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Abstract

The A-theory takes U-duality symmetry as a guiding principle, with the SL(5) U-duality
symmetry being described as the world-volume theory of a 5-brane. Furthermore, by uni-
fying the 6-dimensional world-volume Lorentz symmetry with the SL(5) spacetime sym-
metry, it extends to SL(6) U-duality symmetry. The SL(5) spacetime vielbein fields and
the 5-brane world-volume vielbein fields are mixed under the SL(6) U-duality transfor-
mation. We demonstrate that consistent sectionings of the SL(6) A5-brane world-volume
Lagrangian yield Lagrangians of the T -string with O(D,D) T-duality symmetry, the con-
ventional string, the M5-brane with GL(4) duality symmetry, and the non-perturbative
M2-brane in supergravity theory. The GL(4) covariant Lagrangian of the M5-brane de-
rived in this manner is a new, perturbatively quantizable theory.
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1 Introduction

1.1 An overview of A-theory formalism

Superstring theory is regarded as a strong candidate for a unified theory that encompasses all
four fundamental interactions. However, rather than a single theory, it currently exists in the
form of six distinct theories: five superstring theories and M-theory. These six theories are
intricately connected via S-duality and T-duality, forming a hexagonal network of dualities.
Each of these six theories is defined on its own characteristic brane, and together they pro-
vide complementary descriptions of the broader structure of superstring theory. A key open
question is what kind of theoretical framework can provide a unified formulation of these six
theories.

S-duality and T-duality are unified as U-duality, whose structure reflects the group-theoretic
inclusiveness of these dualities. The symmetry group of a theory with manifest S-duality is
given by GL(D+1) which extends the spacetime diffeomorphism group GL(D) by incorporating
the S-duality group SL(2) as a subgroup. GL(D+1) and the T-duality symmetry O(D,D) are
embedded within the exceptional group ED+1 which serves as the symmetry group of U-duality.
U-duality is therefore expected to relate all six superstring theories in a coherent manner. A
theory that explicitly manifests this U-duality symmetry is referred to as “A-theory”, and major
objective is to construct a perturbative formulation of this theory that facilitates a systematic
analysis of its quantum aspects (see [1] for review).

In 1995, Witten proposed M-theory as a strong coupling limit of the type IIA superstring
theory via S-duality [2]. The low-energy effective theory of M-theory is 11-dimensional su-
pergravity, whose diffeomorphism symmetry is GL(11), combining the 10-dimensional diffeo-
morphism and the SL(2) S-duality symmetry. We refer to a world-volume theories that exhibit
manifest GL(D+1) symmetry as M-theory. In 1996, Vafa proposed F-theory as a framework
related to the type IIB superstring theory via S-duality [3]. For further discussion, see, for
example [4].
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In 1993, Siegel proposed a string theory guided by the T-duality symmetry O(D,D) [5–
7]. This framework employs the idea of doubling spacetime coordinates, where the 2D-
dimensional spacetime coordinates are treated as vectors in the O(D,D) representation [8].
The geometry generated by the O(D,D) covariant current algebra is the stringy gravity theory
with B-field, where gauge fields are parameters of the coset O(D,D) over the doubled Lorentz
group. We refer to this as T -theory and the T-duality covariant string as T -string. Later Hull,
Zwiebach, and Hohm proposed a theory of O(D,D) covariant background fields, known as Dou-
ble Field Theory (DFT) [9,10]. This theory serves as the low-energy effective gravitational de-
scription of T -string theory. In order to consistently reduce the doubled 2D-dimensional space-
time to the physical D-dimensional spacetime, the section condition was employed, which cor-
responds to the zero-mode of the Virasoro constraint S=0. For detailed reviews, see [11,12].
The T - theory was extended to incorporate N = 2 supersymmetry including Ramond–Ramond
gauge fields based on the doubled non-degenerate super-Poincaré group [13–17]. All bosonic
component fields represent supersymmetrized O(D,D) while fermions represent only O(D-
1,1)2. Incorporating S-duality requires extending the symmetry to the exceptional U-duality
group. Consequently, the exceptional group ED+1 is expected to be related to a subgroup of
the doubled non-degenerate super-Poincaré group.

Siegel, Linch and Polacek subsequently proposed brane theories guided by the U-duality
symmetry ( ED+1 ) [13, 18, 19]. Since the representation of exceptional groups varies with
dimension, the theory is labeled by the spacetime dimension D when reduced to string the-
ory. This is called D= D A-theory. According to the classification of Lie algebras, removing
a specific node in the Dynkin diagram of ED+1 reduces it to the GL(D+1) Dynkin diagram.
This corresponds to reducing the spacetime dimensions of A-theory using the Virasoro con-
straint, recovering the aforementioned M-theory. Conversely, removing another node in the
ED+1 Dynkin diagram reduces it to the O(D,D) Dynkin diagram. This corresponds to reducing
the world-volume dimensions of A-theory using the Gauß law constraint U=0, recovering the
aforementioned T -theory. As a consequence of these dual reductions, A-theory is consistently
described by branes covariant under the exceptional group. Both the spacetime coordinates
and world-volume coordinates of the branes are representations of the exceptional group, en-
suring that the brane current algebra is covariant under the exceptional group. Moreover, a
perturbative Lagrangian describing these branes on their world-volume has been constructed.
In the previous papers [18–24, 24–31] we refer these models as “F-theory”, but we have re-
named our formulation from “F-theory” to A-theory in our most recent work [1], in order to
present it as a general framework that includes all spacetime dimensions and accommodates
all duality symmetries.

Exceptional Field Theory (EFT) applies DFT concepts to exceptional groups [32–44]. The
symmetry of exceptional groups was initially discovered as a partial dimensional symmetry of
background fields in 11-dimensional supergravity [45,46]. The generalized diffeomorphism
in EFT is characterized by the “Y-tensor”, which reflects the structure of the exceptional group.
This Y-tensor, Y MN

PQ, is related to the group invariant metric in A-theory, denoted by ηMNm,
through the relation Y MN

PQ = ηMNmηPQm where M , N , · · · are the spacetime indices and m
is the world-volume index. These indices correspond to different representations of the ex-
ceptional group. The origin of the Y-tensor lies in the Schwinger term of the current algebra,
{▷M (σ), ▷N (σ′)} = ηMNm∂

mδ(σ − σ′), where the world-volume derivative ∂ m is defined
through the commutator with the Virasoro constraint, Sm = 1

2η
MNm ▷M ▷N . The section con-

dition given by the Y-tensor, Y MN
PQ∂M∂N = 0, is related to the zero-mode of the Virasoro

constraint in A-theory. Specifically, the zero-mode component of the constraint Sm takes the
form Sm|0-modes = ηMNm∂M∂N = 0, establishing a direct connection between the section con-
dition in EFT and the Virasoro structure of A-theory. Active research continues on expressing
exceptional groups through brane current algebra [47–54].
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This paper focuses on the 5-brane that describes D=3 A-theory with SL(5) U-duality sym-
metry. In the case of D=3, the theory provides a nontrivial yet tractable example that includes
various types of branes and permits explicit computations. The Virasoro algebra, when ex-
tended to incorporate brane degrees of freedom, involves Gauß law–type constraints that are
intrinsic to the brane. These constraints facilitate the dimensional reduction of the brane
world-volume. Such an extended Virasoro algebra serves as a useful prototype for generaliza-
tion to higher dimensions. Furthermore, the construction of the Lagrangian in this framework
constitutes a significant milestone toward extending the formulation to higher-dimensional
cases. We clarify how the usual string, and T -string and membrane of 11-dimensional su-
pergravity (M2) emerge. Specifically, we derive the Lagrangians for the conventional non-
perturbative M2-brane, the O(D,D)-covariant T -string, and the conventional string from the
A-theory 5-brane (A5) Lagrangian.

1.2 Summary

In this paper, we focus on the SL(5) U-duality symmetry and clarify the relation between the A-
theory five-brane (A5-brane) and conventional branes. TheA5-brane is a 5-brane that exhibits
manifest SL(5) U-duality symmetry, and it is described by a perturbative Lagrangian described
using the SL(5) rank-two antisymmetric tensor coordinate [1, 18, 30]. The A5-brane theory
is reduced, through the duality reduction procedure, to the T -string with O(3,3) T-duality
symmetry, the M5-brane with GL(4) duality symmetry, and the String with GL(3) symmetry.
The interrelation among these theories forms a diamond-shaped diagram. In this paper, we
present the sectioning procedure along this diamond contour. Additionally, we detail reduc-
tion procedures from the T -string Lagrangian to the conventional string Lagrangian, and from
the M5-brane Lagrangian to the conventional non-perturbative M2-brane Lagrangian [55].
We further generalize the dimensional reduction of S-duality, as applied to 11-dimensional
supergravity and its relation to type IIA supergravity [2], to the case of T-duality, as discussed
in subsection 1.3. For S-duality, λstring↔ 1/λstring, the dimensional reduction is realized by
taking the limit λstring≪ 1 in the metric. For T-duality, characterized by R/

p
α′↔

p
α′/R with

string length lstring =
p
α′, the dimensional reduction is achieved by taking the large-radius

limit R≫
p
α′, such that the O(D,D) spacetime for the T -string reduces to the conventional

D-dimensional spacetime. Finally, we propose a perturbative M5-brane Lagrangian in a su-
pergravity background derived from the A5-brane, as given in equation (109).

In section 2 the relationships among the A5-brane, M5-brane, T -string, and String the-
ories are elucidated through diamond diagrams based on duality symmetries. The diamond
diagram represents a contour in the U-duality plane, which is parametrized by two quantities:
the string coupling and a scale defined by the string length. The branes are described in terms
of field strengths, where the spacetime coordinates possess the gauge symmetry generated by
the Gauß law constraint. These field strengths and their associated gauge parameters, along
with the world-volume and spacetime coordinates, transform as representations under the
relevant duality symmetries. The world-volume diffeomorphism is generated by the Virasoro
constraints S = 0. Dimensions to reduce are determined by solving the Virasoro constraints
S = 0 for spacetime and by solving the Gauß law constraints U = 0 for world-volume.

In section 3 both the SL(5) and the SL(6) covariant Lagrangians of the A5-brane are given,
where the SL(6) manifests the 5-brane world-volume Lorentz symmetry. Duff and Lu [56,57]
showed that the membrane theory exhibits the SL(5) duality symmetry by the Gaillard-Zumino
approach. In general, the symmetry of Lagrangian formulation is larger than that of the corre-
sponding Hamiltonian formulation. In A-theory, the U-duality symmetry in the Hamiltonian
formulation, G-symmetry, is enhanced to a novel duality symmetry in the Lagrangian for-
mulation, A-symmetry. This symmetry enhancement in higher-dimensional cases (D < 6) is
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summarized on page 6 of [22] and page 14 of [1]. It was shown that the brane world-volume
metric is also transformed conformally under the SL(5) duality transformation as well as the
spacetime background fields in [56,57]. This mixing between spacetime and world-volume is
a manifestation of the extended SL(6) duality symmetry transformation. The SL(6) vielbein
includes both the SL(5) spacetime vielbein and the 6-dimensional world-volume vielbein, so
the spacetime and world-volume are mixed under the new duality symmetry SL(6). The SL(6)
formulation is useful to reduce to other branes: Since the string world-sheet directions and the
spacetime directions are direct sum, the SL(6) vielbein is in a block diagonal form as shown
in subsection 5.1. On the other hand, the brane world-volume directions share the spacetime
directions unlike the string as shown in subsection 6.1.

In section 4, we begin with the O(D,D) string Hamiltonian and apply the double zweibein
method [58,59] to derive the T -string Lagrangian. We then present the reduction procedure
from the O(D,D) T -string Lagrangian to the conventional string Lagrangian in D dimensions,
following an approach analogous to that in subsection 1.3. It is shown that the Wess–Zumino
term can be obtained by adding a total derivative term.

In section 5, we start from the A5-brane Lagrangian and present the reduction procedure
leading to the T -string Lagrangian. The O(D,D) background gauge field is reformulated using
SL(4) tensor indices in such a way that it couples naturally to the SL(4) tensor coordinates of
the T -string. Subsequently, by applying the procedure described in section 4, we derive the
conventional string Lagrangian.

In section 6 we begin with the SL(6) covariant A5-brane Lagrangian which leads to a
new perturbative M5-brane Lagrangian. We further reduce it to the conventional M2-brane
Lagrangian. The “perturbative” M5-brane Lagrangian is formulated as a bilinear expression
in terms of currents, while the “non-perturbative” M2-brane Lagrangian comprises the sum of
the Nambu–Goto and Wess–Zumino terms. The dimensional reduction from the M5-brane to
the M2-brane is implemented via the “non-perturbative projection” ∂ m = εi j∂ j x

m∂i , in (114)
and the gauge fixing of the world-volume metric in (120). The Nambu-Goto Lagrangian is
obtained by the gauge choice of the world-volume vielbein, while the Wess-Zumino term is
obtained by adding the total derivative term.

1.3 Dimensional reduction procedure

In [2], it was pointed out that under an S-duality transformation between the 10-dimensional
type IIA theory and the 11-dimensional supergravity theory, the structure of the supersymmetry
algebra remains invariant, although the interpretation of the central charge changes. The
global superalgebra, involving supercharges Q and Q′ of the opposite chirality, 10-dimensional
momenta P, and a central charge W , is given by {Q,Q} ∼ P ∼ {Q′,Q′}, {Qα,Q′

β̇
} ∼ δαβ̇W .

The central charge W is interpreted as the Ramond-Ramond (RR) D0-brane charge in 10
dimensions, and as the momentum in the 11th dimension in 11-dimensional supergravity. The
11-dimensional spacetime reduces into the 10-dimensional spacetime in the weak coupling
limit e2φ ≪ 1,

ds2
11 = g[10]

mn d xmd xn + e2φ(d y − Amd xm)2
dimensional
−−−−−−−→

reduction
ds2

10 = g[10]
mn d xmd xn , (1)

with the 11-th dimensional coordinate y and the string coupling λstring = e3φ/2. The 11-
dimensional momentum W is maintained as the D0-brane charge in the 10-dimeniosnal IIA
theory after the dimensional reduction.

This framework is generalized to incorporate T-duality. We compare the superalgebra of
the 2D-dimensional T -string theory, which exhibits manifest T-duality, with the type II su-
peralgebra of conventional string theory in D dimensions. The global type II superalgebra
involves two supercharges, Q and Q′, and the D-dimensional momentum P, and is expressed
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as {Q,Q} ∼ (P + P̃), {Q′,Q′} ∼ (P − P̃), where P̃ is a central charge. In D dimensions, P̃ is
interpreted as an NS–NS charge, while in 2D dimensions, it corresponds to the additional mo-
menta associated with the extended spacetime. By restoring the α′ dependence in the O(D, D)
momentum–winding vector, (pm, 1

α′ ∂σxm)→ (pm, 1
α′ p̃

m), the canonical conjugate coordinates
become (xm, α′ ym). At small compactification scales (R≪

p
α′), the winding modes become

light and are readily excited, whereas at large scales (R≫
p
α′), they become heavy and only

the momentum modes remain dynamically relevant. Manifest T-duality is broken by choos-
ing a specific background such that the 2D-dimensional spacetime effectively reduces to the
D-dimensional one in the limit R≫

p
α′:

ds2
2D = gmnd xmd xn +α′2(d ym − d x l Blm)g

mn(d yn − d xkBkn)
dimensional
−−−−−−−→

reduction
ds2

D = gmnd xmd xn .

(2)
Here, ym denotes the additional D-dimensional coordinates, and Bmn is the NS–NS gauge field.
The additional momenta in the extended dimensions are preserved as NS–NS charges after the
dimensional reduction.

This dimensional reduction procedure corresponds to the gauge fixing of the dimensional
reduction constraint which is the first class constraint in Hamiltonian formulation. The dimen-
sional reduction constraint and the gauge fixing to reduce the conventional string are discussed
in [60] for a flat space case. The dimensional reduction constraint is the y component of the
symmetry generator, ▷̃y = 0. The gauge fixing condition ∂σ y = 0 reduces the set of conven-
tional string operators, the physical momentum Px ̸= 0 and left/right covariant derivatives
Px ± ∂σx . In Lagrangian formulation the momentum is replaced by PX = ∂ L/∂ Ẋ . It is gen-
eralized to the brane case, and then the dimensional reduction constraint turns out to be the
Virasoro constraint in which one of the momenta is replaced by the 0-mode [19]. For zero-
mode momenta px , py and momenta including all modes Px , Py , the dimensional reduction
constraint ▷̃y = 0 is expressed by the Virasoro operator as py · Px + px · Py = 0→ Py = 0.

Although the equation of motion derived from the doubled Lagrangian, when combined
with the self-duality condition, coincides with that obtained from the original Lagrangian, the
self-duality condition causes the doubled Lagrangian to vanish [61]. In particular, the self-
duality condition ∂µx = εµν∂ ν y reduces the Lagrangian of the O(D, D) T -string in flat space
to zero, as follows

L =
1
2

�

ẋ2 − x ′2 + ẏ2 − y ′2
� selfduality
−−−−−→ 0 .

It is also mentioned that the naive section y = 0 the T -string Lagrangian in curved background
does not reduce to the expected string Lagrangian in curved background as

L =
1
2
(∂+xm ∂+ ym)

�

gmn − Bml g
lkBkn −Bml g

ln

gml Bln gmn

��

∂−xn

∂− yn

�

y=0
−−→

1
2
∂+xm
�

gmn − Bml g
lkBkn

�

∂−xn .

The following points are also noteworthy. Integrating out the (d y+· · · )2 term is possible in
the case of a constant background. However, for a general non-constant background, the path
integral over d y in exp

�

−
∫

(d y + · · · ) g (d y + · · · )
�

yields a Jacobian factor
p

g in the path
integral measure, which in turn generates an additional term in the effective action. Using the
equation of motion is again valid in the constant background case, but it does not reproduce
the conventional string Lagrangian when the background fields g(x , y) and B(x , y) are non-
constant. Furthermore, imposing both conditions ∂+ y − ∂+x B = 0 and ∂− y − ∂−x B = 0
is inconsistent, since the integrability condition is violated in curved backgrounds where
[∂+,∂−]y ̸= 0. Several studies have been devoted to refining the reduction to the conven-
tional string Lagrangian, resulting in a variety of interesting approaches [43,50,61–64].
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Instead we propose the reduction procedure from T -string Lagrangian to the conventional
string Lagrangian: (1) adding the total derivative term −∂µ(εµνxm∂ν ym) to derive the Wess-
Zumino term, then (2) the dimensional reduction (2) as

L =
1
2
(∂+xm ∂+ ym)

�

gmn − Bml g
lkBkn −Bml g

ln

gml Bln gmn

��

∂−xn

∂− yn

�

−∂µ(εµνxm∂ν ym)

dimensional
−−−−−−−−→
reduction (1.2)

∂+xm(gmn + Bmn)∂−xn .
(3)

This is the expected string Lagrangian up to the normalization factor two which can be ab-
sorbed by the Lagrange multiplier. The section conditions of spacetime fields Φ(x , y) are con-
sistent with the Lagrangian where the section y = 0 can be chosen as Φ(x).

This procedure is similar to the usual dimensional reduction where the reduction is done
in the local flat Lorentz coordinate. i.e. Suppose that we have a line element d xA ≡ d x M EM

A.
We decompose the doubled coordinate d xA into d xa and d ya in the local Lorenz frame, and
then discard (d ya)2. Since the metric (η̂-tensor) in local flat spacetime is already diagonal, in
practice we can just apply this reduction by deleting certain blocks of η̂-tensor similar to (2).

The main purpose of this paper is to carry out the above reduction procedure in several
specific cases. In general, however, the procedure can be schematically summarized as follows.

1. We start with the current algebra defined on an extended space of coordinates,
where both momentum and winding modes have their corresponding conjugate coordi-
nates. The Hamiltonian is written as a sum of self-dual and anti-self-dual constraints:
H = gH + g̃H̃ + smSm + s̃mS̃m + Y mUm, where H, H̃ are the τ component of the Vira-
soro constraints and its dual counterpart, Sm, S̃m are the σm components of the Virasoro
constraints and its dual counterpart. Um is the Gauß law constraint specific to branes.

2. The Lagrangian is obtained via a Legendre transformation of the Hamiltonian H. This
has been performed in previous works for various theories [1]. Schematically, the La-
grangian takes the form L = ΦJSD · η̂ · JSD +Λ · JSD · η̂ · JSD + · · · , where JA

SD/SD
are the

selfdual and anti-selfdual currents. They are coupled with vielbein, and thus they have
flat indices. Φ and Λ are Lagrange multipliers which are functions of g, sm, g̃, s̃m. One
can gauge fix Λ= 0 by the suitable choice of original parameters.

3. Separate coordinates and currents into the physical part and the auxiliary part as
X M → xm, yµ, and JA → J a, Jα where xm represents the physical coordinates for the
target string or brane theory, and yµ denotes auxiliary coordinates. Dimensional reduc-
tion is then performed according to equation (2).

4. The reduced Lagrangian L′ = J a
SDη̂abJ b

SD can be shown to reproduce the desired string
or brane action, up to the absence of the Wess–Zumino (WZ) term. We find that adding
a total derivative term to the Lagrangian restores the WZ term

L + Total derivative= J a
SDη̂abJ b

SD + J̃αSDη̂αβ J̃βSD + LWZ .

Here, the current J̃α is modified by the addition of the total derivative term and is sub-
sequently eliminated through the dimensional reduction (2). This procedure yields the
correct WZ term.
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A-theory
ED+1(D+1)/HD

bispinor
↙ ↘

M-theory
GL(D+ 1)/SO(D)

D+ 1

T -theory
O(D,D)/SO(D)2

2D
↘ ↙

S-theory
GL(D)/SO(D)

D

Figure 1: G-symmetries of D= D theories and spacetime dimensions.

2 Theories with manifest duality symmetries and sectionings

2.1 Diamond diagrams

The duality web of the G-symmetry in A-theory is represented by the diamond diagram shown
in Fig. 1, as studied in [19]. The G-symmetry, associated with the coset group G/H, plays
the role of a duality symmetry. The coset parameter serves as the gauge field of the duality-
covariant geometry, incorporating the spacetime vielbein as well as the NS–NS and R–R gauge
fields of superstring theory.

The relationships among these duality groups are illustrated using Dynkin diagrams, as
discussed in [1]. Removing a single node from the Dynkin diagram of ED+1(D+1) reduces it to
that of either GL(D+1) or O(D,D), depending on which node is removed. Further removing
one more node from the Dynkin diagram of GL(D+1) or O(D,D) leads to that of GL(D).

In this paper we focus on D=3 case where the G-symmetry is SL(5) and the diamond
diagram becomes Fig. 2. This SL(5) duality symmetry is enlarged to SL(6) for the (5+1)-
dimensional world-volume covariance in Lagrangian [1]. We named this enlarged symmetry
“A-symmetry”. This A-theory unifies the spacetime and the world-volume, in a sense that the
coset parameter of A/L=SL(6)/GL(4) includes not only the spacetime vielbein field but also
the world-volume vielbein field.

In this paper, we focus on the D=3 case, where the G-symmetry is SL(5) and the diamond
diagram corresponds to Fig. 2. This SL(5) duality symmetry is further enhanced to SL(6) in
order to accommodate the (5+1)-dimensional world-volume covariance in the Lagrangian for-
mulation [1]. We refer to this enlarged symmetry as the “A-symmetry”. The resulting A-theory
unifies the spacetime and world-volume structures, in the sense that the coset parameter of
A/L =SL(6)/GL(4) includes not only the spacetime vielbein field but also the world-volume
vielbein field. We note that H = SO(D) is used instead of SO(D-1,1) for simplicity. Conse-
quently, a Wick rotation is required to properly account for the time component in this section
and elsewhere.

2.2 Representations

In duality covariant theories, spacetime and world-volume coordinates transform as represen-
tations of the duality symmetry (A-symmetry or G-symmetry), which determines the world-
volume dimension. The Gauß law constraint generates gauge symmetry of the duality covari-
ant spacetime coordinate, making the brane current correspond to a field strength.
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A-theory
A/L = SL(6)/GL(4)

15
G/H = SL(5)/SO(5)

10
↙ ↘

M-theory
G/H = GL(4)/SO(4)

4

T -theory
G/H = O(3, 3)/SO(3)2

3+ 3
↘ ↙

S-theory
G/H = GL(3)/SO(3)

3

Figure 2: A- and G-symmetries of D= 3 theories and spacetime dimensions.

The D=3 M, T , S-theories are obtained from the D=3 A-theory [18, 30]. We list repre-
sentations of duality groups in Tab. 1; the world-volume derivative ∂ m, the gauge parameter
λm, the spacetime coordinate X M , and the field strength (the current) FM = ηMNm∂

mX N

(Jµ
M = ∂µX M , µ = (τ,σ)). ηMNm is the G-symmetry invariant tensor which enters the cur-

rent algebra, where the SL(5) invariant metric is ηMNl = ηm1m2n1n2 l = εm1m2n1n2 l . The world-
volume dimension of M-theory is still 1 ⊕ 5 where four dimensions are embedded in the 4
spacetime xm and one dimension is embedded in the internal space, so we denote as 1⊕4(5).

The field strengths and currents together with the gauge transformations are given con-
cretely as follows.

1. A5-brane field strengths

(a) World-volume covariant A5-brane field strength
The SL(6) A-symmetry covariant A-theory is described by a 5-brane with the man-
ifest SL(6) new duality symmetry which manifests 6-dimensional world-volume
Lorentz symmetry, namely world-volume covariant A5-brane.

F m̂n̂p̂ =
1
2
∂ [m̂X n̂p̂] , δλX m̂n̂ = ∂ [m̂λn̂] , m̂= 0, 1, . . . , 5 . (4)

(b) A5-brane field strength
The SL(5) G-symmetry covariant A-theory is described by a 5-brane with manifest
SL(5) U-duality symmetry, namely A5-brane.






















Fτ
mn = Ẋ mn − ∂ [mY n] ,

Fσ;m1m2
= 1

2εm1···m5
∂ m3 X m4m5 ,

m= 1, . . . , 5 ,











δλX mn = ∂ [mλn] ,

δλY m = λ̇m − ∂ mλ0 .
(5)

2. M5-brane field strength

The GL(4) M-theory is described by a 5-brane with the manifest GL(4) duality symme-
try, namely M5-brane. We focus only on 4-dimensional subspace of the 5-dimensional

9
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Table 1: Representations of the duality groups of theories.

Theories

Groups

World-volumes

∂

Gauges

λ

Spacetimes

X

Field strengths

F

A-theory 6 6 15 20

SL(6) ∂ m̂, m̂=0,··· ,5 λm̂ X m̂n̂ F m̂n̂p̂

A-theory 1⊕ 5 1⊕ 5 10⊕ 5 10⊕ 10′

SL(5) ∂ 0,∂ m, m=1,··· ,5 λ0,λm X mn, Y m Fτ
mn, Fσmn

M-theory 1⊕ 4(5) 1⊕ 4 4⊕ 1 4⊕ 6

GL(4) ∂ 0,∂ m, m=1,··· ,4 λ0,λm xm, Y Fτ
m, Fσmn

T -theory 1⊕ 1 0 3⊕ 3′ 3⊕ 3⊕ 3′ ⊕ 3′

O(3,3) ∂ 0,∂ σ, m̄=1,2,3 x m̄, y m̄n̄ Jτ
m̄, Jσm̄n̄; Jτ

m̄, Jσm̄,

S-theory 1⊕ 1 0 3 3⊕ 3

GL(3) ∂ 0,∂ σ, m̄=1,2,3 x m̄ Jτ
m̄, Jσm̄n̄

world-volume which is embedded in the 4-dimensional spacetime. This M5-brane ex-
tends over both the main space (i.e., the duality-covariant space) and the internal space.
Four of its world-volume directions lie in the main space while the remaining directions
lie in the internal space, specifically one world-volume direction in the Hamiltonian for-
malism, or two in the Lagrangian formalism. Considering the critical string action in
the full spacetime structure is an interesting subject, although it lies beyond the scope
of the present discussion. The relationship between the main space and the internal
space is schematically illustrated in Figure 2 the “slug diagram” (see page 27 in [20]
or page 14 in [1]). In the case of D = 3 the main space coordinate is represented by
a bispinor Xαβ , and the world-volume coordinate by an antisymmetric bispinor σ[αβ],
with α = 1, . . . , 4. The internal space coordinate is given by a bispinor Y [α

′β ′], where
α′ = 1, . . . , 8. The total number of supersymmetries is 32, which corresponds to the prod-
uct of the dimensions of the spinor indices 32= 4×8. It is noted that the assignment of
the duality symmetric space in A-theory differs from that in conventional formulations.
In A-theory, the duality-symmetric space is assigned to the main “spacetime” rather than
the internal space, such that all tensor gauge fields are automatically incorporated into
the coset parameter of ED+1/H.

Physical currents are as follows.






















Fτ
m = ẋm + ∂ mY ,

Fσ;m1m2
= −εm1···m4

∂ m3 xm4 ,

m= 1, . . . , 4 ,











δλxm = ∂ mλ ,

δλY = −λ̇ .
(6)
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The following currents are auxiliary written by auxiliary coordinates ymn, Y m.











Fτ
mn = ẏmn − ∂ [mY n] ,

Fσ;m1
= 1

2εm1···m4
∂ m2 ym3m4 ,























δλ ymn = ∂ [mλn] ,

δλY m = λ̇m ,

δλλ
m = ∂ mλ .

(7)

These currents constitute the SL(5) A-symmetry together with (6), and they are used to
lead the non-perturbative M2-brane Lagrangian.

3. T -string currents

The O(3,3) T -theory is described by a string with the manifest O(3,3) T-duality symme-
try, namely T -string.











Jτ
m1m2 = Ẋ m1m2 ,

Jσm1m2
= 1

2εm1···m4
∂σX m3m4 .

(8)

It is convenient to represent in terms of x m̄ and ym̄ =
1
2εm̄n̄l̄ y n̄l̄ .



















































Jτ
m̄ = ẋ m̄ ,

Jσm̄1m̄2
= −εm̄1m̄2m̄3

∂σx m̄3 ,

Jτ
m̄1m̄2 = ẏ m̄1m̄2 ,

Jσm̄1
= 1

2εm̄1m̄2m̄3
∂σ y m̄2m̄3 ,

m̄= 1,2, 3 .

(9)

4. S-tring currents

The GL(3) S-theory is described by a string with the manifest GL(3) spacetime diffeo-
morphism symmetry, namely a 3-dimensional string.











Jτ
m̄ = ẋ m̄ ,

Jσm̄1m̄2
= −εm̄1m̄2m̄3

∂σx m̄3 .
(10)

Some minus signs come from the mere notation ε1234 = 1 = −ε4123. It is denoted that these

currents are flat currents, and in later sections flat current symbols
◦
F or

◦
J will be used to

distinguish from curved background currents.

2.3 Constraints and sectionings

The theories in Hamiltonian formulation are constructed by the current algebra with manifest
duality symmetries [18]. The Spacetime translation is generated by the covariant derivative
▷M (σ). The p-brane current algebra with G-symmetry covariance is given by
�

▷M (σ), ▷N (σ
′)
�

= 2i fMN
L ▷L(σ)δ(σ−σ′) + 2iηMNm∂

mδ(p)(σ−σ′) . (11)
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A5-brane
10-dim. spacetime

S ↙ ↘ U

M5-brane
4-dim. spacetime

T -string
3+ 3-dim. spacetime

U ↘ ↙ S

String
3-dim. spacetime

Figure 3: Diamond diagram of Sectionings of branes of D= 3 theories.

Branes are governed by the brane Virasoro constraints Sm = 1
2 ▷Mη

MNm ▷N = 0 and
H = 1

2 ▷M η̂
MN ▷N = 0 together with the Gauß law constraints Um = 0 which is required

by the closure of the Virasoro algebra. η̂MN is the H-invariant metric. Theories are related by
sectionings; The Virasoro constraint Sm = 0 gives the section conditions to reduce the space-
time dimensions, and the Gauß law constraint Um = 0 is used to reduce the world-volume
dimension as Fig. 3.

The spacetime covariant derivatives, constraints and section conditions are given [18,30]
in Fig. 3 concretely as follows.

1. A5-brane in 10-dimensional spacetime

The 10-dimensional spacetime is described by the rank-two anti-symmetric tensor co-
variant derivative ▷m1m2

as

▷m1m2
= Pm1m2

+
1
2
εm1···m5

∂ m3 X m4m5 , (12)

where Pmn is canonical conjugate of X mn with [Pmn(σ), X lk(σ′)] = 1
i δ
[l
mδ

k]
n δ

(5)(σ−σ′)
and m= 1, . . . , 5.

The SL(5) covariant current algebra of A5-brane is given by
�

▷m1m2
(σ), ▷m3m4

(σ′)
�

= 2iεm1···m5
∂ m5δ(5)(σ−σ′) . (13)

The 5-dimensional world-volume diffeomorphism is generated by the Virasoro con-
straints Sm = 0 while the world-volume time diffeomorphism is generated by H = 0.
The Gauß law constraint Um = 0 generates the gauge symmetry of the spacetime coor-
dinate. These constraints are given by [1] as:























Sm = 1
16 ▷m1m2

εmm1···m4 ▷m3m4
= 0 ,

H = 1
16 ▷m1m2

δm1[n1δn2]m2 ▷n1n2
= 0 ,

Um = ∂ n ▷mn = 0 .

(14)

The SL(5) covariant constraints Sm = 0 and Um = 0 are background independent. These
constraints are used as the dimensional reduction and section condition by replacing
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Table 2: Constraints, dimensional reduction conditions and section conditions of A5-
brane.

Virasoro : Sm Gauß law : Um

dimensional reduction εmm1···m4 Pm1m2
(σ)

∂

∂ X m3m4
0

Pmn(σ)
∂

∂ σn

section condition εmm1···m4
∂

∂ X m1m2
0

∂

∂ X m3m4
0

∂

∂ σn

∂

∂ X mn
0

the spacetime momentum PM (σ) with the derivative of the 0-mode of the spacetime
coordinate X M

0 . These operators act on fields Φ(X ) and Ψ(X ) as

∂

∂ X M
0

∂

∂ X N
0

Φ(X0) = 0=
∂

∂ X M
0

Φ(X0)
∂

∂ X N
0

Ψ(X0) ,

∂

∂ σn

∂

∂ X M
Φ(σ, X (σ)) = 0=

∂

∂ σn
Φ(σ, X (σ))

∂

∂ X M
Ψ(σ, X (σ)) ,

(15)

where fields may be functions on σ as Φ(σ, X (σ)) and Ψ(σ, X (σ)).

2. M5-brane in 4-dimensional spacetime

The dimensional reduction of the spacetime is obtained by solving the Virasoro constraint
in Tab. 2 as

Pmn(σ) = 0 , m= 1, . . . , 4 ⇒ εmm1···m4
∂

∂ X m1m2
0

Pm3m4
(σ) = 0 . (16)

This condition makes X m1m2 = ym1m2 to be non-dynamical and reduced dimensionally.
The remaining spacetime is 4 dimensions P5m = pm ̸= 0.

The 4-dimensional spacetime is described by the covariant derivative ▷m. The 6-
dimensional covariant derivative ▷mn is maintained to construct SL(5) current algebra











▷m = pm ,

▷m1m2
= −εm1···m4

∂ m3 xm4 ,
(17)

with X 5m = xm and P5m = pm which is not confused with the 0-mode momentum.

The SL(5) current algebra of M5-brane is






















�

▷m(σ), ▷n(σ′)
�

= 0 ,
�

▷m1
(σ), ▷m2m3

(σ′)
�

= 2iεm1···m4
∂

m4δ(5)(σ−σ′) ,
�

▷m1m2
(σ), ▷m3m4

(σ′)
�

= 0 ,

(18)

where the last algebra forces to ∂ 5 = 0.
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Table 3: Constraints, dimensional reduction conditions and section conditions of
M5-brane.

Virasoro : Sm Gauß law : Um

dimensional reduction 1
2 pm(σ)(∂ [m xn]) pm(σ)∂ m

section condition none ∂ m ∂

∂ x
m
0

The Virasoro operators of M5-brane are


































Sm = 1
2∂
[m xn]pn ,

S5 = 1
4εm1···m4

(∂ m1 xm2)(∂ m3 xm4) ,

H = 1
4 pmη̂

mnpn +
1
16(∂

[m1 xm2])η̂m1[n1
η̂n2]m2

(∂ [n1 xn2]) ,

U5 = ∂ npn .

(19)

These constraints lead to the following dimensional reductions and section conditions.

3. T -string in 6-dimensional spacetime

The dimensional reduction condition of the world-volume is obtained by solving the
Gauß law constraint in Tab. 2 as

∂ n = 0 , Pm(σ) = 0 ⇒ ∂ nPmn(σ) = 0 . (20)

These conditions make ∂ 5 = ∂
∂ σ ̸= 0 and X m to be non-dynamical (constant). The

remaining spacetime is 6 dimensional Pmn = pmn ̸= 0.

The 6-dimensional spacetime is described by the covariant derivative ▷mn. The 4-
dimensional covariant derivative vanishes ▷m = 0

▷m1m2
= pm1m2

+
1
2
εm1···m4

∂ 5 xm3m4 , (21)

with X mn = xmn.

The O(3,3) current algebra of T -string is
�

▷m1m2
(σ), ▷m3m4

(σ′)
�

= 2iεm1···m4
∂σδ(σ−σ′) ,

with ∂ 5 = ∂σ .

The Virasoro operators of T -string are










S5 = 1
16 ▷m1m2

εm1···m4 ▷m3m4
,

H = 1
16 ▷m1m2

η̂m1[n1η̂n2]m2 ▷n1n2
,

(22)
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with Sm = 0= Um.

The Virasoro constraint S5 = 0 leads to the following dimensional reduction and the
section condition.

4. String in 3-dimensional spacetime

(a) From T -string to String
The dimensional reduction of the spacetime is obtained by solving the Virasoro
constraint in Tab. 4 as

Pm̄n̄(σ) = 0 , m̄= 1, 2,3 ⇒ Pm1m2
(σ)εm1···m4

∂

∂ x
m3m4
0

= 0 . (23)

This condition makes X m̄1m̄2 = y m̄1m̄2 to be non-dynamical (constant). The remain-
ing spacetime is 3 dimensions P4m̄ = pm̄ ̸= 0.

(b) From M5-brane to String
The dimensional reduction condition of the world-volume is obtained by solving
the Gauß law constraint in Tab. 3 as

∂ n̄ = 0 , P4(σ) = 0 ⇒ Pm∂
m = 0 . (24)

In the 4-dimensional spacetime ∂ 5 is considered to be 0. These conditions make
∂ 4 = ∂

∂ σ = ∂σ ̸= 0 and X 54 to be non-dynamical (constant). The remaining space-
time is 3 dimensions P4m̄ = pm̄ ̸= 0.

The 3-dimensional spacetime is described by the covariant derivative ▷4m̄. The 3-
dimensional covariant derivative vanishes ▷m̄1m̄2











▷m̄ = pm̄ ,

▷m̄1m̄2
= εm̄1m̄2m̄∂σx m̄ ,

(25)

with X 4m̄ = x m̄ and σ5 = σ via T -string and X 5m̄ = x m̄ and σ4 = σ via M5-brane.

The GL(3) current algebra becomes
�

▷m̄1
(σ), ▷m̄2m̄3

(σ′)
�

= iεm̄1m̄2m̄3
∂σδ(σ−σ′) . (26)

Table 4: Constraints, dimensional reduction conditions and section conditions of T -
string.

Virasoro : Sm Gauß law : Um

dimensional reduction pm1m2
(σ)εm1···m4

∂

∂ x
m3m4
0

none

section condition
∂

∂ x
m1m2
0

εm1···m4
∂

∂ x
m3m4
0

none
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This is equivalent to the O(D,D) current algebra which is given by ▷M = (▷m̄, ▷m̄) with
▷m̄ = 1

2ε
m̄m̄1m̄2 ▷m̄1m̄2

and the O(D,D) invariant metric ηMN = εm̄1m̄2m̄3
as

�

▷M (σ), ▷N (σ
′)
�

= iηMN∂σδ(σ−σ′) . (27)

The Virasoro operators become










S = pm̄∂σx m̄ = 1
2 ▷Mη

MN ▷N ,

H = 1
2 pm̄η̂

m̄n̄pn̄ +
1
2∂σx m̄η̂m̄n̄∂σx n̄ = 1

2 ▷M η̂
MN ▷N ,

(28)

with the double Lorentz invariant metric η̂MN . There are no further conditions of the
Virasoro and the Gauß law constraints; Sm = 0= Um.

3 A5-brane Lagrangians

3.1 A5-brane Lagrangian with SL(5) U-duality symmetry

The SL(5) U-duality symmetry is manifestly realized by the A5-brane. The spacetime back-
ground is described by the vielbein which is a SL(5)/SO(5) coset element Em

a satisfying

Em1
a1 Em2

a2 Em3
a3 Em4

a4 Em5
a5εa1a2a3a4a5

= εm1m2m3m4m5
, (29)

with m, a = 1, . . . , 5. The background metrices with tensor indices are

Gmn = Em
aη̂abEn

b ,

Gm1m2;n1n2
= Em1

a1 Em2
a2η̂a1[b1

η̂b2]a2
En1

b1 En2
b2 .

(30)

The selfdual and anti-selfdual currents in a flat background
◦
FSD/SD

mn and in a curved
background FSD/SD

ab in terms of (5) are given as










◦
FSD

m1m2 = F m1m2
τ − 1

2ε
m1···m5sm3

Fσ;m4m5
+ gη̂m1n1η̂m2n2 Fσ;n1n2

,

◦
FSD

m1m2 = F m1m2
τ − 1

2ε
m1···m5sm3

Fσ;m4m5
− gη̂m1n1η̂m2n2 Fσ;n1n2

,
(31)

FSD/SD
a1a2 =

◦
FSD/SD

m1m2 Em1
a1 Em2

a2 , (32)

where η̂mn becomes Gmn in a curved background. g and sm are 5-brane world-volume vielbein
fields which are introduced as Lagrange multipliers of Virasoro constraints.

The Lagrangian of the A5-brane LSL(5) is given [1] as

ISL(5) =

∫

dτd5σ LSL(5) ,

LSL(5) =
1
2
φFSD

abFSDab +
1
2
φ̄(FSD

ab)2 +
1
2
λabFSD

ac FSD
b

c −
1
4
εa1···a5

λa1 FSD
a2a3 FSD

a4a5

=
φ

4

◦
FSD

m1m2 Gm1m2;m3m4

◦
FSD

m3m4 +
φ̄

8

◦
FSD

m1m2 Gm1m2;m3m4

◦
FSD

m3m4

+
1
2

◦
λmnFSD

ml1 Gl1 l2

◦
FSD

nl2 +
1
8
εm1···m5

◦
λm1

◦
FSD

m2m3
◦
FSD

m4m5 ,

(33)

with symmetric traceless tensors λm̂n̂’s.
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3.2 World-volume covariant A5-brane Lagrangian with SL(6) duality symmetry

The G=SL(5) U-duality symmetry is enlarged to A=SL(6) by cooperating with the 6-
dimensional world-volume Lorentz covariance. The SL(6)/SO(6) coset parameter includes
not only the target space vielbein SL(5)/SO(5) but also 6 components of the world-volume
vielbein. The background vielbein Em̂

â ∈ SL(6)/SO(6) satisfies

Em̂1
â1 Em̂2

â2 Em̂3
â3 Em̂4

â4 Em̂5
â5 Em̂6

â6εâ1 â2 â3 â4 â5 â6
= εm̂1m̂2m̂3m̂4m̂5m̂6

, (34)

with m̂, â = 0,1, . . . , 5.
This SL(6) covariant vielbein (34) includes the 5-brane world-volume vielbein fields g and

sm as

Em̂
â =







E0
0̂ E0

a

Em
0̂ Em

a






=







1
g

0

−
sm

g
Em

a






, (35)

with m̂= (0, m), â = (0̂, a) and m, a = 1 · · · , 5. It is denoted that the Em
a component of SL(6)

vielbein (34) is different from the SL(5) vielbein Em
a in (35) up to the determinant factor. The

number of degrees of freedom of the SL(6) vielbein is sum of the spacetime vielbein and the
world-volume vielbein as

(62 − 1)−
6× 5

2
=
�

(52 − 1)−
5× 4

2

�

+ 6 . (36)

This is generalized for a p-brane of A-theory symmetry with A/L coset as

dim
A
L
= dim

G
H
+ (p+ 1) . (37)

The SL(6) covariant field strengths are given by a simple form; the one in a flat background
◦
F m̂n̂l̂ ( the same as (4) ) and the one in a curved background F â b̂ĉ as

◦
F m̂n̂l̂ =

1
2
∂ [m̂X n̂l̂] , F â b̂ĉ =

◦
F m̂n̂l̂ Em̂

âEn̂
b̂El̂

ĉ . (38)

The selfdual and the anti-selfdual field strength (31) and (32) are written in terms of the SL(6)
current (38) with ∂ 0̂ = ∂τ and ε0̂12345 = 1 as

FSD/SD
a1a2 = g
�

F 0̂a1a2 ±
1
6
ε0̂a1a2

a3a4a5
F a3a4a5

�

. (39)

Then the A5-brane Lagrangian (33) is rewritten in terms of the SL(6) covariant field strength
(38). The world-volume covariant A5-brane Lagrangian LSL(6) is given [1] as

ISL(6) =

∫

d6σ LSL(6) ,

LSL(6) = −
1
12
ΦF â1 â2 â3 Fâ1 â2 â3

+
1
2
Λâ b̂F âĉ1 ĉ2 F b̂

ĉ1 ĉ2
+

1
12
εâ1···â6

Λ̃b̂
â1 F â2 â3 â4 F â5 â6 b̂

= −
1
72
Φ
◦
F m̂1m̂2m̂3 Gm̂1m̂2m̂3;m̂4m̂5m̂6

◦
F m̂4m̂5m̂6 +

1
8

◦
Λm̂n̂

◦
F m̂l̂1 l̂2 Gl̂1 l̂2;l̂3 l̂4

◦
F n̂l̂3 l̂4

+
1

12
εm̂1···m̂6

◦
Λ̃n̂

m̂1
◦
F m̂2m̂3m̂4

◦
F m̂5m̂6 n̂ ,

(40)

where Φ, Λâ b̂ are Lagrange multipliers with symmetric traceless tensorsΛâ b̂ ’s. The background
metrices with tensor indices are

Gm̂1m̂2;n̂1 n̂2
= Em̂1

â1 Em̂2
â2η̂â1[b̂1

η̂b̂2]â2
En̂1

b̂1 En̂2
b̂2 ,

Gm̂1m̂2m̂3;n̂1 n̂2 n̂3
= Em̂1

â1 Em̂2
â2 Em̂3

â3η̂â1[b̂1
η̂b̂2|â2|

η̂b̂3]â3
En̂1

b̂1 En̂2
b̂2 En̂3

b̂3 .
(41)
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4 Lagrangian of D-dimensional string from O(D,D) T -string

In this section we derive the O(D,D) T -string Lagrangian from the O(D,D) Hamiltonian by the
double zweibein method [58, 59]. Then the reduction procedure from the O(D,D) T -string
Lagrangian to the conventional string Lagrangian is presented.

4.1 O(D,D) T -string

We begin with the sigma model string Lagrangian

I =

∫

d2σ L ,

L = −
1
2
∂µxm(
p

−hhµνgmn + ε
µνBmn)∂νxn ,

(42)

with µ= (τ, σ). In the conformal gauge the Lagrangian becomes

L =
1
2
( ẋm gmn ẋn − x ′m gmn x ′n)− ẋmBmn x ′n

=
1
2
( ẋm x ′m)

�

gmn Bmn
Bmn gmn

��

1 0
0 −1

��

ẋn

x ′n

�

=
1
2
∂+xm(gmn + Bmn)∂−xn ,

(43)

with ẋ = ∂τx , x ′ = ∂σx and ∂±x = ẋ ± x ′.
The Hamiltonian is given by the Legendre transformation where the canonical momentum

of xm is given by pm = ∂ L/∂ ẋm,

H = pm ẋm − L

=
1
2
(pm x ′m)

�

gmn gml Bln
−Bml g

ln gmn − Bml g
lkBkn

��

pn
x ′n

�

=
1
2
{(pm − x ′l Blm)g

mn(pn + Bnk x ′k) + x ′m gmn x ′n} .

(44)

The background field is the O(D,D) matrix GMN written in terms of the vielbein EA
M as

EA
M → hA

B EB
N gN

M , h ∈SO(D−1,1) and g ∈ O(D,D)

EA
MηMN EB

N = ηAB . (45)

The background metric GMN in the string Hamiltonian (44) is given as

GMN =

�

gmn gml Bln
−Bml g

ln gmn − Bml g
lkBkn

�

= EA
M η̂AB EB

N ,

EA
M =

�

ea
m ea

l Blm
0 em

a

�

,

(46)

while its inverse is given by

GMN =

�

gmn − Bml g
lkBkn −Bml g

ln

gml Bln gmn

�

= EM
Aη̂AB EN

B ,

EM
A =

�

em
a −Bml ea

l

0 ea
m

�

.

(47)
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This O(D,D) background metric is utilized in the Lagrangian with manifest O(D,D) T-duality
symmetry.

The O(D,D) covariant space is constructed in such a way that the O(D,D) covariant deriva-
tive ▷M (σ) algebra satisfies the same algebra of ▷M = (pm, x ′m) up to the normalization

[▷M (σ), ▷N (σ
′)] = 2iηMN∂σδ(σ−σ′) , ηMN =

�

δn
m

δm
n

�

. (48)

The covariant derivative ▷M is realized in terms of the doubled coordinate X M and PM with
[PM (σ), X N (σ′)] = −iδN

Mδ(σ−σ
′) as
◦
▷M = PM + ∂σX NηN M , (49)

which is left moving current in the doubled space. The right moving current is also introduced
as

▷̃M = PM − ∂σX NηN M , (50)

which satisfies the same current algebra (48) with opposite sign. The number of canonical
variables of the doubled space are 4D, while the physical one is 2D. The 2D equations ▷̃M = 0
is the usual selfduality condition to suppress 2D unphysical degrees of freedom, so we call ▷̃M

“anti-selfdual current”. Another current
◦
▷M is selfdual current.

There are two sets of Virasoro operatros written in terms of the selfdual current and the
anti-selfdual current

¨

H = 1
4
◦
▷M η̂

MN ◦▷N ,

S = 1
4
◦
▷Mη

MN ◦▷N ,

�

H̃ = 1
4 ▷̃M η̂

MN ▷̃N ,
S̃ = 1

4 ▷̃Mη
MN ▷̃N .

(51)

H and S satisfy the Virasoro algebra

[S(σ),S(σ′)}] = i{S(σ) +S(σ′)}∂σδ(σ−σ′) ,
�

S(σ),H(σ′)}
�

= i{H(σ) +H(σ′)}∂σδ(σ−σ′) ,
�

H(σ),H(σ′)}
�

= i{S(σ) +S(σ′)}∂σδ(σ−σ′) ,
(52)

while H̃ and S̃ satisfy the same Virasoro algebra with opposite signs on the right hand side.
As seen in the Hamiltonian in curved background (44) currents ▷M coupled to the vielbein

as
▷A = EA

M ◦▷M , ▷̃A = EA
M ▷̃M . (53)

In curved background the Virasoro constraints become
¨

H = 1
4 ▷Aη̂

AB ▷B =
1
4
◦
▷M GMN ◦▷N ,

S = 1
4 ▷Aη

AB ▷B =
1
4
◦
▷Mη

MN ◦▷N ,

�

H̃ = 1
4 ▷̃Aη̂

AB ▷̃B =
1
4 ▷̃M GMN ▷̃N ,

S̃ = 1
4 ▷̃Aη

AB ▷̃B =
1
4 ▷̃Mη

MN ▷̃N .
(54)

The O(D,D) covariant Hamiltonian is given by the sum of all these Virasoro constraints
with Lagrange multipliers which are doubled zweibeins [58]

H = gH+ sS + g̃H̃+ s̃S̃

=
1
2

�

PAMAB PB + 2PANACηCBX ′B + X ′AηAC M C DηDBX ′B
�

,
(55)

with PA = PM EA
M and X ′A ≡ X ′M EM

A. We used the fact that the covariant derivatives are
rewritten as ▷A = PA + X ′BηBA and ▷̃A = PA − X ′BηBA by the orthogonal condition (45).
Matrices MAB and NAB are given as

MAB =
g + g̃

2
η̂AB +

s+ s̃
2
ηAB ,

NAB =
g − g̃

2
η̂AB +

s− s̃
2
ηAB ,

(56)
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with the inverse of MAB as

M−1
AB =

2
(g + g̃)2 − (s+ s̃)2

{(g + g̃)η̂AB − (s+ s̃)ηAB} . (57)

The Legendre transformation of the Hamiltonian (55) with (56) leads to the following
Lagrangian

L = PM Ẋ M −H =
1
2

J+
AM−1

ABJ−
B , (58)

�

J+
A = Ẋ A+ ( g̃η̂AB + s̃ηAB)ηBC X ′C ,

J−
A = Ẋ A− (gη̂AB + sηAB)ηBC X ′C ,

(59)

with Ẋ A ≡ Ẋ M EM
A.

The Lagrangian in (58) can be written in terms of the selfdual current and the anti-selfdual
current which is equal to J− in (59). The selfdual and anti-selfdual currents are given by

�

JSD
A = (Ẋ A− sX ′A) + gη̂ABηBC X ′C ,

JSD
A = (Ẋ A− sX ′A)− gη̂ABηBC X ′C .

(60)

The selfdual and anti-selfdual currents in the flat background, JSD/SD
M = JSD/SD

AEA
M , are

written as
¨ ◦

JSD
M = (Ẋ M − sX ′M ) + gη̂MNηN LX ′L ,

◦
JSD

M = (Ẋ M − sX ′M )− gη̂MNηN LX ′L .
(61)

It is denoted that η̂MN becomes GMN in a curved background. The resultant O(D,D) covariant
Lagrangian for a T -string is given [58] as

I =

∫

dτdσ L ,

L = φJSD
Aη̂ABJSD

B + φ̄JSD
Aη̂ABJSD

B + φ̃JSD
AηABJSD

B

= φ
◦
JSD

M GMN
◦
JSD

N + φ̄
◦
JSD

M GMN
◦
JSD

N + φ̃
◦
JSD

MηMN
◦
JSD

N .

(62)

The first term is the kinetic term, while the rest are constraints that are squares of the anti-
selfdual currents. The Lagrange multipliers φ, φ̄ and φ̃ are related to the doubled zweibeins
as























φ =
1

2g
,

φ̄ =
1

2g[(g + g̃)2 − (s+ s̃)2]

�

(s+ s̃)2 + g2 − g̃2
	

,

φ̃ = −
s+ s̃

(g + g̃)2 − (s+ s̃)2
.

(63)

4.2 String from O(D,D) T -string

We break the O(D,D) T-duality symmetry of T -string into the GL(D) symmetry of the usual
string. The background gauge field of T -string is O(D,D)/O(D−1,1)2 coset parameter which
includes the D-dimensional metric gmn and Bmn field, while the background gauge field of a
string is GL(D)/SO(D-1,1) coset parameter which includes only gmn. In this subsection we
use the coordinate X M = (xm, ym) with off-diagonal ηMN to describe T -string, while the
left/right moving coordinate with diagonal ηMN = (1,−1) was used in the reference [58].
The Weyl/Lorentz gauge of the zweibein [58] is given as

ϵ±
µ =

�

ϵ+
τ ϵ+

σ

ϵ−
τ ϵ−

σ

�

=

�

1 g − s
1 −g − s

�

. (64)
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The left/right moving modes with the zweibein is ϵ±X ≡ ϵ±µ∂µX . The selfdual and anti-
selfdual currents (61) are expressed as

( ◦
JSD/SD

m = ẋm − sx ′m ± gη̂mn y ′n = ϵτxm ± gη̂mnϵσ yn ,
◦
JSD/SD;m = ẏm − s y ′m ± gη̂mn x ′n = ϵτ ym ± gη̂mnϵσxn ,

(65)

with

ϵµX ≡ ϵµν∂νX , ϵµ
ν =

�

ϵτ
τ ϵτ

σ

ϵσ
τ ϵσ

σ

�

=

�

1 −s
0 1

�

. (66)

The condition of vanishing the anti-selfdual current in s = 0 and g = 1 gauge leads to the
selfduality constraint in flat space as ∂µ y = εµν∂ νx with ∂ τ = −∂τ. In the gauge φ = 1

2g and

φ̄ = 0 = φ̃, corresponding to g = g̃ and s + s̃ = 0, the O(D,D) covariant Lagrangian (62) is
written as

1
2g

JSD
Aη̂ABJSD

B =
1

2g
(Ẋ − sX ′)Aη̂AB(Ẋ − sX ′)B −

g
2

X ′CηC Dη̂
DAη̂ABη̂

BFηFGX ′G

=
1

2g
(Ẋ − sX ′)M EM

Aη̂AB EN
B(Ẋ − sX ′)N −

g
2

X ′MηM L EA
Lη̂AB EB

KηKN X ′N

=
1

2g
ϵ+X M GMNϵ−X N

=
1

2g
ϵ+X M EM

Aη̂AB EN
Bϵ−X N .

(67)
The orthogonality condition is used in the second equality, ηM LGLKηKN = GMN , so
EM

AηAB = ηMN EB
N , is used in the last equality. In terms of xm, ym coordinates it is given

by

1
2g

JSD
Aη̂ABJSD

B

=
1

2g
(ϵ+xmϵ+ ym)

�

gmn − Bml g
lkBkn −Bml g

ln

gml Bln gmn

��

ϵ−xn

ϵ− yn

�

=
1

2g
(ϵ+xmϵ+ ym)

�

em
a −Bml ea

l

0 ea
m

��

ηab 0
0 ηab

��

en
b 0

−Bnkeb
k eb

n

��

ϵ−xn

ϵ− yn

�

=
1

2g

�

ϵ+xm gmnϵ−xn + (ϵ+ ym − ϵ+x l Blm)g
mn(ϵ− yn + Bnkϵ−xk)

�

.

(68)

We break the O(D,D) symmetry into the GL(D) symmetry by the dimensional reduction (2).
The resultant Lagrangian is the kinetic term of the usual string with the zweibein field;

L0 =
1

2g
ϵ+xm gmn ϵ−xn . (69)

In order to obtain the Wess-Zumino term we add the total derivative term

∂µ(ε
µνxm∂ν ym) = ẋ y ′ − x ′ ẏ = −

1
2g
(ϵ+x ϵ− y − ϵ+ y ϵ−x) , (70)

to the O(D,D) Lagrangian L (68)

1
2g

JSD
Aη̂ABJSD

B − ∂µ(εµνxm∂ν ym)

=
1

2g

�

ϵ+xm gmnϵ
n
−x + (ϵ+ ym − ϵ+x l Blm − ϵ+x l glm)g

mn(ϵ− yn + Bnkϵ−xk + gnkϵ−xk)

+ ϵ+xm gmnϵ−xn + 2ϵ+xmBmnϵ−xn} .

(71)
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By the dimensional reduction (2) the Lagrangian with the total derivative term reduces into the
string Lagrangian in curved background with the Wess-Zumino term as the curved world-sheet
version of (43),

L0 + LWZ =
1
g
ϵ+xm(gmn + Bmn)ϵ−xn . (72)

The zweibeins in (72) and (42) are related as

g = −
2

p
−hh00

, s = −
h01

h00
. (73)

5 Lagrangians of string via T -string from A5-brane

In this section, we derive the T -string Lagrangian from the A5-brane Lagrangian. The re-
sulting T -string Lagrangian is formulated in terms of an SL(4) rank-two antisymmetric tensor
coordinate, which is coupled to the string background. We then present the reduction proce-
dure from the T -string Lagrangian to the conventional string Lagrangian.

5.1 T -string from A5-brane

The O(3,3) T -string from A5-brane is described by the SL(4) rank-two anti-symmetric ten-
sor coordinate X mn = (x m̄, y m̄n̄) with m = 1, · · · , 4 and m̄ = 1, 2,3 as listed in Tab.
1. The SL(6) rank-two tensor coordinate is decomposed as SL(6) → SL(5) → SL(4) as
X m̂n̂ = (X 0n = Y n, X mn) → X mn = (X 5n = Y m, X mn) → X mn = (X 4m̄ = x m̄, X m̄n̄ = y m̄n̄)
with m̂= 0, 1, · · · , 5 and m= 1, · · · , 5. The 6-dimensional world-volume derivative is reduced
into the string world-sheet derivatives as ∂ m̂ = (∂ 0 = ∂τ, ∂ 5 = ∂σ, ∂ m = 0). The SL(6) field
strength for the T -string has the following components

◦
F0mn = ∂τX mn ,

◦
F5mn = ∂σX mn ,

◦
F05m = 0=

◦
F mnl . (74)

The SL(6) vielbein for the T -string has a block diagonal form as

Em̂
â =













E0
0̂ E0

5̂ E0
a

E5
0̂ E5

5̂ E5
a

Em
0̂ Em

5̂ Em
a













=















1
g

0 0

−
s
g

1 0

0 0 g1/4Em
a















. (75)

The selfdual and the anti-selfdual currents are the following combinations of the SL(6) field
strengths in (74) with (38) as

JSD/SD
a1a2 = g
�

F 0̂a1a2 ±
1
2
ε0̂a1a2 5a3a4

F 5̂a3a4

�

. (76)

The zweibein fields g and s are part of the SL(6) vielbein (75) in the new SL(6) duality symme-
try formulation in (38), contrast to that the world-volume vielbein fields are separated from
the SL(4) spacetime vielbein Em

a in the SL(5) formulation in (31) and (32) as

JSD/SD
a1a2 =

◦
JSD/SD

m1m2 Em1

a1 Em2

a2 ,
◦
JSD/SD

m1m2 = ϵτX m1m2 ±
1
2
η̂m1n1η̂m2n2(−εn1···n4

)ϵσX n3n4 ,
(77)
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with (64). The minus sign in the last equation is caused from εm̄1m̄2m̄3
x m̄3 = −εm̄1m̄24m̄3

X 4m̄3 .
The O(3,3) invariant metric ηMN becomes SL(4) invariant metric εm1···m4

. The current in (77)
is written in terms of x m̄ and y m̄n̄ as
( ◦

JSD/SD
4m̄ = ẋ m̄ − sx ′m̄ ± g 1

2ε
m̄

n̄1 n̄2
y ′n̄1 n̄2 = ϵτx m̂ ± 1

2ε
m̂

n̂1 n̂2
ϵσ y n̂1 n̂2 ,

◦
JSD/SD

m̄1m̄2 = ẏ m̄1m̄2 − s y ′m̄1m̄2 ± gεm̄1m̄2
n̄ x ′n̄ = ϵτ y m̂1m̂2 ± εm̂1m̂2

n̂ϵσx n̂ ,
(78)

which is related to the O(D,D) vector currents (65) with y m̄n̄ ≡ εm̄n̄l̄ yl̄ .
In order to obtain the usual 3-dimensional string Lagrangian we express the spacetime

vielbein Em
a ∈ SL(4)/SO(4) in terms of the 3-dimensional metric gm̄n̄ and the Bm̄n̄ field. The

O(3,3) vector index contraction and the SL(4) tensor index contraction are assumed to be
equal up to the normalization as

dX M EM
A = d x m̄Em̄

A+ d ym̄Em̄;A = dX 4 x̄ E4m̄
A+

1
2

dX m̄n̄Em̄n̄
A =

1
2

dX mnEmn
A . (79)

We rewrite the O(D,D) vielbein in (47) in terms of tensor indices for D=3 case as

EM
A =

�

em̄
ā −Bm̄l̄ eb̄

l̄εā1 ā2 b̄

0 εm̄1m̄2m̄eb̄
m̄εā1 ā2 b̄

�

= c

�

E4m̄
4ā E4m̄

ā1 ā2

Em̄1m̄2
4ā Em̄1m̄2

ā1 ā2

�

= cEm1m2

a1a2 = cE[m1

a1 Em2]
a2 ,

(80)

with a normalization factor c. The vielbein with the tensor indices can be written as the product
of the one with the vector indices

Em
a =

�

E4
4 E4

ā

Em̄
4 Em̄

ā

�

= e−1/4

�

1 −B̃n̄en̄
ā

0 em̄
ā

�

,

B̃m̄ =
1
2
εm̄n̄l̄ Bn̄l̄ ,

e= det em̄
ā .

(81)

The background gauge field in the tensor index is now

GMN = Gm1m2;n1n2
=

1
22

Em1m2

a1a2η̂a1[b1
η̂b2]a2

En1n2

b1 b2

=

�

Gm̄n̄ Gm̄;n̄1 n̄2

Gm̄1m̄2;n̄ Gm̄1m̄2;n̄1 n̄2

�

= e−1

�

gm̄n̄ − B̃ p̄ gm̄[p̄ gn̄]q̄ B̃q̄ gm̄[n̄1
gn̄2]l̄ B̃

l̄

−B̃ p̄ g p̄[m̄1
gm̄2]n̄ gm̄1[n̄1

gn̄2]m̄2

�

,

(82)

where metric of the stability group is denoted as η̂mn to distinguish from ηMN .
The T -string Lagrangian is obtained from the world-volume covariant A5-Lagrangian (40)

I =

∫

d2σ L , (83)

L =
Φ

2

�

−(F 0̂a1a2)2 + (F 5̂a1a2)2
�

+
1
2
Λ0̂5̂F 0̂a1a2 F 5̂

a1a2
+

1
2
ΛabF a0̂c F b

0̂c +
1
2
ΛabF a5̂c F b

5̂c

+
ε0̂5̂a1···a4

4

�

Λ̃0̂
0̂F 5̂a1a2 F 0̂a3a4 + Λ̃5̂

0̂F 5̂a1a2 F 5̂a3a4 − Λ̃0̂
5̂F 0̂a1a2 F 0̂a3a4 − Λ̃5̂

5̂F 0̂a1a2 F 5̂a3a4

�

,
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with η0̂0̂ = −1 and η5̂5̂ = 1. Although currents are written as field strengths, there is no gauge
symmetry of the coordinate δX mn. The T -string Lagrangian in the SL(4) tensor coordinate is
given by

L = φ
1
22

JSD
a1a2η̂a1[b1

η̂b2]a2
JSD

b1 b2 + φ̄
1
22

JSD
a1a2η̂a1[b1

η̂b2]a2
JSD

b1 b2

+ φ̃
1
22

JSD
a1a2εa1···a4

JSD
a3a4

= φ
1
22

◦
JSD

m1m2 Gm1m2;n1n2

◦
JSD

n1n2 + φ̄
1
22

◦
JSD

m1m2 Gm1m2;n1n2

◦
JSD

n1n2

+ φ̃
1
22

◦
JSD

m1m2εm1···m4

◦
JSD

m3m4 ,

(84)

with the background metric Gm1m2;n1n2
in (82).

The T -string Lagrangian in the gauge Φ= g2e and Λâ b̂ = 0= Λ̃â
b̂ as

L = −
g2e
2

�

(F 0̂a1a2)2 − (F 5̂a1a2)2
�

. (85)

The SL(4) covariant Lagrangian (84) in the gauge φ = 1
2g and φ̄ = 0= φ̃ is given as

L =
1

2g
JSD

Aη̂ABJSD
B

=
1

23 g
ϵ+X m1m2 Gm1m2;n1n2

ϵ−X n1n2

=
1

2g
(ϵ+x m̄ ϵ+ y m̄1m̄2)

�

gm̄n̄ − B̃ p̄ gm̄[p̄ gn̄]q̄ B̃q̄ gm̄[n̄1
gn̄2]l̄ B̃

l̄

−B̃ p̄ g p̄[m̄1
gm̄2]n̄ gm̄1[n̄1

gn̄2]m̄2

��

ϵ−x m̄

ϵ− y m̄1m̄2

�

.

(86)

5.2 String from T -string

We break SL(4) symmetry of T -string into GL(3) for the usual string, where the reduction of
the spacetime coordinate is performed as X mn = (X 4m̄, X m̄n̄) = (x m̄, y m̄n̄) → x m̄. We repeat
the same procedure of subsection 4.2. The SL(4) Lagrangian (86) is rewritten analogously to
(67)

1
2g

JSD
Aη̂ABJSD

B =
1

2g
ϵ+x m̄ gm̄n̄ϵ−x n̄

+
1

23 g

�

ϵ+ y m̄1m̄2 − ϵ+x [m̄1 B̃m̄2]
�

gm̄1[n̄1
gn̄2]m̄2

�

ϵ− y n̄1 n̄2 + B̃[n̄1ϵ−x n̄2]
�

.
(87)

By the dimensional reduction (2) the Lagrangian (86) reduces to the kinetic term of the string
(69).

The total derivative term which is added to obtain the Wess-Zumino term (70) becomes

−
1

22 g

�

ϵ+x m̄1ϵ− y m̄2m̄3 − ϵ−x m̄1ϵ+ y m̄2m̄3
�

εm̄1m̄2m̄3
= −

1
2
∂µ
�

εµνx m̄1∂ν y m̄2m̄3εm̄1m̄2m̄3

�

=
1
22
∂µ

�

εµνX m1m2∂νX
m3m4εm1···m4

�

.
(88)

Adding this term to the SL(4) Lagrangian (86)

1
2g

JSD
Aη̂ABJSD

B +
1
22
∂µ(ε

µνX m1m2∂νX
m3m4εm1···m4

) (89)

=
1

2g

§

ϵ+x m̄ gm̄n̄ϵ−x n̄ +
1
22
(ϵ+ y m̄1m̄2 − ϵ+x [m̄1 B̃m̄2] + ϵ+x l̄3εl̄1 l̄2 l̄3

g l̄1m̄1 g l̄2m̄2)gm̄1[n̄1
gn̄2]m̄2

×(ϵ− y n̄1 n̄2 + B̃[n̄1ϵ−x n̄2] − g n̄1 k̄1 g n̄2 k̄2εk̄1 k̄2 k̄3
ϵ−x k̄3) + ϵ+x m̄ gm̄n̄ϵ−x n̄ + 2ϵ+x m̄Bm̄n̄ϵ−x n̄

©

.
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After the dimensional reduction (2), the Lagrangian with the total derivative term reduces into
the usual string Lagrangian with the Wess-Zumino term (72),

L0 + LWZ =
1
g
ϵ+x m̄(gm̄n̄ + Bm̄n̄)ϵ−x n̄ .

6 Lagrangians of M2-brane via M5-brane from A5-brane

6.1 M5-brane from A5-brane

The GL(4) M5-brane from A5-brane is described by the GL(4) vector coordinate X 5m = xm

[18] as listed in Tab. 1. The SL(6) rank-two tensor coordinate is decomposed as
SL(6) → SL(5) → GL(4) as X m̂n̂ = (X 0n = Y n, X mn) → X mn = (X 5n = xm, X mn = ymn)
and Y m = (Y 5 = Y, Y m). The 6-dimensional world-volume derivative is reduced into the 5-
brane world-sheet derivatives as ∂ m̂ = (∂ 0 = ∂τ, ∂ 5 = 0, ∂ m = ∂σm). The SL(6) field strength
for the M5-brane has the following components























◦
F05m = ∂τxm + ∂ mY ,
◦
F5mn = −∂ [m xn] ,
◦
F0mn = ∂τ ymn − ∂ [mY n] ,
◦
F mnl = 1

2∂
[m ynl] ,

(90)

where the auxiliary coordinates ymn and Y m are preserved to begin with the SL(5) A-symmetric
M-theory Lagrangian [30].

The SL(6) vielbein for the M5-brane with SL(5) A-symmetry is given by

Em̂
â =







E0
0̂ E0

a

Em
0̂ Em

a






=







1
g

0

−
sm

g
g1/5Em

a






. (91)

It is stressed that the world-volume vielbein fields g, sm and the spacetime vielbein Em
a cannot

be in block diagonal form unlike T -string case (75). The selfdual and anti-selfdual currents in
curved background given by (32) based on (31) are the following combination of the SL(6)
field strengths in (90) with (38) as

FSD/SD
a1a2 = g
�

F 0̂a1a2 ±
1
3!
ε0̂a1a2

a3a4a5
F a3a4a5

�

. (92)

The GL(4) covariant selfdual and anti-selfdual currents in flat space are derived from the ones
of SL(5) (31) given in [1] as



















◦
FSD/SD

m = Fτ
m − 1

2ε
mn1n2n3sn1

Fσ;n2n3
± gη̂mnFσ;n

= ϵτxm ± gη̂mn(ϵσ y)n ,
◦
FSD/SD

m1m2 = Fτ
m1m2 + εm1···m4sm3

Fσ;m4
− 1

2ε
m1···m4s5Fσ;m3m4

± gη̂m1n1η̂m2n2 Fσ;n1n2

= ϵτ ym1m2 ± gη̂m1n1η̂m2n2(ϵσx)n1n2
,

(93)

where η̂mn becomes Gmn in a curved background. The brane world-volume derivatives are

25

https://scipost.org
https://scipost.org/SciPostPhys.19.1.009


SciPost Phys. 19, 009 (2025)

given as a generalization of the world-sheet zweibein dependence in (64) as


















ϵτxm ≡ Fτ
m − 1

2ε
mn1n2n3sn1

Fσ;n2n3

= ẋm + ∂ mY + sn∂
[m xn] ,

ϵτ ym1m2 ≡ Fτ
m1m2 + εm1···m4sm3

Fσ;m4

= ẏm1m2 − ∂ [m1 Y m2] + 1
2 sm3
∂ [m1 ym2m3]+s5∂

[m1 xm2] ,


















(ϵσ y)m ≡ Fσ;m

= 1
2εmn1n2n3

∂ n1 yn2n3 ,

(ϵσx)m1m2
≡ Fσ;m1m2

= −εm1···m4
∂ m3 xm4 .

(94)

The 11-dimensional supergravity background includes the gravitational metric gmn and the
three form gauge field Cmnl . We focus on the 4-dimensional subspace of the 11-dimensional
space, where the background fields are gmn and Cmnl whose number of degrees of freedom is
10+4= 14. The dimension of the coset SL(5)/SO(5) is also 24−10= 14. The vector vielbein
Em

a ∈ SL(5)/SO(5) with GL(4) indices where m= (5, m) and m= 1, · · · , 4 is given by [65]

Em
a =

�

E5
5 E5

a

Em
5 Em

a

�

=

�

e3/5 e−2/5C̃nen
a

0 e−2/5em
a

�

,

C̃ m̄ =
1
3!
εmm1m2m3 Cm1m2m3

,

e= det em
a ,

(95)

with det Em
a = 1 = εm1···m5 Em1

a1 Em2
a2 Em3

a3 Em4
a4 Em5

a5 = εa1···a5 . The tensor vielbein is the
product of the vector vielbein (95) as

Em1m2
a1a2 = E[m1

a1 Em2]
a2

=

�

E5m
5a E5m

a1a2

Em1m2

5a Em1m2

a1a2

�

=

�

e1/5em
a −e−4/5C̃nem

[a1 en
a2]

0 e−4/5em1

[a1 em2

a2]

�

.
(96)

The background gauge field in tensor index is now

GMN = Gm1m2;n1n2
=

1
22

Em1m2
a1a2η̂a1[b1

η̂b2]a2
En1n2

b1 b2

=

�

Gmn Gm;n1n2

Gm1m2;n Gm1m2;n1n2

�

= e−8/5

�

e2 gmn − C̃ p gm[p gn]q C̃q C̃ l gl[n1
gn2]m

gp[m1
gm2]n

C̃ p gm1[n1
gn2]m2

�

= e2/5

�

gmn 0
0 0

�

+ e−8/5

�

−C̃ p gm[p gn]q C̃q C̃ l gl[n1
gn2]m

gp[m1
gm2]n

C̃ p gm1[n1
gn2]m2

�

.

(97)
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Inverse of these background gauge fields are given by [65]

Ea
m =

�

E5
5 E5

m

Ea
5 Ea

m

�

=

�

e−3/5 e−3/5C̃m

0 e2/5ea
m

�

, (98)

Ea1a2
m1m2 = E[a1

m1 Ea2]
m2

=

�

E5a
5m E5a

m1m2

Ea1a2

5m Ea1a2

m1m2

�

=

�

ea
m −C̃ [m1 ea

[m2]

0 eea1

[m1 ea2

m2]

�

, (99)

GMN = Gm1m2;n1n2 =
1
22

Ea1a2
m1m2η̂a1[b1η̂b2]a2 Eb1 b2

n1n2

=

�

Gmn Gm;n1n2

Gm1m2;n Gm1m2;n1n2

�

= e2/5

�

gmn gm[n1 C̃n2]

−C̃ [m1 gm2]n e2 gm1[n1 gn2]m2 + C̃ [m1 gm2][n1 C̃n2]

�

= e8/5

�

0 0
0 gm1[n1 gn2]m2

�

+ e−2/5

�

gmn gm[n1 C̃n2]

−C̃ [m1 gm2]n C̃ [m1 gm2][n1 C̃n2]

�

. (100)

The M5-brane Lagrangian is given by the SL(5) covariant Lagrangian (33) with replacing
GL(4) indices as

L =
1
2
φ

�

FSD
aFSDa +

1
2

FSD
abFSDab

�

+
1
2
φ̄

�

(FSD
a)2 +

1
2
(FSD

ab)2
�

+
1
2
λFSD

c FSD c +λaFSD
ac FSD c +

1
2
λab

�

FSD
aFSD

b + FSD
ac FSD

b
c

�

− εa1···a4

�

1
8
λ5FSD

a1a2 FSD
a3a4 −

1
2
λa1 FSD

a2a3 FSD
a4

�

.

(101)

The Lagrangian in terms of the curved currents F ab
SD/SD

is simpler than the one in terms of the

flat currents
◦
FSD/SD

mn. The concrete expression of the Lagrangian of the M5-brane in a curved
background (101) is given as follows. We begin by the SL(5) covariant Lagrangian (33) in the
gauge φ = 1

2g and φ̄ = 0= λ’s

1
2g

FSD
Aη̂AB FSD

B =
1

8g

◦
FSD

m1m2 Gm1m2;n1n2

◦
FSD

n1n2

=
1

8g
ϵτX m1m2 Gm1m2;n1n2

ϵτX n1n2 −
g
8

Fσm1m2
Gm1m2;n1n2 Fσn1n2

=
1

2g
(ϵτxmϵτ ym1m2)

�

e2/5

�

gmn 0
0 0

�

+e−8/5

�

−C̃ p gm[p gn]q C̃q C̃ l gl[n1
gn2]m

gp[m1
gm2]n

C̃ p gm1[n1
gn2]m2

��

�

ϵτxn

ϵτ yn1n2

�

−
g
2

�

(ϵσ y)m(ϵσx)m1m2

�

�

e8/5

�

0 0
0 gm1[n1 gn2]m2

�

+e−2/5

�

gmn gm[n1 C̃n2]

−C̃ [m1 gm2]n C̃ [m1 gm2][n1 C̃n2]

���

(ϵσ y)n
(ϵσx)n1n2

�

= L0 + L y ,

(102)
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with

L0 =
e2/5

2g
ϵτxm gmnϵτxn −

ge8/5

8
(ϵσx)m1m2

gm1[n1 gn2]m2(ϵσx)n1n2
,

L y =
e−8/5

8g

�

ϵτ ym1m2 − ϵτx [m1 C̃m2]
�

gm1[n1
gn2]m2

�

ϵτ yn1n2 + C̃ [n1ϵτxn2]
�

−
ge−2/5

2

�

(ϵσ y)m + (ϵσx)ml C̃
l
�

gmn
�

(ϵσ y)n − C̃ l(ϵσx)ln
�

.

(103)

In the gauge g = e−3/5 Lagrangians take simple form as

L0 = −
e
2

�

F05aη̂abF05b −
1
4

F5a1a2η̂a1[b1
η̂b2]a2

F5b1 b2

�

,

L y = −
1
2e

�

1
2

F0a1a2η̂a1 b1
η̂b2a2

F0b1 b2 −
1
6

F a1a2a3η̂a1 b1
η̂a2 b2

η̂a3 b3
F b1 b2 b3

�

,
(104)

with m̃= (0, m).
The SL(5) U-duality symmetry of the Lagrangian (104) is broken to GL(4) symmetry by

the dimensional reduction similarly to (2). Then the kinetic term of the new perturbative
Lagrangian for a M5-brane in the 4-dimensions is given by

L0 =
e
2

�

( ẋm + ∂ mY + sl∂
[m x l])gmn( ẋ

n + ∂ nY + sk∂
[n xk])

−
1
4
∂ [m1 xm2]gm1[n1

gn2]m2
∂ [n1 xn2]
�

.
(105)

The total derivative terms to obtain the Wess-Zumino term for the M5-brane are given
analogously to the string case (70) with the gauge ∂ ms5 = 0 as

ϵτxm(ϵσ y)m −
1
2
(ϵσx)m1m2

ϵτ ym1m2

=
1
2
εm1···m4

¦

∂τ(x
m1∂ m2 ym3m4)

+ ∂ m1(xm2 ẏm3m4 + Y ∂ m2 ym3m4 − 2xm2∂ m3 Y m4 − 2s5 xm2∂ m3 xm4)
©

,

(106)

where the sn dependent terms are cancelled out because of the totally antisymmetricity of 5
indices

εm1···m4
sn

�

(∂ [m1 xn])∂ m2 ym3m4 +
1
2
(∂ m4 xm1)∂ [n ym2m3]

�

= εm1···m4
sn

1
4!
∂ [m1 xn∂ m2 ym3m4] = 0 .

(107)
Adding the total derivative term (106) to the M5-brane Lagrangian (101) in gauge φ = 1

2g ,

g = 2e−3/5, φ̄ = 0= λ’s the Lagrangian for the M5-brane becomes

1
2g

FSD
Aη̂AB FSD

B − ϵτxm(ϵσ y)m +
1
2
(ϵσx)m1m2

ϵτ ym1m2 = L0 + L y + LWZ ,

L0 =
e
4

�

ϵτxm gmnϵτxn −
1
4
(ϵσx)m1m2

gm1[n1 gn2]m2(ϵσx)n1n2

�

,

L y =
1
4e

�

1
4

�

ϵτ ym1m2 − ϵτx [m1 C̃m2] + e(ϵσx)l1 l2
g l1m1 g l2m2

�

gm1[n1
gn2]m2

×
�

ϵτ yn1n2 + C̃ [n1ϵτxn2] + egn1k1 gn2k2(ϵσx)k1k2

�

−
�

(ϵσ y)m + (ϵσx)ml C̃
l + eϵτx l glm

�

gmn
�

(ϵσ y)n − C̃k(ϵσx)kn + egnkϵτxk
�

�

,

LWZ = ϵτxm1 C̃m2(ϵσx)m1m2
. (108)
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Dimensional reduction L y → 0 gives the M5-brane Lagrangian with the Wass-Zumino term.
The obtained new M5-brane Lagrangian in the supergravity background (42) is

LM5 = L0 + LWZ ,

L0 =
e
2

�

( ẋm + ∂ mY + sl∂
[m x l])gmn( ẋ

n + ∂ nY + sk∂
[n xk])

−
1
4
∂ [m1 xm2]gm1[n1

gn2]m2
∂ [n1 xn2]
�

,

LWZ = ( ẋ
m1 + ∂ m1 Y )Cm1m2m3

∂ m2 xm3 +
1
6
(∂ m1 xm2)(∂ m3 xm4)s[m1

Cm2m3m4]
.

(109)

6.2 Non-perturbative M2-brane from M5-brane

A non-perturbative membrane action in the 11-dimensional supergravity theory is given by
[55]

I =

∫

d3σ L , L = L0 + LW Z ,

(

L0 = −T
Æ

−det∂µxm∂νxn gmn ,

LWZ =
T
3!ε
µνρ∂µxm1∂νxm2∂ρ xm3 Cm1m2m3

,

(110)

with the spacetime index m= 0, 1, · · · , 10 and the world-volume index µ= 0,1, 2. The canon-
ical coordinates are xm and pm, and the spacial world-volume coordinate derivative is ∂i with
i = 1, 2. The Hamiltonian is given by [65] where pm = ∂ L/∂ ẋm

H = pm ẋm − L

= λ0Hτ +λiHi ,
(

Hτ = 1
2 ▷aη

ab ▷b +
1
8 ▷

a1a2ηa1[b1
ηb2]a2

▷b1 b2 ,

Hi = ∂i x
mpm .

(111)

Here ▷A = (▷a, ▷ab) is related to ▷M = (▷m = pm, ▷mn = εi j∂i x
m1∂ j x

m2) as ▷A = EA
M ▷M

for the background gauge field EA
M . EA

M includes gmn and Cmnl . The Virasoro constraint
Sm = 0 in (19) is related to the constraint Hi = 0 in (111) which generates σ-diffeomorphism
by multiplying the world-volume embedding operator in (114) as Sm =Hiε

i j∂ j x
m.

We focus on the 4-dimensional subspace where the supergravity background is a repre-
sentation of the SL(5) U-duality symmetry, EA

M ∈ SL(5)/SO(5). The currents ▷m and ▷mn
are 4 and 6 components of SL(4) with m = 1, · · · , 4, which are unified into a SL(5) tensor
▷mn = (▷m, ▷mn) with m = 1, · · · , 5. The currents for a M2-brane in 4-dimensional space
(111) obtained from the membrane Lagrangian (110) are written as

(

▷m = pm ,

▷m1m2
= 1

2εm1···m4
εi j∂i x

m3∂ j x
m4 .

(112)

Commutators of (112) are given as














�

▷m(σ), ▷n(σ′)
�

= 0 ,
�

▷m1
(σ), ▷m2m3

(σ′)
�

= 2iεm1···m4
εi j∂ j x

m4∂iδ
(2)(σ−σ′) ,

�

▷m1m2
(σ), ▷m3m4

(σ′)
�

= 0 .

(113)

The p-brane current algebras with the non-perturbative winding modes d xm1 ∧ · · · ∧ d xmp are
obtained similarly in [66].
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Now let us compare the SL(5) current algebra of the non-perturbative M2-brane (113)
with the one of the M5-brane (18). The perturbative M5-brane current algebra in (18)
reduces into the non-perturbative M2-brane algebra in (113) by reducing the 5-dimensional
world-volume of the A5-brane into the 2-dimensional world-volume of the non-perturbative
M2-brane as

∂ m = εi j∂ j x
m∂i . (114)

The operator ∂ j x
m is an embedding of the membrane world-volume to the 5-brane world-

volume (where the 5-th brane coordinate is in the internal space). It has the constant form
∂ j x

m = δm
j in the static gauge for the ground state [1].

Now we plug the world-volume projection (114) into the M5-brane Lagrangian (109).
The first term in the Y = 0 gauge is given by

( ẋm + slε
i j∂ j x

m∂i x
l)gmn( ẋ

n + skε
i′ j′∂ j′ x

n∂i′ x
k)

= ( ẋa)2 + 2sb ẋaε
i j∂ j x

a∂i x
b + (sbε

i j∂ j x
a∂i x

b)2

= h00 − 2λih0i +λ
iλ jhi j ,

(115)

with
hi j = ∂i x

a∂ j xa = ∂i x
m gmn∂ j x

n , ∂i x
a ≡ em

a∂i x
m , (116)

and the membrane vielbein λi and the 5-brane vielbein sa

λi = saε
i j∂ j x

a , sa = ea
msm . (117)

The second term is given by

1
2

�

1
2
εmn

l1 l2
εi j∂ j x

l1∂i x
l2

�2

= −
1
2
(εi j∂ j x

m∂i x
n)2 = −det hi j , (118)

where the following relation is used in the last equality of (118)

det hi j =
1
2
εii′hi jhi′ j′ε

j j′ =
1
2
εii′∂i x

a∂ j xa∂i′ x
b∂ j′ xbε

j j′ =
1
2
(εi j∂ j x

a∂i x
b)2 . (119)

We choose the following gauge of the membrane world-volume metric

φ = −
p
−hh00

2
, h= det hµν , λi = −

h0i

h00
, g2 =

−1
h(h00)2

. (120)

Using with the relation
det hi j = h h00 , (121)

the kinetic term L0 in (109) becomes

L0 =
1
2

�

−
p

−h−
p

−h

�

h00h00 + 2h0ih0i +
h0ih0 j

(h00)2
hi j

��

= −
p

−h .

(122)

This is nothing but the Nambu-Goto Lagrangian for a membrane. The Wess-Zumino term LWZ
is obtained by using the world-volume projection (114) into (109) as

LWZ = ẋm1εi j∂ j x
m2∂i x

m3 Cm1m2m3
=

1
3!
εµνρ∂µxm1∂νxm2∂ρ xm3 Cm1m2m3

. (123)
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Together with the Nambu-Goto term (122) the non-perturbative M2-brane Lagrangian is ob-
tained from the perturbative A5-brane as

IM2 =

∫

d3σ L , L = L0 + LWZ ,

L0 = −
q

−det ∂µxm∂νxn gmn ,

LWZ =
1
3!
εµνρ∂µxm1∂νxm2∂ρ xm3 Cm1m2m3

.

(124)

This is the expected M2-brane Lagrangian (110) where we set T = 1.

7 Discussion

In this paper we have shown how the conventional strings and membrane are obtained from
A-theory five-brane with the SL(5) U-duality symmetry.

The following topics are interesting for future problems.

1. From A5-brane to D-branes: The A-theory background vielbein field includes the R-R
gauge fields which couple to D-branes. The Nambu-Goto Lagrangian will be obtained
analogously to the non-perturbative M2-brane Lagrangian as in subsection 6.2 with spe-
cial care of the B-field. The Wess-Zumino term will be obtained by adding total derivative
term with the B-field cloud, in such a way that the gauge transformation rule of the R-R
gauge field involves the B-field.

2. From A-theory branes to the non-perturbative M5- and NS5-branes: The superstring
theories admit the NS5-brane solutions which couple to the B-field magnetically. M-
theory features the M5-brane whose U-duality symmetry is realized by the current al-
gebra [67], while type IIB superstring theory contains both the NS5-brane and D5-brane
related by S-duality. These 5-brane Lagrangians are expected to be derived from A5-
brane and all such 5-branes should be connected via duality transformations. It is inter-
esting to clarify the structure of the 5-brane WEB including A5-brane for Lagrangians
analogous to the one for current algebras [68].

3. From open A-theory branes to heterotic strings and type I string: The Lagrangians of
open A-theory branes [26], which involve the SO(32) and E8×E8 gauge groups, as well
as other half-BPS branes, are of particular interest.

4. Quantization of A- and M-branes: The main motivation for constructing the pertur-
bative A-brane Lagrangian is to facilitate a simpler quantization procedure. Quantum
effects in string theory, including winding modes of strings and branes, play a crucial
role in understanding Planck-scale physics, such as the resolution of the early-universe
singularity. Quantizing A-theory may provide valuable insights into a unified description
of string spectra and S-matrices [69–72].

5. Higher dimensional cases: A-theories in dimensions D>3 possess U-duality symmetry
ED+1 [46,73–75]. In these cases, the spacetime and world-volume dimensions become so
large that they necessitate a new interpretation of the unphysical components of space-
time and world-volume. The construction of A-theory may offer a new perspective on
the fundamental description of string theory.
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