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Abstract

This work proposes a minimal model extending the duality between classical statistical
spin systems and fermionic systems beyond the case of free fermions. A Jordan-Wigner
transformation applied to a two-dimensional tensor network maps the partition sum of a
classical statistical mechanics model to a Grassmann variable integral, structurally simi-
lar to the path integral for interacting fermions in two dimensions. The resulting model
is simple, featuring only two parameters: one governing spin-spin interaction (dual to
effective hopping strength in the fermionic picture), the other measuring the deviation
from the free fermion limit. Nevertheless, it exhibits a rich phase diagram, partially
stabilized by elements of topology, and featuring three phases meeting at a multicriti-
cal point. Besides the interpretation as a spin and fermionic system, the model is closely
related to loop gas and vertex models and can be interpreted as a parity-preserving (non-
unitary) circuit. Its minimal construction makes it an ideal reference system for studying
non-linearities in tensor networks and deriving results by means of duality.
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1 Introduction

The duality between the classical two-dimensional Ising system and free fermionic systems
and its numerous generalizations have been a subject of intense research over several decades
[1-15]. In previous work [16], we have expanded upon those dualities: concretely, the du-
ality between the ground state of the toric code [17], that of a class D topological super-
conductor [18], and the partition sum of the classical two-dimensional Ising model, with a
two-dimensional tensor network (TN) [19-22] playing the role of an efficient and intuitive
translating element. For this to work, the tensor network has been chosen from the matchgate
category, which offers a distinct advantage: a matchgate tensor network stands in a one-to-one
correspondence with free fermionic systems [23-25]. Much like in the study of those, where
rich physics is uncovered by adding electron-electron correlations, a natural extension is to
consider a tensor network that features non-linearities.

In this work, we set up a minimal model and study the effect of adding non-linearities in
the fermion picture (i.e., going beyond matchgates) on the other side of the dualities. The
model is defined in terms of two parameters, a and b, interpreted differently depending on
the perspective. In the context of a statistical mechanics model, a describes classical nearest-
neighbor spin interactions, while in the fermionic picture, it corresponds to an intra-unit-cell
hopping strength. The parameter b describes the strength of non-linearity. It is represented as
a four-spin interaction in the statistical mechanics model or, in the fermionic model, as a four-
fermion term, akin to a Majorana ring-exchange term. Concretely, the statistical mechanics
model is characterized by a spin Hamiltonian

Higing+ = —J2 Z SiSj—Ja Z Py(si,5,5k,51), (1)
{i,j}<e {i,j,k,l}ep
where e and p denote the edges and plaquettes of a square lattice, respectively, J, = —% Ina

and J, = —In(1+b/a?) are the coupling strengths (cf. Fig. 1 left), and P, is a projector onto 4-
spin plaquette configurations in a checkerboard pattern (cf. last entry of Tab. 1). Meanwhile,
the fermionic model is described by the (pseudo-) Hamiltonian

1
Hiermion =1 (EGT (8,A+C)0+b 99)95")93(")92’”) : 2)
X
where A; ; = asgn(j — i) denotes the hopping strength within a unit cell, x sums over all unit

cells and C represents the unit-strength hopping between different unit cells (cf. Fig. 1 right).
For suitable boundary conditions explained below, the partition functions (with f = 1)

ZSpil’l = Z e_[jHIsinng , Zfermion — f de e—inermion S (3)

coincide for all system sizes.
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Figure 1: The model in its spin (left) and fermionic (right) version. Left: Classical
spins are located on the lattice dual to the one on the left. They interact with near-
est neighbor Ising interactions and a 4-spin plaquette term (red shading). Right:
Fermionic modes are marked by red dots. Black (grey) arrows denote the 2-fermion
intra (inter) unit cell couplings with weight a (unity). The four fermion ring ex-
change term with coupling strength b is indicated with red shading.

In the case without non-linearities, b = 0, the two-parameter model in the spin interpre-
tation reduces to a classical Ising model with J o< Ina. In the fermionic picture, b = 0 leads
to a class D topological superconductor. These models, and, in particular, their phase dia-
grams are well-understood. The Ising model features a ferromagnetic, a paramagnetic and
an anti-ferromagnetic phase, separated by transitions at a_ = +¥/2—1 and a, = v2+ 1. By
Kramers-Wannier duality, we can interpret the domain walls between ‘up’ and ‘down’ spins as
strings and thus obtain a dual statistical mechanics model, a loop gas, where the partition sum
runs over all closed loop configurations. It is in this picture that the non-linearity is most nat-
ural and most easily understood in qualitative terms — it amounts to favoring or disfavoring
domain-wall crossings.

In this loop gas language, the three phases are referred to as ‘empty’, ‘topological’ and
‘full’, respectively. The name ‘topological’ in this context is justified by the fact that the dual of
the paramagnetic Ising phase can be thought of as the classical analogue of an equal weight
superposition of closed loops featured in the toric code ground state. It is notable that this
‘topological’ phase coincides with the topological single-particle phase in the fermionic version
of the system, which manifests in the emergence of edge modes. In contrast, both analogues of
the ‘empty’ (ferromagnetic) and ‘full’ (anti-ferromagnetic) phases exhibit trivial band topology
as indicated by their zero Chern numbers.

In light of the topological features, it is perhaps unsurprising that the phases remain robust
against the presence of weak non-linearities. However, for stronger non-linearities, the picture
becomes more complex and requires combining the various interpretations for a complete
understanding. The resulting phase diagram is shown in Fig. 2. For small values of b, the
three phases remain separated by second-order phase transitions (solid lines). However, for
small values of a and comparably large values of b, the two topologically trivial (symmetry-
breaking) phases are separated by a first-order transition (dashed line), with all three transition
lines meeting in a multicritical point. As such, the phase diagram is topologically equivalent to
that of a classical 2D next-nearest-neighbor Ising (NNNI) model [26,27]. The NNNI model [28]
and its cousin, the anisotropic NNNI (ANNNI) model [29], as well as various vertex models
and the conditions under which they can be mapped to free fermionic models, have been
studied extensively before [26,27,30-33]. Our model, however, offers the advantage of being
a minimal model (with a particularly simple free fermion condition) that still displays the core
phenomenology, while highlighting the intrinsic role of duality and topology. Furthermore,
the formalization in terms of tensor networks allows for far-reaching solubility with a wide
range of efficient numerical network methods [34].
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Figure 2: Phase diagram (qualitative). Solid (dashed) lines mark second (first) order
phase transitions. Crosses mark the stable fixed points.

The formalism in which our model is presented — a planar tensor network of fermion parity
preserving tensors [35-38] — is rather general and, in particular, includes quantum circuits
capable of universal quantum computation. Thus, the dualities discussed in the following
establish connections between circuit-based quantum computation, statistical mechanics and
interacting fermionic systems, and can be exploited to study the classical simulatability of
quantum circuits [39]. It is the purpose of the current work to discuss these dualities in their
most simple and quintessential fashion.

The rest of this work is structured as follows. In Sec. 2 we introduce the tensor network
in its bosonic and fermionic version and discuss its interpretation as a fermionic system, and a
statistical mechanics model — formulated as a vertex (loop gas) or, by duality, an Ising model.
In Sec. 3 we derive the phase diagram by considering its statistical mechanics formulation as a
loop gas and by comparing it to a classical Ising model with next-nearest neighbor interactions.
Sec. 4 summarizes our findings and presents an outlook.

2 The model

We consider a two-dimensional tensor network on a square lattice. This geometric setup is
equivalent to that of a brick wall quantum circuit (cf. Fig. 3). However, the tensors we consider
are not unitary when interpreted as quantum gates. Nevertheless, we denote the map formed
by the collection of all gates by U. For given initial and final conditions, [¥;), |¥), the overlap
(U4 |U|¥;) defines a fully contracted tensor network that evaluates to a number. Choosing the
initial and final state to be the ‘empty’ product state vector |0) := |[0)®", we define the bosonic
partition sum Z; := (0|U|0).

To enable a mapping to a fermionic tensor network [36, 37,40-45], we restrict our dis-
cussion to parity-preserving two-qubit gates. In this setting, we can perform a Jordan-Wigner
transformation [1, 16,36, 40,46,47] of the entire TN, mapping the bosonic (spin) tensor net-
work to a fermionic tensor network. Under this transformation, each bosonic tensor is mapped
to a fermionic tensor (cf. Sec. II.B of Ref. [16]). Specifically, we associate a fermionic mode,
represented by a Grassmann variable 8' with 6° = 1, 0! = 0 to each index i = 0,1 of the
tensor, while choosing an ordering of fermionic modes. The index contractions (projections
onto ). (i,i|) are then translated to integrals over the two Grassmann variables associated
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Figure 3: Mapping a planar TN of 2-qubit parity preseving gates to a fermionic Gaus-
sian TN via JW transform, assigning an ordering of fermionic modes per tensor (right)
and directions of index contractions (center). For a consistent choice of the latter two,
the contracted bosonic TN evaluates to the same number as the fermionic TN (right).

with the corresponding bond, that is,
fd9d9’(1+99’)=fd9d9’exp99'. 4

Note that this mapping also requires selecting an ordering for the modes involved in the con-
traction. We do this by assigning a direction to each contracted bond (cf. Fig.3).

Our goal is to assign the orderings in both steps such that the contraction of the fermionized
tensor network matches that of the original tensor network, without introducing any residual
sign factors. For a square lattice with ‘empty boundary’ (|¥;) = |[¥) = |0)), this can always be
done by using the explicit assignments given in Ref. [16]. For different boundary conditions,
the mapping needs to be augmented with a sign factor that depends solely on the boundary
spins.! With this mapping in place, we arrive at a one-to-one correspondence of the respective
tensor networks, allowing us to discuss the bosonic (spin) and fermionic versions in parallel.

The bosonic tensors are most naturally represented in terms two 2 x 2 matrices u, v, act-
ing in the even and odd parity spaces, respectively. Meanwhile, the fermionic tensors are
expressed as a sum of a Gaussian tensor and a residual quartic term. The Gaussian tensor is
defined as an exponentiated Grassmann bilinear form determined by an anti-symmetric 4 x 4
matrix AT = —A, containing six parameters. The remaining two parameters are given by the
normalization N and the weight of the quartic term b. Together, this yields an identification
between the parametrizations according to

Upq Uy o 1 Ajy
Azz A

Vo1 Vo Arg Arg
Uz U2 Az 4 pfA+b

e T =Ne%9TA0+b91029394‘

)

!We note that even with an unfavorable assignment of fermionic mode orderings, the resulting sign factors
required to equate the contractions of the fermionic and bosonic tensor networks remain purely local. These factors
are not detrimental to the efficient contraction of the tensor network in numerical algorithms [36]. For further
details and alternative implementations of the JW transform on tensor networks, see Refs. [14,15,36-38,47].
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By employing a global rescaling of the entire network, we normalize all tensors such that
u;; = N = 1. This rescaling is inconsequential for our purposes, as it leaves quantities such
as correlation functions invariant. In the remainder of this manuscript, we will focus on the
choice A; ; = asgn(j — i), resulting in a two-parameter model defined solely by a and b.

For any choice of boundary conditions, the fully contracted bosonic tensor network Zj
evaluates to a number. To ensure the Jordan-Wigner transform takes its simplest form, we
focus on ‘empty’ boundaries, i.e., the top and bottom layers of the brick-wall circuit are closed
by projecting onto the state vector |0) = |0)®*. In this case (combined with our choice of
fermionic mode ordering), the contracted bosonic and fermionic tensor networks evaluate to
the same number: Z, = Z;. If the tensor entries are positive and real, this number can be
identified with a classical statistical mechanics partition function.? This allows us to discuss a
statistical mechanics interpretation of the TN alongside its interpretation as a fermionic system
(what we mean by ‘system’ here will be clarified momentarily).

2.1 Fermionic systems

Following the Grassmann variable formalism [16] for fermionic tensor networks, we write the
contraction C of the fermionic tensor network as a Grassmann integral

Z; = f (d0)ceS, S= —%GT(GBXA+ C)0—b Yy 0666, 6)
X

where C denotes the (directed) adjacency matrix of the square lattice (cf. Fig. 3) and x labels
lattice sites.

Free fermions: Dirac Hamiltonian. It is apparent that the tensor network corresponds to
a free fermionic system if and only if b = 0. In this case, we can define the single particle
(pseudo-) Hamiltonian H := i(®,A + C) with the corresponding action Sgee = %QTH 0. We
can now interpret this Hamiltonian as a tight-binding model (albeit coupling to Majoranas
instead of complex fermions), where the A-matrix defines hopping/pairing inside a unit-cell
comprised of four Majoranas and C corresponds to the unit-strength hopping/pairing between
sites.

Referring to Ref. [16] for a detailed discussion of this Hamiltonian, we summarize here its
most important features. Making use of translation invariance, we discuss the Hamiltonian in
momentum space (see Appendix A for definitions). While any choice of A yields a valid class
D Hamiltonian, we focus on a particularly simple case, where A; ; = asgn(j —i). For generic
real values of a, this four-band Hamiltonian is gapped. However, at a = a, := V2+1, we
find a gap closing at E = 0 for k_ = (k;, ky) = (7, m) and k, = (0,0), respectively. The band
structure of the four-band Hamiltonian is shown in Fig. 4.

Close to the phase transition points, the Hamiltonian is well-described by the two-band
approximations

1
hl =35 Sin‘]l E]
3 2
1
HP(q) = ha(@)0a,  hys=—3(2+ms—cosq —cosqs), 7)
a=1

1.
hy =—2 singy,

2If the entries are negative or complex, it may or may not be possible to transform the network to a network
with only real and positive tensors by local gauge transformations. This is an interesting question in its own right
but lies beyond the scope of this work.
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Figure 4: Band structure of the (four-band) pseudo-Hamiltonian H = i(®A + C) for
A;j=asgn(j—i)ata=a_ (left), a =1 (center) and a = a, (right).

where q; = k; —k, ; are the momenta relative to the gap closing points and m, = +2(a —a,)
is the width of the energy gap at g; =g, =0

The Hamiltonian in Eq. (7) is known as the two-dimensional Haldane-Chern insulator [48].
Depending on the sign of m, it is found in one of two topologically distinct phases characterized
by their Chern numbers. For m > 0 (i.e., a_ < a < a,, the topological phase), the Chern
number is C =1 and for m < 0 (i.e., a < a_ and a > a,, the trivial phase), the Chern number
is C = 0. Note that the two-band approximations above are valid only around a.. In particular,
at a = 1, there is an additional band crossing of the two lowest and two highest bands (cf.
Fig. 4, middle). Hence, H, is not ‘adiabatically connected’ to H_.

Quartic terms. The inclusion of quartic terms (b # 0) modifies the action in a manner rem-
iniscent of interaction terms in condensed matter systems. However, the true path integral
description of quantum many-body systems in terms of fermionic coherent states differs dras-
tically from our setting, as its action features ‘dynamic’ quantum terms 69,6, absent in our
case.

While investigating the effects of strong coupling b lies beyond the scope of this work, it
is straightforward to argue that the system remains stable against weak non-linearities. To
see this, we study the impact of the quartic terms in the vicinity of the phase transitions,
where the two-band approximation is valid. Neglecting the effect of the higher bands alto-
gether, we obtain a term that is strongly irrelevant on large length scales in the renormaliza-
tion group sense. Starting from the representation of the quartic term in momentum space,
we expand the fermionic modes 6;(q) with momentum g into the eigenbasis v*(q) of H(q)
as 0,(q) = 2., v(@)n4(q), where @ = £1,+2, and a = +1 denote the bands closest to zero
energy. Restricting the summation to the latter two, we obtain

lnt = bz Q(X)Q(X)Q(X)Q(x) ~ b Z l_[ Z V (Qz)ﬂal(ql) 5q1+q2+q3+q4, (8)

q1,92,93,94 1=1 a;= =+1

Close to the phase transition, we now expand v*(q) ~ v{*(0)+q-Vv{(0). The zeroth order
term vanishes as can be easily seen by its representation in real space

> | DI

x =1 a;==*1

which contains at least two identical Grassmann numbers. Due to symmetry, the next non-
vanishing order in gradients is the second order, containing two gradients. With the engi-
neering dimension [v] = L™/2 determined by the quadratic gradient term, the quartic term
dressed by two gradients scales as ~ L™2, and thus becomes negligible at large length scales.
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Figure 5: Weights of the vertex model (using established nomenclature [31, 32])
defined by the tensor network in Fig. 3 with tensors given in Eq. (5) and N = 1.

Going one step beyond the naive two-band approximation, we integrate out the higher
bands as detailed in Appendix B. The result is a shift of the mass term in the Haldane-Chern
Hamiltonian proportional to b. For small values of b, this mass shift alters the exact position
of the phase transition, but does not lead to qualitative changes.

2.2 Statistical mechanics

Vertex model. We now turn to the interpretation of the contracted tensor network as the
partition sum of a statistical mechanics model. Recall that all tensors are parity-even and
identify the index value i = 1 with the presence of a string and the value i = 0 with its
absence. This immediately results in a vertex or loop gas model, where the configurations in
the partition sum are given by closed loops. In particular, the tensor in Eq. (5) specifies the
weights of the 2%/2 = 8 string configurations around a vertex. For the choice N = 1 in Eq. (5),
we obtain the weights depicted in Fig. 5.
It is known [31,32] that if the weights of a vertex model fulfill the free fermion condition

W1Wy + W3W4 = WsWe + W73, )

the loop gas model can be mapped to free fermions. In our notation, this condition reduces
to b = 0. We can now interpret the meaning of this condition in the language of statistical
mechanics. If b = 0, the weight of the vertex configuration with four strings is given by a
(signed) sum of all two-string configurations, reminiscent of a reading of Wick’s theorem. In
the particularly simple case where A; ; = asgn(j—1), any two-string configuration is weighted
by a, while a four-string configuration is weighted by pfA = a®. Therefore, a self-intersection
(crossing) has the same weight as two non-intersecting strings, and the total length is the only
relevant factor determining the weight.

In contrast, if b # 0, crossings are either favored or disfavored depending on the sign of
b. Defining the crossing-weight ¢ = 1 + b/a?, the partition function of the model is obtained
by summing over all closed-loop configurations [ with weights w(l), depending on the total
string length || and the number of intersections |n_| as

7= Z w(l), with w(l)=dalllc". (10)

[:closed strings
Ising model. Vertex models are known to be dual to (generalized) Ising models [49-51].

Following the seminal idea by Kramers and Wannier [52] (see also [53]) we can interpret the
strings above as degrees of freedom in the low-temperature expansion of a (generalized) Ising

8
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Table 1: Weights of spin configurations of the QI and NNNI model. The weights of
the configurations are invariant under 7t /2-rotations around the plaquette center and

global spin flips.
“®, @, @, ®
o oo oXe ©Xp
4 . . . " 4 @ .

QI 1 a a a’+b
NNNI 1 af af? a?

O R O R
R| L2 R L2

Figure 6: Partition sum of the QI model (left) and the NNNI model (right) in TN
notation.

model. Here, strings are interpreted as domain walls, which immediately leads us to an Ising
model with the additional four-spin interaction P,, favoring a checkerboard pattern around a
plaquette (cf. Eq.(1)). Due to the presence of this purely quartic, four-spin interaction, we
will from now on refer to this enriched Ising model as the quartic Ising (QI) model.

We again focus on the homogeneous case A; ; = asgn(j —1) and interpret the strings above
as domain walls separating islands of opposite classical spins residing on the vertices of the
dual lattice. We thus obtain a partition function where all four-spin configurations are assigned
weights according to Tab. 1 (QI). For b = 0, we immediately obtain a nearest-neighbor Ising
model where the coupling is (anti-) ferromagnetic fora < 1 (a > 1). For b # 0, the intersection
of domain walls is energetically favored or penalized depending on the sign of b. To capture
this effect, we need to enrich the nearest-neighbor Ising model with an additional four-spin
interaction (cf. Fig. 1). We introduce the projector P, onto the two four-spin checkerboard
patterns that correspond to a domain wall crossing (i.e., the last configuration in cf. Tab. 1 and
its spin-inverted counterpart). With this, we obtain the partition function of the Ising model
in terms of the two-spin and four-spin transfer matrices T and P

T(a)=((11 61’) P=cP,+(1—P,), (11)

arranged in the tensor network in Fig. 6(a). Rescaling the partition function (which is equiva-
lent to a global energy offset) and setting the inverse temperature 1/kzT = 1, we identify the
Hamiltonian in Eq. (1) and visualized in Fig. 1.

It is instructive to compare our model to the well-studied next-nearest-neighbor Ising
(NNNI) model [26-28]. In this model, nearest and next-nearest neighbor interactions are
determined by two parameters, a and 8. We can then formulate its partition function as a
tensor network composed of the transfer matrices T(a) and T(f) (cf. Eq. (11)) according
to Fig. 6(b). Again, the partition function is fully determined by the weights of the four-spin
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configurations, which are summarized in Tab. 1. We observe that there is no one-to-one cor-
respondence between the two models. However, a comparison to the NNNI model allows us
to infer the qualitative nature of the phase diagram, as discussed in detail at the end of the
upcoming Sec. 3.2.

3 Phase diagram

In this section, we discuss the phase diagram of the model in the (a, b)-plane as presented
in Fig. 2. For a,b > 0, there are three distinct phases. We first discuss them in the loop gas
picture and then indicate their dual Ising phases.

3.1 Phase diagram in the loop gas picture

For small a, b with fixpoint at a = b = 0, we find the phase called ‘empty’: the lattice devoid of
strings. This corresponds to a ferromagnetic (F) Ising phase (no domain walls). For large a, b
with fixpoint at a = b = 0o, we find a loop-condensed phase called ‘full’, corresponding to a
deeply anti-ferromagnetic (AF) checkerboard Ising phase (densely packed domain walls). For
intermediate values of a and small values of b with fixpoint at a = 1, b = 0, we find the so-
called ‘topological’ phase, where all closed-loop configurations are equally likely, reminiscent
of the toric code ground state [17]. This corresponds to a paramagnetic (P) Ising phase [54].
In the fermionic picture, the ‘empty’ and ‘full’ configurations correspond to two distinct trivial
insulators, while the ‘topological’ phase corresponds to a topological insulator.

The phase diagram along the b = 0 line is well-understood [16], and our main concern is
the extension into the b > 0 regime (the case b < 0 is left for future work). As outlined in
Sec. 2.1, the scaling analysis in the fermionic picture suggests that all three phases are robust
against weak non-linearities given by small b. From the free model, we also know [16] that
the two transitions at a, are of second order. Hence, the transition points at b = 0 smoothly
extend to second-order transition lines for b > 0.

Concerning the qualitative behavior of these two lines, we find that, with increasing b,
they drift towards smaller values of a. In the loop gas picture, this is consistent with the
observation that a greater b leads to a larger number of loop crossings, thus increasing the
overall string content (cf. Eq. 10). In order to approximately preserve the weight profile of the
configurations at the phase transition, the weight of the string segments a needs to decrease.

The breakdown of the topological phase at some finite value of b (for a fixed a) is expected.
For any finite a, increasing the value of b will eventually force the lattice to be fully covered
by strings in order to maximize the number of loop crossings.

Focusing on a < 1, we find a first-order transition between ‘empty’ and ‘full’ phases at
b =1 for a — 0. This third transition line implies the existence of a multicritical point where
all three transition lines meet. This feature, as well as the nature of the a = 0, b = 1 transition,
can be understood by comparing the Ising version of our model to the NNNI model discussed
in Refs. [26-28].

3.2 Comparison with the Ising model with next-nearest-neighbor interactions

Notably, the Ising model with nearest- and next-nearest-neighbor interactions (NNNI) features
the same three phases as our model. The partition functions of both models, expressed as
tensor networks, are shown in Fig. 6, while Tab. 1 compares the weights of all possible four-spin
configurations for our quartic Ising (QI) model and the NNNI model. Both models are invariant
under cyclic permutations of the four spins around a plaquette as well as simultaneous spin
flips of all four spins. Therefore, it suffices to consider the four configurations listed in Tab. 1.

10
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Although the models appear similar, there is no one-to-one correspondence between them
except at certain parameter points.

Let us examine the parameters of the two models and their relations in more detail. The
parameter « is identical to our parameter a and determines the nearest-neighbor interaction,
where a < 1 (a > 1) corresponds to (anti-) ferromagnetic coupling. The parameter 8 defines
the next-nearest-neighbor (NNN) strength, where again 8 < 1 (8 > 1) means (anti-) ferro-
magnetic coupling. In the limit § = 0, b = 0, both models reduce to the nearest-neighbor
(NN) Ising model and become identical. For finite b, 3, there is no one-to-one correspon-
dence between the two models; however, there are limiting cases where we expect the models
to behave identically. Concretely, a strong anti-ferromagnetic NN coupling (a > 1) combined
with a ferromagnetic or sufficiently weak anti-ferromagnetic NNN coupling (8 < a) enforces
a checkerboard pattern. The same occurs in the QI model in the limit a < b, when the quar-
tic term dominates. This establishes the AF (full’) fixpoint. Similarly, if both interactions in
the NNNI model are strongly ferromagnetic (a, 8 < 1), there is an equivalence to the limit
a, b < 1, establishing the F (empty’) fixpoint. For intermediate values, a, 8 ~ 1, correspond-
ingtoa ~ 1, b € 1, we find the paramagnetic phase with its fixpoint at b = 0, f = 0 and
a=a=1.

Having established the equivalence of the phases, we turn to the first-order transition. For
the NNNI model, it is known [26, 55] that a first-order transition between F and AF occurs
when, at sufficiently strong ferromagnetic NNN coupling, the NN coupling changes from F to
AE This can be seen clearly by considering the limiting case of infinitely strong ferromagnetic
NNN coupling, 8 = 0. In this case, NNN bonds need to be aligned, enforcing two independent
ferromagnetic phases on the two sublattices, given by the NNN couplings. The NN coupling
then decides whether the two sublattices are either in the same state, leading to a uniform fer-
romagnetic (F) phase, or in different states, leading to a checkerboard pattern (AF). Comparing
to the QI model, setting 3 = 0 corresponds to b = a?, a = 0. We know that the transition
in the NNNI model happens at a = 1 and, therefore, the transition in the QI model occurs at
b=1.

Regarding the multicritical point, we know that the NNNI model at @ = 1 decouples
into two NNI models on the two sublattices defined by the NNN interaction. The individ-
ual models have a phase transition at 3 = 3, = +/2 — 1. This establishes the multicritical
point. As discussed before, the parameters a = 1, § = . have no direct correspondence
in the QI model, however, they are approximately matched by choosing b =1 — ac2 < 1 and
0.17 ~ /362 < a, < f, ~ 0.41. This places the multicritical point in the QI model towards the
left of a_, in agreement with the left-shift of the second-order line originatingat b =0, a = a_.

In addition to the existence and approximate location of the transition lines and the mul-
ticritical point, we can infer the renormalization group (RG) flow of the parameters a and b in
the vicinity of b = 0 from the scaling arguments in Sec. 2.1 and conclude that for b < 1, b
flows to zero. Together with the nature of the phase transition lines — separating the phases
— and under the assumption that the multicritical point is completely unstable, this uniquely
determines the topology of the RG flow lines as drawn in Fig. 2. Comparing to the RG flow
lines in the NNNI model as worked out in Ref. [27], we observe topological equivalence be-
tween the two. While the topology of the phase diagram, the location of the b = 0 critical
points a_ and a, and the approximate location of the multicritical point are inferred from
the analysis above, the slopes of the respective transition lines are drawn with the additional
knowledge of preliminary numerical studies. A more extensive numerical investigation of the
phase diagram will be presented elsewhere [34].
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4 Conclusions and outlook

4.1 Summary

In this work, we have established a new kind of duality by considering a minimal extension of
a matchgate tensor network beyond free fermions. While it has been known that a matchgate
tensor network (corresponding to a free fermionic system) in two dimensions stands at the
center of duality mappings between three systems of major significance in condensed matter
physics — the toric code, the class D topological superconductor, and the two-dimensional
Ising model [16] — it has been unclear how these dualities are affected by the inclusion of
non-linearities. Starting from a free tensor network specified by a single parameter a and
introducing local non-linearities modulated by a second parameter b we have set up a rather
simple two-parameter model beyond the free fermion limit. Moreover, the use of the tensor
network as a bridge between fermionic matter, spin systems and vertex (loop gas) models
allows for an efficient and versatile treatment of non-linearities in all three dual systems.

The rich physics of this minimal model is demonstrated by the phase diagram as discussed
in Sec. 3. We find three distinct phases separated by first and second order phase transition
lines, with all three coalescing at a multicritical point. The three phases allow interpretation
from different perspectives: in the loop gas these are known as ‘empty’, ‘topological’ and ‘full’,
in the Ising model as ‘ferromagnetic’, ‘paramagnetic’ and ‘anti-ferromagnetic’. In the fermionic
version of the system, the ‘topological’ or ‘paramagnetic’ phase is equivalent to the single-
particle topological phase, while the other two exhibit a trivial band topology — as can be
seen from inspecting their corresponding Chern numbers. In Sec. 2.1, we have applied scaling
arguments to reason that the low-energy physics of the model remains robust to weak non-
linearities, which is not surprising given the topological features of the system.

For stronger non-linearities, we use the statistical mechanics interpretation: considering
the model in the loop gas picture as well as interpreting it as a two-dimensional Ising model
with an additional quartic spin term, we draw comparisons with the next-to-nearest neighbor
Ising (NNNI) model. In doing so, we establish the existence of a multicritical point in the phase
diagram. The phase diagram itself is found to be topologically equivalent to that of the NNNI
model.

4.2 Outlook

There are a number of natural extensions and generalizations of the model considered here,
elevating the relevance of the discussions above beyond the particular system. For example,
we can extend our model to include disorder and discuss a theory for ensembles of random
tensor networks [56-58]. In this framework, a continuum field theory captures the ensemble-
averaged theory. More concretely, we obtain the non-linear o-model of the thermal quantum
Hall effect, featuring a topological 8-term. When allowing for different tensor network ge-
ometries, we further obtain a coupling of the fields to a background metric, allowing us to
study the effect of a hyperbolic geometry [58].

Another interesting generalization involves restricting the tensors to unitary gates while
allowing complex entries. In this setting, we can explore the connections between quantum
circuits, statistical mechanics and fermionic systems. In particular, focusing on free fermionic
tensors — or matchgate circuits — we can establish a correspondence between quantum cir-
cuits and non-Hermitian fermionic Hamiltonians. This correspondence, which likewise affords
extension beyond the free fermion limit, is left for future research.
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A Details on the Fourier transform

To derive the momentum space representation of the bilinear form 6 THO with H = Hyc
defined in Eq. (7), we use the following conventions and definitions. We take the Fourier
transform with respect to the lattice structure C, meaning, we introduce

1 _ig- 1 —iq-atig-
eq,i = Z Z e aea,i ’ and Hi,j(q> q/) = ﬁ ZHa,i;a’,j e aHgp P (A-l)
a

a,a’

where L? is the number of cells in the lattice, a is a vector of unit-cell positions and g = (g7, q,)"
is its momentum conjugate. Since H; ;(q,q’) = H, ;(q)5, 4 is diagonal in momentum space,
we obtain the compact form Zq QIqH (q)6,, where H(q) is now a 4 x 4-matrix, known as the
band Hamiltonian in condensed matter theory.

B Integrating out higher bands

Going one step beyond the two-band approximation, we consider the four-band model and
integrate out the higher bands. That is, for all terms in Eq. (8) with two modes from high
and two from low bands, we replace the higher modes by their expectation value as calculated
from the free Hamiltonian H®

’ / E. o
s2,.s'2 2,82\ __ S,S
2% o (n2ni?) = o0 (B.1)

where s,s” = + and e denotes the anti-symmetric tensor. With this, we obtain

ib . 1 v
Sint = €0k D vk @ W (=T, (B.2)
q/
where
i,j d*q —1.i J
I Y= 85,5/ (27_5)2 ez(q) Vz’s(q)vz’s/(_Q) * (B-B)
BZ

The resulting action is quadratic in the low-lying modes 1! and, writing n = (n>*,n>7)7, it
can be brought to the form

i . b L
Sine = 5 anq(el(q)crz + 5m(q)oz)nq, with  dm(q) = Jej ™ Vi(—vi(@). (B4
q

For q small, 6m(q) ~ §m(0) + O(g?), while €,(q) =~ |q|. Therefore, up to linear order in g, the
low-lying bands are only shifted by a constant 6m(0). In conclusion, the effect of the quartic
term is to shift the mass of the Haldane-Chern Hamiltonian by a factor 6m(0).
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