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Abstract

A celebrated realization of the holographic principle posits an approximate duality be-
tween the (0 + 1)-dimensional quantum mechanical SYK model and two-dimensional
Jackiw-Teitelboim gravity, mediated by the Schwarzian action as an effective low energy
theory common to both systems. We here propose a generalization of this correspon-
dence to one dimension higher. Starting from different microscopic realizations of effec-
tively chiral (1+1)-dimensional generalizations of the SYK model, we derive a reduction
to the Alekseev-Shatashvilli (AS)-action, a minimal extension of the Schwarzian action
which has been proposed as the effective boundary action of three-dimensional gravity.
In the bulk, we show how the same action describes fluctuations around the Euclidean
BTZ black hole configuration, the dominant stationary solution of three-dimensional
gravity. These two constructions allow us to match bulk and boundary coupling con-
stants, and to compute observables. Specifically, we apply semiclassical techniques in-
spired by condensed matter physics to the computation of out-of-time-order correlation
functions (OTOCs), demonstrating maximal chaos in the chiral SYK chain and its gravity
dual.
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1 Introduction and summary of results

Holography posits a duality between gravitational bulk theories and quantum boundary theo-
ries in one dimension lower [1–3]. While this principle is formulated at a great level of general-
ity, only relatively few concretely worked out realizations exist. Alongside Maldacena’s duality
between four-dimensional super Yang-Mills theory and five-dimensional AdS quantum grav-
ity [3–6], the holographic correspondence linking two-dimensional Jackiw-Teitelboim grav-
ity [7,8] to the quantum mechanics of the SYK model describing N randomly interacting Ma-
jorana fermions [9,10] has been another case study attracting a great deal of attention [10–17].
This low-dimensional manifestation of holography is not only simpler than the classic example
but also conceptually different: While the latter involves two precisely defined theories, the
two-dimensional duality relates an ensemble of random boundary theories to a gravitational
bulk describing ensemble correlations [18]. This statistical correspondence is formulated at a
high level of concreteness. In fact, there exist two bridges between bulk and boundary, describ-
ing parametrically distinct regimes. The first addresses fine-grained structures of microscopic
spectra or, equivalently, late times of the order of the inverse of the many-body level spacing,
exponential in the number of microscopic constituents of the boundary theory, N [18–22]. The
second focuses on the complementary regime of early times, polynomial in N . It is based on a
reduction of the SYK model and the JT partition sum to Liouville quantum mechanics or the
Schwarzian action as a common effective theory in the relevant time window [12,14,17,23].

What both correspondences just outlined have in common is that they rely on a high level
of microscopic control individually for bulk and boundary theory. On its basis, we understand
that the correspondence between the SYK ensemble and of the JT partition sum is, in fact,
not perfect but limited to effective theories with parametrically defined scopes, as indicated
above. For example, at finite temperature T = β−1, Liouville quantum mechanics is described
by the imaginary time action

S[ f ] = −M

∫ β

0

dτ{ f ,τ} , { f ,τ}= −
1
2

�

f ′′

f ′

�2

+
�

f ′′

f ′

�′

, (1)

where f ′ = dτ f (τ)≥ 0, and M ∼ N is a coupling constant of dimensionality ‘time’. In the con-
text of the SYK model, this action describes the invariance of the theory under reparametriza-
tions of time, where f : S1 → S1,τ 7→ f (τ), is a diffeomorphism of the imaginary time circle
onto itself, f ∈ Diff+(S1) [10]. In JT gravity, on the other hand, S quantifies the action cost
associated to fluctuations of a one-dimensional boundary of two-dimensional space, as de-
scribed by a geometric deformation f (τ) [12]. The holographic correspondence unfolds via
the approximate reduction of boundary and bulk theory to this common effective action in the
‘semiclassical’ regime of time scales τ∼ N .

The success of such concepts has sparked a surge of activity aiming for generalizations to
higher dimensions. An important step in this direction was achieved by Cotler and Jensen,
who proposed the Alekseev-Shatashvili (AS) action to assume the role of Liouville quantum
mechanics as a boundary theory for AdS3 gravity. This theory, a (1 + 1)d extension of the
Schwarzian theory, is defined by the action [24,25]

S±[ f ] =
C

24π

β
∫

0

dτ

L
∫

0

d x

�

f ′′∂± f ′

f ′2
−

4π2

β2
f ′∂± f

�

, ∂± =
1
2
(u−1∂τ ∓ i∂x) , (2)

where f (x ,τ) now is a reparametrization field depending on space and time, subject to peri-
odic boundary conditions in both directions, and f ′ ≡ ∂τ f > 0. The action depends on two
coupling constants, the dimensionless C ∼ N ≫ 1, and the velocity scale u. Finally, the sign
‘±’ indicates a sense of chirality to be discussed below.
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Figure 1: Sketch of the chiral SYK model: A chain of SYK grains, each containing N
Majorana fermions with the well-known grain-local Majorana interaction Jmnop(x0).
Across grains, each species of Majoranas is coupled independently by a kinetic term
with chiral dispersion ε(k).

In the limit of highly anisotropic boundaries, β ≫ L/u, nonvanishing spatial derivatives
get frozen out, ∂x f (x ,τ) = 0, and S±[ f ] reduces to the Schwarzian action. Much as the
latter describes black hole states in JT-gravity, the spatiotemporal fluctuations of the AS theory
describe black hole states in AdS3 [26, 27], the so-called BTZ solutions [28, 29]. The latter
dominate the gravitational path integral at high temperatures, β ≪ L/u, indicating that the
AS action is the relevant semiclassical theory for this1 regime.

The purpose of the present paper is to add concreteness to the holographic principle re-
volving around the AS action. Our first contribution is the definition of a microscopic boundary
theory, i.e. a theory assuming the role of the SYK model in one-dimension lower. The second
is an explicit derivation of the AS theory as effective theory of fluctuations around BTZ states
in the three-dimensional bulk. These derivations will get us in a position to relate bulk and
boundary on a microscopic level, matching coupling constants. Building on this correspon-
dence, we will introduce streamlined approaches to the computation of correlation functions,
specifically out-of-time-order correlation functions (OTOCs). On this basis, we will discuss the
concept of ‘maximal chaos’ on both sides of the holographic correspondence.

1.1 Boundary perspective

What is missing so far in the discussion of the three-dimensional holographic correspondence
is a microscopic boundary theory assuming the role of the SYK model in one dimension lower.
In this paper we propose such a model system, building on a combination of four principles,
exhibited by various ‘realistic’ classes of condensed matter systems: a chiral, approximately
linear single particle dispersion, strong local interactions, static randomness, and the violation
of particle number conservation. The first is realized at edge modes of topological insula-
tors, such as two-dimensional quantum Hall insulators [30]. In these systems, a nonvanishing
bulk topological invariant requires the presence of left- or right-propagating gapless boundary
modes governed by an approximately linear dispersion. In the presence of Coulomb interac-
tions — the second principle — these modes define a universality class known as the helical
liquid [31]. We consider a helical liquid with N/2 > 1 co-propagating edge modes, corre-
sponding to a bulk with invariant N/2. We also consider the system coupled to a nearby
superconductor ‘proximitizing’ the system via particle-number non-conserving Andreev scat-
tering operators. Finally, we assume the presence of impurities rendering the systems single
particle states effectively random (cf. Fig. 1).

All these principles can be individually realized at topological insulator surfaces. However,
we here make the stronger assumption that for an appropriate parameter configuration they
combine to define a system in the universality class of the chiral SYK model. To see how

1By analogy with the two-dimensional correspondence, the description of long imaginary time scales∼ exp(N),
calls for a different boundary theory.
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this may come about in principle, consider the system coarse grained into spatial units whose
extension is defined by the range of the two-body interaction. If we now consider the creation
operators of helical edge fermions in a Majorana representation, symbolically c = γ+ iγ′, and
represent the interaction operator in a basis of the random single particle eigenstates defined
by the combination of impurity and Andreev scattering, we obtain the model Hamiltonian

H =
∑

ik

ε(k)γi†
k γ

i
k +

∑

i jkl

∫ L

0

d x Ji jkl(x)γ
i(x)γ j(x)γk(x)γl(x) , (3)

for N = (N/2)× 2 Majorana modes γi . Here the coefficients Ji jkl inherit the randomness of
the single particle states and hence are random themselves, while the first term accounts for a
dispersion with low energy asymptotics εk ∼ k. (Note that a chiral system in which quantum
states propagate only in one direction retains its chirality in the presence of randomness, there
is no ‘backscattering’ in this case.)

In Eq. (3), γi(x) = 1p
L

∑

k γ
i
keikx , are Majorana fermion operators, γi(x)† = γi(x), with

anti-commutation relations {γi(x),γ j(x ′)} = δ(x − x ′)δi j . Adopting a rationale previously
applied in the construction of ‘effective Hamiltonians’ for quantum dots subject to random
scattering [32], we assume the interaction coefficients to be Gaussian distributed as

〈Ji jki(x)Ji jkl(x
′)〉=

3!J2

(k0N)3
δ(x − x ′) , (4)

where J is the characteristic single particle interaction energy, and k0 an effective momentum
cut-off related to the correlation length a of the random interaction, k0 = π/a. We make the
non-trivial assumption that the interaction energy is dominant, in the sense that

J ≫ Λ≡ |ε(k0)| , (5)

for all relevant momentum scales below k0, where the scaleΛ defines a maximal kinetic energy.
Before turning to the further discussion of this model, let us mention a few other spa-

tial extensions of the SYK model. Ref. [33] introduced a model with linear dispersion
ε(k) = vk and random but spatially uniform interaction coefficients. While this system is
chaotic and chiral like Eq. (3), its long range correlations lead to symmetries different from
local reparametrization invariance. A model with long-ranged disorder and linearly disper-
sive non-chiral fermions, (ε(k) = ±vk for right/left movers) was discussed and approximately
solved in [34]. The existence of connections to AdS3 was left as an open question by the au-
thors. Finally, Refs. [35] and [36] proposed two-dimensional generalizations of the SYK model
(conceptually, one-dimensional models subject to time dependent interactions). Compared to
the standard ‘0-dimensional’ SYK Hamiltonian, this is a stepup by two dimensions, with a less
direct connection the holographic principle in one dimension lower. The criteria motivating
the present model Ansatz Eq. (3) include spatial locality of interactions and statistical corre-
lations, a symmetry contents identical to that of the AS action, and principal realizability as
a many-body system (The Hamiltonian Eq. (3) may be conceptualized as an effective Hamil-
tonian describing electrostatically correlated multi-channel quantum Hall edge modes). In
passing, we also refer to the mini-review [37], which discusses early (unsuccessful) attempts
to construct holographic dual extensions of the SYK model in 1+ 1 dimensions.

1.2 Bulk perspective

In section 3, we will derive the AS action from bulk gravity. In essence, this amounts to the
lifting of an analogous construction for JT gravity, where the Schwarzian action emerged as a
boundary-fluctuation action of two-dimensional black hole solutions. In one dimension higher,
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alongside global AdS3, BTZ black holes provide stationary solutions, and they reduce to JT
black holes upon dimensional reduction [38]. One expects the same to happen at the level
of the boundary actions, suggesting that fluctuations around the BTZ saddle are described by
the AS action. Indeed, a number of works revealed intimate connections between the BTZ
geometry and the AS action (2). To categorize these previous contributions, we temporarily
denote an AS action with Schwarzian derivatives acting in the spatial, imaginary, or a real time
direction by ASx ,τ,t , respectively.

Working within the Chern-Simons representation of three-dimensional gravity (for a re-
view, see section 3.3), the seminal paper [26] identified two chiral copies of the ASx -action
as the theory of fluctuations around global AdS3, the vacuum state of AdS3-gravity. Modular
invariance2 then implied that two chiral copies of the ASτ-action provide the theory of fluc-
tuations around Euclidean BTZ black holes. Given that the BTZ solution has one boundary
in Euclidean signature and two in Lorentzian signature (see e.g. [39]), Refs. [26] and [40]
proposed a quadruple ASt description for the two-sided Lorentzian BTZ. Ref. [27] went one
step further to suggest ASτ as a universal effective quantum theory of AdS3-gravity in the
high-temperature regime. Other investigations of AdS3 gravity employing the AS action in-
clude [41], and works that focus on the phase space of one- [26, 42, 43] and two-boundary
solutions [40,44], or the spectral form factor [45].

In this paper we will add a missing element to this web of constructions, namely a direct
derivation of the ASτ action as the theory describing fluctuations around the BTZ black hole
in Euclidean signature. This derivation, as opposed to a more indirect one based on modular
invariance arguments, will be instrumental for our explicit comparison of bulk and boundary.
Starting from Chern-Simons theory defined on a manifold topologically equivalent to a solid
torus, we will derive the theory of fluctuations in a framework exchanging the role of space
and time relative to the expansion around the AdS3 vacuum [26]. This reassignment plays
a crucial role in our construction. It leads to a high level of parallelism in the reduction of
the boundary theory (the chiral SYK chain) and the bulk theory to their respective low energy
fluctuation actions, and in particular allows us to match coupling constants. On this basis, we
will then move on to the computation of observables.

The rest of the paper is organized as follows. In the next section, we process the model
Eq. (3) by an extended version of the GΣ-approach to the SYK model [9], and derive the AS
action. In section 3, we obtain the same action from Euclidean gravity. Finally, in section 4
we consider signatures of chaos described by the Liouville field theory reformulation of the AS
functional integral. We conclude in section 5, and various technical details are relegated to
Appendices.

2 Derivation of the AS action from the boundary theory

In this section, we derive the semiclassical boundary theory from the one-dimensional SYK
model. The construction proceeds along a sequence of steps, which are extended versions of
those used in one dimension lower en route from the SYK model to the Schwarzian action: a
representation of the disorder averaged theory in terms of a GΣ-functional, a mean field treat-
ment of the latter, an identification of a weakly broken reparametrization symmetry and a
derivation of the corresponding Goldstone mode action, which happens to be of the ASτ form.
In course of the mean-field analysis, one realizes that the behavior of the one-dimensional

2The AdS/CFT correspondence combined with modular invariance of CFT on a torus imply a dual relation
between the Euclidean global AdS and the BTZ solution of AdS3 gravity. Both solutions are defined on solid tori,
and they map onto each other by an exchange of the boundary space and Euclidean time coordinate, cf. section
3.3.
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SYK model based on helical liquids crosses over to the ‘Fermi-liquid’ at temperatures below
TΛ ∼ Λ2/J , where Λ is a measure for the spatial coupling strength. As a consequence, the
holographic correspondence of this particular model is limited to a (parametrically wide) tem-
perature interval, TΛ < T < J . This limitation motivates us to formulate another variant of
a chiral SYK model, whose dispersion remains approximately flat over an extended window
around k = 0. Such an exotic dispersion relation can be physically realized in so-called soft
quantum Hall edges. We demonstrate that the SYK-like phase for this second model can be
stabilized including the deep infrared limit, leading to a holographic duality also for the range
of temperatures T∗ < T < J , where the scale T∗≪ TΛ is identified in Appendix D.3.

2.1 Generalized GΣ-action and mean-field analysis

We begin with a recapitulation of the construction of the Luttinger-Ward functional [46] for a
single SYK cell and the emergent reparametrization invariance of the corresponding stationary
phase equations. In the context of the SYK model, this functional is known as GΣ-action and
assumes the following form:

S[Σ, G] = −
N
2

�

Tr ln(∂τ +Σ) +

∫

dτ1,2

�

J2

4

�

Gτ1τ2

�4
+Στ2τ1

Gτ1τ2

��

. (6)

Here, τ is imaginary time, which in the zero temperature limit considered presently becomes
an unbounded real variable, and the pair of field variables (G,Σ) is bilocal in time (and in a
replica index which we suppress for simplicity, as it will not play a role throughout).

The factor N upfront invites a stationary phase approach, where variation of the action in G
andΣ leads to the stationary phase equations−(∂τ+Σ)G = 1 andΣττ′ = J3(Gττ′)3. In the low
energy limit, where ∂τ is negligibly small compared to the high energy scale J , these possess
a famously degenerate [10,13] set of solutions. To formulate it, consider a reparametrization
of time, i.e. a smooth and invertible function τ 7→ t = f (τ), with inverse t 7→ τ = F(t). One
can then show [10,13], that the configurations

Gτ1τ2
≡ f ′1

1/4 G0
t1 t2

f ′2
1/4 , G0

t t ′ = −
1

(4π)1/4J1/2

sgn(t − t ′)
|t − t ′|1/2

,

Στ1τ2
≡ f ′1

3/4
Σ0

t1 t2
f ′2

3/4 , Σ0
t t ′ = −

J1/2

(4π)3/4
sgn(t − t ′)
|t − t ′|3/2

,

(7)

with t i = f (τi) and f ′i = f ′(τi) solve the mean-field equations. Thinking of imaginary time
compactified on a circle, and f (τ) as a diffeomorphism from the circle onto itself, this identifies
the diffeomorphism group Diff(S1) as the symmetry group of the theory. Included in this group
is the three-dimensional subgroup SL(2,R), represented as

f (τ) =
aτ+ b
cτ+ d

, ad − bc = 1 . (8)

This subset of transformations leaves the stationary phase configurations invariant, i.e.
Xττ′ = X 0

ττ′
with X = G,Σ. In this way, we have identified the coset space Diff(S1)/SL(2,R)

as the Goldstone mode manifold of the single SYK grain. (We note that the innocently look-
ing SL(2,R) subgroup will play an extremely important role as a consistency checker in the
construction of the full theory below.)

We now generalize the GΣ–functional (6) to the (1+1)-dimensional case. Defining the
Green’s function

G x x ′
ττ′ = −

1
N

∑

i

〈γi(τ, x)γi(τ′, x ′)〉 , (9)
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which is now non-local both in time and space, the functional becomes

S[Σ, G] = −
N
2

�

Tr ln
�

∂τ + εk̂ +Σ
�

+
J2

4k3
0

∫

d xdτ1,2

�

G x x
τ1τ2

�4
+ Tr (GΣ)

�

. (10)

Here, the trace extends over temporal and spatial degrees of freedom with a self-energy Σx x ′
ττ′

whose matrix structure is defined by that of G. The caret notation, k→ k̂, indicates that space
and position operators are subject to canonical commutation relations, [k̂, x̂] = −i. Variation
of the action (10) leads to the extended set of equations,

(iε− εk −Σε)Gε,k = 1 , Στ1τ2
= (J2/k3

0) [G
x x
τ1τ2
]3 , (11)

with a saddle point self-energy Σx1 x2
τ1τ2

= δx1 x2
Στ1τ2

, local in space.3 Similarly, the Green’s
function at coinciding spatial points Gε ≡ G x x

ε is given by the momentum integral,

Gε =
1

2π

k0
∫

−k0

dk Gε,k =
1

2π

k0
∫

−k0

dk
iε− εk −Σε

, εk = v0k , (12)

and Gτ−τ′ is its temporal Fourier transform from the energy domain.
Before turning to the self-consistent solution of Eqs. (11-12), we need to address the regu-

larization of our model and its associated many-body Hilbert space. Recalling that the param-
eter a defined below Eq. (4) sets a correlation radius of the random interaction, we introduce
coarse-grained Majorana operators γ j

n in position space at discrete location xn = na as

γ j
n =

� a
L

�1/2 ∑

|k|<k0

γ
j
keikxn ,

1
2
{γi

n,γ j
n′}= δnn′δ

i j , (13)

with L being the system size. The Hamiltonian of the SYK-like interaction then becomes a sum
over lattice sites,

HSYK =
1
4!

∑

n

∑

i jkl

Jn
i jklγ

i
nγ

j
nγ

k
nγ

l
n , 〈Jn

i jkl J
n′
i jkl〉=

3!J2δnn′

(πN)3
, (14)

with lattice two-body matrix elements Jn
i jkl = a−1Ji jkl(xn). The kinetic energy, as before, is

best expressed as a sum over discrete momenta, quantized in units of 2π/L, see Eq. (3). With
Nx = L/a representing the number of sites, the dimension of the Hilbert space is then given
by D = 2Nx N/2. Fig. 1 illustrates this representation of a model reflecting its coarse-grained
regularization. Within such regularization scheme the Majorana Green’s function at coinciding
spatial points, Gε, is expressed via a momentum integral bounded by the UV cut-off k0, see
Eq. (12).

Turning to the solution of the mean-field equations, we introduce the important energy
scale,

TΛ =
(πΛ)2

J
, TΛ≪ Λ≪ J , (15)

delineating two distinct regimes: ‘weakly dispersive’ (ε≫ TΛ) and ‘strongly dispersive’ (ε≪ TΛ)
(see Ref. [47]). In the weakly dispersive limit, the kinetic energy is negligible compared to the
self-energy, i.e. εk ≪ Σ(ε), and both the Green’s function and self-energy can, with good

3To shorten formulae we will often abbreviate expressions for the δ-function as δx1 x2
= δ(x1 − x2).
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accuracy, be approximated by the conventional SYK form (cf. Eq. (7)), shown here in the
energy and time domain for later reference:

G0
ε = −

ik0sgn(ε)
p

J |ε|
, Σ0

ε = −
isgn(ε)
π

Æ

J |ε| , ε≫ TΛ , (16)

and

G0
ττ′ = −

k0sgn(τ−τ′)
p

2πJ |τ−τ′|
, Σ0

ττ′ = −
J1/2sgn(τ−τ′)
(2π|τ−τ′|)3/2

, τ≪ 1/TΛ . (17)

In the strongly dispersive limit, the integration range in Eq. (12) can be extended to infinity
and the momentum integral is defined by a pole at k∗ = −Ξε/v0, where we have introduced
Ξε = Σε − iε. This results in a simple, ‘Fermi-liquid’-like Green’s function,

GFL
ε = −

isgn(ε)
2v0

, GFL
τ−τ′ = −

1
2πv0

×
1

τ−τ′
, (18)

which is independent of the details of Ξε. Consequently, the self-energy evaluates to
Στ = (J2/k3

0)G
3
τ ∝ τ−3, which results in a quadratic energy dependence, Σε ∝ iε2. Tak-

ing into account all numerical constants, limiting results for the self-energy read,

Σε = −
isgn(ε)
π

Æ

J |ε| , TΛ≪ ε≪ J ,

Σε =
i
p

J

16 T3/2
Λ

ε2sgn(ε) , ε≪ TΛ .
(19)

The two asymptotics match at the scale ε ∼ TΛ, indicating the self-consistency of the above
analysis. In the deep infrared limit, the self-energy when continued to real energies, defines
a damping rate of Majoranas, γ(ε)∝ (ε/TΛ)2, reminiscent of the Fermi-liquid physics. It is
also worth noting here that a crossover from SYK to the ‘Fermi-like’ saddle-point described by
Eq. (19) is fully analogous to that occurring in granular SYK arrays [48,49].

The above considerations imply that stationary solutions for G and Σ exhibit an approxi-
mate reparametrization invariance only within the time range J−1 < t < T−1

Λ . At longer times,
the ‘Fermi-liquid’ saddle-point takes over and the invariance is lost. Since the holographic du-
ality for the SYK model relies heavily on the reparametrization symmetry, we will restrict our
analysis of the linearly dispersive model (3) to temperatures TΛ < T < J , and refer to it as
Model I throughout. In the next subsection we will introduce the complementary flat-band
Model II, for which the SYK phase remains stable down to the deep infrared limit.

2.2 Flat-band model

In this section we discuss a variant of the chiral SYK model whose dispersion relation εk is
shown in Fig. 2, where k0 < π/a defines the width of an (approximate) flat region and γ > 1
is the dispersive exponent for large momenta > k0. We assume the parameter k1/k0≪ 1 to be
small. In the following, we will demonstrate that the SYK phase remains stable for this model.
Although this spectrum of chiral boundary fermions may seem exotic, it emerges, for example,
at the ‘soft’ edges of gate-confined IQHE samples. Specifically, within the self-consistent elec-
trostatic framework developed by Chklovskii et al. [50, 51], one finds the exponent γ = 3/2
(see Appendix A).

The set of self-consistent mean-field equations (11-12) for Model II can be solved neglect-
ing the iε–term. Referring for details of this procedure to Appendix B, the scale TΛ plays the
same role as in Model I. Specifically, in the weakly dispersive limit (ε ≫ TΛ), one arrives at
the SYK-like solutions Eqs. (16) and (17). (One may make these solutions more accurate by
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∝ (𝑘 − 𝑘0)
𝛾

𝑘0

−𝑘0

𝜖(𝑘)

−Λ

−𝜋/𝑎 𝑘

𝑘1

Λ −

Figure 2: Dispersion relation of Majorana edge modes in the chiral SYK model (3)
with flat bands (Model II). For the dispersive part one defines εk = Λ(δk/k1)γ, where
δk = k− k0, so that ε(π/a) = Λ≪ J in accordance with Eq. (5).

substitution k0→ k0+ k1 and J2→ J2(1+ k1/k0)3, however this refinement will be irrelevant
throughout.)

In the strongly dispersive regime (deep IR limit), the Green’s function and self-energy
receive perturbative corrections of order O(k1/k0) to the SYK solutions. Specifically, in the
energy domain (at ε≪ TΛ), they read

δΣε
Σ0
ε

= σ1(γ)
�

k1

k0

�

�

�

�

�

εJ
Λ2

�

�

�

�

1/2γ

+O(k2
1/k

2
0) ,

δGε
G0
ε

= g1(γ)
�

k1

k0

�

�

�

�

�

εJ
Λ2

�

�

�

�

1/2γ

+ . . . , (20)

where for details of the derivation and the explicit definitions of functions σ1(γ) and g1(γ) we
refer the reader to Appendix B. The main point here is that the kinetic energy term εk is an
irrelevant perturbation, including in the deep IR limit. It produces a correction to the leading
SYK self-energy Σ0

ε which is parametrically small in ε. Physically, the flat-band dispersion
of the kinetic energy enhances electron correlations, thereby stabilizing the SYK phase. This
is different from Model I, whose linear dispersion εk qualitatively changes the nature of the
saddle-point at low energies.

In the Fourier conjugate time domain, at large times τ ≫ 1/TΛ, we obtain to the same
accuracy

δΣτ
Σ0
τ

= σ̃1(γ)
�

k1

k0

�

�

�

�

�

J
Λ2τ

�

�

�

�

1/2γ

+ . . . ,
δG x x

τ

G0
τ

= g̃1(γ)
�

k1

k0

�

�

�

�

�

J
Λ2τ

�

�

�

�

1/2γ

+ . . . , (21)

where the numerical coefficients g̃1(γ) and σ1(γ) are discussed in Appendix B.2. The result
for the Green’s function affords a clear physical interpretation: The scaling dimension of Ma-
joranas in the SYK model is 1/4. The first-order correction to the bare SYK result in Eq. (21)
arises from the small fraction of mobile Majoranas, whose scaling dimension crosses over to
1
2∆1 = 1/4+ 1/(4γ) at times longer than T−1

Λ .
To better illustrate the last point, one can introduce a subset of fermion-like operators that

describe only mobile Majoranas,

λ
j
l =

�a1

L

�1/2 π/a
∑

|k|=k0

γ
j
keikx l ,

1
2
{λi

l ,λ
j
l ′}= δl l ′δ

i j , a1 = π/k1 , (22)

and are defined at the coarse-grained positions x l = la1. Note, that the summation above goes
only over a narrow strip of momenta where the kinetic energy εk is nonvanishing. By intro-
ducing a two-point function, g x x ′

ττ′
, for these fields in analogy to Eq. (9), its value at coinciding

spatial points on a level of the mean-field approximation is given by

g x x
ε = −

1
2π

∫

εk ̸=0

dk
εk +Σε

. (23)
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In the weakly dispersive limit, ε≫ TΛ, the kinetic energy is negligible compared to the self-
energy. Therefore, for short times, τ≪ T−1

Λ , a temporal behavior of the correlator g x x
τ remains

of the conventional SYK form. For longer times, τ ≫ T−1
Λ , corresponding to the strongly

dispersive limit, the correlator g x x
τ crosses over to δG x x

τ . This time dependence is summarized
as

g x x
τ ∼ −

k1sgn(τ)
p

2πJ
×
�

|τ|−1/2 , τ≪ T−1
Λ ,

|τ|−∆1 |TΛ|−1/2γ , τ≫ T−1
Λ ,

(24)

where few numerical factors are omitted for brevity. The two asymptotics here match at the
intermediate time scale τ ∼ T−1

Λ , where a transmutation of the scaling exponent from 1/2 to
∆1 = 1/2+ 1/2γ governing the temporal dependence of the correlator occurs. In Sec. 4 we
will analyze how quantum fluctuations beyond the mean-field analysis affect the above result.

2.3 Reparametrization invariance and soft modes

The concept of reparametrization invariance has been essential in the context of holographic
duality between the SYK model and JT gravity. At the level of the GΣ–functional it manifests
itself through a degenerate coset manifold of saddle-points (7) when the symmetry breaking
time derivative operator ∂τ is neglected. In the chiral SYK model, the kinetic energy εk acts as
an additional source of symmetry breaking. In this subsection, we argue how global (i.e. in-
dependent of x) and adiabatic reparametrizations of time, τ → t = f (τ), can be employed
to construct a coset manifold of approximate saddle-point solutions to the (1+1)-dimensional
GΣ–action, despite the presence of this term. In this way, we show that reparametrizations
remain valid soft modes in the problem. We use the latter in the next subsection to derive the
AS action from the chiral SYK model.

The reparameterization invariance of the SYK model can be considered as a generalization
of invariance under scaling t = λt ′, to diffeomorphism invariance t = f (τ). We therefore
start our analysis of the higher dimensional model by considering its behavior under scaling.
Temporarily focusing on the case of zero temperature, let G(t;Λ) and Σ(t;Λ) be approximate
solutions of the zero temperature saddle-point equations ignoring the time derivative operator
∂τ and evaluated at coinciding spatial points (x ′ = x). As shown above, this approximation is
always valid for the weakly dispersive limit and it also holds in the strongly dispersive limit of
the ‘flat-band’ model. Schematically, the corresponding equations read

G(t − t ′;Λ) = −
�

�

εk̂ +Σ
�−1�x x

t t ′
, Σ(t;Λ) = (J2/k3

0)G
3(t;Λ) , (25)

where the self-energy operator is defined by Σx x ′
t t ′ ≡ δx x ′Σ(t− t ′;Λ), and we explicitly indicate

the dependence of the solutions on the kinetic energy scale Λ. The solutions of equations (25)
satisfy the scaling relations

G(t/λ;Λ′) = λ1/2G(t;Λ′/λ1/2) , Σ(t/λ;Λ′) = λ3/2Σ(t;Λ′/λ1/2) , (26)

with λ ∈R+. To see that this condition must hold, consider the action S ≈ −
∫

d t H defined by
the Hamiltonian (3), where we substitute Majorana operators by Grassmann variables, γ̂→ χ
(all quantum indices are omitted for brevity), and we have dropped the term

∫

d tχχ̇, in
accordance with the rationale of equations (25). The action S is invariant under the (global)
rescaling,

t ′ = t/λ , χ ′ = λ1/4χ , Λ′ = λ1/2Λ , J ′ = J . (27)

In particular, the engineering scaling dimension of the kinetic energy is [Λ] = 1/2. Consider-
ing that the dimension of the Green’s function is [G] = 2× [χ] = 1/2, we arrive at the scaling
symmetries of the approximate mean-field solutions (26). As a sanity check, it is straightfor-
ward to verify that the long-time asymptotic of the Green’s function and self-energy (21) in
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the ‘flat-band’ model, which are valid in the strongly dispersive regime, are consistent with
this scaling invariance.

On this basis, we wish to generalize from scaling to reparametrizations f (τ) of time. Stay-
ing close to the rationale previously applied to the local SYK model, we require strict invariance
of (G,Σ) under the subgroup of SL(2,R) transformations Eq. (8). We begin by introducing
the SL(2,R)-invariant ratio

rτ1τ2
=

f1 − f2
Æ

f ′1 f ′2
, fi = f (τi) , f ′i = f ′(τi) , (28)

and the rescaled kinetic energy cutoff,

Λτ1τ2
=

Λ

( f ′1 f ′2)1/4
, (29)

where f ′ ≡ ∂τ f . Next we define the reparameterized fields

eΣτ1τ2
= Σ(rτ1τ2

;Λ)≡ f ′1
3/4
Σ( f1 − f2;Λτ1τ2

) f ′2
3/4 , (30)

eGτ1τ2
= G(rτ1τ2

;Λ)≡ f ′1
1/4G( f1 − f2;Λτ1τ2

) f ′2
1/4 , (31)

as generalizations of the scaling transformations Eqs. (26). The correspondence between these
definitions follows from the identifications t → f1− f2 and λ→

Æ

f ′1 f ′2 together with Λ′→ Λ.
We note that the fields eG and eΣ remain invariant under the restricted class of SL(2,R) trans-
formations Eqs. (8).

It remains to be shown that the reparameterized fields are approximate solutions of the
stationary phase equations Eq. (11), provided (G,Σ) are. With Eqs. (26) and (30), the second
of these, eΣ= (J2/k3

0)eG
3, is manifestly satisfied. However, the first requires substantially more

discussion. In the following, we analyze this equation to which the pair (eG, eΣ) is an approxi-
mate solution. Our discussion will also introduce various concepts and definitions which will
play a key role in our subsequent derivation of the fluctuation action.

We begin by noting that the self energy eΣx x ∝ (eG x x)3 is spatially local, and translationally
invariant on average. It therefore does not exhibit coordinate dependence, and we denote it by
eΣ throughout. Turning to the more involved first equation in (25), consider a formal solution
eG x1 x2
τ1τ2

evaluated for the self energy eΣ. Turning to Fourier space, it reads

−
∫

dτ2

�

εkδτ1τ2
+ eΣτ1τ2

�

eGτ2τ3
(k) = δτ1τ3

. (32)

2.3.1 Linear transformation in time space

In the following, it will be helpful to think of Eq. (32) as a ‘matrix equation’, and to consider
the transformation t → τ= F(t) as a change of basis. Referring to Appendix C for the detailed
formulation of this picture in the language of linear algebra, we here note that the transfor-
mation between the two representations acts on general bilocal operators Oτ1τ2

with scaling
dimensions ∆ via a (non-unitary) linear map M∆ as

M∆ : Oτ1τ2
7→ Ot1 t2

= F ′1
∆/2Oτ1τ2

F ′2
∆/2 , τi = F(t i) , (33)

where F is the inverse of the map f , F( f (τ)) = τ, and we have abbreviated F ′i = F ′(t i). We
aim to applyM∆ in Eq. (32), keeping in mind the scaling dimensions∆Σ = 3/2 and∆G = 1/2.
As seen from (30-31), this transformation effectively eliminates the conformal factors f ′∆/2
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and then changes the time frame from τ to t. To conveniently describe its action, we define
the function,

bt ≡ 1/
q

F ′t ≡
Æ

f ′τ

�

�

�

τ=F(t)
, (34)

which will be used extensively throughout. Note that F ′t > 0, making the square root well
defined. It is straightforward to verify that the transformed representation of the Dyson equa-
tion (32) reads

−
∫

d t2(εk b−1
t1
δt1 t2

+Σt1 t2
)G t2 t3

(k) = δt1 t3
, (35)

where the combination of Eqs. (30) and (33) implies

Σt1 t2
= Σ(t1 − t2;Λt1 t2

) , Λt1 t2
=

Λ

(bt1
bt2
)1/2

. (36)

At this point, the rationale behind the M - transformation becomes evident: to leading order
Σt1 t2

coincides with the SYK self-energy (17), while the dependence on Λt1 t2
is a next-order

effect due to the presence of a kinetic energy term εk.

2.3.2 Wigner-Moyal expansion

One can solve Eq. (35) in an adiabatic approximation, assuming the field bt exhibits ‘slow’
dependence on the relative time scale t = t1 − t2. This idea can be formalized using Wigner
symbols and the Moyal expansion, which are widely employed to represent similarly structured
equations in many-body physics [52,53]. We define the Wigner transform Oε(s) of the operator
Ot1 t2

as

Oε(s) =

∫

d t eiεtOs+ t
2 , s− t

2
, (37)

where s = (t1 + t2)/2 is the ‘center of mass’ time, while the energy ε is conjugate to relative
time t. For the self-energy (36), we use the local approximation by substituting Λt1 t2

→ Λ/bs.
This translates into its Wigner symbol Σε(s) ≃ Σ(ε;Λ/bs), which is a conventional Fourier
transform of the mean-field self-energyΣ(t;Λ) over time. Relying on the above approximation,
we then introduce the Wigner symbol of an effective Hamiltonian,

hε,k(s)≡ εk/bs +Σ(ε;Λ/bs) , (38)

such that the Dyson equation reads: −hε,k(s) ⋆ Gε,k(s) = 1, where ‘⋆’ denotes the Moyal prod-
uct.4 This latter equation can be solved to leading Moyal order, yielding

Gε,k(s) = −1/hε,k(s) +O(ħh2) , (39)

where the O(ħh2)–term symbolically denotes possible 2nd order gradient corrections5 of order
b′2 and bb′′, see subsection D.2 below for the detailed discussion of this point. We also note
that the rescaled kinetic energy in the effective Hamiltonian can be written as

εk/bs = (Λ/bs)(k/k1)
γ = εk

�

�

Λ→Λ/bs
. (40)

4If Aε(s) and Bε(s) are Wigner symbols of Ât1 t2
and B̂t1 t2

, the Moyal product
Aε(s) ⋆ Bε(s) is the Wigner symbol of (AB)t1 t2

. It affords the semiclassical expansion

(A⋆ B)ε(s) = Aε(s)e
−

iħh
2 (
←−
∂s
−→
∂ε−
←−
∂ε
−→
∂s )Bε(s) = Aε(s)Bε(s)−

iħh
2 Aε(s)(

←−
∂s
−→
∂ε −

←−
∂ε
−→
∂s )Bε(s) +O(ħh2) .

5Indeed, if Gε(s) = −1/hε(s), then (G ⋆ h)ε(s) = −1− iħh
2 (∂sG ∂εh− ∂εG ∂sh) +O(ħh2) = −1+O(ħh2).
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As a result, the propagator at coinciding spatial points affords the approximate representation

G x x
t1 t2
=

∫

ε,k
Gε,k(s)e−iε(t1−t2) ≃ −

∫

ε,k

e−iε(t1−t2)

εk/bs +Σ(ε;Λ/bs)
= G(t1 − t2;Λ/bs) , (41)

where s = t1+t2
2 as before, and we have abbreviated

∫

ε,k ≡
∫

dkdε/(2π)2 for all subsequent
formulae. We finally transform the rescaled kinetic energy Λ/bs back to its exact value Λt1 t2

(the accuracy of this substitution is again of order b′2), then apply the inverse mapping M−1
1/2,

cf. definition (33), to both sides of Eq. (41), and use the scaling identities (31) for the mean-
field Green’s function G(t;Λ) to arrive at the result

G x x
τ1τ2
= eGτ1τ2

+O(ħh2) , (42)

i.e. an equation stating an identification of the solution to the mean field equations with the
reparameterized Green function eG in the semiclassical limit of slowly varying reparameter-
ization transformations. Corrections, symbolically indicated as O(ħh2), involve higher order
derivative acting on f , which are ignored in the present analysis (but carefully analyzed in
Subsection D.2).

To summarize, we have defined the reparameterized saddle-point (eG, eΣ) based on the
approximate stationary solution of the GΣ-functional, excluding the ∂τ operator. The f -
dependent fields solve the second equation in (25) exactly, and the first approximately. These
fields are solutions on the full coset manifold Diff(S1)/SL(2,R) of reparameterizations pro-
vided the latter fluctuate slowly. In this way, we have identified reparametrizations f (τ, x) as
the relevant soft modes of the chiral SYK model.

2.4 Gradient expansion

In this section, we will expand the GΣ-action in slow spatial and temporal fluctuations of the
reparametrizations f (τ, x) to derive the Alekseev-Shatashvilli action (2). In the process, we
will determine the coupling constants C and u of the theory to leading logarithmic accuracy.
Before embarking on the actual derivation, let us summarize our main results.

For Model I with dispersion εk = v0k, and at intermediate temperatures, the two coupling
constants evaluate to

C =
�

3π
4

�

NΛ
J

ln
J
TΛ

, u= 2Λ/k0 , TΛ≪ T ≪
p

JΛ , (43)

where our expansion in derivatives requires C ≫ 1, which in turn requires N ≫ 1. For lower
temperatures Model I lacks a holographic correspondence to AdS3. For Model II, the coupling
constants in the temperature regime above are the same, Eq. (43). For lower temperatures, C
does not change, while u becomes temperature dependent as

u(T ) =
u0

ln(J/T )
, u0 =

2Λ
k0

ln
J
TΛ

, T ≪ TΛ . (44)

In the logarithmic T -dependence manifests a temperature scaling, as described by the flow
equation

d ln u
dl

= −
u
u0

, l = ln(J/T ) , (45)

subject to the initial condition u(TΛ) = 2Λ/k0 at the boundary to the intermediate temperature
regime. The diminishing of the velocity u at low temperatures is a consequence of the vanishing
group velocity, vk = ∂kεk, at low momenta.
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To set the stage for our subsequent derivations, let us consider the AS action at zero tem-
perature,

S∞± [ f ] =
C

24π

+∞
∫

−∞

dτ

L
∫

0

d x
f ′′∂± f ′

f ′2
, ∂± =

1
2
(u−1∂τ ± i∂x) , (46)

as the β →∞ limit of the finite temperature action S± ≡ Sβ±, Eq. (2), where imaginary time
is compactified to a circle. The finite temperature generalization is obtained from Eq. (46) by
a substitution f (τ, x)→ tan(π f (τ, x)/β), i.e.

Sβ±[ f ] = S∞± [tan(π f /β)] , (47)

where a restriction τ ∈ [0,β] is implied on both sides of the relation. In the following, we
will focus on the derivation of (46), keeping in mind that its finite temperature generalization
may be realized in a secondary step, by application of Eq. (47). Our starting point is the
GΣ-functional,

S[ f ] = −
N
2

�

tr ln
�

∂τ + εk̂ + eΣ
�

+
J2

4k3
0

∫

d2τd x (eG x x
τ1τ2
)4 + Tr(eGeΣ)

�

, (48)

where the self-energy and Green’s function are reparametrized according to (30) and (31), and
we have promoted f (τ, x) to include space dependence. Importantly, the starting action (48)
is locally SL(2,R)–invariant. This is a direct consequence of the invariance of the fields eG
and eΣ under the transformations (8), where the coefficients a, . . . , d may depend on position,
a = ax , etc. (As discussed in the foregoing section, the invariance of the fields follows from the
definitions (30-31) indicating that eG and eΣ are expressed through the SL(2,R)–invariant ratio
(28).) Consequently, the gradient expansion of action (48) must also preserve this symmetry,
which will turn out to be a highly nontrival consistency check. In fact, the AS action will
emerge as the minimal local functional respecting this coset symmetry.

We also note that the AS action (46) contains real and imaginary parts: S∞± [ f ] = SR[ f ]
± iSI[ f ], where the real part is the position dependent Schwarzian (up to a boundary term),
while the imaginary part is the kinetic term containing mixed spatial and time derivatives
of f (τ, x). In the following, it will be useful to consider these two terms employing the field
b (34) as an independent variable. More precisely, we generalize the definition (34) to include
spatial dependence,6

bt,x
def.
= 1/

q

F ′t,x ≡
q

f ′τ,x

�

�

�

τ=F(t,x)
, (49)

where f ′ = ∂τ f , F ′ = ∂t F and the relation t = fx(Fx(t)) is defined locally. On changing in
Eq. (46) the time integration variable as t = f (τ, x) at given x , it is straightforward to verify
that the real part becomes Gaussian (the integration measure, however, is not flat in terms of
the field b, i.e. the complexity of the theory is now hiding there), while the imaginary part
assumes the form of a ‘cubic’ vertex:

SAS
± [b] =

C
12πu

∫

t,x
b′2 ±

iC
24π

∫

t,x
∂x F

�

b′′b− b′2
�

, b′ ≡ ∂t b . (50)

The equivalence between this representation and Eq. (46) follows from a few integrations by
parts in time, assuming that the boundaries ±∞ of the zero temperature time domain t ∈R
are identified. In the following, we will use the pair of fields (b,∂x F) to carry out the gradient

6In what follows an abridged notation is used: Ft,x ≡ F(t, x), and the same for all other functions of time and
space, e.g. bt,x ≡ b(t, x) and so on.
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expansion, and to derive the AS action as in Eq. (50). Below, we outline the main steps of this
procedure, relegating the majority of technical details to Appendices.

The starting reparametrized GΣ–action (48) requires some care, as its first term is ex-
pressed via a functional determinant of the operator D = ∂τ + εk̂ + eΣ. We have chosen to
regularize it as

Sreg[ f ] = −
N
2

lndetD+ N
2

lndet eΣ0 −
N
2

I[eG, eΣ] , (51)

where eΣ0 is the reparametrized self-energy of the original SYK solution (7) and I[eG, eΣ] adds
the remaining two pieces of the GΣ–action:

I[G,Σ] =
J2

4k3
0

∫

d2τd x [G x x
τ1τ2
]4 + Tr (GΣ) . (52)

A closer inspection reveals that a regulator above contributes only an inessential f -
independent constant,7 namely tr ln eΣ0 = tr lnΣ0. To keep the notation slim, we will suppress
its presence in much of our discussion below.

To prepare the gradient expansion, we will first shuffle the time reparametrizations from
the ‘large’ self-energy to the ‘small’ symmetry-breaking terms, ∂τ and εk̂, in the operator D.
To do so, we introduce a generalized variant of the transformation (33),

M∆ : Ox1 x2
τ1τ2

7→ O
x1 x2

t1 t2
= F ′1

∆/2Ox1 x2
τ1τ2

F ′2
∆/2 , τi = F(t i , x i) , (53)

defined to be applicable to spatially non-local operators Ox1 x2
τ1τ2

with scaling dimension ∆ and
diffeomorphisms F carrying space dimension (in Eq. (53), F ′i ≡ F ′(t i , x i), as usual). We apply
this transformation to each term in the action (51) individually, with account for the respective
scaling dimensions ∆Σ = 3/2 and ∆G = 1/2, to obtain

Sreg[ f ] = −
N
2

lndetD− N
2

I[G,Σ] . (54)

In particular, the action I remains invariant, as follows from the change of differentials,
d t i = f ′i dτi in Eq. (52). Here, the self-energy Σ is given by Eq. (36), with the field b(t, x)
being position dependent, and an analogous expression applies to the Green’s function G. At
the same time, the differential operator D transforms with a scaling dimension ∆ = 3/2, and
after the mapping (53) it becomes

M3/2 : D 7→ D = ρ + j +Σ , (55)

where ρ and j denote the transformed time derivative operator ∂τ and the kinetic energy εk̂,
respectively. It will become clear shortly, that the former two afford an interpretation as energy
density and heat current, respectively.

Referring to Appendix D.1 for details, the operator ρ is diagonal in space, i.e.
ρx x ′ = δx x ′ρx , where ρx ≡ ρ is a first order differential operator in time,

ρ =
1
2

�

b
−→
∂t −

←−
∂t b

�

, (56)

with parametric space dependence from b = b(x , t). Its action on smooth functions gt and ht
is defined by the matrix elements

〈g|ρ |h〉=
∫

d t b(g(∂th)− (∂t g)h) . (57)

7Indeed, the variation of the action S0[ f ] := −(N/2) lndet eΣ0 − (N/2)I[eG0, eΣ0] over f vanishes, if (eG0, eΣ0)
is the reparametrized SYK saddle-point. Therefore, one finds that S0[ f ] = −(N/2) lndetΣ0 − (N/2)I[G0,Σ0] is
some constant. The last piece here, I[eG0, eΣ0] ≡ I[G0,Σ0], is explicitly reparametrization invariant. Hence the
determinant is also invariant just by itself.
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The second operator, j, requires a bit more work. Unlike ρ, it has a non-trivial structure in
both position and time. To define it, we introduce its Wigner symbol in position-momentum
space as jk(x) =

∫

d ye−ik y j x+ y
2 ,x− y

2 , cf. Eq. (37). In Appendix D.1 we show that the lowest
order Moyal expansion, of this Wigner symbol assumes the form

jk(x) = εk/b+
i
2
∂kεk ×

�

b∂x F
−→
∂t −

←−
∂t b∂x F

�

≡ j0k (x) + j1k (x) , (58)

where b = b(t, x) as above. We have also split jk(x) in two parts, containing zero and one
derivative operator, respectively. Similarly to Eq. (57) above, the matrix element of the latter
is defined as

〈g| j1k (x) |h〉=
i
2
∂kεk

∫

d t ∂x F b(g(∂th)− (∂t g)h) . (59)

Collecting terms, to lowest non-trivial order in gradients, the position-momentum Wigner sym-
bol of the operator (55) is given by the expansion:

Dk(x) = ρ + j1k (x) + hk(x) , hk(x) = εk/b+Σ , (60)

where hk(x) is the effective Hamiltonian introduced previously in Eq. (38).
With the result (60) at hand, we are now in a position to organize the gradient expansion of

the action (54) around the approximate saddle-point solution. For that purpose, we define the
propagator G with a corresponding position-momentum Wigner symbol Gk(x), which obeys
the Dyson equation hk(x)⋆Gk(x) = −1. This is a generalization of our previous definition (35)
to the case of spatially inhomogeneous reparametrizations f = f (τ, x). One then rewrites the
regularized action (54) in an equivalent form by splitting it into the fluctuation contribution,

Sfl[ f ] = −
N
2

tr ln
�

1− (ρ + j1)G
�

, (61)

and one originating from the approximate saddle-point,

S∗[G,Σ] = −
N
2

tr ln
�

j0 +Σ
�

−
N
2

I[G,Σ] , (62)

so that the sum of these two actions gives back Sreg[ f ]. In Appendix D.3 we verify that the
second piece, S∗[G,Σ], does not contribute to the AS action (50). This follows from the fact
that (G,Σ) defines a manifold of approximate saddle-point solutions of the functional S∗[G,Σ],
parametrized by f . On the other hand, the gradient expansion of the first piece, Eq. (61),
describes the effects of fluctuations beyond the mean-field approximation.

The second-order expansion in ρ and j1 generates several terms, where those contributing
to the AS action (50) are given by

Sfl[ f ]→
N
2

tr(ρG) + N
2

tr( j1GρG) + N
4

tr(ρGρG)≡ Sρ[ f ] + S jρ[ f ] + Sρρ[ f ] . (63)

Referring to Appendix D for details, we note that the sum of the two terms, Sρ[ f ] + S jρ[ f ],
defines the imaginary part of the AS action SAS

± , expressed as a functional of the pair of fields
(b,∂x F). In particular, these two terms determine the central charge (43). The remaining
term, Sρρ[ f ], provides the real part, and it assumes the form of the Schwarzian action when
expressed in terms of f (τ, x). It sets a ratio C/u and gives the scale of velocity (44).

The physical meaning of the terms contributing to the gradient expansion (63) can be
interpreted as follows. To leading order, the operators ρ and j1 have the Wigner symbols

ρε,k = −i bε+ . . . , j1ε,k = (b∂x F) · ε∂kεk + . . . , (64)
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Figure 3: Diagrams of the 2nd order gradient expansion contributing to the AS action.

identifying them as energy density and heat current operators, the latter being proportional to
the group velocity vk = ∂kεk. Accordingly, the individual terms in the expansion (63) describe
correlation functions of ρε,k and j1

ε,k, whose Feynman diagrams are shown in Fig. 3. A low

frequency expansion of these correlation functions in ω ≪ ε up to O(ω2) yields terms of
the type b′2 and bb′′ in the action SAS

± [b], see Eq. (50). At the same time, the integration
region over the energy ε is wide, TΛ < |ε| < J , leading to the appearance of log-prefactors
in the coupling constants C and u. In this reading, the Schwarzian action is a density-density
correlator, see Fig. 3(c). Likewise, the central charge and the kinematic part of the AS action
are defined by a current-density correlator, Fig. 3(b).

For completeness, we mention that the gradient expansion contains two extra terms, not
contributing to the AS action. These are a first-order term, S j[ f ], which reduces to a con-
stant when subjected to our regularization scheme with a reparametrization dependent cut-
off. There also is a contribution S j j[ f ] containing two spatial derivatives∝ (∂x F)2. The latter
does not comply with SL(2,R) invariance, and we attribute it to the Jacobian of the transfor-
mation from initial to rotated Majoranas under the mapping (53). Finally, for Model II the
quantum fluctuations of f (x ,τ) may compromise the SYK saddle point at temperature scale
T∗≪ TΛ, which is defined by the competition of the small parameter k1/k0≪ 1 and the large
ratio J/TΛ, see Eq. (D.34) for the explicit definition. The latter limits a holographic duality
of Model II to the range of temperatures T∗ < T < J . For further details we again refer to
Appendix D.

To conclude this section, we note that the chiral SYK Hamiltonian (3), which features right-
moving Majorana fermions with ∂kεk ≥ 0, gives rise to a single copy of the AS action, namely
to S−[ f ]. However, if the underlying topological insulator has either a Hall bar or Corbino
geometry, the opposite boundaries will host Majorana edge states with opposite chiralities. In
this setting, two independent copies of the AS action, S±[ f ], emerge, which is a scenario that
takes place in a holographic dual of this model discussed in the next section.

3 The AS action from gravity

In this section, we consider the theory describing fluctuations around the Euclidean BTZ black
hole and provide the direct reduction of this theory to the AS action. This computation gets us
in a position to match coupling constants as well as time reparametrizations emerging in the
boundary and bulk framework, respectively. We begin with quick reviews of the phase space of
AdS3 gravity in subsection 3.1 and the Chern-Simons formulation of three-dimensional gravity
in 3.2. Expert readers can skip these subsections and directly turn to 3.3. There, we discuss
the Euclidean BTZ black hole solution in the Chern-Simons formulation for a particular choice
of analytic continuation. Finally, subsection 3.4 derives the above-mentioned link to AS theory
by quantizing gravity on top of the Euclidean BTZ background.
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3.1 The phase space of asymptotically AdS3 gravity

To understand the role of the AS action in the context of asymptotically AdS3 spacetimes, we
start by reviewing some properties of three-dimensional pure gravity in the metric formalism.
The most important difference to gravity in higher dimensions is the topological nature of the
three-dimensional theory, meaning that it has no local degrees of freedom [54]. For example,
mass sources spacetime curvature locally, but deformations of the metric away from the source
are pure gauge. This, however, does not mean that the theory without matter is trivial; its
solutions can have non-trivial global properties like horizons or mass and angular momentum,
as we will briefly discuss.

The Einstein-Hilbert action for three-dimensional pure gravity with negative cosmological
constant Λ< 0 is given by

S =
1

16πG

∫

M
d3 x

p

−g(R− 2Λ) . (65)

It describes what we will refer to as “AdS3 gravity”. Here, G is Newton’s constant, and gµν
is the metric on the three-manifold M with determinant g and associated curvature scalar
R. The variation of this action yields field equations that express constant negative curvature,
Rµν = 2Λgµν or R = −6/l2, where in the latter equation we introduced the AdS curvature
radius l by writing the cosmological constant of dimension mass squared as Λ = −1/l2. As a
consequence, the spacetime ‘looks the same everywhere’, a high level of symmetry manifesting
itself in a SO(2, 2)-isometry: all solutions are locally AdS3. This fact in turn implies that all
solutions with an inequivalent causal structure must be obtainable from a ‘basic solution’ via
identifications under the action of a discrete group Γ [29, 54]. This basic solution is given by
global AdS3 with the metric

ds2 = −
�

1+
r2

l2

�

dt2 +
1

(1+ r2

l2 )
dr2 + r2 dφ2 , (66)

where the coordinate ranges are t ∈ R, φ ∈ (0,2π) and r > 0.
Three-dimensional holography is generically considered subject to Dirichlet boundary con-

ditions. These are specified in terms of an induced metric on the asymptotic boundary M∞
at spacelike infinity r →∞. In this limit, the metric should reduce to

ds2
∞ =

l2

r2
dr2 +

r2

l2
d x+d x− , (67)

where d x+d x− describes the flat two-dimensional metric, in light-cone coordinates
x± = lφ ± t, of the conformal boundary.

The problem famously allows for a black hole solution, which is called the BTZ black hole
[28]. It is labeled by two charges, namely its mass M and angular momentum J (with |J |< Ml
to avoid naked singularities). The non-rotating BTZ solution is

ds2 = −
ξ(r)2

l2
dt2 +

l2

ξ(r)2
dr2 + r2 dφ2 , ξ(r)≡

q

r2 − r2
+ , (68)

with mass M = r2
+/(8Gl2) a function of the location r+ of the horizon, and coordinate ranges

t ∈ R, φ ∈ (0,2π) and r > r+. This geometry will play an important role throughout.
The surface area of the horizon, 2πr+, and the periodicity β = 2πl2/r+ of Euclidean time
τ = i t determine thermodynamic properties of the black hole: the Bekenstein-Hawking en-
tropy SBH = 2πr+/(4G) and the Hawking temperature T = 1/β .
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The most general solution satisfying the Dirichlet boundary conditions is the Banados so-
lution [55]

ds2 =
l2

r2
dr2 +

r2

l2

�

d x+ +
l2

r2
L(x−)d x−

��

d x− +
l2

r2
L̄(x+)d x+

�

. (69)

It is characterized by functions L and L̄, which quantify the gravitational energy of the solution
(e.g. the BTZ black hole mass M = (L + L̄)/(4G) and angular momentum J = (L − L̄)/(4G)
for constant horizon-dependent values of L and L̄ in that case). These geometries are referred
to as ‘asymptotically AdS’.

There is a class of diffeomorphisms ξ which reach the boundary and change the near-
boundary L and L̄, but only in such a way that they obey the prescribed ‘asymptotically AdS’
fall-off behavior of the metric components gµν(r) as r → ∞ (namely L → L′ and L̄ → L̄′

but the solution remains of the Banados form, see e.g. [56]). Such diffeomorphisms become
physical and obey the algebra of an asymptotic symmetry group. In this case, the Virasoro
algebra with Brown-Henneaux central charge C = 3l/2G [57]. Indeed the Brown-Henneaux
diffeomorphisms ξ reduce on the boundary to conformal transformations of the light-cone
coordinates x± → f±(x±). This is the famous Brown-Henneaux result that identifies the role
of two-dimensional conformal symmetry in (classical) AdS3 gravity, interpreted today as a
precursor of AdS/CFT.

Once a global structure of spacetime (e.g. global AdS or BTZ) has been fixed, the per-
turbations around it are asymptotically realized degrees of freedom referred to as ‘boundary
gravitons’.

The situation parallels that realized in topological field theory: While topological field
theory on a space without boundary is gauge invariant, this feature is lost in the presence of a
boundary M∞. Gauge transformations which do not reduce to the identity at the boundary
are governed by an effective boundary action on this surface, which upon quantization defines
an infinite-dimensional Hilbert space. In the gravitational context, the role of the latter is
taken by the AS action [24,25] [26,27,40,58], whose derivation we proceed to discuss in the
following sections. For this, we make use of the CS gauge theory description of AdS3 gravity,
which makes the above analogy quite explicit.

3.2 Three-dimensional gravity as Chern-Simons theory

The Einstein-Hilbert action has long been known to have an equivalent Chern-Simons descrip-
tion [59, 60]. We present a short review of this equivalence for (65) in order to set notation,
and refer the interested reader to the standard review [61] for more details.

First, one rewrites the Einstein-Hilbert action (65) in a first order form, meaning in terms
of degrees of freedom that appear in the action with first order derivatives rather than second
order ones (as for the metric in the metric formulation). These degrees of freedom are the
frame field or vielbein, in this case dreibein, ea and spin connection ωa

b, with Latin letters
for the frame index or ‘internal index’ a = 0,1, 2. The vielbein, sometimes referred to as the
‘square root of the metric’, is the object that expresses the existence of a local inertial frame ηab
in each point of the manifold, ds2 = ηabeaeb. It is a one-form ea = ea

µd xµ, whose coefficients
ea
µ allow transformation between spacetime indices µ and frame indices a,

gµν = ea
µeb
νηab , ηab = gµνeµa eνb = diag(−1,1, 1) . (70)

The spin connection ωa
b is a one-form ωa

b =ω
a

bµd xµ, with ωa
bµ taking over the role of the

Christoffel symbols in the metric formulation, such as in the definition of a covariant derivative.
In terms of these variables, the Einstein-Hilbert action (65) becomes

S = −
1

16πG

∫

εabce
a ∧

�

dωbc +ωb
d ∧ω

dc +
1

3l2
eb ∧ ec

�

. (71)
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Variation with respect to e and ω impose respectively constant curvature and vanishing
torsion, as an equivalent formulation of Einstein’s field equations.

The first order action (71) can be further rewritten as a CS action for the group SO(2,2), by
further combining ea and ωa

b into a CS gauge field valued in SO(2, 2) (and identifying l/4G
with the CS level k). Its invariance, up to boundary terms, under SO(2,2) gauge transforma-
tions reflects the local isometry of the locally AdS3 solutions of pure AdS3 gravity discussed in
the last section. The isomorphism SO(2, 2)≃ (SL(2,R)L×SL(2,R)R)/Z2 finally allows to intro-
duce instead two sl(2,R) valued CS gauge fields A= Aa ja and Ā= Āa j̄a, with the coefficients
Aa and Āa related to the gravitational degrees of freedom by

Aa =
1
2
εabcωbc +

ea

l
, Āa =

1
2
εabcωbc −

ea

l
. (72)

They are real and independent. The sl(2,R) generators ja and j̄a satisfy

tr( ja jb) =
1
2
ηab , [ ja, jb] = εabcη

cd jd , (73)

with ε012 = 1, and similarly for the barred sector. In terms of these variables, the action (71)
takes the form of the difference of Chern-Simons actions for A and Ā:

S = SCS[A]− SCS[Ā] , SCS[A] = −
k

4π

∫

M
tr
�

A∧ dA+
2
3

A∧ A∧ A
�

, (74)

with the level given by k = l/(4G). The equations of motion now read F = dA+A∧A= 0 (and
similarly for F̄), which together impose constant curvature and vanishing torsion. Essential
to the gauge theory interpretation of three-dimensional gravity is the identification of the
frame indices with CS Lie algebra indices in (72). The CS gauge fields as such are one-forms
Aa = Aa

µd xµ and Āa = Āa
µd xµ (with µ= t,φ, r).

At the quantum level, the considered CS theory is Z =
∫

D(A, Ā)ei(SCS[A]−SCS[Ā]) (where the
path integration is over the appropriate quotiented CS gauge group). Of course, the above
argument at the level of the action provides us with an equivalence of the classical theories,
and not of the full quantum theories. For the purposes in this paper, it will be sufficient that
the equivalence holds for the path integral in the neighborhood of classical saddles.

3.3 The BTZ black hole saddle of Chern-Simons theory

The reviewed CS description (74) of three-dimensional gravity will allow us to establish the
connection to the AS action. Since the boundary theory is developed in a finite temperature
framework, we first analytically continue to Euclidean signature. In this section we discuss
the analytic continuation, and the Euclidean BTZ solution for the resulting action.

We analytically continue to Euclidean time τ by setting t = −iτ as well as At = iAτ and
Āt = iĀτ. Since

At d t = Aτdτ , (75)

the action S in form notation (74) remains the same under this procedure. That is with the
understanding that Aa = Aa

µd xµ and Āa = Āa
µd xµ are now one-forms on a Euclidean manifold

M, with the spacetime index taking values µ= τ,φ, r.
From the gravity perspective, the fact that S does not pick up a factor of i means that under

this continuation we continue to integrate over Lorentzian ‘target space’ metrics gµν = ηabea
µeb
ν

(with an iS in the exponent) rather than over Euclidean ‘target space’ metrics gµν = δabea
µeb
ν

(with typically (−SE) in the exponent). As such, the above analytic continuation is different
from the one discussed more traditionally in the context of Euclidean quantum gravity [62].
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What is crucial here is that our CS gauge field Aa
µ has two types of indices: a ‘worldsheet’

spacetime index µ and a ‘target space’ index a valued in the Lie algebra. In [62], and as
detailed nicely in the appendix of [63], one not only analytically continues µ from t to τ in
the same way as discussed above, but also continues the index a from being sl(2,R) to sl(2,C)
valued. The latter symmetry reflects the local isometry of locally AdS3 solutions of pure AdS3
gravity in Euclidean signature. However, from a condensed matter theory perspective, it is
very unnatural to change the group upon analytically continuing the theory. So we proceed
with the continuation as outlined in the previous paragraph, with ja and j̄a being still sl(2,R)
generators. Note that this is the same analytic continuation as the one used in [58] based on
similarity to JT/Schwarzian discussions. What we require is that the Euclidean BTZ metric
can be obtained as a saddle of our continued CS theory. As we will shortly see this is indeed
the case, by allowing a complex ea and thus complex (Aa, Āa) solution.

The Euclidean CS theory we employ is thus (74) with M a Euclidean manifold spanned
by coordinates (τ,φ, r). We take the three-manifold to be of the form Σ× S1 with Σ a disk,

M= D× S1 . (76)

This is in analogy to the seminal discussion of CS theory on Σ×R1 (with different choices of
Σ) in [64], where the R1 direction naturally provides a time for a canonical formulation of
the theory. In our case, S1 similarly provides a Euclidean timelike direction for a canonical
perspective. We take this direction to be labeled by φ (not τ, crucially different from [26]).
The remaining coordinates (r,τ) span the disk D. That is, the manifold on which the CS
gauge field lives is a solid torus with τ ∼ τ + β labeling the contractible cycle with period
β , and φ ∼ φ + 2π the uncontractible cycle with period 2π. This worldsheet torus is then
characterized by the modular parameter τττ= iβ

2πl .
8

As in the seminal work [64], the CS action can be brought in a form where the gauge field
coordinate Aφ in the direction away from Σ acts as a Lagrange multiplier. To achieve this, we
proceed to split the gauge field

A= Aφ dφ + Ãi dx i , (77)

with x i = {r,τ} and define F̃ = Frτ dr ∧ dτ.9 The action SCS[A] becomes

ICS[A] = −
k

2π

∫

M
dφ ∧ tr

�

−
1
2

Ã∧ ∂φÃ+ Aφ F̃
�

. (78)

Because a boundary term has been dropped to obtain this expression, we employ a new letter
ICS for this action. It is equal to SCS up to a boundary term of the form iAφAτ. The new form
will allow a rewriting of the theory as effective WZW theory at the boundary.

The action ICS[A]− ICS[Ā] gives rise to a well-defined variational problem subject to chiral
boundary conditions when it is supplemented by the boundary action

IM∞
[A, Ā] =

ik
4π

∫

M∞

d2 x
�

tr(A2
τ) + tr(Ā2

τ)
�

. (79)

Indeed, the variation of the total action,

I = ICS[A]− ICS[Ā] + IM∞
[A, Ā] , (80)

is given by

δI = (E.O.M) +
k

2π

∫

M∞

d2 x
�

δAτ(−Aφ + iAτ) +δĀτ(Āφ + iĀτ)
�

, (81)

8Throughout, we use boldface notation τττ for the modular parameter and leave τ for imaginary time.
9We define ετφr = 1.
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Figure 4: The topology of the Euclidean BTZ black hole (84) with horizon at r = r+
is that of a solid torus with contractible τ-cycle and uncontractible φ-cycle.

the boundary contribution of which vanishes for the boundary conditions Aφ = iAτ and
Āφ = −iĀτ at M∞. These are the Euclidean versions of the chiral boundary conditions
Aφ = At and Āφ = −Āt typically used in the CS treatment of gravity [61,65,66].

A particular solution of the variational problem with chiral boundary conditions is

A∗ =

�

dr
2ξ(r)

dw
2l2 (r − ξ(r))

dw
2l2 (r + ξ(r)) − dr

2ξ(r)

�

, Ā∗ =

�

− dr
2ξ(r) − dw

2l2 (r + ξ(r))
− dw

2l2 (r − ξ(r)) dr
2ξ(r)

�

, (82)

where ξ(r) is defined in Eq. (68) and we have defined light-cone coordinates and their Wick
rotations

x+ = t + lφ 7→ −iτ+ lφ = w , x− = −t + lφ 7→ iτ+ lφ = w . (83)

By (72), the solution (82) can be straightforwardly checked to describe the (non-rotating)
Euclidean BTZ metric

ds2 =
ξ(r)2

l2
dτ2 +

l2

ξ(r)2
dr2 + r2 dφ2 , ξ(r)≡

q

r2 − r2
+ , (84)

with τ ∈ (0,β), φ ∈ (0, 2π) and r > 0. It is characterized by a contractible τ-circle, as
visualized in Fig. 4. The other way around, to construct the CS gauge field form of this metric,
one reads off the dreibeins from the metric, then constructs the spin connections using the zero
torsion condition, and finally combines those into chiral and anti-chiral gauge fields through
(72).

Solutions to the equations of motion F = 0 are pure gauge fields A = g−1d g with
g ∈ SL(2,R). For the Euclidean BTZ solution, we have

g ∗ =

�

ρ∗ cosh πw
β ρ−1

∗ sinh πw
β

ρ∗ sinh πw
β ρ−1

∗ cosh πw
β

�

, ḡ ∗ =

�

ρ−1
∗ cosh πw

β ρ∗ sinh πw
β

ρ−1
∗ sinh πw

β ρ∗ cosh πw
β

�

, (85)

with ρ∗ = (r/r++ξ(r)/r+)1/2. Here we note that for τ→ τ+β , g ∗ and g ∗ are multi-valued as
elements of SL(2,R)× SL(2,R) with (g ∗, g ∗)→ (−g ∗,−g ∗), but this is cured via the diagonal
Z2 quotient appearing in the gauge group discussed above (72). The single-valuedness is
equivalent to a trivial holonomy around the τ-cycle and we will be careful to preserve it in
our fluctuation analysis. For φ→ φ+2π, g ∗ and g ∗ are multi-valued, indicating a non-trivial
φ-holonomy which encodes mass and angular momentum of the black hole [65].

As can be read off from (82), the Euclidean BTZ saddle of our CS theory has complex
components, in particular Aτ = Aa

τ ja and Āτ = Āa
τ j̄a are pure imaginary (with ja and j̄a as

discussed being real sl(2,R) generators). Later we will consider real fluctuations around this
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complex saddle. As a final consistency check, we calculate the on-shell action of the BTZ
solution (82), to which only the boundary term of (80) contributes. Substitution of Eq. (82)
leads to

−i IM∞
[A, Ā] =

k
4π

∫

M∞

d2 x
�

tr(A2
τ) + tr(Ā2

τ)
�

= βM − SBH , (86)

reproducing, as it should, the result of the Euclidean, on-shell Einstein-Hilbert action for the
BTZ black hole. This evaluates to the free energy with the familiar Bekenstein-Hawking en-
tropy SBH = 2πr+/(4G).

Interpreting the BTZ solution (84) as being asymptotically indistinguishable from the
global AdS solution suggests a set of fall-off conditions on the general metric that gives a
precise meaning to the notion of an “asymptotically AdS spacetime”. These are the Brown-
Henneaux boundary conditions [57]. In gauge field language they are given by the condition
that a solution displays the following behavior at r →∞:

A=

� dr
2r +O(r−2) O(r−1)

rdw
l2 +O(r−1) −dr

2r +O(r−2)

�

, Ā=

�

−dr
2r +O(r−2) − rdw

l2 +O(r−1)
O(r−1) dr

2r +O(r−2)

�

. (87)

With these boundary conditions, the asymptotic symmetry group (of residual diffeomorphisms
in metric formulation, or gauge transformations in the CS formulation) famously is that of the
Virasoro symmetry of 2D CFT, with the combination of gravitational parameters 3l/(2G) taking
the role of a central charge C [57]. It is these Brown-Henneaux conditions that we will impose
on fields describing real fluctuations around the BTZ saddle.

3.4 AS action for fluctuations around the BTZ black hole

With the Chern-Simons action (80) at hand, we now proceed to the AS representation of the
theory. We employ the same strategy as that of [26], but applied to the Euclidean BTZ rather
than global AdS3. Compared to the AS action for fluctuations around global AdS3 derived
in [26], ours will have interchanged roles of τ and φ. This is important for the match to the
AS action (47) we obtain from the boundary perspective. The AS action (47) or (2) appeared
before in gravitational discussions, e.g. in [27,40,67], without an explicit derivation employing
the techniques of [26]. It is this derivation we provide now.

The gauge field we discuss lives on a manifold with the topology of a solid torus D×S1 with
D the disk ({r,τ} × {φ}). The AS construction amounts to the application of a standard pro-
tocol [64] reducing the theory to one defined on the torus boundary with coordinates (φ,τ).
In a first step, the integration over Aφ imposes the constraint F̃ = 0, i.e. Ã ≡ g−1d̃g where
g ∈ SL(2,R) is again single-valued in τ, and d̃ is the exterior derivative with respect to {r,τ}.
We note that this representation implies a local redundancy g → υ(φ)g with υ ∈ PSL(2,R),
which we will comment on at the end of the section.

The substitution of this representation into the action (80) leads to the sum of two chiral
Wess-Zumino-Witten models [68] (see, e.g., Ref. [61] for details)

I = I+[g] + I−[g] . (88)

Here,

I±[g] =
k

2π

�

−i

∫

M∞

d2 x tr
�

�

g−1
�′
∂±g

�

±
1
6

∫

M
tr
�

g−1d g ∧ g−1d g ∧ g−1d g
�

�

, (89)

where ∂± =
1
2(∂τ ∓ i∂x) with x = lφ, we use the shorthand notation f ′ = ∂τ f and the path

integral measure is now Dg, the Haar-measure on PSL(2,R). The first term I±[g] is defined
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on the boundary, and the second is locally exact, meaning that it, too, affords a boundary
representation. In this way the theory becomes one of gauge field fluctuations supported by
the system boundary.

To make this reduction concrete, we employ the Gauss decomposition

g =

�

1 0
h 1

��

λ 0
0 λ−1

��

1 Ψ

0 1

�

, g =

�

1 h
0 1

��

1/λ 0
0 λ

��

1 0
Ψ 1

�

, (90)

with h,Ψ ∈ R and λ > 0, and likewise for the barred sector. Compatibility with the Brown-
Henneaux boundary conditions (87) is established via the relations

λ=
s

r
l2h′

, Ψ = −
l2h′′

2rh′
, λ̄=

s

r

l2h̄′
, Ψ̄ = −

l2h̄′′

2rh̄′
, (91)

where h ≡ h
�

�

M∞
is independent of r, and h′ > 0 for g to be real. In this way, the theory has

collapsed to a single real degree of freedom, h= h(τ, x). In this representation, the remaining
bulk term in (89) becomes a boundary term

1
3

∫

M
tr
�

(g−1d g)3
�

=

∫

M
dλ2 ∧ dΨ ∧ dh=

∫

M∞

λ2dΨ ∧ dh ,

and with the constraints (91) in place the WZW-action assumes the form

I±[h] =
iC

12π

∫

M∞

d2 x
�

3
2

h′′∂±h′

h′2
−
∂±h′′

h′

�

=
iC

12π

∫

M∞

d2 x

�

1
2

h′′∂±h′

h′2
−
�

∂±h′

h′

�′�

. (92)

Specifically, in the Gauss-parametrization of the BTZ stationary solution, up to a factor of i, we
have h∗ = tan(π(τ+ i x)/β). Generalizing to functions which are i) continuously connected
to the saddle and ii) keep g single-valued as a function of τ, fluctuations are described by

h(τ, x) = tan
�

π f (τ, x)
β

�

, (93)

in terms of a reparametrization of the imaginary time cycle, f (τ, x) ∼ f (τ, x) + β and
f ′(τ, x) > 0. The fluctuation measure is obtained by evaluating the Gauss measure (which
originally reads as Dg = DHDλDΨ) at the boundary subject to the constraints (91) leading
to D f

�∏

τ,x f ′
�−1

.
Substituting the trajectory (93) into the boundary WZW action (92), one recovers the AS

action Sβ±[ f ] by virtue of relation (47). We have thus reached our goal, a representation of
the partition sum as

Z(τττ) =

∫

f (τ,x=0)= f (τ,x=L)
f̄ (τ,x=0)= f̄ (τ,x=L)

D f (τ, x)D f̄ (τ, x)
∏

x ,τ f ′(τ, x) f̄ ′(τ, x)
e−Sβ+[ f ]−Sβ−[ f̄ ] , (94)

with

Sβ±[ f ] =
C

24π

β
∫

0

dτ

2πl
∫

0

dx

�

f ′′∂± f ′

f ′2
−

4π2

β2
f ′∂± f

�

, f ′ ≡ ∂τ f , (95)

and the coupling constant C = 3l
2G ≫ 1 given by the Brown-Henneaux central charge. This

path integral is identical to that discussed in [27], but our interpretation and derivation is
different: In our discussion, it is the fluctuation theory of the BTZ saddle-point. We note again
that it describes real fluctuations around a complex saddle.
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Before concluding this section, a few comments are in place. First, in the representation
Eq. (94), the PSL(2,R) redundancy g(x ,τ)→ υ(x)g(x ,τ) that is hardwired into the theory
acts as a fractional linear transformation

tan
�

π

β
f
�

→
a(x) tan

�

π
β f
�

+ b(x)

c(x) tan
�

π
β f
�

+ d(x)
, ab− cd = 1 . (96)

From here on, we will exclusively work with PSL(2,R) quotients and ignore this transformation
throughout. The action Eq. (95) is identical to the effective action (2) for the chiral SYK
model, except that presently we are working with a velocity scale u set to unity and with the
identification L ≡ 2πl. Secondly, in Appendix E.1 we show that Gaussian integration around
the stationary solutions leads to the partition sum

Z(τττ) = |χ0(−1/τττ)|2 , χ0(τττ) = q−
c

24

∞
∏

n=2

1
1− qn

, q = e2πiτττ , (97)

which is the vacuum character of a CFT with central charge c = C + 13 in the dual channel.
Finally, a Laplace transform of the partition function (97) to an energy representation recovers

the expected Cardy growth of the density of states ρ(E) ∼ e2π
p c

6 E at high energies E ≫ 1,
reproducing the microcanonical Bekenstein-Hawking entropy.

Let us finally comment on the matching of coupling constants between the AS actions de-
rived from the bulk and the boundary. The bulk theory contains three different length scales:
G, l and β , where time is measured in units of length. Consequently, the partition function
depends only on two dimensionless ratios: C = 3l/2G and τττ= iβ/2πl, which must be equiv-
alently identified in the boundary theory. There, the central charge C is given by Eqs. (43),
while the modular parameter can be extracted from the underlying geometry as τττ = iβu/L.
Here, the system size is related to the AdS3 radius l in the holographic setup by the simple
relation L = 2πl, while the velocity u can be determined from the same Eqs. (43) and (44).
Also, given C , L and βu as boundary data, the effective Newton’s constant G in the bulk can
then be reconstructed as G = 3l/2C .

It is also worth commenting on the range of validity for the derived holographic duality
to hold. Essentially, we require the central charge to be large, C ≫ 1. At the level of the
chiral SYK model, this condition justifies the gradient expansion of the GΣ-action when only
reparametrization modes are kept in the path integral. Regarding the derivation of the AS
action from the 3d gravity, the semiclassical condition on C is necessary to justify the expan-
sion around the BTZ saddle point and ensures that quantum fluctuations remain weak. It is
known that quantizing the Chern-Simons (CS) gauge theory defined on the SL(2,R)×SL(2,R)
group is not equivalent to the quantization of pure 3d gravity, see e.g. [69]. In the quantum
regime, when C ∼ 1, the Chern-Simons description includes quantum fluctuations that vi-
olate the physically meaningful choice of metric, since the requirement that the metric be
non-degenerate is not naturally built into the CS framework. A very interesting open question
is whether the AS action can be derived directly from the second-order formulation of Einstein
gravity, bypassing the need of the Chern-Simons construction altogether.

4 Correlation functions from Liouville theory

The goal of this section is to evaluate the effect of the reparametrization averaged with the
action (2) on various correlation functions of the model. In Subsection 4.1, we begin by
introducing our method of choice for calculating observables, namely the Liouville map. This
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approach is then applied in Subsection 4.2 to the two-point function of Majorana operators
at coinciding spatial points, and in Subsection 4.3 to ‘clusters’ of Majorana operators, which
allow for more interesting effects in the correlation function as compared to single operators.
Finally, in Subsection 4.5, we calculate the OTOC between a cluster of Majorana operators
with a single operator, as a means to diagnose chaos.

The building blocks for all subsequent calculations are generalizations of the reparameter-
ized two-point function (31), which we define as

O2l
τ1τ2
(x) =

�

∂τ1
f1∂τ2

f2
sin2 (π( f1 − f2)/β)

�l

, fi = f (τi , x) , (98)

and from which we recover eGτ1τ2
for l = 1/4. These bilocal operators are interesting from

the holographic point of view, since conformal correlation functions as e.g. (17) are known to
describe particle propagation between two points anchored on the boundary (at equal spatial
position) along a bulk geodesic. Dressing these objects with reparametrizations governed by
the AS action is equivalent in the bulk to dressing the particles with gravitons [41,70–72].

The calculations of observables simplify in the limit of large N , leading to a large coupling
constant C in front of the AS action via Eq. (43). The largeness of this coupling enables a
classical approach, wherein correlation functions are computed in terms of on-shell solutions
f = f0. We also compare this approach to results obtained by more elaborate methods of
conformal field theory, differing from ours only in anomalous corrections to the scaling di-
mensions of the operators appearing in the correlation functions. In executing this program,
we will need to distinguish between two types of correlations functions: those containing op-
erator insertions O which are ‘light’ in the sense that they do not affect the stationary phase
solutions f0 (up to corrections vanishing in the C →∞ limit), and others with ‘heavy’ opera-
tors which do modify the solutions. (In the holographic context, the difference between heavy
and light particles is whether they back-react on the geometry or not [73].) We will show
that the classical treatment of heavy operator insertions is a highly economical approach, al-
ternative to previous strategies based on perturbation theory in the reparametrization mode
formalism [26,74] or the Liouville bootstrap [67,75].

Within our approach, the complexity of the problem is shifted to the computation of equa-
tions of motion, in the presence of reparameterized two-point functions O2l

τ1τ2
(x). To simplify

this step, we take preparative measures: We first map the AS theory to Liouville theory with
boundaries, for which the equations of motion simplify considerably [73, 76]. Having found
the solutions on the Liouville side, we map them back to obtain the saddle-point reparametriza-
tion f0(τ, x). In the following, we explain this strategy in detail.

4.1 The Liouville map

The equivalence between AS theory and Liouville theory with boundaries we use builds on the
work of [67,75]. It posits the identity of path integrals10

∫

D f
∏

x ,τ f ′(τ, x)
(· · · )e−Sβ±[ f ] =

∫

Dφ(· · · )e−SL[φ] , (99)

where the ellipses symbolically represent matching operator insertions. This connection
is established via a mapping of field variables, φ(τ, x) = φ( f (τ, x)), defined for positive

10The relation holds for S± independently. When following [67] and expressing f (τ, x) in terms of two functions
A(τ, x) and B(τ, x) defined for 0< τ < β/2 and −β/2< τ < 0 respectively, the roles of A and B are exchanged in
the actions S+ and S− and one hence has to also exchange their roles in the field transformation.
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τ ∈ [0,β/2] as

φ(τ, x) = ln

�

−∂τ f+∂τ f−
sin2(π( f+ − f−)/β)

�

, f± = f (±τ, x) . (100)

The φ-representation of the fluctuation action is given by11

S[φ] =
C

24πu

∫ L

0

∫ β/2

0

dx dτ

�

(∂τφ)2

4
+
(u∂xφ)2

4
+
�

2π
β

�2

eφ − ∂ 2
τφ

�

, (101)

which is a variant of the action of Liouville field theory in the semiclassical regime C ≫ 1 [77],
and is therefore denoted SL[φ] in (99). Importantly, the constants appearing in Eq. (101) are
direct imports from the microscopic model discussed in section 2, where we have reintroduced
the velocity scale u(1/β) given by Eq. (44). In Appendix E.1 we corroborate the equivalence
to the f -representation by demonstrating that without operator insertions, integration over φ
recovers the partition function (97).

Before proceeding, we need to take a closer look at the space-time interval underlying
the φ-theory, [0,β/2] × [0, L], see Fig. 5. Eq. (100) implies a divergence φ(τ, x) →∞ at
τ= 0,β/2 corresponding to Dirichlet, or ZZ-boundary conditions e−φ(0,x) = e−φ(β/2,x)→ 0 in
the parlance of Liouville field theory. The rationale behind restricting φ to the positive imagi-
nary time domain is likewise evident from Eq. (100): the φ-field at τ > 0 encodes information
on reparametrization configurations both at τ and the mirror symmetric time −τ. The same
symmetry implies a constraint on temporally bilocal operator insertions O2l

τ1τ2
(x) as in (98) in

the theory: only configurations symmetric around the origin O2l
τ1,−τ1

(x) afford a consistent φ-
representation. Finally, the f -representation of our operators diverges at coinciding temporal
arguments due to the presence of denominators∼ 1/ sin(π( fτ − f−τ)/β)

α. In the φ-language,
these divergences are reflected in the above-mentioned boundary conditions.

Within the set of temporally symmetric observables, it is convenient to switch to a holo-
morphic representation (83), i.e.

O2l
τ1τ2
(x) = elφ(τ,x) ≡ Vl(w, w) , w= iτ+ x/u , w= −iτ+ x/u . (102)

This transformation conveniently eliminates the SL(2,R) ‘target space’ redundancy (96) of the
reparametrization mode [67], i.e. the Liouville representation describes the f -theory with
SL(2,R) appropriately modded out.

On any domain related to the strip by a holomorphic coordinate transformation defined
by (w, w) 7→ (ξ(w),ξ(w))≡ (ξ,ξ) with ξ,ξ dimensionless, the field φ transforms as [78,79]

�

2π
β

�2

eφ(w,w) = eφ
′(ξ,ξ)

�

�

�

�

∂ ξ(w)
∂ w

�

�

�

�

2

. (103)

Here the bar denotes complex conjugation, and we multiplied by a factor of (2π/β)2 to keep
the field φ′ dimensionless. Eq. (103) reveals the interpretation of φ as a Weyl factor of a
metric with eφ dw dw invariant under conformal transformations. It also implies ∆l = 2l as
the engineering dimension of the operators Eq. (102).

Turning to operator insertions, depending on the value of l, one distinguishes between
‘light’ operators with l =O(1) and ‘heavy’ ones, l =O(C) [78]. To understand their difference,
note that the insertion of n vertex operators at coordinates wi with degree li is described by a
modified action

S[φ] 7→ S[φ]−
n
∑

i

liφ(wi) . (104)

11To avoid confusion with the quantities on the disk which are defined with a prime, we denote temporal deriva-
tives as ∂τ in this section.
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Liouville
AS

Figure 5: Left: Imaginary time τ runs in the interval τ ∈ (−β/2,β/2) along the
cylinder. Bilocal operators are placed symmetrical around τ= 0 with legs at the two
points (τ1,−τ1) with τ1 > 0. Right: After mapping the system to Liouville theory,
the range of the imaginary time cycle is halved to τ ∈ (0,β/2). The bilocal operator
becomes a local vertex operator with behavior for τ1 → 0,β/2 prescribed by the
ZZ-boundary conditions.

Accordingly, the equations of motion δφS = 0 generalize to

1
2
∂a∂

aφ =
�

2π
β

�2

eφ −
24π

C

n
∑

i

liδ
(2)(w−wi) . (105)

Light operators affect the equations of motion only negligibly in terms of a 1/C correction,
while the heavy ones need to be accounted for in the solution. As a consistency check, we
note that the action in the absence of sources, S0 = −(πC/12u)(L/β), obtained by evaluating
the AS action (95) on the trivial solution f0(τ, x) = τ, follows equivalently by substituting the
solution (114) of the sourceless Eq. (105) into (101).

The most general correlation function we will work with is between a light operator of
conformal weight l1 and a heavy one of conformal weight l2. Classically, it reads




Vl1(w1)Vl2(w2)
�

= el1φ(w1;l2,w2)−S(l2,w2)+S0 . (106)

Here, φ(w; l2, w2) is the solution to the Liouville equation (105) in the presence of a single
heavy source of weight l2 at w2, exp(S0) normalizes the correlation function, and we sup-
pressed the w-dependence for readability. The evaluation of its action,

S(l2, w2)≡ S[φ(◦; l2, w2)]− l2 lim
w→w2

φ(w; l2, w2) , (107)

requires a regularization procedure because of singularities in the limit w→ w2.12 Finally, we
will describe the high-temperature regime (βu)/L ≪ 1 of interest to us by taking the limit of
a spatially infinite system, L→∞.

4.2 Single Majorana operator

We begin with an analysis of the correlation function (9) between two (‘light’) single Majorana
operator insertions at the same point in space, x = x ′, and times τ1 and τ2. In this case,
the need to modify the action does not present itself, and the computation of the correlation
function reduces to taking the average of (31) over the reparametrization f . Focusing on the
leading (0+ 1)d SYK contribution G0, we have

G x x
τ1τ2
≡ G(τ12) =




eGτ1τ2

�

AS , (108)

12In order for S(l2, w2) not to diverge close to the source, one needs to supplement the action with a counter
term [76, 77, 80], which also modifies the behavior of S(l2, w2) under conformal transformations. Details on the
regularization are given in Appendix E.3.
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Figure 6: Behavior of constant τ- and x-slices on the half-strip under the map-
ping (110).

where we neglected the spatial argument due to translational invariance in x , and
τ1,2 = ±τ0/2. Turning to the Liouville representation, we include the factor (π/β)1/2 of
the finite temperature theory and obtain

G(τ0) = n0

�

2π
βJ

�1/2



V1/4(w0)
�

, n0 = −
sgn(τ12)k0p

4π
, (109)

where w0 = iτ0/2+ x/u and the exponent 1/4 determines the engineering scaling dimension
of the Green’s function as ∆G = 2× 1/4= 1/2.

We next analyze this functional average within the stationary phase approach. Inspec-
tion of Eq. (106) shows that in the absence of a heavy source, Vl2 , the action contributions
−S(0, 0)+S0 = 0 cancel, and we are left with the exponential eφ0(w)/4, whereφ0 is the solution
to the Liouville equations of motion (105) without source insertion. The concrete computation
of such solutions is best done in a disk-geometry, related to the strip by a conformal transfor-
mation [73,80]. In the following, we review this map, and discuss how it enables the concrete
evaluation of the mean field theory.

Our map between strip and disk is given by (cf. Figure 6)

ξ(w) =
e

2π
β w − i

e
2π
β w + i

. (110)

Then the mapping (w, w) 7→ (ξ(w),ξ(w)) = (ξ,ξ) maps the full strip to the interior of the unit
disk. Labeling functionsψ′(ξ) defined on the disk by a prime, the translation back to the strip
is defined as ψ(w) = (ξ−1 ◦ψ′ ◦ ξ)(w), or implicitly through ξ(ψ(w)) =ψ′(ξ(w)).

One can show [73] that in disk coordinates the general solution φ′(ξ) of the Liouville
equation coupled to sources, Eq. (105), is given by

eφ
′(ξ,ξ) =

4
�

�∂ξ f ′(ξ)
�

�

2

(1− | f ′(ξ)|2)2
, (111)

where f ′(ξ) is a meromorphic function, whose specific profile is determined by the inho-
mogeneity. In addition, the asymptotic condition | f ′(ξ)|2 → 1 for |ξ| → 1 implements the
divergence eφ

′(ξ)→∞ required by the ZZ boundary conditions.
From this result, the solution on the strip is found by inverse transform under the ξ-

map, via Eq. (103). Defining a function f (w) through ξ( f (w)) ≡ f ′(ξ(w)), the condition
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Figure 7: Construction of a cluster of Majorana fermions with δτ/τ12≪ 1.

f (w) = f (w) holds. Using this feature, a straightforward calculation summarized in Ap-
pendix E.2 leads to

φ(w, w) = ln

�

|∂ f (w)|2

sin2 (iπ( f (w)− f (w))/β)

�

. (112)

In this representation, f (w) has the status of a conformal transformation of the strip. Com-
paring it with the definition of the Liouville field Eq. (100), we are led to the identification

f (τ, x) = −i f (w) , (113)

between the solutions of the Liouville equation and reparametrization transformations in the
AS theory.

We next apply these structures to the computation of the light operator correlation function
Eqs. (108) and (109). In this case, we just need the stationary solution in the absence of
sources. On the disk, this is the identity map, f ′(ξ) = ξ, implying that f ′(w) = w is the
identity, too. (With Eq. (113) we find that, up to irrelevant SL(2,R) transformations, this
result translates to the trivial reparametrization, f (τ, x) = τ.). Finally, Eq. (112) implies

φ(w, w) = − ln
�

sin2 (iπ(w−w)/β)
�

, (114)

leading to

G(τ0) = n0

�

2π
βJ

�1/2
�

�

�

�

sin
πτ0

β

�

�

�

�

−1/2

. (115)

We observe the absence of corrections to the scaling exponent within the variational frame-
work. This finding, expected to become exact in the C →∞ limit, is consistent with boundary
CFT results [81,82]

∆l1 = 2l1 +
6l1
C
(1− 2l1) , (116)

i.e. the mean field value modified by a correction vanishing in the semiclassical limit.

4.3 Majorana clusters

We next generalize to the insertion of a large number, p, of Majorana operators. Following
Ref. [14], we consider the p fields grouped in time into clusters of almost coinciding times
−τ0/2+ η j and +τ0/2+ η′j , j = 1, . . . , p, where |η j|, |η′p| < δτ are small, see Fig. 7. Taking
the limit of vanishingly small separations, we obtain

G[p](τ0)
def.
= N−p

∑

i1···ip

〈γi1(τ0/2+η1)γ
i1(−τ0/2+η

′
1, x) · · ·γip(τ0/2+ηp)γ

ip(−τ0/2+η
′
p, x)〉

=
¬

Gp
τ0/2,−τ0/2

[ f ]
¶

AS
= np

0

�

2π
βJ

�p/2

Vp/4(w0, w0) . (117)

In this way, we define a cluster operator of engineering dimension l2 = p/4, which in the case
p ∼ C becomes heavy. Using again (106), but now at l1 = 0, the correlation function becomes

G[p](τ0) = np
0

�

2π
βJ

�p/2

e−S(l2,w0)+S0 . (118)

31

https://scipost.org
https://scipost.org/SciPostPhys.18.6.205


SciPost Phys. 18, 205 (2025)

In order to calculate this object, we need to evaluate the Liouville action in presence of a source
at an arbitrary position.

To start, consider an operator insertion of weight l2/C = const ≲ 113 at strip coordinate
w0 = iβ/4, or ξ= 0 in the disk picture. As shown in Appendix F, the solution is given by

f ′(ξ) = ξ1−2δ , eφ
′(ξ;0,l2) Eq. (111)

=
4(1− 2δ)2

�

|ξ|2δ − |ξ|2−2δ�2 , (119)

where δ = 6l2/C . We next shift the source from the origin to the disk coordinate ξ0 = ξ(w0)
corresponding to our strip coordinate w0. This is achieved by application of the SU(1,1)-
isometry on the Poincaré disk

h(ξ;ξ0) =
ξ0 − ξ

1− ξ0ξ
, (120)

leading to [76,80]

φ′(ξ;ξ0, l2) = φ
′(h(ξ;ξ0); 0, l2) + ln

�

�

�

�

dh(ξ;ξ0)
dξ

�

�

�

�

2

. (121)

With the general disk-solution at hand and using the conformal mapping (110), one can relate
the disk action S′(l2,ξ0), evaluated on the configuration (121), to the desired action S(l2, w0)
on the strip. Referring to Appendix E.3 for somewhat intricate details of this procedure, we
simply state the final result:

S(l2, w0) = S0 − ln U(l2)−
Cδ(1−δ)

6
ln

�

β2

4π2

�

�h′w(ξ(w),ξ0)
�

�

2
w=w0

�

+
Cδ2

6
ln

�

�

�

�

2π
βJ

�

�

�

�

2

. (122)

Here the prefactor U(l2) with U(0) = 1 stems from the ξ-independent part of the on-shell
action and is given by Eq. (E.30). With the help of definitions for mappings ξ(w) and h(ξ),
see Eqs. (110) and (120), a straightforward evaluation using a chain rules for derivatives yields

β2

4π2

�

�h′w(ξ(w),ξ0)
�

�

2
w=w0

=
1
4
×

1

sin2(πτ0/β)
, (123)

which is independent of the spatial position x as expected. Plugging the result for the action
S(l2, w0) into Eq. (118), we obtain for the correlator

G[p](τ0) = np
0 U(l2)

�

π

βJ

�2l2
�

1− 6l2
C

�

�

�

�

�

sin
πτ0

β

�

�

�

�

−2l2
�

1− 6l2
C

�

, (124)

predicting a significant change of the scaling dimension ∆l2 → ∆s.cl. ≡ 2l2 (1− 6l2/C), of
order O(C) in case of heavy operators. Comparing to the CFT framework, there the prefactor
U(l2) is called the ZZ one-point coefficient [83], and the scaling dimension is given by [81,82]

∆Q
l2
=∆s.cl. +

6l2
C
≡ 2l2 +

6l2
C
(1− 2l2) . (125)

Again, we observe consistency with the semiclassical result up to subleading terms. Within
the path integral approach employed here, one can also demonstrate [80] that a quantum
correction 6l2/C to the semiclassical scaling dimension ∆s.cl. arises solely from the Gaussian
fluctuations around the saddle-point trajectory (121). In other words, the result (125) is one-
loop exact.

13Operator insertions with pl > C/12 create holes in the underlying manifold (in our case the unit disk) [73,78].
Such system deformations are not included microscopic model, and we excluded it by imposing the bound.
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Figure 8: Log-log plot of the Majorana two-point functions for Model I (grey) and
Model II (dark and light red) with γ= 3/2. While both models show the same behav-
ior for times shorter than T−1

Λ , the relevance of the kinetic term in Model I leads to a
crossover to the Fermi-liquid regime at larger time scales. For Model II, beyond this
time scale the Green’s functions of localized and mobile Majoranas show algebraic
decays with exponents ∆1/4 =

1
2(1+ 3/2C) and ∆5/12 =

5
6(1+ 2/C), respectively.

4.4 Majorana two-point functions

Having identified the relevant scaling dimensions, we are now in a position to discuss the two-
point correlation function (9) of Majoranas operators. We begin with the linearly dispersive
Model I whose correlation function at short times J−1≪ τ≪ T−1

Λ decays with the mean-field
SYK exponent ∆G = 1/2 (cf. section 2.1). Reparametrization fluctuations change this expo-
nent to ∆Q

1/4, Eq. (116), leading to O(C−1) corrections relative to the mean-field result. For

longer times, τ ≳ T−1
Λ , reparameterization fluctuations are gapped out, and Model I exhibits

Fermi liquid behavior, with an exponent ∆FL = 1 (cf. the gray line in Fig. 8).
For Model II, we can analyze two correlators: the full two-point function, defined by

Eq. (9), and the one associated only with mobile Majoranas, given by Eq. (22). The full
correlator is again described by the mean-field SYK exponent ∆G = 1/2 for the entire time
range, which is shifted to ∆Q

1/4 when quantum fluctuations are included (see the dark red line
in Fig. 8, plotted on a log-log scale). By contrast, the second correlator, g x x

τ , which refers
to delocalized Majoranas, decays with a mean-field exponent ∆ = 1/2+ 1/2γ at long times
τ ≳ T−1

Λ . For our case of interest, where γ = 3/2, reparametrization fluctuations change this
value to ∆Q

5/12. As a result, the qualitative behavior of g x x
τ (see the light red line in Fig. 8)

closely resembles that of the Majorana two-point function of Model I.
It is now worth discussing the relation between the above results for the Majorana correla-

tion function and the well-studied problem of electron tunneling in mesoscopic physics. As we
have seen in sections 4.2 and 4.3, the net effect of reparametrization fluctuations is to change
the mean-field scaling exponent of the two-point Majorana function, ∆l = 2l, to its quan-
tum counterpart, as given in Eq. (125), where the induced correction scales as 1/C (and thus
vanishes in the limit N →∞). The analogous phenomenon in condensed matter physics is
broadly known as electron tunneling in the presence of an ‘electromagnetic environment’ [84].
This encompasses a large class of problems studying how electron-electron interactions sup-
press the single particle Green’s function (or tunneling rate) in low-dimensional correlated
electron systems. Examples include two-dimensional disordered films [85, 86], quasi-one-
dimensional disordered wires [87], one-dimensional Luttinger liquids out of equilibrium [88],
and compressible quantum Hall (QH) edge states [89]. In all these cases, the solution strat-
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egy closely follows the approach discussed above: one determines the optimal fluctuation of
the electron density induced by a delta-source representing the injection of an extra electron
charge into the system, and then evaluates the action cost of such an optimal fluctuation. This
action typically scales as S(τ0) ∝ lnd(τ0), where d = 1, 2 is the system dimension and τ0
is the tunneling time. A similar scaling behavior appears in Eq. (122) in the limit τ0 ≪ β .
The precise nature of the ‘electromagnetic environment’ depends on the specific problem and
may, for instance, include statistical Chern-Simons gauge fields when describing composite
fermions [89]. In this context, reparametrization fluctuations in the chiral SYK model, which
correspond to boundary gravitons in the dual holographic setting, can be viewed as a direct
analog of such ‘electromagnetic environment’ in the Majorana system, with its strength con-
trolled by the inverse central charge 1/C or, in other words, by the gravitational Newton’s
constant G in the bulk.

4.5 OTOC in the heavy-heavy-light-light limit

We finally probe early-time chaos of our model by calculating the contribution of reparam-
eterization fluctuations to the OTOC. This observable has been extensively studied in SYK
chains [33,90–93]. In particular, systems exhibiting an emergent reparameterization symme-
try generically show growth of OTOCs with the maximal Lyapunov exponent λ= 2π

β [90–93].
While in the referenced works, the propagator of the soft modes in the Gaussian approximation
has a diffusive pole, the one corresponding to the AS action is of ballistic nature [26, 74]. In
both cases, one expects the same maximally chaotic behavior [94,95], as we explicitly confirm
now. To this end, we consider the OTOC between a cluster of Majorana operators and a single
Majorana operator. In the low-energy theory, this quantity assumes the form of a two-point
function of a heavy and a light vertex operator, cf. Eq. (106), referred to as a Heavy-Heavy-
Light-Light (HHLL) correlation function in the following. While this quantity can be computed
within the reparametrization mode formalism [26], we use the Liouville approach for our anal-
ysis. Though these calculations operate within the general framework of Liouville theory as
developed before, their detailed execution requires a sequence of multiple analytic continua-
tions. Casual readers are invited to skip this construction and directly turn to our final result
Eq. (135).

For a general field theory, the OTOC is defined as [96]

F̃(t, x) = Tr[yV yW (t, x)yV yW (t, x)] , y4 =
1
Z

e−βH , (126)

where t = −iτ is real time and V ≡ V (0,0) and W (τ, x) are local operators. This function can
be rewritten as [15]

F̃(t, x) = Tr
�

y4TτV (τ1, 0)V (τ2, 0)W (τ3, x)W (τ4, x)
�

�

�

�

�

τ→i t
, (127)

where we analytically continued to imaginary times

τ1 =
3β
4

, τ3 =
β

2
+τ , τ2 =

β

4
, τ4 = τ , τ1 > τ3 > τ2 > τ4 , (128)

and exchanged the order of the second and the third operator in the previous line. For our
calculation, we take

V (τ, 0) = γp
i (τ, 0)≡

p
∏

k=1

γik(τ, 0) , i= {i1, . . . , ip} , W (τ, x) = γ j(τ, x) , (129)
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'

'

'

'

Figure 9: Configuration of operators in the OTOC calculation (time argument of the
OTOC is denoted by τ′/t ′): In a) the original mirrored configuration is broken via
the move i) to bring the operators into the configuration (128). In b) the complex
time-contour of the correlation function after the analytic continuation τ′ → i t ′ by
the move ii) is shown. In c), the path of the cross-ratio η(t ′) is shown, where the
segments on the first and on the second Riemann sheet are indicated by full and
dashed lines respectively.

with p = O(C), where we sum over indices appearing twice in the correlation function and
neglected the time increments in the definition of V as compared to (117). Further, to simplify
the calculation, one regularizes this object as

F(t, x) =

∑

i, j Tr
�

y4Tτγ
p
i (τ1, 0)γp

i (τ2, 0)γ j(τ3, x)γ j(τ4, x)
�

∑

i Tr
�

y4Tτγ
p
i (τ1, 0)γp

i (τ2, 0)
�∑

j Tr
�

y4Tτγ j(τ3, x)γ j(τ4, x)
�

�

�

�

�

�

τ→i t

. (130)

The question now is how to transfer this object to the Liouville framework. While the times τ1
and τ2 in the configuration (128) are mirrored on the upper half-plane and V hence realizes a
heavy operator as defined in Eq. (117), this is not true for the times τ3 and τ4 corresponding
to W . Fortunately, as described in [97], this does not pose a problem since the non-mirrored
configuration can always be obtained from the mirrored one by an analytical continuation. As
illustrated in Figure 9 a), on the plane with coordinates z = e2πwβ−1

with w = iτ + x , one
starts from w′3 = w4 = −iτ+ x and then continues w′3 7→ w3 = i(τ+β/2) + x . In a next step,
one further continues to the mixed time OTOC configuration τ 7→ i t via the move ii) shown
in Figure 9 b). Within the saddle-point approximation employed here, the possibility of such
an analytical continuation is ensured by the analytic dependence of the Liouville field (112)
on the complex coordinates (w, w), as discussed in more details in Appendix E.2.
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To implement these two steps in our context, we start from the two-point function on the
strip

g4(w2, w2, w4, w4)≡




Vl1(w4, w4)Vl2(w2, w2)
�




Vl1(w4, w4)
� 


Vl2(w2, w2)
� , (131)

where the conformal weights now scale like l1 = O(1) and l2 = O(C) as in (106) and we
made the w-dependence explicit. Also note that the normalization of the four-point function
cancels against the conformal transformation factors (103) when moving between coordinate
systems, i.e. we can switch freely between ξ- and w-coordinates. By (106), the logarithm of
the full correlation function is then given by

ln g4 = l1(φ
′
1(ξ4; l2,ξ2)−φ′0(ξ4)) , (132)

where we understand all disk-coordinates appearing as functions of the strip-coordinates
ξ = ξ(w). Using Eqs. (119) and (121) for the one-source solution and also taking the limit
δ→ 0 for φ′0, we obtain

l1(φ
′
1(ξ4; l2,ξ2)−φ′0(ξ4)) = l1 ln

 

(1− 2δ)2(1− |h|2)2|h|(−4δ)

�

1− |h|2−4δ�2

!

= 2l1 ln

�

(1− 2δ)η(1−η)−δ

1− (1−η)1−2δ

�

, (133)

where we used again the definition δ = 6l2/C , h = h(ξ4;ξ2) and introduced the conformal
cross-ratio η= 1−

�

�h(ξ4;ξ2)
�

�

2
. This object is now exactly the logarithm of the HHLL vacuum

conformal block of a CFT, encoding interactions due to pure gravity [71,72]. We now perform
the move i) ξ4 7→ ξ3, which amounts to inserting the times (128) and the corresponding
positions into the conformal cross-ratio. From here, we perform move ii) τ 7→ i t and pick
x > 0 to observe




Vl1(w4, w4)
�

crossing the light-cone of



Vl2(w2, w2)
�

at t = x/u. The cross-
ratio can then be simplified to

η(t) =
2i

i − sinh 2π
β (t − x/u)

. (134)

As a function of t, it traces out a circle in the complex plane centered around η = 1, as illus-
trated in Fig. 9 c): It starts at η ≈ 0, moves in the first quadrant to η = 2 at t = x/u and
then traces out the lower half in the fourth quadrant on the way back to η ≈ 0 for t ≫ x/u.
When hitting the light-cone at t = x/u, the cross-ratio crosses the branch cut of the root in
the denominator of (133) and hence is defined on the second Riemann sheet of the func-
tion. There, the behavior of the correlation function changes qualitatively compared to that
of a time-ordered correlation function. The OTOC is for all times well-approximated by the
function [72,98]

F(t, x) = g4(w2, w2, w4, w4)

�

�

�

�

OTOC

≃
1

�

1+ 6πl2
C e

2π
β (t−x/u)

�
. (135)

From here we can read off the maximal Lyapunov exponent λ = 2π/β and the butterfly
velocity vB = u. While the first result agrees with previous calculations of the OTOC in holo-
graphic CFTs in the same limit of parameters [19,72] and reflects the universality mentioned
before [94,95], the second one is more non-trivial. The identification vB = u, see Eqs. (43) and
(44), implies that vB is approximately independent of x and t, which needs to be contrasted
to the more complex form of vB(x , t) found in the chiral variant of the SYK model proposed
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in Ref. [33]. Also, in our model vB shows a weak J -dependence, as compared, e.g., to the ran-
dom hopping models of [91] and [93], where limJ/V→∞ vB(J/V ) = 0 holds with V being the
average hopping, i.e. strong interactions suppress information scrambling.14 In essence, the
functional form of the OTOC says that in a strongly chaotic setting with large λ∝ T operators
separated by a distance x > 0 remain uncorrelated, i.e. C(x , t) ≡ 1− F(x , t) ≈ 0, for times
t < x/u. At larger times, the OTOC quickly reaches its saturation value C(t, x) ≈ 1, which in
our normalization means that the two operators in question become correlated. A new insight
gained from the present analysis is that we explicitly constructed operators of the microscopic
theory, namely Majorana clusters, which map to vertex operators in the universal Liouville
variables. These operators serve as probes into the chaotic behavior of the underlying chiral
SYK model and can also be used as building blocks for more general correlation functions.

5 Summary and discussion

The quest for a boundary theory of pure AdS3 gravity is a longstanding problem. A crucial step
towards a better understanding was the identification of the AS action as a proposed theory
of fluctuations around gravitational saddle points [26]. The structural similarity between the
AS action and the Schwarzian action in one dimension lower provided strong evidence for the
existence of a JT/SYK-like duality between gravity and a dimensionally extended variant of
a model in the SYK universality class. In this work, we have constructed this theory and its
holographic correspondence to the bulk at a level of explicitness previously realized in one
dimension lower. Adapting the rationale of the two-dimensional holographic correspondence,
our construction identified the AS action as the common low energy theory of a chain of SYK
islands coupled to realize a particular type of chiral dispersion, and the BTZ black hole saddle
of AdS3 gravity. The construction of this theory from ‘microscopically defined’ parent theo-
ries allowed us to match coupling constants and to compute the concrete form of correlation
functions, notably out-of-time-order correlation functions as witnesses of early time chaotic
dynamics.

On the boundary, our starting point was a chain of SYK dots coupled in such a way that
their Hamiltonian included a one body term with uniformly ‘chiral’ dispersion ∂kε(k)≥ 0. Mi-
croscopically, such conditions cannot be realized in stand-alone quasi one-dimensional lattices,
discrete symmetries excluding a uniformly increasing dispersion. However, systems exhibiting
all signatures required by our construction — strong randomness, interactions, and chirality
— are realizable at topological insulator boundaries, e.g., the edges of quantum Hall droplets.
While our discussion has not been focusing on aspects of concrete experimental feasibility,
a point to emphasize is that the microscopic one-dimensional boundary theory underlying
our construction is realizable in principle within the framework of condensed matter physics.
Similarly to the situation in one dimension lower, it exhibits an infinite dimensional symmetry
under local reparameterizations of time, spontaneously broken at the mean level to a resid-
ual SL(2,R), and explicitly broken by time derivatives and inter-site coupling. A lowest order
gradient expansion in these symmetry breaking operators then produced the AS action, where
the condition of exactly retained local SL(2,R) symmetry implied stringent conditions on the
allowed contents of that action.

Turning to the gravity side, our goal was to derive a matching AS action, now as the bound-
ary fluctuation theory of BTZ black hole solutions. Indeed, earlier constructions in the litera-
ture [26, 27, 40] had identified the AS action as a fluctuation theory common to a variety of
gravitational settings, using different methods. For our set-up, we opted to follow the well-

14Both models posses two independent hopping constants V and V ′, which we assume to be equal in this dis-
cussion.
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established principal strategy of [26], but applied beyond the global AdS3 case. We started
from the Chern-Simons representation of three-dimensional gravity, considered it for field con-
figurations representing fluctuations around a BTZ black hole, and from there projected to the
boundary in Euclidean signature. The resulting AS action could then be compared to that
following from the SYK construction, to obtain an identification matching microscopic system
parameters (basically, C = 3l/2G). The net result of this construction is a bulk-boundary
correspondence equaling that in one dimension lower in its level of explicitness (In fact, a
straightforward dimensional reduction reduces to the familiar [12,17] SYK/JT duality in terms
of the Schwarzian action [67].)

As in the two-dimensional case, the present theory describes a holographic duality at time
scales comparable to N , the number of local constituents of the SYK dots, or ‘singly perturba-
tive’ time scales in the parlance of gravity. The two-dimensional holographic correspondence
is also established via a second bridge, building on chaotic fluctuations on much later time
scales, ∼ eN , comparable to the Hilbert space dimension of the SYK dots. This link has been
established in terms of matrix theory series representations (‘singly non-perturbative’), and
elements of topological string theory (‘doubly non-perturbative’). While elements of random
matrix theory have been identified for three-dimensional gravity in Ref. [45], there remains
the challenge to establish a corresponding link to a microscopic boundary theory.
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A Shklovskii’s model of IQHE egde modes

We summarize below the main results of Shklovskii’s approach [50, 51] to the formation of
edge states at the boundary of 2DEG in the IQHE regime in the situation of the so-called
‘smooth’ edge, i.e. when an electron density at the boundary gradually approaches to zero on
a spatial scale which is much larger than the magnetic length lB. Under such condition and
when effects of Coulomb interaction are included on a level of Hartree-Fock approximation
the spatial profile of Landau levels (LL) close the edge happens to be of the form shown in
Fig. 2, which is characterized by a wide (almost) flat region and the power-law exponent
γ = 3/2. In more concrete terms, the 2DEG in the QHE regime is divided into compressible
and incompressible strips. The filling factor in the n-th incompressible strip is integer. These
strips are separated by much wider regions of compressible Hall liquid with a non-integer
filling factor (compressible strips). In Fig. 10 we show a corresponding sketch of a typical
electron density profile ρ(y) corresponding to the narrow in y-direction and infinite along
x-direction strip of a gate confined 2DEG so that both left and right propagating edge modes
emerge on respective boundaries. Let us denote by y±k the boundaries between compressible
and incompressible regions. Then ak = y+k − y−k is the width of the k-th incompressible strip,
while bk = y−k−1 − y+k is the width of the k-th compressible one. In the situation of gate-
induced confinement of 2DEG in the QHE regime the widths bk ≫ aB, with aB = ε/(meffe

2)
being the effective Bohr radius. At the same time ak scales as ak ∼ (bkaB)

1/2, so that in
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EF

Figure 10: The structure of edge states in IQHE (taken from Ref. [88]). A cross-
section through the center of a narrow 2DEG strip with a smooth gate confined elec-
tron density: (a) Landau level energies as the function of a transverse coordinate
y and (b) electron density ρ(y). In addition to ν completely filled LLs, the central
region can sustain a partially filled Landau level. We define ak = y+k − y−k as the
width of the k-th incompressible strip (shown in grey), which has the integer filling
factor k. The compressible regions (shown in white) correspond to areas with non-
integer filling fraction and have the width bk = y−k−1 − y+k . The illustration above
corresponds to the case ν= 2.

general the condition bk ≫ ak ≫ aB is satisfied. In this picture compressible regions play
the role of edge channels — the self-consistent electrostatic potential is constant through the
compressible strips and can be controlled by connecting them to external leads. Exact positions
y±k and widths of those strips were found in Refs. [50,51].

It is also worth mentioning here another important spatial scale in QHE — the magnetic
length lB = (c/eB)1/2. In the IQHE regime we have lB ≫ aB. This condition can be also written
as

ħhωc =
eB
mc
≪

e2

εlB
, (A.1)

i.e. the distance between the Landau levels is smaller that a typical Coulomb energy on the
magnetic length scale. Thus the Bohr radius aB plays a role of the short distance cut-off.

One of the main results of the Shklovskii’s theory are the following singularities in the
spatial profiles of electron density ρ(y) and electron energies close to the strip boundaries
y±k . Namely, a density profile shows square-root-like behavior,

ρ(y)∼ ∓|y − y±k |
1/2 + knL , y → y±k ± 0 , nL = 1/(2πl2

B) (A.2)

(here nL is an electron density on the 1st LL), while the corresponding energy profile of the
k-th and (k+1)-th Landau levels close the Fermi energy reads as

ε(y)∼ EF ± |y − y±k |
3/2 , y → y±k ∓ 0 , (A.3)

and we have omitted dimensionful prefactors in front of singular terms for brevity (also, the
sketch of LLs in Fig. 10 doesn’t reflect the exponent 3/2 properly).
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Now, it is well-known that for two-dimensional Landau problem one can relate the momen-
tum and position dependencies of eigenstates. Namely, if we fix the gauge to be Ax = −Bz y
and Ay = Az = 0, then in the absence of disorder a momentum kx along x-axis is a good quan-
tum number, thus the wave functionψnkx

(x , y) is characterized by the continuous momentum
kx and a discrete Landau level index n. In this gauge and for large kx ≫ 1/lB the wave func-
tion forms a narrow thread extended along x-axis but localized on a scale lB in y-direction
and centered around

ykx
= kx l2

B . (A.4)

When the self-consistent electrostatic potential changes adiabatically on a scale lB, such that
even an incompressible strip is sufficiently wide, ak ≫ lB, the spectrum of Landau problem
reads

εnkx
= εn(ykx

)≡ εn(kx l2
B) , (A.5)

where energies εn(y) are those shown in Fig. 10. On taking into account the relation (A.3) one
reproduces the model of the flat band in Fig. 2 with the exponent γ= 3/2. In particular, for a
given compressible strip of width bk the corresponding momentum k0 becomes k0 = bk/(2l2

B).

B Solution of mean-field equations in the IR limit

This Appendix provides technical details for the derivation of equations (20) and (21). They
follow from the solution of the mean-field equation for the ‘flat-band’ model in the strong
dispersive with the use of a perturbation theory w.r.t. a small parameter k1/k0≪ 1.

B.1 Perturbative scheme

We solve the system of mean-field equations (11) by neglecting the iε- term in the 1st equation.
This approximation will be justified a posteriori. A simple evaluation of the integral (12) yields

Gε ≃ −
1

2π

π/a
∫

−π/a

dk
εk +Σε

≃ −
k0

πΣε
+

1
π

∫ +∞

0

Σε dk
Λ2(k/k1)2γ + [iΣε]2

= −
k0

πΣε

�

1+ b1(γ)
k1

k0

�

iπΣε
Λ

�1/γ
�

, (B.1)

where we’ve introduced a constant b1(γ) defined by an integral

b1(γ) =
1
πγ

∫ +∞

0

d x
x2γ + 1

=
π1−1/γ

2γ sin π
2γ

. (B.2)

It was used above that the integral in (B.1) is dominated by momenta satisfying k ≪ k1 as
long as |ε| ≪ TΛ, thus the upper limit of integration can be extended to infinity. Because of
Σε is yet unknown function of k1/k0, the result (B.1) needs to be understood as the starting
point for the self-consistent calculation of both Gε and Σε.

Taking the leading term in (B.1) we get GεΣε = −k0/π. Together with the relation
Στ = (J2/k3

0)G
3
τ it yields the zeroth order SYK-type solution (16). To find the 1st order cor-

rection to the SYK solution one may use the Ansatz (20) for the energy dependence of Σε with
yet undefined coefficient σ1(γ). Its self-consistence will be verified later. Expanding (B.1) up
to linear order in k1/k0, the Green’s function becomes

Gε = G0
ε

�

1+
�

b1(γ)−σ1(γ)
�

�

k1

k0

�

�

�

�

�

εJ
Λ2

�

�

�

�

1/2γ

+ . . .

�

. (B.3)
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On defining the function C(∆) as in (B.9), one can further translate this expression into the
time domain using the Fourier transform (B.10),

Gτ = G0
τ

�

1+
�

b1(γ)−σ1(γ)
�

b2(γ)
�

k1

k0

�

�

�

�

�

J
Λ2τ

�

�

�

�

1/2γ

+ . . .

�

, (B.4)

where b2(γ) = C(1−∆1)/
p

2π and ∆1 = 1/2 + 1/(2γ). At this stage we can use the self-
consistent equation, Στ = (J2/k3

0)G
3
τ, which yields the self-energy

Στ = Σ
0
τ

�

1+ 3
�

b1(γ)−σ1(γ)
�

b2(γ)
�

k1

k0

�

�

�

�

�

J
Λ2τ

�

�

�

�

1/2γ

+ . . .

�

. (B.5)

The latter can be converted back to the energy domain using once again the relation (B.10).
The final result reads

Σε = Σ
0
ε

�

1+
�

b1(γ)−σ1(γ)
�

b2(γ)b3(γ)
�

k1

k0

�

�

�

�

�

εJ
Λ2

�

�

�

�

1/2γ

+ . . .

�

, (B.6)

where b3(γ) = 3C(1+∆1)/(2
p

2π). The latter expression indeed matches the initial Ansatz
for Σε in the form of equation (20) and yields the linear equation for the unknown σ1(γ):

σ1(γ) =
�

b1(γ)−σ1(γ)
�

b2(γ)b3(γ) , (B.7)

and its solution is given by (B.14). After that the final expressions for coefficients g1(γ), g̃1(γ)
and σ̃1(γ) follow from equations (B.3), (B.4) and (B.5), respectively. For example,

g1(γ) = b1(γ)−σ1(γ) =
b1(γ)

1+ b2(γ)b3(γ)
, (B.8)

in agreement with Eq. (B.13). One also observes that dropping iε–term from the Dyson equa-
tion was a legitimate assumption, since the found correction to the self-energy scales as∼ |ε|∆1

with ∆1 < 1.

B.2 Table of integrals and coefficients

The coefficients in a perturbative solution of the Dyson’s equation can be expressed via the
function

C(∆) = 2cos
�

π∆

2

�

Γ (1−∆) , C(∆)C(1−∆) = 2π , (B.9)

which specify the following direct Fourier transform,
∫ +∞

−∞

sgn(τ)
|τ|∆

eiετ dτ= iC(∆)sgn(ε)|ε|∆−1 , (B.10)

and its inverse,
∫ +∞

−∞
isgn(ε)|ε|∆−1e−iετ dε

2π
=

C(1−∆)
2π

sgn(τ)
|τ|∆

. (B.11)

Let us further define ∆1 = 1/2 + 1/(2γ) to be the (twice) scaling dimension of the mobile
Majoranas and introduce auxiliary functions

b1(γ) =
π1−1/γ

2γ sin π
2γ

, b2(γ) =
C(1−∆1)p

2π
,

b3(γ) =
3C(1+∆1)

2
p

2π
, b23(γ) = b2(γ)b3(γ)≡

3
2∆1

tan
π∆1

2
.

(B.12)
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Then g-functions, defining the asymptotic behavior of correlators Gε and Gτ, read

g1(γ) =
b1(γ)

1+ b23(γ)
, g̃1(γ) =

b1(γ)b2(γ)
1+ b23(γ)

, (B.13)

while σ-functions, quantifying subleading corrections to Σε and Στ, evaluate to

σ1(γ) =
b1(γ)b23(γ)
1+ b23(γ)

, σ̃1(γ) = 3 g̃1(γ) . (B.14)

Here the monotonous functions g1(γ) and g̃1(γ) are equal to zero at γ= 1 and saturate to 1/4
at γ →∞. The function σ1(γ) has limiting values σ1(1) = 1/2 and σ1(+∞) = 3/4 and it
displays a weak minimum around γ= 5/4.

C Reparametrizations as similarity transformations

It is instructive to formulate the reparametrization of bilocal operators and, in particular,
the transformation (33) in a language of matrix algebra. Consider the set of time de-
pendent functions g : S1 → S1,τ → g(τ) ≡ gτ as a linear space with scalar product
〈g|h〉 =

∫

dτ gτhτ′ , and orthonormal basis {|t〉}, 〈τ|τ〉 = δτ−τ′ . We may interpret the
reparametrization, τ 7→ t = f (τ), and its inverse, t 7→ τ = F(t), as the introduction of a
new basis {|t〉}, which is obtained from the old one through a transformation matrix

〈t|τ〉 ≡ St,τ = δt− f (τ) f ′τ
1/2 ,

〈τ|t〉 ≡ S−1
τ,t = δτ−F(t) F ′t

1/2 , (C.1)

where the scaling factors multiplying the δ-function make the transformation unitary. Indeed,
one can check it by evaluating

[S†]τ,t = S∗t,τ = δt− f (τ) f ′τ
1/2 = δτ−F(t) F ′t

1/2 = S−1
τ,t , (C.2)

as required, where it was used that f ′τF ′f (τ) = 1. With this definition, the orthonormality of
the new basis is established as




t
�

�t ′
�

=

∫

dτ 〈t|τ〉



τ
�

�t ′
�

=

∫

dτSt,τS−1
τ,t ′ =

∫

dτδt− f (τ) f
′
τ

1/2
δτ−F(t ′)F

′
t ′

1/2 = δt−t ′ .

Also note that the f -scaling factors commute with the transformation in the sense that
F ′tSt,τ = St,τ f ′τ. With these structures in place, the time reparametrization can be under-
stood as a change of basis. Specifically, one can represent the mapping M∆ as a superposition
of the unitary S and a diagonal (in time) congruent transformations. To see it explicitly, one
may evaluate

〈τ1|O |τ2〉=
�

S−1OS
�

τ1τ2
= f ′τ1

1/2 Ot1 t2
f ′τ2

1/2 , t i = f (τi) , (C.3)

where the ‘matrix products’ are defined as (S−1OS)ττ′ =
∫

d td t ′S−1
τ,tOt t ′St ′,τ′ . Then from

definition of the mapping M∆ it follows that

Oτ1τ2
= f ′τ1

∆−1
2 (S−1OS)τ1τ2

f ′τ2

∆−1
2 ≡

�

f ′
∆−1

2 S−1OS f ′
∆−1

2
�

τ1τ2
. (C.4)

Consequently, the inverse relation to above reads

Ot1 t2
=
�

F ′
1−∆

2 SOS−1F ′
1−∆

2
�

t1 t2
, (C.5)

which shows that in the language of matrix algebra M∆ = F ′
1−∆

2 S so that one can write
O =M∆OMT

∆, and thereby our proposition is proved.
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D Gradient expansion of the GΣ–action

In this Appendix we collect the technical details of our derivation of the AS action from the
GΣ–functional, which was outlined in Sec. 2.4.

D.1 Vertex operators

We begin by deriving the vertex operator ρ, which is the image of the time derivative operator
with matrix elements [∂τ]τ1τ2

= δ′(τ1−τ2). From the definition (33), it follows that one can

express ρt1 t2
= F ′1

3/4
δ′(F1− F2)F ′2

3/4, which requires understanding of the kernel δ′(F1− F2).
By acting with this kernel on an arbitrary function of time f (t), one can verify that

δ′(F1 − F2) =
1
F ′1
δ′(t1 − t2)

1
F ′2

(D.1)

holds. Hence, the latter gives us the matrix elements ρt1 t2
= F ′1

−1/4
δ′(t1− t2)F ′2

−1/4. One can

further associate δ′(t1− t2) with the kernel of a symmetrized differential operator 1
2(
−→
∂t −
←−
∂t ),

whose action is defined similarly as in (56), but with b = 1. By setting a ≡ F ′−1/4 =
p

b, we
finally find

ρ =
1
2

at(
−→
∂t at)−

1
2
(at
←−
∂t )at =

1
2
(bt
−→
∂t −

←−
∂t bt) , (D.2)

as was stated in Eq. (56).
To derive the second vertex operator, the heat current density j, one needs to analyze

how the time-local kinetic energy operator ϵx1 x2
τ1τ2

= ϵx1 x2
δτ1τ2

changes under a substitution
τi → F(t i , x). Here

ϵx x ′ =

∫

k
eik(x−x ′)εk (D.3)

is the position representation of the chiral dispersion relation. Further calculations below now
become somewhat more involved. To start, we define the kinetic energy in the new time frame,

E x1 x2
t1 t2
= ϵx1 x2

δ(Ft1,x1
− Ft2,x2

) , (D.4)

and evaluate its Wigner symbol with respect to spatial coordinates in a first-order gradient
expansion. Using the integral representation for the δ-function,

E x1 x2
t1 t2
=

1
2π

∫

eiαF1ϵx1 x2
e−iαF2 dα , Fi ≡ F(t i , x i) , (D.5)

which properly orders the product of three operators, one can further apply the Moyal expan-
sion to find,

Et1 t2
(x , k) = εk δ(F1 − F2)−

1
4π

∫

(∂x F1 + ∂x F2)∂kεk eiα(F1−F2)αdα+O(ħh2)

=
εk

F ′1
δt1 t2

+
i
2
∂kεk (∂x F1 + ∂x F2)δ

′(F1 − F2) +O(ħh2) , (D.6)

where we have now redefined Fi to be Fi = F(t i , x) with x being a coordinate variable of the
Wigner transform. At this stage one can simplify δ′(F1−F2) according to (D.1). Further, using
the definition (53) with ∆= 3/2, one finds for the heat current operator

jt1 t2
(x , k) = F ′1

3/4Et1 t2
(x , k)F ′2

3/4

= εkF ′1
1/2
δt1 t2

+
i
2
∂kεk × F ′1

−1/4�
∂x F1δ

′(t1 − t2) +δ
′(t1 − t2)∂x F2

�

F ′2
−1/4 . (D.7)
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This expression can be further simplified. For that, we consider the kernel of an auxiliary
operator,

Jt1 t2
= gt1

ht1
δ′(t1 − t2)gt2

+ gt1
δ′(t1 − t2)ht2

gt2
, (D.8)

where, as before, gt and ht are two arbitrary functions with periodic boundary conditions in

time. On substituting δ′(t1− t2)→
1
2(
−→
∂t −
←−
∂t ), one finds (after some simplification) that Jt1 t2

is, in fact, the kernel of a simpler differential operator

J =
1
2
(g2h)

−→
∂t −

1
2
←−
∂t (g

2h) . (D.9)

In order to decode (D.7), one further sets g → F ′t
−1/4 =

p

bt and h→ ∂x F , which leads to

j(x , k) = εk/b+
i
2
∂kεk ×

�

b∂x F
−→
∂t −

←−
∂t b∂x F

�

≡ j0k (x) + j1k (x) . (D.10)

In this way, we reproduce the vertex operator jk(x), defined by Eq. (58) in the main text.

D.2 Gradient correction to the Wigner symbol of the Green’s function

In this subsection, we identify temporal gradient corrections to the Wigner symbol Gk,ε of the
exact propagator G, which is defined by the relation G = −( j0+Σ)−1, where j0k,ε(s, x) = εk/bs,x

denotes the corresponding Wigner symbol of the current operator and Σε(s) = Σ(ε;Λ/bs)
refers to the one of the self-energy.

We first note that if Aε(s) and Bε(s) are the Wigner symbols of two operators Ât1 t2
and

B̂t1 t2
, then the Weyl product Aε(s) ⋆ Bε(s) corresponds to the Wigner symbol of (AB)t1 t2

. The
same definition applies to the spatial domain. Using this framework, the exact propagator
can be defined via the relation Gε,k(s) ⋆ hε,k(s) = −1, where hε,k(s) is the effective Hamilto-
nian (38). To resolve this equation, note that the Weyl product admits the following formal
representation,

(A⋆ B)(ε, s) = Aε(s)e
− iħh

2 (
←−
∂s
−→
∂ε−
←−
∂ε
−→
∂s )Bε(s) , (D.11)

which can be employed to construct its semiclassical expansion in powers of ħh. Our immediate
goal is to determine gradient corrections in time, as the inclusion of spatial gradients will be
addressed separately (see Appendix D.4). Note that in the leading approximation, used consis-
tently throughout the derivation of the AS action, the self-energy Σε(s) can be approximated
by its SYK limit (16) and is thus independent of the ‘slow’ time s. Accordingly, it is instructive
to evaluate the following restricted Weyl product:

Aε ⋆φ(s) ⋆ Bε = Aεe
iħh
2
←−
∂ε
−→
∂sφ(s)e−

iħh
2
←−
∂s
−→
∂εBε

= Aεφ(s)Bε − iφ′(s)Aε
←→
∂ε Bε −

1
2
φ′′(s)Aε

←→□ εBε +O(ħh3) , (D.12)

where the first order derivative is properly anti-symmetrized,
←→
∂ε =

1
2(
−→
∂ε −

←−
∂ε ), while the

second order differential operator is defined by the relation

Aε
←→□ ε Bε :=

d2

dω2

�

Aε+ω/2Bε−ω/2
�

�

�

�

ω=0
=

1
4

A′′εBε +
1
4

AεB
′′
ε −

1
2

A′εB
′
ε . (D.13)

The above considerations lead to the following simple rule: one may replace the Wigner sym-
bol j0k,ε(s, x) by the corresponding differential operator,

j0k,ε(s, x)→
εk

b
+δ ĵ0k , δ ĵ0k = −iεk

�

1
b

�′←→
∂ε −

εk

2

�

1
b

�′′←→□ ε +O(ħh3) , (D.14)
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and approximately evaluate the Wigner symbol Gε,k using a perturbation series over the gra-
dient correction δ̂ j0k as follows,

Gε,k = Gε,k + Gε,kδ ĵ0k Gε,k + Gε,kδ ĵ0k Gε,kδ ĵ0k Gε,k + . . . , (D.15)

where Gε,k ≃ −(εk/b + Σ0
ε)
−1 is the zeroth order Green’s function. After straightforward

simplifications, one finds:

Gε,k = Gε,k +δGε,k +O(ħh3) ,

δGε,k = −
εk

2

�

1
b

�′′
Gε,k
←→□ εGε,k +

ε2
k

2

�

1
b

�′2 �
∂εGε,k

←→
∂ε G

2
ε,k

�

. (D.16)

The correction of order O(ħh) is absent here, as previously noticed in Eq. (39).

D.3 Reparametrization invariant part of the GΣ-action

In this Appendix, we demonstrate that within the temperature range TΛ < T < J , the action
S0[G,Σ], defined by Eq. (62), is reparametrization invariant up to gradient terms of order
O(b′2, bb′′) and therefore does not contribute to the low-energy AS action. On the other hand,
the explicit symmetry breaking introduced by the kinetic energy term (εk) in the microscopic
Hamiltonian leads to the emergence of a non-local-in-time and relevant perturbation to the
AS action in the infrared limit, i.e. at T < TΛ. This observation is significant only in the
case of Model II. We then proceed to determine the conditions under which such a relevant
perturbation can be considered small, ensuring that the AS action remains a valid description
of the chiral SYK model over a broad range of temperatures T∗ < T < TΛ, with the infrared
temperature cutoff T∗ identified below.

For future reference, we represent Eq. (62) in the equivalent form:

S∗[G,Σ] =
N
2

tr lnG − N
2

I[G,Σ] , (D.17)

where G = −( j0 + Σ)−1 is the exact Green’s function of the effective Hamiltonian (60). For
the convenience of the reader, we repeat the transformed Green’s function and self-energy
expressed in terms of their mean-field solutions (25), which read

G
x x
t1 t2
= G(t1 − t2;Λx

t1 t2
) , Σ

x x ′

t1 t2
= Σ(t1 − t2;Λx

t1 t2
)δx x ′ , (D.18)

where the rescaled kinetic energy scale reads Λx
t1 t2

= Λ(b1 b2)−1/2, and we abbreviated
bi = b(t i , x). We also introduce a momentum-resolved Green’s function of the mean-field
solution,

Gε,k(Λ) = − [εk +Σ(ε;Λ)]
−1 . (D.19)

It can be used to construct the approximate Wigner symbol of the propagator G through the
relation

Gε,k(Λ) = Gε,k(Λ/b) +O(ħh2) , b = b(x , s) , (D.20)

which is valid up to second-order gradient corrections. The latter were identified in the previ-
ous section and are explicitly given by Eq. (D.16).
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D.3.1 Local approximation

With the above definitions at hand, one can now check that the action (D.17) is b-independent
within a local approximation (possible corrections due to temporal gradients will be accounted
for later). To this end, we set Λx

t1 t2
→ Λ/bs,x , where s = (t1 + t2)/2 is the center of mass time

and approximate ln detG using the Moyal symbol (D.20). These two steps lead to the action,

S∗(Λ) =
N
2

∫

s,x

∫

k,ε

ln Gε,k(Λ/b)−
NJ2

8k3
0

∫

x ,t1,2

[G
x x
t1 t2
]4 −

N
2

∫

x ,t1,2

G
x x
t1 t2
Σ

x x
t2 t1

, (D.21)

which should be regarded as a function of the kinetic energy scale Λ as indicated above. For
Λ→ 0, the action equals the f -independent constant,

S∗(0) = −(N/2) tr lnΣ0 − (N/2)I[Σ0, G0] , (D.22)

with (Σ0, G0) being the SYK saddle-point (7). One can then find the flow equation when Λ
changes:

Λ∂ΛS∗(Λ) =
N
2

∫

|ε|<J/b2

dε
2π

∫

s,x ,k
(εk/b)Gε,k(Λ/b) , (D.23)

where it was used that εk ∝ Λkγ. During the derivation of the above relation, one can dis-
regard partial derivatives ∂ΛG and ∂ΛΣ, as within the local approximation, the pair (G,Σ) be-
comes the exact saddle-point of the action (D.21). We have also restricted the energy integral
using a reparametrization dependent UV cut-off. This regularization scheme was previously
used to derive the Schwarzian action from the SYK model [14], and we will provide a few
comments on it below. To proceed, note that the mean-field self-energy exhibits the following
scaling property in the energy representation,

Σ(ε;Λ/b) = b−1Σ(εb2;Λ) , (D.24)

which follows from Eq. (26). Hence, for the Green’s function one can write the relation

Gε,k(Λ/b) = −b
�

εk +Σ(εb2;Λ)
�−1
= bGεb2,k(Λ) . (D.25)

On further introducing a new energy integration variable, eε = εb2, one arrives at the flow
Eq. (D.23) in the b-independent form,

Λ∂ΛS∗(Λ) =
N
2

∫

dτd x

∫

|eε |<J

deεdk
(2π)2

εkG
eε,k(Λ) , (D.26)

where it was used that dτ= F ′ds = ds/b2. Hence, one concludes that S∗(Λ) is reparametriza-
tion invariant as well.

Let us now comment on the origin of the reparametrization-dependent cut-off. To this end,
consider a typical operator bilocal in time with scaling dimension ∆:

O∆τ1τ2
(x) =

�

f ′1 f ′2
( f1 − f2)2

�∆/2

→ Re

�

f ′1 f ′2
( f1 − f2 + iδ12)2

�∆/2

. (D.27)

The singular kernel here requires a regularization at short times, which can be achieved by
shifting the time argument into the complex plane, as it is reflected in the expression above,
with some cut-off scale δ12 ∼ J−1. Further on, one should require that in the UV limit, when
t1→ t2, the f -dependence drops out from Oτ1τ2

(x) in the leading order (the next-to-leading
term produces the Schwarzian), since reparametrizations, by definition, are an IR effect. The
latter suggests to define δ12 = ( f ′1 f ′2)

1/2/J . In the local approximation, it becomes δ = b2/J ,
which also translates into the UV cut-off J ′ = J/b2 in the energy domain.
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D.3.2 Inclusion of gradient corrections

We now address the fate of gradient corrections, appearing when one goes beyond the local
approximation used above. These corrections can be categorized into two types. The first
type is related to the substitution Λx

t1 t2
→ Λ/bs,x , employed in the previous subsection. With

t1,2 = s± t/2, this substitution introduces an error:

δΛ= Λx
t1 t2
−Λ/bs,x = (Λt2)×

b′2 − bb′′

8b3
+O(t4) , b′ = ∂s b , (D.28)

which in turn results in the following variation to the action (D.17),

δS∗[G,Σ] = Tr
�

δS∗
δΣ

�

�

�

X∗
∂ΛΣ+

δS∗
δG

�

�

�

X∗
∂ΛG

�

δΛ→ 0 , (D.29)

where X∗ = (G,Σ) is the saddle point solution within the local approximation, namely
G

x
t1 t2
= G(t,Λ/bs,x), and the same applies to Σ

x
t1 t2

. However, this variation vanishes be-
cause the mean-field solution X∗ is an exact saddle point of the action (D.17) for an arbitrary
reparametrization b; see also the discussion in Sec. 2.3. It is worth noting that this observation
parallels the remark made during the derivation of Eq. (D.23). Consequently, up to terms of
order O(b′2, bb′′), there is no contribution to the low-energy action in this case.

Another type of gradient corrections, not yet included into our analysis, arises when the
action SL[b] = (N/2) tr lnG in Eq. (D.17) is expanded in terms of the variation δG, which
defines the exact Wigner symbol (D.16) of the Green’s function. A straightforward implemen-
tation of this program encounters infrared divergences at temperature scales well below TΛ, as
the direct gradient expansion in terms of slow and fast degrees of freedom becomes unjustified
in this limit. Since our analysis of Model I — with a linear dispersion εk ∼ k — is restricted to
the high temperature range TΛ < T < J , the discussion that follows is only relevant for Model
II, which features flat bands.

When properly regularized, the logarithmic action SL[b] expanded over the gradient cor-
rection δG[b] generates at small temperatures T ≪ TΛ an infinite series of SL(2,R)-invariant
and nonlocal-in-time operators. The simplest among them takes the following form:

S[ f ]∼ −Nk1T−1/2γ
Λ

∫

x ,τ1,2

β∆O∆τ1τ2
(x) , ∆= 2+ 1/2γ , (D.30)

with the time-bilocal operator defined by Eq. (98). The tilde symbol (∼) indicates that here
and in what follows we omit all numerical constants of order unity. Note that the above action
stems entirely from itinerant chiral Majorana modes, which explains its prefactor that includes
a small momentum k1, see Fig. 2. The overall coupling constant here has a positive scaling
dimension, D = 1 − 1/2γ ≥ 1/2 (we set [x] = [τ] = −1), indicating the relevance of this
perturbation to the AS action in the infra-red limit. We relegate a derivation of the result (D.30)
and its holographic interpretation to our subsequent communication and proceed below with
formulating the conditions under which such a relevant perturbation can be considered small
compared to the AS action.

Treating the bilocal operator in Eq. (D.30) as a perturbation, we can average it over quan-
tum fluctuations governed by the AS action, 〈O∆τ1τ2

(x)〉AS, to obtain a small correction to the
free energy. The technical procedure for calculating such averages was outlined in Sec. 4.3.
We know that the engineering scaling dimension ∆ undergoes transmutation to the quan-
tum dimension ∆Q = ∆+ 3∆(1−∆)/C . As a result, the free energy per length acquires the
non-analytic dependence on temperature,

F(T )
L
= −

πC
12
×
�

T2

u0
ln

J
T
+

T2
Λ

u1

�

T
TΛ

�δ
�

, δ =∆Q − 1 . (D.31)
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Here, the first term arises from the Schwarzian action with a temperature dependent ve-
locity (44), and we have introduced a second velocity scale,

u1 ∼
C TΛ
Nk1

∼
Λ3

J2k1
ln

J
TΛ

, (D.32)

to characterize the magnitude of the perturbative correction. Initially, the latter can be con-
sidered small, provided the condition u0/u1 ∼ (J/TΛ)(k1/k0) ≪ 1 is satisfied. This ensures
that at the crossover temperature scale TΛ, the Schwarzian contribution to the free energy
dominates. Furthermore, based on physical grounds, the exponent δ must be positive, which
imposes a lower bound on the acceptable central charge,

C > C∗ = 6+ 3/(2γ) . (D.33)

On the other hand, the upper bound for the exponent, δ < 3/2, holds by construction. As
one can see from the derived relation (D.31), the perturbation theory breaks down around
the infra-red temperature scale T∗ ≪ TΛ, which can be estimated from the following implicit
relation,

T∗
TΛ
=
�

u0

u1
ln−1 J

T∗

�
1

2−δ
, (D.34)

which is found by approximately equalizing two different contributions to F(T ). At smaller
temperatures, T < T∗, the AS action deformed by the relevant operator (D.30) calls for a non-
perturbative treatment, possibly within the RG scheme similar to the one developed earlier for
the model of granular SYK arrays [49].

To summarize this subsection, we have verified that if a velocity ratio satisfies the condition
u0/u1 ≪ 1, then a holographic duality between the chiral SYK model comprising flat bands
and the AS action may hold in the parametrically wide range of temperatures T∗≪ T ≪ J .

D.4 First-order gradient terms

In this subsection, we are aiming to analyze linear in gradient terms,

Sρ[ f ] + S j[ f ] =
N
2

tr(ρG) + N
2

tr( j1G) , (D.35)

which are obtained from the first-order expansion of the action (61). We start our calculations
from the action Sρ[ f ], which involves the energy density operator (56). Following Pruisken,
we double the power of the Green function in this action. To this end, one introduces the
propagator G(µ), which depends on an auxiliary energy µ, so that one can write

G = −
∫ 0

−∞
dµG2

(µ) , G(µ) = (µ− j0 −Σ)−1 . (D.36)

Based on the above identity, the action Sρ[ f ] can be equivalently rewritten as a sum of two
(right and left) contributions:

Sρ[ f ] = SR
ρ[ f ] + SL

ρ[ f ] = −
N
4

∫ 0

−∞
dµ tr

h

G(µ)(b
−→
∂t −

←−
∂t b)G(µ)

i

, (D.37)

where the trace operation implies an integration over temporal- and spatial indices. From here
we switch to the Wigner representation by writing

SR
ρ[ f ] = −

N
4

∫ 0

−∞
dµ

∫

s,x

∫

k,ε

Gε,k(µ) ⋆ bs ⋆ (−iε+ 1
2
−→
∂s )Gε,k(µ) , (D.38)

SL
ρ[ f ] = −

N
4

∫ 0

−∞
dµ

∫

s,x

∫

k,ε

Gε,k(µ)(−iε− 1
2
←−
∂s ) ⋆ bs ⋆ Gε,k(µ) , (D.39)
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where it was used that time derivative operators, when acting in the Wigner representation,
become

∂t1
= −iε+ 1

2∂s , ∂t2
= iε+ 1

2∂s . (D.40)

In what follows we are aiming to employ the 1st order Moyal expansion to the convolutions
G(µ) ⋆ bs ⋆ ∂sG(µ) and ∂sG ⋆ bs ⋆G(µ) stemming, respectively, from the right- and left actions.
When doing so, one may substitute the exact Wigner symbol Gε,k(µ) by its local approximation,

Gε,k(µ;Λ)≡ Gε,k(µ;Λ/b) = [µ− εk/b−Σ(ε;Λ/b)]−1 , (D.41)

cf. Eqs. (D.19) and (D.20). Similarly to Eq. (D.19), we keep the spatio-temporal dependence
of Gε,k(µ;Λ) implicit. To proceed, we introduce the time derivative

F(µ) = ∂sG(µ) = G
2
(µ)εk(1/bs)

′ , (D.42)

where further on all dependencies on (k,ε) and (x , s) are omitted for brevity. Then, the first-
order Moyal expansion takes the form

G(µ) ⋆ bs ⋆ ∂sG(µ) = G(µ)bs∂sG(µ) +
i
2

�

G(µ)∂kF(µ)− F(µ)∂kG(µ)
�

∂x bs +O(ħh2) , (D.43)

with a similar expression being valid for the other convolution, where G and its partial deriva-
tive are swapped. Taking into account that the momentum derivative simplifies to

∂kG(µ) = G
2
(µ)∂kεk/b , (D.44)

we find the following gradient expansion for the action Sρ[ f ]:

Sρ[ f ] = SUV
ρ [ f ] +

iN
8

∫ 0

−∞
dµ

∫

s,x

∫

k,ε

�

G
3
(µ)∂kεk ×

b′∂x b
b2

+ G
4
(µ)εk∂kεk ×

b′∂x b
b3

�

. (D.45)

Here, the first contribution SUV
ρ [ f ] arises from the leading-order Moyal expansion. We will

analyze it at the end of this subsection. For now, we focus on the second contribution, which
involves a spatial gradient ∂x b. After integration over the auxiliary energy µ, it becomes

∆Sρ[ f ] = −
iN
8

∫

k,ε

∫

s,x

�

G2
ε,k(Λ/b)∂kεk ×

b′∂x b
2b2

+ G3
ε,k(Λ/b)εk∂kεk ×

b′∂x b
3b3

�

, (D.46)

where the mean-field Green’s function Gε,k(Λ) was defined in Eq. (D.19). At this stage, it is
important to rescale the energy integration variable by setting ε = eε/b2. Using the transfor-
mation law (D.25) for the Green’s function, one finds that energy-momentum and space-time
integrations are factorized, yielding

∆Sρ[ f ] = −
iN
8

∫

k,eε

∂kεk

�

1
2

G2
eε,k(Λ) +

1
3

G3
eε,k(Λ)εk

�

×
∫

s,x

b′∂x b
b2

. (D.47)

To extract the leading logarithmic expression for the coupling constant from here, one observes
that at large energy, the Green’s function scales as Gε,k(Λ) ∼ |ε|−1/2. Hence, the first term in
Eq. (D.47) is a logarithmic integral, while the second one gives a subleading contribution.
We further note that in the relevant range of energies, TΛ ≪ |ε| ≪ J , the kinetic energy is
negligible as compared to the self-energy, i.e. |εk| < Λ ≪ Σ0

ε, where Σ0
ε ∝

p

|ε| is the SYK
self-energy (16). Approximating the Green’s function as Gε,k(Λ) ≃ −(Σ0

ε)
−1, one then arrives

at

∆Sρ[ f ]≃ −
iN
16

∫

dε(k)
(2π)2

∫

TΛ<|eε|<J

deε
�

Σ0
eε

�2 ×
∫

s,x

b′∂x b
b2

=
iC

12π

∫

s,x

b′∂x b
b2

, (D.48)
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where C is the central charge given by Eq. (43). In what follows (see Subsection D.5), we will
interpret the above contribution as a counter-term, which contributes to the imaginary part of
the action SAS

± [b].
We now return to the first contribution in Eq. (D.45). After the integration over µ it reduces

to the following simple expression,

SUV
ρ [ f ] = −

iN
2

∫

s,x

∫

k,ε

(bε)Gε,k , (D.49)

which can be shown to be a f -independent constant. The way to demonstrate it follows the
analysis of Sec. D.3. We start by substituting the exact Wigner symbol Gε,k by its leading
approximation Gε,k(Λ/b). For this choice, by restricting the energy integration to |ε| < J/b2

and introducing ε = eε/b2 as before, one employs the scaling property (D.41) of the Green’s
function to find:

SUV
ρ [ f ] = −

iN
2

∫

dsd x
b2
×
∫

k

∫

|eε|<J
eεG

eε,k(Λ)∝−
iN
2

∫

dτd x , (D.50)

where the relation dτ = F ′ds = ds/b2 was used. Therefore, the spatio-temporal integral
produces a b-independent result as it was claimed above.

We next show that a variation of the above result due to gradient corrections (D.16) van-
ishes, i.e.

∫

s,x

∫

k,ε

(bε)δGε,k = 0 , (D.51)

which follows from the analytic structure of the energy integral. For the sake of illustration,
consider the first term contributing to the gradient correction of the propagator,

δG(1)ε,k = −
εk

2

�

1
b

�′′
Gε,k
←→□ εGε,k . (D.52)

On changing the energy integration variable to ε= eε/b2 and integrating by parts a few times,
we can transform (D.51) to the following integral,

J (1)∝
∫

s,x
b′2
∫

eε,k
εkeε [∂eεGeε,k(Λ)]

2 , (D.53)

which nominally looks like a contribution to the real part of the AS action (50). We further
employ our standard approximation by using the SYK result Σ0

ε for the self-energy, and change
the integration variable to eε= sgn(λ)λ2/J , which yeilds

J (1)∝
∫

s,x
b′2
∫

k
εk

∫ +∞

−∞
G4
λ,k λdλ → 0 , −Gλ,k =

1
εk − i(λ/π)

. (D.54)

For a given momentum k, the integral over λ now evaluates to zero due to simple analytic
properties of the Green’s function Gλ,k. The analysis of the second gradient correction to the
Wigner symbol Gε,k,

δG(2)ε,k =
ε2

k

2

�

1
b

�′2 �
∂εGε,k

←→
∂ε G

2
ε,k

�

, (D.55)

can be accomplished along the same lines as above, thereby substantiating the validity of
Eq. (D.51).
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We further explore the action S j[ f ] following the same principles. Since the current opera-
tor j1 already contains one spatial derivative, it is sufficient to use the local Moyal approxima-
tion. Taking into account the relation between the two Wigner symbols, j1

ε,k = i(∂kεk∂x F)ρε,k,
see Eq. (64), one arrives at the action

SUV
j [ f ] =

N
2

∫

s,x

∫

k,ε

j1ε,k Gε,k(Λ/b) =
N
2

∫

s,x

∂x F F ′ ×
∫

k

∫

|eε|<J
eε∂kεk G

eε,k(Λ) , (D.56)

which is a counterpart of Eqs. (D.49) and (D.50). However, this result corresponds neither
to any of the contributions to the desired AS action (50), nor is a full derivative. We will
demonstrate how it cancels in combination with higher-order terms in the gradient expansion
in the following subsection.

D.5 Second-order gradient terms

In this Appendix, we continue with the second-order expansion over gradients, ρ and j1, in the
fluctuation action Sfl[ f ], see Eq. (61). First, we discuss how this expansion can be expressed
in the Wigner representation and consider a typical second-order term Sρρ[ f ]. Using the
definition of the operator ρ, see Eq. (56), one can rewrite this piece of the action as

Sρρ[ f ] =

∫

bt1
Πt1 t2

bt2
d2 td x , (D.57)

with Πt1 t2
being a generalized polarization operator. Its most general expression takes the

following form,

Πt1 t2
= −

N
4

∫

k
G t1 t2

(k)
←→
∂t1

←→
∂t2

G t2 t1
(k) ,

←→
∂t :=

1
2
(
−→
∂t −

←−
∂t ) . (D.58)

Here G t1 t2
(k) refers to the Wigner symbol of the propagator G w.r.t. position coordinates,

and the expression (D.57) is written in the leading order Moyal expansion, assuming b to
change adiabatically in space. It is a reasonable approximation since the polarization operator
already contains two temporal gradients. We can simplify (D.58) further by using the full
Wigner symbol of the Green’s function, Gε,k(s, x), evaluated with respect to both temporal-
and spatial indices. Then, after some simple algebra, one can check that the polarization
operator Πt1 t2

in the Wigner representation acquires the following form,

Πω = −
N
4

∫

k,ε

Gε+,k

�

ε2 + 1
4
←→□ s

�

Gε−,k = Π
I
ω +Π

II
ω , ε± = ε±

1
2ω , (D.59)

where the 1st and 2nd terms above refer, respectively, to ε2 and s-derivative parts. Here, all
dependencies on the slow time s and the position x were left implicit for brevity. We have
also introduced the second-order differential operator

←→□ s which needs both left and right
functions to act on and is defined as

g(s)←→□ s h(s) :=
d2

dr2

�

g(s+ 1
2 r)h(s− 1

2 r)
�

�

�

�

r=0
=

1
4

g ′′s2h+
1
4

gh′′s2 −
1
2

g ′sh
′
s . (D.60)

Similarly, one can analyze other terms in the gradient expansion, i.e. S jρ and S j j .
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D.5.1 Evaluation of the Schwarzian action

In the following two subsections, we demonstrate how to derive the AS action within the
leading logarithmic approximation. Specifically, we show that in order to determine coupling
constants of the AS action with logarithmic accuracy, it suffices to use the local approximation
for the exact Wigner symbol of the Green’s functions defining the polarization operator (D.59)
[see also the comment around Eq. (D.41)]. That is, one can substitute Gε,k → Gε,k(Λ/b), as
suggested in Eq. (D.20).

We start from the Schwarzian piece, which constitutes the real part in the action SAS
± [b]

and originates from Sρρ[ f ], see Eq. (D.57). It is more instructive to discuss Model II first. Here
the main contribution comes from the flat band region, |k| < k0, where the Green’s function
Gε,k(Λ/b) simplifies to the SYK solution G0

ε , see Eq. (16), and becomes k (momentum) and s
(slow time) independent. In Fourier space one obtains,

Sρρ[ f ] =

∫

d x
∑

ω

bωΠωb−ω , Πω = −
N
4

∫

k,ε

G0
ε+

G0
ε−
ε2 = Π0 +

ω2

2
Π′′0 + . . . (D.61)

The Π0-contribution here is UV-divergent and we use the parametrization dependent cut-off
scheme discussed in Appendix D.3 to handle it, which gives

Π0∝
∫ J/b2

0

εdε
eε=εb2

=
1
b4

∫ J

0

eεdeε∝
J2

b4
. (D.62)

We then see that it contributes a constant to the action

S0
ρρ∝

∫

d xds
b2

=

∫

d xdsF ′ =

∫

d xdτ= β L . (D.63)

On other hand, the second-order order frequency expansion of the polarization operator eval-
uates to

1
2
Π′′0 = −

N
8

∫

k,ε

(G0
ε,k
←→□ ω G0

ε,k)ε
2 |k|<k0= −

N
32

∫

k,ε

(Σ0
ε)
−2 =

Nk0

32J

J
∫

∼T

dε
ε
=

Nk0

32J
ln

J
T

, (D.64)

where the logarithmic infra-red singularity was cut by the temperature T . The above frequency
expansion brings the Schwarzian action,

Sρρ[ f ] =
1
2
Π′′0

∫

d x
∑

ω

bωω
2 b−ω =

1
2
Π′′0

∫

s,x
b′2 = −

Nk0

64J
ln

J
T

∫

x ,τ

{ f ,τ} . (D.65)

In the last transformation results of Sec. 2.4 were used, see Eq. (50). Comparing Sρρ[ f ] to
the real part of the AS action, one derives the relation

C
u(T )

=
�

3π
8

�

Nk0

J
ln

J
T

, (D.66)

which fixes the ratio of a central charge C to the temperature dependent velocity u(T ).
One can also easily analyze the contributions stemming from the small range of momenta
k0 < |k| < π/a, where εk is nonvanishing. Here, the term proportional to ε2 in the
polarization operator (D.59) produces a logarithmic correction to Sρρ[ f ], which scales as
(Nk1/J) ln(J/TΛ). It is negligible compared to the main contribution (D.65). The contribu-
tions originating from the

←→□ s - term in Eq. (D.59) are even smaller. It can be shown that
their functional dependence on the reparametrizations reduces to the Schwarzian form, as
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discussed above, and at the same time corresponding diagrams defining the prefactor are all
IR convergent and free from UV logarithmic divergencies (see also additional comments in the
end of this subsection).

We now turn to the analysis of Model I. Similar to the discussion above, the primary contri-
bution to the Schwarzian action arises from the first part of the polarization operator. Here, we
begin with the local approximation for the propagators, employing Eq. (D.20), which yields

ΠI
ω = −

N
4

∫

k,ε

ε2 Gε+,k(Λ/b)Gε−,k(Λ/b) = ΠI
0 +

ω2

2
(ΠI)′′0 + . . . (D.67)

The zero frequency piece, after rescaling ε = eε/b2 and using the transformation law (D.25),
evaluates to

ΠI
0∝−

N
b4

∫

k

∫

|eε|<J
eε2 G2

eε,k(Λ)∝
Const

b4
. (D.68)

It contributes only an inessential constant to the overall action, see Eq. (D.63). In turn, for the
frequency-dependent piece, we obtain with the logarithmic accuracy

1
2
(ΠI)′′0 = −

N
8

∫

k,ε

�

Gε,k(Λ/b)←→□ ε Gε,k(Λ/b)
�

ε2 (D.69)

eε=εb2

= −
N
8

∫

k,eε

�

G
eε,k(Λ)

←→□
eε G

eε,k(Λ)
�

eε2 ≃ −
Nk0

32π2

∫ J

∼TΛ

deε
(Σ0

eε
)2
=

Nk0

32J
ln

J
TΛ

.

To derive this result, we employed (D.25) to eliminate the b-dependence from the integral and
substituted G−1

ε,k → −Σ
0
ε, which is valid in the high-energy limit TΛ ≪ ε≪ J . We then relied

on the fact that the resulting infra-red logarithmic divergence in this case is regularized by the
finite kinetic energy εk and thus is effectively cut-off at the scale TΛ. The latter implies the
relation

C
u
=
�

3π
8

�

Nk0

J
ln

J
TΛ

, (D.70)

where the velocity u turns out to be temperature independent at variance with our previous
result (D.66) for Model II.

To proceed, we demonstrate that the gradient corrections (D.16) to the Wigner symbol
Gε,k of the Green’s function do not alter the derived result. For concreteness, we illustrate
this by considering the second correction (D.55). Since the latter already includes temporal
gradients in terms of b′2, it suffies to take the zero frequency limit of the polarization operator,
ΠI
ω→0, see (D.59), to obtain a correction to the action Sρρ[ f ]. With the integration variable ε

rescaled as usual, we obtain an intermediate result in the following form:

δS(2)ρρ[ f ] = −
N
4

∫

s,x

�

b′

b

�2∫

ε,k
ε2ε2

k

�

∂εGε,k
←→
∂ε G

2
ε,k

�

Gε,k

eε=εb2

= −
N
4

∫

s,x
b′2 ×

∫

eε,k
eε2ε2

k

h

∂
eε G

eε,k(Λ)
←→
∂
eε G2

eε,k(Λ)
i

G
eε,k(Λ) , (D.71)

where the relation (D.25) was used to transition from the first to the second line. Referring to
Eq. (50), it becomes evident that the above expression is that of the Schwarzian. To further
estimate the energy-momentum integral, we use the UV behavior of the Green’s function:
Gε,k ∼ |εJ |−1/2 in the range TΛ≪ ε≪ J , and find

δS(2)ρρ[ f ]∼ N

∫

s,x
b′2
∫

|k|<k0

ε2
k

∫ +∞

ε2
k/J

dε
(Jε)2

∼
Nk0

J

∫

x ,τ

{ f ,τ} . (D.72)
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Note that the resulting contribution to the Schwarzian action is subleading compared to the
logarithmic one (D.69), as stated earlier. An exact evaluation of the integral (D.71), which
we do not reproduce here, confirms this estimate. Additionally, considering another gradient
correction to the Wigner symbol, as given by Eq. (D.51), yields a similar result.

The evaluation of the second part of the polarization operator, ΠII
ω, see Eq. (D.59), which

contributes to the Schwarzian action, proceeds along the same lines as above and does not
provide any new insights. Due to the presence of the second-order differential operator

←→□ s,
acting on slow times, one can, as before, take a zero frequency limit, ω→ 0, in the above po-
larization operator. The analytical structure of resulting one-loop momentum-energy integrals
happens to be analogous to that in Eq. (D.69). They are free from both UV and IR divergen-
cies and provide an additional contribution of order Nk0/J to the coupling constant in front
of the Schwarzian, cf. Eq. (D.72). Consequently, the relation (D.70) remains unchanged when
understood with logarithmic accuracy.

D.5.2 Central charge and the kinetic term in the AS action

We next proceed with a derivation of the central charge C by analyzing the action S jρ[ f ],
which brings about the imaginary contribution to the AS action. Following the steps around
Eqs. (D.57–D.59), one can rewrite this action in terms of a corresponding polarization operator,

S jρ[ f ] =

∫

∂x F1 bt1
Pt1 t2

bt2
d2 td x , F1 = F(t1, x) , (D.73)

where the Wigner symbol of Pt1 t2
takes the following form:

Pω = −
iN
2

∫

ε,k
∂kεk Gε+,k

�

ε2 + 1
4
←→□ s

�

Gε+,k = P I
ω + P II

ω , ε± = ε±ω/2 , (D.74)

with the first and the second terms referring to ε2- and s-derivative parts of the above po-
larization operator, respectively. Following our detailed discussion in the previous subsec-
tion D.5.1, we may disregard P II

ω and use the local approximation to the Wigner symbols,
Gε,k→ Gε,k(Λ/b), when deriving the central charge C with logarithmic accuracy.

The first part of the polarization operator can be expanded as P I
ω = P I

0 +
ω2

2 P ′′0 + . . ., with
the leading zero-frequency term being UV dominated. As before, we evaluate it by changing
the energy integration variable to eε= εb2, which yields

P I
0 = −

i
b4
×

N
2

∫

k

∫

|eε|<J
eε2 ∂kεk G2

eε,k(Λ) . (D.75)

On making use of the general relation (D.73), the UV contribution to the action S jρ[ f ] then
reads

SUV
jρ [ f ] = −

iN
2

∫

s,x
∂x F F ′ ×

∫

k

∫

|eε|<J
eε2 ∂kεk G2

eε,k(Λ) . (D.76)

It needs to be analyzed further in combination with the analogous contribution (D.56) arising
from the first-order gradient expansion, which was derived previously. At the end of this
subsection, we will demonstrate how a mutual cancellation of these terms, and similar ones,
can be achieved.
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For now, we proceed by discussing the P ′′0 -term in the frequency expansion, which con-
tributes to the AS action, as will become clear shortly. Following the derivation leading to
Eq. (D.69), we evaluate the constant P ′′0 as

1
2
(P I)′′0 = −

iN
4

∫

k,ε

ε2∂kεk

�

Gε,k(Λ/b)←→□ ε Gε,k(Λ/b)
�

(D.77)

eε=εb2

= −
iN

32π2

∫

k
∂kεk

∫ J

∼TΛ

deε
(Σ0

eε
)2
=

iNΛ
16J

ln
J
TΛ

.

To obtain the above result, which is found with logarithmic accuracy, it is sufficient to use the
high-energy asymptotics for the Green’s function G−1

ε,k→−Σ
0
ε, obtained by neglecting its exact

momentum dependence, and to cut off the energy integral by the scale TΛ in the IR limit. This
second-order frequency expansion produces the following contribution to the action,

S jρ[ f ] =
1
2

P ′′0

∫

d x
∑

ω

(∂x F bs)−ωω
2 bω =

iC
12π

∫

d x
∑

ω

(∂x F b)−ωω
2 bω , (D.78)

where we have introduced the central charge,

C =
�

3π
4

�

NΛ
J

ln
J
TΛ

. (D.79)

By transforming the result (D.78) to the time domain and using integration by parts, the action
S jρ[ f ] reduces to

S jρ[ f ] = −
iC

12π

∫

s,x
∂x F bb′′ = −

iC
24π

∫

s,x
∂x F(bb′′ − b′2)−

iC
12π

∫

s,x

(∂x b)b′

b2
, (D.80)

where, to obtain the final form of the action, the relation ∂x F ′ = −2∂x b/b3 has been employed
(it follows from F ′ = 1/b2). Using Eq. (50) for the imaginary part of the AS action, we see
that Eq. (D.80) indeed reproduces its expected form up to a residual contribution, i.e.

S jρ[ f ] = −
iC

48π

∫

x ,τ

f ′′∂x f ′

f ′2
−

iC
12π

∫

s,x

(∂x b)b′

b2
≡ i Im SAS

− [b] +∆S jρ[b] (D.81)

(Note that the negative index in the action SAS
− [b] corresponds to right moving Majoranas).

On comparing the result with the counter term ∆Sρ[ f ] (D.48), we see that the latter exactly
cancels against ∆S jρ[b]. In this way we have achieved our goal: To show that the sum of two
actions, Sρ[ f ]+S jρ[ f ], reproduces the kinematic (or imaginary) part of the AS action. By us-
ing the previously found ratios of the coupling constants C/u for both models, see Eqs. (D.66)
and (D.70), together with the value of the central charge (D.79), the velocity u(T ) can now
be easily recovered as listed in the beginning of Sec. 2.4.

D.5.3 Analysis of the UV terms

Here we discuss why the UV contributions (D.56) and (D.76), which were previously iden-
tified, can be disregarded. We start by noting that similar UV contributions arise when one
analyses higher-order terms of the type tr( j1G[ρG]n) in the action of fluctuations (63). It is
not hard to verify that the UV part of such n-th order term reads

SUV
jρn[ f ] =

N
2

∫

s,x
∂x F F ′ ×

∫

k

∫

|eε|<J
eε∂kεk G

eε,k(Λ) [−ieεG
eε,k(Λ)]

n . (D.82)
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As a result, the following geometric series can be summed up,

SUV[ f ] =
+∞
∑

n=0

SUV
jρn[ f ] =

N
2

∫

s,x
∂x F F ′ ×

∫

k

∫

|eε|<J
eε∂kεk G

eε,k(Λ) , (D.83)

where the full Green’s function is given by the standard relation

G−1
eε,k(Λ) = ieε+ G−1

eε,k(Λ) = ieε− εk −Σ(eε,Λ) , (D.84)

with Σ(eε,Λ) being the self-energy found in the mean-field approximation. At this stage, we
observe that, up to terms of order O(a2

x), the result (D.83) can be equivalently represented as
a difference of two actions,

IUV
ax
[ f ]− IUV

ax=0[ f ] = SUV[ f ] +O(a2
x) , ax = ∂x F . (D.85)

Here, the newly introduced action IUV
ax
[ f ] is defined as

IUV
ax
[ f ] = −

N
2

∫

s,x
F ′
∫

k

∫

|eε|<J
ln
�

ieε− εk+eεax
−Σ(eε,Λ)

�

, (D.86)

with the momentum k in the dispersion relation being shifted by the ‘vector potential’ ax and
the energy eε playing the role of an effective charge.

At this stage, the Green’s function G
eε,k(Λ) can be regarded as an operator acting in mo-

mentum space and parametrically depending on the energy eε. Following this logic, the UV
action can be expressed via the determinant,

IUV
ax
[ f ] =

N
2

∫

s,x
F ′
∫

|eε|<J
ln detG

eε,k̂+eεax
(Λ) . (D.87)

Taking into account the commutation relation [ x̂ , k̂] = i, one can further write:

G
eε,k̂+eεax

(Λ) = e−ieε F(s,x)G
eε,k̂(Λ) e

ieε F(s,x) , (D.88)

which shows that the Green’s functions above are related by a local gauge transformation in
space. If the dispersion relation εk did not describe chiral edge modes, it would be possi-
ble to identify the determinants of the two Green’s functions — one with ax = ∂x F and the
other with ax = 0 — and the action SUV[ f ] would vanish. Consequently, the non-zero UV
contribution (D.83) should be interpreted as the chiral anomaly. We attribute the appearance
of this anomaly to the transformation M3/2, which was employed to obtain the regularized
action (54) from its defining expression (51). Recall that the determinant of the differential
operator D in that action was regularized by dividing it by det eΣ0, which contains no kinetic
part. As a result, any possible chiral anomaly remained uncompensated.

Bearing these considerations in mind, we conclude that the UV contributions (D.56) and
(D.76) are absent in the starting GΣ-action (54) and therefore must be disregarded.

E Aspects of (semi)-classical Liouville field theory

This appendix deals with three aspects of (semi)-classical Liouville field theory. Firstly, we
calculate the one-loop partition function of the Liouville action (101) and demonstrate its
agreement with the result (97). Secondly, we detail on how solutions to the disk equations
of motion (111) can be transformed to the strip. At last, we extend the Liouville action to
the presence of sources and show that we obtain a finite on-shell action, which allows us to
calculate correlation functions.
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E.1 One-loop partition function

The one-loop partition function is obtained by considering Gaussian fluctuations around the
field φ0 given in (114) evaluated on the action (101). We expand φ(τ, x) = φ0(τ) + ϵ(τ, x)
and impose ϵ(0, x) = ϵ(β/2, x) = 0 since the ZZ-boundary conditions are fulfilled by the
saddle-point solution. We then obtain

S2[ε] = S0 +
C

96πu

∫ L

0

∫ β/2

0

dx dτϵ(τ, x)

�

−u2∂ 2
x − ∂

2
τ +

�

2π
β

�2

2 csc
�

2πτ
β

�2
�

ϵ(τ, x) , (E.1)

where all source terms integrate to boundary terms. Note that the on-shell action coincides
with S0 calculated below (105) and is finite since all divergencies of φ0 close to the boundary
of the strip at τ= 0,β/2 cancel. The fluctuation determinant is evaluated as

Z2 =

∫

ϵ(0,x)=ϵ(β/2,x)=0

D[ϵ]e−S2[ϵ] =
Ñ

det(D)
1
2

e−S0 , (E.2)

where det(D) is the determinant of the differential operator in the quadratic action (E.1) acting
on functions with prescribed boundary conditions. To obtain its eigenvalues, we first factorize
the part acting in the x-direction by a Fourier expansion

ϵ(τ, x) =
1
L

∑

m

e2πimx/Lϵm(τ) . (E.3)

Ignoring the spatial dependence for now, we are left with the Schroedinger problem
�

−∂ 2
τ + 2

�

2π
β

�2

csc
�

2πτ
β

�2
�

ϵ(τ) = λ2ϵ(τ) . (E.4)

Using the substitution

u= cot
�

2πτ
β

�

, (u2 + 1) = csc
�

2πτ
β

�2

, (E.5)

with u(0)→∞ and u(β/2)→−∞, the problem is brought into the form
�

2π
β

�2

(u2 + 1)
�

−(u2 + 1)∂ 2
u − 2u∂u + 2

�

ϵ(τ) = λ2ϵ(τ) . (E.6)

This is the Legendre differential equation with two independent solutions [99]

ϵ(u) = c1 Pn
1 (iu) + c2 Qn

1(iu) , n=
βλ

2π
, (E.7)

where Qn
m(u) and Pn

m(u) are the associated Legendre functions. Our goal is now to find a
restriction on the allowed values of λ. We start by noting that Pn

1 (iu) grows as |u| for |u| →∞
for all n and hence is not normalizable, i.e. it does not fulfill the given boundary conditions.
More interesting is the solution

Qn
1(u) =

π

2

�

− sin
�

(1+ n)π
2

�

w1(1, n, u) + cos
�

(1+ n)π
2

�

w2(1, n, x)
�

, (E.8)

with

w1(1, n, u) =
2nΓ (1+ n

2 )

Γ (3
2 −

n
2 )
(1− u2)−n/2

1F2

�−1+n
2 , 2−n

2 , 1
2

u2

�

,

w2(1, n, u) =
2nΓ (1+ n

2 )

Γ (1− n
2 )

u(1− u2)−n/2
1F2

�− n
2 , 3−n

2 , 3
2

u2

�

, (E.9)
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where 1F2

�a,b,c
d

�

denote the hypergeometric functions and the representation of Qn
1(u) can be

continued to u ∈ C\((−∞,−1] ∪ [1,∞)) for n ∈ C and 1+ n /∈ −N, c.f. [99] Theorem 4.3.
Importantly, all branch cuts of the function lie in the excluded region of the complex plane.
Then, using the expansion of the hypergeometric function for large arguments,15 we obtain

Qn
1(iu)≈

αu
Γ (2− n)

+
β

Γ (2− n)u
+
γ

u2
+O

�

1
u3

�

, |u| →∞ , (E.10)

with α,β ,γ ∈ C. In order for the diverging term to vanish, we need to demand 2− n to lie on
the poles of the Γ -function. This allows us to conclude that n must take values in N>1, which
is the desired quantization condition on n.

Including the spatial modes, we are now in a position to evaluate the one-loop determinant
as

Det

��

−∂ 2
τ − u2∂ 2

x + 2
�

2π
β

�2

csc
�

2πτ
β

�2
��

=
∞
∏

m=−∞

∞
∏

n>1

�

�

2πmu
L

�2

+
�

2πn
β

�2
�

= N
∞
∏

m=−∞

∞
∏

n>1

�

m2 +
�

Ln
uβ

�2
�

(E.11)

= N
∞
∏

m=−∞

∞
∏

n>1

�

m2 −
n2

(−uτττ)2

�

= N
∞
∏

m=−∞

∞
∏

n>1

�

m−
n

uτττ

��

m+
n

uτττ

�

= N
∞
∏

m=−∞

∞
∏

|n|>1

�

m+
n

uτττ

�

.

Up to the global prefactor N and the transformationτττ 7→ −1/τττ, this determinant is equal to the
one obtained in (5.19) of [26]. Following the ζ-function regularization outlined in their work,
one obtains exactly the AS partition function Z2 = Z(τττu) given in (97) with renormalized
central charge c = C + 13.

E.2 Liouville field on the strip

The purpose of this subsection is to derive the general solution for the Liouville field φ(w, w)
on the strip, see Eq. (112), from the corresponding solution (111) on the disk. To simplify
calculations, we introduce an additional pair of coordinates (z, z) that parametrize the full
complex plane and consider two conformal transformations:

z(w) = e
2π
β w , ξ(z) =

z − i
z + i

. (E.12)

The first transformation here maps the half-strip S+ on the upper-half complex plane C+, i.e.
z : S+ 7→ C+, while the second one maps C+ onto the unit disc D, meaning ξ : C+ 7→ D. The
combination of these two mappings, (ξ ◦ z)(w), gives the Cayley map (110).

Our approach will be first to obtain the general solution eφ(z, z) on the upper-half complex
plane by relating it to φ′(ξ, ξ̄), and then to transform eφ(z, z) into the desired solution φ(w, w)
on the strip. To this end, given a ‘conformal reparametrization’ f ′(ξ) of the disk, we consider
a related reparametrization h(z) on the upper-half plane, which is defined by the relation

f ′(ξ(z))≡ ξ(h(z)) . (E.13)

The logic behind this construction can be gained from the following commutative diagram:

f ′ : D D

h : C+ C+

f ′

ξ

h

ξ .

15Denoting the first two arguments of the hypergeometric function by a and b, the expansion is valid if a−b /∈ N,
which is the case for us.
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In turn, the Liouville fields in domains C+ and D are related by the transformation law (103),
which for the case under consideration becomes

e
eφ(z,z) = eφ

′(ξ,ξ̄)

�

�

�

�

∂ ξ(z)
∂ z

�

�

�

�

2

. (E.14)

Taking into account the analytical form of the solution (111) for the field φ′(ξ, ξ̄), it is instruc-
tive to consider the chain of relations:

∂ξ f ′(ξ)
�

�

�

ξ(z)

∂ ξ(z)
∂ z

(E.13)
=

∂ ξ(z)
∂ z

�

�

�

h(z)
∂zh(z)≡ ∂zξ(h(z)) . (E.15)

The latter enables us to express the field eφ(z, z) solely in terms of the conformal reparametriza-
tion h(z) on the upper-half plane:

e
eφ(z,z) =

4|∂zξ(h(z))|
2

(1− |ξ(h(z))|2)2
(E.12)
= −

4∂zh∂zh
�

h(z)− h(z)
�2 , (E.16)

where the explicit form of the conformal transformation ξ(z), see Eq. (E.12), was used to
derive the very last relation.

At this stage, one can rely on the Schwarz reflection principle to state that h(z) = h(z) and
thereby to simplify the denominator in Eq. (E.16). Indeed, the reparametrization on the disk
satisfies the asymptotic relation | f ′(ξ)| → 1 for |ξ| → 1. On the other hand, the (invertible)
conformal transformation ξ(z) maps the real axis onto the unit circle, i.e. ξ :R 7→ ∂ D, where
∂ D denotes a boundary of the disk. Then from the defining relation (E.13) it follows that
the function h(z) is real valued on the real axis. This latter property justifies the usage of the
Schwarz principle, as it was suggested above.

In the second step, following the same procedure as above, one can transform eφ to the
desired solution φ on the half-strip. These two Liouville fields are related as

�

2π
β

�2

eφ(w,w) = e
eφ(z,z)

�

�

�

�

∂ z(w)
∂ w

�

�

�

�

2

. (E.17)

With the help of the commutative diagram,

h : C+ C+

f : S+ S+

h

z

f

z ,

we define the classical reparametrization f (w) on the half-strip S+ by the relation

h(z(w))≡ z( f (w)) , (E.18)

which in somewhat more explicit terms reads as

f (w) =
β

2π
ln
�

h(e
2π
β w)

�

. (E.19)

In particular, one can see from the above analytical formula that the Schwarz reflection princi-
ple for the reparametrization h(z) on the disk guarantees that the same relation, f (w) = f (w),
holds on the strip.

To further resolve the Liouville field φ(w, w) in terms of f (z), one again manipulates with
derivatives,

∂zh(z)
�

�

�

z(w)

∂ z(w)
∂ w

(E.18)
= ∂w z( f (w)) . (E.20)
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Then from relation (E.17) we finally find

eφ(w,w) = −
�

β

π

�2 |∂w z( f (w))|2
�

z( f (w))− z( f (w))
�2

(E.12)
=

|∂w f (w)|2

sin2(iπ( f (w)− f (w))/β)
, (E.21)

thereby recovering the result (112) from Sec. 4.2.

E.3 Action in presence of a source

In this subsection, we generalize the action (101) to the presence of a source of weight l at
position w0 and also calculate its on-shell value. Inspired by the geometric construction of
Ref. [80], we set

S(l, w0) = eS(l, w0) + 2lδ ln
2πτuv

β
, (E.22)

where τuv ∼ 1/J is the short-time cutoff and

eS(l, w0) = lim
τuv→0

�

C
24πu

 

∫

S\∆τuv

dx dτ

�

(∂τφ)2

4
+
(u∂xφ)2

4
+
�

2π
β

�2

eφ
�

−
∮

∂ S
d l⃗ · ∇n⃗φ

!

−
l

4πi

∮

∂∆τuv

φ

�

dw
w−w0

−
dw

w−w0

�

− 2lδ ln
2πτuv

β

�

, (E.23)

is the regularized action, constructed to remain well-defined in the limit τuv→ 0. In the above
definition, ∆τuv

denotes a disk of radius τuv around the source, which is omitted in the bulk
term, n⃗ represents the outward pointing normal vector at the boundaries of the strip S, and
δ = 6l/C .

We now comment on the terms in the second line of (E.23). To this end, we inspect poten-
tial singularities in the integrand and show that the subtracted counter-term, 2lδ ln(τuv/β),
ensures that the regularized action eS(l, w0) is finite. Starting with the behavior near the bound-
ary as τ → 0,β/2, only the first line of (E.23) contributes. Notably, in this limit, for the
zero-source solution φ0, the integrand remains finite even though the field itself diverges,
as discussed in the previous subsection. By inspection, this result can be generalized to so-
lutions φ with insertions at arbitrary positions: In the Liouville equation with ZZ boundary
conditions (105), the source term becomes negligible close to the boundary compared to the
diverging exponential. As a result, it does not alter the leading divergence but only introduces
a correction linear in the distance to the boundary, ensuring that the action remains finite.

Moving to the the second line of Eq. (E.23), the first term is the source included in the
action expressed as a contour integral via Cauchy’s theorem (it is a regularized form of the
δ-function in two dimensions). The second one, which we add to (E.22) and subtract here,
is a counter-term making the expression in square brackets regular and allowing to take the
τuv→ 0 limit there. This can be seen the following way: By (103) and (119), the one-source
solution close to the source in any geometry behaves as φ = −4δ ln(r/β) + O(1), where r
is the distance to the source in w-coordinates. The only divergence in the first line of (E.23)
comes from the kinetic term, whose leading divergence is given by

C
24π

∫

S\∆τuv

d2 x
1
4
∂µφ∂

µφ ∼ 2lδ

∫ β

τuv

dr r(∂r ln(r/β))2 = −2lδ ln(τuv/β) +O(1) . (E.24)

On other hand, the source term diverges as (−lφ) = 4lδ ln(r/β) + O(1) and both terms to-
gether cancel the divergence of the counter term, which is also logarithmic in τuv. Again,
due to conformal covariance of φ, this result holds for any source insertion on any geometry.
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By construction, the full cut-off dependence is shifted onto the last term of (E.23), yielding a
normalization constant in the correlation function (124).

In a next step, we want to find the on-shell value of S(l, w0) which is required to calculate
the heavy one-point function (124), and on the way also confirm the conformal transformation
behavior used in its derivation. To this end, we define the Liouville action on the ξ-disk

S̃′(l,ξ0) = lim
τuv→0

�

C
24π

 

∫

D\∆τ′uv

dξdξ
�

∂ξφ
′∂
ξ
φ′ + eφ

′�

−
∮

∂ D
d l⃗ · ∇n⃗φ

′

!

−
l

4πi

∮

∂∆τ′uv

φ′
�

dξ
ξ− ξ0

−
dξ

ξ− ξ0

�

− 2lδ lnτ′uv

�

, (E.25)

where the solution φ′ is related to the strip solution φ via the transformation law (103),
D denotes the ξ-disk, and ∆τ′uv

is again a small disk of radius

τ′uv =
�

�ξ(w0 +τuveiθ )− ξ(w0)
�

�≃ τuv

�

�ξ′(w0)
�

� , (E.26)

around the source. The difference of the actions on the strip and on the disk then reads

(S̃(l, w0)− S(0, w0))− (S̃′(l,ξ0)− S′(0,ξ0)) = −l(1−δ) ln
�

�

�

�

β

2π
ξ′(w0)

�

�

�

�

2

, (E.27)

where we also subtracted the vacuum-actions S0 = S̃0 and S′0 = S̃′0. Now, the right-hand
side of (E.27) stems purely from the second line of (E.23) and (E.25): The contribution ∼ l
comes from sending φ 7→ φ′ using (103) in the source term and the term ∼ lδ is obtained
by substituting τuv 7→ τ′uv in the counter term. Together, both terms give the classical scaling
dimension of the vertex operator. To conclude the argument, one must show that there are
no other contributions, or equivalently, the first lines of the vacuum-normalized actions (E.23)
and (E.25) are equivalent. Since on both geometries the boundary term cancels between the
one-source- and the vacuum action and the potential eφ

′
is manifestly covariant, the only non-

trivial terms are the kinetic ones. For these one can invoke Green’s theorem to show that
∫

d2ξ
�

∂ξφ
′∂
ξ
φ′ − ∂ξφ′0∂ξφ

′
0

�

=

∫

d2ξ
�

∂ξφ∂ξφ − ∂ξφ0∂ξφ0

�

, (E.28)

i.e. the logarithms appearing in the transformation law from φ to φ′ can be discarded. From
here, one applies a change of variables to recover exactly S̃(l, w0)− S(0, w0), confirming the
assertion.

To further evaluate the expression (E.27), we focus on the action difference on the ξ-disk.
It can be calculated to be finite as [80]

S̃′(l,ξ0)− S(0,ξ0) = (S̃
′(l, 0)− S′(0,ξ0)) + (S̃

′(l,ξ0)− S̃′(l, 0))

= − ln U(l)− l(1−δ) ln
�
�

�

�h′ξ(ξ,ξ0)
�

�

�

2

ξ=ξ0

�

. (E.29)

Here the second term in the final result follows from the same arguments as above and the
first term

ln U(l) = −
C
6
(2δ(1− ln 2) + (1− 2δ) ln(1− 2δ)) , (E.30)

contains all the information independent of the position. To find it, we introduce a cut-off
η ≪ 1 close to the boundary |ξ| = 1 and evaluate the on-shell action S̃[l, 0] without the
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boundary term on the solution φ′(r) ≡ φ′(r; 0, l) with |ξ| = r (c.f. (119) for its definition).
Expanding this solution close to the origin, one finds that the source term at τ′uv≪ 1 evaluates
to

S∗(δ) = −
l

4πi

∮

|ξ|=τ′uv

φ′
�

dξ
ξ− ξ0

− c.c.
�

= −lφ′(τ′uv) =
Cδ
3
(2δ lnτ′uv − ln(2− 4δ)) . (E.31)

Then invoking polar coordinates, the on-shell action becomes (we use δ = 6l/C)

I(δ) =
C
12

∫ 1−η

τ′uv

�

1
4

�

∂rφ
′(r)

�2
+ eφ

′(r)
�

r dr + S∗(δ)−
Cδ2

3
lnτ′uv

τ′uv→0
=

C
6

�

2δ(1− ln2) + (1− 2δ) ln(1− 2δ) +η−1 + ln(2η)− 3/2
�

+O(η) , (E.32)

and we obtain I(0) − I(δ)
η→0
= ln U(l), as given by Eq. (E.30). The constant U(l) can be

identified with the semi-classical limit of the ZZ one-point coefficient [100], modifying the
prefactor of the correlation function, while the second term depending on (121) contains
the coordinate-dependence of the correlation function. Putting everything together, using
l = Cδ/6, and fixing the UV-scale as τuv = 1/J we finally obtain the one-source action

S(l, w0) = S0−ln U(l)−
Cδ(1−δ)

6
ln

�

β2

4π2

�

�ξ′(w0)
�

�

2
�

�

�h′ξ(ξ,ξ0)
�

�

�

2

ξ=ξ0

�

+
Cδ2

6
ln

�

�

�

�

2π
βJ

�

�

�

�

2

, (E.33)

which leads to Eq. (122) from the main text after application of the chain rule for derivatives.

F One-source solution to Liouville equation

In this appendix, we derive the one-source solution (119) to the Liouville equation with heavy
insertion at ξ0 = 0, which can be derived either from (105) by applying the transformation
law (103), or directly from the action (E.25). The strategy is to solve the equation without
source insertion and to later implement the corresponding boundary conditions close to the
source and close to the boundary. Since the solution will be radially symmetric around the
origin, we move to polar coordinates ξ= reiθ ,ξ= re−iθ and neglect the θ -dependence of the
equation. We also write the equations in terms of Φ= eφ , leading to

−2Φ2 +
Φ′

r
−
Φ′2

Φ
+Φ′′ = 0 , (F.1)

where Φ= Φ(r). The general solution reads

Φ(r) =
4c2

1

r2(ec2 r−c1 − e−c2 r c1)2
, (F.2)

in terms of two real constants c1 and c2. The behavior close to the source at r → 0 can be
determined as Φ ∼ |r|−4δ by neglecting the exponential term and using δ(2)(ξ) = π−1∂ ξ−1,
with δ = 6l1/C < 1/2. Comparing this result to the solution (F.2), we obtain c1 = ±(1− 2δ),
both choices leading to the same result. For the behavior close to the boundary, as proven
in slightly different settings in Appendix A of [80] and Appendix B of [73], for r → 1, the
Liouville field should diverge as Φ∼ 4(1− r2)−2+O(1), i.e. no O((1− r2)−1) term is present.
The function Φ fulfilling this condition is obtained by setting c2 = 0, uniquely recovering the
solution (119).
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