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Abstract

We present experimental results on the influence of magnetic fields and laser polar-
ization on electromagnetically induced transparency (EIT) using Rydberg levels of 87Rb
atoms. The measurements are performed in a room temperature vapor cell with two
counter-propagating laser beams at 480 nm and 780 nm in a ladder-type energy level
scheme. We measure the EIT spectrum of a range of ns1/2 Rydberg states for n= 19−27,
where the hyperfine structure can still be resolved. Our measurements span the range
of magnetic fields from the low field linear Zeeman regime to the high field Paschen-
Back regimes. The observed spectra are very sensitive to small changes in magnetic
fields and the polarization of the laser beams. We model our observations using optical
Bloch equations that take into account the full multi-level structure of the atomic states
involved and the decoupling of the electronic J and nuclear I angular momenta in the
Breit-Rabi regime. The numerical model yields excellent agreement with the observa-
tions. In addition to EIT related experiments, our results are relevant for experiments
involving coherent excitation to Rydberg levels in the presence of magnetic fields.
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1 Introduction

Electromagnetically Induced Transparency (EIT), in essence a Fano-like interference between
different excitation paths [1,2], opens up new possibilities for quantum information and non-
linear optics, such as the creation of slowly propagating light [3] and photon storage and re-
trieval [4–6]. EIT in a three-level ladder (or “Ξ”) scheme, involving an atomic Rydberg level, is
also an attractive technique to gain spectroscopic information on Rydberg levels [7] or environ-
mental influences [8–12], and can also be used for frequency stabilization of lasers [13]. Next
to the multitude of spectroscopic applications, Rydberg EIT opens new paths for quantum in-
formation [14] and light-matter interaction, comprising single-photon sources [15], non-linear
optics with single-photons [16], entanglement of light and atomic excitation [17,18], photon-
photon interaction [19] and single-photon switches [20] and transistors [21]. Hot atomic
vapor cells in conjunction with EIT [5, 22, 23] or Rydberg excitation are a well-established
technique, where micrometer-sized vapor cells could provide low cost, scalable arrays of in-
teracting qubits [24].

Here we describe EIT experiments in a room temperature vapor cell for the 87Rb ns-states
with principal quantum number n= 19−27. We drive the transition from the 5s ground state
level to Rydberg levels using a two-photon transition via the intermediate 5p level. The upper
5p − ns transition serves as the coupling transition, and we measure the effect on a weak,
resonant probe laser tuned to the 5s − 5p transition. Despite the fact that our measurements
are performed in a Doppler-broadened room-temperature vapor cell, we retrieve spectrally
narrow EIT signals with a resolved Rydberg hyperfine splitting. Remarkably, the spectra change
significantly already upon magnetic field variations of ∼ 0.1G.

It is known that the polarization of the light influences the spectrum [25,26] through op-
tical pumping effects [27]. A full description must consider the multi-level structure of the
atom [28], typically the hyperfine and Zeeman substructure [28–30]. In order to explain our
observations, we calculate the full density matrix for all 18 involved Zeeman levels by solving
the optical Bloch equations (OBE). Fitting the solutions to our data involves averaging over
the thermal velocity distribution, which is efficiently done on a supercomputer. We observe
a strong influence on the spectra even when applying small magnetic fields (∼ 0.1G), which
we relate to the decoupling of the electronic J and nuclear I angular momenta. This finding
is somewhat counter-intuitive, as one would expect that effect to be of major impact only at
higher magnetic fields (Breit-Rabi regime). These results are important for all future applica-
tions using Rydberg excitation in the presence of magnetic fields. As an example, the so-called
“magic field” of 3.23 G [31] is right in the Breit-Rabi regime for low-lying Rydberg states. At
this field value the differential linear Zeeman shift between the ground state magnetic hy-
perfine sublevels |F, mF 〉 = |1,−1〉 and |2,1〉 vanishes. This makes this pair of levels a good
candidate qubit with suppressed sensitivity to magnetic field noise. Hence, the findings in this
paper are important in the context of magnetically trapped qubits.
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2 Experimental setup

The heart of the experimental setup [see Fig. 1 (a)] consists of two laser beams at 480nm
(coupling beam) and 780nm (probe beam), counter-propagating in a room temperature Rb
vapor cell. The laser light is provided by two commercial diode lasers (TA-SHG Pro and DLpro,
Toptica). Our experimental setup is similar to the one mentioned in Ref. [32], with the addition
that we use a sideband-locking scheme to stabilize the lasers to a high-finesse Fabry-Pérot
cavity. This procedure yields laser linewidths of less than 10 kHz and precise control over
the absolute laser frequency [33]. Scanning of the laser frequencies is done by varying the
corresponding sideband locking frequencies. The laser beams are spatially overlapped in the
vapor cell, with a 1/e2 beam radius of 0.9 mm and 0.5 mm for the 480 nm and 780nm light
respectively. This configuration ensures that the probe light experiences a mostly uniform
intensity distribution of the coupling light, and at the same time minimizes the effect of transit
time broadening. Transit time broadening, due to the finite interaction time of Rb atoms at
room temperature with the laser light, is estimated to be 400 kHz for the chosen value of probe
beam radius. Typical laser powers are 10µW for the probe and 150mW for the coupling laser.

The vapor cell is 12 cm in length and is placed inside a 11 cm long coil consisting of 80
windings, introducing a near-homogeneous longitudinal magnetic field B along most of the
vapor cell. Both vapor cell and coil are surrounded by a cylinder of mu-metal with a length
of 175 mm and a diameter of 100 mm. We measure with a fluxgate magnetometer that the
mu-metal reduces the parallel ambient magnetic field from 550mG to 40mG in the center, and
54 mG at the entrance plane of the cylinder. The magnetic field in the radial direction almost
completely vanishes in the center.

Before taking EIT spectra, we fix the frequency of the probe laser at the 5s1/2, F = 2→
5p3/2, F ′ = 2 transition of 87Rb by adjusting the sideband frequency of the locking. This fre-
quency is referenced to Doppler-free absorption spectroscopy in an additional Rb vapor cell.
We then scan the frequency of the coupling laser across the Rydberg states ns1/2, F ′′ = 1, 2
for n = 19− 27, where we can still distinguish the individual hyperfine levels [see Fig. 1(b)].
The frequency is scanned by stepping the locking sideband frequency, typically in equal steps
of a few tens of kHz. After each step, we measure the transmission of the probe laser with
a photo diode. An optical chopper in the coupling laser beam is used in combination with
lock-in detection of the probe transmission to enhance the signal-to-noise ratio. We take one
spectrum for each chosen magnetic field value inside the vapor cell.

3 Theoretical model

We investigate EIT in a configuration of four independent hyperfine levels as depicted in Fig.
1, consisting of the ground state 5s1/2, F = 2, the intermediate state 5p3/2, F = 2 and the
Rydberg levels ns1/2, F = 1, 2 for n = 19 − 27. As expected from earlier findings [25, 26],
we observe that the EIT spectrum changes with different polarizations of probe and coupling
laser. Therefore, we incorporate the substructure of magnetic Zeeman-levels for all the in-
volved hyperfine states. Additionally, we measure a strong influence on the spectrum when
applying a longitudinal magnetic field to the vapor cell. The changes are already noticeable
for small magnetic fields of around 100mG, and depend on the direction of the applied field.
We therefore take into account the couplings and level shifts of magnetic sublevels leading to
the Breit-Rabi diagram for the Rydberg manifold.

In Ref. [32] the spectrum of the two Rydberg hyperfine levels ns1/2, F = 1, 2 for n= 20−25
is fitted by the sum of two individual solutions to the analytical model of a three level ladder
system. In other references, including [27], the Zeeman substructure is accounted for by a sum
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Figure 1: (a) Sketch of the experimental setup, showing the Rb vapor cell and the two diode
lasers at 480nm and 780 nm in a counterpropagating arrangement. The two laser beams
are separated after traveling through the vapor cell by two dichroic mirrors, and detected by
two photodiodes. The vapor cell is magnetically shielded by several layers of mu-metal, and
surrounded by a coil with 80 windings and 11 cm in length. The 480nm light is chopped by
a wheel to generate a reference frequency for the lock-in detection amplifier. In addition, we
perform Doppler-free saturation spectroscopy in another Rb vapor cell with the 780 nm laser.
(b) EIT ladder scheme with the four involved hyperfine states of the ground, intermediate and
Rydberg levels (HFS: Hyperfine-Splitting), and the probe and coupling laser. (c) Magnetic
Zeeman levels mF of the ground state, the intermediate state and the Rydberg states involved
in the ladder type EIT scheme (note: For the Rydberg level the F, mF states are only good
quantum numbers in the limit of low magnetic fields). We show the excitation paths for the
combination of (σ+,σ+) polarization for the probe and coupling light respectively. The gray
(light) lines show all considered decay paths for atomic populations in the excited states. The
atomic levels 5s1/2, F = 1 and 5p3/2, F 6= 2 do not participate directly in the EIT ladder scheme,
but they are populated by decay of atomic population.

over the involved levels for a given light polarization, weighted by the corresponding Clebsch-
Gordan coefficients. Neither approach can explain the influence of the magnetic field that we
see in our experiment. Therefore, we consider the full dynamics of the density matrix % of
all the 18 Zeeman levels of the four hyperfine states depicted in Fig. 1(c). The atomic levels
5p3/2, F = 0,1, 3 are only included indirectly as a decay channel for the atomic population
in the Rydberg state, subsequently decaying to either 5s1/2, F = 1 or 5s1/2, F = 2. Atomic
population decaying to 5s1/2, F = 1 is treated as loss, as these atoms no longer participate in
the excitation dynamics.

Due to the geometry of our experiment (the laser beams propagate parallel to the magnetic
field B), we can only achieve either σ+ or σ− polarization in the quantization axis set by B.
Hence, we limit our analysis to a combination of (σ+,σ+) or (σ+,σ−) polarization for probe
and coupling laser [note: the cases (σ−,σ−) and (σ−,σ+) correspond to an inversion of the
magnetic field].

We describe the dynamics of the system including the atom-light interaction, spontaneous
decay and other decoherence effects by the master equation

%̇ =
i
ħh
[%, H ] +Ldecay(%) +Ldeph(%), (1)

yielding a set of linear differential equations (Optical Bloch equations). Here, the Hamiltonian
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H describes the coherent part of the dynamics, whereas the Lindblad superoperatorsLdecay(%)
and Ldeph(%) describe effects causing decoherence.

3.1 The Hamiltonian

We decompose the Hamiltonian as H = HA+HM+HAL , where the individual terms describe the
field-free atomic energies, the magnetic energy and the atom-light interaction for all involved
levels. As a basis set we choose the magnetic sublevels F, mF expressed in terms of the total
angular momentum F and the magnetic quantum number mF . While F, mF are not good
quantum numbers for the Rydberg levels, we find this basis nevertheless convenient.

The (magnetic-field free) atomic Hamiltonian is written using the dressed basis states and
the rotating-wave approximation (RWA). It has a simple diagonal form (setting ħh= 1),

HA =∆pP5s,F=2 −∆c Pns,F=1 − (∆c + Ans) Pns,F=2. (2)

Here we defined the following symbols: ∆p(∆c) is the detuning of the probe (coupling) laser,
the latter defined relative to the F = 1, mF = 0 Rydberg state, P5s,F=2 is a projection operator
onto the 5s1/2, F = 2 subspace,

P5s,F=2 =
2
∑

mF=−2

|5s, F = 2, mF 〉〈5s, F = 2, mF | , (3)

and similar for the Pns,F projection operators. The 5p3/2, F = 2 intermediate level has been
arbitrarily chosen as the zero of energy. Finally, Ans is the hyperfine splitting in the Rydberg
level.

For the 5s and 5p subspaces the magnetic Hamiltonian HM is written as HM = gFµB FzB,
with Fz the z component of the total angular momentum operator F, and choosing the magnetic
field as B = Bẑ. In our basis set, this results in HM |F, mF 〉 = gFµBmF B|F, mF 〉. An important
aspect for the Rydberg states is that the atomic energies experience a transition from a linear
energy dependency in mF at small magnetic fields to a decoupling of the magnetic quantum
number mI and mJ at high magnetic fields, called the Paschen-Back regime. The transition
between these regimes, the Breit-Rabi regime, is shown for the example of 23s1/2 in Fig. 2(a).
For the Rydberg levels, we write HM = gSµBSzB + gIµB IzB (as Jz = Sz for the ns1/2 states).
Here Sz and Iz are the z components of the electron spin S and nuclear spin I. In the following
we neglect the second, nuclear spin term. The first, electronic spin term has diagonal as well
as off-diagonal matrix elements in the chosen |F, mF 〉 basis. The off-diagonal elements couple
states of equal mF but unequal F ,

〈F, mF |Sz

�

�F ′, mF

�

=
∑

ms ,mI

ms 〈F, mF |s, ms, I , mI〉 〈s, ms, I , mI

�

�F ′, mF

�

, (4)

yielding 〈1,−1|Sz |2,−1〉 = 〈1,1|Sz |2,1〉 =
p

3/4 and 〈1, 0|Sz |2,0〉 = 1/2. The diagonaliza-
tion of HA+HM in the Rydberg ns subspace yields the Breit-Rabi diagram shown in Fig. 2(a).
We find that these off-diagonal elements are crucial to accurately describe the measured EIT
spectra. If we tentatively express the Rydberg Zeeman energy linear in mF , we cannot repro-
duce our experimental observations. Remarkably, the off-diagonal elements contribute signif-
icantly already at small magnetic fields around 100mG, which is much less than the hyperfine
field (ħhA20s/µB ≈ 5 G) and therefore far from the Paschen-Back regime.

The matrix elements of the atom-laser interaction Hamiltonian HAL are given by the usual
products of a reduced dipole matrix element and a Clebsch-Gordan coefficient. For the 5s−5p
transition, we can write the matrix elements of HAL as

〈5s(F = 2, mF )|HAL

�

�5p(F = 2, m′F )
�

=
1
2
ħhΩpεq 〈2, mF , 1, q

�

�2, m′F
�

, (5)
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with εq the component of the laser amplitude with polarization q = ±1. Similar expressions
apply for the 5p− ns transitions. In this case we write Ωc for the Rabi frequency.

3.2 Dissipative terms

The second term in the sum of Eq. (1) accounts for the spontaneous decay and optical pumping.
It can be written by means of the Lindblad superoperator Ldecay(%) as

Ldecay(%) =
∑

{i, f }

�

C f i % C†
f i − 1/2

�

C†
f iC f i % +% C†

f iC f i

��

, (6)

where C f i =
p

Γ f i | f 〉〈i| is a quantum jump operator for the transition i→ f , with correspond-
ing rate Γ f i . The summation is performed over all allowed pairs {i, f } of F, mF sublevels. The
decay rate Γ f i is expressed as the product of the decay rate of the involved hyperfine-level (Γ5p,
Γns,F=1 and Γns,F=2) and the square of the corresponding Clebsch-Gordan coefficient.

For final states f outside the considered subspace of 18 levels we omit the term C f i % C†
f i ,

which thus leads to loss of total atom population. For example, atomic population in the in-
termediate state 5p3/2, F = 2 can decay to either the 5s1/2, F = 1 or F = 2 ground state, where
the former is treated as loss of atoms. As we treat atomic population decaying to 5s1/2, F = 1
as a loss mechanism, we omit the term C f i % C†

f i in Eq. (6) for this level. For simplicity, we
assume that atomic population in the Rydberg states predominantly decays to the 5p3/2 level.
We further simplify the problem by assuming that the atomic population decaying to 5p, F 6= 2
undergoes an immediate subsequent decay to either the 5s1/2, F = 1 or F = 2 ground state.
This is justified by the fact that the 5p, F 6= 2 levels are far off-resonant with respect to the
probe laser, and that Γ5p� Γns,F=1, Γns,F=2.
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Figure 2: (a) Calculated atomic energies of the magnetic sublevels of 23s1/2, F = 1 and F = 2
in the Breit-Rabi regime. For small magnetic fields (� 1G) the atomic levels of the hyperfine-
states F = 1,2 are labeled by the magnetic quantum numbers mF and shift linearly with B.
For higher magnetic fields (> 3 G) the nuclear spin I and the electron angular momentum
J decouple, and the magnetic levels group according to mJ . (b) Simulated EIT spectra to
compare the time-dependent and the steady-state solutions of the Optical Bloch equations.

The third term Ldeph(%) in Eq. (1) describes all dephasing effects, including the influence
of the finite laser linewidth of the probe γp and coupling γc laser. For simplicity, we include ad-
ditional broadening effects such as transit time broadening and collision-induced broadening
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in γc . In this case, we express Ldeph as

Ldeph(%) =
∑

k=p,c

γk

�

Ck % C†
k − 1/2

�

C†
k Ck % +% C†

k Ck

��

, (7)

where Cp = −P5s + P5p + Pns and Cc = P5s + P5p − Pns are expressed in terms of the projection
operators as defined earlier.

3.3 Steady state solution and susceptibility

If we solve for the steady state (%̇ = 0) of, for example, the system depicted in Fig. 1(c), we ob-
tain the obvious result that the atomic population resides in the dark states 5s1/2, F = 2, mF = 2
and 5s1/2, F = 1. Hence, this simple steady-state solution cannot explain our experimental
data. In order to find an adequate description of the excitation dynamics, we follow two ap-
proaches: (1) Starting from an equal distribution among the ground state Zeeman levels, we
calculate the time-dependent solution of the OBE, and evaluate it at the average time that an
atom resides in the probe beam (τ ≈ 3µs at room temperature), or (2), we assume constant
fluxes of atoms leaving and entering the probe beam, the latter refilling the atomic population
in the magnetic ground states. The flux into or out of the beam can in principle be estimated
as Φ = (1/4)nv̄A, with n the atom density, v̄ =

p

8kB T/πm the average thermal velocity and
A = πDL the surface area of a beam of diameter D in a cell of length L. For the simulation
we are merely interested in setting Φ 6= 0, to ensure that the steady state is not a dark state.
The precise value of Φ is then an overall multiplier to the amplitude of all simulated signals.
Thus we describe the departure and arrival of atoms by adding ∂ %/∂ t = (P5s,F=2 − %)/τ to
the optical Bloch equations.

For the latter approach we obtain a steady-state solution with atomic population also being
in non-dark states. Fig. 2(b) shows simulated spectra obtained for both approaches. It should
be noted there that we subtract a background spectrum (with ∆c being far off-resonant) from
the time-dependent solution. We can conclude that both approaches yield similar results. As
the second approach is closer to the experimental reality, we proceed with this one for the rest
of this work.

The probe absorption is proportional to the imaginary part of the susceptibility χ. We
relate the susceptibility χ of the probe transition to the density matrix [1]. For the probe
transition with polarization q = ±1, we look at the elements %i j corresponding to a transition
from a ground state |gi〉 = |F = 2, mF 〉 to an intermediate state |e j〉 = |F ′ = 2, mF + q〉, with
Clebsch-Gordan coefficient ci j . We approximate the probe absorption as follows,

Im(χ)∝
∫ vmax

−vmax

∑

i

ci jIm(%i, j)N(v) dv. (8)

Here N(v) is a one-dimensional Maxwell-Boltzmann velocity distribution for the atoms in the
vapor cell at room temperature. The elements %i j become velocity dependent through the
Doppler shifts ∆p→∆v=0

p − kp v and ∆c →∆v=0
c + kc v. We numerically evaluate the integral

in Eq. (8) for a sufficiently large vmax, effectively averaging our expression over the velocity
distribution of the atoms.

3.4 Computational methods

We implement numerical solvers for both the time-dependent and the steady-state model using
Fortran modules to solve the master equation [Eq. (1)], employing routines from the odepack
library to solve the resulting system of complex differential equations. These Fortran modules
are combined with a Python wrapper for the velocity-class integration of Eq. (8) as well as
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for the loading of experimental data, fitting the model to experimental traces and storing the
results. For a given experimental trace the measured data will be sampled for a fixed range of
coupling frequencies using spline interpolation if necessary to gain control over the sampling
density for numerical performance. We then call out to the Fortran solver to obtain solutions to
the model on an appropriate grid of probe- and coupling frequencies. These are integrated in
Python over a range of velocity classes, taking appropriate Doppler shifts into account. Finally
the result is compared to the experimental trace. Fitting is performed using the lmfit routines
in Python.

In fitting the experimental data we initially determine a magnetic field calibration based on
the data for 20s presented below in Fig. 3. This field calibration is used for all subsequent fits
presented here. In fitting the data for a given principal quantum number n and polarization,
we always fit all traces (measured at different applied magnetic fields) with the same set
of parameters and the field calibration obtained in the fit for 20s. We generally fit a linear
combination of both the (σ+,σ+) and the (σ−,σ+) cases to account for imperfect polarization.
The free parameters varied in the steady-state fits are the Rabi frequencies of the red and blue
transitions, Ωp and Ωc respectively for both polarizations, the effective linewidths of these
transitions γp and γc , the hyperfine splitting of the state, the refilling rate for the ground-state
as well as a global amplitude of the signal and an absolute frequency offset. This number
of fitting parameters may seem rather large, however one set of parameters describes up to
41 individual traces (in Fig. 3). Furthermore, not all parameters are equally significant. Of
primary interest are the hyperfine splittings, for which we find Ans × n∗3/2π = 36.3(4)GHz
[with n∗ = (n − δ) the effective principal quantum number]. The fitted Rabi frequencies
(given in the caption of Fig. 3) are consistent with the estimated intensities of the laser beams.
The fitted effective linewidths γc , γp were in the few 100kHz range, which is plausible and
difficult to check independently. The refilling rate and the global amplitude were essentially
interchangeable.

The system of complex differential equations is large due to the 18 involved Zeeman levels.
Calling the odepack library during the fitting procedure is therefore computationally intensive.
When performing the velocity class integration necessary to obtain a single data point, we
need to solve the system of equations for each velocity class separately. This further increases
the computational complexity. In order to obtain results on acceptable timescales, we use the
supercomputing capabilities of the Lisa Compute Cluster (as part of the SURFsara Research
Capacity Computing Services). The fitting routine for a given Rydberg state and a given po-
larization is allocated to one node of the Lisa Cluster, which consists of 16 independent cores.
Running the program for about 5 days on one node gives a sufficient amount of iterations to
obtain acceptable fitting results. By employing different nodes for different states at the same
time, we can evaluate the data in parallel.

4 Experimental results

Our measurements are based on acquiring the EIT signal at a specific detuning ∆c of the
coupling laser whilst keeping the probe laser at a constant frequency. Scanning the detuning
∆c as described in Sec. 2 at a specific applied magnetic field value, we acquire a magnetic field
dependent EIT spectrum. In order to verify that electric stray fields do not cause the observed
changes to the spectrum, we temporarily introduced a vapor cell with electric field plates inside
(not shown in Fig. 1) to measure the influence of electric fields. These plates allow for applying
a near-homogeneous electric field (compare [32]) inside the cell. For small applied electric
fields (a few V cm−1) we do not observe a change in the spectral features besides an overall
frequency shift due to the electric Stark effect.
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Figure 3: Measured (LIA: Lock-in amplifier signal) and simulated EIT spectra for the 20s1/2
Rydberg level for both the (σ+,σ−) and (σ+,σ+) combination of probe and coupling laser
polarization. The density plot of the data shown consists of 31 and 41 individual EIT spec-
tra, respectively, with a frequency resolution of 80 kHz in ∆c . As we have no absolute ref-
erence for the 0 MHz mark in the experiment, it is here chosen midway between the two
two-photon resonances at zero field. Each spectrum is taken at a different magnetic field
value ranging from −15. . . 15 G. For magnetic fields between −5. . . 5 G the detuning was
scanned over a smaller range, −20. . . 20 MHz, because outside this range no spectroscopic
features could be observed. The simulated data is based on the fitted theory parameters eval-
uated at the same magnetic fields and frequencies as the data. The fitted hyperfine splittings
are 7.70 and 7.71MHz, for (σ+,σ−) and (σ+,σ+), respectively. The fitted Rabi frequencies
(Ωp/2π,Ωc/2π) are (14.7,5.1)MHz and (6.8, 5.1)MHz, respectively.

We aim at investigating the Breit-Rabi transition of the Rydberg states’ magnetic sublevels,
from a linear behavior in mF at low magnetic fields to a decoupling of mF into its components
mI and mJ at higher magnetic fields (the Paschen-Back regime). We probe this transition for
the 20s1/2 Rydberg level by applying a range of magnetic fields from −15 G to 15 G and mea-
suring EIT spectra. These spectra constitute the density plots shown in Fig. 3, which are based
on measurements for either (σ+,σ−) or (σ+,σ+) probe and coupling laser polarization. The
choice of either σ+ or σ− polarized light leads to the simplest description of the system’s dy-
namics, as the laser light polarization cannot have a component in the magnetic field direction
(see Sec. 2). We verify for selected EIT spectra that the spectrum for the (σ−,σ+)/(σ−,σ−)
configuration closely resembles the one at (σ+,σ−)/(σ+,σ+) after inverting the magnetic
field. Hence, the resulting magnetic field dependence can be obtained by simply mirroring the
data in Fig. 3 about the frequency axis. Furthermore, by creating an equal superposition of
σ+ and σ− polarization for both lasers, we obtain a spectrum which resembles a mixture of
both data sets shown. Independent of these findings, we allow for a small admixture of the
opposite polarization in the fitting procedure (see Sec. 3.4). This accounts for the fact that
we always have imperfect polarizations in the actual experimental apparatus. For example,
the change in polarization introduced by the waveplates in the optical setup before the vapor
cell [compare Fig. 1(a)] is wavelength dependent (e.g. when changing between different n).
Also, the glass cell itself might introduce further modifications of the laser polarization which
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is difficult to predict.
Both data sets show a multitude of different lines, originating from the two hyperfine levels

F ′′ = 1 and F ′′ = 2 of the Rydberg state, which are resolved at magnetic fields close to 0 G. In
order to gain a qualitative understanding of the data, one can identify that two photons with
(σ+,σ−) and (σ+,σ+) polarization lead to a change of ∆mF = 0 and ∆mF = 2, respectively.
Thus, in the case of (σ+,σ−) we expect the transition frequencies to stay roughly constant
with increasing magnetic field, whereas for (σ+,σ+) the transition frequencies are expected
to increase with the applied magnetic field. Indeed, this expected behavior is visible in the data
sets shown by the most pronounced lines in each plot. At higher magnetic fields (> 5 G) the
frequencies of the observed experimental lines shift linearly with the applied magnetic field.
This can be well understood in terms of the linear energy shift of the ground state mF levels,
and the linear shift of the Rydberg state mJ levels in the Paschen-Back regime [see Fig. 2(a)].
Hence, the transition frequency between these levels is also linear in the applied magnetic
field. The multitude of different magnetic sublevels involved [compare to Fig. 1(c)] lead to a
range of different transition frequencies, which show a different magnetic field dependence.
This is reflected by the difference in slope of the experimental lines. It should be noted that
the measured spectra are not a trivial reproduction of the simple Breit-Rabi diagram, as it also
contains the magnetic field substructure of the ground and intermediate levels.

Besides the qualitative description, we also provide a theoretical account based on solving
Eq. (1) for the system under investigation and using the fitting routine as described in Sec. 3.4.
We show the theoretical result for both combinations of laser polarization in Fig. 3. Comparing
the theoretical predictions and the actual data, we find that it matches very well for the full
range of applied magnetic fields. All major experimental lines are reproduced, as are their
relative strength and magnetic field dependence. Our model also describes the non-linear
behavior in the Breit-Rabi regime at magnetic fields between 1. . . 5 G equally well as the near
linear behavior for magnetic fields in the Paschen-Back regime. Overall, the good agreement
between measurement and theoretical simulation verifies our theoretical assumptions made
in Sec. 3.

In order to examine the Breit-Rabi regime of the Rydberg magnetic sublevels in more detail,
we investigate the response of the EIT spectrum to small changes in the applied magnetic field.
Therefore, we acquire EIT spectra at nine equidistant magnetic field values in the range from
−0.8. . . 0.8 G. We present these spectra for the 19s1/2, the 21s1/2 and the 23s1/2 Rydberg level
and different combination of probe and coupling laser polarization in Fig. 4. The F ′′ = 1 and
F ′′ = 2 hyperfine levels are visible as two distinct peaks, separated by the hyperfine-splitting of
the respective Rydberg state. The acquired spectrum for the 19s1/2 Rydberg state only shows a
weak influence of the applied magnetic fields. The influence is much more pronounced for the
21s1/2 and 23s1/2 Rydberg levels. In the latter case we can observe an inversion of the relative
peak height with changing the magnetic field polarization from negative to positive values.

Furthermore, we present the simulated EIT signal for the respective Rydberg states. Again,
the simulation is based on fitting the result of Eq. (1) to the data set under investigation (see
Sec. 3.4). As for the measurement in Fig. 4, the theoretical prediction closely reproduces the
main features of the measured spectra as relative peak height and magnetic field dependence.
The inversion of the relative peak height for the 23s1/2 state also appears in the simulated
spectra. Given the excellent agreement with the simulation, this behavior can be well under-
stood from the presence of off-diagonal terms as given by Eq. (4) in the magnetic Hamiltonian
HM . These terms result from the decoupling of the J and I quantum numbers of the Rydberg
states in the Breit-Rabi regime, and introduce an effective mixing of the F states. This effect
increases with decreasing hyperfine-splitting, which explains the differences between the spec-
tra of the 19s1/2 and 23s1/2 state. Hence, we can indirectly observe the Breit-Rabi transition
in our spectrum, even at small magnetic field values.
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19s σ+  σ+ 21s σ+  σ+ 23s σ +  σ -

Figure 4: Measured (LIA: Lock-in amplifier signal) and simulated EIT spectra for the 19s1/2,
the 21s1/2 and the 23s1/2 Rydberg level and different combination of probe and coupling laser
polarization. The measured spectra are taken at nine equidistant magnetic field values in
the range from −0.8. . . 0.8 G. The data of one Rydberg state are fitted with a single set of
parameters, resulting in the theoretical spectra shown beneath the respective Rydberg state.
The fitted hyperfine splittings are 9.13, 6.34, and 4.68MHz (left to right). The fitted Rabi
frequencies (Ωp/2π,Ωc/2π) are (10.7, 3.8)MHz, (11.0, 5.5)MHz, and (7.3,4.0)MHz. Note:
the measured signal of the 21s1/2 state is truncated above 10 V by the data acquisition system.
The sharp peaks in the 23s1/2 signals are spurious, due to electronic noise.

5 Discussion

Looking at the spectra in Fig. 3, it is obvious that the transition from low to high magnetic
fields is not a simple reproduction of the Breit-Rabi diagram of the Rydberg levels as shown in
Fig. 2(a). The reason is that the spectrum is also influenced by the level shifts of ground and
intermediate states’ Zeeman substructure, optical pumping effects and the residual Doppler-
broadening. However, the spectrum clearly reproduces the selection rules introduced by the
laser light polarization, and shows that the high field behavior is a linear function of the applied
magnetic field. This is a direct result of the Paschen-Back regime for the Rydberg levels (linear
in mJ) and the linear energy shift of the ground state levels (in mF ). A remarkable observation
is that magnetic fields, small compared to the hyperfine field Ans/µB, strongly influence the
spectra. This influence increases with decreasing hyperfine splitting Ans of the Rydberg levels,
as can be seen by comparing the n = 19 and n = 23 Rydberg level in Fig. 4. For n = 23 (and
also for n= 24−27) the change in magnetic field (−0.8. . . 0.8 G) leads to a complete inversion
of the relative height between the peaks attributed to F ′′ = 1 and F ′′ = 2. As discussed earlier
we can attribute this to the influence of the off-diagonal elements in Eq. (4), which are a direct
consequence of the decoupling of the total angular momentum F into the components J and I
in the Breit-Rabi regime. We verified this by calculating the corresponding spectra based on a
model where the Rydberg states shift linearly in energy with mF . The result did not reproduce
the observed change in peak height, but solely predicts a frequency shift of the total spectrum.
This shift is observed for the spectrum at n = 19, where the hyperfine splitting is relatively
large (A19s/2π≈ 9 MHz) so that the influence of the off-diagonal elements is less pronounced.
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Despite the spectrum’s complexity [compared to Fig. 2(a)], it is nevertheless possible to
understand our results quantitatively. While we cannot simply extract the hyperfine split-
ting Ans of the Rydberg levels at B = 0, in our fitting routine, we use Ans as a fitting pa-
rameter for the complete data set at a given n. For the rescaled hyperfine splittings we find
Ans × n∗3/2π= 36.3(4)GHz, similar to [32], but with slightly less scatter. In [32] EIT signals
were fitted by the sum of two individual solutions to the analytical model of a three-level
ladder system. The resulting (scaled) hyperfine splittings varied by about 3 percent.

Our measurements also show that precise values for the Rydberg hyperfine splittings can
be obtained in room-temperature vapor cells. There are several options to further improve our
measurements in future experiments. The magnetic shielding can be improved by embedding
the vapor cell in a longer and narrower, mu-metal cylinder. Better magnetic field control is
possible using a longer solenoid producing more homogeneous magnetic fields. A reduction of
the number of fitting parameters appears feasible, as we found that the overall amplitude and
refilling rate are interchangeable, and the red laser linewidth could essentially be fixed. The
use of wider laser beams would reduce the influence of transit time broadening. Better control
of the laser light polarization is also still possible, for example using in-situ measurement with
a polarimeter.

6 Conclusion

Our measurements show that the EIT spectrum for the ns1/2 Rydberg states with n = 19− 27
is strongly influenced by the presence of small magnetic fields (< 1 G) (see Fig. 4). Further-
more, the polarization of the involved laser beams changes the measured spectrum strongly
(see Fig. 3). We investigate the EIT spectrum of the 20s1/2 Rydberg state for a wide range
of magnetic field values (Fig. 3), showing a transition from two resolvable hyperfine levels to
a multitude of lines with a linear frequency scaling. The experimental observations are well
reproduced by the theoretical approach provided in Sec. 3. Our theoretical model accounts for
the multi-level structure of the 5s1/2, F=2 ground state, the 5p3/2, F ′=2 intermediate state and
the two Rydberg states ns1/2, F ′′=1, 2. An essential part of the modeling is also the averaging
over the thermal velocity distribution in the vapor cell. A crucial aspect for the Rydberg states
is the decoupling of the F angular momentum into its components I and J in the Breit-Rabi
regime. From the measurements in Fig. 3 we can retrieve the Rydberg states’ behavior, both
at small magnetic fields and in the Paschen-Back regime, where the magnetic sublevels group
according to their mJ quantum number (see Fig. 2). The behavior of the magnetic sublevels
in the Breit-Rabi regime also accounts for the strong changes observed in the spectrum for
the magnetic fields below 1 G presented in Fig. 4. While we cannot resolve individual mag-
netic sublevels in the measurements at low magnetic fields, we can still clearly identify their
influence on the spectrum, based on the excellent agreement with our theoretical model.

This sensitivity for weak magnetic fields makes it important to have a detailed under-
standing in a variety of applications of EIT in thermal vapors. Examples of such applications
include photon storage and retrieval, nonlinear optics, the generation and manipulation of
single-photons, quantum information science, Rydberg polaritons, etc. [3–5,5–24]
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