
SciPost Phys. 2, 003 (2017)

QuSpin: a Python package for dynamics and exact
diagonalisation of quantum many body systems

Part I: spin chains

Phillip Weinberg* and Marin Bukov

Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA

* weinbe58@bu.edu

Abstract

We present a new open-source Python package for exact diagonalisation and quantum
dynamics of spin(-photon) chains, called QuSpin, supporting the use of various sym-
metries in 1-dimension and (imaginary) time evolution for chains up to 32 sites in
length. The package is well-suited to study, among others, quantum quenches at finite
and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and
other dynamical phase transitions, periodically-driven (Floquet) systems, adiabatic and
counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin’s user-friendly
interface can easily be used in combination with other Python packages which makes it
amenable to a high-level customisation. We explain how to use QuSpin using four de-
tailed examples: (i) Standard exact diagonalisation of XXZ chain (ii) adiabatic ramping
of parameters in the many-body localised XXZ model, (iii) heating in the periodically-
driven transverse-field Ising model in a parallel field, and (iv) quantised light-atom in-
teractions: recovering the periodically-driven atom in the semi-classical limit of a static
Hamiltonian.

Copyright P. Weinberg et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 01-11-2016
Accepted 06-02-2017
Published 13-02-2017

Check for
updates

doi:10.21468/SciPostPhys.2.1.003

Contents

1 What problems can I solve with QuSpin? 2

2 How do I use QuSpin? 4
2.1 Exact diagonalisation of spin Hamiltonians 4
2.2 Adiabatic control of parameters in many-body localised phases 7
2.3 Heating in periodically driven spin chains 13
2.4 Quantised light-atom interactions in the semi-classical limit: recovering the

periodically driven atom 20

3 Future perspectives for QuSpin 23

A Installation guide in a few steps 25
A.1 Mac OS X/Linux 25

1

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
mailto:weinbe58@bu.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.2.1.003&domain=pdf&date_stamp=2017-02-13
https://doi.org/10.21468/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

A.2 Windows 25

B Basic use of command line to run Python 26
B.1 Mac OS X/Linux 26
B.2 Windows 27
B.3 Execute Python script (any operating system) 27

C Complete example codes 28

D Package documentation 38

References 38

1 What problems can I solve with QuSpin?

The study of quantum many-body dynamics comprises a variety of problems, such as dynam-
ical phase transitions (e.g. many-body localisation), thermalising time evolution, adiabatic
change of parameters, periodically-driven systems, and many others. In contrast to the tremen-
dous progress made in studying low-energy phenomena based on well-developed sophisticated
techniques, such as Quantum Monte Carlo methods [1–3], Density Matrix Renormalisation
Group [4,5], Matrix Product States [6], Dynamical Mean-Field Theory [7–9], etc., one of the
most popular “cutting-edge” investigation technique for out-of-equilibrium quantum many-
body problems remains ‘old school’ exact diagonalisation (ED).

Over the last years, there have appeared freely accessible numerical packages and libraries
which contribute to widespread the use of such numerical techniques among the condensed
matter community: the Algorithms and Libraries for Physics Simulations [10–13] (ALPS),
C++ libraries for tensor networks: ITensor [14] and Tensor Network Theory Library [15], the
Quantum Toolbox in Python (QuTiP) [16, 17], as well as the Mathematica Quantum Many-
Body Physics Package DiracQ [18] are among the most common available and freely accessible
tools. Although some of these are indeed freely accessible, not all of them are considered open-
source as they have certain restrictions about the use and/or distribution of the source code.
On the other hand, some members of the scientific community have been pushing for more
open-source software, notably in the development of Python. The authors benefited greatly
from the community development of these powerful numerical tools and so in the same spirit
we present in this paper, an optimised open-source Python package for dynamics and exact
diagonalisation of quantum many-body spin systems, called QuSpin:

• A major representative feature of QuSpin is the construction of spin Hamiltonians con-
taining arbitrary (possibly non-local in space) many-body operators. One example is the
four-spin operator O =

∑

j σ
z
jσ
+
j+1σ

−
j+2σ

z
j+3 + h.c.. Such multi-spin operators are often

times generated by the nested commutators typically appearing in higher-order terms
of perturbative expansions, such as the Schrieffer-Wolff transformation [19–21] and the
inverse-frequency expansion [22, 23]. Sometimes they appear in the study of exactly
solvable reverse-engineered models.

• Another important feature is the availability to use symmetries which, if present in a
given model, give rise to conservation laws leading to selection rules between the many-
body states. As a result, the Hilbert space reduces to a tensor product of the Hilbert

2

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
http://alps.comp-phys.org/mediawiki/index.php/Main_Page
http://itensor.org/
www.tensornetworktheory.org
http://qutip.org/
http://diracq.org/

SciPost Phys. 2, 003 (2017)

spaces corresponding to the underlying symmetry blocks. Consequently, the presence of
symmetries effectively diminishes the relevant Hilbert space dimension which, in turn,
allows one to study larger systems. Currently, QuSpin supports the following spin chain
symmetries:

– total magnetisation (particle number in the case of hard-core bosons)

– parity (i.e. reflection w.r.t. the middle of the chain)

– spin inversion (on the entire chain but also individually for sublattices A and B)

– the joint application of parity and spin inversion (present e.g. when studying stag-
gered or linear external potentials)

– translation symmetry

– all physically meaningful combinations of the above

We shall see in Sec. 2, constructing Hamiltonians with given symmetries is done by
specifying the desired combination of symmetry blocks.

• As of present date, ED methods represent one of the most reliable ways to safely study
the dynamics of a generic quantum many-body system. In this respect, it is important to
emphasise that with QuSpin the user can build arbitrary time-dependent Hamiltonians.
The package contains built-in routines to calculate the real (and imaginary) time evolu-
tion of any quantum state under a user-defined time-dependent Hamiltonian based on
SciPy’s integration tool for ordinary differential equations [24].

• Besides spin chains, QuSpin also allows the user to couple an arbitrary interacting spin
chain to a single photon mode (i.e. quantum harmonic oscillator). In this case, the total
magnetisation symmetry is replaced by the combined total photon and spin number
conservation. Such an example is discussed in Sec. 2.4.

• Last but not least, QuSpin has been especially designed to construct particularly short
and efficient ED codes (typically less than 200 lines, as we explicitly demonstrate in
Sec. 2 and App. C). This greatly reduces the amount of time required to start a new
study; it also allows users with little-to-no programming experience to do state-of-the-
art ED calculations.

Examples of ‘hot’ problems that can be studied with the help of QuSpin include:

∗ quantum quenches and quantum dynamics at finite and infinite times

∗ adiabatic and counter-diabatic ramps

∗ periodically driven (Floquet) systems

∗ many-body localisation, Eigenstate Thermalisation hypothesis

∗ quantum information

∗ quantised spin-photon interactions and similar cavity QED related models

∗ dynamical phase transitions and critical phenomena

∗ machine learning with quantum many-body systems

This list is far from being complete, but it can serve as a useful guideline to the interested user.
Overall, we believe QuSpin to be of particular interest to both students and senior re-

searchers, who can use it to quickly test new exciting ideas, and build up intuition about
quantum many-body problems.

3

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

2 How do I use QuSpin?

One of the main advantages of QuSpin is its user-friendly interface. To demonstrate how the
package works, we shall guide the reader step by step through a short snippets of Python code.
In case the reader is unfamiliar with Python, we kindly invite them to accept the challenge of
learning the Python basics, while enjoying the study of quantum many-body dynamics, see
App. B.

Installing QuSpin is quick and efficient; just follow the steps outlined in App. A.

Below, we stick to the following general guidelines: first, we define the problem containing
the physical quantities of interest and show their behaviour in a few figures. After that, we
present the QuSpin code used to generate them, broken up into its building blocks. We explain
each step in great detail. The complete code, including the lines used to generate the figures
shown below, is available in App. C. It is not our purpose in this paper to discuss in detail the
interesting underlying physics of these systems; instead, we focus on setting up the Python
code to study them with the help of QuSpin, and leave the interested reader figure out the
physics details themselves.

2.1 Exact diagonalisation of spin Hamiltonians

Physics Setup—Before we show how QuSpin can be used to solve more sophisticated time-
dependent problems, let us discuss how to set up and diagonalise static spin chain Hamiltoni-
ans. We focus here on the XXZ model in an magnetic field

H =
L−2
∑

j=0

Jx y

2

�

S+j+1S−j + h.c.
�

+ JzzSz
j+1Sz

j + hz

L−1
∑

j=0

Sz
j , (1)

where Jx y and Jzz are the x y- and zz-interaction strengths, respectively, and hz is the external
field along the z direction. Note that we enumerate the L sites of the chain by j = 0, 1, . . . , L−1
to conform with Python’s array indexing convention. We shall assume open boundary condi-
tions.

Code Analysis—Let us now build and diagonalise H using QuSpin. First, we load the re-
quired Python packages. Note that we adopt the commonly used abbreviation for NumPy,
np.

1 from quspin.operators import hamiltonian # Hamiltonians and operators
2 from quspin.basis import spin_basis_1d # Hilbert space spin basis
3 import numpy as np # generic math functions

Next, we define the physical model parameters. In doing so, it is advisable to use the floating
point when the coupling is meant to be a non-integer real number, in order to avoid problems
with division: for example, 1 is the integer 1 while 1. 0– the corresponding float. For instance,
in Python 2.7, we have 0.5 6=1/2= 0, but rather 0.5=1. 0/2. 0.

5 ##### define model parameters #####
6 L=12 # system size
7 Jxy=np.sqrt(2. 0) # xy interaction
8 Jzz_ 0=1. 0# zz interaction
9 hz=1. 0/np.sqrt(3. 0) # z external field

To set up any Hamiltonian, we need to calculate the basis of the Hilbert space it is defined
on, see line 13 below. Note that, since we work with spin operators here, it is required to
pass the flag pauli=False; failure to do so will result in a Hamiltonian defined in terms of

4

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

the Pauli spin matrices σµi = 2Sµi . One can also display the basis using the command print
basis.

11 ##### set up Heisenberg Hamiltonian in an enternal z-field #####
12 # compute spin-1/2 basis
13 basis = spin_basis_1d(L,pauli=False)

The XXZ Hamiltonian H from Eq. (1) obeys certain symmetries. In particular, one can spec-
ify a magnetisation sector (a.k.a. filling) using the basis optional argument Nup=int, where
int∈ [0, L] is any integer to specify the number of up-spins, see line 14. However, mag-
netisation is not the only integral of motion – the model also conserves parity, i.e. reflection
w.r.t. the middle of the chain. The parity operator has eigenvalues ±1 and thus further divides
the Hilbert space into two new subspaces. To restrict the Hamiltonian to either one of them,
we use the basis optional argument pblock=±1. Since parity and magnetisation commute,
it is also possible to request them simultaneously, see line 15. We stress that each one of the
lines 13-15 is sufficient to build the basis on its own and we only show them all here for
clarity.

14 basis = spin_basis_1d(L,pauli=False,Nup=L//2) # zero magnetisation sector
15 basis = spin_basis_1d(L,pauli=False,Nup=L//2,pblock=1) # and positive parity

sector

In QuSpin, many-body operators JSµ1
i1

. . . Sµn
in

are defined by a string of letters µ1, . . .µn, rep-
resenting the operator types, µi ∈["+","-","x","y","z"], together with a site-coupling list
[J , i1, . . . , in] which holds the coupling and the indices for the sites i that each spin operator
acts at on the lattice. Setting up the spin-spin operators in the XXZ model goes as follows. First,
we need to define the site-coupling lists J_zz, J_xy and h_z. To uniquely specify a two-spin
interaction, we need (i) the coupling, and (ii) – the labels of the sites the two operators act on.
QuSpin uses Python’s indexing convention meaning that the first lattice site is always i = 0,
and the last one: i = L−1. For example, for the zz-interaction, the coupling is Jzz, while the
two sites are the nearest neighbours i,i+1. Hence, the list [Jzz,i,i+1] defines the bond
operator Jzz(0)S

µ
i Sνi+1 (we specify µ and ν in the next step). To define the total interaction

energy Jzz(0)
∑L−2

i=0 Sµi Sνi+1, all we need is to loop over the L−2 bonds of the open chain12. In
the same spirit one can define boundary or single-site operators, such as h_z. It is also possible
to set up multi-spin operators, as we show in Sec. 2.3.

16 # define operators with OBC using site-coupling lists
17 J_zz = [[Jzz_ 0,i,i+1] for i in range(L-1)] # OBC
18 J_xy = [[Jxy/2. 0,i,i+1] for i in range(L-1)] # OBC
19 h_z=[[hz,i] for i in range(L-1)]

The above lines of code specify the coupling but not yet which spin operators are being coupled.
i.e. we have not yet fixed µ and ν. To do this, we need to create a static and/or dynamic
operator list. As the name suggests, static lists define time-independent operators. Given
the site-coupling list J_xy from above, it is easy to define the operator Jx y/2

∑L−2
i=0 S+i S−i+1 by

specifying the spin operator type in the same order as the site indices appear in the correspond-
ing site-coupling list: [["+-",J_xy]]. In other words, the order "+-" corresponds directly
to the site-index order "i,i+1". Similarly, one should set up the hermitian conjugate term
Jx y/2

∑L−2
i=0 S−i S+i+1 as [["-+",J_xy]]. In the end, one can concatenate these operator lists

to produce the static part of the Hamiltonian.

20 # static and dynamic lists
21 static = [["+-",J_xy],["-+",J_xy],["zz",J_zz]]

1The Python expression range(L-1) produces all integers between 0 and L-2 including.
2For periodic boundary conditions we need a connection from L-1 to 0, which is easily accomplished with the

modulo (%) operator and looping over all sites: [[J_zz_0,i,(i+1)% L] for i in range(L)].

5

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

If the Hamiltonian has time dependence, it is defined using dynamic lists. Since we are dealing
with a static problem in this section, we set the dynamic to an empty list. In the following
three sections, we show how to set up non-trivial time-dependent Hamiltonians.

22 dynamic=[]

Once the static and dynamic lists are set up, building up the corresponding Hamiltonian is
a one-liner. In QuSpin, this is done using the hamiltonian constructor class, see line 24
below. The first required argument is the static list, while the second one – the dynamic list.
These two arguments must appear in this order. Another argument is the basis, which carries
the necessary information about symmetries. Yet whether a given Hamiltonian has these sym-
metries, depends on the operators defined in the static and dynamic lists. The hamiltonian
class performs an automatic check on the Hamiltonian for hermiticity, the presence of mag-
netisation conservation and other requested symmetries, and raises an error if these checks
fail.

23 # compute the time-dependent Heisenberg Hamiltonian
24 H_XXZ = hamiltonian(static,dynamic,basis=basis,dtype=np.float64)

Having set up the Hamiltonian, we now briefly discuss a few ED routines. If one is only
interested in the spectrum E, one can obtain it as follows:

26 ##### various exact diagonalisation routines #####
27 # calculate entire spectrum only
28 E=H_XXZ.eigvalsh()

If, on top, one also needs the unitary matrix V with the corresponding eigenvectors in its
columns, the proper command is

29 # calculate full eigensystem
30 E,V=H_XXZ.eigh()

Often times, one does not need to fully diagonalise H, but a part of the spectrum suffices.
For instance, if one is interested in the many-body bandwidth of the model, it can be com-
puted from the smallest and largest eigenvalues. This can be done efficiently using the eigsh
attribute (eigenvalues of a sparse hermitian matrix), see line 32 below. The optional ar-
gument k=2 ensures that only two eigenstates are calculated. To determine which ones, the
argument which="BE" specifies them to be the two states at Both Ends of the spectrum3. Con-
vergence of the underlying diagonalisation algorithm is enforced by explicitly specifying the
number of maximal iterations: maxiter=1E4. If we do not want the eigenstates returned, we
use return_eigenvectors=False.

31 # calculate minimum and maximum energy only
32 Emin,Emax=H_XXZ.eigsh(k=2,which="BE",maxiter=1E4,return_eigenvectors=False)

Last, we show how to find that eigenenergy and eigenstate, closest to a given predefined energy
E_star. This is also done using the eigsh attribute. Since we request only one state, we set
k=1. The predefined energy is then passed using the optional argument sigma4. More on how
eigsh works can be found in the SciPy online documentation.

33 # calculate the eigenstate closest to energy E_star
34 E_star = 0. 0
35 E,psi_ 0=H_XXZ.eigsh(k=1,sigma=E_star,maxiter=1E4)
36 psi_ 0=psi_ 0.reshape((-1,))

The entire code is available in Example Code 1.

3This option is currently available only for real Hamiltonians
4If sigma falls exactly on an eigenvalue of the matrix (within machine precision) this function will stop the

execution of the program and display an error.

6

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.linalg.eigsh.html

SciPost Phys. 2, 003 (2017)

2.2 Adiabatic control of parameters in many-body localised phases

Physics Setup—Strongly disordered many-body models have recently enjoyed a lot of attention
in the theoretical condensed matter community. It has been shown that, beyond a critical dis-
order strength, these models undergo a dynamical phase transition from an delocalised ergodic
(thermalising) phase to a many-body localised (MBL), i.e. non-conducting, non-thermalising
phase, in which the system violates the Eigenstate Thermalisation hypothesis [25–31].

In our first QuSpin example, we show how one can study the adiabatic control of model
parameters in many-body localised phases. It was recently argued that the adiabatic theorem
does not apply to disordered systems [32]. On the other hand, controlling the system param-
eters in MBL phases is of crucial experimental [33–37] significance. Thus, the question as to
whether there exists an adiabatic window for some, possibly intermediate, ramp speeds (as is
the case for periodically-driven systems [38]), is of particular and increasing importance.

Let us consider the XXZ open chain in a disordered z-field with the time-dependent Hamil-
tonian

H(t) =
L−2
∑

j=0

Jx y

2

�

S+j+1S−j + h.c.
�

+ Jzz(t)S
z
j+1Sz

j +
L−1
∑

j=0

h jS
z
j ,

Jzz(t) = (1/2+ vt)Jzz(0), (2)

where Jx y is the spin-spin interaction in the x y-plane, disorder is modelled by a uniformly
distributed random field h j ∈ [−h0, h0] of strength h0 along the z-direction, and the spin-spin
interaction along the z-direction – Jzz(t) – is the adiabatically-modulated (ramp) parameter.
In the following, we set Jzz(0) = 1 as the energy unit. It has been demonstrated that this
model exhibits a transition to an MBL phase [39]. In particular, for h0 = hMBL = 3.72 the
system is in a many-body localised phase, while for h0 = hETH = 0.1 the system is in the
ergodic (ETH) delocalised phase. We now choose the ramp protocol Jzz(t) = (1/2+ vt)Jzz(0)
with the ramp speed v, and evolve the system with the Hamiltonian H(t) from t i = 0 to5

t f = (2v)−1. We choose the initial state |ψi〉 = |ψ(t i)〉 from the middle of the spectrum of
H(t i) to ensure typicality; more specifically we choose |ψi〉 to be that eigenstate of H(t i)whose
energy is closest to the middle of the spectrum of H(t i), where the density of states, and thus
the thermodynamic entropy, is largest.

To determine whether the system can adiabatically follow the ramp, we use two different
indicators: (i) we evolve the state up to time t f and project it onto the eigenstates of H(t f).
The corresponding diagonal entropy density:

sd = −
1
L

tr [ρd logρd] , ρd =
∑

n

|〈n|ψ(t f)〉|2|n f 〉〈n f |, (3)

in the basis {|n f 〉} of H(t f) at small enough ramp speeds v, is a measure of the delocalisation
of the time-evolved state ψ(t f)〉 among the energy eigenstates of H(t f). If, for instance, after
the ramp the system still occupies a single eigenstate |ñ f 〉, then sd = 0.

The second measure of adiabaticity we use is (ii) the entanglement entropy density

sent(t f) = −
1
|A|

trA

�

ρA(t f) logρA(t f)
�

, ρA(t f) = trAc |ψ(t f)〉〈ψ(t f)|, (4)

of subsystem A, defined to contain the left half of the chain and |A| = L/2. We denoted the
reduced density matrix of subsystem A by ρA, and Ac is the complement of A.

Figure 1 shows the entropies vs. ramp speed in the MBL and ETH phases. The interesting
underlying physics is, however, beyond the purpose of this paper.

5Notice that t f →∞ as v→ 0 and thus, the total evolution time increases with decreasing the ramp speed v.

7

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

v/Jzz(0)
0.16

0.18

0.20

0.22

0.24

0.26

0.28
s d

(t
f
)

10-2 10-1 100

v/Jzz(0)

0.465

0.470

0.475

0.480

0.485

0.490

0.495

s e
n
t(
t f

)

(a) ETH phase

v/Jzz(0)
0.035

0.040

0.045

0.050

0.055

0.060

0.065

s d
(t
f
)

10-2 10-1 100

v/Jzz(0)

0.060

0.065

0.070

0.075

0.080

0.085

0.090

s e
n
t(
t f

)

(b) MBL phase

Figure 1: Diagonal and entanglement entropy densities as a function of the ramp speed in the
MBL and delocalised (ETH) phases of the ramped disordered XXZ model. The ramped protocol
is chosen as Jzz(t) = (1/2+vt)Jzz(0). The parameters are Jx y/Jzz(0) = 1.0, hMBL/Jzz(0) = 3.9,
hETH/Jzz(0) = 0.1, and L = 10. Disorder averaging was performed over 1000 realisations.

Code Analysis—Let us now explain how one can study this problem numerically using QuS-
pin. We begin by first loading the required Python packages.

1 from quspin.operators import hamiltonian # Hamiltonians and operators
2 from quspin.basis import spin_basis_1d # Hilbert space spin basis
3 from quspin.tools.measurements import ent_entropy, diag_ensemble # entropies
4 from numpy.random import ranf,seed # pseudo random numbers
5 from joblib import delayed,Parallel # parallelisation
6 import numpy as np # generic math functions
7 from time import time # timing package

Since we want to produce many realisations of the data and average over disorder, we specify
the simulations parameters: n_real is the number of disorder realisations, while n_jobs is
the joblib parallelisation parameter which determines how many Python processes to run
simultaneously6.

9 ##### define simulation parameters #####
10 n_real=2 0# number of disorder realisations
11 n_jobs=2 # number of spawned processes used for parallelisation

Next, we define the physical model parameters.

13 ##### define model parameters #####
14 L=1 0# system size
15 Jxy=1. 0# xy interaction
16 Jzz_ 0=1. 0# zz interaction at time t= 0
17 h_MBL=3.9 # MBL disorder strength
18 h_ETH= 0.1 # delocalised disorder strength
19 vs=np.logspace(-2. 0, 0. 0,num=2 0,base=1 0) # log_2-spaced vector of ramp speeds

The time-dependent disordered Hamiltonian consists of two parts: the time-dependent XXZ
model which is disorder-free, and the disorder field whose values differ from one realisation
to another. We focus on the XXZ part first. Let us code up the driving protocol given by
Jzz(t) = (1/2+ vt)Jzz(0). As already explained, our goal is to obtain the disorder-averaged

6While one can spawn as many processes as one desires, it is optimal to spawn only about as many processes
as there are available cores in the processor.

8

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

entropies as a function of the ramp speed v. Hence, for each disorder realisation, we need to
evolve the initial state many times, each corresponding to a different ramp speed. However,
calculating the Hamiltonian every single time is not particularly efficient from the point of view
of simulation runtime. We thus want to set up a family of Hamiltonians {v : H(t; v)} at once,
and we shall employ Python’s features to do so. This will require that the drive speed v is not a
parameter of the function ramp, see line 29, but is declared beforehand as a global variable.
Once, ramp has been defined, reassigning v dynamically induces the corresponding change in
ramp without any need to re-define ramp itself. We shall comment on how this works later on
in the code.

26 ##### set up Heisenberg Hamiltonian with linearly varying zz-interaction #####
27 # define linear ramp function
28 v = 1. 0# declare ramp speed variable
29 def ramp(t):
30 return (0.5 + v*t)
31 ramp_args=[]

To set up the static part of the Hamiltonian, we follow the same steps as in Sec. 2.1. Since the
Hamiltonian (2) conserves the total magnetisation, the overlap betweens states of different
magnetisation sectors vanishes trivially, and we can reach larger system sizes by working in a
fixed magnetisation sector. A natural choice is the zero-magnetisation sector which contains
the ground state. Parity is broken by the disorder field, so we leave it out.

The time-dependent part of the Hamiltonian is defined using dynamic lists. Similar to their
static counterparts, one needs to define an operator string, say "zz" to declare the specific
operator from a site-coupling list. Apart from the site-coupling list J_zz, however, a dynamic
list also requires a time-dependent function and its arguments, see line 34 below7. In the
linearly driven XXZ-Hamiltonian we are setting up here, the function arguments ramp_args
is an empty list, see line 31 above. The careful reader might have noticed that there is a
certain freedom in coding the coupling of the time-dependent term, Jzz(t) = (1/2+ vt)Jzz(0):
here we choose to include the constant Jzz_ 0in the zz site-coupling list and hence this factor
is absent in the definition of the ramp function. Building the Hamiltonian is straightforward,
as we explained in Sec. 2.1.

27 # compute basis in the 0-total magnetisation sector (requires L even)
28 basis = spin_basis_1d(L,Nup=L//2,pauli=False)
29 # define operators with OBC using site-coupling lists
30 J_zz = [[Jzz_ 0,i,i+1] for i in range(L-1)] # OBC
31 J_xy = [[Jxy/2. 0,i,i+1] for i in range(L-1)] # OBC
32 # static and dynamic lists
33 static = [["+-",J_xy],["-+",J_xy]]
34 dynamic =[["zz",J_zz,ramp,ramp_args]]
35 # compute the time-dependent Heisenberg Hamiltonian
36 H_XXZ = hamiltonian(static,dynamic,basis=basis,dtype=np.float64)

To produce the entropies vs. ramp speed data over many disorder realisations, we define the
function realization which returns a two NumPy arrays for the MBL and ETH phases re-
spectively. Each array contains values of the values of the diagonal entropy density sd , and the
values of the entanglement entropy density sent for each velocity, as columns of the array. We
now walk the reader step by step through the definition of realization. The first argument
is the vector of ramp speeds, vs, required for the dynamics. The second argument is the time-
dependent XXZ Hamiltonian H_XXZ to which we shall be adding a disordered z-field for each
disorder realisation. The third argument is the spin basis which is required to calculate sent.
The fourth (last) argument is the realisation number, which is only used to print a message
about the duration of the single realisation run.

7All functions passed in the dynamic list are assumed to be defined with time as the first arguement.

9

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

38 ##### calculate diagonal and entanglement entropies #####
39 def realization(vs,H_XXZ,basis,real):
40 """
41 This function computes the entropies for a single disorder realisation.
42 --- arguments ---
43 vs: vector of ramp speeds
44 H_XXZ: time-dep. Heisenberg Hamiltonian with driven zz-interactions
45 basis: spin_basis_1d object containing the spin basis
46 n_real: number of disorder realisations; used only for timing
47 """

We time each realisation simulation, using the package time:

48 ti = time() # get start time

In order to properly be able to use HXXZ(t; v) as a family of Hamiltonians in v (we shall see
exactly how this works in a moment), we explicitly declare the variable v global.

50 global v # declare ramp speed v a global variable

Since the problem involves disorder, we have to generate multiple disorder realisations. In this
case, it is recommended to reset the pseudo-random number generator before any random
numbers have been drawn. This is because the code spawns multiple python processes to
do the disorder realization in parallel. Therefore, if the pseudo-random number generator
is seeded before the new processes are spawned, all the parallel jobs will produce the same
disorder realizations.

52 seed() # the random number needs to be seeded for each parallel process

Next, we set up the full disordered time-dependent Hamiltonian of the problem, given by
H(t) = HXXZ(t) +

∑

j h jS
z
j . The random field h j differs from one realisation to another and

is, therefore, defined inside the realization function. Recall that we want to compare the
localised with the delocalised regimes, corresponding to the disorder strengths hMBL and hETH,
respectively. For each lattice site i we draw a random number unscaled_fields[i] uni-
formly in the interval [−1, 1], and store it in the vector unscaled_fields, see line 55 below.
Building the external z-field proceeds in exactly the same way as before: (i) we calculate the
site-coupling list, line 57, (ii) we designate that the operator is along the z-axis by defining a
static operator list, line 59, and (iii) we use the already computed spin basis to construct the
operator matrix with the hamiltonian class, lines 61-62. QuSpin has the option to disable
the default checks on hermiticity, magnetisation (particle number) conservation, and symme-
tries using the auxiliary dictionary no_checks passed straight to hamiltonian as keyword
arguments. This can allow the user to define non-hermitian operators. Last, in lines 64-65,
we define the MBL and ETH time-dependent Hamiltonians, corresponding to the two disorder
strengths hETH and hMBL .

54 # draw random field uniformly from [-1. 0,1. 0] for each lattice site
55 unscaled_fields=-1+2*ranf((basis.L,))
56 # define z-field operator site-coupling list
57 h_z=[[unscaled_fields[i],i] for i in range(basis.L)]
58 # static list
59 disorder_field = [["z",h_z]]
60 # compute disordered z-field Hamiltonian
61 no_checks={"check_herm":False,"check_pcon":False,"check_symm":False}
62 Hz=hamiltonian(disorder_field,[],basis=basis,dtype=np.float64,**no_checks)
63 # compute the MBL and ETH Hamiltonians for the same disorder realisation
64 H_MBL=H_XXZ+h_MBL*Hz
65 H_ETH=H_XXZ+h_ETH*Hz

10

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

Let us first focus on the MBL phase. We want the initial state to be as close as possible to
an infinite-temperature state within the given symmetry sector. To this end, we can first cal-
culate the minimum and maximum energy, Emin and Emax of the spectrum of HMBL(t = 0).
Then, by taking the ‘centre-of-mass’ we obtain a number, E_inf_temp, which represents the
infinite-temperature energy up to finite-size effects, line 72. Note that the **eigsh_args is
a standard Python way of reading off the arguments by name from a dictionary.

67 ### ramp in MBL phase ###
68 v=1. 0# reset ramp speed to unity
69 # calculate the energy at infinite temperature for initial MBL Hamiltonian
70 eigsh_args={"k":2,"which":"BE","maxiter":1E4,"return_eigenvectors":False}
71 Emin,Emax=H_MBL.eigsh(time= 0. 0,**eigsh_args)
72 E_inf_temp=(Emax+Emin)/2. 0

The initial state psi_ 0is then that eigenstate of HMBL(t = 0), whose energy is closest to
E_inf_temp, using optional argument sigma=E_inf_temp.

73 # calculate nearest eigenstate to energy at infinite temperature
74 E,psi_ 0=H_MBL.eigsh(time= 0. 0,k=1,sigma=E_inf_temp,maxiter=1E4)
75 psi_ 0=psi_ 0.reshape((-1,))

The calculation of the diagonal entropy density sd requires the eigensystem of the Hamiltonian
HMBL(t f) at the end of the ramp t f = (2v f)−2. The entire spectrum and the corresponding
eigenstates are obtained using the hamiltonian method eigh. For time-dependent Hamilto-
nians, eigh accepts the argument time to specify the time slice. Unless explicitly specified,
time= 0. 0by default. Note that we re-set the ramp speed v to unity to calculate the correct
eigensystem of the Hamiltonian at the end of the ramp, since v a parameter of H(t; v) (see
line 68).

76 # calculate the eigensystem of the final MBL hamiltonian
77 E_final,V_final=H_MBL.eigh(time=(0.5/vs[-1]))

To calculate the entropies for each ramp speed, we use the helper function _do_ramp (de-
fined below), which first evolves the initial state according to the v-dependent Hamiltonian
HMBL(t; v) for a fixed ramp speed v. In line 78 we loop over the ramp speed vector vs. More
importantly, however, the iteration index v carries the same name as the parameter in the
drive function ramp. Thus, every time a new ramp speed is read off the vector vs, the external
parameter v changes its value. Because v is a global variable, this change induces a change
into the function ramp which, in turn, induces a change in the dynamic list. Thus, at the end
of the day, a new member of the family of MBL Hamiltonians, {v : HMBL(t; v)}, is picked and
parsed to _do_ramp to do the time evolution with. Hence, we end up with a convenient and
automatic way of generating the whole family {v : HMBL(t; v)}, while having to calculate the
operators in the Hamiltonian only once.

78 # evolve states and calculate entropies in MBL phase
79 run_MBL=[_do_ramp(psi_ 0,H_MBL,basis,v,E_final,V_final) for v in vs]
80 run_MBL=np.vstack(run_MBL).T

It remains to discuss the helper function _do_ramp. Its job is to evolve the initial state psi_ 0
with the hamiltonian object H and to calculate the entropies at the end of the ramp.

100 ##### evolve state and evaluate entropies #####
101 def _do_ramp(psi_ 0,H,basis,v,E_final,V_final):
102 """
103 Auxiliary function to evolve the state and calculate the entropies after the
104 ramp.
105 --- arguments ---
106 psi_ 0: initial state

11

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

107 H: time-dependent Hamiltonian
108 basis: spin_basis_1d object containing the spin basis (required for Sent)
109 E_final, V_final: eigensystem of H(t_f) at the end of the ramp t_f=1/(2v)
110 """

Given a ramp speed v, we first determine the total ramp time t_f. Evolving a quantum state
under any Hamiltonian H is easily done with the hamiltonianmethod evolve, see line 114.
evolve requires the initial state psi_ 0, the starting time – here 0. 0, and a vector of times to
return the evolved state at, but since we are only interested in the state at the final time – we
pass the final time t_f. The evolve method has further interesting features which we discuss
in Secs. 2.3 and 2.4.

111 # determine total ramp time
112 t_f = 0.5/v
113 # time-evolve state from time 0. 0to time t_f
114 psi = H.evolve(psi_ 0, 0. 0,t_f)

Once we have the state at the end of the ramp, we can obtain the entropies as follows. Calcu-
lating sent is done using the measurements function ent_entropywhich we imported in line
3. It requires the quantum state (here the pure state psi), and the basis the state is stored
in8. Optionally, one can specify the site indices which define the subsystem retained after the
partial trace using the argument chain_subsys. Note that ent_entropy returns a dictionary,
in which the value of the entanglement entropy is stored under the key "Sent". The function
ent_entropy has a many further features, described in the documentation, see App. D.

115 # calculate entanglement entropy
116 subsys = range(basis.L//2) # define subsystem
117 Sent = ent_entropy(psi,basis,chain_subsys=subsys)["Sent"]

Similarly, there is a built-in function to calculate the diagonal entropy density sd of a state psi
in a given basis (here V_final), called diag_ensemble. This function can calculate a variety
of interesting quantities in the diagonal ensemble defined by the eigensystem arguments (here
E_final, V_final). We again invite the interested reader to check out the documentation in
App. D.

118 # calculate diagonal entropy in the basis of H(t_f)
119 S_d = diag_ensemble(basis.L,psi,E_final,V_final,Sd_Renyi=True)["Sd_pure"]

This concludes the definition of _do_ramp.
Back to the function realization, we have already seen how to obtain the entropies in

the MBL phase. We now do the same thing in the delocalised ETH phase. The code is the same
as the MBL one:

81 ### ramp in ETH phase ###
82 v=1. 0# reset ramp speed to unity
83 # calculate the energy at infinite temperature for initial ETH hamiltonian
84 Emin,Emax=H_ETH.eigsh(time= 0. 0,**eigsh_args)
85 E_inf_temp=(Emax+Emin)/2. 0
86 # calculate nearest eigenstate to energy at infinite temperature
87 E,psi_ 0=H_ETH.eigsh(time= 0. 0,k=1,sigma=E_inf_temp,maxiter=1E4)
88 psi_ 0=psi_ 0.reshape((-1,))
89 # calculate the eigensystem of the final ETH hamiltonian
90 E_final,V_final=H_ETH.eigh(time=(0.5/vs[-1]))
91 # evolve states and calculate entropies in ETH phase
92 run_ETH=[_do_ramp(psi_ 0,H_ETH,basis,v,E_final,V_final) for v in vs]
93 run_ETH=np.vstack(run_ETH).T # stack vertically elements of list run_ETH

8The basis is required since the subsystem may not share the same symmetries as the entire chain.

12

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

We can now display how long the single iteration took

95 # show time taken
96 print("realization { 0}/{1} took {2:.2f} sec".format(real+1,n_real,time()-ti))

and conclude the definition of realization:

98 return run_MBL,run_ETH

Now that we have written the realization function, we can call it n_real times to pro-
duce the data. The easiest way of doing this is to loop over the disorder realisation, as shown
in lines 126-129. However, a better to proceed makes use of the joblib package which
can distribute simultaneous function calls over n_job Python processes, see line 13 09,10. To
learn more about how this works, we invite the readers to check the documentation of joblib.
Having produced and extracted the entropy vs. ramp speed data, we are ready to perform the
disorder average by taking the mean over all realisations, lines 133-135.

123 ##### produce data for n_real disorder realisations #####
124 # __name__ == ’__main__’ required to use joblib in Windows.
125 if __name__ == ’__main__’:
126 """
127 # alternative way without parallelisation
128 data = np.asarray([realization(vs,H_XXZ,basis,i) for i in range(n_real)])
129 """
130 data = np.asarray(Parallel(n_jobs=n_jobs)(delayed(realization)(vs,H_XXZ,basis

,i) for i in range(n_real)))
131 #
132 run_MBL,run_ETH = zip(*data) # extract MBL and data
133 # average over disorder
134 mean_MBL = np.mean(run_MBL,axis= 0)
135 mean_ETH = np.mean(run_ETH,axis= 0)

The complete code including the lines that produce Fig. 1 is available in Example Code 2.

2.3 Heating in periodically driven spin chains

Physics Setup—As a second example, we now show how one can easily study heating in the
periodically-driven transverse-field Ising model with a parallel field [40–42]. This model is
non-integrable even without the time-dependent driving protocol. The time-periodic Hamil-
tonian is defined as a two-step protocol as follows:

H(t) =

¨

J
∑L−1

j=0 σ
z
jσ

z
j+1 + h

∑L−1
j=0 σ

z , t ∈ [−T/4, T/4]

g
∑L−1

j=0 σ
x
j , t ∈ [T/4, 3T/4]

«

mod T,

=
L−1
∑

j=0

1
2

�

Jσz
jσ

z
j+1 + hσz + gσx

j

�

+
1
2

sgn [cosΩt]
�

Jσz
jσ

z
j+1 + hσz − gσx

j

�

. (5)

Unlike the previous example, here we consider a closed spin chain with a periodic boundary
(i.e. a ring). The spin-spin interaction strength is denoted by J , the transverse field – by g, and
the parallel field – by h. The period of the drive is T and, although the periodic step protocol
contains infinitely many Fourier harmonics, we shall refer to Ω = 2π/T as the frequency of
the drive.

9The if-statement if __name__ == "__main__" in line 125 is required by joblib to protect the parallel
loop from recursively spawning python processes on Windows OS. For Linux/OS X it can safely be omitted.

10Because joblib spawns independent Python processes, the global variable v is not shared between them and
so changing the value of v in one process will not effect the other processes.

13

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

Since the Hamiltonian is periodic, H(t + T) = H(t), Floquet’s theorem applies and pos-
tulates that the dynamics of the system at times lT , integer multiple of the driving period
(a.k.a. stroboscopic times), is governed by the time-independent Floquet Hamiltonian HF . In
other words, the evolution operator is stroboscopically given by

U(lT) = Tt exp

�

−i

∫ lT

0

H(t)dt

�

= exp(−ilT HF). (6)

While the Floquet Hamiltonian for this system cannot be calculated analytically, a suitable
approximation can be found at high drive frequencies by means of the van Vleck inverse-
frequency expansion [22, 43]. However, this expansion is known to calculate the effective
Floquet Hamiltonian Heff in a different basis than the original stroboscopic one:

HF = exp[−iKeff(0)]Heff exp[iKeff(0)],

which requires the additional calculation of the so-called Kick operator Keff(0) to ‘rotate’ to the
original basis.

In the inverse-frequency expansion, we expand both Heff and Keff(0) in powers of the in-
verse frequency. Let us label these approximate objects by the superscript (n), suggesting that
the corresponding operators are of order O (Ω−n):

HF = H(0)F +H(1)F +H(2)F +H(3)F +O (Ω
−4) = H(0+1+2+3)

F +O (Ω−4),

Heff = H(0)eff +H(1)eff +H(2)eff +H(3)eff +O (Ω
−4),

Keff = K(0)eff + K(1)eff + K(2)eff + K(3)eff +O (Ω
−4),

Using the short-hand notation one can show that, for this problem, all odd-order terms in the
van Vleck expansion vanish [see App. G of Ref. [44]]

H(0+1+2+3)
F = H(0+2)

F ≈ e−iK(2)eff (0)
�

H(0)eff +H(2)eff

�

e+iK(2)eff (0), (7)

while the first few even-order ones are given by

H(0)eff =
1
2

∑

j

Jσz
jσ

z
j+1 + hσz

j + gσx
j ,

H(2)eff = −
π2

12Ω2

∑

j

J2 gσz
j−1σ

x
j σ

z
j+1 + J gh(σx

j σ
z
j+1 +σ

z
jσ

x
j+1) + J g2(σ y

j σ
y
j+1 −σ

z
jσ

z
j+1)

+
�

J2 g +
1
2

h2 g
�

σx
j +

1
2

hg2σz
j ,

K(0)eff = 0,

K(2)eff (0) =
π2

8Ω2

∑

j

J g
�

σz
jσ

y
j+1 +σ

y
j σ

z
j+1

�

+ hgσ y
j , (8)

It was recently argued based on the aforementioned Floquet theorem that, in a closed peri-
odically driven system, stroboscopic dynamics is sufficient to completely quantify heating [45],
and we shall make use of this fact in our little study here. We choose as the initial state the
ground state of the approximate Hamiltonian H(0+1+2+3)

F and denote it by |ψi〉:

|ψi〉= |GS(H(0+1+2+3)
F)〉. (9)

14

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

Regimes of slow and fast heating can then be easily detected by looking at the energy density
E absorbed by the system from the drive

E (lT) =
1
L
〈ψi|eilT HF H(0+1+2)

F e−ilT HF |ψi〉, (10)

and the entanglement entropy of a subsystem. We call this subsystem A and define it to contain
L/2 consecutive chain sites11:

sent(lT) = −
1
LA

trA [ρA(lT) logρA(lT)] , with ρA(lT) = trAc

�

e−ilT HF |ψi〉〈ψi|eilT HF
�

, (11)

where the partial trace in the definition of the reduced density matrix (DM) ρA is over the
complement of A, denoted Ac, and LA = L/2 denotes the length of subsystem A.

Since heating can be exponentially slow at high frequencies [46–49], one might be inter-
ested in calculating also the infinite-time quantities

E = lim
N→∞

1
N

N
∑

l=0

E (lT), srdm = −
1
LA

trA

�

ρA logρA

�

, sF
d = −

1
L

tr
�

ρF
d logρF

d

�

, (12)

where ρA is the infinite-time reduced DM of subsystem A, and ρF
d is the DM of the Diagonal

ensemble [50] in the exact Floquet basis {|nF 〉: HF |nF 〉= EF |nF 〉}:

ρA = lim
N→∞

1
N

N
∑

l=0

ρA(lT) = trAc

�

ρF
d

�

, ρF
d =

∑

n

|〈ψi|nF 〉|2|nF 〉〈nF |.

We note in passing that in general srdm 6= limN→∞ N−1
∑N

l=0 sent(lT) due to interference terms,
although the two may happen to be close.

In Fig. 2 we show the time evolution of E (lT) and sent(lT) as a function of the number of
driving cycles l for a given drive frequency, together with their infinite-time values.

Code Analysis—Let us now discuss the QuSpin code for this problem in detail. First we
load the required classes, methods and functions required for the computation:

1 from quspin.operators import hamiltonian # Hamiltonians and operators
2 from quspin.basis import spin_basis_1d # Hilbert space spin basis
3 from quspin.tools.measurements import obs_vs_time, diag_ensemble # t_dep

measurements
4 from quspin.tools.Floquet import Floquet, Floquet_t_vec # Floquet Hamiltonian
5 import numpy as np # generic math functions

After that, we define the model parameters:

8 L=14 # system size
9 J=1. 0# spin interaction

10 g= 0.8 09 # transverse field
11 h= 0.9 045 # parallel field
12 Omega=4.5 # drive frequency

The time-periodic step drive of frequency Omega can easily be incorporated through the fol-
lowing function:

15 # define time-reversal symmetric periodic step drive
16 def drive(t,Omega):
17 return np.sign(np.cos(Omega*t))
18 drive_args=[Omega]

11Since we use periodic boundaries, it does not matter which consecutive sites we choose. In fact, in QuSpin
the user can choose any (possibly disconnected) subsystem to calculate the entanglement entropy and the reduced
DM, see the documentation in App. D.

15

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

0 20 40 60 80 100
periods l

0.4

0.2

0.0

0.2

0.4

0.6

E
srdm

sFd

E(lT)

sent(lT)

Figure 2: Stroboscopic dynamics of the energy density and entanglement entropy density
(solid lines), together with their infinite-time values (dashed lines) in the periodically-driven
TFIM in a parallel field. The parameters are g/J = 0.809, h/J = 0.9045, Ω/J = 4.5, and
L = 14.

Next, we define the basis, similar to the example in Sec. 2.2. One can convince oneself that
the Hamiltonian in Eq. (5) possesses two symmetries at all times t which are, therefore, also
inherited by the Floquet Hamiltonian. These are translation invariance and parity (i.e. reflec-
tion w.r.t. the centre of the chain). To incorporate them, one needs to specify the desired block
for each symmetry: kblock=int selects the many-body states of total momentum 2π/L*int,
while pblock=±1 sets the parity sector. For all total momenta different from 0 and π, the
translation operator does not commute with parity, in which case semi-momentum states pro-
ducing a real Hamiltonian are the natural choice [51]. The optional argument a=1 specifies
the number of sites per unit cell12.

19 # compute basis in the 0-total momentum and +1-parity sector
20 basis=spin_basis_1d(L=L,a=1,kblock= 0,pblock=1)

The definition of the site-coupling lists proceeds similarly to the MBL example above. It is
interesting to note how the periodic boundary condition is encoded in line 25 using the
modulo operator %. Compared to open boundaries, the PBC J_nn list now also has a total of
L elements, as many as there are sites and bonds on the ring.

21 # define PBC site-coupling lists for operators
22 x_field_pos=[[+g,i] for i in range(L)]
23 x_field_neg=[[-g,i] for i in range(L)]
24 z_field=[[h,i] for i in range(L)]
25 J_nn=[[J,i,(i+1)%L] for i in range(L)] # PBC

To program the full Hamiltonian H(t), we use the second line of Eq. (5). The time-independent
part is defined using the static operator list. For the time-dependent part, we need to pass
the function drive and its arguments drive_args, defined in lines 15-18, to all operators
the drive couples to. In fact, QuSpin is smart enough to automatically sum up all operators
multiplied by the same time-dependent function in any dynamic list created. Note that since
we are dealing with a Hamiltonian defined by Pauli matrices and not the spin-1/2 operators,
we drop the optional argument pauli for the hamiltonian class, since by default it is set to
pauli=True.

12For example if one has a staggered magnetic field, the unit cell has two sites and we need a=2.

16

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

26 # static and dynamic lists
27 static=[["zz",J_nn],["z",z_field],["x",x_field_pos]]
28 dynamic=[["zz",J_nn,drive,drive_args],
29 ["z",z_field,drive,drive_args],["x",x_field_neg,drive,drive_args]]
30 # compute Hamiltonians
31 H= 0.5*hamiltonian(static,dynamic,dtype=np.float64,basis=basis)

The following lines define the approximate van Vleck Floquet Hamiltonian, cf. Eq. (8). Of
particular interest is line 37 where we define the site-coupling list for the three-spin oper-
ator "zxz". Apart from the coupling J**2*g, we now need to specify the three site indices
i,(i+1)%L,(i+2)%L for each of the operators "zxz", respectively. In a similar fashion, one
can define any multi-spin operator.

33 ##### set up second-order van Vleck Floquet Hamiltonian #####
34 # zeroth-order term
35 Heff_ 0= 0.5*hamiltonian(static,[],dtype=np.float64,basis=basis)
36 # second-order term: site-coupling lists
37 Heff2_term_1=[[+J**2*g,i,(i+1)%L,(i+2)%L] for i in range(L)] # PBC
38 Heff2_term_2=[[+J*g*h, i,(i+1)%L] for i in range(L)] # PBC
39 Heff2_term_3=[[-J*g**2,i,(i+1)%L] for i in range(L)] # PBC
40 Heff2_term_4=[[+J**2*g+ 0.5*h**2*g,i] for i in range(L)]
41 Heff2_term_5=[[0.5*h*g**2, i] for i in range(L)]
42 # define static list
43 Heff_static=[["zxz",Heff2_term_1],
44 ["xz",Heff2_term_2],["zx",Heff2_term_2],
45 ["yy",Heff2_term_3],["zz",Heff2_term_2],
46 ["x",Heff2_term_4],
47 ["z",Heff2_term_5]]
48 # compute van Vleck Hamiltonian
49 Heff_2=hamiltonian(Heff_static,[],dtype=np.float64,basis=basis)
50 Heff_2*=-np.pi**2/(12. 0*Omega**2)
51 # zeroth + second order van Vleck Floquet Hamiltonian
52 Heff_ 02=Heff_ 0+Heff_2

In order to rotate the state from the van Vleck to the stroboscopic (Floquet-Magnus) picture, we
also have to calculate the kick operator at time t = 0. While the procedure is the same as above,
note that Keff(0) has imaginary matrix elements, whence the variable dtype=np.complex128
is used (in fact this is the default dtype optional argument that the hamiltonian class assumes
if one does not pass this argument explicitly). If the user tries to force define a real-valued
Hamiltonian which, however, has complex matrix elements, QuSpin will raise an error.

54 ##### set up second-order van Vleck Kick operator #####
55 Keff2_term_1=[[J*g,i,(i+1)%L] for i in range(L)] # PBC
56 Keff2_term_2=[[h*g,i] for i in range(L)]
57 # define static list
58 Keff_static=[["zy",Keff2_term_1],["yz",Keff2_term_1],["y",Keff2_term_2]]
59 Keff_ 02=hamiltonian(Keff_static,[],dtype=np.complex128,basis=basis)
60 Keff_ 02*=np.pi**2/(8. 0*Omega**2)

Next, we need to find H(0+2)
F = exp[−iK(2)eff (0)]H

(0+2)
eff exp[iK(2)eff (0)]. To this end, we make

use of the hamiltonian class method rotate_by which conveniently provides a function for
this purpose. By specifying the optional argument generator=True, rotate_by recognises
the operator B as a generator and defines a linear transformation to ‘rotate’ a hamiltonian
object A via exp(a∗B†)Aexp(aB) for any complex-valued number a. Although we do not make
use of it directly here, it might also be useful for the user to become familiar with the docu-
mentation of the exp_op class which provides the matrix exponential, cf. App. D, and con-
tains a variety of useful method functions. For instance, exp(zB)A can be obtained using

17

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

exp_op(B,a=z).dot(A), while Aexp(zB) is A.dot(exp_op(B,a=z))13 for any complex num-
ber z.

62 ##### rotate Heff to stroboscopic basis #####
63 # e^{-1j*Keff_ 02} Heff_ 02 e^{+1j*Keff_ 02}
64 HF_ 02 = Heff_ 02.rotate_by(Keff_ 02,generator=True,a=1j)

Now that we have concluded the initialisation of the approximate Floquet Hamiltonian, it
is time to discuss how to study the dynamics of the system. We start by defining a vector
of times t, particularly suitable for the study of periodically driven systems. We initialise
this time vector as an object of the Floquet_t_vec class. The arguments we need are the
drive frequency Omega, the number of periods (here 1 00), and the number of time points per
period len_T (here set to 1). Once initialised, t has many useful attributes, such as the time
values t.vals, the drive period t.T, the stroboscopic times t.strobo.vals, or their indices
t.strobo.inds. The Floquet_t_vec class has further useful properties, described in the
documentation in App. D.

66 ##### define time vector of stroboscopic times with 1 00cycles #####
67 t=Floquet_t_vec(Omega,1 00,len_T=1) # t.vals=times, t.i=init. time, t.T=drive

period

To calculate the exact stroboscopic Floquet Hamiltonian HF , one can conveniently make use of
the Floquet class. Currently, it supports three different ways of obtaining the Floquet Hamil-
tonian: (i) passing an arbitrary time-periodic hamiltonian object it will evolve each Fock state
for one period to obtain the evolution operator U(T). This calculation can be parallelised using
the Python module joblib, activated by setting the optional argument n_jobs. (ii) one can
pass a list of static hamiltonian objects, accompanied by a list of time steps to apply each of
these Hamiltonians at. In this case, the Floquet class will make use of the matrix exponential
to find U(T). Instead, here we choose, (iii), to use a single dynamic hamiltonian object H(t),
accompanied by a list of times {t i} to evaluate it at, and a list of time steps {δt i} to compute
the time-ordered matrix exponential as

∏

i exp(−iH(t i)δt i). The Floquet class calculates the
quasienergies EF folded in the interval [−Ω/2,Ω/2] by default. If required, the user may fur-
ther request the set of Floquet states by setting VF=True, the Floquet Hamiltonian, HF=True,
and/or the Floquet phases – thetaF=True. For more information on Floquet_t_vec, the
user is advised to consult the package documentation, see App. D.

69 ##### calculate exact Floquet eigensystem #####
70 t_list=np.array([0. 0,t.T/4. 0,3. 0*t.T/4. 0])+np.finfo(float).eps # times to

evaluate H
71 dt_list=np.array([t.T/4. 0,t.T/2. 0,t.T/4. 0]) # time step durations to apply H for
72 Floq=Floquet({’H’:H,’t_list’:t_list,’dt_list’:dt_list},VF=True) # call Floquet

class
73 VF=Floq.VF # read off Floquet states
74 EF=Floq.EF # read off quasienergies

As discussed in the setup of the problem, we choose for the initial state the ground state14

of the approximate Hamiltonian H(0+2)
F . Following the discussion in Sec. 2.1, we use the

hamiltonian class attribute eigsh15.

76 ##### calculate initial state (GS of HF_ 02) and its energy
77 EF_ 02, psi_i = HF_ 02.eigsh(k=1,which="SA",maxiter=1E4)
78 psi_i = psi_i.reshape((-1,))

13One can also use the syntax A.rdot(exp_op(a*B)) and exp_op(z*B).rdot(A), respectively, for multiplica-
tion from the right.

14The approximate Floquet Hamiltonian is unfolded [38] and, thus, the ground state is well-defined.
15which="SA" tells eigsh to solve for the smallest algebraic eigenvalue.

18

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

Finally, we can calculate the time-dependence of the energy density E (t) and the entangle-
ment entropy density sent(t). This is done using the measurements function obs_vs_time. If
one evolves with a constant Hamiltonian (which is effectively the case for stroboscopic time
evolution), QuSpin offers two different but equivalent options, that we now discuss. (i) As
a first required argument of obs_vs_time one passes a tuple (psi_i,E,V) with the initial
state, the spectrum, and the eigenbasis of the Hamiltonian to do the evolution with. The
second argument is the time vector (here t.vals), and the third one – a dictionary with
the operator one would like to measure (here the approximate energy density HF_ 02/L, see
line 83 below. If the observable is time-dependent, obs_vs_time will evaluate it at the ap-
propriate times: 〈ψ(t)|O (t)|ψ(t)〉. To obtain the entanglement entropy, obs_vs_time calls
the measurements function ent_entropy, whose arguments are passed using the variable
Sent_args. ent_entropy requires the basis, and optionally – the subsystem chain_subsys
which would otherwise be set to the first L/2 sites of the chain. To learn more about how to ob-
tain the reduced density matrix or other features of ent_entropy, consult the documentation,
App. D.

80 ##### time-dependent measurements
81 # calculate measurements
82 Sent_args = {"basis":basis,"chain_subsys":[j for j in range(L//2)]}
83 #meas = obs_vs_time((psi_i,EF,VF),t.vals,{"E_time":HF_ 02/L},Sent_args=Sent_args)

The other way to calculate a time-dependent observable (ii) is more generic and works for
arbitrary time-dependent Hamiltonians. It makes use of Schrödinger evolution to find the
time-dependent state using the evolve method of the hamiltonian class. While we intro-
duced evolve in Sec. 2.2, here we explain an important feature: if the optional argument
iterate=True is passed, then QuSpin will not do the calculation of the state immediately;
instead – it will create a generator object. This generator object will calculate the time depen-
dent state one by one upon request. By doing so one can avoid the causal loop over the times
t.vals to first find the state, and then looping once more over time to evaluate observables.
The evolve method typically works for larger system sizes than the ones that allow full ED.
One can then simply pass the generator psi_t into obs_vs_time instead of the initial tuple.

85 # alternative way by solving Schroedinger’s eqn
86 psi_t = H.evolve(psi_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9)
87 meas = obs_vs_time(psi_t,t.vals,{"E_time":HF_ 02/L},Sent_args=Sent_args)

The output of obs_vs_time is a dictionary. Extracting the energy density and entanglement
entropy density values as a function of time, is as easy as:

89 # read off measurements
90 Energy_t = meas["E_time"]
91 Entropy_t = meas["Sent_time"]["Sent"]

Last, we compute the infinite-time value of the energy density, the entropy of the infinite-
time reduced density matrix, as well as the Floquet diagonal entropy. They are, in fact, closely
related to the expectation values of the Diagonal ensemble of the initial state in the Floquet ba-
sis [45]. The measurements tool contains the function diag_ensemble specifically designed
for this purpose. The required arguments are the system size L, the initial state psi_i, as well
as the Floquet spectrum EF and states VF. The optional arguments are packed in the auxiliary
dictionary DE_args, and contain the observable Obs, the diagonal entropy Sd_Renyi, and the
entanglement entropy of the reduced DM Srdm_Renyi with its arguments Srdm_args. The
additional label _Renyi is used since in general one can also compute the Renyi entropy with
parameter α, if desired. The function diag_ensemble will automatically return the densities
of the requested quantities, unless the flag densities=False is specified. It has more fea-
tures which allow one to calculate the temporal and quantum fluctuations of an observable at

19

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

infinite times (i.e. in the Diagonal ensemble), and return the diagonal density matrix. More-
over, it can do additional averages of all diagonal ensemble quantities over a user-specified
energy distribution, which may prove useful in calculating thermal expectations at infinite
times, cf. App. D.

93 ##### calculate diagonal ensemble measurements
94 DE_args = {"Obs":HF_ 02,"Sd_Renyi":True,"Srdm_Renyi":True,"Srdm_args":Sent_args}
95 DE = diag_ensemble(L,psi_i,EF,VF,**DE_args)
96 Ed = DE["Obs_pure"]
97 Sd = DE["Sd_pure"]
98 Srdm=DE["Srdm_pure"]

The complete code including the lines that produce Fig. 2 is available in Example Code 3.

2.4 Quantised light-atom interactions in the semi-classical limit: recovering the
periodically driven atom

Physics Setup—The last example we show deals with the quantisation of the (monochromatic)
electromagnetic (EM) field. For the purpose of our study, we take a two-level atom (i.e. a
single-site spin chain) and couple it to a single photon mode (i.e. a quantum harmonic oscil-
lator). The Hamiltonian reads

H = Ωa†a+
A
2

1
Æ

Nph

�

a† + a
�

σx +∆σz , (13)

where the operator a† creates a photon in the mode, and the atom is modelled by a two-level
system described by the Pauli spin operatorsσx ,y,z . The photon frequency is Ω, Nph is the aver-

age number of photons in the mode, A – the coupling between the EM field E =
Ç

N−1
ph

�

a† + a
�

and the dipole operator σx , and ∆ measures the energy difference between the two atomic
states.

An interesting question to ask is under what conditions the atom can be described16 by the
time-periodic semi-classical Hamiltonian:

Hsc(t) = AcosΩt σx +∆σz . (14)

Curiously, despite its simple form, one cannot solve in a closed form for the dynamics generated
by the semi-classical Hamiltonian Hsc(t).

To address the above question, we prepare the system such that the atom is in its ground
state, while we put the photon mode in a coherent state with mean number of photons Nph,
as required to by the semi-classical regime [52]:

|ψi〉= |coh(Nph)〉| ↓ 〉. (15)

We then calculate the exact dynamics generated by the spin-photon Hamiltonian H, measure
the Pauli spin matrix σz which represents the energy of the atom, σx – the ‘dipole’ operator,
and the photon number n= a†a:

〈O 〉= 〈ψi|ei tHO e−i tH |ψi〉, O = n,σz ,σ y , (16)

and compare these to the semi-classical expectation values

〈O 〉sc = 〈 ↓ |Tte
i
∫ t

0 Hsc(t ′)dt ′O Tte
−i
∫ t

0 Hsc(t ′)dt ′ | ↓ 〉, O = σz ,σ y . (17)

16Strictly speaking the Hamiltonian Hsc(t) describes the spin dynamics in the rotating frame of the photon,
defined by a→ ae−iΩt ; however, all three observables of interest: a†a, and σ y,z are invariant under this transfor-
mation.

20

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

0 5 10 15 20 25 30
t/T

1.0

0.5

0.0

0.5

1.0

〈
n
〉
,

〈
σz
〉
,

〈
σx
〉
,

〈
σz
〉

sc,
〈
σx
〉

sc

Figure 3: Emergent effective periodically driven dynamics in the semi-classical limit of the
quantised light-atom interaction. The solid lines represent expectation values in the spin-
photon basis, while dashed lines – the corresponding semi-classical quantities. The parameters
are A/∆ = 1, Ω/∆ = 3.5. The photon Hilbert space has a total number of Nph,tot = 60 states,
and the mean number of photons in the initial coherent state is Nph = 30.

Figure 3 a shows a comparison between the quantum and the semi-classical time evolution
of all observables O as defined above. As expected, we find a reasonable agreement with the
deviation at longer times increasing, depending on the number of photons used, and the drive
frequency.

Code Analysis—We used the following compact QuSpin code to produce these results. First
we load the required classes, methods and functions to do the calculation:

1 from quspin.basis import spin_basis_1d,photon_basis # Hilbert space bases
2 from quspin.operators import hamiltonian # Hamiltonian and observables
3 from quspin.tools.measurements import obs_vs_time # t_dep measurements
4 from quspin.tools.Floquet import Floquet,Floquet_t_vec # Floquet Hamiltonian
5 from quspin.basis.photon import coherent_state # HO coherent state
6 import numpy as np # generic math functions

Next, we define the model parameters as follows:

8 ##### define model parameters #####
9 Nph_tot=6 0# maximum photon occupation

10 Nph=Nph_tot/2 # mean number of photons in initial coherent state
11 Omega=3.5 # drive frequency
12 A= 0.8 # spin-photon coupling strength (drive amplitude)

To set up the spin-photon Hamiltonian, we first build the site-coupling lists. The ph_energy
list does not require the specification of a lattice site index, since the latter is not defined for
the photon sector. The at_energy list, on the other hand, requires the input of the lattice site
for the σz operator: since we consider a single two-level system or, equivalently – a single-
site chain, this index is 0. The spin-photon coupling lists absorb and emit also require the
site index which refers to the corresponding Pauli matrices: in this model – 0again due to
dimensional constraints.

16 # define operator site-coupling lists
17 ph_energy=[[Omega]] # photon energy
18 at_energy=[[Delta, 0]] # atom energy

21

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

19 absorb=[[A/(2. 0*np.sqrt(Nph)), 0]] # absorption term
20 emit=[[A/(2. 0*np.sqrt(Nph)), 0]] # emission term

To build the static operator list, we use the | symbol in the operator string to distinguish the
spin and photon operators: spin operators always come to the left of the |-symbol, while
photon operators – to the right. For convenience, the identity operator I can be omitted, such
that I|n is the same as |n, and z|I is equivalent to z|, respectively. The dynamic list is empty
since the spin-photon Hamiltonian is time-independent.

21 # define static and dynamics lists
22 static=[["|n",ph_energy],["x|-",absorb],["x|+",emit],["z|",at_energy]]
23 dynamic=[]

To build the spin-photon basis, we call the function photon_basis and use spin_basis_1d
as the first argument. We need to specify the number of spin lattice sites, and the total number
of harmonic oscillator (a.k.a photon) states. Building the Hamiltonian works as in Sec. 2.2
and 2.3.

24 # compute atom-photon basis
25 basis=photon_basis(spin_basis_1d,L=1,Nph=Nph_tot)
26 # compute atom-photon Hamiltonian H
27 H=hamiltonian(static,dynamic,dtype=np.float64,basis=basis)

We now set up the time-periodic semi-classical Hamiltonian which is defined on the spin Hilbert
space only; thus we use a spin_basis_1d basis object. We use the dynamic_sc list to define
the time-dependence.

30 # define operators
31 dipole_op=[[A, 0]]
32 # define periodic drive and its parameters
33 def drive(t,Omega):
34 return np.cos(Omega*t)
35 drive_args=[Omega]
36 # define semi-classical static and dynamic lists
37 static_sc=[["z",at_energy]]
38 dynamic_sc=[["x",dipole_op,drive,drive_args]]
39 # compute semi-classical basis
40 basis_sc=spin_basis_1d(L=1)
41 # compute semi-classical Hamiltonian H_{sc}(t)
42 H_sc=hamiltonian(static_sc,dynamic_sc,dtype=np.float64,basis=basis_sc)

Next, we define the initial state as a product state, see Eq. (15). Notice that in the QuSpin
spin_basis_1d basis convention the state | ↓ 〉= (1,0)t . This is because the spin basis states
are coded using their bit representations and the state of all spins pointing down is assigned
the integer 0. To define the oscillator (a.k.a. photon) coherent state with mean photon num-
ber Nph, we use the function coherent_state: its first argument is the eigenvalue of the
annihilation operator a, while the second argument is the total number of oscillator states17.

45 # define atom ground state
46 psi_at_i=np.array([1. 0, 0. 0]) # spin-down eigenstate of \sigma^z
47 # define photon coherent state with mean photon number Nph
48 psi_ph_i=coherent_state(np.sqrt(Nph),Nph_tot+1)
49 # compute atom-photon initial state as a tensor product
50 psi_i=np.kron(psi_at_i,psi_ph_i)

The next step is to define a vector of stroboscopic times, using the class Floquet_t_vec.
Unlike in Sec. 2.3, here we are also interested in the non-stroboscopic times in between the

17Since the oscillator ground state is denoted by |0〉, the state |Nph〉 is the (Nph+1)st state of the oscillator basis,
see line 48.

22

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

perfect periods lT . Thus, we omit the optional argument len_T making use of the default
value set to len_T=1 00, meaning that there are now 100 time points within each period.

53 # define time vector over 3 0driving cycles with 1 00points per period
54 t=Floquet_t_vec(Omega,3 0) # t.i = initial time, t.T = driving period

We now time evolve the initial state both in the atom-photon, and the semi-classical cases
using the hamiltonian class method evolve, as before. Once again, we define the solution
psi_t as a generator expression using the optional argument iterate=True.

53 # evolve atom-photon state with Hamiltonian H
54 psi_t=H.evolve(psi_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9)
55 # evolve atom GS with semi-classical Hamiltonian H_sc
56 psi_sc_t=H_sc.evolve(psi_at_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9)

Last, we define the observables of interest, using the hamiltonian class with unit coupling
constants. Since each observable represents a single operator, we refrain from defining op-
erator lists and set up the observables in-line. Note that the main difference in defining the
Pauli operators in the atom-photon and the semi-classical cases below (apart from the | no-
tation), is the basis argument, defined in lines 62-63. The Python dictionaries obs_args
and obs_args_sc represent another way of passing optional keyword arguments to the hamil-
tonian function. Here we also disable the automatic symmetry and hermiticity checks.

61 # define observables parameters
62 obs_args={"basis":basis,"check_herm":False,"check_symm":False}
63 obs_args_sc={"basis":basis_sc,"check_herm":False,"check_symm":False}
64 # in atom-photon Hilbert space
65 n=hamiltonian([["|n", [[1. 0]]]],[],dtype=np.float64,**obs_args)
66 sz=hamiltonian([["z|",[[1. 0, 0]]]],[],dtype=np.float64,**obs_args)
67 sy=hamiltonian([["y|", [[1. 0, 0]]]],[],dtype=np.complex128,**obs_args)
68 # in the semi-classical Hilbert space
69 sz_sc=hamiltonian([["z",[[1. 0, 0]]]],[],dtype=np.float64,**obs_args_sc)
70 sy_sc=hamiltonian([["y",[[1. 0, 0]]]],[],dtype=np.complex128,**obs_args_sc)

Finally, we calculate the time-dependent expectation values using the measurements tool
function obs_vs_time. Its arguments are the time-dependent state psi_t, the vector of
times t.vals, and a dictionary of all observables of interest, and were discussed in Sec. 2.3.
obs_vs_time returns a dictionary with all time-dependent expectations stored under the same
keys they were passed. They can be accessed as shown in lines 75 and 78, respectively.

73 # in atom-photon Hilbert space
74 Obs_t = obs_vs_time(psi_t,t.vals,{"n":n,"sz":sz,"sy":sy})
75 O_n, O_sz, O_sy = Obs_t["n"], Obs_t["sz"], Obs_t["sy"]
76 # in the semi-classical Hilbert space
77 Obs_sc_t = obs_vs_time(psi_sc_t,t.vals,{"sz_sc":sz_sc,"sy_sc":sy_sc})
78 O_sz_sc, O_sy_sc = Obs_sc_t["sz_sc"], Obs_sc_t["sy_sc"]

The complete code including the lines that produce Fig. 3 is available in Example Code 4.

3 Future perspectives for QuSpin

We have demonstrated that the QuSpin functionality allows the user to do many different kinds
of ED calculations. In one spatial dimension, one also has the option of using a wide range of
available symmetries. The reader might have noticed that, provided the study does not require
the use of symmetries (e.g. a fully disordered 2D model), one can specify the site-coupling lists
such as to build higher-dimensional Hamiltonians, using the spin_basis_1d class. Setting up

23

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

higher-dimensional Hamiltonians with symmetries is possible in limited cases, too, when they
can be uniquely mapped to one-dimensional systems.

In addition to the features we have discussed in this paper, there are many other functions
defined in QuSpin which are all listed in the Documentation (Appendix D). Some of the more
interesting ones include the tensor_basis class which constructs a new basis object out of
two other basis objects, thus implementing the tensor product. This can be employed, e.g., to
study interacting ladders with hard-core bosons. Another class which is useful for state-of-the-
art calculations is the HamiltonianOperator class. It does the matrix vector product without
actually storing the matrix elements which significantly reduces the amount of memory needed
to do this operation. This is particularly suited for diagonalising very large spin chains using
eigsh, as it only requires on the order of a hundred calls of the matrix vector product to
solve for a few eigenvalues and eigenvectors (for a specific example, see the documentation
in App. D). A recent addition to the tools module is the block_tools module. This module
contains a class which projects an initial state in the full Hilbert space to a set of user provided
symmetry sectors and then evolves each block in parallel (possibly over many CPU core’s)
with a single function call. This is useful in cases where the intial state may not obey the given
symmetries of the Hamiltonian used to evolve the state, for example when calculating non-
equal time correlation functions. Finally the hamiltonian class is not just limited to matrices
generated in our code from the operator strings. In general, this class also takes arbitrary
matrices as inputs for both static and dynamic operators; therefore, one can use all of the
packages functionality for any user-defined matrix.

We have set up the code to make it easily generalisable to different types of systems. We
are currently working towards adding the one-dimensional symmetries for spinless and spinful
fermions, but we are hoping to eventually add higher spins and bosons, too. Farther into the
future we may implement a number of two dimensional lattices as well as their symmetries.
We also welcome anyone who is interested in contributing to this project to reach out to the
authors with any questions they may have about the package organisation. All modifications
can be proposed through the pull request system on github.com.

We would much appreciate it if the users could report bugs using the issues forum in the
QuSpin online repository.

Acknowledgements

We would like to thank A. Iazzi, L. Pollet, M. Kolodrubetz, P. Mehta, M. Panday, P. Patil,
A. Polkovnikov, A. Sandvik, D. Sels, and S. Vajna for various stimulating discussions and for
providing comments on the draft. The authors are pleased to acknowledge that the com-
putational work reported on in this paper was performed on the Shared Computing Cluster
which is administered by Boston University’s Research Computing Services. The authors also
acknowledge the Research Computing Services group for providing consulting support which
has contributed to the results reported within this paper. We would also like to thank Github
for providing the online resources to help develop and maintain this project.

Funding information This work was supported by NSF DMR-1410126, NSF DMR-1506340
and ARO W911NF1410540.

24

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
https://github.com/weinbe58/qspin
https://github.com/weinbe58/qspin/issues
http://www.bu.edu/tech/support/research/
https://github.com/

SciPost Phys. 2, 003 (2017)

A Installation guide in a few steps

QuSpin is currently only being supported for Python 2.7 and Python 3.5 and so one must make
sure to install this version of Python. We recommend the use of the free package manager
Anaconda which installs Python and manages its packages. For a lighter installation, one can
use miniconda.

A.1 Mac OS X/Linux

To install Anaconda/miniconda all one has to do is execute the installation script with ad-
ministrative privilege. To do this, open up the terminal and go to the folder containing the
downloaded installation file and execute the following command:

$ sudo bash <installation_file>

You will be prompted to enter your password. Follow the prompts of the installation. We
recommend that you allow the installer to prepend the installation directory to your PATH
variable which will make sure this installation of Python will be called when executing a Python
script in the terminal. If this is not done then you will have to do this manually in your bash
profile file:

$ export PATH="path_to/anaconda/bin:$PATH"

Installing via Anaconda.—Once you have Anaconda/miniconda installed, all you have to
do to install QuSpin is to execute the following command into the terminal:

$ conda install -c weinbe58 quspin

If asked to install new packages just say ‘yes’. To keep the code up-to-date, just run this com-
mand regularly.

Installing Manually.—Installing the package manually is not recommended unless the
above method failed. Note that you must have the Python packages NumPy, SciPy, and Joblib
installed before installing QuSpin. Once all the prerequisite packages are installed, one can
download the source code from github and then extract the code to whichever directory one
desires. Open the terminal and go to the top level directory of the source code and execute:

$ python setup.py install --record install_file.txt

This will compile the source code and copy it to the installation directory of Python recording
the installation location to install_file.txt. To update the code, you must first completely
remove the current version installed and then install the new code. The install_file.txt
can be used to remove the package by running:

$ cat install_file.txt | xargs rm -rf.

A.2 Windows

To install Anaconda/miniconda on Windows, download the installer and execute it to install
the program. Once Anaconda/miniconda is installed open the conda terminal and do one of
the following to install the package:

Installing via Anaconda.—Once you have Anaconda/miniconda installed all you have to
do to install QuSpin is to execute the following command into the terminal:

> conda install -c weinbe58 quspin

If asked to install new packages just say ‘yes’. To update the code just run this command
regularly.

25

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
https://www.continuum.io/downloads
http://conda.pydata.org/miniconda.html
https://github.com/weinbe58/qspin/tree/master

SciPost Phys. 2, 003 (2017)

Installing Manually.—Installing the package manually is not recommended unless the
above method failed. Note that you must have NumPy, SciPy, and Joblib installed before
installing QuSpin. Once all the prerequisite packages are installed, one can download the
source code from github and then extract the code to whichever directory one desires. Open
the terminal and go to the top level directory of the source code and then execute:

> python setup.py install --record install_file.txt

This will compile the source code and copy it to the installation directory of Python and record
the installation location to install_file.txt. To update the code you must first completely
remove the current version installed and then install the new code.

B Basic use of command line to run Python

In this appendix we will review how to use the command line for Windows and OS X/Linux
to navigate your computer’s folders/directories and run the Python scripts.

B.1 Mac OS X/Linux

Some basic commands:

• change directory:

$ cd < path_to_directory >

• list files in current directory:

$ ls

list files in another directory:

$ ls < path_to_directory >

• make new directory:

$ mkdir <path>/< directory_name >

• copy file:

$ cp < path >/< file_name > < new_path >/< new_file_name >

• move file or change file name:

$ mv < path >/< file_name > < new_path >/< new_file_name >

• remove file:

$ rm < path_to_file >/< file_name >

26

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
https://github.com/weinbe58/qspin/tree/master

SciPost Phys. 2, 003 (2017)

Unix also has an autocomplete feature if one hits the TAB key. It will complete a word or
stop when it matches more than one file/folder name. The current directory is denoted by "."
and the directory above is "..". Now, to execute a Python script all one has to do is open your
terminal and navigate to the directory which contains the python script. To execute the script
just use the following command:

$ python script.py

It’s that simple!

B.2 Windows

Some basic commands:

• change directory:

> cd < path_to_directory >

• list files in current directory:

> dir

list files in another directory:

> dir < path_to_directory >

• make new directory:

> mkdir <path>\< directory_name >

• copy file:

> copy < path >\< file_name > < new_path >\< new_file_name >

• move file or change file name:

> move < path >\< file_name > < new_path >\< new_file_name >

• remove file:

> erase < path >\< file_name >

Windows also has a autocomplete feature using the TAB key but instead of stopping when there
multiple files/folders with the same name, it will complete it with the first file alphabetically.
The current directory is denoted by "." and the directory above is "..".

B.3 Execute Python script (any operating system)

To execute a Python script all one has to do is open up a terminal and navigate to the directory
which contains the Python script. Python can be recognised by the extension .py. To execute
the script just use the following command:

python script.py

It’s that simple!

27

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

C Complete example codes

In this appendix, we give the complete Python scripts for the four examples discussed in Sec. 2.
In case the reader has trouble with the TAB spaces when copying from the code environments
below, the scripts can be downloaded from github at:

https://github.com/weinbe58/QuSpin/tree/master/examples

QuSpin Example Code 1: Exact Diagonalisation of the XXZ Model

1 from quspin.operators import hamiltonian # Hamiltonians and operators
2 from quspin.basis import spin_basis_1d # Hilbert space spin basis
3 import numpy as np # generic math functions
4 #
5 ##### define model parameters #####
6 L=12 # system size
7 Jxy=np.sqrt(2. 0) # xy interaction
8 Jzz_ 0=1. 0# zz interaction
9 hz=1. 0/np.sqrt(3. 0) # z external field

10 #
11 ##### set up Heisenberg Hamiltonian in an enternal z-field #####
12 # compute spin-1/2 basis
13 basis = spin_basis_1d(L,pauli=False)
14 basis = spin_basis_1d(L,pauli=False,Nup=L//2) # zero magnetisation sector
15 basis = spin_basis_1d(L,pauli=False,Nup=L//2,pblock=1) # and positive parity

sector
16 # define operators with OBC using site-coupling lists
17 J_zz = [[Jzz_ 0,i,i+1] for i in range(L-1)] # OBC
18 J_xy = [[Jxy/2. 0,i,i+1] for i in range(L-1)] # OBC
19 h_z=[[hz,i] for i in range(L-1)]
20 # static and dynamic lists
21 static = [["+-",J_xy],["-+",J_xy],["zz",J_zz]]
22 dynamic=[]
23 # compute the time-dependent Heisenberg Hamiltonian
24 H_XXZ = hamiltonian(static,dynamic,basis=basis,dtype=np.float64)
25 #
26 ##### various exact diagonalisation routines #####
27 # calculate entire spectrum only
28 E=H_XXZ.eigvalsh()
29 # calculate full eigensystem
30 E,V=H_XXZ.eigh()
31 # calculate minimum and maximum energy only
32 Emin,Emax=H_XXZ.eigsh(k=2,which="BE",maxiter=1E4,return_eigenvectors=False)
33 # calculate the eigenstate closest to energy E_star
34 E_star = 0. 0
35 E,psi_ 0=H_XXZ.eigsh(k=1,sigma=E_star,maxiter=1E4)
36 psi_ 0=psi_ 0.reshape((-1,))

28

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
https://github.com/weinbe58/QuSpin/tree/master/examples

SciPost Phys. 2, 003 (2017)

QuSpin Example Code 2: Adiabatic Control of Parameters in MBL Phases

1 from quspin.operators import hamiltonian # Hamiltonians and operators
2 from quspin.basis import spin_basis_1d # Hilbert space spin basis
3 from quspin.tools.measurements import ent_entropy, diag_ensemble # entropies
4 from numpy.random import ranf,seed # pseudo random numbers
5 from joblib import delayed,Parallel # parallelisation
6 import numpy as np # generic math functions
7 from time import time # timing package
8 #
9 ##### define simulation parameters #####

10 n_real=2 0# number of disorder realisations
11 n_jobs=2 # number of spawned processes used for parallelisation
12 #
13 ##### define model parameters #####
14 L=1 0# system size
15 Jxy=1. 0# xy interaction
16 Jzz_ 0=1. 0# zz interaction at time t= 0
17 h_MBL=3.9 # MBL disorder strength
18 h_ETH= 0.1 # delocalised disorder strength
19 vs=np.logspace(-2. 0, 0. 0,num=2 0,base=1 0) # log_2-spaced vector of ramp speeds
20 #
21 ##### set up Heisenberg Hamiltonian with linearly varying zz-interaction #####
22 # define linear ramp function
23 v = 1. 0# declare ramp speed variable
24 def ramp(t):
25 return (0.5 + v*t)
26 ramp_args=[]
27 # compute basis in the 0-total magnetisation sector (requires L even)
28 basis = spin_basis_1d(L,Nup=L//2,pauli=False)
29 # define operators with OBC using site-coupling lists
30 J_zz = [[Jzz_ 0,i,i+1] for i in range(L-1)] # OBC
31 J_xy = [[Jxy/2. 0,i,i+1] for i in range(L-1)] # OBC
32 # static and dynamic lists
33 static = [["+-",J_xy],["-+",J_xy]]
34 dynamic =[["zz",J_zz,ramp,ramp_args]]
35 # compute the time-dependent Heisenberg Hamiltonian
36 H_XXZ = hamiltonian(static,dynamic,basis=basis,dtype=np.float64)
37 #
38 ##### calculate diagonal and entanglement entropies #####
39 def realization(vs,H_XXZ,basis,real):
40 """
41 This function computes the entropies for a single disorder realisation.
42 --- arguments ---
43 vs: vector of ramp speeds
44 H_XXZ: time-dep. Heisenberg Hamiltonian with driven zz-interactions
45 basis: spin_basis_1d object containing the spin basis
46 n_real: number of disorder realisations; used only for timing
47 """
48 ti = time() # get start time
49 #
50 global v # declare ramp speed v a global variable
51 #
52 seed() # the random number needs to be seeded for each parallel process
53 #
54 # draw random field uniformly from [-1. 0,1. 0] for each lattice site
55 unscaled_fields=-1+2*ranf((basis.L,))
56 # define z-field operator site-coupling list

29

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

57 h_z=[[unscaled_fields[i],i] for i in range(basis.L)]
58 # static list
59 disorder_field = [["z",h_z]]
60 # compute disordered z-field Hamiltonian
61 no_checks={"check_herm":False,"check_pcon":False,"check_symm":False}
62 Hz=hamiltonian(disorder_field,[],basis=basis,dtype=np.float64,**no_checks)
63 # compute the MBL and ETH Hamiltonians for the same disorder realisation
64 H_MBL=H_XXZ+h_MBL*Hz
65 H_ETH=H_XXZ+h_ETH*Hz
66 #
67 ### ramp in MBL phase ###
68 v=1. 0# reset ramp speed to unity
69 # calculate the energy at infinite temperature for initial MBL Hamiltonian
70 eigsh_args={"k":2,"which":"BE","maxiter":1E4,"return_eigenvectors":False}
71 Emin,Emax=H_MBL.eigsh(time= 0. 0,**eigsh_args)
72 E_inf_temp=(Emax+Emin)/2. 0
73 # calculate nearest eigenstate to energy at infinite temperature
74 E,psi_ 0=H_MBL.eigsh(time= 0. 0,k=1,sigma=E_inf_temp,maxiter=1E4)
75 psi_ 0=psi_ 0.reshape((-1,))
76 # calculate the eigensystem of the final MBL hamiltonian
77 E_final,V_final=H_MBL.eigh(time=(0.5/vs[-1]))
78 # evolve states and calculate entropies in MBL phase
79 run_MBL=[_do_ramp(psi_ 0,H_MBL,basis,v,E_final,V_final) for v in vs]
80 run_MBL=np.vstack(run_MBL).T
81 #
82 ### ramp in ETH phase ###
83 v=1. 0# reset ramp speed to unity
84 # calculate the energy at infinite temperature for initial ETH hamiltonian
85 Emin,Emax=H_ETH.eigsh(time= 0. 0,**eigsh_args)
86 E_inf_temp=(Emax+Emin)/2. 0
87 # calculate nearest eigenstate to energy at infinite temperature
88 E,psi_ 0=H_ETH.eigsh(time= 0. 0,k=1,sigma=E_inf_temp,maxiter=1E4)
89 psi_ 0=psi_ 0.reshape((-1,))
90 # calculate the eigensystem of the final ETH hamiltonian
91 E_final,V_final=H_ETH.eigh(time=(0.5/vs[-1]))
92 # evolve states and calculate entropies in ETH phase
93 run_ETH=[_do_ramp(psi_ 0,H_ETH,basis,v,E_final,V_final) for v in vs]
94 run_ETH=np.vstack(run_ETH).T # stack vertically elements of list run_ETH
95 # show time taken
96 print("realization { 0}/{1} took {2:.2f} sec".format(real+1,n_real,time()-ti))
97 #
98 return run_MBL,run_ETH
99 #

100 ##### evolve state and evaluate entropies #####
101 def _do_ramp(psi_ 0,H,basis,v,E_final,V_final):
102 """
103 Auxiliary function to evolve the state and calculate the entropies after the
104 ramp.
105 --- arguments ---
106 psi_ 0: initial state
107 H: time-dependent Hamiltonian
108 basis: spin_basis_1d object containing the spin basis (required for Sent)
109 E_final, V_final: eigensystem of H(t_f) at the end of the ramp t_f=1/(2v)
110 """
111 # determine total ramp time
112 t_f = 0.5/v
113 # time-evolve state from time 0. 0to time t_f

30

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

114 psi = H.evolve(psi_ 0, 0. 0,t_f)
115 # calculate entanglement entropy
116 subsys = range(basis.L//2) # define subsystem
117 Sent = ent_entropy(psi,basis,chain_subsys=subsys)["Sent"]
118 # calculate diagonal entropy in the basis of H(t_f)
119 S_d = diag_ensemble(basis.L,psi,E_final,V_final,Sd_Renyi=True)["Sd_pure"]
120 #
121 return np.asarray([S_d,Sent])
122 #
123 ##### produce data for n_real disorder realisations #####
124 # __name__ == ’__main__’ required to use joblib in Windows.
125 if __name__ == ’__main__’:
126 """
127 # alternative way without parallelisation
128 data = np.asarray([realization(vs,H_XXZ,basis,i) for i in range(n_real)])
129 """
130 data = np.asarray(Parallel(n_jobs=n_jobs)(delayed(realization)(vs,H_XXZ,basis

,i) for i in range(n_real)))
131 #
132 run_MBL,run_ETH = zip(*data) # extract MBL and data
133 # average over disorder
134 mean_MBL = np.mean(run_MBL,axis= 0)
135 mean_ETH = np.mean(run_ETH,axis= 0)
136 #
137 ##### plot results #####
138 import matplotlib.pyplot as plt
139 ### MBL plot ###
140 fig, pltarr1 = plt.subplots(2,sharex=True) # define subplot panel
141 # subplot 1: diag enetropy vs ramp speed
142 pltarr1[0].plot(vs,mean_MBL[0],label="MBL",marker=".",color="blue") # plot

data
143 pltarr1[0].set_ylabel("$s_d(t_f)$",fontsize=22) # label y-axis
144 pltarr1[0].set_xlabel("$v/J_{zz}(0)$",fontsize=22) # label x-axis
145 pltarr1[0].set_xscale("log") # set log scale on x-axis
146 pltarr1[0].grid(True,which=’both’) # plot grid
147 pltarr1[0].tick_params(labelsize=16)
148 # subplot 2: entanglement entropy vs ramp speed
149 pltarr1[1].plot(vs,mean_MBL[1],marker=".",color="blue") # plot data
150 pltarr1[1].set_ylabel("$s_\mathrm{ent}(t_f)$",fontsize=22) # label y-axis
151 pltarr1[1].set_xlabel("$v/J_{zz}(0)$",fontsize=22) # label x-axis
152 pltarr1[1].set_xscale("log") # set log scale on x-axis
153 pltarr1[1].grid(True,which=’both’) # plot grid
154 pltarr1[1].tick_params(labelsize=16)
155 # save figure
156 fig.savefig(’example1_MBL.pdf’, bbox_inches=’tight’)
157 #
158 ### ETH plot ###
159 fig, pltarr2 = plt.subplots(2,sharex=True) # define subplot panel
160 # subplot 1: diag enetropy vs ramp speed
161 pltarr2[0].plot(vs,mean_ETH[0],marker=".",color="green") # plot data
162 pltarr2[0].set_ylabel("$s_d(t_f)$",fontsize=22) # label y-axis
163 pltarr2[0].set_xlabel("$v/J_{zz}(0)$",fontsize=22) # label x-axis
164 pltarr2[0].set_xscale("log") # set log scale on x-axis
165 pltarr2[0].grid(True,which=’both’) # plot grid
166 pltarr2[0].tick_params(labelsize=16)
167 # subplot 2: entanglement entropy vs ramp speed
168 pltarr2[1].plot(vs,mean_ETH[1],marker=".",color="green") # plot data

31

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

169 pltarr2[1].set_ylabel("$s_\mathrm{ent}(t_f)$",fontsize=22) # label y-axis
170 pltarr2[1].set_xlabel("$v/J_{zz}(0)$",fontsize=22) # label x-axis
171 pltarr2[1].set_xscale("log") # set log scale on x-axis
172 pltarr2[1].grid(True,which=’both’) # plot grid
173 pltarr2[1].tick_params(labelsize=16)
174 # save figure
175 fig.savefig(’example1_ETH.pdf’, bbox_inches=’tight’)
176 #
177 plt.show() # show plots

32

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

QuSpin Example Code 3: Heating in Periodically Driven Spin Chains

1 from quspin.operators import hamiltonian # Hamiltonians and operators
2 from quspin.basis import spin_basis_1d # Hilbert space spin basis
3 from quspin.tools.measurements import obs_vs_time, diag_ensemble # t_dep

measurements
4 from quspin.tools.Floquet import Floquet, Floquet_t_vec # Floquet Hamiltonian
5 import numpy as np # generic math functions
6 #
7 ##### define model parameters #####
8 L=14 # system size
9 J=1. 0# spin interaction

10 g= 0.8 09 # transverse field
11 h= 0.9 045 # parallel field
12 Omega=4.5 # drive frequency
13 #
14 ##### set up alternating Hamiltonians #####
15 # define time-reversal symmetric periodic step drive
16 def drive(t,Omega):
17 return np.sign(np.cos(Omega*t))
18 drive_args=[Omega]
19 # compute basis in the 0-total momentum and +1-parity sector
20 basis=spin_basis_1d(L=L,a=1,kblock= 0,pblock=1)
21 # define PBC site-coupling lists for operators
22 x_field_pos=[[+g,i] for i in range(L)]
23 x_field_neg=[[-g,i] for i in range(L)]
24 z_field=[[h,i] for i in range(L)]
25 J_nn=[[J,i,(i+1)%L] for i in range(L)] # PBC
26 # static and dynamic lists
27 static=[["zz",J_nn],["z",z_field],["x",x_field_pos]]
28 dynamic=[["zz",J_nn,drive,drive_args],
29 ["z",z_field,drive,drive_args],["x",x_field_neg,drive,drive_args]]
30 # compute Hamiltonians
31 H= 0.5*hamiltonian(static,dynamic,dtype=np.float64,basis=basis)
32 #
33 ##### set up second-order van Vleck Floquet Hamiltonian #####
34 # zeroth-order term
35 Heff_ 0= 0.5*hamiltonian(static,[],dtype=np.float64,basis=basis)
36 # second-order term: site-coupling lists
37 Heff2_term_1=[[+J**2*g,i,(i+1)%L,(i+2)%L] for i in range(L)] # PBC
38 Heff2_term_2=[[+J*g*h, i,(i+1)%L] for i in range(L)] # PBC
39 Heff2_term_3=[[-J*g**2,i,(i+1)%L] for i in range(L)] # PBC
40 Heff2_term_4=[[+J**2*g+ 0.5*h**2*g,i] for i in range(L)]
41 Heff2_term_5=[[0.5*h*g**2, i] for i in range(L)]
42 # define static list
43 Heff_static=[["zxz",Heff2_term_1],
44 ["xz",Heff2_term_2],["zx",Heff2_term_2],
45 ["yy",Heff2_term_3],["zz",Heff2_term_2],
46 ["x",Heff2_term_4],
47 ["z",Heff2_term_5]]
48 # compute van Vleck Hamiltonian
49 Heff_2=hamiltonian(Heff_static,[],dtype=np.float64,basis=basis)
50 Heff_2*=-np.pi**2/(12. 0*Omega**2)
51 # zeroth + second order van Vleck Floquet Hamiltonian
52 Heff_ 02=Heff_ 0+Heff_2
53 #
54 ##### set up second-order van Vleck Kick operator #####
55 Keff2_term_1=[[J*g,i,(i+1)%L] for i in range(L)] # PBC

33

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

56 Keff2_term_2=[[h*g,i] for i in range(L)]
57 # define static list
58 Keff_static=[["zy",Keff2_term_1],["yz",Keff2_term_1],["y",Keff2_term_2]]
59 Keff_ 02=hamiltonian(Keff_static,[],dtype=np.complex128,basis=basis)
60 Keff_ 02*=np.pi**2/(8. 0*Omega**2)
61 #
62 ##### rotate Heff to stroboscopic basis #####
63 # e^{-1j*Keff_ 02} Heff_ 02 e^{+1j*Keff_ 02}
64 HF_ 02 = Heff_ 02.rotate_by(Keff_ 02,generator=True,a=1j)
65 #
66 ##### define time vector of stroboscopic times with 1 00cycles #####
67 t=Floquet_t_vec(Omega,1 00,len_T=1) # t.vals=times, t.i=init. time, t.T=drive

period
68 #
69 ##### calculate exact Floquet eigensystem #####
70 t_list=np.array([0. 0,t.T/4. 0,3. 0*t.T/4. 0])+np.finfo(float).eps # times to

evaluate H
71 dt_list=np.array([t.T/4. 0,t.T/2. 0,t.T/4. 0]) # time step durations to apply H for
72 Floq=Floquet({’H’:H,’t_list’:t_list,’dt_list’:dt_list},VF=True) # call Floquet

class
73 VF=Floq.VF # read off Floquet states
74 EF=Floq.EF # read off quasienergies
75 #
76 ##### calculate initial state (GS of HF_ 02) and its energy
77 EF_ 02, psi_i = HF_ 02.eigsh(k=1,which="SA",maxiter=1E4)
78 psi_i = psi_i.reshape((-1,))
79 #
80 ##### time-dependent measurements
81 # calculate measurements
82 Sent_args = {"basis":basis,"chain_subsys":[j for j in range(L//2)]}
83 #meas = obs_vs_time((psi_i,EF,VF),t.vals,{"E_time":HF_ 02/L},Sent_args=Sent_args)
84 #"""
85 # alternative way by solving Schroedinger’s eqn
86 psi_t = H.evolve(psi_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9)
87 meas = obs_vs_time(psi_t,t.vals,{"E_time":HF_ 02/L},Sent_args=Sent_args)
88 #"""
89 # read off measurements
90 Energy_t = meas["E_time"]
91 Entropy_t = meas["Sent_time"]["Sent"]
92 #
93 ##### calculate diagonal ensemble measurements
94 DE_args = {"Obs":HF_ 02,"Sd_Renyi":True,"Srdm_Renyi":True,"Srdm_args":Sent_args}
95 DE = diag_ensemble(L,psi_i,EF,VF,**DE_args)
96 Ed = DE["Obs_pure"]
97 Sd = DE["Sd_pure"]
98 Srdm=DE["Srdm_pure"]
99 #

100 ##### plot results #####
101 import matplotlib.pyplot as plt
102 import pylab
103 # define legend labels
104 str_E_t = "$\\mathcal{E}(lT)$"
105 str_Sent_t = "$s_\mathrm{ent}(lT)$"
106 str_Ed = "$\\overline{\mathcal{E}}$"
107 str_Srdm = "$\\overline{s}_\mathrm{rdm}$"
108 str_Sd = "s_d^F"
109 # plot infinite-time data

34

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

110 fig = plt.figure()
111 plt.plot(t.vals/t.T,Ed*np.ones(t.vals.shape),"b--",linewidth=1,label=str_Ed)
112 plt.plot(t.vals/t.T,Srdm*np.ones(t.vals.shape),"r--",linewidth=1,label=str_Srdm)
113 plt.plot(t.vals/t.T,Sd*np.ones(t.vals.shape),"g--",linewidth=1,label=str_Sd)
114 # plot time-dependent data
115 plt.plot(t.vals/t.T,Energy_t,"b-o",linewidth=1,label=str_E_t,markersize=3. 0)
116 plt.plot(t.vals/t.T,Entropy_t,"r-s",linewidth=1,label=str_Sent_t,markersize=3. 0)
117 # label axes
118 plt.xlabel("$\\#\ \\mathrm{periods}\\ l$",fontsize=18)
119 # set y axis limits
120 plt.ylim([- 0.6, 0.7])
121 # display legend
122 plt.legend(loc="lower right",ncol=2,fontsize=18)
123 # update axis font size
124 plt.tick_params(labelsize=16)
125 # turn on grid
126 plt.grid(True)
127 # save figure
128 fig.savefig(’example2.pdf’, bbox_inches=’tight’)
129 # show plot
130 plt.show()

35

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

QuSpin Example Code 4: Quantised Light-Atom Interactions in the Semi-classical Limit

1 from quspin.basis import spin_basis_1d,photon_basis # Hilbert space bases
2 from quspin.operators import hamiltonian # Hamiltonian and observables
3 from quspin.tools.measurements import obs_vs_time # t_dep measurements
4 from quspin.tools.Floquet import Floquet,Floquet_t_vec # Floquet Hamiltonian
5 from quspin.basis.photon import coherent_state # HO coherent state
6 import numpy as np # generic math functions
7 #
8 ##### define model parameters #####
9 Nph_tot=6 0# maximum photon occupation

10 Nph=Nph_tot/2 # mean number of photons in initial coherent state
11 Omega=3.5 # drive frequency
12 A= 0.8 # spin-photon coupling strength (drive amplitude)
13 Delta=1. 0# difference between atom energy levels
14 #
15 ##### set up photon-atom Hamiltonian #####
16 # define operator site-coupling lists
17 ph_energy=[[Omega]] # photon energy
18 at_energy=[[Delta, 0]] # atom energy
19 absorb=[[A/(2. 0*np.sqrt(Nph)), 0]] # absorption term
20 emit=[[A/(2. 0*np.sqrt(Nph)), 0]] # emission term
21 # define static and dynamics lists
22 static=[["|n",ph_energy],["x|-",absorb],["x|+",emit],["z|",at_energy]]
23 dynamic=[]
24 # compute atom-photon basis
25 basis=photon_basis(spin_basis_1d,L=1,Nph=Nph_tot)
26 # compute atom-photon Hamiltonian H
27 H=hamiltonian(static,dynamic,dtype=np.float64,basis=basis)
28 #
29 ##### set up semi-classical Hamiltonian #####
30 # define operators
31 dipole_op=[[A, 0]]
32 # define periodic drive and its parameters
33 def drive(t,Omega):
34 return np.cos(Omega*t)
35 drive_args=[Omega]
36 # define semi-classical static and dynamic lists
37 static_sc=[["z",at_energy]]
38 dynamic_sc=[["x",dipole_op,drive,drive_args]]
39 # compute semi-classical basis
40 basis_sc=spin_basis_1d(L=1)
41 # compute semi-classical Hamiltonian H_{sc}(t)
42 H_sc=hamiltonian(static_sc,dynamic_sc,dtype=np.float64,basis=basis_sc)
43 #
44 ##### define initial state #####
45 # define atom ground state
46 psi_at_i=np.array([1. 0, 0. 0]) # spin-down eigenstate of \sigma^z
47 # define photon coherent state with mean photon number Nph
48 psi_ph_i=coherent_state(np.sqrt(Nph),Nph_tot+1)
49 # compute atom-photon initial state as a tensor product
50 psi_i=np.kron(psi_at_i,psi_ph_i)
51 #
52 ##### calculate time evolution #####
53 # define time vector over 3 0driving cycles with 1 00points per period
54 t=Floquet_t_vec(Omega,3 0) # t.i = initial time, t.T = driving period
55 # evolve atom-photon state with Hamiltonian H
56 psi_t=H.evolve(psi_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9)

36

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

57 # evolve atom GS with semi-classical Hamiltonian H_sc
58 psi_sc_t=H_sc.evolve(psi_at_i,t.i,t.vals,iterate=True,rtol=1E-9,atol=1E-9)
59 #
60 ##### define observables #####
61 # define observables parameters
62 obs_args={"basis":basis,"check_herm":False,"check_symm":False}
63 obs_args_sc={"basis":basis_sc,"check_herm":False,"check_symm":False}
64 # in atom-photon Hilbert space
65 n=hamiltonian([["|n", [[1. 0]]]],[],dtype=np.float64,**obs_args)
66 sz=hamiltonian([["z|",[[1. 0, 0]]]],[],dtype=np.float64,**obs_args)
67 sy=hamiltonian([["y|", [[1. 0, 0]]]],[],dtype=np.complex128,**obs_args)
68 # in the semi-classical Hilbert space
69 sz_sc=hamiltonian([["z",[[1. 0, 0]]]],[],dtype=np.float64,**obs_args_sc)
70 sy_sc=hamiltonian([["y",[[1. 0, 0]]]],[],dtype=np.complex128,**obs_args_sc)
71 #
72 ##### calculate expectation values #####
73 # in atom-photon Hilbert space
74 Obs_t = obs_vs_time(psi_t,t.vals,{"n":n,"sz":sz,"sy":sy})
75 O_n, O_sz, O_sy = Obs_t["n"], Obs_t["sz"], Obs_t["sy"]
76 # in the semi-classical Hilbert space
77 Obs_sc_t = obs_vs_time(psi_sc_t,t.vals,{"sz_sc":sz_sc,"sy_sc":sy_sc})
78 O_sz_sc, O_sy_sc = Obs_sc_t["sz_sc"], Obs_sc_t["sy_sc"]
79 ##### plot results #####
80 import matplotlib.pyplot as plt
81 import pylab
82 # define legend labels
83 str_n = "$\\langle n\\rangle,$"
84 str_z = "$\\langle\\sigma^z\\rangle,$"
85 str_x = "$\\langle\\sigma^x\\rangle,$"
86 str_z_sc = "$\\langle\\sigma^z\\rangle_\\mathrm{sc},$"
87 str_x_sc = "$\\langle\\sigma^x\\rangle_\\mathrm{sc}$"
88 # plot spin-photon data
89 fig = plt.figure()
90 plt.plot(t.vals/t.T,O_n/Nph,"k",linewidth=1,label=str_n)
91 plt.plot(t.vals/t.T,O_sz,"c",linewidth=1,label=str_z)
92 plt.plot(t.vals/t.T,O_sy,"tan",linewidth=1,label=str_x)
93 # plot semi-classical data
94 plt.plot(t.vals/t.T,O_sz_sc,"b.",marker=".",markersize=1.8,label=str_z_sc)
95 plt.plot(t.vals/t.T,O_sy_sc,"r.",marker=".",markersize=2. 0,label=str_x_sc)
96 # label axes
97 plt.xlabel("t/T",fontsize=18)
98 # set y axis limits
99 plt.ylim([-1.1,1.4])

100 # display legend horizontally
101 plt.legend(loc="upper right",ncol=5,columnspacing= 0.6,numpoints=4)
102 # update axis font size
103 plt.tick_params(labelsize=16)
104 # turn on grid
105 plt.grid(True)
106 # save figure
107 fig.savefig(’example3.pdf’, bbox_inches=’tight’)
108 # show plot
109 plt.show()

37

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003

SciPost Phys. 2, 003 (2017)

D Package documentation

In QuSpin quantum many-body operators are represented as matrices. The computation of
these matrices are done through custom code written in Cython. Cython is an optimizing
static compiler which takes code written in a syntax similar to Python, and compiles it into a
highly efficient C/C++ shared library. These libraries are then easily interfaced with Python,
but can run orders of magnitude faster than pure Python code [53]. The matrices are stored
in a sparse matrix format using the sparse matrix library of SciPy [24]. This allows QuSpin to
easily interface with mature Python packages, such as NumPy, SciPy, any many others. These
packages provide reliable state-of-the-art tools for scientific computation as well as support
from the Python community to regularly improve and update them [24, 54–56]. Moreover,
we have included specific functionality in QuSpin which uses NumPy and SciPy to do many
desired calculations common to ED studies, while making sure the user only has to call a few
NumPy or SciPy functions directly. The complete up-to-date documentation for the package is
available online under: https://github.com/weinbe58/QuSpin/#quspin.

References

[1] L. Pollet, Recent developments in quantum Monte Carlo simulations with applica-
tions for cold gases, Rep. Prog. Phys. 75(9), 094501 (2012), doi:10.1088/0034-
4885/75/9/094501.

[2] W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal, Quantum Monte Carlo simula-
tions of solids, Rev. Mod. Phys. 73, 33 (2001), doi:10.1103/RevModPhys.73.33.

[3] P. H. Acioli, Review of quantum Monte Carlo methods and their applications, J. Mol.
Struc.-Theochem 394(2), 75 (1997), doi:10.1016/S0166-1280(96)04821-X.

[4] A. J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix
renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech.: Th. Exp.
P04005 (2004), doi:10.1088/1742-5468/2004/04/P04005.

[5] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[6] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326(1), 96 (2011), doi:10.1016/j.aop.2010.09.012, January 2011
Special Issue.

[7] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of
strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996), doi:10.1103/RevModPhys.68.13.

[8] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet and C. A. Marianetti,
Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78,
865 (2006), doi:10.1103/RevModPhys.78.865.

[9] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka and P. Werner, Nonequilibrium
dynamical mean-field theory and its applications, Rev. Mod. Phys. 86, 779 (2014),
doi:10.1103/RevModPhys.86.779.

[10] F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P.
McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck et al., The {ALPS} project:

38

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
https://github.com/weinbe58/QuSpin/#quspin
http://dx.doi.org/10.1088/0034-4885/75/9/094501
http://dx.doi.org/10.1088/0034-4885/75/9/094501
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1016/S0166-1280(96)04821-X
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.86.779

SciPost Phys. 2, 003 (2017)

open source software for strongly correlated systems, J. Phys. Soc. Jpn. 74(Suppl), 30
(2005), doi:10.1143/JPSJS.74S.30.

[11] A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull,
S. Gürtler, A. Honecker, R. Igarashi, M. Körner et al., The {ALPS} project release 1.3: open
source software for strongly correlated systems, J. Magn. Magn. Mater. 310(2, Part 2),
1187 (2007), doi:10.1016/j.jmmm.2006.10.304, Proceedings of the 17th International
Conference on Magnetism.

[12] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger,
E. Gull, S. Guertler, A. Hehn, R. Igarashi et al., The {ALPS} project release 2.0: open
source software for strongly correlated systems, J. Stat. Mech.: Th. Exp. P05001 (2011),
doi:10.1088/1742-5468/2011/05/P05001.

[13] M. Dolfi, B. Bauer, S. Keller, A. Kosenkov, T. Ewart, A. Kantian, T. Giamarchi and M. Troyer,
Matrix product state applications for the {ALPS} project, Computer Physics Communica-
tions 185(12), 3430 (2014), doi:10.1016/j.cpc.2014.08.019.

[14] E. M. Stoudenmire, S. R. White et al., ITensor: C++ library for implementing tensor product
wavefunction calculations (2011–).

[15] D. J. S. Al-Assam, S. R. Clark and TNT Development team, Tensor network theory library,
beta version 1.2.0 (2016–).

[16] J. Johansson, P. Nation and F. Nori, Qutip: An open-source Python framework for the
dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012),
doi:10.1016/j.cpc.2012.02.021.

[17] J. Johansson, P. Nation and F. Nori, Qutip 2: A Python framework for the dy-
namics of open quantum systems, Comput. Phys. Commun. 184(4), 1234 (2013),
doi:10.1016/j.cpc.2012.11.019.

[18] J. G. Wright and B. S. Shastry, Diracq: A quantum many-body physics package,
arXiv:1301.4494.

[19] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians,
Phys. Rev. 149, 491 (1966), doi:10.1103/PhysRev.149.491.

[20] S. Bravyi, D. P. DiVincenzo and D. Loss, Schrieffer–Wolff transformation for quantum
many-body systems, Ann. Phys. 326(10), 2793 (2011), doi:10.1016/j.aop.2011.06.004.

[21] M. Bukov, M. Kolodrubetz and A. Polkovnikov, Schrieffer-Wolff transformation for peri-
odically driven systems: strongly correlated systems with artificial gauge fields, Phys. Rev.
Lett. 116, 125301 (2016), doi:10.1103/PhysRevLett.116.125301.

[22] N. Goldman and J. Dalibard, Periodically driven quantum systems: effective
Hamiltonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014),
doi:10.1103/PhysRevX.4.031027.

[23] M. Bukov, L. D’Alessio and A. Polkovnikov, Universal high-frequency behavior of periodi-
cally driven systems: from dynamical stabilization to Floquet engineering, Adv. Phys. 64(2),
139 (2015), doi:10.1080/00018732.2015.1055918.

[24] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for Python
(2001–).

39

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
http://dx.doi.org/10.1143/JPSJS.74S.30
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1016/j.cpc.2014.08.019
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.11.019
https://arxiv.org/abs/1301.4494
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1016/j.aop.2011.06.004
http://dx.doi.org/10.1103/PhysRevLett.116.125301
http://dx.doi.org/10.1103/PhysRevX.4.031027
http://dx.doi.org/10.1080/00018732.2015.1055918

SciPost Phys. 2, 003 (2017)

[25] D. Basko, I. Aleiner and B. Altshuler, Metal–insulator transition in a weakly interacting
many-electron system with localized single-particle states, Ann. Phys. 321(5), 1126 (2006),
doi:10.1016/j.aop.2005.11.014.

[26] I. V. Gornyi, A. D. Mirlin and D. G. Polyakov, Interacting electrons in disordered
wires: Anderson localization and low-t transport, Phys. Rev. Lett. 95, 206603 (2005),
doi:10.1103/PhysRevLett.95.206603.

[27] J. Z. Imbrie, On many-body localization for quantum spin chains, J. Stat. Phys. 163(5),
998 (2016), doi:10.1007/s10955-016-1508-x.

[28] V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature,
Phys. Rev. B 75, 155111 (2007), doi:10.1103/PhysRevB.75.155111.

[29] A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411
(2010), doi:10.1103/PhysRevB.82.174411.

[30] R. Vosk and E. Altman, Many-body localization in one dimension as a dynam-
ical renormalization group fixed point, Phys. Rev. Lett. 110, 067204 (2013),
doi:10.1103/PhysRevLett.110.067204.

[31] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in
quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015),
doi:10.1146/annurev-conmatphys-031214-014726.

[32] V. Khemani, R. Nandkishore and S. L. Sondhi, Nonlocal adiabatic response of a localized
system to local manipulations, Nature Phys. 11, 560 (2015), doi:10.1038/nphys3344.

[33] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Alt-
man, U. Schneider and I. Bloch, Observation of many-body localization of inter-
acting fermions in a quasirandom optical lattice, Science 349(6250), 842 (2015),
doi:10.1126/science.aaa7432.

[34] M. Ovadia, D. Kalok, I. Tamir, S. Mitra, B. Sacépé and D. Shahar, Evidence for a finite-
temperature insulator, Sci. Rep. 5, 13503 (2015), doi:10.1038/srep13503.

[35] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I. Bloch and U. Schneider, Cou-
pling identical one-dimensional many-body localized systems, Phys. Rev. Lett. 116, 140401
(2016), doi:10.1103/PhysRevLett.116.140401.

[36] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse and
C. Monroe, Many-body localization in a quantum simulator with programmable random
disorder, Nature Phys. 12, 907–911 (2016), doi:10.1038/nphys3783.

[37] J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse,
I. Bloch and C. Gross, Exploring the many-body localization transition in two dimensions,
Science 352(6293), 1547 (2016), doi:10.1126/science.aaf8834.

[38] P. Weinberg, M. Bukov, L. D’Alessio, A. Polkovnikov, S. Vajna and M. Kolodrubetz, Adia-
batic perturbation theory and geometry of periodically-driven systems, arXiv:1606.02229.

[39] D. J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in the random-field
Heisenberg chain, Phys. Rev. B 91, 081103 (2015), doi:10.1103/PhysRevB.91.081103.

[40] L. Zhang, H. Kim and D. A. Huse, Thermalization of entanglement, Phys. Rev. E 91,
062128 (2015), doi:10.1103/PhysRevE.91.062128.

40

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1103/PhysRevLett.95.206603
http://dx.doi.org/10.1007/s10955-016-1508-x
http://dx.doi.org/10.1103/PhysRevB.75.155111
http://dx.doi.org/10.1103/PhysRevB.82.174411
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1038/nphys3344
http://dx.doi.org/10.1126/science.aaa7432
http://dx.doi.org/10.1038/srep13503
http://dx.doi.org/10.1103/PhysRevLett.116.140401
http://dx.doi.org/10.1038/nphys3783
http://dx.doi.org/10.1126/science.aaf8834
https://arxiv.org/abs/1606.02229
http://dx.doi.org/10.1103/PhysRevB.91.081103
http://dx.doi.org/10.1103/PhysRevE.91.062128

SciPost Phys. 2, 003 (2017)

[41] T. Prosen, Time evolution of a quantum many-body system: transition from integra-
bility to ergodicity in the thermodynamic limit, Phys. Rev. Lett. 80, 1808 (1998),
doi:10.1103/PhysRevLett.80.1808.

[42] T. Prosen, Ergodic properties of a generic nonintegrable quantum many-body system in the
thermodynamic limit, Phys. Rev. E 60, 3949 (1999), doi:10.1103/PhysRevE.60.3949.

[43] M. Bukov, L. D’Alessio and A. Polkovnikov, Universal high-frequency behavior of periodi-
cally driven systems: from dynamical stabilization to Floquet engineering, Adv. Phys. 64(2),
139 (2015), doi:10.1080/00018732.2015.1055918.

[44] M. Bukov, Floquet Engineering in Closed Periodically Driven Quantum Systems: From
Dynamical Localisation to Ultracold Topological Matter, Ph.D. thesis, Boston University
(2016).

[45] M. Bukov, M. Heyl, D. A. Huse and A. Polkovnikov, Heating and many-body reso-
nances in a periodically driven two-band system, Phys. Rev. B 93, 155132 (2016),
doi:10.1103/PhysRevB.93.155132.

[46] D. A. Abanin, W. De Roeck and F. M. C. Huveneers, Exponentially slow heating
in periodically driven many-body systems, Phys. Rev. Lett. 115, 256803 (2015),
doi:10.1103/PhysRevLett.115.256803.

[47] T. Kuwahara, T. Mori and K. Saito, Floquet–Magnus theory and generic transient dy-
namics in periodically driven many-body quantum systems, Ann. Phys. 367, 96 (2016),
doi:10.1016/j.aop.2016.01.012.

[48] T. Mori, T. Kuwahara and K. Saito, Rigorous bound on energy absorption and generic
relaxation in periodically driven quantum systems, Phys. Rev. Lett. 116, 120401 (2016),
doi:10.1103/PhysRevLett.116.120401.

[49] D. Abanin, W. De Roeck, W. W. Ho and F. Huveneers, Effective Hamiltonians, prethermal-
ization and slow energy absorption in periodically driven many-body systems, Phys. Rev. B
95, 014112 (2017), doi:10.1103/PhysRevB.95.014112.

[50] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate
thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016),
doi:10.1080/00018732.2016.1198134.

[51] A. W. Sandvik, Computational studies of quantum spin systems, AIP Conf. Proc. 1297(1),
135 (2010), doi:10.1063/1.3518900.

[52] S. Haroche and J. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford
Graduate Texts. Oxford Univ. Press, ISBN 9780198509141 (2006).

[53] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn and K. Smith, Cython:
The best of both worlds, Computing in Science & Engineering 13(2), 31 (2011),
doi:10.1109/MCSE.2010.118.

[54] S. v. d. Walt, S. C. Colbert and G. Varoquaux, The numpy array: A structure for efficient nu-
merical computation, Comput. Sci. Eng. 13(2), 22 (2011), doi:10.1109/MCSE.2011.37.

[55] T. E. Oliphant, Python for scientific computing, Comput. Sci. Eng. 9(3), 10 (2007),
doi:10.1109/MCSE.2007.58.

[56] K. J. Millman and M. Aivazis, Python for scientists and engineers, Comput. Sci. Eng. 13(2),
9 (2011), doi:10.1109/MCSE.2011.36.

41

https://scipost.org
https://scipost.org/SciPostPhys.2.1.003
http://dx.doi.org/10.1103/PhysRevLett.80.1808
http://dx.doi.org/10.1103/PhysRevE.60.3949
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1103/PhysRevB.93.155132
http://dx.doi.org/10.1103/PhysRevLett.115.256803
http://dx.doi.org/10.1016/j.aop.2016.01.012
http://dx.doi.org/10.1103/PhysRevLett.116.120401
http://dx.doi.org/10.1103/PhysRevB.95.014112
http://dx.doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2011.36

	What problems can I solve with QuSpin?
	How do I use QuSpin?
	Exact diagonalisation of spin Hamiltonians
	Adiabatic control of parameters in many-body localised phases
	Heating in periodically driven spin chains
	Quantised light-atom interactions in the semi-classical limit: recovering the periodically driven atom

	Future perspectives for QuSpin
	Installation guide in a few steps
	Mac OS X/Linux
	Windows

	Basic use of command line to run Python
	Mac OS X/Linux
	Windows
	Execute Python script (any operating system)

	Complete example codes
	Package documentation
	References

