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Abstract

We study the decoherence process of a four spin-1/2 antiferromagnet that is coupled
to an environment of spin-1/2 particles. The preferred basis of the antiferromagnet is
discussed in two limiting cases and we identify two exact pointer states. Decoherence
near the two limits is examined whereby entropy is used to quantify the robustness of
states against environmental coupling. We find that close to the quantum measurement
limit, the self-Hamiltonian of the system of interest can become dynamically relevant
on macroscopic timescales. We illustrate this point by explicitly constructing a state
that is more robust than (generic) states diagonal in the system-environment interaction
Hamiltonian.
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1 Introduction

Understanding the interplay between a quantum system and its environment is of utmost
importance both from an engineering and a fundamental point of view. On the one hand, large
coherence times are required to engineer quantum computers in which system-environment
coupling is largely an undesired effect [1]. On the other hand, environmental coupling opens
up the possibility to gain insight in the quantum-to-classical transition in which decoherence
is thought to be the key ingredient [2,3].

In either case it is of interest to understand which states of the system under study –
henceforth central-system (CS) – are least prone to environmental deterioration. In general,
it is believed that these environmentally robust states, so-called pointer states (PS), emerge
from the interplay between the decohering effect of the interaction with the environment and
the recohering dynamics of the CS [3]. Progress has been made to identify particular PS
corresponding to two opposite limits [4]:

1. In the strong-coupling case, the dynamical time-scale of the CS Hamiltonian HS is as-
sumed to be completely negligible compared to the interaction Hamiltonian HI . In this
case the PS are determined by the basis of the interaction Hamiltonian HI .

2. In the opposite limit, the interaction Hamiltonian HI is taken to be small and (adiabat-
ically) slowly varying compared to the CS, i.e. the dynamics are dominated by HS . In
this case the PS are found to coincide with the energy eigenstates of HS , regardless of
the specific form of the interaction.

These two limits, referred to as limit 1 and 2 throughout, were analysed in Refs. [2, 3, 5–10]
and [4,5,8–16], respectively. However, studies that emphasise entropy as a criterion for PS (to
be discussed in more detail in the next section) [17] have been primarily restricted to a few
exactly solvable master equations [3, 11, 18, 19]. In addition, new experiments demonstrate
that concepts such as purity and entropy have become observable quantities [20,21].

In this work, the decoherence process is examined by numerically evaluating the Schrö-
dinger time-evolution of a collection of spin-1/2 particles. Motivated by recent progress in
spin polarised STM experiments [22] (see [23] for a recent review), the present work shall
encompass the decoherence of a small antiferromagnetic CS. Importantly, not only the loss of
coherence, but also the production of entropy is stressed. The two aforementioned opposite
regimes are considered by examining decoherence close to the respective idealised limits.

This paper is organised as follows: The characteristics of PS are briefly reviewed in Sec. 2,
and an antiferromagnetic model is introduced in Sec. 3. Using this model, the concept of
PS are illustrated in Sec. 4 by working out explicitly an idealised decoherence process. The
main numerical results are presented and interpreted in Sec. 5. These results are subsequently
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discussed in Sec. 6 with particular emphasis on the relation to classicality. And finally the main
findings are recapitulated in the Conclusion.

2 Pointer states

The reduced density matrix (RDM) associated with the CS is usually of primary interest when
studying decoherence in general and PS in specific. This RDM is obtained from the (pure)
density matrix of the entire system (i.e., both the CS and the environment) by tracing out
environmental degrees of freedom

ρ(t) = TrEΠ(t) , (1)

where Π(t) = |Ψ(t)〉〈Ψ(t)| denotes the density matrix of the combined system. In order to
find the pointer basis (assuming that such a basis exists at all), it does not suffice to perform
straightforward diagonalisation of the RDM ρ(t). Any RDM can trivially be brought to diago-
nal form by using an appropriate unitary transformation. As was emphasised by Zurek [17],
diagonality of the RDM is only a symptom of preferred states. And indeed, the (instantaneous)
Schmidt basis of a RDM can be radically different from the pointer basis, as was stressed by
Schlosshauer [24].

Instead, the decoherence program has put forward the idea that a preferred basis of a
system is singled out by the environment [2, 3]. The preferred states are selected based on
the requirement that correlations are best preserved [2,17,24,25]. Originally, the concept of
the pointer basis was discussed in the setting of the system-apparatus-environment triad [25],
which will now serve as an useful example.

Let {|sn〉}, {|An〉}, and {|En〉} refer to basis vectors of the system, apparatus, and environ-
ment, respectively. In the ideal case in which system-apparatus correlations can be maintained,
the coupling to the environment would result, for example, in the development of entangle-
ment of the form

�

∑

n

cn|sn〉|An〉
�

|E0〉 −→
∑

n

cn|sn〉|An〉|En〉 , (2)

with |E0〉 the initial state of the environment. The formation of such correlations can typically
be achieved by considering e.g. a von Neumann-type of system-environment interaction [26].
More often than not, however, the development is not as ideal as schematically depicted in
Eq. (2). And generally, the states |sn〉 are perturbed and evolve into different states |s̃n(t)〉
(N.B. we consider the effect of the environment onto the states {|sn〉}). Consequently, the
initial |sn〉|An〉 correlation diminishes over time.

From this example it becomes clear that states must be robust against environmental in-
teractions, in order to preserve correlations. Thus, the pointer basis consists of states which
are least affected by the environment. The robustness of preferred states is perhaps made
more concrete in Schrödinger’s cat paradox. In this gedankenexperiment the preservation of
correlations means that a dead cat must remain dead, even when one decides to illuminate
the dead cat to have a look and ascertain its physiological state; that is, environmental pho-
tons scattering off the dead cat towards our eyes should leave the state of the cat essentially
unperturbed.

To understand why correlation preservation is assumed to be a characteristic of classicality,
it is useful to think of the coupling to the environment as if it is a measurement (more detailed
analysis [27, 28], however, indicates that more intricate conditions are required to genuinely
speak of measurement). One of the characteristic features of classical physics is that any distur-
bances resulting from a measurement can, at least in principle, be made arbitrarily small [29].
This is often taken as one of the defining features [3, 17] of effective classicality: would-be
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Figure 1: Schematic set-up of the spin-spin interactions as described by the Hamiltonian H,
Eq. (4). A single representative environment particle, k, is highlighted (in blue) to illustrate
the intra-environment coupling (green solid lines) and the coupling to the central-system (red
solid lines). Each solid line denotes an antiferromagnetic interaction of random strength.
All other environment particles have analogous coupling as illustrated by particle k. The dot-
dashed lines in the central-system represent the nearest-neighbour coupling in HS of (constant)
strength JS .

classical states are insensitive to measurement of classical observables. In this sense, states
which are robust against the measuring effect of the environment, are effectively classical.

One of the methods that was proposed to identify PS is the predictability sieve crite-
rion [2,17] (for alternative criteria see e.g. Refs. [18,19]). For completeness we briefly outline
this algorithmic procedure, closely following [2,17]. The first step is to make a list of all pos-
sible pure states in the relevant Hilbert space. One subsequently evaluates the von Neumann
entropy [26]

S(t)≡ −Tr [ρ(t) lnρ(t)] , (3)

for each element in the list by letting the system interact with the environment for some fixed
value of t. Finally, the list is to be ordered in descending value of S(t) and one requires that
the states on the top of the list (with lowest S(t)) do not change appreciably for variations in t.
As a result, the top of the list contains the states that are the least susceptible to environmental
deterioration and therefore outperform other states in terms of retaining correlations.

In practice, it is rather difficult to numerically evaluate the entropy production of each
possible linear combination. Therefore, we restrict our analysis to specific states where pre-
dictions, as to whether this state is preferred or not, are available.

3 Model

3.1 Hamiltonian

In this work we will study an ensemble of magnetic particles which are modelled as spin-1/2
states. The ensemble is partitioned in two: the system of interest (the CS) and its environment.
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We therefore write the Hamiltonian of the entire system as a sum of three parts:

H = HS +HI +HE , (4)

whereby HS (HE ) refers to the Hamiltonian of the CS (environment) and HI contains the
system-environment coupling. The CS consists of NS antiferromagnetically coupled spins, gov-
erned by the Heisenberg Hamiltonian [30]

HS = JS

∑

〈i, j〉∈S

Si · S j , (5)

where JS is the exchange integral (JS > 0 for antiferromagnetism), i and j are indices in
the subset S pertaining to the CS, and 〈i, j〉 indicates that the two indices refer to nearest
neighbours. Henceforth units in which ħh = 1 are used so that the spin operators are given by
Sαi = σ

α
i /2, with σα Pauli matrices. Similarly, the interaction Hamiltonian is chosen to be

HI =
∑

i∈S, k∈E
IikSz

i Sz
k , (6)

with Iik the coupling strength between spins i and k, where i is in the subset S and k belongs
to the subset of (in total NE ) environment indices E . As a consequence of the Ising-coupling
in Eq. (6), the total z-magnetization, Sz

tot =
∑

i∈S Sz
i , of the CS is conserved: [Sz

tot, H] = 0 [see
Eq. (4)].

From experimental decoherence studies it is known that system-environment couplings
are, in certain cases, well captured using random strengths [31–33]. In addition, numerical
calculations indicate that the use of random couplings enhance the decoherence process [34].
This motivates us to model the coupling between the CS and the environment with a random
interaction

Iab = I rab , (7)

where I denotes the strength of the interaction and rab are uniform random numbers in the
range [0,1) such that each rab is a different realisation for each a and b.

The Hamiltonian of the environment is set to

HE =
∑

k,l∈E
KklSk · Sl , (8)

where Kkl denotes the intra-environment interaction strength. Similar as for HI , the use of
random intra-environment strengths [34] and large connectivity [14] allows one to achieve
optimal loss of coherence. We corroborate the findings of [14,34] from extensive simulations,
the results of which are not shown here. Incorporating these features, the interaction strengths
Kkl of HE [Eq. (8)] takes the form

Kab = K r̃ab . (9)

Here r̃ab denotes uniform random numbers in the range [0, 1) analogous to rab. To schemat-
ically depict Eq. (4), we show the system-environment and environment-environment connec-
tions of a single representative environment particle k in Fig. 1.

3.2 State preparation

Since the process of decoherence arises from the development of entanglement, we find it
convenient to prepare the entire system in a product state at time t = 0:

Π(t = 0) = ρS ⊗ρE , (10)
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with ρS the density matrix of the CS and ρE that of the environment. Subsequent time-
evolution is governed by the unitary operator U(t) = exp[−iH t] as described by the Schrö-
dinger equation.

Inspired by experiments [31, 32], the environment, ρE = |φ〉〈φ|, is initially prepared in
a state corresponding to temperature T =∞. This is done by constructing the (normalised)

state |φ〉=
∑2NE

n=1 zn|n〉, where zn is a random complex number such that |z|2 = 1 (see Sec. 3.3).
As for the initial state of the CS, our attention shall be restricted to specific initial config-

urations. Two states will be studied in particular: the Néel state |ψN 〉 =|↑↓↑ . . . 〉 (the arrows
denote spin-up and -down in the computational- or Ising basis) and the ground state of HS
called |ψ0〉. These two initial states are particularly convenient for scrutinizing PS, since they
coincide with the preferred basis in limits 1 and 2, respectively. Moreover, the former corre-
sponds to the classical limit of the latter, as will be discussed in more detail in Sec. 6.

However, a direct consequence of choosing initial states |ψ0〉 and |ψN 〉, whereby both
states belong to the Sz

tot = 0 subspace, is that a NS = 2 particle CS can effectively be described
by a two-level system. In this case the entropy directly follows from a single eigenvalue of
ρ(t) (the other eigenvalue is fixed by normalisation). We shall therefore focus on a slightly
larger NS = 4 CS for which the entropy is less constrained.

3.3 Simulation procedure

The unitary time evolution of the wave function |Ψ(t)〉, or equivalently the evolution of the
density matrix Π(t) = |Ψ(t)〉〈Ψ(t)|, is calculated using the Chebyshev polynomial expan-
sion, which yields numerically exact results up to machine precision [35,36]. The Box-Muller
method [37] is used to generate the random coefficients zn for the initial state of the environ-
ment. The choice of the Heisenberg Hamiltonian for the CS allows for certain sanity checks.
For example, commuting of Sz

tot with the Hamiltonian means that the total magnetization is
conserved, as already discussed. Moreover, one can use (e.g.) the exact PS to verify that they
remain unaltered upon time-evolution (see Sec. 4).

The simulations presented in Sec. 5 are carried out using a single realisation of random cou-
plings [Eqs. (7) and (9)]. Simulations in which NE is varied (Secs. A and B) use different reali-
sations of the couplings. For each run (corresponding to inequivalent {NS , NE ,ρ(t = 0), I , K})
a new environment state |φ〉 is generated. The phenomena observed in this work are insensi-
tive to different realisations of the couplings as well as the state of the environment |φ〉.

4 Example: exact pointer states

To illustrate the characteristic features of PS, it is illuminating to start with an essentially trivial
example: exact pointer states. With exact we indicate that these states are simultaneously
eigenstates of the CS, HS , and the interaction Hamiltonian, HI . Two important aspects can now
be emphasised: the loss of coherence and the production of entropy. Hamiltonian H [Eq. (4)]
allows one to identify at least two exact PS: namely, the fully polarised states |⇑〉 =|↑↑↑ . . . 〉
and |⇓〉=|↓↓↓ . . . 〉. Such a state is stationary and produces no entropy, as we will show now.

Take, as an example, the initial state |Ψ(0)〉 =|⇑〉|ψE 〉, whereby |ψE 〉 is an arbitrary ini-
tial state of the environment. Evolution of Π(t) = |Ψ〉〈Ψ| is governed by the von Neumann
equation and thus the time-dependence of ρ(t) is determined by

ħh
i
TrE

�

∂Π

∂ t

�

= TrE [Π, HS +HI +HE ] . (11)

It follows that the commutator evaluates to zero, as is seen from the cyclic property of trace
and the fact that the initial state is an eigenstate of both HS and HI . Hence, this state retains
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its purity and is resilient to environmental coupling, irrespective of the numerical values of Iab
and Kab. Conversely, for more general superpositions of |⇑〉 and |⇓〉 entanglement will develop
with the environment. The production of entanglement generates entropy and suppresses
coherences in S as a result of tracing over environmental degrees of freedom. In order to
show the formation of entanglement, first note that:

e−i t(HS+HI+HE ) |⇑〉|ψE 〉=|⇑〉





∞
∑

n=0

�

−i t
�

E⇑S +
∑

k∈E αkSz
k +HE

��n

n!



 |ψE 〉

=|⇑〉e−i t
�

E⇑S+
∑

k∈E αkSz
k+HE

�

|ψE 〉 , (12)

where E⇑S = E⇓S = JSNS/4 and the symbol αk =
∑

l∈S Ilk/2 was introduced to denote an
eigenvalue of the CS state |⇑〉. Using this identity one can evaluate the time-evolution of
a more general linear combination |Υ (0)〉 = (α |⇑〉+ β |⇓〉) |ψE 〉. Following the notation in
Refs. [2,8] one finds

|Υ (t)〉=e−i t(HS+HI+HE ) (α |⇑〉|ψE 〉+ β |⇓〉|ψE 〉) (13)

=e−i tE⇑S
�

α |⇑〉|E⇑(t)〉+ β |⇓〉|E⇓(t)〉
�

, (14)

where

|E⇑(t)〉= exp

�

−i t

�

∑

k∈E
+αkSz

k +HE

��

|ψE 〉 , (15)

|E⇓(t)〉= exp

�

−i t

�

∑

k∈E
−αkSz

k +HE

��

|ψE 〉 . (16)

The transition of ρ(t) from a pure to a mixed state becomes explicit by tracing out the
environment

ρ(t) = TrE [|Υ (t)〉 〈Υ (t)|] =
�

|α|2 〈E⇓(t)|E⇑(t)〉αβ∗

〈E⇑(t)|E⇓(t)〉α∗β |β |2

�

. (17)

Decoherence is successful if 〈E⇑(t)|E⇓(t)〉 ≈ 0 which results in the production of an entropy
∆S = − [p ln p+ (1− p) ln(1− p)], where p = |α|2.

5 Results

One of the quantities that shall be used to characterise PS is entropy S(t), as discussed in
Sec. 2. In addition, we introduce the basis-dependent symbolM (t) to denote, for each time
step t and all i and j, the maximum off-diagonal component |ρi 6= j|,

M (t)≡max
�

|ρi 6= j(t)|
�

, (18)

whereby the indices i and j refer to a particular basis. Although the quantityM (t) serves as
a convenient gauge for the development of coherence in a particular basis, different measures
such as the expectation value, E[|ρi 6= j(t)|], or the standard deviation,σ[|ρi 6= j(t)|], were found
to be equally good measures for (the lack off) coherence. Both S(t) andM (t) shall now be
used as the two guiding quantities in evaluating the pointer state-like behaviour of specific
states.
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Figure 2: Time-evolution of the reduced density matrix ρi j(t), expressed in the computational
basis, for different intra-environment strengths, K , (columns) and initial states of the central-
system (to wit, ground state |ψ0〉, Néel-state |ψN 〉=|↑↓↑↓〉, and |χ〉= [|⇑〉+3 |⇓〉]/

p
10). The

central-system consists of NS = 4 spins that are connected to each of the NE = 16 environment
spins via random antiferromagnetic Ising coupling of strength I = 20JS . The top row indicates
the maximum off-diagonal componentsM (t) [Eq. (18)] as function of dimensionless time t.
The middle row depicts the diagonal components of ρ(t) in the Sz

tot = 0 subspace, as indicated
by the spin configurations in the legend. The von Neumann entropy of ρ(t) is shown in the
bottom row, and the red horizontal line indicates the maximal entropy that can be attained
in the Sz

tot = 0 subspace. Time t has been made dimensionless in units of JS and ħh, i.e.
t ′→ t ′JS/ħh≡ t.
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tational basis (marked by ideal). The simulations have been carried out for a central-system
of NS = 4 particles strongly coupled (I = 20JS) to NE = 16 environment particles via ran-
dom antiferromagnetic Ising coupling. The initial state of the CS and the intra-environment
strength (in units of JS) are indicated in the panel. For initial state |χ〉 the simulation and
ideal entropy exactly coincide and are identical for all three K values (K = JS and K = 20JS
have been omitted in the figure). The ideal entropy for state |ψN 〉 is zero.
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I = 20JS (strong coupling) and the intra-environment K is indicated in the legend (in units of
JS). The system (environment) consists of NS = 4 (NE = 16) particles. Time t has been made
dimensionless in units of JS and ħh, i.e. t ′ → t ′JS/ħh ≡ t. Non-monotonicity is a signature of
non-Markovian effects.
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5.1 Strong interaction

As remarked, the dynamics of the system-environment interaction characterises the only rele-
vant time-scale for the CS in limit 1. That is, the self-Hamiltonian HS can entirely be neglected
in this limit. As a result, the pointer basis is determined by the interaction Hamiltonian, HI .
For the present model, Eq. (6), it means that the PS coincide with the spin-up/spin-down ba-
sis (henceforth computational basis). We, however, shall study the regime where the system-
environment coupling is large, but where HS can not be neglected. Specifically, the interaction
strength is set to I = 20JS which ensures that the dephasing process due to HI is short com-
pared to the dynamical time-scale of the antiferromagnet, HS . Moreover, the system consists
of NS = 4 and NE = 16 spins. All basis-dependent quantities presented in this subsection, such
as the maximum coherenceM (t) and the diagonal components ρii(t), refer to the computa-
tional basis. Time t is expressed in units of JS here and in the following.

To reiterate, for any state of the form |ϕ〉 = [α |⇑〉+ β |⇓〉] the entropy production ∆S
immediately follows from the coefficients. This allows one to tune the desired entropy pro-
duction by choosing the appropriate coefficients. In anticipation of the simulation results we
will study, in addition to initial states |ψ0〉 and |ψN 〉, the evolution of |χ〉= [|⇑〉+ 3 |⇓〉]/

p
10.

Consider first the case for which the intra-environment interaction is set to K = 0.02JS .
The numerical results of the RDM ρ(t) for K = 0.02JS are collected in the left column of Fig. 2.

As a result of the strong interaction, the maximum off-diagonal componentM (t) rapidly
diminishes for the initial (energy eigen) states |ψ0〉 and |χ〉, as is seen in the upper row.
On the other hand, the Néel-state |ψN 〉 being diagonal in HI initially develops off-diagonal
components as a result of the self-Hamiltonian HS which are subsequently damped in time.
Since the environment is rather weak (i.e. small K compared to I and JS), relaxation does
not take place and the diagonal components are only slightly perturbed from the initial value,
as is illustrated in the middle row. Looking at the bottom row of Fig. 2, it can be seen that
the entropy S(t) for |ψN 〉 surpasses 1/2, whilst the maximally attainable value is Smax ≈ 1.79
in the Sz

tot = 0 subspace; this is a considerable amount compared to an ideal zero entropy
producing pointer state. And in fact, it develops more entropy than the initial-state |χ〉, for
which ∆S ≈ 0.33. Only in the regime where entropy develops linearly in time does |ψN 〉
outperform |χ〉 in terms of entropy.

According to the predictability sieve criterion [17], we are thus led to conclude that the
state |χ〉, which is not diagonal in HI , qualifies more as a pointer state than |ψN 〉 which is
diagonal in HI . This is a result of the condition that states which are singled out should not
only be minimal entropy producing, but also insensitive to the time which is used for selecting
the states [17]. Therefore, it is crucial to go beyond simple perturbative expansions in time.
Indeed, our results illustrate how deceptive simple perturbative considerations can be.

One might argue that the robustness of initial-state |χ〉 is a pathology of our model Eq. (4),
since |χ〉 is symmetry protected. In Appendix. B we show that our observations are not re-
stricted to Eq. (4), and holds for more general systems provided that the environment is suf-
ficiently weak.

Let us now discuss the stronger intra-environment interactions K = JS and K = 20JS .
The top row illustrates thatM (t) is slightly more reduced in time compared to K = 0.02JS .
By carefully looking at the figure with K = 20JS near t = 10−1 one can notice recohering
quantum fluctuations inM (t) for initial-state |χ〉. Calculations in which the number of system-
environment connections were varied indicate that the fluctuations are a finite-size effect. The
main difference compared to the weak environment (K = 0.02JS) is that the CS now relaxes
towards equilibrium in the Sz

tot = 0 subspace (for |ψN 〉 and |ψ0〉). This can be concluded by
noting that for |ψN 〉 and |ψ0〉 the entropy evolves towards Smax of the Sz

tot = 0 subspace; or
equivalently, the diagonal components grow towards a single value (see centre row Fig. 2),
corresponding to the T =∞ configuration.
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In Fig. 3 we compare the entropy S(τ) at τ = 10 with the production which one would
expect if the states decohere ideally in the computational basis. That is, the off-diagonal com-
ponents are entirely quenched and the on-diagonal elements remain unperturbed (pure de-
phasing). As expected for the state |χ〉, the entropy S(τ) exactly coincides with its ideal value
irrespective of K . For ground state |ψ0〉 the excess entropy relative to the ideal value is rather
modest for environment strength K = 0.02JS , in contrast with initial-state |ψN 〉. The general
picture is that by increasing K one enhances relaxation, which tends towards the maximum
entropy as indicated by the red horizontal line.

Note that near the point of relaxation it is no longer possible to speak of preferred states.
When the density matrix is proportional to the identity matrix, each basis is on the same footing
for it trivially leaves the density matrix diagonal.

Finally, a word on non-Markovian behaviour in our system. In Markovian master equa-
tions, the production of thermodynamic entropy is always non-negative provided that a steady
state exists [38]. Therefore, the von Neumann entropy oscillations observed in Fig. 2 for
K = 0.02JS point towards non-Markovian behaviour. This can be verified by evaluating the
trace distance between two quantum states ρ1 and ρ2

D(ρ1,ρ2) =
1
2

Tr|ρ1 −ρ2| , (19)

with |M |=
p

M†M . If D(ρ1(t),ρ2(t)) is not monotonically decreasing as a function of time t
then our system is said to be non-Markovian [39]. In Fig. 4 the trace distance is calculated be-
tween the RDMs of the two initial states |ψ0〉 and |ψN 〉; the three intra-environment strengths
are indicated in the legend. The oscillations observed in Fig. 4 for K = 0.02JS indeed confirm
the presence of non-Markovian effects.

5.2 Weak interaction

We will now study the decoherence process by a slow environment that is weakly coupled
to the CS. The quantum nature of the environment is crucial to have decoherence, as it is
based on the development of system-environment entanglement. But from the perspective
of the CS, it is helpful to think of the environment as being composed of a large number of
magnetic fields which vary slowly in time compared to the systems’ intrinsic dynamical scale
and shift states of the environment. The adiabatic theorem [40] is applicable in the limit where
the level spacing of the CS, δES , is large compared to the dominant frequencies available in
the environment. When the energy eigenstates of the CS are non-degenerate, the adiabatic
interaction protects these states from measurement [41]. When in addition the interaction
is weak, the instantaneous energy eigenstates of the CS closely resemble the initial (t = 0)
eigenstates [41]. The connection with preferred states was appreciated by Paz and Zurek [4]
who identified the energy eigenstates as the pointer basis, given that the environment behaves
adiabatically.

In general, the elementary excitations of a quantum system lie very low in energy [42];
for example, in the thermodynamic limit the ground state level spacing, δES , of the antifer-
romagnetic Heisenberg Hamiltonian goes as δES ∝ JS/NS [43]. More specifically, for our
system with NS = 4 explicit calculation yields a level spacing of δES = JS for all energy levels
(apart from degeneracy). To estimate the dominating environmental frequencies, note that
individual environmental spins are connected by random isotropic intra-environment strength
of order K [see Eq. (8)]. Since there is no temperature suppression of energy levels in HE , the
coupling strength K can be used as a crude measure for the intra-environment frequencies.

We shall now examine the range in which it is justified to identify the eigenstates as the
pointer basis. To this end, the effect of the environment is studied slightly away from the
adiabatic regime. We consider three intra-environment strengths: K/JS = 0.02, 0.2 and 1.
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Figure 5: Time-evolution of the reduced density matrixρi j(t) in the energy eigenbasis whereby
the central-system (NS = 4 particles) is weakly connected (I = 0.25JS) to an environment of
NE = 16 particles via random antiferromagnetic Ising coupling. Each column correspond to
different intra-environment strengths K . The initial states of the central-system (CS) – namely,
the ground state |ψ0〉 and the Néel-state |ψN 〉 =|↑↓↑↓〉 – are indicated in the panels. The
maximum off-diagonal component M (t) [Eq. (18)] is depicted in the top row. The middle
row shows the diagonal components of ρ(t) whereby the states in the legend correspond
to quantum numbers |Stot, Sz

tot, E〉 where E and Stot denote the energy eigenvalue and the
total spin (of the CS), respectively. The von Neumann entropy S(t) is shown in the bottom
row whereby the red horizontal line indicates the maximum value attainable in the Sz

tot = 0
subspace. Time t has been made dimensionless in units of JS and ħh, i.e. t ′→ t ′JS/ħh≡ t.
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energy eigenbasis (marked by ideal). The simulations have been carried out for a central-
system of NS = 4 particles weakly coupled (I = 0.25JS) to NE = 16 environment particles via
random antiferromagnetic Ising coupling. The initial state of the CS and the intra-environment
strength (in units of JS) are indicated in the panel. The ideal entropy for state |ψ0〉 is zero.
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as a function of dimensionless time t. The antiferromagnetic Ising coupling strength is set to
I = 0.25JS (weak coupling) and the intra-environment K is indicated in the legend (in units of
JS). The system (environment) consists of NS = 4 (NE = 16) particles. Time t has been made
dimensionless in units of JS and ħh, i.e. t ′ → t ′JS/ħh ≡ t. Non-monotonicity is a signature of
non-Markovian effects.
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The interaction strength is set to I = JS/4 and basis-dependent quantities are evaluated in the
energy eigenbasis that simultaneously diagonalises Sz

tot and S2
tot, unless specified otherwise.

The numerical results pertaining to a NS = 4 RDM coupled to NE = 16 environmental spins
are collected in Fig. 5.

We observe that for K = 0.02 the environment behaves adiabatically. This can be con-
cluded from the fact that: (i) the ground state |ψ0〉 develops no off-diagonal components in
the eigenbasis, whilst for the Néel state |ψN 〉 the off-diagonal components are exponentially
suppressed with time starting from t ≈ 10 (notwithstanding the oscillations); (ii) the level
population of |ψ0〉 remains essentially untouched while |ψN 〉 is only briefly and slightly per-
turbed; and (iii) |ψ0〉 produces a small amount of entropy. In fact, the amount of entropy that
both |ψ0〉 and |ψN 〉 produce, almost coincides with the entropy production what would be
expected if the energy eigenstates are ideal PS. This is depicted in Fig. 6. The excess entropy
of both |ψ0〉 and |ψN 〉 can be further reduced by decreasing I , at the expense of performing
longer numerical calculations due to the increased decoherence time.

Making the environment stronger by increasing K does not so much affect the loss of
coherence, but primarily the characteristic time in which the decoherence occurs (top row
Fig. 5). In contrast, the diagonal elements (centre row) and the entropy (bottom row) are
significantly perturbed by increasing K; a stronger environment enhances relaxation, as was
also found in the previous section. This trend is visualised in Fig. 6 whereby the entropy S(τ)
for τ= 2500 is compared with ideal dephasing of the respective initial-state in the eigenbasis.
The energy eigenstates are no longer dynamically protected and, as a consequence, the density
matrix tends towards (thermodynamic) equilibrium.

The oscillatory behaviour in Fig. 5, all starting near t ≈ 1, coincides with oscillations in
the trace distance D(t) [Eq. (19)] between initial states |ψ0〉 and |ψN 〉, as shown in Fig. 7.
Thus, the transient period in which we find decoherence is marked by strong non-Markovian
behaviour, much more so than for a strongly coupled environment (cf. Fig. 4).

6 Discussion

As was shown in Sec. 5.1, even when decoherence is extremely fast compared to the typical
time-scale of HS , (generic) states that are diagonal in HI are no longer preferred in terms of
predictability. This is to be expected since neglecting HS amounts to taking the short-time
limit when HS is sufficiently slow. However, in general an explanation of emergent classical-
ity should not be restricted to small time periods only. Indeed, in the frequently discussed
quantum Brownian motion example [11], considerations based on time perturbation would
(misleadingly) identify spatially localised states as preferred, instead of coherent states. Thus
a satisfactory analysis requires that all, perhaps macroscopic, time scales are equally well taken
into account.

The results presented in Sec. 5 were performed for a rather modest system of NS+NE = 20
spins. Whether a small ensemble of spins, as presented here, can convincingly capture all facets
of decoherence depends crucially on the environment. For example, a chaotic environment
decoheres more efficiently compared to a non-chaotic environment [9]. Furthermore, earlier
work has shown that a system with large connectivity within the environment [14,34,44] and
by employing random couplings [14, 34, 44] an environment of NE ≈ 16 spins is sufficiently
large to study decoherence [12, 14, 34, 44]. Moreover, in Appendix A it is shown that our
considerations are largely unaffected by finite-size effects. Thus no new qualitative features
are expected to emerge for much larger environments.

A brief remark on the classical limit of Eq. (5) is now in order. The classical counterpart of
Eq. (5) is obtained by replacing spin operators by vectors. As a result, the classical analogue
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of the non-degenerate singlet |ψ0〉 is the Néel-state |ψN 〉. A priori one could think that the
quantum-to-classical crossover arises from unidirectional coupling to an environment: classi-
cality as a result from the competition between HI , with a well-defined direction in space, and
HS , a time-reversal and rotationally invariant self-Hamiltonian. In this work, no evidence was
found to substantiate this claim. Instead, |ψN 〉 was found to be rather unstable (in terms of
entropy) compared to high-energy states |⇑〉, |⇓〉, and superpositions thereof.

Clearly, a more realistic model is needed to capture the essential features needed to un-
derstand the emergence of classicality in antiferromagnets. For example, the size of the CS
presumably plays a role as indicated by experiment [45]. Also the temperature of the envi-
ronment and the intra-environment interactions might need refinement. These unexplored
avenues are left for future work.

7 Conclusion

In two mathematical limits the preferred basis problem seems solved, namely: (a) the strong
system-environment coupling limit and (b) the weak-coupling and slow-environment limit [4].
The preferred states corresponding to limit (a) [limit (b)] are diagonal in the interaction Hamil-
tonian HI [self-Hamiltonian HS].

In this work, a more physical line of approach was adopted, whereby decoherence near the
two limits was considered. Specifically, the decoherence of a small antiferromagnetic system
has been (numerically) considered with special emphasis on pointer states (PS). Both the loss
of coherence and the predictability (or robustness) of PS was stressed. Statistical entropy was
used as a means to quantify the robustness of specific states.

Two initial states of the central-system were considered in particular – namely |ψ0〉, the
ground state of HS , and the Néel-state |ψN 〉 =|↑↓↑↓〉. For these states it was found that near
limit (a) [limit (b)] the coherences of the reduced density matrix ρ(t) evaluated in the HI
[HS] basis are quenched, irrespective of the strength of the environment self-Hamiltonian HE .
However, the dynamical timescale of HE determines to a large extent the robustness of specific
states, since stronger environments enhance relaxation within the Sz

tot subspaces. Hence, our
work suggests that dynamically fast environments tend to erase preferences for a specific basis.

Conversely, when HE is sufficiently slow it was found that near limit (b), indeed, the energy
eigenstate |ψ0〉 appears robust against environmental coupling. But importantly, near limit (a)
we demonstrated by explicit example, that specific states not diagonal in HI can become more
stable (i.e., more PS-like) than typical states that are diagonal in HI (such as |ψN 〉). Thus,
neglecting HS seems justified in e.g. a quantum measurement set-up where the interaction
is subsequently turned off [25]. On macroscopic time scales, however, care must be taken
in analysing PS since a (perturbatively) small self-Hamiltonian HS can become dynamically
relevant.
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Figure 8: The time-averaged entropy and maximum off-diagonal component as a func-
tion of the environment size NE . The intra-environment strength is fixed according to
KNE (NE − 1) = const; the various values of K indicated in the panels correspond to NE = 16.

A Finite-size effects

To convince the reader that the present results do not significantly suffer from finite-size arti-
facts, we have varied the number of environment spins NE . In order to make a fair comparison
between environments of different size, the intra-environment strength KNE (NE − 1) is held
fixed since the number of elements Kab 6= 0 goes as∝ NE (NE−1). In addition, time-averaging
is performed on the entropy S and the coherence suppressionM , i.e.

M (t∞,∆T )≡
1
∆T

∫ t∞+∆T

t∞

M (t)dt . (20)

Time-averaging ensures that our conclusions are insensitive to small variations in time, as
the fast oscillations in small-NE environments are averaged out. The results for the strong
interaction regime (as discussed in Sec. 5.1) with I = 20JS are presented in Fig. 8a. The
initial-state is set to |ψ0〉 and M R(t∞,∆T ) = 100 · M (t∞,∆T )/M (0) is calculated in the
computational basis. The exponential decrease inM R observed for K = JS and K = 20JS are
well captured by the simple M R ∝ 2−NE /2 scaling law [44]. Both the entropy production,
S, and the coherence suppression, M R, level off around NE = 10. Thus an environment of
NE = 10 spins is already sufficiently large to capture the main features.

In Fig. 8b we collect the results for interaction strength I = JS/4 with initial-state |ψN 〉.
Note that M R is now calculated in the eigenbasis. The entropy of the slow environment,
marked by K = 0.02 in the panel, is insensitive to the size of the environment for NE ≥ 4.
Although the environment size NE = 16 is insufficiently large to rule out finite-size effects for
the two other environment strengths, it appears that the increase of entropy as a function of
NE levels off around NE = 14. The same scaling behaviour of M R as a function of NE was
found as in Fig. 8a, but now in the basis that diagonalises HS .
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B Symmetry broken central-system Hamiltonian
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Figure 9: Effect of an Sz
tot symmetry breaking (additional) term (indicated below the panel)

on the time-averaged entropy S(180,20), as a function of the environment size NE . The CS
is strongly coupled to the environment with strength I = 20JS , while the intra-environment
strength is fixed to KNE (NE − 1) = 24/5 JS . The dipolar coupling J x x

S and transverse field hx

are both set to JS .
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Figure 10: Energy of the CS (in units of JS) for a Hamiltonian that contains an anisotropy
ÒHS = HS + H ′S or ÒHS = HS + H ′′S . The primes on the initial states in the legend refer to the
Hamiltonian with the respective anisotropy. The environment consists of NE = 16 particles
with coupling strength K = 0.02JS . Time t has been made dimensionless in units of JS and ħh,
i.e. t ′→ t ′JS/ħh≡ t.

As a result of Hamiltonians HS and HI (Eqs. (5) and (6), respectively) the initial state |χ〉
is protected from relaxation by the Sz

tot quantum number. It will now be shown that the ob-
servations in Sec. 5 are not restricted to symmetry protected states. Accordingly, a symmetry
breaking term is added to HS such that Sz

tot is no longer conserved. Two such terms are consid-
ered: a transverse field H ′S = hxS x

tot and H ′′S = J x x
S

∑

〈i, j〉 S
x
i S x

j that mimicks a near-neighbour
dipole-dipole interaction [46]∝

∑

〈i, j〉[Si · S j − 3(n · Si)(n · S j)] where n ‖ x̂ . The new self-

Hamiltonian is thus ÒHS = HS +H ′S or ÒHS = HS +H ′′S . The (time-averaged) entropy S(t∞,∆T )
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[see Eq. (20)] of the CS with additional anisotropy H ′S or H ′′S are indicated in Fig. 9. What is
seen is that for all sizes NE the entropy of initial state |χ〉 is lower than that of |ψ0〉 and |ψN 〉.
Thus, |χ〉 is more robust compared to the other two states, while it is no longer symmetry
protected from relaxation. One possible explanation is that |χ〉 is still relatively high in energy

compared to the mean energy of the CS (2−NS
∑2NS

i=1
bE i

S = 0 in both cases) and is, as a result
of the low energy content of the T =∞ environment, unable to lose some of the CS energy
to excite lower lying energy states. Or put differently, the entropy production for the state |χ〉
is energetically suppressed. In Fig. 10 the time-development of the energy is depicted for the
different systems. Indeed, what is seen is that over the course of time the energy difference for
|ψN 〉 grows towards ∆E = 0.20 and ∆E = 0.17 with respectively H ′S and H ′′S . In comparison,
the energy difference for |χ〉 is found to be much smaller: ∆E = −0.10 and ∆E = −0.04
with H ′S and H ′′S , respectively. Moreover, numerical calculations (not shown here) indicate
that initial-state |χ〉 readily overtakes |ψ0〉 and |ψN 〉 in entropy when increasing K .
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