definition only describes a set of symmetry related IR properties of gapless S f symmetric
systems. The dynamical properties are constrained by these symmetry properties, but are not
completely fixed by them. Consequently, for a particular gapless phase, there can be vari-
ous different S f -symmetric fermionic 2d CFTs describing the IR behaviors of various (1+1)d
fermionic systems said to be lying in this gapless phase. This should be contrasted with the situ-
ation for gapped phases where the IR theory is uniquely fixed to be an S f -symmetric fermionic
2d TFT.

Let us now describe the SymTFT construction for any S f -symmetric fermionic CFT T f aris-
ing in the IR of a gapless phase associated to a condensable algebra A. This is obtained by
inputting a conformal boundary condition Bphys of Z′ into the SymTFT setup and compactify-
ing the whole interval

S f -C
FT

T f B
sym
S f I Bphys(conformal)

Z(S f ) Z′
= .

(143)

Note that Bphys is required to satisfy the following conditions:

• None of the anyons of Z′ can topologically end on Bphys without being attached to any
other topological line operator. This ensures that the introduction of Bphys does not
induce the condensation of charges outside the set Q.

• There is at least one (non-topological) end of every anyon of Z′ along Bphys which is
unattached to any other topological line operator. This ensures that the whole set QD of
deconfined charges is realized in the IR theory.

• We further assume that there are no topological local operators (other than multiples
of identity operator) living on Bphys which are unattached to any bulk or boundary
topological line operator. This ensures that T f is an irreducible S f -symmetric CFT.

Let us describe the general structure of T f and realization of symmetry S f on it. For this
purpose, it is useful to first perform a club-quiche compactification where we only compactify
the interval occupied by Z(S f ) but not by Z′. This constructs a fermionic topological boundary
condition B′f of Z′ which is S f -symmetric. The boundary B′f is irreducible as an S f -symmetric
boundary, but may be reducible when the S f symmetry is forgotten.

B
sym
S f I

Z(S f ) Z′

B′f

Z′

.
(144)

Let n be the number of irreducible boundary conditions involved in B′f . This manifests
as B′f carrying an n-dimensional vector space of topological NS sector local operators. Such
local operators of B′f are constructed by taking simple anyons a in condensable algebra A
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and Lagrangian algebra Asym (describing B
sym
S f

) and letting them completely end topologi-

cally (without being attached to other topological lines) on the topological boundary B
sym
S f

and topological interface I. The irreducible boundaries in B′f can be identified with idempo-
tents of the algebra formed by these local operators under fusion. Let us label the irreducible
boundaries in B′f as B′f ,i

B′f =
⊕

i

B′f ,i . (145)

The full set of topological line operators of B′f forms a fermionic multi-fusion π-supercategory
S f (B′f ) with fermion parity

(−1)F
B′f
=
⊕

i

(−1)F
B′f ,i

. (146)

The category S f (B′f ) includes not only topological line operators living on B′f ,i , but also topo-
logical line operators living between two boundaries B′f ,i and B′f , j . The quantum dimensions
of lines going between two different boundaries B′f ,i and B′f , j depends on the relative Eu-
ler terms between these boundaries. The fermionic symmetry S f is realized by a supertensor
functor

σ : S f → S f (B
′
f ) , (147)

constrained to satisfy
σ
�

(−1)F
�

= (−1)F
B′f

. (148)

The information of σ is determined as follows. We consider all the possible topological ends
of anyons of Z′ along B′ that are not attached to any boundary topological lines. Under the
club quiche compactification, these can all be constructed by passing anyons of Z′ transversely
through I which converts them into anyons of Z(S f ) on the other side in terms of the functor
ZL and ending the Z(S f ) anyons on B

sym
S f

. Thus these ends are acted upon by X ∈ S f line

living on B
sym
S f

. This provides us with the action of X on the ends of anyons of Z′ along B′f .

Then σ(X ) ∈ S f (B′f ) is the line operator of B′f that acts on these ends in the same way.
The CFT T f is constructed by performing the club sandwich compactification in which

we subsequently compactify the interval occupied by Z′. This reduces into a direct sum of
compactifications (B′f ,i ,B

phys), each of them giving rise to a CFT T f ,i with a single topological
NS sector local operator. The full CFT T f thus comprises of n universes and can be expressed
as

T f =
⊕

i

T f ,i . (149)

From this compactification we can read the action of fermionic multi-fusion category S f (B′f )
on T f . Using the functor (147), we obtain an action S f on T f converting it into an S f -
symmetric CFT.

Generalized fermionic KT transformations. We have constructed above an S f -symmetric
CFT T f describing the IR of a system lying in a gapless phase associated to a condensable
algebra A, provided that we are given a conformal boundary condition Bphys of Z′ satisfying
certain properties.

The question now arises how one can construct such boundary conditions. For this purpose,
we use the sandwich construction in reverse. Let S ′ be a bosonic or fermionic symmetry whose
SymTFT is Z′

Z(S ′) = Z′ . (150)
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Assume that we know a 2d CFT T′ that describes the IR of the canonical gapless phase of S ′.
That is, all the generalized charges of S ′ arise in T′ and are carried by non-topological local
operators in T′.

Then, Bphys can be taken to the physical boundary arising in the SymTFT construction of
T′ with some choice of symmetry boundary B

sym
S ′ .

The map
T′ −→ T f , (151)

may be referred to as a fermionic generalized Kennedy-Tasaki (KT) transformation, extending
the generalized KT transformations discussed in the bosonic case by [5].

In fact, each T f ,i is obtained by some fermionic gauging of the S ′ symmetry of T′, since
T f ,i is obtained by modifying the symmetry boundary from B

sym
S ′ to B′f ,i .

Deformations of phases. Let us consider that we are deep inside a phase specified by a set
Q of condensed charges, i.e. all the condensed local operators have non-small vevs of order
one. Now, a small deformation of such a system cannot uncondense any of the charges, but
can condense some other charges by providing small non-zero vevs to some local operators
carrying deconfined charges not in the set Q.

After such a deformation, we move to a phase characterized by a set Q′ of condensed
charges, which is bigger than Q

Q ⊆Q′ . (152)

If A and A′ are the corresponding condensable algebras, then we have the condition that A
be a subalgebra of A′. The set of confined charges also increases under such a deformation

QC ⊆Q′C , (153)

as condensing new charges confines some of the previously deconfined charges. On the other
hand, the set of non-condensed deconfined charges shrinks

Q′D ⊆QD , (154)

which is consistent with the physical expectation that such deformation should increases the
amount of gapped excitations while decreasing the amount of gapless ones.

Thus we have a partial order on the set of S f -symmetric phases given by inclusions of
condensable algebras, which captures possible deformations between the phases. This allows
us to arrange the phases into a Hasse diagram in which the canonical gapless phase sits at the
top and the gapped phases sit at the bottom, with various other gapless phases sitting in the
middle [6].

Classification of phases. The S f -symmetric fermionic phases discussed here can be classi-
fied into various classes. A gapped phase is called a spontaneous symmetry breaking (SSB)
phase if it carries more than one vacuum, and a symmetry preserving topological (SPT) phase
if it carries a single vacuum. On the other hand, a gapless phase is called a gapless SSB (gSSB)
phase if it carries more than one universe, and a gapless SPT (gSPT) phase if it carries a single
universe.26

Furthermore a gSSB or gSPT phase P is called an intrisic gSSB or gSPT phase (igSPT
or igSSB) if any gapped phase obtained after an allowed deformation of P has strictly more
number of vacua than the number of universes in P .

An igSSB or igSPT phase exhibits symmetry protected criticality: any deformation of the
phase preserves gapless criticality unless we are willing to increase the amount of order in the
system and (spontaneously) break some of the symmetry in the process.

26See [149,226,227] for recent studies of gSPT phases in fermionic systems.
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Transitions between gapped phases. We can obtain transitions between S f -symmetric
gapped phases by applying generalized fermionic KT transformations on known transitions
between gapped phases of smaller symmetries.

Consider the KT transformation associated to a condensable algebra A and let S ′ be a
(bosonic or fermionic) symmetry such that Z(S ′) = Z′ as above. The KT transformation then
maps S ′ symmetric systems to S f symmetric systems.

Now assume that we know an S ′-symmetric CFT T′ that admits a relevant deformation ε,
which is uncharged under S ′, such that deforming T′ by two signs of ε gives rise to two S ′
symmetric gapped phases T′+ and T′− in the IR

T′ + ε→ T′+ , T′ − ε→ T′− . (155)

We can now apply the KT transformation to obtain an S f -symmetric CFT KT (T′) which
admits a relevant deformation KT (ε) such that deforming KT (T′) by two signs of KT (ε) gives
rise to two S f symmetric gapped phases KT (T′+) and KT (T′−) in the IR

KT (T′) + KT (ε)→ KT (T′+) , KT (T′)− KT (ε)→ KT (T′−) . (156)

The gapped phases KT (T′±) can be easily determined. LetA± be the Lagrangian algebras in
Z ′ associated to the physical topological boundaries associated to S ′-symmetric gapped phases
T′±. Then, the Lagrangian algebras KT (A±) ∈ Z(S f ) associated to S f -symmetric gapped
phases KT (T′±) can be computed by applying the functor ZL

KT (A±) = ZL(A±) . (157)

Order parameters. The operators condensed in a phase are often referred to as order pa-
rameters for that phase. This terminology is typically used for gapped phases, but we may
extend it to gapless phases.

The charges of order parameters associated to a phase are of particular physical relevance.
These are obtained simply as the set Q of condensed charges associated to the phase, which is
specified by the anyons of the SymTFT Z(S f ) appearing in the associated condensable algebra
A.

The charges of order parameters for transitions between two gapped phases with con-
densed charges Q± are given by the set

(Q+ ∪Q−)− (Q+ ∩Q−) , (158)

which are the charges that distinguish the two gapped phases.

5.2 Z f
2 symmetry

The SymTFT Z(Z f
2 ) for the simplest fermionic symmetry group Z f

2 is the Toric code or Z2
Dijkgraaf-Witten gauge theory, which was described in 3.5.1. The anyon content is

Z(VecZ2
) = {1, e, m, f = em} , (159)

where e and m are bosons and f is a fermion. We take symmetry boundary to be B f which
is the unique fermionic boundary. The choice of (−1)F on B f is again fixed as in eq. (84)

which implies the generalized charges charges associated to the objects in Z(Z f
2 ) as discussed

in 4.2.1. The symmetry fermionic Lagrangian algebra is Asym =A f = 1⊕π f .
The gapped phases correspond to Lagrangian algebras in Z(VecZ2

), for which there are
two possibilities.

Ae = 1⊕ e , Am = 1⊕m . (160)
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With the following rather simple Hasse diagram of inclusion of condensable algebras

1

Ae Am

. (161)

Choosing the physical Lagrangian algebra (i.e. Lagrangian algebra for physical boundary) to
be

Aphys =Am , (162)

we find an SPT phase, since we have

Asym ∩Aphys =A f ∩Am = 1 , (163)

implying a single (untwisted sector) local operator and therefore a unique ground state. From
the form of Am, we see that this gapped phase contains a topological point-like operator carry-
ing generalized charge m, or in other words a topological point-like operator which is a boson
and lives at the end of (−1)F . This implies that (−1)F is bosonically isomorphic to the identity
line in this gapped phase:

(−1)F = 1 . (164)

This phase is the trivial SPT phase for Z f
2 symmetry and is denoted as Triv in this paper. The

confined charges for this phase are e and f . The order parameter for the phase carries charge
m, i.e., it is an R sector boson.

Choosing the physical Lagrangian algebra to be

Aphys =Ae , (165)

we again find an SPT phase since

Asym ∩Aphys =A f ∩Ae = 1 . (166)

From the form of Ae, we see that this gapped phase contains a topological point-like operator
carrying generalized charge e, or in other words a topological point-like operator which is a
fermion and lives at the end of (−1)F . Combining it with the fermion living at the end of
π line, we obtain a boson living at the end of π(−1)F , implying that this line is bosonically
isomorphic to the identity line π(−1)F = 1, or in other words

(−1)F = π . (167)

This phase is the non-trivial SPT phase for Z f
2 symmetry and is denoted as Arf in this paper.

The confined charges for this phase are m and f . The order parameter for the phase carries
charge e, i.e. it is an R sector fermion.

We can also obtain these phases via the fermionization of Z2 symmetric Bosonic phases.
The trivial or symmetry preserving Z2 phase has a single untwisted sector and a single twisted
sector ground state, both of which are uncharged under Z2. Under fermionization, these map
to the NS sector and R sector ground states respectively that are both fermion parity even.
Hence we recover the Triv phase. Instead, starting from the Z2 SSB bosonic phase, the IR
theory has two untwisted sector ground states which are swapped under the Z2 action. There
are no twisted sector ground states. The even combination of ground states is uncharged
and untwisted under Z2, and under fermionization maps to a fermion parity even NS sector
ground state. The odd combination, being charged under Z2 maps to the R sector state which
is fermion parity odd. Hence we find that the fermionization of the Z2 SSB gives the Arf phase.
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Naturally, the fermionization of the transition between the Z2 trivial and Z2 SSB phases
delivers a transition between the two fermionic SPTs Triv and Arf. On the bosonic side, the
minimal such transition lies in the Ising universality class, whose fermionization is the Majo-
rana CFT labeled by Maj. Therefore to summarize, the Hasse diagram of phases in (161) is
realized for Z f

2 symmetric phases as

Maj

Arf Triv
(168)

which is the fermionization of Z2 symmetric bosonic phases which realize the Hasse diagram

Ising

Z2 SSB Trivial
. (169)

5.3 Z f
4 and Zπ f

4 symmetries

The SymTFT for the Z f
4 and Zπ f

4 symmetries is the Z4 Dijkgraaf-Witten (DW) gauge theory as
the SymTFT which was discussed in Sec. 3.5.2. Recall that to define the symmetry boundary
we chose the following fermionic Lagrangian algebra in Z(Z4)

Aem2 = 1⊕πem2 ⊕ e2 ⊕πe3m2 . (170)

This algebra can give rise to two different boundary conditions (related by stacking of Arf
theory) which carry two different symmetries. These symmetries are

Z f
4 = {1, P, P2 = (−1)F , P3} , Zπ f

4 = {1, P, P2 = π(−1)F , P3} , (171)

differentiated by whether P2 is identified with (−1)F or withπ(−1)F . The relation between the
bulk anyons and boundary topological lines was discussed in 3.5.2, while the relation between
the SymTFT anyons and generalized charges of Z f

4/Z
π f
4 are described in 4.2.2.

The possible gapped and gapless phases as well as transitions can be studied in the SymTFT
via the non-trivial bosonic condensable algebras in Z4 Dijkgraaf-Witten gauge theory. These
are

Ae2 = 1⊕ e2 , Am2 = 1⊕m2 , Ae2m2 = 1⊕ e2m2 ,

Ae = 1⊕ e⊕ e2 ⊕ e3 , Am = 1⊕m⊕m2 ⊕m3 , Ae2,m2 = 1⊕ e2 ⊕m2 ⊕ e2m2 .
(172)

Out of these Ae, Am and Ae2,m2 are Lagrangian, which give rise to fermionic gapped phases
while the remaining correspond to transitions between these phases. We have the following
Hasse diagram of inclusion of condensable algebras

1

Ae2 Ae2m2 Am2

Ae Ae2,m2 Am

. (173)
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We now describe the gapped and gapless phases obtained for different choices of condensable
algebras following the general construction described in Sec. 5.1.

Below is a Hasse diagram of gapped and gapless phases for the Z f
4 symmetry that we find

in what follows. The Hasse diagram for Zπ f
4 symmetry can be simply obtained by stacking

each node with the Arf theory

1

Maj⊕Maj SU(2)1 Ising

ZArf
2 SSB Z2 SSB Trivial

. (174)

This Hasse diagram can be obtained as a fermionization of the following Bosonic Hasse dia-
gram with the choice Bsym =Ae

1

Ising⊕ Ising SU(2)1 Ising

Z4 SSB Z2 SSB Trivial

. (175)

5.3.1 ZArf
2 SSB phase

Consider first the gapped phase with physical Lagrangian algebra

Aphys =Ae . (176)

This phase has two vacua because not only 1 but also e2 can end on both boundaries. Addi-
tionally from Ae we learn that the phase contains topological point-like operators Oei carrying
charges ei , which are the IR images of the order parameters associated to the gapped phase.
These operators have product

OeiOe j =Oei+ j . (177)

The untwisted sector local operators are generated by Oe0 = 1 and Oe2 , from which we identify
the two vacua to be

v0 =
1+Oe2

2
, v1 =

1−Oe2

2
, (178)

which satisfy the condition
vi v j = δi j vi . (179)

The operators Oe and Oe3 are both fermions in P2-twisted sector, so we can construct linear
combinations

Oe,0 =
1
2
(Oe +Oe3) , Oe,1 =

i
2
(Oe −Oe3) , (180)

which satisfy
Oe,i v j = δi jOe,i , Oe,iOe, j = δi j vi , (181)
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meaning that Oe,i is a fermionic P2-twisted sector local operator in vacuum vi . This identifies
the operator implementing P2 symmetry as

P2 = π00 ⊕π11 , (182)

as the end of π line is fermionic. The above equation can also be derived from the fact that
the e line in the bulk becomes πP2 on the fermionic symmetry boundary, while it becomes the
trivial line on the bosonic physical boundary, and hence we have πP2 = 1 in this fermionic
gapped phase. For Z f

4 symmetry, eq. (182) implies that the fermionic parity operator is

(−1)F = π00 ⊕π11 , (183)

or in other words both vacua are described by the Arf theory, and the underlying IR TQFT
describing the gapped phase can be represented as

TIR = Arf0 ⊕Arf1 . (184)

On the other hand, for Zπ f
4 symmetry, eq. (182) implies that the fermionic parity operator is

(−1)F = 100 ⊕ 111 , (185)

or in other words both vacua are described by the Triv theory, and the underlying IR TQFT
describing the gapped phase can be represented as

TIR = Triv0 ⊕ Triv1 . (186)

The underlying IR TQFTs for Z f
4 and Zπ f

4 symmetries differ by an overall Arf factor, a fact that
is true for all systems with this symmetry, which stems from the fact that the corresponding
symmetry boundaries in the SymTFT differ by stacking of Arf theory. Consequently, we will
only discuss Z f

4 symmetric phases from this point on; the Zπ f
4 symmetric phases are simply

obtained by stacking an overall Arf factor.
The action of the line operator P is

P : Oek → ikOek , (187)

which implies the actions

P : v0↔ v1 , Oe,0→Oe,1 , Oe,1→−Oe,0 . (188)

This equation allows us to determine the P line operator to be

P = 101 ⊕π10 , (189)

where
π10 = π11 ⊗ 110 = (−1)F11 ⊗ 110 , (190)

is responsible for the sign in the action Oe,1 →−Oe,0 utilizing the fact that Oe,1 is a fermion.
Here, the operators 1i j for i, j = 0,1 are defined by the following actions on the untwisted and
twisted sector operators:

1i j : vi → v j , Oe,i →Oe, j . (191)

We note that eq. (189) is a unique solution for eq. (182) up to the exchange of labels 0 and
1. We refer to this phase as the ZArf

2 SSB phase of the Z f
4 symmetry. This phase is the fermion-

ization of a bosonic gapped phase that spontaneously breaks a non-anomalous Z4 symmetry
down to the trivial group.
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We note that there is an ambiguity in the definition of the twisted sector operators Oe,i for
i = 0, 1. Specifically, we can redefine them as follows:

O′e,0 :=Oe,0 , O′e,1 := −Oe,1 . (192)

This redefinition preserves the operator algebra (181). On the other hand, there is no ambi-
guity in the definition of the untwisted sector operators vi due to the operator algebra (179).
Accordingly, we can also redefine the line operators 1i j and πi j by

1′i j : vi → v j , O′e,i →O′e, j , π′i j : vi → v j , O′e,i = −O
′
e, j . (193)

In particular, we have 1′i j = πi j and π′i j = 1i j for i ̸= j. In terms of these redefined operators,
the P line in eq. (189) is expressed as

P = 101 ⊕π10 = π
′
01 ⊕ 1′10 , (194)

which shows that the expression for P depends on a convention. Nevertheless, we empha-
size that the operator P itself is defined unambiguously regardless of a convention. Similar
comments also apply to the other examples that we will discuss in this and later sections.

This phase is a fermionization of the Z4 SSB phase carrying 4 vacua. From the point of
view of Z2 subgroup of Z4, the Z4 SSB phase splits into a direct sum of two Z2 SSB phases.
The fermionization of each Z2 SSB phase is Arf, and hence the fermionization indeed results
in the ZArf

2 SSB phase whose underlying TFT is Arf⊕Arf.

5.3.2 Z2 SSB phase

Take the physical Lagrangian algebra to now be

Aphys =Ae2,m2 . (195)

Again there are two vacua because of the same reason as above. The IR images of the order
parameters are topological point-like operators Oe2 , Om2 and Oe2m2 carrying the generalized
charges described by the subscript. The untwisted sector operators are 1 and Oe2 , in terms of
which the vacua can again be expressed as in (178). The other two operators Om2 and Oe2m2

are in P2 = (−1)F -twisted sector and both of them are bosons. The operators

Om2,0 =Om2 +Oe2m2 , Om2,1 =Om2 −Oe2m2 , (196)

describe bosonic ends of (−1)F in the two vacua, implying that (−1)F is realized trivially in
both vacua, and the underlying IR TQFT describing the gapped phase can be represented as

TIR = Triv0 ⊕ Triv1 . (197)

The symmetry operator P acts by a non-trivial sign on Oe2 and Oe2m2 , which means that it
exchanges the two vacua. Thus, we can express it as

P = 101 ⊕ 110 . (198)

We refer to this phase as the Z2 SSB phase of the Z f
4 symmetry.

This phase is the fermionization of a bosonic gapped phase that spontaneously breaks a
non-anomalous Z4 symmetry down to Z2. From the point of view of the Z2 subgroup of Z4,
this phase is bosonic Triv⊕ Triv. The fermionization of each bosonic Triv factor is a fermionic
Triv factor, thus reproducing the above result.
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5.3.3 Trivial phase

Finally, take the physical Lagrangian algebra to be

Aphys =Am . (199)

The corresponding fermionic gapped phase has a single vacuum as no non-trivial anyon can
end on both Bsym and Bphys. The IR images of order parameters are topological point-like
operators Omi carrying charges described by their subscript. In particular, Om2 provides a
bosonic topological end of (−1)F and hence the IR TQFT is a single copy of the trivial theory

TIR = Triv . (200)

Similarly, Om provides a bosonic topological end of P, implying that P acts completely trivially
and can be identified with the identity line operator

P = 1 . (201)

We refer to this phase as the trivial phase of the Z f
4 symmetry. This phase is the fermionization

of the trivial bosonic gapped phase with a non-anomalous Z4 symmetry.

5.3.4 e2-condensed phase

Now let us discuss gapless phases with Z f
4 symmetry. First, consider the physical condensable

algebra to be
Aphys =Ae2 . (202)

This defines a bosonic topological interface Ie2 from the Z4 DW theory to the toric code. Thus,
the club quiche compactification produces a topological boundary condition B′ of the toric
code. As e2 also appears in Asym, we learn that the boundary B′ has two topological local
operators on it, which implies that B′ is comprised of two irreducible topological boundary
conditions

B′ =B′0 ⊕B′1 . (203)

As we pass the interface Ie2 , the anyons of toric code are converted into the anyons of Z4 DW
theory, according to the map

1 7→ 1⊕ e2 , e′ 7→ e⊕ e3 , m′ 7→ m2 ⊕ e2m2 , f ′ 7→ em2 ⊕ e3m2 , (204)

where we have denoted the anyons of the toric code by an additional prime to avoid confusing
them with the anyons of theZ4 DW theory. From this and the Lagrangian algebraAsym =Aem2 ,
we learn that there are two fermionic topological ends of f ′ along B′, one coming from the
end of em2 along B

sym

Z f
4

and the other coming from the end of e3m2 along B
sym

Z f
4

. We label

these ends respectively as Eem2 and Ee3m2 . Furthermore there is a topological local operator
Oe2 along B′ coming from compactifying the e2 in between B

sym

Z f
4

and Ie2 . The products of

these operators obey the fusion of their subscripts:

Eei m2Ee j m2 =Oei+ j , Eei m2Oe j = Eei+ j m2 , OeiOe j =Oei+ j , (205)

where Oe0 = 1. The identity operators along the two boundaries B′0 and B′1 are

v0 =
1+Oe2

2
, v1 =

1−Oe2

2
, (206)
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satisfying
vi v j = δi j vi . (207)

We have fermionic topological ends

E0 =
1
2
(Eem2 + Ee3m2) , E1 =

i
2
(Eem2 − Ee3m2) , (208)

of f ′ along B′0 and B′1 respectively, which satisfy

Ei v j = δi jEi , EiE j = δi j vi . (209)

This means that both B′0 and B′1 are irreducible fermionic topological boundaries of toric code
associated to the fermionic Lagrangian algebra 1⊕π f ′.

Note that this does not determine yet whether there is a relative Euler term or Arf term
between B′0 and B′1. This can be determined by studying the Z f

4 symmetry action. We know
that the symmetry generator P has linking action

P : Ee j m2 → i j Ee j m2 , Oe j → i j Oe j , (210)

which implies the linking action

P : E0→ E1 , E1→−E0 , v0↔ v1 . (211)

This means that P is implemented by line operators lying between B′0 and B′1. The fact that
these line operators have to be invertible implies that there is no relative Arf term between
B′0 and B′1. This is because the interface between B′0 and B′1 would become non-invertible if
there were a relative Arf term, cf. the discussion around (139). Moreover, the linking action of
P on vi implies that the quantum dimension of these boundary changing line operators must
be 1, and hence there is no relative Euler term between B′0 and B′1.

Due to eq. (211), we can express the Z f
4 symmetry generator P as

P = 101 ⊕ (−1)F10 , (212)

where (−1)F10 := 110 ⊗ (−1)F00 = (−1)F11 ⊗ 110 and we have denoted the fermionic symme-
try generating line operator along the fermionic boundary B′i as (−1)Fii . The full fermionic
symmetry generator indeed involves the fermionic symmetry generator along both B′0 and B′1

(−1)F = P2 = (−1)F00 ⊕ (−1)F11 . (213)

We note that eq. (212) is the unique solution for the condition P2 = (−1)F = (−1)F01⊕ (−1)F10
up to the exchange of labels 0 and 1.

Providing a gapless physical boundary B
phys
T f , which is a gapless boundary of the toric code,

completes the club sandwich and constructs the IR theory TIR of a system in the corresponding
gapless phase, which can be expressed as

TIR = T
f
0 ⊕T

f
1 , (214)

where T f
i are two copies of a gapless theory T f with Z f

2 fermionic symmetry. The gapless phase

thus comprises of two universes and hence a gapless SSB (gSSB) phase for Z f
4 symmetry. The

Z f
4 symmetry acts as in (212) and (213), where now (−1)Fii is the generator of Z f

2 symmetry

of T f
i .
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T f can be any Z f
2 symmetric fermionic CFT carrying all generalized charges for Z f

2 . The
simplest example is provided by the Majorana CFT, and hence one of the IR theories realizing
this gapless phase is

Maj0 ⊕Maj1 , (215)

with Z f
4 being realized by (212).

Let ε be the relevant operator, uncharged under Z f
2 , responsible for deforming the Maj

CFT to Triv and Arf TFTs. Then it is clear from (212) that the operator ε0+ ε1 of Maj0⊕Maj1
is uncharged under Z f

4 , as the generator P simply exchanges ε0 and ε1. Using ε0 + ε1 as the

deformation, we obtain a transition between the Z2 SSB and ZArf
2 SSB phases of Z f

4 symmetry.
Note that the condensable algebras corresponding to these two gapped phases are Ae

and Ae2,m2 , both of which contain the condensable algebra Ae2 for the gapless phase under
consideration.

Let us now discuss the gapless phase from the point of view of fermionization. In terms of
the bosonic Z4 symmetry, the condensable algebra Ae2 corresponds to a phase for which the
IR CFT is

T0 ⊕T1 , (216)

where Ti is a copy of a Z2 symmetric CFT T. This Z2 symmetry is identified with the Z2 sub-
group of Z4. Thus, the fermionization simply fermionizes each Ti factor leading to (214),
where T f is fermionization of T. Taking T to be Ising CFT, we obtain the above choice
T f =Maj.

5.3.5 m2-condensed phase

Now consider the physical condensable algebra to be

Aphys =Am2 . (217)

This also defines a bosonic topological interface Im2 from Z4 DW theory to the toric code. As
no non-trivial anyons appear in both Asym and Aphys, we learn that the club quiche compact-
ification of Bsym

Z f
4

and Im2 produces an irreducible topological boundary condition B′ of Z2

DW theory. As we pass the interface Im2 , the anyons of Z2 DW theory are converted into the
anyons of Z4 DW theory according to the map

1 7→ 1⊕m2 , e′ 7→ e2 ⊕ e2m2 , m′ 7→ m⊕m3 , f ′ 7→ e2m⊕ e2m3 . (218)

Thus e′ is the only non-trivial anyon that can end along B′ via the end of e2 along B
sym

Z f
4

, and

we recognize B′ to be the irreducible boundary of Z2 DW theory associated to the Lagrangian
algebra 1⊕ e′. The Z f

4 symmetry generator P acts on the end of e2 along B
sym

Z f
4

by a non-trivial

sign, which means that the realization of P along B′ acts by a non-trivial sign on the end of e′

along B′. That is, P is realized by the Z2 symmetry generator P ′ along B′

P ′ = P , (219)

which identifies
(−1)F = P2 = 1 . (220)

Due to this reason, we can identify B′ to be the bosonic topological boundary condition Be′

associated to 1⊕ e′ without the Arf term. If instead we were considering Zπ f
4 symmetry, the

fermion parity would be realized on B′ as (−1)F = π, and we would have B′ = Be′ ⊠ Arf,
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namely the fermionic boundary associated to 1⊕e′ that is obtained from the bosonic boundary
Be′ by stacking an additional Arf term.

Completing the club sandwich by a bosonic gapless physical boundary, we obtain a gSPT
phase for Z f

4 symmetry, in which the IR theory TIR is a bosonic gapless theory (stacked with

a trivial fermionic TFT) with a symmetry Z2 acting faithfully on it, and the Z f
4 symmetry is

realized on TIR via (219) and (220).
We can choose the bosonic theory to be Ising CFT, which transition between the Z2 trivial

and Z2 SSB phases for Z f
4 symmetry. These gapped phases correspond to Ae2,m2 and Am, both

of which carry Am2 as a subalgebra.
From the point of view of non-anomalous bosonic Z4 symmetry, Am2 corresponds to a

gapless phase comprising of a Z2 symmetric CFT, with the Z4 being realized by the surjective
homomorphism Z4→ Z2. The Z2 subgroup of Z4 acts trivially, and hence fermionization does
not change the theory.

5.3.6 e2m2-condensed phase

Finally, consider the condensable algebra

Aphys =Ae2m2 . (221)

This defines a bosonic topological interface Ie2m2 from Z4 DW theory to the double semion
model, or twisted Z2 DW theory. As no non-trivial anyons appear in common in both Asym and
Aphys, we learn that the club quiche compactification ofBsym

Z f
4

and Ie2m2 produces an irreducible

topological boundary condition B′ of twisted Z2 DW theory. As we pass the interface Ie2m2 ,
the anyons of twisted Z2 DW theory are converted into the anyons of Z4 DW theory, according
to the map

1 7→ 1⊕ e2m2 , s 7→ em⊕ e3m3 , s̄ 7→ em3 ⊕ e3m , ss̄ 7→ e2 ⊕m2 , (222)

where s and s̄ denote the semion and anti-semion respectively. We thus learn that there is
a topological end of ss̄ along B′ coming from an end of e2 along B

sym

Z f
4

. This deduces B′ to

be a boundary associated to the Lagrangian algebra 1 ⊕ ss̄ of twisted Z2 DW theory, which
is a topological boundary condition carrying bosonic Z2 symmetry with non-trivial ’t Hooft
anomaly, or in short Zω2 symmetry with ω ∈ H3(Z2, U(1)) being non-trivial. We let P ′ be the
topological line operator along B′ generating the Zω2 symmetry.

The Z f
4 generator P acts on the end of e2 by a non-trivial sign, implying that P is realized

on B′ by a line operator under which the end of ss̄ is charged, i.e.

P = P ′ . (223)

This means that (−1)F is realized as

(−1)F = P2 = 1 . (224)

Due to this reason, we can identify B′ to be the bosonic topological boundary condition Bss̄

associated to 1⊕ ss̄ without the Arf term. If instead we were considering Zπ f
4 symmetry, the

fermion parity would be realized on B′ as (−1)F = π, and we would have B′ = Bss̄ ⊠ Arf,
namely the fermionic boundary associated to 1⊕ss̄ that is obtained from the bosonic boundary
Bss̄ by stacking an additional Arf term.
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In addition to these identification of line operators, there is a non-trivial identification of
topological junction local operators between Z f

4 lines as topological junction local operators
between Zω2 lines which ensures consistency with the ’t Hooft anomalyω. See [5] for this map
of junction operators.

Completing the club sandwich by a bosonic gapless physical boundary, we obtain a gSPT
phase for Z f

4 symmetry, in which the IR theory TIR is a bosonic gapless theory (stacked with

a trivial fermionic TFT) with a symmetry Zω2 acting faithfully on it, and the Z f
4 symmetry is

realized on TIR via (223) and (224). In fact, this is an igSPT phase as any gapped deformation
of a Zω2 symmetric system produces more than one vacua. A candidate for such a critical theory
is the SU(2)1 WZW model, which also realizes the deformation from Ae2m2 gapless phase to
Ae2,m2 gapped phase where the Zω2 symmetry is spontaneously broken.

For bosonic Z4 symmetry, Ae2m2 also describes a Zω2 symmetric CFT on which Z4 acts
according to surjective homomorphism Z4 → Z2, and hence Z2 ⊂ Z4 acts trivially. Thus, the
fermionization does not change the theory.

5.4 Rep(S3) f symmetry

Now we consider the DW gauge theory for the smallest non-abelian group

S3 = {1, a, a2, b, ab, a2 b} , a3 = b2 = 1 , ba = a2 b , (225)

as the SymTFT. Its anyon content is labeled as

dim= 1 :

dim= 2 :

dim= 3 :

(1, 1) ,

(1, E) ,

(b,+) ,

(1, P) ,

(a,ωi) ,

(b,−) ,

ω= e2πi/3 ,

i ∈ {0,1, 2} ,
(226)

where we have also displayed the quantum dimensions of the anyons. The bosons are (1,1),
(1, P), (1, E), (a, 1) and (b,+), and the only fermion is (b,−). On the other hand, the spin of
(a,ωi) is ωi . There are two possible fermionic Lagrangian algebras [219,223], that could be
chosen to be the symmetry Lagrangian algebra

Ab−,E = (1,1)⊕π(b,−)⊕ (1, E) , Ab−,a = (1,1)⊕π(b,−)⊕ (a, 1) , (227)

which are related by a 0-form symmetry of the S3 DW theory that exchanges (1, E) and (a, 1).
As a consequence, the symmetry boundaries corresponding to the two Lagrangian algebras
give equivalent results. Without loss of generality, we choose

Asym =Ab−,a , (228)

to be the symmetry Lagrangian algebra. This algebra can give rise to two different boundary
conditions (related by stacking of Arf theory) which carry two different symmetries. These
are the Rep(S3) f and Rep(S3)π f symmetries discussed earlier. Moving forward, we fix the
symmetry to be Rep(S3) f , as the results for Rep(S3)π f are obtained simply by stacking an
overall Arf term.

The non-trivial bosonic condensable algebras in S3 Dijkgraaf-Witten gauge theory are

AP = (1,1)⊕ (1, P) , AE = (1, 1)⊕ (1, E) ,

Aa = (1,1)⊕ (a, 1) , AP,E = (1, 1)⊕ (1, P)⊕ 2(1, E) ,

AP,a = (1,1)⊕ (1, P)⊕ 2(a, 1) , AE,b = (1, 1)⊕ (1, E)⊕ (b,+) ,

Aa,b = (1,1)⊕ (a, 1)⊕ (b,+) .

(229)
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Out of these AP,E , AP,a, AE,b and Aa,b are Lagrangian. These condensable algebras form the
following Hasse diagram

1

AE AP Aa

AE,b AP,E AP,a Aa,b

. (230)

The bosonic Hasse diagram is

1

Ising 3-Potts Ising ⊕ Ising

Z2 SSB Triv
Rep(S3)/Z2

SSB

Rep(S3)

SSB

. (231)

The fermionic Hasse diagram is

1

Maj 3-Potts Maj ⊕ Ising

Arf Triv
Rep(S3)

f
Triv

SSB

Rep(S3)
f
Arf

SSB

. (232)

5.4.1 (1, P)-condensed phase

First, consider the club quiche compactification with choice

Aphys =AP . (233)

The reduced topological order is Z3 DW Gauge Theory, whose anyons are mapped to anyons
of S3 DW theory as

1 7→ (1,1)⊕ (1, P) , e, e2 7→ (a, 1) , m, m2 7→ (1, E) ,

em, e2m2 7→ (a,ω) , em2, e2m 7→ (a,ω2) .
(234)

We have the intersection AP∩Asym = 1, meaning that the club quiche compactification results
in an irreducible topological boundary condition B′ of the Z3 DW Gauge Theory. Both e and
e2 have a topological end along B′ as (a, 1) has a topological end along B

sym
Rep(S3) f

. Thus B′

corresponds to Lagrangian algebra Ae = 1⊕ e ⊕ e2. From AP , we see that we only obtain a
bosonic topological end of (−1)F along B′. This lets us recognize

B′ =Be , (235)
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where Be is irreducible topological boundary condition corresponding to Ae, without any
additional Arf term. This in particular means that (−1)F is realized along B′ as

(−1)F = 1 . (236)

The boundary B′ realizes a Z3 symmetry

S ′ = VecZ3
= {1, P, P2} . (237)

The linking action of E on the end of (a, 1) along B
sym
Rep(S3) f

can be computed as

S(1,E),(a,1)|S3|
dim(a, 1)

= −1 , (238)

where S(1,E),(a,1) on the left-hand side is the ((1, E), (a, 1))-component of the (unitary) modular
S-matrix of the S3 DW theory. This means that the realization of E on B′ has −1 linking action
on the ends of e and e2. Combining this with the fact that quantum dimension of E is 2 implies
that E is realized by line operator

E = P ⊕ P2 , (239)

along B′. Here, we used the fact that P acts on the end of e as ω = e2πi/3 and also used the
equality ω+ω2 = −1.

Completing the club sandwich by a bosonic gapless boundary, we obtain a gapless phase
whose properties are obtained simply by translating the above club quiche analysis. In this
gapless phase the charge (1, P) has been condensed, which forces the charges

QC = {(b,+), (b,−)} , (240)

to confine, since they are mutually non-local with (1, P). The deconfined charges are captured
by anyons of Z3 DW theory according to the map (234). Since the condensed charge (1, P)
is in the twisted sector, we obtain a gSPT phase for Rep(S3) f symmetry. Given that we have
untwisted sector operators in the charge (a, 1), applying the map (234) we learn that we have
untwisted sector operators in charges e and e2. This recognizes the symmetry acting faithfully
in the IR of the gSPT phase to be Z3 as in (237). The way Rep(S3) f acts in the IR via the Z3
symmetry is described in equations (236) and (239).

An actual CFT realizing the IR of this gapless phase is provided by the 3-state Potts model,
which carries such a Z3 symmetry. The Rep(S3) f symmetry is realized on it as described in
equations (236) and (239).

From the point of view of the bosonized Rep(S3) symmetry, AP realizes the same IR physics
with P being regarded as a bosonic Z2 symmetry, which acts trivially in this gapless phase. The
fermionization does not modify these results.

5.4.2 (1, E)-condensed phase

Now consider the club quiche compactification with choice

Aphys =AE . (241)

The reduced topological order is Z2 DW Gauge Theory, whose anyons are mapped to anyons
of S3 DW theory as

1 7→ (1, 1)⊕ (1, E) , m 7→ (1, P)⊕ (1, E) , e 7→ (b,+) , f 7→ (b,−) . (242)

We have the intersection AE∩Asym = 1, meaning that the club quiche compactification results
in an irreducible topological boundary condition B′ of the Z2 DW Gauge Theory. The anyon
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f has a topological end along B′ coming from the end of (b,−) along B
sym
Rep(S3) f

. Thus B′

is a fermionic boundary condition corresponding to Lagrangian algebra A f = 1⊕π f . Since
(b,+) has a fermionic end along B

sym
Rep(S3) f

in (−1)F -twisted sector, B′ is completely fixed as the

fermionic boundary along which e has a fermionic end in (−1)F -twisted sector. In other words,
e in the bulk is mapped to π(−1)F rather than (−1)F on the boundary B′. The boundary B′

realizes a Z f
2 symmetry

S ′ = sVecZ2
= {1,π, (−1)F ,π(−1)F} . (243)

The linking action of E on the end of (b,−) along B
sym
Rep(S3) f

is computed as

S(1,E),(b,−)|S3|
dim(b,−)

= 0 , (244)

where S(1,E),(b,−) is again a component of the modular S-matrix. This means that the realization
of E on B′ has 0 linking action on the end of f . Combining this with the fact that quantum
dimension of E is 2 implies that E is realized by line operator

E = 1⊕ (−1)F , (245)

along B′. We note the above equation is the unique solution for the fusion rule
E2 = 1⊕ (−1)F ⊕ E, cf. eq. (42).

Completing the club sandwich by a bosonic gapless boundary, we obtain a gapless phase
whose properties are obtained simply by translating the above club quiche analysis. In this
gapless phase the charge (1, E) has been condensed, which forces the charges

QC = {(a, 1), (a,ω), (a,ω2)} , (246)

to confine, since they are mutually non-local with (1, E). The deconfined charges are captured
by anyons of Z2 DW theory according to the map (242). Since the condensed charge (1, E)
only has operators in the twisted sector, we obtain a gSPT phase for Rep(S3) f symmetry. Given
that we have untwisted sector fermionic operators transforming in the charge (b,−), applying
the map (242) we learn that we have untwisted sector fermionic operators in charge f . This
recognizes the symmetry acting faithfully in the IR of the gSPT phase to be Z f

2 as in (243).

The way Rep(S3) f acts in the IR via the Z f
2 symmetry is described in equation (245).

A concrete example of a CFT realizing the IR of such a gapless phase is the Maj CFT which
carries S ′ = Z f

2 , and on which Rep(S3) f is realized according to (245).
From the point of view of bosonic Rep(S3) symmetry, AE realizes Z2 symmetric CFT with

the Z2 subsymmetry of Rep(S3) identified with this Z2. Fermionizing with respect to it, we
indeed obtain Z f

2 symmetric CFT. Taking the Z2 symmetric CFT to be Ising, we recover the
example of Maj CFT discussed above.

5.4.3 (a, 1)-condensed phase

Now consider the club quiche compactification with choice

Aphys =Aa . (247)

The reduced topological order is Z2 DW Gauge Theory, whose anyons are mapped to anyons
of S3 DW theory as

1 7→ (1,1)⊕ (a, 1) , e 7→ (1, P)⊕ (a, 1) , m 7→ (b,+) , f 7→ (b,−) . (248)

56

https://scipost.org
https://scipost.org/SciPostPhys.18.6.194


SciPost Phys. 18, 194 (2025)

The club quiche compactification results in a reducible topological boundary condition B′ of
the Z2 DW Gauge Theory, which is a sum of two irreducible boundary conditions, as seen
from the fact that (a, 1) can end along both boundary B

sym
Rep(S3) f

and interface Iphys associated

to Aphys. The anyons f and e both have a topological end along B′ coming from the ends of
(b,−) and (a, 1) respectively along B

sym
Rep(S3) f

. Thus we can recognize B′ as

B′ =Be ⊕ (B f ⊠Arf ) . (249)

Here B f is the topological boundary condition of Z2 DW theory associated to Lagrangian
algebra A f = 1⊕π f along which the e line can end in a fermionic topological local operator
in (−1)F -twisted sector, but the fermionic boundary inside B′ is obtained by stacking an Arf
term on B f since e only has a bosonic R-sector topological end along B′ coming from such an
end of (a, 1) along B

sym
Rep(S3) f

. On the other hand, Be is a topological boundary condition of
Z2 DW theory associated to Lagrangian algebra Ae = 1⊕ e. The boundary Be does not carry
an Arf term, which can be seen by noting that the presence of (a, 1) in Aphys means that B′

carries a bosonic topological local operator in (−1)F -twisted sector, which can only lie along
Be and implies the absence of Arf term along Be.

All of the topological line operators along B′ form a fermionic multi-fusion category S(B′)
with objects

S(B′) = {1ee,πee, Pee, 1 f f ,π f f , (−1)Ff f , Se f , S f e} , (250)

where 1ii is the identity line along Bi , πii is the π line along Bi , Pee is the Z2 symmetry gener-
ator along Be, (−1)Ff f is the Z f

2 symmetry generator along B f ⊠Arf, Se f is a non-invertible line
operator changing Be to B f ⊠Arf, and S f e is a non-invertible line operator changing B f ⊠Arf
to Be. The fusion rules of Se f and S f e are

πeePee ⊗ Se f = Se f ⊗ (−1)Ff f = Se f , (−1)Ff f ⊗ S f e = S f e ⊗πeePee = S f e ,

Se f ⊗ S f e = 1ee ⊕πeePee , S f e ⊗ Se f = 1 f f ⊕ (−1)Ff f .
(251)

The above fusion rules are analogous to those of duality defects that implement the gauging of
a non-anomalousZ2 symmetry. We recall that the fusion rules of the duality defects follow from
the fact that gauging a Z2 symmetry is an operation to condense 1⊕P where P is the generator
ofZ2. Similarly, the fusion rules (251) follow from the fact that S f e and Se f implement the GSO
projection and its inverse, which are the operations to condense 1 f f ⊕ (−1)Ff f and 1ee⊕πeePee
respectively.

Let Ee and E f be the topological local operators lying at the ends of e and f along Be
and B f ⊠Arf respectively, and let ve, v f denote the identity operators along Be and B f ⊠Arf
respectively. The linking action of Se f and S f e on these operators are

Se f : ve→
p

2λv f , Ee→ 0 ,

S f e : v f →
p

2λ−1ve , E f → 0 ,
(252)

for some λ ∈ R+ which captures the relative Euler term between Be and B f ⊠Arf. The action
on Ee and E f is zero because the lines e and f cannot end along B f ⊠Arf and Be respectively.

Performing a computation similar to the one performed in section IV.D.3 of [5], we find
that the Rep(S3) f symmetry of B′ is realized as

(−1)F = 1ee ⊕ (−1)Ff f , E = Se f ⊕ S f e ⊕πeePee . (253)

Given the quantum dimension of E, we know that the linking action of E on 1 = ve + v f has
to be

E : ve + v f → 2(ve + v f ) , (254)
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which means that we have
λ=
p

2 . (255)

Completing the club sandwich by a bosonic gapless boundary, we obtain a gapless phase
in which the charge (a, 1) has been condensed, which forces the charges

QC = {(1, E), (a,ω), (a,ω2)} , (256)

to confine, since they are mutually non-local with (a, 1). The deconfined charges are captured
by anyons of Z2 DW theory according to the map (248). Since the condensed charge (a, 1) has
an operator in the untwisted sector, we obtain a gSSB phase for Rep(S3) f symmetry with two
universes. From the above club quiche analysis we learn that we can express the IR theory for
a system lying in such a gapless phase as

TIR = (TIR
e ⊠ Triv)⊕ (TIR

f ⊠Arf ) , (257)

where TIR
e is a theory with bosonic non-anomalous Z2 symmetry (whose generator is labeled

by Pee) and TIR
f is its fermionization with respect to this Z2 symmetry27

TIR
f = TIR

e /
f Z2 . (258)

We recall that TIR
f ⊠ Arf and TIR

e are related via the GSO projection and its inverse, cf. Figure

1. The generator of fermionic Z f
2 symmetry of TIR

f ⊠ Arf is labeled by (−1)Ff f . The interfaces
between the two theories implementing the GSO projection and its inverse are S f e and Se f

respectively. Then the Rep(S3) f is realized in the IR of this gapless phase as in equation (253).
Picking TIR

e to be Ising CFT implies that TIR
f = Maj and we obtain a concrete example for

TIR, which is
TIR = Ising⊕Maj , (259)

where we have used the fact that Maj CFT is invariant under stacking by Arf TFT.
From the point of view of bosonic Rep(S3) symmetry, Aa describes an IR system T⊕(T/Z2)

where T is a copy of a Z2 symmetric CFT, T/Z2 is the CFT obtained by gauging this Z2 sym-
metry, and the Z2 subsymmetry of Rep(S3) is realized as the Z2 symmetry of the T factor in
T⊕ (T/Z2). Fermionizing with respect to this Z2 subsymmetry we obtain (T/ f Z2)⊕ (T/Z2)
which matches (257) with the identification TIR

e = T/Z2. Picking T= Ising leads to the exam-
ple (259).

5.4.4 SPT phase whose underlying TFT is Triv

Now let us consider gapped phases choosing first the physical Lagrangian algebra to be

Aphys =AP,E , (260)

which corresponds to condensing mutually local charges (1, P) and (1, E). The condensation
of these charges forces the rest of the charges

QC = {(a,ωp), (b,±)} , (261)

to confine as they are mutually non-local with (1, P) or (1, E). Both the condensed charges
contain only twisted sector operators, hence the resulting gapped phase has a unique ground
state in the NS sector, i.e., it is an SPT phase for Rep(S3) f symmetry. The phase contains only
a bosonic topological local operator in R sector coming from the condensation of (1, P), which

27This follows from the definition of Be and B f .
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means that the underlying non-symmetric fermionic theory is the trivial theory. The Rep(S3) f

symmetry is realized on it via
(−1)F = 1 ,

E = 1⊕ 1 .
(262)

The first line follows from the fact that the underlying fermionic TFT is trivial. The second line
follows from the fusion rule E2 = 1⊕ (−1)F ⊕ E, cf. eq. (42).

This is fermionization of trivial phase of bosonic Rep(S3) symmetry.
From the point of view of the club quiche associated to AP , this gapped phase is pro-

duced by choosing the physical boundary to be Bm corresponding to Lagrangian algebra
Am = 1⊕m⊕m2 of the Z3 DW theory, since ending m and m2 corresponds to ending (1, E)
according to equation (234). Recall that the topological boundary on the other side of the bulk
Z3 DW theory is B′ =Be as shown in eq. (235). It is known that the compactification of Z3
DW theory with Be and Bm as two ends is indeed the trivial 2d TQFT on which the generator
P ′ of the Z3 symmetry is realized by P ′ = 1. Combining this with (236) and (239) we indeed
obtain (262).28

We can also restate these results directly from the point of view of deformations of the
gapless phase corresponding to AP in which (1, P) is already condensed and (b,±) are already
confined. The gapped phase corresponding to AP,E is obtained by additionally condensing the
charge (1, E), leading to the confinement of remaining charges (a,ωp). According to the map
(234), we learn that the (1, E) condensation corresponds to condensation of the charges m
and m2 for the IR Z3 symmetry of the gapless phase. The Z3 symmetry after this condensation
is realized as P ′ = 1 because the generator P ′ originates from m in the bulk, which is now
condensed. Hence we obtain a gapped SPT phase for this Z3 symmetry on which the Z3
symmetry is realized as P ′ = 1. This again leads to (262).

Concretely this Rep(S3) f symmetric deformation is realized by the deformation of 3-Potts
(which realizes the gapless phase AP) to the trivial gapped phase for Z3 symmetry.

On the other hand, from the point of view of the club quiche associated to AE , this gapped
phase is produced by choosing the physical boundary to be Bm corresponding to Lagrangian
algebraAm = 1⊕m of theZ2 DW theory, since ending m corresponds to ending (1, E) according
to equation (242). Recall that the other boundary of Z2 DW theory is B′ = B f as discussed
in Section 5.4.2. It is known that the compactification of Z2 DW theory with B f and Bm as

two ends is indeed the trivial 2d TQFT on which the Z f
2 symmetry is realized by (−1)F = 1.

Combining this with (245) we indeed obtain (262).
We can also restate these results directly from the point of view of deformations of the

gapless phase corresponding toAE in which (1, E) is already condensed and (a,ωp) are already
confined. The gapped phase corresponding to AP,E is obtained by additionally condensing the
charge (1, P), leading to the confinement of remaining charges (b,±). According to the map
(242), we learn that the (1, P) condensation corresponds to condensing the charge m for the
IR Z f

2 symmetry of the gapless phase, and hence we obtain a gapped SPT phase for this Z f
2

symmetry on which the Z f
2 symmetry is realized as (−1)F = 1. This again leads to (262).

Concretely this Rep(S3) f symmetric deformation is realized by the deformation of Maj
(which realizes the gapless phase AE) to the trivial phase for Z f

2 symmetry.

5.4.5 SPT phase whose underlying TFT is Arf

Now choose the physical Lagrangian algebra to be

Aphys =AE,b , (263)

28In eq. (239), the generator P ′ of Z3 is written as P.
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which corresponds to condensing mutually local charges (b,+) and (1, E). This condensation
forces the rest of the charges

QC = {(1, P), (a,ωp)} , (264)

to confine as they are mutually non-local with (b,+) or (1, E). Both the condensed charges
contain only twisted sector operators, hence the resulting gapped phase is an SPT phase for
Rep(S3) f symmetry. The phase contains only a fermionic topological local operator in R sec-
tor coming from the condensation of (b,+), which means that the underlying non-symmetric
fermionic theory is the Arf theory. The Rep(S3) f symmetry is realized on it via

(−1)F = π ,

E = 1⊕π .
(265)

The first line follows from the fact that the underlying TFT of this SPT phase is the Arf TFT.
The second line follows from the fusion rule E2 = 1⊕ (−1)F ⊕ E.

This is fermionization of Z2 SSB phase of bosonic Rep(S3) symmetry in which P ∈ Rep(S3)
acts by exchanging the two vacua involved and E ∈ Rep(S3) is realized as E = 1⊕ P. Fermion-
izing with respect to P, we obtain Arf TFT on which (−1)F = π and E = 1⊕π, reproducing
what we discussed above.

From the point of view of the club quiche associated to AE , this gapped phase is produced
by choosing the physical boundary to be Be corresponding to Lagrangian algebra Ae = 1⊕ e
of the Z2 DW theory, since ending e corresponds to ending (b,+) according to equation (242).
Recall that the other boundary of Z2 DW theory is B′ =B f , and it is known that the compact-
ification of Z2 DW theory with B f and Be as two ends is indeed the 2d Arf TFT on which the

Z f
2 symmetry is realized by (−1)F = π. Combining this with (245) we indeed obtain (265).

We can also restate these results directly from the point of view of deformations of the
gapless phase corresponding toAE in which (1, E) is already condensed and (a,ωp) are already
confined. The gapped phase corresponding to AE,b is obtained by additionally condensing the
charge (b,+), leading to the confinement of remaining charges (b,−) and (1, P). According to
the map (242), we learn that the (b,+) condensation corresponds to condensing the charge e
for the IR Z f

2 symmetry of the gapless phase. Since e is now condensed, the Z f
2 symmetry is

realized as π(−1)F = 1, i.e., (−1)F = π. Here, we recall that e is mapped to π(−1)F on the
boundary B f . Hence we obtain a gapped SPT phase for this Z f

2 symmetry on which the Z f
2

symmetry is realized as (−1)F = π. This again leads to (265).
Concretely this Rep(S3) f symmetric deformation is realized by the deformation of Maj

(which realizes the gapless phase AE) to the Arf phase for Z f
2 symmetry.

5.4.6 SSB phase whose underlying TFT is Triv⊕ Triv⊕ Triv

Now choose the physical Lagrangian algebra to be

Aphys =AP,a , (266)

which corresponds to condensing mutually local charges (1, P) and (a, 1). This condensation
forces the rest of the charges

QC = {(1, E), (a,ω), (a,ω2), (b,±)} , (267)

to confine as they are mutually non-local with (1, P) or (a, 1). Moreover, since the coefficient
of (a, 1) in AP,a is two, this phase contains two linearly independent multiplets of operators
with charge (a, 1). Since a multiplet with charge (a, 1) contains an untwisted sector operator,
we obtain two linearly independent non-identity local operators in the IR. Hence the resulting
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gapped phase has 3 vacua in total. A multiplet with charge (a, 1) also contains a bosonic
operator in R sector, and an operator with charge (1, P) is also a bosonic R-sector operator.
In total, we have three linearly independent bosonic R-sector operators, implying that each
vacuum of the theory is a copy of trivial fermionic 2d TFT in which (−1)F is realized by the
identity line. Labeling the vacua as vi for i ∈ {0, 1,2}, we can express the realization of (−1)F

as
(−1)F = 1= 100 ⊕ 111 ⊕ 122 , (268)

where 1ii is the identity line in vacuum i.
The calculation of the realization of the E symmetry follows the same argument as in

section 5.3.3 of [3], leading to

E = 101 ⊕ 102 ⊕ 112 ⊕ 110 ⊕ 120 ⊕ 121 , (269)

where 1i j is the unit interface from vacuum i to vacuum j. Moreover, this argument also
implies that there are no non-trivial relative Euler terms between the three vacua.

This is the fermionization of Rep(S3)/Z2 SSB phase of bosonic Rep(S3) symmetry in which
P ∈ Rep(S3) acts trivially. Hence fermionization does not change the theory.

From the point of view of the club quiche associated to AP , this gapped phase is produced
by choosing the physical boundary to beBe corresponding to Lagrangian algebraAe = 1⊕e⊕e2

of the Z3 DW theory, since ending e and e2 corresponds to ending (a, 1) according to equation
(234). Recall that the other boundary of Z3 DW theory is B′ = Be. It is known that the
compactification of Z3 DW theory with Be on both ends is a 2d TQFT with three vacua along
with trivial relative Euler terms between them. This is the completely broken phase for the IR
Z3 symmetry, whose generator P ′ is realized by

P ′ = 101 ⊕ 112 ⊕ 120 . (270)

Combining this with (236) and (239) we indeed obtain (268) and (269).
We can also restate these results directly from the point of view of deformations of the gap-

less phase corresponding to AP in which (1, P) is already condensed and (b,±) are already
confined. The gapped phase corresponding to AP,a is obtained by additionally condensing the
charge (a, 1), leading to the confinement of remaining charges (1, E), (a,ω), (a,ω2). Accord-
ing to the map (234), we learn that the (a, 1) condensation corresponds to condensation of the
charges e and e2 for the IR Z3 symmetry of the gapless phase, and hence we obtain a gapped
Z3 SSB phase for this Z3 symmetry, leading again to (268) and (269).

Concretely this Rep(S3) f symmetric deformation is realized by the deformation of 3-Potts
(which realizes the gapless phase AP) to the Z3 SSB phase.

From the point of view of the club quiche associated to Aa, this gapped phase is produced
by choosing the physical boundary to be Be corresponding to Lagrangian algebra Ae = 1⊕ e
of the Z2 DW theory, since ending e corresponds to ending (1, P) according to equation (248).
Recall that the other boundary of Z2 DW theory is B′ = Be ⊕ (B f ⊠ Arf ) with a non-trivial
relative Euler term, and thus the compactification of Z2 DW theory with B′ on one end and
Be on the other end decomposes into a compactification with Be on both ends and a com-
pactification with (B f ⊠ Arf,Be) on the two ends. The first compactification results in two
vacua v0, v1 on which the Z2 symmetry of Be ⊂ B′ is spontaneously broken and hence the
lines living along Be ⊂B′ are realized as

1ee = 100 ⊕ 111 , Pee = 101 ⊕ 110 . (271)

The second compactification results in a single vacuum v2 on which the symmetry (−1)Ff f of
B f ⊠Arf ⊂B′ is realized as

(−1)Ff f = 122 . (272)
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The boundary changing lines Se f , S f e in B′ are realized as

Se f = π02 ⊕ 112 , S f e = π20 ⊕ 121 . (273)

Combining these with (253) we recover (268) and (269).29 In order to see that there are no
relative Euler terms between the three vacua, note that the linking action of Pee on v0 + v1
being 1 implies that there is no relative Euler term between v0 and v1. On the other hand, the
linking action of Se f on v0 + v1 from (252) has to be (using λ=

p
2 as in eq. (255))

Se f : v0 + v1→ 2v2 , (274)

which implies that 101 and 102 both have quantum dimensions 1. Thus there are no relative
Euler terms between the three vacua.

We can also restate these results directly from the point of view of deformations of the gap-
less phase corresponding to Aa in which (a, 1) is already condensed and (1, E), (a,ω), (a,ω2)
are already confined. The gapped phase corresponding to AP,a is obtained by additionally con-
densing the charge (1, P), leading to the confinement of remaining charges (b,±). According
to the map (248), we learn that the (1, P) condensation corresponds to condensation of the
charge e from the perspective of the IR of the gapless phase. This deforms TIR

e in (257) to a Z2
SSB phase with two vacua and TIR

f in (257) to an Arf factor. Hence from TIR
f ⊠ Arf we obtain

another trivial vacuum. As discussed above, this leads to (268) and (269).
Concretely this Rep(S3) f symmetric deformation is realized by the deformation of

Ising⊕Maj (which realizes the gapless phase Aa) in which Ising is deformed to Z2 SSB phase
and Maj is deformed to Triv phase for Z f

2 symmetry.

5.4.7 SSB phase whose underlying TFT is Triv⊕Arf

Finally, choose the physical Lagrangian algebra to be

Aphys =Aa,b , (275)

which corresponds to condensing mutually local charges (b,+) and (a, 1). This condensation
forces the rest of the charges

QP,a = {(1, P), (1, E), (a,ω), (a,ω2), (b,−)} , (276)

to confine as they are mutually non-local with (b,+) or (a, 1). Since the coefficient of (a, 1) in
Aa,b is one, this phase contains a single multiplet of operators with charge (a, 1), and hence
this gapped phase has 2 vacua. Note that a multiplet of operators with charge (b,+) does
not contain any untwisted operators. A multiplet with charge (a, 1) also contains a bosonic
operator in the R sector, and a multiplet with charge (b,+) contains a fermionic R-sector
operator. This implies that one of the vacua, labeled v0, carries a copy of trivial fermionic 2d
TFT in which (−1)F is realized by the identity line, and the other vacuum, labeled v1, carries a
copy of the Arf TFT in which (−1)F is realized by theπ line. We can thus express the realization
of (−1)F as

(−1)F = 100 ⊕π11 , (277)

where 1ii is the identity line in vacuum i and πii is the π line in vacuum i.
The full set of topological lines in this 2d TFT Triv⊕Arf is

1ii , πii , S01 , S10 , (278)

29Actually, from eqs. (271)–(273) together with (253), we obtain E = π01 ⊕π10 ⊕π02 ⊕π20 ⊕ 112 ⊕ 121, which
agrees with eq. (269) upon redefining 10i and 1i0 by π0i and πi0 for i = 1, 2. Such a redefinition is allowed because
it preserves the operator algebra 1i j1kl = δ jk1il , cf. discussions around eq. (193).
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where Si j are lines changing vacuum i to another vacuum j. The lines Si j are of q-type

πii ⊗ Si j = Si j ⊗π j j = Si j , (279)

and their compositions are
Si j ⊗ S ji = 1ii ⊕πii . (280)

The linking actions of these lines are

S01 : v0→
p

2λv1 , S10 : v1→
p

2λ−1v0 , (281)

where λ ∈ R+ captures the relative Euler term between the vacua v0 and v1, cf. eq. (138).
The calculation of the realization of the E line follows the same argument as in section

IV.D.3 of [5], leading to
E = S01 ⊕ S10 ⊕π00 , (282)

which is consistent with the fusion rule E2 = 1 ⊕ (−1)F ⊕ E. Imposing that the quantum
dimension of E is 2 determines the relative Euler term to be

λ=
p

2 . (283)

This is the fermionization ofRep(S3) SSB phase of bosonicRep(S3) symmetry which carries
3 vacua, which form a Triv ⊕ Z2 SSB phase from the point of view of Z2 subsymmetry of
Rep(S3). Hence fermionization leads to a Arf⊕ Triv phase.

From the point of view of the club quiche associated to Aa, this gapped phase is produced
by choosing the physical boundary to be Bm corresponding to Lagrangian algebra Am = 1⊕m
of the Z2 DW theory, since ending m corresponds to ending (b,+) according to equation (248).
Recall that the other boundary of Z2 DW theory is B′ = Be ⊕ (B f ⊠ Arf ) with a non-trivial
relative Euler term (255). Thus, the compactification of Z2 DW theory with B′ on one end
and Bm on the other end decomposes into a compactification with (Be,Bm) on the two ends
and a compactification with (B f ⊠Arf,Bm) on the two ends. The first compactification results
in a trivial vacuum v0 on which the Z2 symmetry of Be ⊂B′ is spontaneously unbroken and
hence the lines living along Be ⊂B′ are realized as

1ee = 100 , Pee = 100 . (284)

The second compactification results in a single Arf vacuum v1 on which the symmetry (−1)Ff f
of B f ⊠Arf ⊂B′ is realized as

(−1)Ff f = π11 . (285)

The boundary changing lines Se f , S f e in B′ are realized as S01 and S10 respectively

Se f = S01 , S f e = S10 . (286)

Combining these with (253) we recover (277) and (282). The relative Euler term (283) in the
gapped phase simply descends from the relative Euler term (255) in the gapless phase.

Concretely this Rep(S3) f symmetric deformation is realized by the deformation of
Ising ⊕Maj (which realizes the gapless phase Aa) in which Ising is deformed to Triv phase
for Z2 symmetry and Maj is deformed to Arf phase for Z f

2 symmetry.
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5.5 Z2 ×Z
f
2 with a Gu-Wen anomaly

As described in Sec. 3.5, the SymTFT for systems with a fermionic symmetry Z2 × Z
f
2 with a

Gu-Wen anomaly ν = 2, 6 mod 8 is the Z4 Dijkgraaf-Witten TFT with the topological action
ω= 2 ∈ H3(Z4 , U(1)) = Z4, whose anyon content is

Z(VecωZ4
) = {eamb | a , b = 0 ,1 ,2 ,3} . (287)

The SymTFT has a single fermionic topological boundary B
sym
S f

(up to Arf term) corresponding
to the algebra

Am2,e2 = 1⊕πm2 ⊕ e2 ⊕πe2m2 . (288)

The fermionic symmetry on this boundary is generated by η and P which are obtained via the
bulk-to-boundary functor for the fermionic Lagrangian algebra Am2,e2 as

F(e) = P , F(m) = η . (289)

These lines have the fusion rules

P2 = 1 , η2 = π . (290)

We may choose (−1)F = P or (−1)F = πP. We choose (−1)F = P corresponding to which, the
generalized charges were described in Sec. 4.2.4.

We now describe the different phases by studying the different bosonic algebras and their
corresponding condensed charges. There are a total of three algebras

Ae = 1⊕ e⊕ e2 ⊕ e3 , Aem2 = 1⊕ em2 ⊕ e2 ⊕ e3m2 , Ae2 = 1⊕ e2 , (291)

from which Ae and Aem2 are Lagrangian and therefore correspond to gapped phases. These
condensable algebras can be organized into the following Hasse diagram

1

Ae2

Ae Aem2

. (292)

5.5.1 Z2 SSB phase

Let us consider the Lagrangian algebra Ae as the physical boundary. We denote the IR images
of the operators with generalized charge ei as Oei . Since the bulk line e2 can end on both
boundaries, we obtain two local topological operators in the IR, which are O1 = 1 and Oe2 .
Consequently there are two vacua with idempotents

v0 =
1+Oe2

2
, v1 =

1−Oe2

2
. (293)

The IR images of the remaining order parameters, are both in the P = (−1)F twisted (i.e.,
R) sector. These carry charges qη = i and −i respectively and are both bosonic. The linear
combinations

Oe,0 =
1
2
(Oe +Oe3) , Oe,1 =

i
2
(Oe −Oe3) , (294)
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satisfy the property
Oe,i v j = δi jOe,i , Oe,iOe, j = δi j vi . (295)

The operators Oe,i can therefore be regarded as the end of the (−1)F line in the vacua vi . Since
the endoints in both vacua are bosonic, the fermion parity operator acts trivially as

(−1)F = 100 ⊕ 111 . (296)

From the perspective of Z f
2 , this is the decomposable phase

Triv⊕ Triv . (297)

As for the η symmetry, it acts as
η : Oe j → i jOe j , (298)

from which it follows that

η : vi 7−→ vi+1 mod 2 , η : Oe,i 7−→ (−1)iOe,i+1 mod 2 . (299)

As the two vacua are exchanged under Zη2 , this phase is referred to as a Z2 SSB phase. η2

acts as -1 on the R sector and +1 on the NS sector, and therefore satisfies the group relation
η2 = π. The η symmetry is represented as

η= 101 ⊕π10 . (300)

5.5.2 ZArf
2 SSB phase

Let us consider the Lagrangian algebra Aem2 as the physical boundary. The analysis is almost
identical to the previous case. Again we denote the IR image of the order parameters as O(em2)i

which satisfy the Z4 composition rules

O(em2)i ×O(em2) j =O(em2)i+ j . (301)

There are two local operators O1 and Oe2 in terms of which the vacua are defined as (293).
Further we analogously define the linear combinations of the P-twisted operators

Om2,0 =
1
2
(Oem2 +Oe3m2) , Om2,1 =

i
2
(Oem2 −Oe3m2) , (302)

that satisfy the properties

Om2,i v j = δi jOm2,i , Om2,iOm2,J = δi j vi , (303)

and can therefore be regarded as the end of the (−1)F line in the vacua vi . Unlike the previous
case, both Oem2 and Oe3m2 are fermionic therefore the fermion parity operator acts as

(−1)F = π00 ⊕π11 . (304)

From the perspective of Z f
2 , this is the decomposable phase

Arf⊕Arf . (305)

The η symmetry acts as
η : O(em2) j → (−i) jO(em2) j , (306)

from which it follows that
η : v1←→ v2 , (307)

and on the twisted sector order parameters, it acts as

η : Om2,i 7−→ (−1)i+1Om2,i+1 mod 2 . (308)

Again we find that η2 is +1 and -1 in the NS and R sector respectively. In this phase, η is
represented as

η= π01 ⊕ 110 . (309)
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5.5.3 e2-condensed gapless phase

We now describe the gapless phase defined via the non-maximal condensable algebra Ae2

condensed. This algebra implements a bosonic interface Ie2 between Z(VecωZ4
) and Z(VecZ2

)
which is the Toric Code. Notice that since e2 can end on both the interface and on the fermionic
boundary B

sym
S f

corresponding to the fermionic Lagrangian algebra Am2,e2 . Therefore the

boundary obtained by compactifying the region occupied by Z(VecωZ4
) (denoted as B′) con-

tains two local topological operators. In other words, this boundary decomposes into a direct
sum of irreducible topological boundary conditions

B′ =B′0 ⊕B′1 . (310)

Let us denote the anyon content of the Toric code as {1 , e′ , m′ , f ′}. Then the interface provides
a map of topological lines from Z(VecZ2

) to Z(VecωZ4
) under which

1 7→ 1⊕ e2 , e′ 7→ e⊕ e3 , m′ 7→ em2 ⊕ e3m2 , f ′ 7→ m2e2 ⊕m2 . (311)

We denote the bulk lines of the Toric code with primes. In what follows, we also denote the
operators on the boundary B′ with primed labels. From the above map and the form of Am2,e2 ,
it follows that π f ′ has two ends on B′ corresponding to the ends of m2 and e2m2 on the B

sym
S f

.

We denote these ends as E ′m2 and E ′e2m2 respectively. Additionally, there is a topological local
operator O′e2 obtained from compactifying the e2 extending between Ie2 and B. The algebra
of these operators is

E ′epm2 × E ′eqm2 =O′ep+q , O′ep × E ′eqm2 = E ′ep+qm2 , O′ep ×O′eq =O′ep+q , (312)

where Oe0 = 1. The identity operators on the two decomposed boundaries B′0 and B′1 are

v′0 =
1+O′e2

2
, v′1 =

1−O′e2

2
. (313)

We also define the fermionic ends on the two decomposed boundaries B′0 and B′1 as

E ′0 =
E ′m2 + E ′e2m2

2
, E ′1 =

E ′m2 − E ′e2m2

2
. (314)

The local and fermionic ends satisfy

v′i v
′
j = δi j v

′
i , E ′i v′j = δi jE ′i , E ′iE

′
j = δi j v

′
i , (315)

implying that both B′0 and B′1 are indecomposable fermionic topological boundaries of the

Toric code. The symmetry category on the fermionic boundary of the Toric code is Z f
2 such

that the bulk to boundary projection is m 7→ P, e 7→ πP and f 7→ π. For the present case, we
should choose P = π(−1)F . Since the boundary B′ decomposes as (310), correspondingly,
the bulk projection of all the lines also split as

1′ 7−→ v′0 ⊕ v′1 , m′ 7−→ m′0 ⊕m′1 , e′ 7−→ e′0 ⊕ e′1 , f ′ 7−→ E ′0 ⊕ E ′1 . (316)

Let the end point of a line eamb ∈ Z(Vec(Zω4 )) on B′ be denoted as O′eamb . In terms of the
lines in these lines, we define the operators

O′e0
=

1
2

�

O′e +O′e3

�

, O′e1
=

i
2

�

O′e −O′e3

�

,

O′m0
=

1
2

�

O′em2 +O′e3m2

�

, O′m1
=

i
2

�

O′em2 −O′e3m2

�

.
(317)
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Note that boundary operators are none other than Oe,i (c.f. 294) and Om2,i (c.f 302) that
became the R-sector order parameters in the two indecomposable gapped phases realized for
this symmetry. These operator satisfy the fusion rules

O′mi
×O′m j

=O′ei
×O′e j

= δi, j v
′
i , O′mi

×O′e j
= δi, jE ′i ,

O′mi
× E ′j = δi, jO′ei

, O′ei
× E ′j = δi, jO′mi

.
(318)

In other words {v′i ,O′ei
,O′mi

,E ′i } for i = 0,1 satisfy fusion rules representative of the Toric
code. The operators, Oe′i

are twisted (i.e., R) sector bosons while O′mi
are twisted sector

fermions. Meanwhile E ′i are untwisted (NS) sector fermions.
Now we may define the symmetry action on B′. Firstly, (−1)F is implemented via the

projection of the Toric code line e′ and is realized on the two decoupled copies diagonally as

(−1)F = (−1)F00 ⊕ (−1)F11 . (319)

The remaining Zη2 symmetry can be read off form the η action on O′eamb . We know from the

analysis of the Z2 ×Z
f
2 charges that

η : (O′m2 ,O′e) 7−→ (−O
′
m2 , iO′e) , (320)

which is all we require to compute the η action on B′. ηmaps between the decoupled bound-
aries B′0 and B′1 such that the different operators transform as

η : v′0←→ v′1 ,

: E ′i ←→−E
′
i ,

: (O′m0
,O′m1

)←→ (O′m1
,−O′m0

) ,

: (O′e0
,O′e1

)←→ (−O′e1
,O′e0

) .

(321)

Note that η2 is +1 on the operators in the NS sector and -1 on the operators in the R sector,
therefore we deduce that η2 = π as expected. More precisely the η symmetry is represented
as

η= π01 ⊕ 110 , (322)

with an additional minus sign ossociated with the intersection of the η line and π line.

η

π

= −
η

π

. (323)

This gapless phase can be realized by IR CFT

Maj⊕Maj , (324)

and the two gapped phases are realized by either deforming both Maj to Triv or to Arf.
The Hasse diagram (292) of condensable algebras is realized as a diagram of phases for

Z2 ×Z
f
2 symmetry

1

Maj⊕Maj

Z2 SSB ZArf
2 SSB

(325)
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which can also be realized via a fermionization of bosonic Hasse diagram

1

Ising⊕ Ising

Z4 SSB Z2 SSB

. (326)

5.6 Z2 ×Z
f
2 with a beyond Gu-Wen anomaly

Consider the doubled Ising TFT Z(Ising+) = Ising ⊠ Ising as the SymTFT. We note that
Z(Ising+) is obtained by gauging the full symmetry of the root fermionic SPT phase with
Z2 ×Z

f
2 symmetry, whose lattice realization is given in [228]. Its anyon content is

11 , 1ψ , 1σ , ψ1 , ψψ , ψσ , σ1 , σψ , σσ , (327)

where {1,ψ,σ} are the anyons of the Ising TFT and {1,ψ,σ} are the anyons of its time-
reversal. There is a unique fermionic Lagrangian algebra

A f

ψ,ψ
= 11⊕ 1ψ⊕ψ1⊕ψψ , (328)

which we choose as the symmetry Lagrangian algebra

Asym =A f

ψ,ψ
. (329)

The symmetry category on the corresponding fermionic boundary is Z2 × Z
f
2 with a beyond

Gu-Wen anomaly ν = 1,7 mod 8. As we discussed in Section 3.5.5, the bulk-to-boundary
functor F for this boundary is given by

F(ψ1) = F(1ψ) = π , F(σ1) = q , F(1σ) = q(−1)F , (330)

where boundary line q obeys the following fusion rules:

qπ= πq = q , q2 = 1⊕π . (331)

The non-trivial bosonic condensable algebras in the doubled Ising TFT are

Aσσ = 1⊕ψψ⊕σσ , A
ψψ
= 1⊕ψψ . (332)

The first one Aσσ is Lagrangian, while the second one A
ψψ

in non-Lagrangian. The Hasse
diagram corresponding to these condensable algebras is

1

A
ψψ

Aσσ

. (333)
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5.6.1 SSB phase Triv⊕Arf

Consider first the gapped phase with physical Lagrangian algebra

Aphys =Aσσ . (334)

This phase has two vacua because not only 1 but also ψψ can end on both boundaries. Topo-
logical point-like operators in this gapped phase are

O11 , O
ψψ

, O0
σσ

, O1
σσ

, (335)

where O11 and O
ψψ

are untwisted sector bosonic operators, O0
σσ

is a (−1)F -twisted sector

bosonic operator, and O1
σσ

is a (−1)F -twisted sector fermionic operator. We can identify the
two vacua to be

v0 =
1+O

ψψ

2
, v1 =

1−O
ψψ

2
, (336)

which satisfy the condition
vi v j = δi j vi . (337)

The twisted sector operators O0
σσ

and O1
σσ

belong to different vacua because they carry the
different fermion parity. Without loss of generality, we can take Oi

σσ
to be a twisted sector

operator in vacuum vi for i = 0, 1. The operator implementing the fermion parity symmetry
(−1)F is identified as

(−1)F = 100 ⊕π11 , (338)

or in other words, the underlying TFT TIR of this gapped phase is given by

TIR = Triv⊕Arf . (339)

The action of the line operator q on the untwisted sector operators can be computed as

q : O11→
p

2O11 , O
ψψ
→−
p

2O
ψψ

, (340)

which implies that q exchanges the two vacua as follows:

q : v0→
p

2v1 , v1→
p

2v0 . (341)

This action allows us to conclude that the q line is realized as

q = S01 ⊕ S10 , (342)

where Si j is the interface between two vacua vi and v j that have a relative Arf term. Comparing
the action (341) with eq. (138), we find that there is no relative Euler term between the two
vacua. The gapped phase discussed above is the fermionization of the unique bosonic gapped
phase with Ising+ symmetry.

5.6.2 ψψ-condensed phase

Now let us discuss a gapless phase with Z2 × Z
f
2 symmetry with a beyond Gu-Wen anomaly

ν= 1,7 mod 8. We take the physical condensable algebra to be A
ψψ

Aphys =A
ψψ
= 1⊕ψψ . (343)

This defines a bosonic topological interface I
ψψ

from the doubled Ising TFT to the toric code.
Thus, the club quiche compactification produces a topological boundary condition B′ of the
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toric code. Asψψ also appears in the symmetry Lagrangian algebra Asym =A f

ψ,ψ
, the bound-

ary B′ has two topological local operators on it, which implies that B′ is comprised of two
irreducible topological boundary conditions

B′ =B′0 ⊕B′1 . (344)

As we pass the interface I
ψψ

, the anyons {1, e, m, f } of the toric code are converted into the
anyons of the doubled Ising TFT, according to the map

1 7→ 1⊕ψψ , e 7→ σσ , m 7→ σσ , f 7→ 1ψ⊕ψ1 . (345)

From this and the Lagrangian algebra Asym = A f

ψ,ψ
, we learn that there are two fermionic

topological ends of f along B′, one coming from the end of 1ψ and the other coming from the
end ofψ1. We label these ends respectively as E1ψ and Eψ1. Furthermore, there are topological

local operators O11 = 1 and O
ψψ

along B′ coming from compactifying respectively 11 and

ψψ in between the symmetry boundary of Z(Ising+) and the interface I
ψψ

. The products of
these operators obey the fusion of their subscripts:

E
ψiψ

i+1E
ψ jψ

j+1 =O
ψi+ jψ

i+ j , E
ψiψ

i+1O
ψ jψ

j = E
ψi+ jψ

i+ j+1 , O
ψiψ

iO
ψ jψ

j =O
ψi+ jψ

i+ j . (346)

The identity operators along the two boundaries B′0 and B′1 are

v0 =
1+O

ψψ

2
, v1 =

1−O
ψψ

2
, (347)

satisfying
vi v j = δi j vi . (348)

We also have fermionic topological ends

E0 = E1ψ + Eψ1 , E1 = E1ψ − Eψ1 , (349)

of f along B′0 and B′1 respectively, which satisfy

Ei v j = δi jEi . (350)

This means that both B′0 and B′1 are irreducible fermionic topological boundaries of the toric
code associated to the fermionic Lagrangian algebra 1⊕π f .

In addition to the above local operators, the boundary B′ hosts two topological point-
like operators that convert the e line of the toric code into the fermion parity line (−1)F

on the boundary. These operators come from the compactification of σσ between the
symmetry boundary of Z(Ising+) and the interface I

ψψ
. The bulk-to-boundary map

F(σσ) = (−1)F ⊕ π(−1)F implies that one of these operators is bosonic and the other is
fermionic. Similarly, the boundary B′ also hosts two topological point-like operators that con-
vert the m line of the toric code into the fermion parity line (−1)F on the boundary. For the
same reason as above, one of these operators is bosonic and the other is fermionic. This means
that the two fermionic boundaries B′0 and B′1 have a relative Arf term. Thus, we find

B′ =B f ⊕ (B f ⊠Arf) . (351)

Topological lines on the boundary B′ are listed as

{100, 111,π00,π11, (−1)F00, (−1)F11, S01, S10} , (352)
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where S01 and S10 are interfaces between two boundaries B′0 and B′1. These interfaces obey
the fusion rules

S01S10 = 100 ⊕π00 , S10S01 = 111 ⊕π11 . (353)

The action of the q line on the point-like operators vi and Ei can be computed as

q : v0→
p

2v1 , v1→
p

2v0 , E0→
p

2E1 , E1→
p

2E0 . (354)

This implies that the line operator q is realized on the boundary B′ as

q = S01 ⊕ S10 . (355)

In particular, eq. (354) shows that there is no relative Euler term between the two boundaries
B′0 = B f and B′1 = B f ⊠ Arf. On the other hand, the fermion parity line (−1)F on B′ is
realized as

(−1)F = (−1)F00 ⊕ (−1)F11 . (356)

Completing the club sandwich by a bosonic gapless physical boundary of the toric code,
we obtain a gapless SSB phase for Z2×Z

f
2 symmetry with a beyond Gu-Wen anomaly ν= 1, 7

mod 8. The IR theory TIR of this gSSB phase can be expressed as

TIR = T f ⊕ (T f ⊠Arf) , (357)

where T f is a fermionic gapless phase with Z f
2 symmetry. The anomalous Z2 ×Z

f
2 symmetry

acts on TIR via eqs. (355) and (356). To summarize, the Hasse diagram in (333) is realized
concretely on phases with the beyond Gu-Wen anomaly as

1

Maj⊕Maj

Triv⊕Arf

(358)

where we have simply chosen T f in (357) to be Maj. Finally, we can compare this with the
analogous Hasse diagram for bosonic Ising symmetry, which corresponds to choosing the sym-
metry boundary to correspond to Aσσ. The gapped phase obtained by choosing the physical
boundary to be the unique Lagrangian algebra has three vacua and from the Z2 ⊂ SIsing is
Triv⊕ SSB. The bosonic Hasse diagram has the form

1

Ising⊕ Ising

Z2-Triv ⊕ Z2-SSB

. (359)
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