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Abstract

We studied global density-of-states correlation function R(ω) for Lévy-Rosenzweig-Porter
random matrix ensemble [1] in the non-ergodic extended phase. Using an extension of
Efetov’s supersymmetry approach [2] we calculated R(ω) exactly in all relevant ranges
of ω. At relatively low ω ≤ Γ (with Γ ≫ ∆ being the effective miniband width) we
found GUE-type oscillations with period of level spacing∆, decaying exponentially at the
Thouless energy scale ETh =

p

∆Γ/2π. At high energies ω ≫ ETh our results coincide
with those obtained in Ref. [3] via cavity equation approach. Inverse of the effective
miniband width, 1/Γ , is shown to be given by the average of the local decay times over
Lévy distribution.

Copyright E. Safonova et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2025-06-11
2025-12-04
2026-01-12

Check for
updates

doi:10.21468/SciPostPhys.20.1.003

Contents

1 Introduction 2

2 Definitions 4
2.1 The matrix ensemble 4
2.2 Global DoS correlation function and supersymmetric method 5

3 Functional integral and saddle point equations 6

4 Level correlation function: Results and asymptotics 8
4.1 High frequencies ω≫ Eth ≡

p

∆Γ/2π 9
4.2 Domain ω≪ Γ0 10

5 Discussion and conclusions 12

A Green functions and supersymmetric field theory 13
A.1 Supersymmetric field theory 13

B Derivation of (16),(17) 14
B.1 Averaging over off-diagonal matrix elements 14
B.2 Functional Hubbard-Stratonovich transformation 16

1

https://scipost.org
https://scipost.org/SciPostPhys.20.1.003
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.20.1.003&amp;domain=pdf&amp;date_stamp=2026-01-12
https://doi.org/10.21468/SciPostPhys.20.1.003


SciPost Phys. 20, 003 (2026)

C Saddle-point equation and its solution 16
C.1 Derivation of the saddle-point equation 16
C.2 Solution for the saddle-point equation 17

D High frequencies asymptotics 19

E Efetov parameterization 19

F Evaluation of the integral in Eq.(42) 20

References 21

1 Introduction

There are numerous indications of the apparent absence of thermalization and the breakdown
of ergodicity in large interacting quantum systems [4–6] with sufficiently high degree of disor-
der. However, almost no exact theoretical results are available, making reliable interpretation
of real and numerical experiments rather complicated. While the original theoretical approach
to this problem [7,8]was focused on low-temperature transport properties, later development
in this field (now called the Many Body Localization (MBL) problem) was shifted mainly to
the infinite-temperature limit, for the sake of simplification; also, some types of experiments
(NMR, cold atoms) may indeed be realized at effective temperatures much higher than typical
energies involved in the Hamiltonian. Still, the issue of existence of non-ergodic and/or MBL
state in a real physical system with short-range interaction is highly debatable [9,10].

One of the major obstacles for the theory of MBL phenomena is the presence of well-
developed spatial correlations. Indeed, while dimension of the Hilbert space of a random
system containing n spins-1

2 is 2n, the number of parameters entering its Hamiltonian is just
∼ n2 at most. Proper account of these correlations is not developed yet, and theoretical results
are limited to some artificial models where these correlations are absent. In particular, it was
shown in Ref. [11] that the structureless Quantum Random Energy Model possesses three dif-
ferent phases, depending on macroscopic energy and degree of disorder: ergodic, fully local-
ized (MBL) and intermediate non-ergodic extended (NEE) state. Theoretical demonstrations
of these features were obtained by means of approximate mapping of the QREM Hamiltonian
to the Rosenzweig-Porter matrix model shown previously [12] to have all three such phases.
It was understood later on [1, 13] that Gaussian RP model [12] is oversimplified to describe
more realistic problems; one possible way to generalize this model is to account for the pos-
sibility of fat-tailed distribution of non-diagonal matrix elements. An independent reason to
be interested in this kind of models is due to (numerical) observations of a power-law distri-
bution of matrix elements connecting different bit-strings in systems of interacting quantum
spins [14–16].

Invariant Lévy matrix ensemble was introduced originally in Ref. [17] and its Rosenzweig-
Porter version was studied in Ref. [1, 3]. In particular, Ref. [1] demonstrated the presence of
NEE state in the whole range of parameters µ,γ characterizing the model, while in Ref. [3]
full description of local density-of-states correlations at large energy difference (effectively,
setting level spacing to zero) was obtained by means of statistical analysis of cavity equations.
However, to study level correlations at low energy difference ω≤∆∼ 1/N , a more elaborate
technique is needed. Indeed, cavity equation approach is valid in the N →∞ limit, equivalent
to ∆→ 0.
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Figure 1: Different regimes depending on the width of miniband Γ0 in compari-
son with level spacing; boundaries between them are in agreement with results of

Ref. [1]. Γ0 depends on the system size N and the parameters γ,µ as ∼ N
1−γ
µ−1 and

determines behavior of the system (See (22) and comment under it). For γ < 1 the
system is ergodic; if µ < 1, then there is also mobility edge (transition to localized
states at energies closer to the band edge). We are interested in the range of γ > 1
where eigenstates are either localized (γ > µ − 1) or extended but non-ergodic at
γ < µ− 1. In this latter phase Γ0 is much larger than level spacing but much smaller
than with whole bandwidth W .

Well-developed methods to treat this type of problem in usual random-matrix ensembles
are based on the supersymmetry method due to Efetov [18]. Application of this method to
Gaussian RP model was recently provided in Ref. [19]. However, standard SUSY method
based upon Hubbard-Stratonovich transformation of the functional integral is not appropri-
ate for matrix models with a heavy-tailed distributions, especially when second moment of
the distribution diverges, as in the Lévy case. More general approach to the construction of
supersymmetric field theory for disordered quantum systems was proposed in Ref. [2], where
functional generalization of the Hubbard-Stratonovich transformation was introduced. In the
previous paper [20] we employed this approach to study the average density of states of Lévy-
Rosenzweig-Porter ensemble. Below we extend this approach for the calculation of the global
density-of-states correlation function R(ω) = 〈ρ(E+ω/2)ρ(E−ω/2)〉/〈ρ(E)〉2 at arbitraryω
in the NEE state. We demonstrate the presence of three energy scales in the problem: mean
level spacing∆, typical miniband width Γ ≫∆ and intermediate scale ETh =

p

Γ∆/2π which
plays the role of a Thouless energy in our problem, similar to the result of Ref. [19] for Gaussian
RP model, see also [21]. Previous results [3] are confirmed for ω ≫ ETh by our supersym-
metry method, while at low ω ≤ ETh the function R(ω) demonstrates oscillations typical for
Wigner-Dyson random matrix ensembles.

Before going into the calculations, we briefly review the main features of the phase diagram
for Lévy-RP matrices, based mostly on Ref. [1]. The part of the phase diagram we’re interested
in covers the range 1 < µ < 2, and it’s shown in Fig.(1). The different phases are defined
based on the behavior of the eigenvectors Ψn(i). These can be ergodic, where the inverse
participation ratio (IPR, I(N) =

∑N
n |Ψn|4) scales like I(N) ∼ N−1, localized with I(N) ∼

constant, or non-ergodic but extended — with I(N) ∼ N−D for some 0 < D < 1. There
are two ergodic (E) phases. One appears for 1 < µ < 2, where all eigenvectors are ergodic
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for any energy En. The other is for 0 < µ < 1, where a mobility edge E0 separates ergodic
and localized states: eigenvectors are ergodic when |En| < E0 and localized when |En| > E0.
All three phases—ergodic, localized, and non-ergodic extended—meet at the tricritical point
µ= γ= 1.

In this paper we are concerned with the correlation function defined by Eq.(7) at 1< µ < 2.
We show that Lévy-RP model indeed experiences phase transitions at the boundaries γ = µ
and γ= 1 and we provide the explicit analytical calculation.

The rest of the paper is organized as follows. Sec.2 introduces definitions of the random
matrix ensemble we are going to study and representation of the correlation function R(ω) in
terms of functional integral over superfields. Sec. 3 describes functional Hubbard-Stratonovich
transformation and provides saddle-point analysis of the relevant functional integral. Sec. 4
is devoted to calculation of the correlation function R(ω) in two overlapping limiting cases:
high frequencies ω ≫ ETh and low frequencies ω ≪ Γ . Since ETh ≪ Γ , we thus obtain the
full behavior of R(ω) in the whole range of frequencies. Sec. 5 contains our conclusions.
Supplemental material (Secs. A-F) contains technical details of our calculations.

2 Definitions

2.1 The matrix ensemble

Our research object is an ensemble of N × N complex Hermitian matrix Ĥ which can be rep-
resented as the sum of two matrices:

Ĥ = ĤD + ĤL , (1)

where ĤD is a diagonal random matrix with real independent and identically distributed (i.i.d.)
entries and ĤL is a full matrix where all elements are i.i.d. The distributions of ĤL and ĤD are
generally different. We consider the case of the Lévy-Rosenzweig-Porter (Lévy-RP) matrices [1]
where the entries of ĤD are random, broadly distributed with the typical distribution width W
so that W is the largest energy scale. Level spacing ∆∼W/N is the smallest energy scale. HL
entries are complex and defined as follows:

[HL]mn = hmn exp (iθmn) , hnm ≥ 0 , −π≤ θmn < π . (2)

The phase θnm is distributed uniformly with Pθ (θ ) =
θ (π−|θ |)

2π and the amplitudes hmn have a
distribution according to the power-law. For convenience, we chose the particular one-sided
Lévy distribution

P(µ,γ)
L

�

h2
mn

�

=
N

2γ
µ

σ2
Lµ/2

 

N
2γ
µ

σ2
h2

mn

!

, (3)

where σ is an energy unit and Lµ/2(x) is one-sided Lévy stable distribution [22, 23] which is
defined by the Laplace characteristic function:

L̃µ/2(r)≡
∫ ∞

0

Lµ/2(x)e
−r x d x ≡ e−rµ/2 , 1< µ≤ 2 . (4)

We chose that particular function because it supports only positive values and has a convenient
representation in terms of its Laplace transform. Using Eqs.(4),(3) the Laplace characteristic
function of rescaled PL distribution:

∫ ∞

0

PL

�

h2
�

e−rh2
d
�

h2
�

≡ exp
�

−
σµ

Nγ
rµ/2

�

,
1< µ < 2 ,
γ > 0 .

(5)
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In fact, any distribution with the same power-law tail will lead to similar results, as explained
in the end of the paper. Function (3) has the following power-law asymptotics

PL

�

h2
�

dh2 ≈
µσµdh

Γ
�

1− µ2
�

Nγh1+µ
, 1< µ < 2 . (6)

For µ ≥ 2 this distribution has a finite variance and the model becomes equivalent to the
usual Gaussian Rosenzweig-Porter model. To compare intermediate results with the previous
papers [19], [24], one can put σ = 1, while notations of Ref. [3] are recovered by the choice
γ= 1 and σµ

Γ(1− µ2 )
= hµ0 .

Note that while the variance W 2 of HD is independent of the matrix size N , the typical
value of HL scales with N as σN−γ/µ, and its variance diverges at µ < 2 due to the tail in
L µ

2
(x2) ∼ x−(1+µ). There is a special value µ = 2 where the distribution Lµ/2(x) reduces to

the delta function δ(x − 1).

2.2 Global DoS correlation function and supersymmetric method

Our goal is to calculate correlation function of global density of states which is defined as

R (E,ω) =




ρ
�

E + ω
2

�

ρ
�

E − ω2
��

〈ρ (E)〉2
, (7)

where ρ(E) = − 1
πN TrℑĜR(E) is density of states (DoS) and ĜR(E) is retarded Green function

of the Hamiltonian (1) at energy E. It is convenient to choose the scaling so that DoS becomes
a function of the order of unity:

1
∆
= Nρ (E) ,

∫

dEρ (E) = 1 , (8)

where ∆ is mean level spacing. To continue the calculation one should switch to the Green
function representation, so that the correlation function is

R (E,ω) =
1
2
+
∆2

2π2
Re
D

TrĜR

�

E +
ω

2

�

TrĜA

�

E −
ω

2

�E

. (9)

Two-point correlation function can be expressed through differentiation the partition func-
tion Z(E,ω, JA, JR) over background fields JR, JA. The partition function Z(E,ω, JA, JR) is
given [18, 25] by the integral over supervectors ψi (for the derivation, see Supplement,
Sec.A.1).

R (E,ω) =
1
2
+
∆2

8π2
Re
∂ 2Z

�

E,ω, Ĵ
�

∂ JR∂ JA

�

�

�

�

JR,A=0
, (10)

Z
�

E,ω, Ĵ
�

=

®

∫

[dψ]exp

�

i
∑

n,m

ψ†
n L̂
��

E +
Ω

2
L̂ − Ĵ K̂

�

δnm −Hnm

�

ψm

�¸

Ĥ

, (11)

where Ω ≡ ω + i0 (here and below infinitesimal imaginary part is introduces to guarantee
convergence of the integrals). Expression (11) uses superalgebra formalism which includes
commuting and anticommuting variables:

ψi =

�

ψR
ψA

�

=







Si1
χi1
Si2
χi2






, ψ†

i =
�

ψ†
R ψ†

A

�

=
�

S∗i1 χ∗i1 S∗i2 χ∗i2
�

, (12)
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are 4-dimensional supervectors with ordinary (complex, commuting) (Si1, Si2) and Grassma-
nian (anticommuting) (χi1,χi2) components,

K̂ =

�

1
−1

�

BF
= diag

�

1 −1 1 −1
�

, (13)

L̂ =

�

1
−1

�

RA
= diag

�

1 1 −1 −1
�

, (14)

Ĵ =

�

JR
JA

�

RA
= diag

�

JR JR JA JA
�

, (15)

and [dψ] =
�

dψRdψ†
R

� �

dψAdψ†
A

�

.

3 Functional integral and saddle point equations

The goal of this section is to derive a proper field theory (σ-model) which describes energy
level correlations in the system at sufficiently low energies ∼ ∆. Starting from Eq.(11) one
needs to perform quite a number of mathematical calculations, which are described in detail
in Section B of the Supplement. To put it briefly, the first step is to average over realiza-
tions of Lévy distributed matrix elements. Next step in a usual supersymmetric approach is
to use Hubbard-Stratonovich transformation, which however cannot be used in our case of
the power-law tailed distributions, since its second moment |Hi j|2 diverges (while it must be
the crucial parameter within the standard scheme [18, 25, 26]). Instead, we use functional
analogue of the Hubbard-Stratonovich transformation, which was proposed and described in
detail in [ [2], see also [20]]. Following this approach (see also Sec. B2), the partition func-
tion (11) can be transformed into the following functional integral over functions g(ψ,ψ+)
dependent on supervectors ψ and ψ+:

Z
�

E,ω, Ĵ
�

=

∫

Dg exp
�

S
�

g
�

ψ,ψ†
���

, (16)

where the functional action S
�

g
�

ψ,ψ†
��

is given by

S
�

g
�

ψ,ψ†
��

= N ln

�∫

[dψ]exp
�

iψ†
�

E L̂ +
Ω

2
− Ĵ K̂ L̂ − ζ L̂

�

ψ− g
�

ψ,ψ†
�

�

�

ζ

+
N
2

∫

[dψ]
�

dψ′
�

g
�

ψ,ψ†
�

I−1
�

ψ′† L̂ψ
�

g
�

ψ′,ψ′†
�

,

(17)

where I (x) ≡ σµN1−γ

Γ( µ2+1)
�

x† x
�µ/2

and ζ corresponds to diagonal elements. Variable ζ stays for

elements of the diagonal matrix HD and its distribution is smooth at the scale of bandwidth
W .

Due to the large prefactor N in the action, one can perform the functional integration over
g(ψ,ψ+) by the steepest descent method which leads to the self-consistency equation, whose
explicit form depends on the energy argument ω:

gω
�

ψ′†ψ′,ψ′† L̂ψ′
�

=

�∫

[dψ]I
�

ψ′† L̂ψ
�

exp
�

iψ†
�

E L̂ − ζ L̂ +
Ω

2

�

ψ− gω
�

ψ†ψ,ψ† L̂ψ
�

�

�

ζ

.

(18)
As follows from the form of Eq.(18), its solution depends on two invariant objects: ψ′†ψ′ and
ψ′† L̂ψ′. Details of the solution of Eq.(18) are provided in Sec.C of the Supplement.
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This self-consistency equation is, in fact, the equation for the cumulant-generating function
of the joint distribution of the real and imaginary parts of the self-energy [27]. It is equivalent
to the equation obtained by the cavity method in the limit N → ∞ [3]. Nevertheless, for
the subsequent analysis it is instructive to derive and solve this equation explicitly within our
present method.

The key physical observation which helps to solve Eq.(18) goes as follows: e−gω(ψ†ψ,ψ† L̂ψ)

is the characteristic function of a complex self-energy function Σ of the operator (E − Ĥ)−1.
Reduced functions of only single arguments, e−gω(0,ψ† L̂ψ) and e−gω(ψ†ψ,0), represent charac-
teristic functions of real and imaginary part of the same self-energy, respectively. Now, the
key point is that the full function gω

�

ψ†ψ,ψ† L̂ψ
�

can be represented as a simple sum of two
independent functions:

gω
�

ψ†ψ,ψ† L̂ψ
�

≈ gω
�

0,ψ† L̂ψ
�

+ gω
�

ψ†ψ, 0
�

. (19)

It means that real and imaginary parts of the self-energy Σ are independently distributed.
Physical reason for such an independence is that ℜΣ(E) acquires relevant contributions from
a broad range of energies E ∼ W , while ℑΣ(E) is determined by the close vicinity of E only.
This phenomenon was studied in detail in Ref. [3]. The distribution of ℜΣ was evaluated in
our previous paper [20] where the average density of states was calculated. It leads to a slight
renormalization of spectrum ∼ σ

W and can be omitted in the present problem. The reason can
be seen in Eq.(18): integration over dζ over the broad range ∼W makes very small relevant
values of ψ† L̂ψ≤ 1

W . As a result, it is sufficient to work with gω
�

ψ†ψ, 0
�

.
At sufficiently largeω saddle-point solution of the type of (19) is sufficient for the purpose

of our calculations (precise criterion on the range of ω will be present below). The corre-
sponding solution is described in Sec. C of the Supplement, the result reads a follows:

gs.p.

�

ψ,ψ†
�

�

�

�

�

ψ† L̂ψ=0
= gω

�

ψ†ψ, 0
�

=
�

Γωψ
†ψ
�µ/2

, (20)

where function Γω is determined by the transcendental equation

Γµ−1
ω = Γµ−1

0

Γ
�µ

2

�

Γ
�

2− 2
µ

�

∫ ∞

0

dr Lµ/2 (r)
�

r − i
ω

Γω

�1− µ2
, (21)

and its zero-frequency limit Γ0 is expressed via energy parameters σ and ∆ as follows:

�

Γ0
2

�µ−1

=
σµ

∆Nγ

p
πΓ
�

µ−1
2

�

Γ
�

2− 2
µ

�

Γ 2
�µ

2

� , (22)

with Γ (x) in the R.H.S. being Euler Gamma-functions.
To meet the requirements of intermediate non-ergodic state one needs to apply the con-

straint∆≪ Γ0≪W in N →∞ limit (otherwise saddle point approximation is not valid). This

will lead to inequalities: N
γ
µ−1 < σ

W < N
γ−1
µ . However, numerical prefactor in (22) strongly

diverges at µ→ 1 so one should be careful with the choice of specific parameters while doing
numerical study.

Few remarks are in order now. First, we note that the form of the saddle-point solution (20)
demonstrates a heavy-tail nature of distributions of ℑΣ and ℑG. Second, we emphasize the
appearance of a new energy scale Γ0 determined by Eq.(22), see also Ref. [1]. In the Gaussian
case µ = 2 it gives just the value of the miniband width [19], while for generic 1 < µ < 2
miniband structure is more complicated, it is characterized by a distribution of widths which
is characterized by the parameter given by Eq.(22); the same equation for Γ0 was obtained
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in Ref. [3]. Third, at nonzero ω the function Γω is complex, with ℑΓω < 0; this feature is
related to the analytic properties of the DoS correlation function and it will be important later
in Sec. 4.

At high frequencies ω≥ Γ0 the function Γω can be obtained from Eq.(21) and behaves as

Γω→∞
Γ0
∼
�

�

�

�

ω

Γ0

�

�

�

�

2
µ−1�

cos
�

π(2−µ)
2µ

�

− i sin
�

π(2−µ)
2µ

��





Γ
�µ

2

�

Γ
�

2− 2
µ

�





2
µ

. (23)

Since Lévy distribution degenerates into a delta function at µ = 2, Γω becomes real constant
Γω = Γ0 regardless ofω. On the other hand, atω= 0 saddle-point solution (20) is not unique:
it belongs to the whole manifold of solutions those actions coincide. As a result, to obtain
physical quantities at low ω one should integrate over the whole saddle-point manifold, as it
was done in Ref. [19] for Gaussian RP model. General solution that belongs to the saddle-point
manifold can be written in the form

g0

�

ψ† T̂ † T̂ψ,ψ† L̂ψ
�

≡ gT

�

ψ†ψ,ψ† L̂ψ
�

, (24)

where T̂ is the 4-dimensional supermatrix that rotates supervectors ψ and ψ+. It obeys the
symmetry property T̂ † L̂ T̂ ≡ L̂.

In the next Section we will show that unique high-ω solution (20) is applicable at
ω ≫ ETh ∼

p

∆Γ0 while integration over saddle-point manifold (24) can be employed at
ω≪ Γ0. Since we always have ∆≪ Γ0, the combination of both approaches cover the whole
range of frequencies we are interested in.

4 Level correlation function: Results and asymptotics

In this section we calculate the DoS correlation function and discuss its properties. The main
expression for the correlation function follows from (10) and (16):

R(E,ω) =
1
2
+
∆2

8π2
Re

∫

D [g]

�

∂ 2S [g]
∂ JA∂ JR

+
∂ S [g]
∂ JR

∂ S [g]
∂ JA

�

eS[g]

�

�

�

�

JR,JA=0
, (25)

where the action S [g] is defined in Eq.(17). The expression above is still too complicated to
evaluate it exactly for an arbitrary ω, so we proceed by analyzing two complementary limits.
First we consider high-frequency regime, where functional integral is dominated by saddle-
point solution (18); then we switch to the low-frequency regime, where integration over the
full saddle-point manifold (24) is required.

In the saddle-point approximation g
�

ψ†,ψ
�

should be substituted by the solution ((20)).
Quadratic over gω(ψ,ψ+) term in the action does not depend on the sources JA,R, it is also
invariant underψ→ T̂ψ transformations. Supersymmetry of this term means that it does not
contribute to the action on the saddle-point manifold (see integration theorems in Refs. [26],
[28] or Supplementary material [C]). The only important term left in the action is

S
�

gs.p.

�

= N ln

�∫

[dψ]exp
�

iψ†
�

E L̂ +
Ω

2
− Ĵ K̂ L̂ − ζ L̂

�

ψ− gs.p.

�

ψ,ψ†
�

�

�

ζ

, (26)

where gs.p. is saddle-point solution of (18). Supersymmetric part of this expression should be
equal to unity and the other part is assumed to be small, so that one can expand the logarithm
to get

S
�

gs.p.

�

= N

®

�∫

[dψ]exp
�

iψ†
�

E L̂ +
Ω

2
− Ĵ K̂ L̂ − ζ L̂

�

ψ− gs.p.

�

ψ,ψ†
�

�

�

Ĵ ,T̂ ̸=0

¸

ζ

. (27)
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Integration over dζ in Eq.(27) goes smoothly over broad range of energies ∼ W which
leads effectively to the restriction ofψ† L̂ψ being very small (by the same logics as described in

the analysis of the saddle-point solution above). As a result, one can employ gs.p.

�

ψ,ψ†
�

�

�

�

�

ψ† L̂ψ=0
from the solution (20) to get

S
�

gs.p.

�

= N

®¨

∫

[dψ]exp

�

iψ†
�

E L̂ +
Ω

2
− Ĵ K̂ L̂ − ζ L̂

�

ψ− gs.p.

�

ψ,ψ†
�

�

�

�

�

ψ† L̂ψ=0

�«

Ĵ ,T̂ ̸=0

¸

ζ

.

(28)
Further analysis differs for small and large ω. First we consider the high-frequency region

within saddle-point approximation; the domain of applicability of these results becomes clear
by comparison with results of exact calculation provided later for the low frequency region.

4.1 High frequencies ω≫ Et h ≡
p

∆Γ/2π

In the considered limit, correlations reflect the properties of the whole miniband, so fine struc-
ture is washed out and only the averaged properties matter. In this limit, the unique saddle-
point solution gω(ψ†ψ, 0) is sufficient. In the high-ω limit (parameter Γ is defined in Sec.4.2)
one employs gω

�

ψ†ψ, 0
�

solution. It is sufficient to calculate saddle-point action as function
of the sources:

S [gω] = N

®

�∫

[dψ]exp
�

iψ†
�

E L̂ +
Ω

2
− Ĵ K̂ L̂ − ζ L̂

�

ψ−
�

Γωψ
†ψ
�µ/2

�

�

Ĵ ̸=0

¸

ζ

. (29)

Recalling properties of one-sided Lévy distribution and definition of superdeterminant, we find

S [gω] = N

∫ ∞

0

dr L µ
2
(r)

�

§

Sdet−1
�

E − ζ+
�

Ω

2
+ iΓωr

�

L̂ − Ĵ K̂
�ª

Ĵ ̸=0

�

ζ

. (30)

At this stage it is useful to define the corresponding Green function

Ĝ ≡
�

E − ζ+
�

Ω

2
+ iΓωr

�

L̂
�−1

=
E − ζ−

�

Ω
2 + iΓωr

�

L̂

(E − ζ)2 −
�

Ω
2 + iΓωr

�2 . (31)

Employing exact relation for superdeterminants, lnSdetÂ= Str ln Â one can expand action in
Eq.(30) over sources JR,A:

S [gω] = N

∫

dr L µ
2
(r)
�




Str
�

ĜĴ K̂
��

ζ
+

1
2




Str2
�

ĜĴ K̂
��

ζ
+

1
2




Str
�

ĜĴ K̂ ĜĴ K̂
��

ζ

�

. (32)

Distribution PD (ζ) is a very slow function of ζ, as compared to ζ-dependence of the Green
function Ĝ defined in (31), so it is possible to use approximation PD (ζ) ≈ PD (E) ∼ W−1.
Performing integration near the pole (with the use of the fact that ℑΓω < 0) and also the
relation PD (E)N =∆−1, we arrive at

S [gω] = −i
π

∆

�

2 (JR − JA)− 8JRJA

∫

dr
L µ

2
(r)

Ω+ 2iΓωr

�

. (33)

Substitution of (33) into (25) gives final result in the form

R (ω) = 1+
∆

π

∫ ∞

0

dr
L µ

2
(r) · 2rReΓω

[ω− 2rImΓω]
2 + [2rReΓω]

2 . (34)
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Figure 2: Correlation function R(ω) − 1 in a log-log scale, obtained from
Eq.(34) with Γω found by means of numerical solution of Eq.(21). We choose
γ = 1.1, σ/W = 0.02, N = 107. Dashed lines correspond to the asymptotic
solution provided in Eq.(35).

In the limit µ→ 2 the above result coincides with the one obtained in Ref. [19] for Gaussian
RP model at high ω. For general µ, similar result was obtained in Ref. [3] where local DoS
correlation function C(ω) was obtained by means of cavity equation; the relation between
these results is as follows: R(ω)−1= 2µ/2∆ ·C(ω). The difference in numerical coefficients is
due to slightly different models: while we consider Hermitian matrix ensemble with complex
off-diagonal elements, the function C(ω) is calculated in [3] for real matrix ensemble. At
high frequencies, the main asymptotics is given by the power-law

R(ω) = 1+
∆

πΓ0

2µ/2Γ
�µ

2

�

Γ
�µ

2 + 1
�

Γ
�

2− 2
µ

�

�

Γ0
ω

�µ

. (35)

We present details of this calculation in Appendix D.

4.2 Domain ω≪ Γ0
Now we can use expansion over parameter ω

Γ0
≪ 1. We will keep nonzero ω in the action

(28) only and replace gs.p.

�

ψ,ψ†
�

�

�

�

�

ψ† L̂ψ=0
used in the previous Sec.4.1 by saddle-point mani-

fold gT

�

ψ†ψ, 0
�

parametrized by the rotation matrix T̂ . One should remember the definition
ω+ i0≡ Ω, so that if ω= 0, then Ω= i0 to maintain the convergence of integrals.

At small energy differences, the system resolves correlations within a single miniband. In
this case, one must integrate over the full saddle-point manifold, which restores the charac-
teristic Wigner-Dyson type oscillations at scales of the mean level spacing ∆.

After inverse field transformation ψ→ T̂−1ψ the action acquires the form

S [gT ] =
1
∆

∫

dr L µ
2
(r)

�

§

Sdet−1
�

E +
�

Ω

2
T̂ T̂ † + iΓ0r

�

L̂ − T̂ Ĵ K̂ L̂ T̂ † L̂ − ζ
�ª

Ĵ ,T̂ ̸=0

�

ζ

, (36)

and integration over functions D [g] in (25) is replaced by the integration over T̂ matrices.
Matrix T̂ is closely connected with Efetov matrix Q̂ as T̂ † T̂ = L̂Q̂ (see Supplement E). Further
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procedure is similar to the one used in the previous subsection. First of all one performs an ex-
pansion over ΩΓ0 and Ĵ . Then, using the same tricks as in (32)-(33) one obtains an intermediate

result in terms of Q̂ matrices (remember that Str
�

a1̂+ bL̂
�

= 0 for any numbers a, b).

S0

�

T̂ , Ĵ
�

=
iπ
∆

Str
�

Ω

2
L̂Q̂− Ĵ K̂Q̂

�

+
π

2∆Γ

�

Str
�

Ĵ2 −ΩĴ K̂
�

− Str

�

Ĵ K̂Q̂Ĵ K̂Q̂−ΩĴ K̂Q̂ L̂Q̂+
Ω2

4
L̂Q̂ L̂Q̂

�

+ Str2
�

Ĵ K̂
�

− Str2
�

Ĵ K̂Q̂−
Ω

2
L̂Q̂
�ª

.

(37)

Finally, the key parameter Γ is determined as follows:

Γ ≡
�∫

dr
Lµ/2 (r)

2rΓ0

�−1

=
2Γ0

Γ
�

2
µ + 1

� . (38)

Using the relation Ĵ = JR
L̂+1

2 + JA
1− L̂

2 , we calculate the derivatives and obtain the following
terms in the action (25):

S [gT ]

�

�

�

�

JR,A=0
=

iπΩ
2∆

Str
�

L̂Q̂
�

−
πΩ2

8∆Γ

�

Str
�

L̂Q̂ L̂Q̂
�

+ Str2
�

L̂Q̂
��

, (39)

∂ 2S [gT ]
∂ JA∂ JR

=
π

∆Γ

�

Str
�

Û−Û+
�

+ Str
�

Û−
�

Srt
�

Û+
�

+ 4
�

, (40)

∂ S [gT ]
∂ JR

∂ S [gT ]
∂ JA

= −
�

iπ
∆

Str
��

Û+
��

+
πΩ

2∆Γ

�

2− Str
�

Û+ L̂Q̂
�

− Str
�

Û+
�

Str
�

L̂Q̂
��

�

(41)

×
�

iπ
∆

Str
�

Û−
�

+
πΩ

2∆Γ

�

2− Str
�

Û− L̂Q̂
�

− Str
�

Û−
�

Str
�

L̂Q̂
��

�

,

where Û+ ≡
L̂+1

2 K̂Q̂ and Û− =
L̂−1

2 K̂Q̂.
The relation (38) above means that the quantity which should be averaged over Lévy

distribution is the inverse miniband width 1/r, which is equivalent to the decay time from
the miniband. Evaluation of integrals like the one present in Eq.(38) is discussed in detail in
Ref. [3]. The quantity Γ is similar to the one defined in [19] for the Gaussian RP model and
coincides with it at µ= 2.

Now we should integrate all manifold of Q̂ in (40)-(39). Unitary matrix Q̂ is parameterized
in a standard way using Efetov parametrization (see Supplement E). Two different energy
scales appear in (39). First term contains mean level spacing ∆ and leads to the oscillations

at ω ∼ ∆, while the second one defines Thouless energy Eth ≡
q

∆Γ
2π , as an energy where

typical GUE oscillations become exponentially suppressed. Combining all terms, we find the
final integral expression for the correlation function at ω≪ Γ :

R (E,ω) = 1+
∆

πΓ
+Re

∫ ∞

1

dλB

∫ 1

−1

dλF

�

�

1+
2iΩ
Γ
λB

�2

+
∆

πΓ

λB

λB −λF

�

× exp

�

iπΩ
∆
(λB −λF )−

πΩ2

∆Γ
λB (λB −λF )

�

.

(42)

Double integral in Eq.(42) can be further simplified using large parameter ω/∆≫ 1 and we
find (see Supplement, Sec.F for details):

R (E,ω)≈ 1+
∆

πΓ
−
∆2

2π2ω2

�

1− cos
�

2πω
∆

�

exp

�

−
2πω2

∆Γ

��

. (43)
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Figure 3: Level correlation function R(ω) obtained by means of approximations (34)
and (43). Both approximations lead to nearly coinciding results at ω ≈ Eth. Here
µ = 1.5,

p

∆/Γ0 ≈ 0.035, σ ≈ 0.023W, γ = 1.1, N = 105 (see Eq.(22)).
Solutions (34) and (43) have an upper limit equal to 1 + ∆

πΓ . Contrary to the case
of correlation function in the GUE ensemble, which never exceeds 1 (levels only
repel each other), the Lévy-RP model demonstrate weak long-range level attraction
at ω> Eth.

The above result coincides with the one obtained for the Gaussian-RP model [19] up to renor-
malization of the miniband width Γ . At low frequencies ω ≪ Eth we get from Eq.(42) an
expression

R (E,ω) = 1−
sin2

�

πω
∆

�

�

πω
∆

�2 +
2∆
πΓ

sin2
�πω

∆

�

, (44)

which coincides with GUE limit when Γ/∆→∞. The whole behavior of R(ω) at all frequen-
cies is shown in Fig.(3).

5 Discussion and conclusions

We calculated the energy level correlation function R(ω) for the Lévy Rosenzweig-Porter en-
semble by means of supersymmetry method. Our major new result is provided by Eqs.(43,
38) refers to low-frequency range ω ≤ ETh. Functional form of Eq.(43) reproduces the one
known for Gaussian RP model [19], while inverse of effective miniband width 1/Γ is given
by the average over Lévy distribution of local decay times, as follows from Eq.(38). In the
high-frequency domain our result is given by Eqs.(34,21) and is in agreement with the result
of Ref. [3] for the correlation function of local density of states C(ω).
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Both Gaussian RP and Lévy-RP matrix ensembles share the same feature: at sufficiently
small energy difference ω≪ ETh, the level correlation function acquires the same form as in
the usual GUE ensemble. In the case of Gaussian RP model it is known since Ref. [19] and it
is interpreted in terms of miniband structure of energy levels. Indeed, the peculiar feature of
non-ergodic phase in this type of model is that it becomes evident when relatively large energy
window is considered, while narrow stripes of energy levels behave like in usual Wigner-Dyson
matrix model. Our results demonstrate, surprisingly, that the same feature is retained even
when one allows for fat-tail distribution of matrix elements. However, for Lévy-RP matrix
ensemble the magnitude of the miniband width Γ and of Thouless energy ETh =

p

∆Γ/2π
should be calculated in the way different from the Gaussian RP case, see Eq.(38).

The major qualitative difference between Gaussian RP and Lévy-RP ensembles is that the
first one can be described in terms of averaged Green functions G(E) and self-energies Σ(E),
while in the Lévy-RP case one is forced to consider non-trivial probability distributions for
both Green function and self-energy. Moreover, the miniband width Γ0 known for Gaussian RP
ensemble becomes a random quantity in the Lévy-RP model, as can be observed with Eq.(38):
effective width of a miniband Γ is found to be an inverse of a realization-dependent decay time
1/rΓ0 over Lévy distribution.

Long power-law tail in the distribution of off-diagonal matrix elements makes minibands
of Lévy-RP ensemble different from their Gaussian-RP counterparts which are compact in the
values of bare energies (diagonal matrix elements ζi). Since there is a quite considerable
probability to find abnormally large matrix element Hnm in the Lévy-RP case, here minibands
are partially overlapping in the energy space. Similar phenomena may be expected in other
heavy-tail versions of the RP model, like the one studied in [29].

On a technical side, our results demonstrate that field-theoretic approach based on su-
persymmetry can be efficiently employed for the analysis of systems described by random
Hamiltonian with heavy-tailed distributions. We expect that such an approach might be useful
for the analysis of spatially extended systems with internal structure, similar to the one studied
in Ref. [27] but with a Lévy distribution of hopping matrix elements.

We note that our results justify previous analyses performed in Refs. [1, 29, 30]. In these
studies the relation I(N)∼ Γ0

NW was used; it relates typical scale of the inverse participation ra-
tio with the typical scale of imaginary part of self-energy. We demonstrate by direct calculation
that low-ω dynamics of the model indeed is equivalent to that of GUE, which puts the above
assumption on firm ground. Our result Eq.(7) for R(ω) correlation function implies GUE-type
behavior of the spectral form factor S(t) related to R(ω) by Fourrier transform: S(t) saturates
at the value I(N) for t > tH , where tH is the Heisenberg time.

Acknowledgments
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A Green functions and supersymmetric field theory

A.1 Supersymmetric field theory

Representation of Green functions in supersymmetric field theory is based on the property of
determinants that

lndet Â= Tr ln Â⇒ Tr
�

Â
�−1
=

1
2
∂

∂ J

det
�

Â+ J
�

det
�

Â− J
�

�

�

�

�

J=0
. (A.1)
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Whereas the 〈TrGRTrGA〉-type function is represented as follows
�

Tr
�

E +
Ω

2
− Ĥ

�−1

Tr
�

E −
Ω

2
− Ĥ

�−1
�

Ĥ

=
1
4

∂ 2

∂ JR∂ JA

®

det
�

E − Ĥ + Ω2 + JR

�

det
�

E − Ĥ + Ω2 − JR

�

det
�

E − Ĥ − Ω2 + JA

�

det
�

E − Ĥ − Ω2 − JA

�

¸

Ĥ

�

�

�

�

JR,A=0

.
(A.2)

Using the basic properties of Gaussian integrals(for commutative and anticommutative
variables):

∫

e−χ⃗
†Âχ⃗dχ⃗†dχ⃗ = det

�

Â
2π

�

,

∫

e−S⃗†ÂS⃗dS⃗†dS⃗ =
1

det
�

Â
2π

� , (A.3)

one arrives at the result (10).
Remark: The sign of anticommutative variables does not matter for the convergence of

the integral; however, it is necessary choose the correct sign for the commuting variables.

B Derivation of (16),(17)

B.1 Averaging over off-diagonal matrix elements

We start by averaging of the partition function (11) over the random entries of Ĥ

Z
�

E,ω, Ĵ
�

= exp

�

i
N
∑

n

ψ†
n

�

E L̂ +
Ω

2
− Ĵ K̂ L̂

�

ψn

�

× exp

 

ln

®

exp

�

−i
N
∑

n,m

ψ†
n

�

[HL]nm +δnm [HD]nn

�

L̂ψm

�¸

ĤL ,ĤD

!

.

(B.1)

The typical value of Gaussian elements is ∼ W (assumed much larger than Lévy diagonals
typical value) so that it is reasonable to leave only [HD]nm on diagonal. This splits the aver-
aging 〈...〉 into two independent parts. The Hermitian property of the matrix ĤL allows one to
separate the rest of sum into independent symmetrical entries, resulting in

Z
�

E,ω, Ĵ
�

=

®

exp

�

i
N
∑

n

ψ†
n L̂
�

E +
Ω

2
L̂ − Ĵ K̂ − [HD]nn

�

ψn

�¸

ĤD

× exp

 

ln

®

exp

�

−i
N
∑

m<n

�

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn

�

�¸

ĤL

!

.

(B.2)

Since the symmetrical pairs of the matrix elements are independent, the second line in the
above equation can be rewritten as follows:

ln

®

exp

�

−i
N
∑

m<n

�

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn

�

�¸

ĤL

=
1
2

N
∑

n̸=m

ln



exp
�

−i
�

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn

���

ĤL
.

(B.3)
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Furthermore, because there are ∼ N diagonal entries and ∼ N2 off-diagonal ones, one can
replace

∑

m ̸=m
by

∑

m,n
. Later on, using the fact that off-diagonal matrix elements [HL]nm are

smaller that diagonal ones by the factor Nγ, one can use the following approximation

N
∑

n,m

ln



exp
�

−i
�

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn

���

ĤL

=
N
∑

n,m

ln
�

1+



exp
�

−i
�

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn

��

− 1
�

ĤL

�

≈
N
∑

n,m




exp
�

−i
�

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn

��

− 1
�

ĤL

≡
1

2N

N
∑

n,m

I
�

ψ†
n L̂ψm

�

.

(B.4)

Let us now denote [HL]nm ≡ heiθ and ψ†
n L̂ψm ≡ t, so that

ψ†
n [HL]nm L̂ψm +ψ

†
m [HL]

∗
nm L̂ψn ≡ h

�

teiθ + t†e−iθ − i0
�

,

where −i0 ensures convergence of the integral B.4. The object I(t) entering last line of
Eq.(B.4) can be rewritten as

I(t) = 2N

π
∫

−π

dθ
2π

∞
∫

0

d
�

h2
�

2
PL

�

h2
�

�

e−ih[teiθ+t†e−iθ−i0] − 1
�

. (B.5)

Using normalization conditions, 6 and following the calculations in A.1 Appendix of [3] paper
one can proceed to the following form:

I(t) = − 2σµΓ (−µ)
Nγ−1Γ

�

−µ2
�

π
∫

−π

dθ
2π

�

i
�

eiθ t + e−iθ t†
�

+ 0
�µ

, (B.6)

where constant follows from normalization. To calculate the θ integral one can use its inde-
pendence on the phase of t, t†:

∫ π

−π

dθ
2π

�

i
�

eiθ t + e−iθ t†
�

+ 0
�µ
= |t|µ

∫ π

−π

dθ
2π
(0+ 2i cosθ )µ = |2t|µ

cos
�πµ

2

�

B
�

1
2 , 1+µ

2

�

π
. (B.7)

Using the expression, one obtains the following result of the averaging over Lévy distribution:

I(t) = − σµ|t|µ

Nγ−1Γ
�

1+ µ
2

� . (B.8)

As a result, we find

ln

®

exp

�

−i
N
∑

n,m

ψ†
n [HL]nm L̂ψm

�¸

ĤL

≈ −
1

2N

N
∑

n,m

σµ
�

ψ†
n L̂ψmψ

†
m L̂ψn

�µ/2

Nγ−1Γ
�

1+ µ
2

� , (B.9)

Z
�

E,ω, Ĵ
�

=

®

∫

[dψ]exp

�

i
N
∑

n

ψ†
n L̂
�

E +
Ω

2
L̂ − Ĵ K̂ − [HD]nn

�

ψn

−
1

2N

N
∑

n,m

σµ
�

ψ†
n L̂ψmψ

†
m L̂ψn

�µ/2

Nγ−1Γ
�

1+ µ
2

�

!+

ĤD

. (B.10)
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B.2 Functional Hubbard-Stratonovich transformation

An obvious difficulty that still remains is the non-analytic power µ of ψ†
n L̂ψmψ

†
m L̂ψn in the

functional (instead of the quadratic term arising for the Gaussian distribution). This non-
analyticity encodes the fat tails in the distribution which, in their turn, determine the peculiar
physical properties of the system. In order to decouple the supervectors we use the functional
Hubbard-Stratonovich(H-S) transformation [2] instead of the usual one. Generalized expres-
sion looks as follows:

exp

�

1
2N

∫

[dψ]
�

dψ′
�

v (ψ)C
�

ψ,ψ′
�

v
�

ψ′
�

�

(B.11)

=

∫

Dg exp

�

−
N
2

∫

[dψ]
�

dψ′
�

g (ψ)C−1
�

ψ,ψ′
�

g
�

ψ′
�

+

∫

[dψ] g (ψ) v (ψ)

�

,

where C
�

ψ,ψ′
�

, v(ψ) and g(ψ) are some functions or fields.
The advantage of this method and its formal derivation was discussed in detail in our

previous paper [20] dedicated to the calculation of the average DoS by the same method.
Hence, only the final formulae will be provided in the present paper:

exp

�

−
1

2N
·
σµN1−γ

Γ
�µ

2 + 1
�

N
∑

n,m

�

ψ†
n L̂ψmψ

†
m L̂ψn

�µ/2
�

(B.12)

=

∫

Dg exp

�

N
2

∫

[dψ]
�

dψ′
�

g
�

ψ,ψ†
�

¨

σµN1−γ

Γ
�µ

2 + 1
�

�

ψ† L̂ψ′ψ′† L̂ψ
�µ/2

«−1

g
�

ψ′,ψ′†
�

− N g
�

ψ,ψ†
�

�

.

Here we introduced functional integral over functions of superfields g
�

ψ,ψ†
�

. Combining
B.12 with the previous expression (B.10) leads to the equations (16,17) for the partition func-
tion. Factor N in the exponent comes due to N independent integrations over ψn,ψ+n .

C Saddle-point equation and its solution

C.1 Derivation of the saddle-point equation

Equating to zero variation of the action (17) over δg
�

ψ,ψ†
�

, one obtains the following inte-
gral equation for the saddle-point:

gs.p.

�

ψ′†,ψ′
�

=


∫

[dψ]I
�

ψ′† L̂ψ
�

exp
�

iψ†
�

E L̂ − ζ L̂ + Ω2
�

ψ− gs.p.

�

ψ†,ψ
���

ζ

∫

[dψ]exp
�

iψ†
�

E L̂ − ζ L̂ + Ω2
�

ψ− gs.p. (ψ†,ψ)
��

ζ

, (C.1)

where I (x) ≡ σµN1−γ

Γ( µ2+1)
�

x† x
�µ/2

. The structure of Eq.(C.1) indicates that its solution is a func-

tion of two invariants: gs.p.

�

ψ†,ψ
�

= gω
�

ψ†ψ,ψ† L̂ψ
�

. Once we search for the solution in
this form, the integrand of the integral in the denominator is found to be invariant under the
superunitary transformations ψR,A → ÛψR,A, ψ =

�

ψR ψA
�T

, thus it is equal to unity.
Therefore the final form of the saddle-point equation is

gω
�

ψ′†ψ′,ψ′† L̂ψ′
�

=

�∫

[dψ]I
�

ψ′† L̂ψ
�

exp
�

iψ†
�

E L̂ − ζ L̂ +
Ω

2

�

ψ− gω
�

ψ†ψ,ψ† L̂ψ
�

�

�

ζ

.

(C.2)
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At Ω= 0 the saddle-point solution becomes

gω
�

ψ†ψ,ψ† L̂ψ
�

�

�

�

�

ω=0
≡ g0

�

ψ†ψ,ψ† L̂ψ
�

. (C.3)

Actually at Ω= 0 the whole saddle manifold of solutions exist, which can be parametrized by
the rotation matrix T̂ subject to the condition T̂ † L̂ T̂ = L̂:

ψ→ T̂ψ , gT

�

ψ,ψ†
�

≡ g0

�

ψ† T̂ † T̂ψ,ψ† L̂ψ
�

. (C.4)

Saddle-manifold solutions of this kind obey the equation

gT

�

ψ′,ψ′†
�

=

�∫

[dψ]I
�

ψ′† L̂ψ
�

exp
�

iψ† (E − ζ) L̂ψ− gT

�

ψ,ψ†
��

�

ζ

. (C.5)

C.2 Solution for the saddle-point equation

Now our goal is to reduce Eq.(C.2) for a function of supervectors to simpler equations for
functions of commuting variables. We use representation

ψ=
�

SR χR SA χ∗A
�T

, ψ† =
�

S∗R χ∗R S∗A −χA
�

, (C.6)

where SR
S′R
= |SR|
|S′R|

eiθR and SA
S′A
= |SA|
|S′A|

eiθA, and we expand functions of supervectors over

Grassmanian variables χR,χA,χ∗R,χ∗A. It appears to be convenient to look for the solu-
tion as function of the arguments ψ2

R and ψ2
A and thus to introduce a new function

g̃ω
�

ψ2
R,ψ2

A

�

= gω
�

ψ†ψ,ψ† L̂ψ
�

. The expansion of an arbitrary function f
�

ψ2
R,ψ2

A

�

over its
Grassmanian components looks as follows:

f
�

ψ2
R,ψ2

A

�

= f
�

|SR|
2 , |SA|

2�+χ∗RχR
∂ f

�

|SR|
2 , |SA|

2�

∂
�

|SR|
2�

+χ∗AχA
∂ f

�

|SR|
2 , |SA|

2�

∂
�

|SA|
2� +χ∗RχRχ

∗
AχA

∂ 2 f
�

|SR|
2 , |SA|

2�

∂
�

|SR|
2�∂

�

|SA|
2� .

(C.7)

To solve Eq.(C.2) one will need the last term of the above equation only. In these new coordi-
nates, ψ† L̂ψ′ψ′† L̂ψ reads as follows:

ψ† L̂ψ′ψ′† L̂ψ
χR,A=0
= |SR|

2
�

�S′R
�

�

2
+ |SA|

2
�

�S′A
�

�

2 − 2 |SR|
�

�S′R
�

� |SA|
�

�S′A
�

� cos (θR − θA)≥ 0 . (C.8)

After integration over Grassmanian variables, Eq.(C.2) acquires the form

g̃ω
�
�

�S′R
�

�

2
,
�

�S′A
�

�

2�
=
σµN1−γ

Γ
�µ

2 + 1
� ×

∫ ∞

0

d |SA|
2 d |SR|

2

×
∫ 2π

0

dθ
2π

�

|SR|
2
�

�S′R
�

�

2
+ |SA|

2
�

�S′A
�

�

2 − 2 |SR|
�

�S′R
�

� |SA|
�

�S′A
�

� cosθ
�

µ
2

×
∂ 2

∂
�

|SR|
2�∂

�

|SA|
2�
¬

ei(E−ζ+Ω2 )|SR|
2−i(E−ζ−Ω2 )|SA|

2−gω(|SR|
2,|SA|

2)
¶

ζ
.

(C.9)

In principle, g̃0

�
�

�S′R
�

�

2
,
�

�S′A
�

�

2�
follows from g̃ω

�
�

�S′R
�

�

2
,
�

�S′A
�

�

2�
. In this case one should remember

the definition ω+ i0 ≡ Ω, so that if ω = 0 than Ω = i0 to maintain the convergence in (C.2).
For our purpose the function g̃ω

�
�

�S′R
�

�

2
,
�

�S′R
�

�

2�
is needed (it corresponds to gω(ψ+ψ, 0) in

previous notations). From this point one needs to proceed with the analytical continuation
assuming that µ > 2, to obtain reasonable results. It can be calculated in a few steps:
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1. Let us define the following function (in order to shorten few next equations):

F
�

|SR|
2 , |SA|

2�=

∫ 2π

0

dθ
2π

�

|SR|
2 + |SA|

2 − 2 |SR| |SA| cosθ
�

µ
2 , (C.10)

with the property

∂ 2F
�

|SR|
2 , |SA|

2�

∂
�

|SR|
2�∂

�

|SA|
2�

�

�

�

�

|SR|
2=|SA|

2
=

�

|SR|
2�

µ
2−2

p
π

2µ

4
µ

2

Γ
�

µ−1
2

�

Γ
�µ

2 − 1
� , (C.11)

and then integrate Eq.(C.9) by parts:

g̃ω
�
�

�S′R
�

�

2
,
�

�S′R
�

�

2�
=
σµN1−γ

Γ
�µ

2 + 1
�

�
�

�S′R
�

�

2�
µ
2 (C.12)

×

¨

∫ ∞

0

d |SA|
2 ∂ F

∂
�

|SA|
2�

�

�

�

�

|SR|
2=0

¬

e−i(E−ζ−Ω2 )|SA|
2− g̃ω(0,|SA|

2)
¶

ζ

+

∫ ∞

0

d |SR|
2 ∂ F

∂
�

|SR|
2�

�

�

�

�

|SA|
2=0

¬

ei(E−ζ+Ω2 )|SR|
2− g̃ω(|SR|

2,0)
¶

ζ

+

∫ ∞

0

d |SA|
2 d |SR|

2 ∂
2F
�

|SR|
2 , |SA|

2�

∂
�

|SR|
2�∂

�

|SA|
2�

×
¬

ei(E−ζ+Ω2 )|SR|
2−i(E−ζ−Ω2 )|SA|

2− g̃ω(|SR|
2,|SA|

2)
¶

ζ

o

.

2. In case of smooth distribution one can use the following trick
¬

ei(E−ζ)(|SR|
2−|SA|

2)
¶

ζ
≈ 2πPD (E)δ

�

|SR|
2 − |SA|

2� , (C.13)

so that (C.12) reduces to

g̃ω
�
�

�S′R
�

�

2
,
�

�S′R
�

�

2�
=

2µ−1σµN1−γPD (E)

Γ
�µ

2

�

Γ
�µ

2 − 1
� Γ

�

µ− 1
2

�

�
�

�S′R
�

�

2�
µ
2 p
π

×
∫ ∞

0

d
�

|SR|
2� �|SR|

2�
µ
2−2

eiΩ|SR|
2− g̃ω(|SR|

2,|SR|
2) .

(C.14)

Approximation (C.13) is valid if
�

�ψ† L̂ψ
�

�(equivalent to |SR|2−|SA|2) is much larger than
1
W . Using (19) and results from Ref. [20], we estimate typical scale of g(ψ†ψ,ψ† L̂ψ) as

g(0,ψ† L̂ψ)∼
σµ

Nγ−1Wµ/2

�

�ψ† L̂ψ
�

�

µ/2⇒
�

�ψ† L̂ψ
�

�∼
N2 γ−1

µ W
σ2

, (C.15)

which is indeed much larger than 1/W .

3. Using the fact that g̃ω
�
�

�S′R
�

�

2
,
�

�S′R
�

�

2�
=
�
�

�S′R
�

�

2
Γω

�µ/2
, one reduces the integral equation

to the form of transcendental equation

Γω =

�

2µ−1σµN1−γPD (E)

Γ
�µ

2

�

Γ
�µ

2 − 1
� Γ

�

µ− 1
2

�p
π

∫ ∞

0

d x x
µ
2−2eiΩx−[xΓω]

µ/2

�
2
µ

=

�

2µ−1σµN1−γPD (E)

Γ
�µ

2

� Γ

�

µ− 1
2

�p
π

∫ ∞

0

dr L µ
2
(r) [−iΩ+ rΓω]

1− µ2

�
2
µ

,

(C.16)

which solves the saddle point equation (C.2) for anyω. In particular, in the limitω→ 0+
one obtains the result (22).
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D High frequencies asymptotics

In this section we derive (35). We need to use Mellin transform defined as

M f (λ)≡
∫ ∞

0

d x f (x)xλ−1 , (D.1)

with the property
∫ ∞

0

d x f (x)g(x) =

∫ c+i∞

c−i∞

dλ
2πi

M f (λ)Mg(1−λ) . (D.2)

c is the constant determined in a way that both M f (λ) and Mg(1 − λ) exist. Applying
this to the integral in (33) one receives precise expression
∫ ∞

0

dr
Lµ/2(r)

Ω+ 2iΓωr
=

1
2iΓω

∫ c+i∞

c−i∞

dλ
2πi

2
µ
Γ

�

2
µ
(1−λ)

�

Γ (λ)
�

−
iΩ

2Γω

�−λ
, 0< c < 1 . (D.3)

One can approximate it, counting only the nearest poles contribution λ = 1, 1+ µ
2 . That

gives

∫ ∞

0

dr
Lµ/2(r)

Ω+ 2iΓωr
≈

1
2iΓω

�

2Γω
−iΩ
−
µ

2

�

2Γω
−iΩ

�

µ
2+1
�

. (D.4)

After substituting this into (33), (25) one will obtain (35) result. The same trick can be
used to obtain second order approximations of (21) and (34).

E Efetov parameterization

Efetov parametrization for 4-dimensional supermatrix Q̂ is defined as follows:

Q̂ ≡ T̂−1 L̂ T̂ ≡
�

Û1 0
0 Û2

�

Λ̂

�

Û−1
1 0
0 Û−1

2

�

, Λ̂=







λB 0 iµB 0
0 λF 0 µ∗F

iµ∗B 0 −λB 0
0 µF 0 −λF






. (E.1)

Here Û1,2 are Grassmannian matrices defined as

Û1 = exp

�

0 −α∗

α 0

�

=

�

1− α
∗α
2 −α∗

α 1+ α∗α
2

�

, (E.2)

Û2 = exp i

�

0 −β∗

β 0

�

=

�

1+ β∗β
2 −iβ∗

iβ 1− β
∗β
2

�

,

Û−1
1

�

1 0
0 −1

�

Û1 =

�

1− 2α∗α −2α∗

−2α −1− 2α∗α

�

, (E.3)

Û−1
2

�

1 0
0 −1

�

Û2 =

�

1+ 2β∗β −2iβ∗

−2iβ −1+ 2β∗β

�

,

and Λ̂ contains the following commuting variables

λB = coshθB , λF = cosθF , µB = eiφB sinhθB , µF = eiφF sinθF ,

Constraints=











0≤ θB <∞ , 1≤ λB <∞ ,

0≤ θB ≤ π , −1≤ λF ≤ 1 ,

0≤ φB,F ≤ 2π ,

(E.4)
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with the following relations

|µB|
2 = λ2

B − 1 , |µF |
2 = 1−λ2

F . (E.5)

Mesure of integration over Efetov matrix Q̂ reads as

dQ̂ = −
dλBdλF dφBdφF

(λB −λF )
2 dαdα∗dβdβ∗ . (E.6)

F Evaluation of the integral in Eq.(42)

Is this section we provide details on how we obtained the result shown in Eq.(43). The starting
point is the integral in (42). Since the large parameter is κ = πω

∆ ≫ 1, one needs to obtain
an answer up to the first order in 1/κ≪ 1. If ω ∼ Eth then κωΓ ∼ 1 so that it is reasonable to
denote ω

Γ as p
κ , p ∼ 1. With these notations, integral in (42) will take the form

Y = Y1 +
p
κ2

Y2 , (F.1)

Y1 =
1
2

∫ ∞

1

dλB

∫ 1

−1

dλF

�

1+ 2i
p
κ
λB

�2
eiκ(λB−λF )−pλB(λB−λF ) (F.2)

=
1

2iκ

∫ ∞

1

dλB

�

1+ 2i p
κλB

�2

1+ i p
κλB

eiκ(λB−1)(1+i p
κλB)

�

e2iκ(1+i p
κλB) − 1

�

,

Y2 =

∫ ∞

1

dλB

∫ 1

−1

dλF
λB

λB −λF
eiκ(λB−λF )−pλB(λB−λF ) . (F.3)

Y1 is easily integrated over λF , while Y2 requires an additional step. Let us use

dY2

dp
= −

∫ ∞

1

dλB

∫ 1

−1

dλFλ
2
Beiκ(λB−λF )−pλB(λB−λF )

=
i
κ

∫ ∞

1

dλB
λ2

B

1+ i p
κλB

eiκ(λB−1)(1+i p
κλB)

�

e2iκ(1+i p
κλB) − 1

�

.

(F.4)

Both integrals collects on the λB−1< 1
κ scale so that one can make λB = 1+ x

κ substitution
and then expand over 1

κ parameter up to the lowest order. Note that Ω≡ω+ i0 maintains the
convergence.

Y1 ≈
∫ ∞

0

d x
ie(i−0)x

2κ2

�

1− e2iκ−2p
�

=
1

2κ2

�

e2iκ−2p − 1
�

, (F.5)

dY2

dp
=

i
κ2

∫ ∞

0

d xe(i−0)x
�

e2iκ−2p − 1
�

=
1
κ2

�

1− e2iκ−2p
�

⇒ Y2 =
2p+ e2iκ−2p

2κ2
+ const. (F.6)

To restore the constant we apply p = 0. This integral is easily evaluated after its derivation
over κ and later integration. Constant can be found in κ→∞ limit.

Y2

�

�

�

�

p=0
=

i
κ
+

e2iκ − 1
2κ2

⇒ Y2 =
e2iκ−2p − 1+ 2p

2κ2
+

i
κ

. (F.7)

As one can see from (F.1), the lowest order of the second term is much smaller so it is
enough to consider Y ≈ Y1 only. Having restored all the notations, one should obtain the final
expression (43).
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