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Abstract

Exceptional points at which eigenvalues and eigenvectors of non-Hermitian matrices
coalesce are ubiquitous in the description of a wide range of platforms from photonic
or mechanical metamaterials to open quantum systems. Here, we introduce a class of
Hopf exceptional points (HEPs) that are protected by the Hopf invariants (including the
higher-dimensional generalizations) and which exhibit phenomenology sharply distinct
from conventional exceptional points. Saliently, owing to their Z2 topological invariant
related to the Witten anomaly, three-fold HEPs and symmetry-protected five-fold HEPs
act as their own “antiparticles”. Furthermore, based on higher homotopy groups of
spheres, we predict the existence of multifold HEPs and symmetry-protected HEPs with
non-Hermitian topology captured by a range of finite groups (such as Z3, Z12, or Z24)
beyond the periodic table of Bernard-LeClair symmetry classes.
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1 Introduction

The notion of topology plays a pivotal role in modern condensed matter physics of both quan-
tum [1–5] and classical systems [6–10]. Saliently, topological physics implies the possibility of
various exotic quasiparticles.1 One of the prime examples is a Majorana zero mode [12–15]
whose antiparticle is itself. In addition, a Weyl fermion [16–22], protected by Chern number
in topological semimetals, is a source of negative magnetoresistance [23] which is a signal of
chiral anomaly. The periodic table for the ten Altland-Zirnbauer symmetry classes provides a
systematic understanding of the topological obstructions inducing these exotic excitations in
Hermitian systems [24–30].

Notably, open systems coupled to environments host topological excitations for which non-
Hermiticity is essential [31,32], such as exceptional points [33–37]. At exceptional points, two
energy bands touch in both the real and the imaginary parts. Such band touchings are pro-
tected by the winding topology of energy eigenvalues [38]. In sharp contrast to Hermitian
topological excitations, exceptional points exhibit a dispersion with a fractional exponent. Ex-
ceptional points and their variants [38–52] are reported for a wide range of platforms from
quantum systems [53–62] to metamaterials [63–76], indicating the ubiquity of these non-
Hermitian excitations. In particular, the high controllability of synthetic systems allows for the
realization of exceptional points in dimensions larger than three [63,64,77,78].

Among the various exceptional points, multifold exceptional points exhibit an n-fold band
touching [37,79–83]whose stability due to topology and symmetry has recently been revealed
in Refs. [84–89]. These unique excitations are beyond the existing classification table for
Bernard-LeClair symmetry classes [90–94] and discussed in interdisciplinary fields [68,77,95–
110]. However, topology of the formerly reported n-fold exceptional points (EPns) is generally
characterized by Z invariants (i.e., winding topology) for n ≥ 3 [84, 88]. This, in particular,
implies that an exceptional point cannot be its own “antiparticle”. If such n-fold band touching
exists, it should be distinguished from the formerly reported EPn.

In this work, we report novel non-Hermitian topological excitations, dubbed n-fold Hopf
exceptional points (HEPns, n=3, . . . , 7),2 which are topologically stabilized by higher homo-

1Here, the term “quasiparticle” denotes a topologically protected band singularity, as is widely used in the
literature [1,2,11].

2To achieve concise terminology, we refer to all such EPs protected by topologically nontrivial maps between
higher-dimensional spheres with d > m ≥ 2 collectively as Hopf exceptional points, although not all of these maps
are termed as Hopf maps in the mathematical literature.
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Figure 1: Illustration of Z2 topology protecting a three-fold Hopf exceptional point
(HEP3). The resultant vector R(k) defines a map from a 4-sphere in the momentum
(or parameter) space to a 3-sphere in the space of the resultant vector [see Eqs. (1)
and (2)]. If the map is topologically nontrivial, an HEP3 with Z2 topology exists
inside the 4-sphere.

topy groups of spheres, labeled πd(Sm), with integers d>m≥2. Saliently, an HEP3 and a
symmetry-protected HEP5 exhibit unusual Z2 topology, meaning that they act as their own
antiparticle. We trace this striking feature to the homotopy group π4(S3)=Z2 (see Fig. 1) clas-
sifying the map of resultants. We further discover symmetry-protected HEP4 whose topology
is classified by π3(S2)=Z. By systematically leveraging higher homotopy groups of spheres,
we elucidate the potential presence of HEPns characterized by abundant finite groups (e.g.,
Z3, Z12, and Z24) beyond the existing classification table.

2 HEP3s with Z2 topology

As a first example, we consider a generic three-band non-Hermitian Hamiltonian H(k) in a five-
dimensional momentum (or parameter) space denoted by k=(k1, . . . , k5). Such a momentum
space whose dimensionality is higher than three can be accessed in metamaterials [63,64,77,
78,88]. The formation of an EP3 is captured by vanishing resultants r j ∈C

r j(k) = Res[∂ n−1− j
E P(E, k),∂ n−1

E P(E, k)] , (1)

with j=1,2, . . . , n−1 and n=3 (see Appendix A.1).3,4 Here, P(E, k)=det[H(k)− E1l]∈C
is the characteristic polynomial, and ∂E denotes derivative with respect to the polynomial
variable E∈C.

To expose whether the EP3 is in fact an HEP3, we consider a 4-sphere S4 ⊂ R5 enclosing
the band touching. Assuming (r1, r2) ̸= (0, 0) on the 4-sphere, we introduce a normalized
vector n=R/∥R∥ (∥R∥=

p
R ·R) with the resultant vector

R(k) = (Re[r1], Im[r1], Re[r2], Im[r2]) . (2)

Vector n(k) defines a map from S4 to S3 whose topology is classified by an element of the
homotopy group π4(S3)=Z2. When the map of n(k) possesses nontrivial Z2 topology, the
enclosed band touching is an HEP3. In passing, we note that the resultant topology is neither
point-gap nor line-gap topology [84, 88] (see also Appendix A.2 for a brief overview of the
resultant winding topology).

3The vanishing resultants r j = 0 ( j = 1,2, . . . , n−1) indicate the n-tiple root; it captures the algebraic multiplic-
ity rather than geometric multiplicity. We note, however, that these two coincide with each other because breaking
the coincidence requires fine-tuning.

4For n = 2, Eq. (1) reduces to the discriminant whose winding topology protects EP2 for systems without
symmetry [38,46].
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The Z2 invariant νF of maps from S4 to S3, originally discovered by Freudenthal [111],
was considered in physics in the context of the Witten anomaly in SU(2) gauge theory [112]
and to describe topological defects in superfluid 3He [113]. Numerical computation of this Z2
invariant is carried out by the following representation [114]

νF =
1

4π

∮

d4pεµνρλ[∂µ∆ϕ(p)]AνFρλ , (3)

with µ,ν,ρ,λ=1, . . . , 4 and anti-symmetric tensor εµνρλ taking ε1234=1. The Berry connec-
tion Aµ and the Berry curvature Fµν are obtained from the resultant Hamiltonian, and the
phase∆ϕ(p) (0≤∆ϕ ≤ 2π) is obtained from the resultant vector. For the precise definitions
of Aµ, Fµν and ∆ϕ, see Appendix A.3. Vector p parametrizes the 4-sphere in the momentum
space. While the integral in Eq. (3) can take an arbitrary integer value, gauge transformations
can change νF by multiples of two [112].

We demonstrate the emergence of an HEP3 in five dimensions by analyzing a toy model.
The Hamiltonian reads

H =





0 1 0
0 0 1
ζ2
6 ζ1 0



 , (4)

where the functions ζ1,2(k) are parameterized by δ, m0, and f (k5) (for the explicit form, see
Appendix B.1). Here the function f (k5) is either even [ f (k5)=1] or odd [ f (k5)=2sin(k5/2)].

To motivate the Hamiltonian form in Eq. (4), recall that a three-fold exceptional point is
generally captured by a 3 × 3 Jordan block form [86]. The Hamiltonian including the per-
turbations ζ’s in the bottom row ensures that the resultants [recall Eq. (1)] are expressed as
r j ∝ ζ j for j ∈ {1,2} [88], which provides clear correspondence between the perturbations
ζ’s and the Hopf topology of R. The sought higher Hopf topology is then ensured by imposing
the appropriate dependence [114] of the functions ζ1,2(k) on momenta (parameters) k.5 The
vanishing resultant vector determines where the HEP3s emerge in the momentum space. The
explicit form of the resultant vector [see Appendix B.1] indicates the emergence of HEP3s at
k=(0,0, 0,π/2,±π/3) for δ=0.5 and m0=1.5. Figure 2(a,b) displays the emergence of the
HEP3 at k=(0,0, 0,π/2,π/3).

Notably, the HEP acts as its own antiparticle as a direct consequence of its Z2 topology.6

This fact is elucidated by examining pair annihilation of HEP3s in two cases: f (k5)=1 and
f (k5)=2sin(k5/2) [see Fig. 2(c,d)]. For f (k5)=1 and δ=0.5, the system hosts two HEP3s
demarcated by the planes at k5=π/2, 0 and −π/2 where numerically computed νF is equal
to 1, 0, and 1, respectively [for computation of νF, see Appendix B.1]. As δ decreases, the two
HEP3s approach and annihilate each other [see Fig. 2(c)]. Changing the parity of f (k5) flips
the sign of the numerically computed νF at k5= − π/2. Even in this case, pair annihilation
occurs [see Fig. 2(d)]. The occurrence of pair annihilation in both arrangements manifests
that HEP3s are indeed protected by Z2 topology, implying that an HEP3 is its own antiparticle.

3 Symmetry-protected HEP5s with Z2 topology

Symmetry further enriches Hopf exceptional points, as exemplified by the emergence of
symmetry-protected HEP5 in five dimensions. We consider a five-band non-Hermitian Hamil-
tonian which preserves parity-time (PT -) symmetry

UPT H∗(k)U−1
PT = H(k) , (5)

5Another choice of ζ’s yields an EP3 with winding topology [88] (see Appendix A.2).
6The pair annihilation of topological nodes with the same charge is commonly observed for Z2 topology; for

instance, Ref. [48] demonstrates pair annihilation of EP2s with Z2 topology.
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Figure 2: Energy bands of Hamiltonian (4) for m0=1.5. The real (imaginary) part
is represented as height (color). In panel (a), the complex conjugate of the upper
band is omitted. Panels (a) and (b) are obtained for k5=π/3, δ=0.5, and f (k5)=1.
Here, ∆k4 is defined as ∆k4= k4 − π/2. Panel (c) [(d)] displays pair annihilation
of HEP3s for (k2, k3, k4)=(0,0,π/2), and f (k5)=1 [ f (k5)=2 sin(k5/2)]. In these
panels, numerically computed νF for k5=−π/2, 0, and π/2 at δ=0.5 is represented
by numbers highlighted in yellow. We used a mesh of 404 points to evaluate the
integrals with momenta k1,2,3 ∈ [−π,π] and k4 ∈ [0,2π].

with a unitary matrix satisfying UPTU∗PT=1l. Here, 1l is the identity matrix, and asterisks denote
complex conjugation. The PT -symmetry imposes the constraint

P(E) = P∗(E∗) , (6)

indicating that all coefficients of the characteristic polynomial P(E) are real at each k. For
n= 5, the formation of an EP5 is captured by vanishing resultants r1,...,4=0 [see Eq. (1)]. Due
to PT -symmetry [see Eqs. (5) and (6)] these resultants are real: r1,...,4 ∈ R.

To expose whether the EP5 is in fact an HEP5, we consider a 4-sphere S4 ⊂ R enclosing
the band touching. Assuming r1,...,4 ̸= 0 on the 4-sphere, we introduce a normalized vector
n=R/∥R∥ with

R = (r1, r2, r3, r4)
T . (7)

The normalized vector n defines a map from S4 to S3 whose topology is classified by
π4(S3)=Z2. When the map of n possesses nontrivial Z2 topology, the enclosed band touching
is a symmetry-protected HEP5. The topological invariant is introduced in a similar way as
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Figure 3: Energy bands of Hamiltonian (8) for f (k5)=1, k5=π/3, m0=1.5 and
δ=0.5. The real (imaginary) part is represented as height (color). Panel (a) [(b)]
displays the data for (k3, k4)=(0,π/2) [(k1, k2)=(0, 0)]. In panel (a), the complex
conjugates of the upper and the lower bands are omitted. In panel (b),∆k4 is defined
as ∆k4= k4 −π/2.

Eq. (3) with the only difference that we compute the Z2 invariant from the resultant vector in
Eq. (7) instead of the one in Eq. (2).

We demonstrate the emergence of a symmetry-protected HEP5 by analyzing a toy model
whose Hamiltonian reads

H =













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
ζ4
(5!)3

ζ3
(5!)2

ζ2
5!2!

ζ1
3! 0













, (8)

with real functions ζ1,...,4(k) parameterized by δ, m0, and f (k5) [for the explicit form, see
Appendix B.2]. Here, f (k5) is either f (k5)=1 or f (k5)=2sin(k5/2). This Hamiltonian pre-
serves PT -symmetry [Eq. (5)]with UPT=1l. In analogy with the discussion of the Hamiltonian
in Eq. (4), the perturbation of the 5×5 Jordan form in Eq. (8) is chosen so that the resultants
obey r j ∝ ζ j for each j ∈ {1, . . . , 4}. The explicit form of ζ j(k) follows from a known repre-
sentative of the nontrivial class in π4(S3) [114].

The vanishing resultant vector R ∝ (ζ1,ζ2,ζ3,ζ4)T=0 specifies where the symmetry-
protected HEP5s emerge. The explicit form of the resultant vector [see Appendix B.2] indicates
that the model in Eq. (8) hosts symmetry-protected Z2 HEP5s at k=(0, 0,0,π/2,±π/3)which
possesses Z2 topological charge [see Fig. 3].

The argument of PT -symmetry protected HEPs can be applied to other cases of symmetry:
pseudo-Hermiticity, C P-, and chiral symmetry. We consider a Hamiltonian preserving pseudo-
Hermiticity

UpHH†(k)U†
pH = H(k) , (9)

with U†
pH being a unitary matrix and dagger denotes Hermitian conjugation. Because the trans-

position does not affect the determinant, Eq. (9) leads to Eq. (6), implying that the resultants
[Eq. (1)] are real.

For C P- and chiral symmetry, the Hamiltonian obeys

UCPH∗(k)U†
CP = −H(k) , (10)

UΓH
†(k)U†

Γ = −H(k) , (11)

with UCP and UΓ being unitary matrices. In these cases, replacing H to H ′= iH reduces to
the case of PT -symmetry or pseudo-Hermiticity. Therefore, symmetry-protected HEPns may
emerge when systems preserve pseudo-Hermiticity, C P-, or chiral symmetry.
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Figure 4: (a) and (b): Energy eigenvalues of Hamiltonian in Eq. (13) for m0=3 and
δ=0. The real (imaginary) part is represented as height (color). In panel (b), com-
plex conjugates of the upper and lower bands are omitted. (c) [(d)]: Lines in the
momentum space (k1, k2, k3) for m0=3, δ=0 and k4= −π/2 [k4=π/2], where red
and blue lines denote the momenta satisfying R∝ (0,0, 1)T and R∝ (0,0,−1)T, re-
spectively. The linking of these lines determines the value of the Hopf invariant νH.
(e): Momenta satisfying R(k)=0 for k1=0 and δ=0 resp. δ=0.2 (orange mani-
folds). As δ is introduced, the symmetry-protected HEP4 inflates into a loop. The
gray oval and the blue loop illustrate the S3 resp. S2, both extending in the fourth
dimension k1 (not shown), on which one computes the Hopf invariant νH resp. the
resultant winding number W2 (see Appendix A.2) [88].

4 Symmetry-protected HEP4s with Z topology

Symmetry protection also enables HEP4s with Z topology. To illustrate such a possibility, we
consider a four-band non-Hermitian Hamiltonian with PT -symmetry [see Eq. (5)] in a four-
dimensional momentum space described by k=(k1, k2, k3, k4). For n= 4, the formation of an
EP4 is captured by vanishing resultants r1,...,3=0 [see Eq. (1)].

To expose whether the EP4 is in fact an HEP4, we consider a 3-sphere S3 ⊂ R4 enclosing
the band touching. The homotopy group π3(S2)=Z implies the existence of nontrivial maps
n(k)=R/∥R∥. When the map of n possesses nontrivial Z topology, the enclosed band touching
is a symmetry-protected HEP4.

The topology of such HEP4s is characterized by the Hopf invariant, expressed as [115–117]

νH =

∮

d3p
2
εµνρAµFνρ , (12)

with µ,ν,ρ = 1,2, 3. Here, Aµ and Fµν are obtained from the resultant Hamiltonian (for the
definitions, see Appendix A.3). Vector p parametrizes the 3-sphere in the momentum space.
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We demonstrate the emergence of a symmetry-protected HEP4 by analyzing a toy model
whose Hamiltonian reads

H =









0 1 0 0
0 0 1 0
0 0 0 1
ζ3
242 −

ζ2
24

ζ1
2 0









, (13)

with real functions ζ1,...,3(k) parametrized by δ and m0 [for the explicit form, see Ap-
pendix B.3]. As is the case with Hamiltonians in Eqs. (4) and (8), the Hopf topology [115] of
ζ’s in the perturbed model [Eq. (13)] is equivalent to that of the resultant vector.

The vanishing resultant vector R ∝ (ζ1,ζ2,ζ3)T = 0 specifies where the symmetry-
protected HEP4 emerges in the momentum space. The explicit form of the resultant [see
Appendix B.3] indicates the emergence of a symmetry-protected HEP4 at k=0 for m0=3
[see Fig. 4(a,b)]. Here, we characterize the symmetry-protected HEP4 enclosed by two planes
at k4= − π/2 and k4=π/2. Numerically evaluating the Hopf invariant [Eq. (12)], we ob-
tain νH=0 [νH=1] for k4= −π/2 [k4=π/2] which is consistent with linking of the inverse
maps in the momentum space [see Fig. 4(c,d)] [118, 119]. These results indicate that the
symmetry-protected HEP4 is characterized by νH=1.

5 General characteristics of HEPs

5.1 Multiply-charged aspect of HEPs

Reference 84 has pointed out that the codimension of symmetry-protected EP4s is three,
whereas the codimension of the HEP4 in our model is four [see Fig. 4(a,b)]. This mismatch
in codimension implies that the HEP4 inflates into a loop of EP4s under a generic perturba-
tion of the Hamiltonian matrix [see Fig. 4(e)]. Such a perturbation does not trivialize the
Hopf topology but enriches it [30]: the loop of EP4s carries both the Hopf invariant on S3

and the resultant winding number on S2.7 In the same spirit, a similar assignment of multiple
topological invariants applies to all HEPs introduced in this work.

5.2 Additional bands

So far, we have discussed HEPns in n-band models. For systems with more than n bands,
EPns are still associated with winding of the resultant vector; however, the converse does not
hold. Specifically, as discussed in Appendix C, it is possible to find situations where a finite
value of the winding number leads to the vanishing resultant vector R=0 without a symmetry-
protected EP3.

Nevertheless, topological invariants of resultants are applicable when we focus around an
HEPn (or an EPn). Specifically, if we know that an HEPn emerges at momenta k=k0 and en-
ergy E= E0, we may apply the Taylor expansion to the characteristic polynomial
P(E) = det[H(k)− E1l], which leads to a polynomial P̃(Ẽ) with degree n

P̃(Ẽ) =
n
∑

j=0

a j(k)Ẽ
j , (14)

with a j(k) ( j=0,1, . . . , n) being complex functions and Ẽ= E−E0. Computing the topological
invariant [e.g., Eq. (3)] of P̃(Ẽ) around k=k0, we can characterize the HEPn for systems with
more than n bands.

7In contrast to the EP4s with the Hopf topology, a loop of formerly reported EP4s can be contracted and anni-
hilated.
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Table 1: Hopf exceptional points (HEPs) are classified by higher homotopy groups of
spheres. The topology explicitly analyzed in this manuscript corresponds to the blue
entries. HEPns [symmetry-protected HEPns] of codimension c=4,5, . . . are classified
by πc−1(S2n−3) [πc−1(Sn−2)].

c
HEP3

SP-HEP6
HEP4

SP-HEP4, SP-HEP5 SP-HEP7
4 Z 0 0
5 Z2 Z 0
6 Z2 Z2 Z
7 Z12 Z2 Z2
8 Z2 Z×Z12 Z2
9 Z2 Z2

2 Z24
10 Z3 Z2

2 Z2
11 Z15 Z24 ×Z3 Z2
12 Z2 Z15 Z2
13 Z2

2 Z2 Z30
14 Z12 ×Z2 Z3

2 Z2
15 Z84 ×Z2

2 Z120 ×Z12 ×Z2 Z3
2

16 Z2
2 Z84 ×Z5

2 Z72 ×Z2

5.3 Higher dimensions

Higher homotopy groups of spheres indicate abundant topology of HEPns. HEPns are captured
by the (2n− 2)-component resultant vector, and thus are classified by πc−1(S2n−3) with codi-
mension c ≥ 4. Symmetry-protected HEPns are captured by the (n− 1)-component resultant
vector, and thus are classified by πc−1(Sn−2). The classification results for HEPns (n=3, 4)
and symmetry-protected HEPns (n=4, 5,6, 7) are summarized in Table 1 (see also Sec. 4.1 of
Ref. [120] and Chapter XIV of Ref. [121]). This table predicts the presence of various HEPns
following exotic fusion rules. For instance, Z3 topology of codimension c=10 implies an HEP3
annihilate with two copies of itself, which is reminiscent of parafermions [122–125]. In addi-
tion, there exist HEP3s with Z12 topology of codimension c=7 and HEP4s with Z24 topology
of codimension c=9. Topological invariants for these HEPns remain to be formulated.

6 Conclusion and outlook

We have discovered novel non-Hermitian topological excitations, dubbed Hopf exceptional
points. Saliently, HEP3s and symmetry-protected HEP5s exhibit an unusualZ2 topology, mean-
ing that they act as their own antiparticle. This striking feature arises from the homotopy group
π4(S3)=Z2. We have further discovered symmetry-protected HEP4s whose topology is classi-
fied by π3(S2)=Z. Leveraging higher homotopy groups of spheres, we elucidate the potential
presence of HEPns characterized by abundant finite groups (e.g., Z3, Z12, and Z24) beyond
the classification table of Bernard-LeClair symmetry classes.

Our work on non-Hermitian multiband systems opens up a new direction of topological
physics. Here, we outline several concrete open questions motivated by our findings. On one
hand, from the implementation perspective, we anticipate that HEPns can be realized in a
variety of experimental settings. Notably they may be realized in terms of non-unitary photon
dynamics where both the eigenvalues and eigenstates have been measured accurately at and
around multifold EPs [99], hence suggesting a path to a particularly comprehensive simula-
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tion of HEPns. Further promising platforms include nitrogen-vacancy spin systems [109] and
coupled micro-resonators [100] in which multifold EPs have also been realized. Quite gen-
erally, the high controllability of metamaterials allows access to momentum (or parameter)
spaces with dimensions larger than three [63, 64, 77, 78, 88], thus inviting various realistic
experimental verifications of the unusual topology of HEPns.

On the other hand, our work also indicates several concrete theoretical aspects that deserve
a deeper mathematical analysis. First, Table 1 implies the presence of novel HEPs following
a unique fusion rule due to their topology. Explicit analysis based on topological invariants
and concrete models is an interesting issue. Next, unless an explicit band structure is pro-
vided, one-to-one correspondence between EPns and the resultant winding numbers is lost for
many-band systems. This observation calls for a more general topological characterization of
Hopf exceptional points. Finally, it is interesting to consider non-Hermitian topological bands,
captured by suitably adapted Hopf invariants [119], that arise in models with a hopfion tex-
ture [126] of the resultant vector over the Brillouin zone torus. We postpone the analysis of
these questions to future studies.
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A Defining topology from resultants

A.1 Resultant of a pair of polynomials

For given two polynomials

f (x) = an xn + . . .+ a1 x + a0 , (A.1)

g(x) = bm xm + . . .+ b1 x + b0 , (A.2)

with complex coefficients a’s and b’s, the resultant is defined as

Res[ f (x), g(x)] = am
n bn

m

∏

i, j

(αi − β j) . (A.3)

Here, α’s and β ’s are roots of polynomials f (x) and g(x), respectively. Symbol
∏

i, j denotes
the product over all pairs of the roots. The resultant vanishes when the two polynomials have
a common root.
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The resultant can be computed from the Sylvester matrix

Res[ f (x), g(x)] = det



























an · · · a0
an · · · a0

. . . . . .
an · · · a0

bm · · · b0
bm · · · b0

. . . . . .
bm · · · b0



























. (A.4)

Here, the empty elements are zero. The size of the matrix is n + m and the first n rows are
composed of the coefficients a’s and the remaining m rows are composed of the coefficients b’s.

A.2 Resultant winding number

We next consider an N -component resultant vector R(k), such as the one in Eq. (2), defined on
an N -dimensional momentum spaceRN . When the norm is finite ∥R∥ ≠ 0 on an (N−1)-sphere
SN−1 ⊂ RN , one can consider the normalized vector n(k) = R(k)/∥R(k)∥ whose topology is
classified by πN−1(SN−1) = Z.

The topology of such a map is characterized by the resultant winding number WN−1 [84,88]

WN−1 =
εi1···iN

AN−1

∫

dN−1p fi1···iN (p) , (A.5)

fi1···iN (p) = ni1∂1ni2∂2ni3 · · ·∂N−1niN , (A.6)

where the integral is taken over SN−1 in the momentum space parameterized by vector p.
Here, the area of the (N − 1)-dimensional sphere AN−1 is expressed by

A2l−1 =
2πl

(l − 1)!
, (A.7)

A2l−2 =
22l−1πl−1(l − 1)!
(2l − 2)!

, (A.8)

with a positive integer l. We note that the resultant topology protecting the EPn is neither
point-gap nor line-gap topology. In general, the EPn is accompanied by manifolds of EPms
with 2 ≤ m < n (e.g., a symmetry-protected EP3 emerges on lines of symmetry-protected
EP2s). As EPms require the point-gap closing on the sphere enclosing the EPn, the point-gap
topology [90, 91, 93, 94] cannot protect the EPn. In addition, the line-gap topology does not
protect band touchings for both real- and imaginary parts [93], simultaneously.

The invariants in Eq. (A.5) are rewritten as Chern numbers or winding numbers of the
resultant Hamiltonian [84]. Specifically, for N = 3, Eq. (A.5) is rewritten as the first Chern
number of the resultant Hamiltonian HR(k) = R · σ. For N = 4, Eq. (A.5) is rewritten as
the winding number of three-dimensional chiral symmetric Hamiltonian HR =

∑

i=1,...,4 Riγi

satisfying γ5HRγ5 = −HR with γ = (σ1τ0,σ2τ0,σ3τ1,σ3τ2,σ3τ3)T. Here, τ1,...,3 are Pauli
matrices, and τ0 is the 2×2 identity matrix. We note that the presence of the gap of HR on the
sphere is reduced to ∥R∥ ̸= 0. This is because the eigenvalues are given by ER = ±∥R∥ which
arises from the anti-commutation relation {γi ,γ j}= 2δi j .
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A.3 Berry connection and curvature of resultant Hamiltonians for Hopf topol-
ogy

TheZ2 invariant in Eq. (3) is obtained from the resultant vector R=(R1, R2, R3, R4)T(R1,...,4∈R).
Specifically, the Berry connection Aµ and the Berry curvature Fµν are defined as

Aµ =
1

2πi
〈z|∂µz〉 , (A.9)

Fµν =
1

2πi

�

〈∂µz|∂νz〉 − 〈∂νz|∂µz〉
�

, (A.10)

with the negative eigenstate |z〉 of the resultant Hamiltonian ñ · σ with ñ= R̃/∥R̃∥ and
R̃=(R1, R2, R3). Here, σ1,...,3 denote Pauli matrices. The ratio ∥R̃∥/R4 defines the phase
∆ϕ(p)=2ϕ(p) with ϕ= arctan∥R̃∥/R4 (0 ≤ ϕ ≤ π). Substituting ∆ϕ, Aµ, and Fµν into
Eq. (3) yields the Z2 invariant νF.

The Z invariant in Eq. (12) is also obtained from the resultant vector R=(R1, R2, R3)T

(R1,...,3 ∈ R). Specifically, the Berry connection Aµ and the Berry curvature Fµν are defined in
the same way as Eqs. (A.9) and (A.10) except for the definition of |z〉. In this case, |z〉 is defined
as the negative eigenstate of the resultant Hamiltonian n ·σ with n=R/∥R∥. Substituting the
specific form of the Berry curvature Aµ and the Berry connection Fµν into Eq. (12) yields Z
invariant νH.

B Details of the presented Hamiltonians

B.1 Model in Eq. (4) and computation of the Z2 invariant

The explicit form of ζ’s is

ζ1 = −2sinφ
�

η∗↑η↓

�

, (B.1a)

ζ2 = − sinφ
�

|η↑|2 − |η↓|2
�

+ i cosφ . (B.1b)

Here η↑, η↓ and φ are defined as

η↑ = sin k1 + i f (k5) sin k2 , (B.2a)

η↓ = sin k3 + i
�

ξ(k) +
3
2

sin k4 − 3(cos k5 +δ)
�

, (B.2b)

φ =
π

2
(1− cos k4) , (B.2c)

with ξ(k)=
∑

j=1,2,3 cos k j −m0 and f (k5) being f (k5)=1 or f (k5)=2sin(k5/2).
The resultant vector R is obtained as

R = (3!)2
�

− 2sinφRe[η↑η↓],−2 sinφIm[η↑η↓],− sinφ(|η↑|2 − |η↓|2), cosφ
�T

. (B.3)

The above equation indicates that the resultant vector vanishes when η↑=η↓=0 and φ=π/2
both hold.

From the given resultant vector [see Eq. (B.3)], the Z2 invariant νF is obtained as follows.
With ñ= R̃/∥R̃∥ and Eq. (B.3), the resultant Hamiltonian is obtained as

ñ ·σ = −
1
Æ

|η↑|2 + |η↓|2

�

|η↑|2 − |η↓|2 2η↑η
∗
↓

2η∗↑η↓ −|η↑|2 + |η↓|2

�

. (B.4)
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Thus, the negative eigenstate of ñ ·σ is obtained as

|z(k)〉=
1
Æ

|η↑|2 + |η↓|2

�

η↑
η↓

�

. (B.5)

In addition, from the resultant vector in Eq. (B.3), we obtain

∆ϕ = 2arctan∥R̃∥/R4 = 2φ . (B.6)

Substituting the obtained |z〉 and ∆ϕ into Eq. (3), we can numerically compute the Z2 invari-
ant.

B.2 Model in Eq. (8)

The explicit form of ζ’s are

ζ1 + iζ2 = −2sinφ(η↑η↓) , (B.7a)

ζ3 = − sinφ(|η↑|2 − |η↓|2) , (B.7b)

ζ4 = cosφ , (B.7c)

with η’s and φ defined in Eq. (B.2).
The resultant vector of this Hamiltonian is obtained as

R = (5!)2
�

− 2 sinφRe[η↑η↓],−2 sinφIm[η↑η↓],− sinφ(|η↑|2 − |η↓|2), cosφ
�T

, (B.8)

which is proportional to the resultant vector in Eq. (B.3). The above equation indicates that
the resultant vector vanishes when η↑=η↓=0 and φ=π/2 both hold.

B.3 Model in Eq. (13)

The explicit form of ζ’s are

ζ1 + iζ2 = 2(η∗↑η↓) , (B.9a)

ζ3 = |η↑|2 − |η↓|2 +δ . (B.9b)

Here η↑ and η↓ are

η↑ = sin k1 + i sin k2 , (B.10a)

η↓ = sin k3 + i
�

ξ(k) + sin k4

�

, (B.10b)

with ξ(k)=
∑

j=1,2,3 cos k j −m0.
The resultant vector R is obtained as

R = −(24)2
�

2Re[η∗↑η↓], 2Im[η∗↑η↓], |η↑|
2 − |η↓|2 +δ
�T

. (B.11)

The above equation indicates that the resultant vector vanishes when η↑=0 and |η↓|=
p
δ

both hold for δ > 0 or when η↓=0 and |η↑|=
p

|δ| both hold for δ < 0.

13

https://scipost.org
https://scipost.org/SciPostPhys.20.1.001


SciPost Phys. 20, 001 (2026)

C:¥Users¥yoshi¥Dropbox¥Z2EPn¥
mathematica¥Paper20250301¥fak
eEP3¥FakeEP3_model20250407.n
b

Figure 5: (a) [(b)]: Argument of R1+ iR2 [band structure] of Hamiltonian (C.1). In
panel (b), the complex conjugate of the top band is omitted.

C Fake EP3s

For three-band systems, EP3s with PT -symmetry are characterized by the resultant winding
number [84, 88] of the resultant Hamiltonian R1σ1 + R2σ2 with R = (r1, r2) which satisfies
chiral symmetry. However, for systems with four or more bands, the resultant winding number
may additionally capture “fake EP3s" unless Taylor expansion is applied. This is because the
resultant vector may vanish without a triple root in the characteristic polynomial P(E) whose
degree is four or higher.

As an example, we consider a non-Hermitian Hamiltonian

H =







1+ ik1 0 0 0
0 1− ik1 0 0
0 0 ik2 1
0 0 1 −ik2






, (C.1)

satisfying PT -symmetry [Eq. (5)] with

UPT =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






. (C.2)

The resultant winding number is defined as

W1 =

∮

dp
2πi
∂p log[R1(p) + iR2(p)] , (C.3)

where p parametrizes the circle in the momentum space. The winding number W1 (see Ap-
pendix A.2) is finite for the path illustrated by the black arrow in Fig. 5(a). However, the
system does not host EP3s [see Fig. 5(b)].
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