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Abstract

In this paper the response of ionic systems subjected to a spatially varying electric field
is studied. Following the Nernst-Planck equation, two forces driving the mass flux are
present, namely, the concentration gradient and the electric potential gradient. The mass
flux due to the concentration gradient is modelled through Fick’s law, and a new consti-
tutive relation for the mass flux due to the potential gradient is proposed. In the regime
of low screening the response function due to the potential gradient is closely related to
the ionic conductivity. In the large screening regime, on the other hand, the response
function is governed by the charge-charge structure. Molecular dynamics simulations
are conducted and the two wavevector dependent response functions are evaluated for
models of a molten salt and an ionic liquid. In the low screening regime the response
functions show same wavevector dependency, indicating that it is the same underlying
physical processes that govern the response. In the screening regime the wavevector
dependency is very different and, thus, the overall response is determined by different
processes. This is in agreement with the observed failure of the Nernst-Einstein relation.

Copyright J. S. Hansen.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 10-11-2016
Accepted 23-04-2017
Published 27-05-2017

Check for
updates

doi:10.21468/SciPostPhys.2.3.017

Contents

1 Introduction 2

2 Theory 2

3 Simulations and results 5
3.1 Simulation details 5
3.2 Results: molten salt 6
3.3 Results: ionic liquid 9

4 Conclusion 9

References 11

1

https://scipost.org
https://scipost.org/SciPostPhys.2.3.017
mailto:jschmidt@ruc.dk
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.2.3.017&amp;domain=pdf&amp;date_stamp=2017-05-27
https://doi.org/10.21468/SciPostPhys.2.3.017


SciPost Phys. 2, 017 (2017)

1 Introduction

Ionic liquids, molten salts and ionic solutions show a response to the application of an ex-
ternal electric field. In the case of small field amplitudes the response is typically modelled
by linear constitutive relations, for example, the response manifested by a charge current is
related to the local field by Ohm’s law and the charge density to the external field through the
charge-charge correlation function [1,2]. The response is characterized by different response
functions (or transport coefficients) like the electric conductivity, electric permittivity and the
charge-charge correlation. One can often find relations between the different response func-
tions [2]; at least in some limits. A more famous one is the Nernst-Einstein equation that
relates the self diffusion coefficient to the electric conductivity [3], i.e., single particle flux to
the charge current. This is a quite surprising relation as the particle flux is a single particle
phenomenon whereas the charge current is a collective phenomenon. The Nernst-Einstein
equation is then only valid when the ion cross-correlations can be neglected [1, 4]. One ex-
ample where this assumption is not valid is where the flux of ion-pairs contributes to the mass
flux, but not to the charge current as the charges cancels [2]. The deviation can be determined
from simulations or experiments and is often quantified by a deviation parameter [2], which,
interestingly, Harris et al. [5,6] have expressed in terms of the velocity cross-correlation func-
tions. Importantly, the failure of the Nernst-Einstein equation means that the particle flux due
to the electric field cannot be modelled through Ohm’s law directly. Rather than approaching
this problem through the deviation parameter it is appealing to take one step back and propose
a linear constitutive relation that involves a new response function relating the mass flux to
the external field directly. This is done in this paper.

The system’s response is dependent on the wavelength of the external field, and this can be
modelled through wavevector dependent response functions [2,7]. Investigating the wavevec-
tor dependence is relevant as the response can vary as function of length scale [8]. Also, this
provide a way to probe a characteristic correlation lengths for a given system [8, 9]; if the
characteristic length scales are different for the different response functions this indicates that
different physical underlying mechanisms are responsible for the system response. This is also
addressed here.

The paper is organized as follows: In the next section the theory for the response of an
ionic system subjected to a static sinusoidal external field is presented. In Sect. 3 molecu-
lar dynamics simulation results are presented and discussed, and, finally, in the last section
conclusions from the work are drawn.

2 Theory

We consider an ionic system composed of one cation and one anion specie. The ions are rigid
meaning that any higher order induced effects and electron transfer mechanisms are ignored.
The charges are ±q, respectively. Let i indicate either a cation or an anion, i.e., i = + or −,
then the number density ni follows the balance equation [10]

∂ ni

∂ t
= σi −∇ · nici −∇ · niu , (1)

where nici is the diffusive flux and niu the advective flux. The production term σi accounts
for additional forces that generate a local change in ni; this includes application of an external
electric field. The terms on the right-hand side of Eq. (1) can be expressed as the divergence
of fluxes such that if one writes the production term as σi = −∇ · jei and nici = jdi we have for
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zero advection
∂ ni

∂ t
= −∇ · ji = −∇ · (jei + jdi ) . (2)

The system is kept away from equilibrium by application of a static spatially varying external
electric field. The field points and varies in the direction parallel to the system z-direction, i.e,
the non-zero z-component of the external field reads

Eext
z (z) = E0km

n cos(knz) , (3)

where kn = 2πn/Lz is the wavevector, n = 1, 2, . . ., and Lz is the length of the system in the
z-direction. m is either 0 or 1. The experimental realization of this field is not straightforward.
Here it is considered as we are interested in the wavevector dependent response and as such
this resembles the sinusoidal transverse and longitudinal force field methods (STF and SLF),
see for example Refs. [11–13]. The corresponding electric potential is

φext(z) = −
∫ z

0

Eext
z (z

′)dz′ +φext(0) = −E0km−1
n sin(knz) , (4)

using φext(0) = 0. Note, m= 0 corresponds to a wavevector independent field amplitude and
m= 1 to wavevector independent potential amplitude.

It is in place to discuss the Maxwell equations. First, the induced (screening) field is
E = E(z) and according to Gauss’ law dE/dz = ρq/ε0, where ρq is the charge density given
by the induced ionic density, ε0 is the electric permittivity of free space. From the Maxwell-
Faraday equation ∇× E = −Ḃ = 0, that is, the field due to the screeing does not result in any
change in the magnetic field B. Then Gauss’ law for the magnetic field is fulfilled, ∇ · B = 0.
Furthermore, since ∇× B = 0 and Ė = 0 there are no net charge current (Ampere’s circuital
law). The system is therefore in a steady state.

To proceed one needs to relate the fluxes with the corresponding forces [10]. For suf-
ficiently small force amplitude this is done through the generalized linear response theory.
Consider the mass flux in the z-direction ji to depend on N forces Xn, n = 1, 2, . . . N then we
have in the homogeneous situation

ji = −
∑

n

∫ ∞

0

∫ ∞

−∞
χ ′n(r− r′, t − t ′)Xn(r

′, t ′)dr′dt ′ , (5)

where χ ′n is the response function relating the flux ji to the force Xn. Since the system is in
a steady state we can safely ignore time memory effects and, furthermore, assuming isotropy
the response functions can then be written as χ ′n(r−r′, t− t ′) = χn(z−z′)δ(t− t ′). The flux is

ji =−
∑

n

∫ ∞

0

δ(t − t ′)

∫ ∞

−∞
χn(z − z′)Xn(z

′, t ′)dz′dt ′

=−
∑

n

∫ ∞

−∞
χn(z − z′)Xn(z

′, t)dz′ = −
∑

n

∫ ∞

−∞
χn(z − z′)Xn(z

′)dz′. (6)

The final expression is due to the steady state conditon. This generalized response formalism
can be applied to the present situation. The flux is proposed to be given by the two terms
(N = 2)

ji = jd
i + je

i = −
∫ ∞

−∞
Di(z − z′)

dni

dz′
dz′ −

1
qi

∫ ∞

−∞
χi(z − z′)

dφext

dz′
dz′ , (7)

where Di is the diffusion response function (or diffusion coefficient) and χi is the response
function that relates the mass flux to the external field. The first relation is simply a general-
ized version of Fick’s law, but the second relation is not a generalization of Ohm’s law as χi
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relates the mass flux directly to external electric potential. Also, the force in Ohm’s law is given
by the local electric potential, i.e., the sum of the induced potential and the external potential.
The χi-response function can be interpreted as the system response to an external field exclud-
ing the effects from diffusion. Note that Eq. (7) is a generalized form of the Nernst-Planck
equation [14].

In the steady state jd
i + je

i = 0, and one has

∫ ∞

−∞
Di(z − z′)

dni

dz′
dz′ = −

1
qi

∫ ∞

−∞
χi(z − z′)

dφext

dz′
dz′ . (8)

In Fourier space by the convolution theorem for wavevector k= (0, 0, kn) this reads

ikneDi(kn)eni(kn) = −
ikn

qi
eχi(kn) eφ

ext(kn), (9)

or

eni(kn) = −
eχi(kn)

qi eDi(kn)
eφext(kn) . (10)

Equation (10) is the expression for the Fourier coefficients for the number density. From this
result one can also find the Fourier coefficients for the charge density, eρq. First, it is observed
that due to symmetry the number density follows a sine series, i.e.,

ni(z) = n0 +
∞
∑

j=n

eni, j(k j) sin(k jz) . (11)

The Fourier components of the charge density is then

eρq(kn) = q+en+ + q−en− = −
�

eχ+(kn)
eD+(kn)

+
eχ−(kn)
eD−(kn)

�

eφext(kn) . (12)

For small field strengths and negligible screening only the fundamental mode kn = 2πn/L is
excited and we have that

ni(z)≈ n0 + eni(kn) sin(knz) . (13)

In the following, focus is on the case where Eq. (13) is true and where the two ionic species,
+ and −, have same transport properties χi = χ, and Di = D. Then Eq. (12) reduces to

eρq(kn) = −
2eχ(kn)
eD(kn)

eφext(kn) . (14)

From linear response theory [2] the Fourier components for the charge density is related to
the charge-charge correlation function (or charge-charge structure) SZ Z by

eρq(k) = −
nSZ Z(k)

kB T
eφext(k) , (15)

where n= n++n−. We then have an expression for eχ in terms of the diffusion coefficient and
the charge-charge structure

eχ(kn) =
neD(kn)
2kB T

SZ Z(kn) . (16)

The charge-charge structure is a collective property, and from Eq. (16) one can see that χ
relates this collective property to the single particle property governed by the diffusion coeffi-
cient.
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It is worth noting that in the Debye-Hückel regime, kB T � qφ, the charge-charge corre-
lations are negligible, i.e., SZ Z(k) = 1. This corresponds to the limit of zero screening and a
relative permittivity of unity. Equation (16) then reads

eχ(k) =
neD(k)
2kB T

, (Debye-Hückel regime) (17)

which is equivalent to the Nernst-Einstein equation [3] and χ can in this limit be interpreted
as the ionic electric conductivity. The charge density Fourier components are in this limit
eρq = −n eφext/kB T , i.e., they only dependent on amplitude of the external field. Furthermore,
for systems where the diffusion coefficient is wavevector independent, eD(k)≈ D0, the response
function is

eχ(k) =
nD0

2kB T
Szz(k) . (Screening regime) (18)

This means that the wavevector dependent response in the presence of an external electric
field is dominated by the screening effects.

3 Simulations and results

3.1 Simulation details

The response is evaluated for two simple models: (i) one model for molten salt proposed by
Hansen and McDonald [1] and (ii) one modified model for ionic liquids used by Chapela et
al. [15]. For the molten salt the ions are simple spherical particles with same mass and point
charges ±q. The van der Waals interaction is the inverse power law function V (r) = ε(σ/r)9,
where r is the distance between two ions, ε and σ define the energy and length scale, respec-
tively. The Coulomb interactions are calculated through the shifted force method [16, 17],
F(r) = qiq j(1/r2 − 1/r2

c )r/r, for r ≤ rc . Here r is the vector of separation with magnitude r,
and rc is the cut-off radius set to rc = 3σ; this cut-off distance is also used for the van der Waals
interactions. The positions of the particles are integrated forward in time with the leap-frog al-
gorithm [18] and the temperature is controlled using a Nosé-Hoover thermostat [19,20]. In all
simulations the total ion number density is n= 0.368σ−3; the number of ions are 1000, giving
500 ion-pairs. Two different temperatures are simulated, T = 0.0177ε/kB and 1.0177ε/kB,
the former being a realistic temperature for the model. To simulate the Debye-Hückel regime
kB T � qφ the ion-ion Coulomb interactions are removed whilst keeping the temperature
fixed at T = 1.0177ε/kB; this system is symbolized using T∞. Alternatively, one can perform
simulations at very high temperatures, but this will result in numerical instabilities. In the
following all quantities are given in units of σ, ε, q, and mass m, and as it is common practise
these the units are not written explicitly.

For the simple molten salt system the shifted force method can be tested against the direct
Ewald summation method [21]. From equilibrium simulations it was found from the structure
that the Ewald method converges satisfactory using 124 replica systems and that it agrees with
the data from the shifted force method, see also Ref. [17]. For the non-equilibrium situation at
T = 1.0177 the Ewald and shifted force methods yield same results for all wavevectors tested
0< k < 2.2.

The modified ionic liquid model is composed of cations with a spherical point charge par-
ticle (head group) and two spherical non-charged tail particles. The particles in the cation are
linearly connected using a simple spring force F = −k(r − 1)r/r, where k = 100 is the spring
constant. Anions are simple spherical point charge particles [15]. Rather than a hard-sphere
type potential in the original model, the van der Waals interactions are here given through the
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Weeks-Chandler-Andersen potential [22] V (r) = 4((1/r)12 − (1/r)6), where the cut-off is set
at rc = 21/6.The Coulomb interaction is given by the Yukawa potential V (r) = q2e−r/λD/r, with
λD = 1/2 corresponding to a relative small Debye screening length and the reduced charge
is q = 4. The cut-off distance for the Yukawa potential is set to rc = 2.5. The state point
is (n, T ) = (1, 1) and the simulation method is the same as for the molten salt simulations.
This choice of parameters gives, qualitatively, the fluid structure observed in different ionic
liquid [23,24]. The number of particles are 864, that is, 216 ion pairs.

Simulations of the non-equilibrium system is also performed. Here an additional force from
the external field, Eq. (3), is added to the total force experienced by the ions Fext

i = qi E
extk,

where k is the unit vector parallel to the z-axis.

3.2 Results: molten salt

The wavevector dependent diffusivity can be obtained as follows. The Gaussian approximation
[2, 25] relates the diffusion coefficient to the incoherent intermediate scattering function (or
the self-part of the density-density correlations), so in the diffusive regime, i.e., for large t,
this is here generalized to

Fs(k, t) = e−eD(k)k
2 t . (19)

The Fourier-Laplace transformation is

Ss(k,ω) =

∫ ∞

0

e−iωt e−eD(k)k
2 t dt =

1

iω+ eD(k)k2
, (20)

which gives an expression for the wavevector dependent diffusivity in the limit of zero fre-
quency

eD(k) =
1

k2Ss(k, 0)
. (21)

Microscopically the intermediate scattering function is defined from the ensemble average [25]

Fs(k, t) =
1
N

®

∑

i

e−ik(zi(t)−zi(0))

¸

, (22)

where N is the number of ions and is thus a single particle property. In Fig. 1 (a) the in-
termediate scattering function is plotted for different wavevectors in the case of T = 0.0177.
Also, shown as punctured lines f (k, t) = e−

1
6 〈∆r2〉k2 t , where 〈∆r2〉 is the particle mean square

displacement. It is seen that the Gaussian approximation holds surprisingly well for this model
validating Eq.(19). The data are Fourier-Laplace transformed and the Gaussian diffusion ker-
nel is found from Eq. (21); the results are plotted in Fig. 1 (b). The function

eD(k) = D0/(1+αkβ) (23)

is fitted to data where the zero wavevector diffusion coefficient, D0, is found from the mean
square displacement 〈∆r2〉 = 2D0 t for t →∞. It is observed that the normalized kernel is
identical for the two cases T = 1.0177 and T = T∞. For T = 0.0177 the diffusivity features
a relative low wavevector dependency in the range studied here and we have eχ(k)∝ SZ Z(k)
according to Eq. (18).

Next the charge-charge structure is evaluated. This is defined as [2]

SZ Z(k) =
1
N




ρq(k, 0)ρq(−k, 0)
�

, (24)

6

https://scipost.org
https://scipost.org/SciPostPhys.2.3.017


SciPost Phys. 2, 017 (2017)

10 100 1000
t

0

0.2

0.4

0.6

0.8

1

F
s(k

,t
)

Incr. k

T=0.0177

(a)

2 4 6 8
k

0

0.25

0.5

0.75

1

D~
(k

)/
D

0 T=0.0177
T=1.0177
T=T

∞

(b)

Figure 1: Molten salt (a): Incoherent intermediate scattering function for different wavevec-
tors (circles). Punctured line is f (k, t) = e−

1
6 〈∆r2〉k2 t , where 〈∆r2〉 is the mean square

displacement. (b) The diffusion kernel at different temperatures. Punctured lines are
best fit to Eq.(23). Parameter values are for T = 0.0177, 1.0177 and T∞, respectively:
D0 = 0.011,0.84, 0.92, α= 0.0073, 0.69,0.78, and β = 1.72, 1.14,1.12.

where ρq(k, 0) =
∑

i qie
−ik·ri . Note, this is a collective property. For non-zero wavevectors

Szz(k) can also be calculated from the radial distribution functions, see e.g. Ref. [1],

Szz(k) = 1+
2πn

k

∫ ∞

0

∆g(r)r sin(kr)dr , (25)

where ∆g(r) is the difference between the cation-cation and cation-anion radial distribution
functions, ∆g(r) = g++(r)− g+−(r). The charge-charge structure is plotted in Fig. 2 for the
three different systems; symbols are data from Eq. (24) and lines are Szz calculated from
Eq. (25). As expected we observe a zero screening, Szz = 1, for T = T∞, but non-negligible
screening for T = 1.0177 and T = 0.0177.

From Eq. (16) the Fourier components of χ can be evaluated, the results is shown in Fig.
3 (a). The evaluation is based on the fit of the diffusion kernel, Eq. (23), and the integral
expression for the charge-charge structure, Eq. (25). First, for zero screening, T = T∞, the
response function is monotonically decaying with respect to wavevector. This behavior is typi-
cally observed for the diffusion and viscosity kernels [8]. For non-zero screening the response
features a maximum depending on temperature; the characteristic wave length l = 2π/kmax
where kmax is the wavevector corresponding to maximum in eχ, is approximately l = 2.5 for
T = 1.0177 and l = 1.6 for T = 0.0177. This means that application of an external field will
result in a relatively small flux, je

i , on large length scales and a maximum for wavelength of
roughly 2 atomic diameters. For T = 0.0177, we have that limk→0 eχ(k) = 0 which means that
the charge density is zero at these length scales; this is in agreement with perfect screening.
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Figure 2: Charge-Charge structure for the molten salt model. Symbols are data obtained from
Eq. (24) and full lines are from Eq. (25)
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Figure 3: Molten salt (a) The Fourier components of χ. (b) Normalized kernels, eχ/χ0 and
eD/D0, for T = T∞.

Another important point is that limk→∞ Szz = 1, and if limk→∞ D = 0 as indicated in Fig. 1
we have that limk→∞ eχ = 0 according to Eq. (16).

In Fig. 3 (b) eχ(k)/χ0 and eD(k)/D0 are depicted for the case T = T∞. The data show good
collapse, that is, there exists a master curve response function. This identical wavevector de-
pendence indicates that the response functions are governed by the same underlying process.
Specifically, it is here conjectured that the χ-response is given by the diffusion processes in
the system, i.e., cross correlation effects can be ignored. From Fig. 3 (a) one can immediately
see that this collapse is not found for the T = 1.0177 and T = 0.0177 cases, hence, different
processes are involved.

The theory is compared with the non-equilibrium simulations. Figure 4 (a) shows the
charge density profile, ρq, for two wavevectors k = 2π/L and k = 8π/L at T = 0.0177. The
system length is L = 13.955 and m = 1, hence, the potential field amplitude is constant. It is
observed that the charge density amplitude is larger for smaller wavelengths as expected. For
k > 12π/L a simple spectral analysis shows that higher order modes are excited compromiss-
ing Eq. (13) and only results for k < 12π/L is shown. Figure 4 (b) compares the amplitude
for all three temperatures with the predictions from the theory, Eq. (14). The agreement is
excellent. Of course, this comparison is equivalent to test the linear response, Eq.(15). The
case of m = 0 is also shown, however, the agreement is less satisfactory for low wavevectors,
which is due to the diverging amplitude in the limit of zero wavevector causing a non-linear
response and failure of the constitutive relation, Eq. (7).

8

https://scipost.org
https://scipost.org/SciPostPhys.2.3.017


SciPost Phys. 2, 017 (2017)

0 5 10
z

-0.1

-0.05

0

0.05

0.1

ρ
q
(z

)

k=2π/L
k=8π/L

(a)

0 2 4 6
k

0

0.05

0.1

ρ~
q
(k

)

T=0.0177
T=1.0177
T=T

∞

T=1.0177, m=0

(b)

Figure 4: Non-equilibrium results for molten salt (a) Charge density profiles for T = 0.0177.
Lines are sine functions with amplitudes eρq = 0.0072 and 0.093, values obtained from a
spectral analysis. (b) Charge density amplitudes for all three temperatures and for m = 0.
Symbols are simulation results. Lines are predictions from the theory, Eq. (14).

3.3 Results: ionic liquid

In Fig. 5 (a) the diffusion kernels are is shown for the ion liquid model. These are evaluated
as explained in Sect. 3.2. One sees that within statistical uncertainty the diffusion kernel is
wavevector independent, at least up to k = 5. Beyond this wavevector value the statistical
error increases dramatically and the results are non-conclusive. The charge-charge structure,
Fig. 5 (b), is calculated from the direct definition Eq. (24). It features relatively strong
structure, that is, the system is in the screening regime. We can therefore expect the response
function χ to resemble low temperature molten salt response function.

For the ionic liquid Eqs. (13)-(18) do not apply as χ+ 6= χ− and D+ 6= D−, and eχi is found
from non-equilibrium simulations using Eq. (10) directly. This also means that we cannot
compare the predictions from these equations with simulation data. The amplitudes of the
density profiles for both the anion and cation are analyzed giving eni . Note that only single
modes are excited for the low external field applied, E0 = 0.05. Substitution of eni and eD = D0
into Eq. (10) yields the results in Fig. 5 (c). The response features a maximum for k ≈ 4.25
in good agreement with the maximum charge-charge structure.

To investigate if the two kernels can be mapped onto the same master curve, the results
from the cation kernel is normalized with respect the maximum. The normalized result is
shown in Fig. 5 (c) as squares connected with a punctured line. To a reasonable agreement
the two kernels do follow a master curve which indicates that the underlying mechanisms
responsible for the response are the same. This contrasts the wavevector independent diffusion
kernel, that is, the system response seen in the mass flux due to the density gradient. Therefore,
the physical mechanisms for the two fluxes jd

i and je
i are fundamentally different; at least in

the screening regime.

4 Conclusion

In this paper the mass flux of an ionic system due to a spatially varying electric field is studied.
Following the Nernst-Planck equation two forces are present in this system: (i) the concen-
tration gradient and (ii) the gradient of the electric potential. The two response functions
(or kernels) that account for the system response to these forces are the diffusion- and χ-
response functions; the χ-response function relates the mass flux with the external electric
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Figure 5: Ionic liquid. (a) Diffusion kernels for the anion and cation. (b) Charge-charge
structure. (c) wavevector dependent response function eχi for the anion and cation. Squares
connected with punctured line is the normalized cation response function. For all figures lines
serve as a guide to the eye.

field excluding the contribution from the concentration gradient (here modelled through the
self-diffusion). Note, this differs from the charge-charge response function, Szz , which relates
the charge density to the electric field including all underlying processes, and the ionic con-
ductivity that relates the charge current to the local field. In the limit of zero screening the
χ-response function is directly related to the conductivity, on the other hand, in the large
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screening regime the response function is related to the charge-charge structure.
The spatial correlations in the system are manifested in the wavevector dependence of the

kernels. The molecular dynamics simulation data show the diffusion and χ-kernels feature
very different wavevector dependence in the screening regime. Interestingly, in the screening
regime both the molten salt and ionic liquid feature a wavevector independent diffusion kernel
and the response to the external field is dominated by the charge-charge structure. This latter
quantity is a collective property of the system. In the non-screening regime, on the other hand,
the response to the external field is closely related to the ionic conductivity and in this regime
the Nernst-Einstein relation holds to a good approximation, i.e., cross-correlation effects are
negligible.
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