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Abstract

We construct dynamic models governing two nonreciprocally coupled fields for several
cases with zero, one, and two conservation laws. Starting from two microscopic non-
reciprocally coupled Ising models, and using the mean-field approximation, we obtain
closed-form evolution equations for the spatially resolved magnetization in each lattice.
Only allowing for single spin-flip dynamics, the macroscopic equations in the thermo-
dynamic limit are closely related to the nonreciprocal Allen-Cahn equations, i.e., con-
servation laws are absent. Likewise, only accounting for spin-exchange dynamics within
each lattice, the thermodynamic limit yields equations similar to the nonreciprocal Cahn-
Hilliard model, i.e., with two conservation laws. In the case of spin-exchange dynamics
within and between the two lattices, we obtain two nonreciprocally coupled equations
that add up to one conservation law. For each of these cases, we systematically map
out the linear instabilities that can arise. Moreover, combining the different dynamics
gives a large number of further models. Our results provide a microscopic foundation
for a broad class of nonreciprocal field theories, establishing a direct link between non-
equilibrium statistical mechanics and macroscopic continuum descriptions.
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1 Introduction

During the past decade, there has been growing interest in multicomponent systems with
nonreciprocal interactions. These interactions arise in a wide range of physical and biological
systems, including nonequilibrium fluids [1–6], predator-prey networks [7,8], and many-body
lattice models [9–15]. On the microscopic scale, nonreciprocity reflects an effective violation
of Newton’s third law or a breakdown of detailed balance [16,17]. At the collective level, such
interactions enable mixtures to resist coarsening and instead exhibit nontrivial spatiotemporal
structures, including traveling waves and sustained oscillations [2, 18–25]. A central orga-
nizing principle in these systems is the presence or absence of conservation laws. For two
nonvariationally coupled fields, models can be classified according to whether they contain
zero [14,15,24–29], one [30–32], or two [2,18–21,33–37] conservation laws.

Nonreciprocal interactions between two nonconserved order parameters have been investi-
gated through nonreciprocal extensions of classical pattern-forming models such as the Allen-
Cahn and Swift-Hohenberg equations [24, 25, 29]. By incorporating asymmetric couplings
between scalar fields, nonreciprocity can lead to a variety of dynamic phases, including spiral
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patterns [24] and chaos [29]. Similar phenomena arise in nonreciprocal spin models [26–28],
where mean-field analyses and extensive computer simulations uncover a rich phase behavior
including ordered, disordered, and oscillatory phases. Specifically for the square lattice it was
found through simulations that nonreciprocity can induce the nucleation of droplets, which can
subsequently lead to spiral patterns [26,28]. These results have been further analyzed beyond
mean-field theory [14] and extended to three-dimensional nonreciprocal spin systems [15].
While these studies on nonreciprocal spin models focus on nonconserved dynamics, a micro-
scopic derivation of the underlying spatially extended field theories and a direct link to the
nonreciprocal Allen-Cahn or Swift-Hohenberg equations has remained elusive. Furthermore,
it is natural to ask how nonreciprocal interactions give rise to distinct pattern-forming behav-
ior in conserved systems that are governed by conservation laws and in mixed systems where
conserved and nonconserved quantities interact.

A prominent example of the latter class are particular reaction-diffusion systems that de-
scribe the dynamics of reactive mixtures in the presence of conservation laws [30–32,38–45].
These systems, often inspired by biological contexts such as the Min-protein system, exhibit
robust pattern formation driven by mass redistribution and local reaction kinetics [42,44,45].
When similar nonvariational reaction terms are included in phase-separating systems, clas-
sical coarsening mechanisms such as Ostwald ripening can be suppressed, allowing for the
formation of stable and long-lived droplets [29–32,46].

For systems with two conserved fields, the nonreciprocal Cahn-Hilliard model, originally
introduced as an extension of classical variational Cahn-Hilliard models [47, 48] to describe
traveling-wave instabilities [18–20] and the suppression of coarsening [18], has become a
foundational tool for studying pattern formation in mixtures with nonreciprocal couplings.
This framework supports a wide variety of dynamic states, including traveling bands, oscilla-
tory regimes, localized states, microphase separation, and defect states [2, 18, 20, 21, 37, 49].
In particular, the nonreciprocal Cahn-Hilliard model has also been identified as a universal
higher-order amplitude equation that governs large-scale oscillatory and stationary as well
as small-scale stationary instabilities in systems with two conservation laws [35]. Extensions
incorporating thermal noise have enabled detailed investigations of time-reversal symmetry
breaking and transitions between static and dynamic phases [34, 36]. In addition, numerical
continuation techniques and the identification of a “spurious gradient dynamics structure” [22]
have revealed complex bifurcation behavior and the coexistence of distinct stationary and os-
cillatory states [21,33,37].

While these examples collectively demonstrate the rich dynamical behavior captured by
nonreciprocal field theories, they are typically introduced on phenomenological grounds,
based on symmetry arguments rather than derived from microscopic principles. In this work,
we address this gap by deriving several nonreciprocal field equations directly from an under-
lying microscopic model, namely, the nonreciprocal Ising model, that consists of two nonre-
ciprocally coupled Ising lattices. Our derivation not only yields field equations closely related
to known nonreciprocal Allen-Cahn and Cahn-Hilliard models in the appropriate limits, but
also a nonreciprocal reactive Cahn-Hilliard model with one conservation law, and in exten-
sion a number of other models with combined dynamics. This approach lays the groundwork
for a systematic exploration of nonreciprocal pattern formation in mixtures with and without
conservation laws.

The remainder of this article is structured as follows: In Section 2, we introduce the micro-
scopic nonreciprocal Ising model and discuss how zero, one, and two conservation laws for the
magnetization can be implemented through kinetic rules for single spin-flip and spin-exchange
dynamics. In Section 3, we analyze the case without any conservation law and derive the cor-
responding nonreciprocal Allen-Cahn model in the thermodynamic limit. We also perform a
linear stability analysis, revealing the regimes with unstable stationary and oscillatory modes,
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and show that Turing-type instabilities are absent at the mean-field level. Section 4 considers
the case with two conservation laws, leading to a nonreciprocal Cahn-Hilliard equation. Here,
the linear stability mirrors that of the Allen-Cahn case. In Section 5, we study the intermedi-
ate case, deriving a nonreciprocal reactive Cahn-Hilliard model with one conservation law. In
Section 6, we show how the kinetic rules from the preceding sections can be combined to con-
struct sixteen different continuum equations that correspond to all possible combinations of
the allowed microscopic moves. Finally, Section 7 summarizes our main findings and outlines
future research directions.

2 Nonreciprocal Ising model

2.1 Lattice setup and energetics

We consider a pair of square lattices labeled µ ∈ {a, b}, each with periodic boundary conditions
[see Fig. 1(a)]. Every lattice contains N = Nx Ny spins, where each spin can attain values
σ
µ
i = ±1, and i ∈ {1, . . . , N} indexes its site. Spins interact with their four nearest neighbors

within the same lattice, and with the corresponding spin at the same position in the opposing
lattice. The local interaction energy of spin i on lattice µ is given by [14,26]

Eµi = −σ
µ
i hµi , (1)

where the local field hµi is defined as

hµi ≡ Hµ + Jµ
∑

〈i j〉

σ
µ
j + Kµσ

ν
i , ν ̸= µ , (2)

with 〈i j〉 indicating a sum over the nearest neighbors of spin i, and ν ̸= µ denotes the lattice
opposing lattice µ. Throughout this work, energies are expressed in units of kBT , where kB
is the Boltzmann constant and T denotes the temperature of the external bath in which the
system is immersed. The first term Hµ in Eq. (2) denotes an external magnetic field acting
on lattice µ. The second term describes nearest-neighbor interactions within the same lattice,
with Jµ the intralattice coupling strength. The third term accounts for the interaction of spin
σ
µ
i with the corresponding spin at position i of the opposing lattice ν ̸= µ, where Kµ is the

directed interlattice coupling strength. The directed couplings consist of both reciprocal and
nonreciprocal components, which correspond to the symmetric part, (Ka+Kb)/2, and antisym-
metric part, (Ka−Kb)/2, of the interaction, respectively. The local interaction energy given by
Eq. (1) forms the basis for defining transition rates for single spin-flip and spin-exchange dy-
namics, as elaborated in Sects. (3)-(5). When Ka = Kb (i.e., for purely reciprocal interactions),
a global energy function can be defined as the sum of local energies:

E ≡
1
2

∑

µ

∑

i

Eµi , when Ka = Kb ,

which corresponds to the Ising Hamiltonian for two coupled 2D lattices. For Ka ̸= Kb, no such
global energy exists, as the interlattice interaction contains a nonreciprocal component. The
absence of a global energy is directly related to the absence of a Lyapunov function for the
dynamics when Ka ̸= Kb, which will be shown explicitly in Sects. (3)-(5).

2.2 Kinetics and conservation laws

We examine distinct kinetic rules that govern the dynamics of the nonreciprocal Ising model,
each of which enforces a specific conservation law at the macroscopic level. These dynamics
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Figure 1: (a) Schematic of the lattice configuration and interaction structure in
the nonreciprocal Ising model. Each square lattice has spacing ℓ and dimensions
{Lx = Nxℓ, L y = Nyℓ}. The parameter Jµ denotes the intralattice coupling strength
between nearest-neighbor spins within lattice µ ∈ {a, b}, Kµ represents the directed
inter lattice coupling strength, and Hµ is an external magnetic field applied to lattice
µ. When Ka ̸= Kb, the interactions become nonreciprocal. (b) In single spin-flip
dynamics, individual spins on each lattice flip independently. (c) In intralattice spin-
exchange dynamics, two neighboring spins within the same lattice are exchanged.
(d) In interlattice spin-exchange dynamics, spins at corresponding positions on op-
posing lattices are exchanged. (e) Summary table of the kinetic rules and their asso-
ciated conservation laws for the magnetization Mµ(t) [see Eq. (3)], as discussed in
Sect. 2.2.

are implemented through a master equation that describes the evolution of the probability
distribution P(σ; t) over configurations σ = {σa

1,σb
1 , . . . ,σa

N ,σb
N} at time t. Conservation

laws are defined in terms of the total magnetization per lattice:

Mµ(t)≡
∑

σ

N
∑

i=1

P(σ; t)σµi . (3)

We consider three types of kinetic rules, each conserving a different number of total magneti-
zations, as summarized in Fig. 1(b)-(e) and listed below:

1. Single spin-flip dynamics: In this setting, also known as Glauber dynamics [50], each
spin can flip independently, as illustrated in Fig. 1(b). As a result, in both lattices the
total magnetization is not conserved:

dM a(t)
dt

̸= 0 ,
dM b(t)

dt
̸= 0 .

While the total magnetization can remain constant in each lattice when the system is
initialized in a steady state, this is not generally the case. In Sect. 3, we analyze this
dynamics and show that the resulting partial differential equations for the spatially re-
solved magnetization are, in the thermodynamic limit, closely related to the nonrecip-
rocally coupled Allen-Cahn equations.

2. Intralattice spin-exchange dynamics: Here, two nearest-neighbor spins within the
same lattice can exchange positions, as shown in Fig. 1(c). This type of spin-exchange
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process is commonly referred to as Kawasaki dynamics [51], and conserves the total
magnetization in each lattice individually:

dM a(t)
dt

= 0 ,
dM b(t)

dt
= 0 .

This scenario is analyzed in Sect. 4, and leads, in the thermodynamic limit, to two non-
reciprocally coupled Cahn-Hilliard equations for the spatially resolved magnetization.

3. Intra- and interlattice spin-exchange dynamics: In this case, we allow for nearest-
neighbor spin exchange both within and between the two lattices, as depicted in
Figs. 1(c) and 1(d), respectively. Consequently, the sum of the total magnetizations
is conserved:

d[M a(t) +M b(t)]
dt

= 0 .

This kinetic rule is studied in Sect. 5, and gives rise to a nonreciprocal reactive CH model
with one conservation law.

In the following sections, we derive the macroscopic partial differential equations correspond-
ing to each kinetic regime by performing a mean-field and hydrodynamic coarse-graining anal-
ysis, followed by a linear stability assessment of uniform stationary states. Finally, in Sect. 6
we show how the kinetic rules in Figs. 1(b) to (d) can be combined in all possible ways to
construct sixteen macroscopic kinetic equations with different numbers of conservation laws.

2.3 Significance of the nonreciprocal Ising model and conservation laws

For over a century, the Ising model has been the paradigmatic framework for equilibrium phase
transitions [52]; analogously, the nonreciprocal Ising model can play a foundational role in
understanding nonequilibrium phase transitions. It offers a minimal setting for asymmetric
interactions between two many-body subsystems [28], with applications ranging from Ising
machines [53,54] to collective opinion dynamics [55–57] and asymmetric Hopfield-type neu-
ral networks [58–60]. Less emphasized, however, is how the choice of dynamics (and therefore
the associated conservation laws) shapes the resulting phenomenology.

To highlight one concrete setting, consider collective opinion dynamics where the up/down
spins encode two opinions and the two lattices label two agent types, namely conformists and
contrarians [55–57]. Nonreciprocity naturally emerges in this settings: conformists prefer to
align with their local neighbors, whereas contrarians tend to disalign with their neighbor on
the opposing lattice and align with their neighbors within the same lattice, leading to directed
cross-influences between the two groups. Different kinetic choices then probe different mech-
anisms: (i) single-spin flip dynamics models the changes of opinion under local social pressure;
(ii) intralattice spin exchange dynamics represents spatial relocation of agents while keeping
their type and opinion fixed, capturing segregation of opinions within each group; and (iii)
intra- and interlattice spin-exchange dynamics allows swaps of agents between the two groups,
enabling the segregation of opinions between the conformists and contrarians. In this way,
the nonreciprocal Ising model, combined with appropriate conservation laws, provides a flexi-
ble framework to investigate how asymmetric influence and kinetic constraints govern pattern
formation far from equilibrium.

Although we have illustrated these ideas with opinion dynamics, the same nonreciprocal
Ising model with the appropriate kinetic constraints provides a minimal framework for other
systems featuring asymmetric interactions between two subgroups [28].
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3 Zero conservation laws: Single spin-flip dynamics

We begin by deriving the dynamical equations associated with single spin-flip dynamics, as
illustrated in Fig. 1(b). Since the total magnetization Mµ(t) is not conserved in either lattice,
one could expect that the dynamics for the spatially resolved magnetization will be governed by
a pair of nonreciprocally coupled Allen-Cahn equations [24]. Let P(σ; t) denote the probability
of finding the system in state σ = {σa

1,σb
1 , . . . ,σa

N ,σb
N} at time t. This probability evolves

according to the master equation

dP(σ; t)
dt

=
∑

µ

∑

i

�

w(−σµi )P(σ
µ
i ; t)−w(σµi )P(σ; t)

�

, (4)

where σµi = {σ
a
1,σb

1 , . . . ,−σµi , . . . ,σa
N ,σb

N} is the configuration obtained from configuration
σ by flipping spin σµi . The configuration space comprises 22N possible states. The transition
rate w(σµi ) for flipping a spin σµi → −σ

µ
i is constrained by three conditions: interactions

are limited to nearest neighbors, the rates attain the same functional form for each spin, and
detailed balance holds when Ka = Kb. These assumptions yield the general Glauber-type
rate [15,27,50]:

w(σµi ) =
1

2τ

�

1− tanh

�

∆Eµi
2

��

, (5)

where∆Eµi is the energy change on lattice µ ∈ {a, b} due to flippingσµi , and τ≥ 0 denotes the
characteristic time scale of single spin-flip attempts. Using Eqs. (1) and (2), the local energy
change after a single spin-flip reads

∆Eµi = −2Eµi = 2σµi hµi .

From Eqs. (4) and (5), the time evolution for the expectation value of a single spin,

mµi (t)≡ 〈σ
µ
i 〉(t) =
∑

σ

P(σ; t)σµi , (6)

can be obtained directly and reads [50]

τ
dmµi (t)

dt
= 〈tanh (hµi )〉(t)−mµi (t) . (7)

This equation is not closed, as the first term on the right hand side involves a nonlinear average
over the local field hµi [see Eq. (2)]. To address this closure problem, we apply the mean-field
(MF) approximation introduced in [61], enabling us to express the dynamics in a closed form.

3.1 Mean-field approximation

Within the MF approximation, each spin is assumed to interact with the average local field:

hµi
MF
= 〈hµi 〉

(2)
= Hµ + Jµ
∑

〈i j〉

mµj + Kµmνi , ν ̸= µ . (8)

This assumption would be exact in the case of all-to-all coupling, but for the square lattice con-
sidered here, it serves only as a crude first-order approximation. Inserting this approximation
into Eq. (7) gives

τ
dmµi (t)

dt
= tanh (〈hµi 〉(t))−mµi (t) . (9)
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This intermediate result has also been derived in [14, 26, 28]. Although this equation is now
closed, it is not yet close to the standard Allen-Cahn form. We therefore employ the identity

c tanh (x)− y = − (c − y tanh (x)) tanh (arctanh (y/c)− x) , (10)

for c = 1 together with Eq. (2), to rewrite Eq. (9) as (suppressing the time argument t):

τ
dma

i

dt
= −Ma

i (m
a,mb) tanh

�

∂F(ma,mb)
∂ma

i
−

Ka − Kb

2
mb

i

�

,

τ
dmb

i

dt
= −Mb

i (m
a,mb) tanh

�

∂F(ma,mb)
∂mb

i

+
Ka − Kb

2
ma

i

�

,

(11)

where mµ = {mµ1 , ..., mµN}. Here, F(ma,mb) is the MF free energy defined as

F(ma,mb)≡
1
2

∑

µ

N
∑

i=1

�

Φ(mµi )− 2Hµmµi − Jµmµi
∑

〈i j〉

mµj − Kµma
i mb

i

�

, (12)

with entropy function

Φ(x)≡ (1+ x) ln (1+ x) + (1− x) ln (1− x) . (13)

Finally, the nonnegative mobility Mµ
i ≥ 0 is given by

Mµ
i (m

a,mb)≡ 1−mµi tanh (〈hµi 〉) . (14)

For N spins Eqs. (11) comprise a set of 2N nonlinearly coupled ordinary differential equations
that can be solved numerically upon specifying the initial conditions.

3.2 Lyapunov function for reciprocal interactions

Before taking the thermodynamic limit of Eqs. (11), we verify that the dynamics reduces to
a gradient descent form in the reciprocal case Ka = Kb. In this case, the MF free energy
F(ma,mb) in Eq. (12) serves as a Lyapunov function of Eqs. (11). To see this, we compute its
time derivative and obtain:

τ
dF
dt
= τ
∑

µ

N
∑

i=1

∂F
∂mµi

dmµi
dt

(11)
= −
∑

µ

N
∑

i=1

Mµ
i
∂F
∂mµi

tanh

�

∂F
∂mµi

�

≤ 0 ,

where the inequality follows from the nonnegative mobilities, and from x tanh(x) ≥ 0 for
all x ∈ R. More generally, the hyperbolic tangent function in Eqs. (11) may be replaced by
any odd, monotonically increasing function f (x) satisfying f (−x) = − f (x), such as sinh(x),
without affecting the gradient descent structure. In the reciprocal case Ka = Kb, the resulting
dynamics still ensures that F(ma,mb) decreases monotonically over time.

3.3 Thermodynamic limit

Next, we take the thermodynamic limit of Eqs. (11). Let ℓ be the distance between nearest-
neighbor spins as shown in Fig. 1(a), so that the total length of each side of the square lattice
is given by

{Lx , L y}= {Nxℓ, Nyℓ} .

In the thermodynamic limit, we take {Nx , Ny} →∞ while keeping {Lx , L y} fixed, and there-
fore the lattice spacing goes to ℓ→ 0. In this limit, we can define a smooth continuum field
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mµ(x, t) as a local average over a two-dimensional box Λnℓ(i) of linear size nℓ with n ∈ N,
centered at site i corresponding to spatial location x ∈ R2 expressed in units of the lattice
spacing ℓ. Let |Λnℓ(i)| be the number of spins in the box, then the continuum field is defined
as

mµ(x, t)≡
{Lx ,L y}=const.

lim
{Nx ,Ny}→∞

1
|Λnℓ(i)|

∑

j∈Λnℓ(i)

mµj (t) .

Given that the box size is sufficiently larger than the lattice spacing (i.e., n ≫ 1), the con-
tinuum field mµ(x, t) becomes smooth. Therefore, finite differences can be approximated by
differential operators [61]. To implement this, let êx = (1, 0)T and êy = (0, 1)T denote the
shift vectors in the x and y directions (in units of ℓ), respectively. In the thermodynamic limit
where ℓ→ 0 we can write the shifted fields as a Taylor expansion

mµ(x± êx , t) =
∞
∑

k=0

(±∂x)k

k!
mµ(x, t) = e±∂x mµ(x, t) , (15)

mµ(x± êy , t) =
∞
∑

k=0

(±∂y)k

k!
mµ(x, t) = e±∂y mµ(x, t) , (16)

where the second equality follows from the definition of the Taylor series of the exponential.
Using the Taylor series gives the following gradient expansion for the sum of nearest neighbors

{Lx ,L y}=const.

lim
{Nx ,Ny}→∞

∑

〈i j〉

mµj (t)=2[cosh (∂x)+ cosh (∂y)]m
µ(x, t)=4mµ(x, t)+∇2mµ(x, t)+O(∇4mµ) ,

(17)
where∇2 is the Laplace operator. Applying this limit to the free energy (12) and mobility (14),
we obtain from Eqs. (11) the partial differential equations (omitting the arguments (x, t))

τ
∂ma

∂ t
= −Ma(ma, mb) tanh

�

δF[ma, mb]
δma

−
Ka − Kb

2
mb

�

,

τ
∂mb

∂ t
= −Mb(ma, mb) tanh

�

δF[ma, mb]
δmb

+
Ka − Kb

2
ma

�

.

(18)

The free-energy functional F[ma, mb] is the thermodynamic limit of Eq. (12), which reads

F[ma, mb]≡
1
2

∑

µ

∫

dx
�

Φ(mµ)− 2Hµmµ − Jµ
�

4(mµ)2 +mµ∇2mµ
�

− Kµmamb
�

p.i.
=

1
2

∫

dx

�

f (ma, mb) +
∑

µ

Jµ|∇mµ|2
�

. (19)

From the first to the second line we applied partial integration to the gradient term while
assuming Neumann boundary conditions, and we identified the local MF free-energy density:

f (ma, mb)≡
∑

µ

�

Φ(mµ)− 2Hµmµ − 4Jµ(m
µ)2 − Kµmamb
�

. (20)

The mobilities appearing in Eqs. (18) are the thermodynamic limit of Eq. (14), and read

Mµ(ma, mb)≡ 1−mµ tanh

�

arctanh (mµ)−
�

δF[ma, mb]
δmµ

+ (−1)δµ,a
Ka − Kb

2
mν
��

, ν ̸= µ ,

= 1−mµ tanh
�

Hµ + Jµ
�

4+∇2
�

mµ + Kµmν
�

, ν ̸= µ .

(21)

Note that the first line in Eq. (21) follows directly from Eq. (10) and will be used in the next
section to perform a Taylor expansion.
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3.4 Expansion close to stationary states

To clarify the connection between Eqs. (18) and the nonreciprocal Allen-Cahn equations [24],
note that in the vicinity of stationary states the argument of the hyperbolic tangent is small.
For brevity we define

xµ(ma, mb)≡
δF[ma, mb]
δmµ

+ (−1)δµ,a
Ka − Kb

2
mν , ν ̸= µ ,

such that |xµ| ≪ 1 close to stationarity. The hyperbolic tangent can then be expanded as

tanh(xµ) = xµ +O
�

(xµ)3
�

.

At the same time, we expand the mobility in powers of xµ using the first line in Eq. (21),
resulting in

Mµ(ma, mb) = 1−mµ tanh(arctanh(mµ)− xµ) = 1− (mµ)2 +O(xµ) .

Consequently, close to stationarity, Eqs. (18) reduce (to linear order in xµ) to the nonreciprocal
Allen-Cahn equations with quadratic mobilities [24]:

τ
∂ma

∂ t
≃ −[1− (ma)2]

�

δF[ma, mb]
δma

−
Ka − Kb

2
mb

�

,

τ
∂mb

∂ t
≃ −[1− (mb)2]

�

δF[ma, mb]
δmb

+
Ka − Kb

2
ma

�

.

(22)

In this sense, Eqs. (18) constitute a nonlinear extension of the nonreciprocal Allen-Cahn model.

3.5 Linear stability analysis

To gain insight into the solutions of Eqs. (18), we determine the linear stability of the uniform
steady state. For a nonzero magnetic field Hµ ̸= 0, the uniform steady state mµ(x, t) = mµ0
satisfies the transcendental equation

mµ0 = tanh(Hµ + 4Jµmµ0 + Kµmν0) , ν ̸= µ , (23)

and for Hµ = 0 we consider the trivial steady state mµ0 = 0, and perturb it harmonically, i.e.,

mµ(x, t) = mµ0 +δmµ exp(ik · x+λt) , (24)

where |δmµ| ≪ 1 are the perturbation amplitudes and k = (kx , ky)T denotes the wavevector.
Substituting Eq. (24) into Eqs. (18) and linearizing in δmµ yields the eigenvalue problem

λ

�

δma

δmb

�

= L

�

δma

δmb

�

, with L≡
1
τ

�

J̃a(4− |k|2)− 1 K̃a
K̃b J̃b(4− |k|2)− 1

�

, (25)

where |k|2 = k2
x + k2

y , and we have defined the rescaled coupling constants

J̃µ ≡ Jµ
�

1− (mµ0)
2
�

, K̃µ ≡ Kµ
�

1− (mµ0)
2
�

. (26)

Since mµ0 ∈ [−1,1], a nonzero value of mµ0 modifies only the magnitude — and not the sign —
of the effective couplings J̃µ and K̃µ relative to the original couplings Jµ and Kµ. From Eq. (25)
we find that the eigenvalues of L, denoted as λ±, satisfy the dispersion relation

λ± =
1

2τ

h

(J̃a + J̃b)(4− |k|2)− 2±
q

4K̃aK̃b + (J̃a − J̃b)2(4− |k|2)2
i

, (27)
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Figure 2: (a)-(f) Dispersion relations for single spin-flip dynamics [see Eq. (27)].
Panels (a)-(c) correspond to the net ferromagnetic regime with J̃a + J̃b ≥ 1/2, while
panels (d)-(f) correspond to the net antiferromagnetic regime with J̃a + J̃b ≤ 0. In
panels (a) and (d), a band of unstable stationary wavenumbers is observed, charac-
terized by Re(λ±)≥ 0 and Im(λ±) = 0, along with an intermediate band of unstable
oscillatory modes where Re(λ±) ≥ 0 and Im(λ±) > 0. In panels (b) and (e), only
unstable oscillatory modes are present. Panels (c) and (f) feature a critical excep-
tional point at |k| = kR = k±I , where Re(λ±) = Im(λ±) = 0. The auxiliary functions
K1(J̃a, J̃b) and K2(J̃a, J̃b) are defined in Eqs. (28)-(29), and the wavenumbers k±I and
kR are given by Eqs. (31)-(32). Parameter values (J̃a, J̃b, K̃aK̃b) used in each panel are
given by: (a) (0.5, 0.35,−0.07), (b) (0.5,0.35,−0.19), (c) (0.5, 0.35,−0.0311419),
(d) (−0.5,−0.35,−0.14), (e) (−0.3,−0.3,−0.14), (f) (−0.5,−0.35,−0.0311419).

that provides the growth rates Re(λ±) and the frequencies Im(λ±). The corresponding eigen-
vectors (for K̃b ̸= 0) are given by

�

δma
±

δmb
±

�

=

�

[λ± + 1− J̃b(4− |k|2)]/K̃b
1

�

.

From Eq. (24), we see that the perturbation grows exponentially in time if Re(λ) > 0, indi-
cating a linear instability. Moreover, if Im(λ) ̸= 0, the instability also exhibits temporal os-
cillations. In the following sections, we determine the parameter regimes under which these
instabilities occur.

3.5.1 Hopf instability

A Hopf instability (also referred to as a type-IIIO or large-scale oscillatory instability [35,62])
occurs when Re(λ±) = 0 and Im(λ±) ̸= 0 at zero wavenumber. To streamline the notation,
we introduce the following auxiliary variables, which help characterize the parameter space
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where Hopf (and other) instabilities arise:

K1(J̃a, J̃b)≡ −4(J̃a − J̃b)
2 , (28)

K2(J̃a, J̃b)≡ −(J̃a − J̃b)
2/(J̃a + J̃b)

2 . (29)

The onset of a Hopf instability occurs at |k|= 0 when

J̃a + J̃b = 1/2 , K̃aK̃b <K1(J̃a, J̃b) .

Since K1(J̃a, J̃b) ≤ 0, a Hopf instability can only occur when K̃a and K̃b have opposite signs.
This, in turn, implies that the original couplings Ka and Kb must also have opposite signs,
which subsequently implies that the nonreciprocal interactions dominate the reciprocal ones.
The perturbation modes given by Eq. (24) contain unstable oscillatory modes when Re(λ±)≥ 0
and Im(λ±) ̸= 0, and unstable stationary modes when Re(λ±) ≥ 0 and Im(λ±) = 0. Figure 2
shows typical dispersion relations with unstable oscillatory (and stationary modes) which arise
in the following two regimes:

• In the net ferromagnetic regime we are above onset of the (large-scale) Hopf instability
in the parameter range

J̃a + J̃b ≥ 1/2 , K̃aK̃b <K2(J̃a, J̃b) .

Because the eigenvalues attain the following asymptotic form for |k| →∞

lim
|k|→∞

λ± ≃
1

2τ

(

−(J̃a + J̃b ∓ |J̃a − J̃b|) |k|2 , J̃a ̸= J̃b ,

−(J̃a + J̃b)|k|2 ± 2
q

K̃aK̃b , J̃a = J̃b ,
(30)

we find that small-scale instabilities are suppressed in this regime, i.e.,

lim
|k|→∞

Re(λ±)→−∞ ,

as visible from Fig. 2(a)-(c).

In Fig. 2(a) we observe the presence of both unstable stationary and oscillatory modes,
which can only occur when J̃a ̸= J̃b

1 and the interlattice couplings obey

K1(J̃a, J̃b)≤ K̃aK̃b <K2(J̃a, J̃b) .

In this parameter regime the band of unstable oscillatory modes appear in the range

k−I ≤ |k| ≤ kR ,

and the band of unstable stationary modes appear in the range

0≤ |k| ≤ k−I ,

where the lower and upper bounds are defined as (k+I is relevant for the next section)

k±I ≡ [4± 2(−K̃aK̃b)
1/2/|J̃a − J̃b|]1/2 = 2[1± (K̃aK̃b/K1)

1/2]1/2 , (31)

kR ≡ [4− 2/(J̃a + J̃b)]
1/2 = 2[1− sgn(J̃a + J̃b)(K2/K1)

1/2]1/2 , (32)

1Note that J̃a ̸= J̃b does not imply Ja ̸= Jb, e.g., for Ja = Jb, Ka = Kb, Ha ̸= Hb, we have J̃a ̸= J̃b [see Eq. (26)].
Similarly, J̃a = J̃b does not imply Ja = Jb.
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where sgn(x) = 1 for x > 0 and sgn(x) = −1 for x < 0. The interpretation of these
wavenumbers is as follows: At |k|= k−I , Im(λ±) switches from zero to a nonzero value,
while at |k|= kR the real part vanishes, i.e., Re(λ±) = 0.

In Fig. 2(b) we observe that the unstable stationary modes have vanished and only the
unstable oscillatory modes remain. This occurs when

K̃aK̃b <K1(J̃a, J̃b) .

For these parameter values k−I becomes imaginary and therefore only the band of unsta-
ble oscillatory modes remains.

In both cases, the most unstable oscillatory mode — corresponding to the maximum of
Re(λ±) with Im(λ±) ̸= 0 — always occurs at the lower edge of the unstable oscillatory
band as seen from Fig. 2(a)-(b).

• In the net antiferromagnetic regime we have a band of unstable oscillatory modes at large
wave numbers that occur in the parameter range

J̃a + J̃b ≤ 0 , K̃aK̃b <K2(J̃a, J̃b) ,

as shown in Fig. 2(d)-(e). In this regime, the asymptotic scaling for |k| →∞ given by
Eq. (30) shows that the smallest-scale modes are most unstable, i.e.,

lim
|k|→∞

Re(λ±)→∞ .

The physical origin of this behavior, that one might call an “ultraviolett catastrophe”
lies in the antiferromagnetic coupling on the original Ising lattice. It favors alternating
spin orientations and thus promotes pattern formation on the scale of individual spins
and results in the divergence of the eigenvalues for |k| → ∞. To “renormalize” this
divergence, it is necessary to include higher-order terms in the gradient expansion given
by Eq. (17). The resulting higher-order model is shown in Sect. 7 and is closely related to
the nonreciprocally coupled Swift-Hohenberg equations (not shown) studied in [25,29]
and features small-scale stationary and oscillatory instabilities.

The band of unstable oscillatory modes emerges in the range

kR ≤ |k|< k+I , (33)

as shown in Fig. 2(d)-(e). When J̃a ̸= J̃b, the upper wavenumber k+I remains finite, and
all unstable modes with |k| ≥ k+I are stationary as shown in Fig. 2(d). In contrast, when
J̃a = J̃b, the upper wavenumber diverges, i.e., k+I →∞ since K1 = 0, and all unstable
modes are oscillatory, as illustrated in Fig. 2(e).

In both cases, the most unstable oscillatory mode — corresponding to the maximum of
Re(λ±) with Im(λ±) ̸= 0 — always occurs at the upper edge of the unstable oscillatory
band as seen from Fig. 2(d)-(e).

3.5.2 Critical exceptional point

Based on the previous analysis, we can identify a special point in parameter space where
the wavenumbers kR and k±I coincide, i.e., two real eigenvalues coalesce at zero and become
complex conjugate pairs. At this codimension-two point, which is very similar to a Takens-
Bodganov point2 [63,64] and nowadays sometimes called a “critical exceptional point” [1,2,

2Verification that the degeneracy is exactly a Takens-Bogdanov point requires an analysis of the nonlinear bi-
furcation structure.
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Figure 3: (a)-(c) Dispersion relations for single spin-flip dynamics [see Eq. (27)] in
the presence of unstable stationary modes. Panels (b) and (c) show the emergence
of a high-wavenumber band of unstable modes, resulting from effective antiferro-
magnetic coupling. This instability drives microphase separation, characterized by
pattern formation on microscopic length scales. Parameter values (J̃a, J̃b, K̃aK̃b) used
in each panel are given by: (a) (0.5,0.1, 0), (b) (0.5,−0.1, 0), (c) (−0.5,−0.1,0).

65], the linear stability matrix L becomes nondiagonalizable and its Jordan normal form reads

L=

�

0 1
0 0

�

.

Such critical points are associated with qualitative changes in the bifurcation behavior. Here,
they are of codimension two as they require two constraints set by the parameter value

K̃aK̃b =K2(J̃a, J̃b) ,

and at specific wavenumber

|k|= kR =

�

k−I , J̃a + J̃b ≥ 1/2 ,

k+I , J̃a + J̃b ≤ 0 ,

in the case that J̃a ̸= J̃b. At this critical point, which is shown in Fig. 2(c) and (f), the dis-
persion relation undergoes a transition from regimes dominated by either purely stationary or
oscillatory unstable modes to a case where the band of unstable wavenumbers contains both
stationary and oscillatory modes.

3.5.3 Allen-Cahn instability

An Allen-Cahn instability (also referred to as a type-IIIS or large-scale stationary instability
[35, 62]) arises when Re(λ+) = 0 and Im(λ±) = 0 at |k| = 0. Since Re(λ+) ≥ Re(λ−), the
onset of instability is determined by λ+, and occurs when

J̃a + J̃b = 1/2 , K̃aK̃b ≥K1(J̃a, J̃b) .

Above onset, unstable stationary wavenumbers with Re(λ+) ≥ 0 and Im(λ±) = 0 can emerge
within one or both of the wavenumber intervals

0≤ |k| ≤ k+1 and |k| ≥ k+2 ,

where the wavenumbers k+1 and k+2 are given by

k+i =

�

4−
1
2

�

1

J̃a
+

1

J̃b

�

− (−1)i
Æ

(J̃a − J̃b)2 + 4J̃a J̃bK̃aK̃b

2J̃a J̃b

�1/2

, i = 1, 2 . (34)
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In Fig. 3, we present three types of dispersion relations that exhibit stationary instabilities.
Notably, in panels (b) and (c), we observe a large-wavenumber band for |k| ≥ k+2 , charac-
terized by Re(λ+) ≥ 0 and Im(λ+) = 0. This large-wavenumber band corresponds to very
small-scale patterns and drives a process commonly referred to as microphase separation [66].
The physical mechanism underlying this behavior stems from the antiferromagnetic coupling,
which promotes antiferromagnetic order and thereby induces patterns at the scale of individ-
ual spins. As in previous cases, the divergence of λ+ as |k| →∞ is unphysical and relates to
an ultraviolet catastrophe. To resolve this apparent inconsistency, it is essential to incorporate
higher-order terms in the gradient expansion defined in Eq. (17), which is shown in Sect. 7.

3.5.4 Absence of a Turing instability

It is well established that the nonreciprocal Allen-Cahn and Cahn-Hilliard models exhibit a
Turing instability [33, 37] (i.e., a type-IS or small-scale stationary instability [35, 62]), corre-
sponding to the onset of a positive growth rate at a nonzero wavenumber |k|> 0. In contrast,
we demonstrate here that the nonreciprocal Ising model, as introduced in Sect. 2, does not
support such an instability on the MF level. If a Turing instability were present, unstable sta-
tionary modes would exist within a finite wavenumber band:

0<min(k+1 , k+2 )≤ |k| ≤max(k+1 , k+2 ) ,

where the eigenvalue λ+ vanishes at k+1,2. At the onset of a Turing instability, these two critical
wavenumbers coincide, i.e., k+1 = k+2 > 0 [33], i.e., a local maximum of λ+ touches zero. From
Eq. (34), the condition k+1 = k+2 > 0 leads to the following inequality:

8−
1

J̃a
−

1

J̃b
> 0 , (35)

along with the constraint,
(J̃a − J̃b)

2 + 4J̃a J̃bK̃aK̃b = 0 . (36)

To evaluate whether λ+ can attain a local maximum at k+1,2, we compute its first derivative
and insert Eq. (36):

∂ λ+
∂ |k|

�

�

�

�

k+1,2

=
1
τ

�

−(J̃a + J̃b)[16− 2/J̃a − 2/J̃b]
1/2 , J̃a J̃b ≥ 0 ,

0 , J̃a J̃b < 0 .

Thus, for k+1,2 to be a stationary point of λ+, we require either J̃a J̃b < 0, or the condition
8J̃a J̃b− J̃a− J̃b = 0 along with J̃a J̃b ≥ 0. However, the latter is incompatible with the inequal-
ity in Eq. (35), leaving only J̃a J̃b < 0 as a valid possibility. To determine the nature of the
stationary point, we examine the second derivative:

∂ 2λ+
∂ |k|2

�

�

�

�

k+1,2

=
1
τ

�

J̃a J̃b

J̃a − J̃b

�2 �

8−
1

J̃a
−

1

J̃b

�

> 0 ,

where the inequality follows directly from Eq. (35). This shows that k+1,2 always corresponds
to a local minimum of λ+, rather than a maximum. And since a local minimum cannot belong
to a Turing instability, we conclude that the nonreciprocal Ising model cannot exhibit a Turing
instability.

The reason that the nonreciprocal Allen-Cahn model (or any general two-field reaction-
diffusion system) can exhibit a Turing instability, whereas the considered nonreciprocal Ising
model on the MF level cannot, lies in the structure of their respective free-energy functionals.
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In the Ising model, the gradient energy coefficient is given by Jµ, and is therefore intrinsically
tied to the form of the local free-energy density. Consequently, the ratio of gradient energy
coefficients—an essential parameter for the emergence of a Turing instability [37]—cannot
be tuned independently without simultaneously altering the underlying thermodynamic land-
scape. In contrast, for general reaction-diffusion systems, the gradient energy (or diffusion)
coefficients are independent transport parameters. To make this constraint explicit, we revisit
the previous analysis using a modified free-energy functional in which the gradient energy
coefficients are replaced by independent parameters κµ:

F[ma, mb] =
1
2

∫

dx

�

f (ma, mb) +
∑

µ

κµ|∇mµ|2
�

,

where f (ma, mb) is defined by Eq. (20). We define the rescaled gradient energy coefficients
as

κ̃µ ≡ κµ
�

1− (mµ0)
2
�

.

Within this framework, the onset of a Turing instability occurs when the nonreciprocal cou-
plings satisfy

K̃aK̃b = −κ̃aκ̃b

�

1− 4J̃b

κ̃b
−

1− 4J̃a

κ̃a

�2

,

provided that the following conditions are met:

0< κ̃a < κ̃b , κ̃a(1− 4J̃b)≥ κ̃b(1− 4J̃a) , κ̃a(1− 4J̃b)≥ −κ̃b(1− 4J̃a) .

These requirements cannot be satisfied simultaneously when κ̃a = J̃a and κ̃b = J̃b. In that
case, the second condition would imply

J̃a(1− 4J̃b)≥ J̃b(1− 4J̃a) ⇒ J̃a ≥ J̃b ,

which contradicts the first condition 0 < J̃a < J̃b. This incompatibility confirms that the nec-
essary conditions for a Turing instability cannot be met within the nonreciprocal Ising model
on the MF level. It remains an open question whether other approximation techniques such as
the pair approximation [14] can lead to a Turing instability in the nonreciprocal Ising model.

If higher-order gradient terms were incorporated into the MF free-energy functional (19)
to regularize the unphysical antiferromagnetic divergence of the eigenvalues (see Fig. 2(d)-
(f) and Fig. 3(b)-(c)), the resulting nonreciprocal Swift-Hohenberg-type models system would
inherently support small-scale stationary (Turing) and oscillatory (wave) instabilities, cf. [25,
29].

4 Two conservation laws: Intralattice exchange dynamics

Next, we focus on intralattice spin-exchange dynamics, as illustrated in Fig. 1(c). Since the
total magnetization in each of the two lattices is conserved, we expect that the dynamics of
the spatially resolved magnetization mµ(x, t) is governed by a pair of nonreciprocally coupled
Cahn-Hilliard equations [2, 18–21, 33–35]. The probability P(σ; t) of finding the system in
configuration σ at time t evolves according to the master equation

dP(σ; t)
dt

=
∑

µ

∑

i

∑

〈i j〉

�

w(σµj ,σµi )P(σ
µµ
i j ; t)−w(σµi ,σµj )P(σ; t)

�

, (37)
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where σµµi j denotes the state obtained from σ by interchanging the spins σµi and σµj on lattice

µ. Note that these states only differ when σµi = −σ
µ
j . Given a fixed initial number of up spins

in each lattice, denoted by {N a
+, N b

+}, the dynamics is confined to a configuration space of size
� N

N a
+

�� N
N b
+

�

. As in the case of single spin-flip dynamics, we choose the transition rates to satisfy
detailed balance when Ka = Kb, yielding [51]

w(σµi ,σµj ) =
1

2τ

�

1− tanh

�

∆Eµµi j

2

��

, (38)

where ∆Eµµi j is the change in energy after exchanging neighboring spins σµi and σµj on lattice
µ ∈ {a, b}, and τ ≥ 0 is the characteristic time scale for an intralattice exchange of spins. To
compute ∆Eµµi j , we model the exchange as a sequence of two independent spin flips, where
each spin flips in its own local field [67]. This approach ensures that the underlying free energy
remains consistent with that of single spin-flip dynamics.3 The local energy Eµi of spin σµi is
given by Eq. (1), and the corresponding energy change is

∆Eµµi j = (σ
µ
i −σ

µ
j )(h

µ
i − hµj ) ,

where hµi is defined in Eq. (2). Note that upon interchanging two spins the new local fields of
the two spins also interchange, i.e., hµi ↔ hµj , and therefore ∆Eµµji = −∆Eµµi j . Using Eqs. (37)
and (38), we derive the exact dynamical equation for the expectation value of a single spin
defined in Eq. (6) [61,67]:

τ
dmµi (t)

dt
=

1
2

∑

〈i j〉

�

〈(1−σµi σ
µ
j ) tanh(hµi − hµj )〉(t) +mµj (t)−mµi (t)

�

. (39)

As in Eq. (7), this equation is not closed due to the expectation value of tanh(hµi − hµj ). To
resolve this, we apply the MF approximation. Note that in [68] a similar MF approximation has
been applied to study spin-exchange dynamics on a single lattice with exponential (Arrhenius-
type) transition rates.

4.1 Mean-field approximation

We now evaluate Eq. (39) at the MF level, for which we use the approximation given by Eq. (8),
along with a factorization of the pair correlations:

〈σµi σ
µ
j 〉

MF
= 〈σµi 〉〈σ

µ
j 〉 . (40)

Inserting these approximations into Eq. (39) we obtain

τ
dmµi (t)

dt
=

1
2

∑

〈i j〉

�

(1−mµi (t)m
µ
j (t)) tanh (〈hµi 〉(t)− 〈h

µ
j 〉(t))−mµi (t) +mµj (t)

�

. (41)

Using the identity given by Eq. (10) together with the following relation for Φ(x) given by
Eq. (13)

2arctanh

�

mµi −mµj
1−mµi mµj

�

=
dΦ(mµi )

dmµi
−

dΦ(mµj )

dmµj
,

3Alternatively, one could take into account that the neighboring spin involved in the exchange does not con-
tribute to the energy change during the flip. This leads to a slightly different expression for the underlying free
energy w.r.t. single spin-flip dynamics as shown in [61]. However, this does not result in any qualitative changes.
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we can rewrite Eq. (41) as (omitting the t-dependence)

τ
dma

i

dt
=

1
2

∑

〈i j〉

Maa
i j (m

a,mb) tanh

�

∂F(ma,mb)
∂ma

j
−
∂F(ma,mb)
∂ma

i
+

Ka−Kb

2
(mb

i −mb
j )

�

,

τ
dmb

i

dt
=

1
2

∑

〈i j〉

Mbb
i j (m

a,mb) tanh

�

∂F(ma,mb)
∂mb

j

−
∂F(ma,mb)
∂mb

i

−
Ka−Kb

2
(ma

i −ma
j )

�

,

(42)

where the MF free energyF(ma,mb) is defined in Eq. (12), and the mobilityMµµ
i j (m

a,mb)≥ 0
is given by

Mµµ
i j (m

a,mb)≡ 1−mµi mµj − (m
µ
i −mµj ) tanh (〈hµi 〉 − 〈h

µ
j 〉) .

Note that the external magnetic field Hµ cancels out in Eqs. (42), which is expected since
the total magnetization in each lattice is conserved. For N spins Eqs. (42) comprise a set of
2N nonlinearly coupled ordinary differential equations which can be solved numerically given
suitable initial conditions.

4.2 Lyapunov function for reciprocal interactions

When Ka = Kb (i.e., for reciprocal interactions) the MF free energy is a Lyapunov function of
Eqs. (42). To see this, we compute the time-derivative of F(ma,mb), which is given by

τ
dF
dt
= τ
∑

µ

N
∑

i=1

∂F
∂mµi

dmµi
dt

(42)
= −

1
2

∑

µ

N
∑

i=1

∑

〈i j〉

Mµµ
i j
∂F
∂mµi

tanh

�

∂F
∂mµi
−
∂F
∂mµj

�

= −
1
4

∑

µ

N
∑

i=1

∑

〈i j〉

Mµµ
i j

�

∂F
∂mµi
−
∂F
∂mµj

�

tanh

�

∂F
∂mµi
−
∂F
∂mµj

�

≤ 0 ,

(43)

where in the last line we used the symmetry Mµµ
i j =Mµµ

ji and the last inequality follows from
the nonnegative mobilities and the fact that x tanh (x)≥ 0 for x ∈ R.

4.3 Thermodynamic limit

Next, we determine the thermodynamic limit of Eqs. (42) (see Sect. 3.3). Taking {Nx , Ny}→∞
while keeping the system size {Lx , L y} = const., the lattice spacing vanishes, ℓ → 0. By
expanding in powers of ℓ up to second order and employing the gradient expansion (17),
Eqs. (42) yield the following partial differential equations (omitting the arguments (x, t)):

τ
∂ma

∂ t
=∇ ·
�

1− (ma)2

2
∇
�

δF[ma, mb]
δma

−
Ka − Kb

2
mb

��

,

τ
∂mb

∂ t
=∇ ·
�

1− (mb)2

2
∇
�

δF[ma, mb]
δmb

+
Ka − Kb

2
ma

��

,

(44)

where the MF free-energy functional F[ma, mb] is given by Eq. (19). Equations (44) are
immediately recognizable as nonreciprocally coupled Cahn-Hilliard equations [2, 19–21, 33–
35], with quadratic mobilities [1− (mµ)2]/2, which agrees with the mobilities in Eq. (22) up
to a constant factor of 1/2 which will be further explained in the next section. This derivation
thus provides a microscopic foundation for the nonreciprocal Cahn-Hilliard model. It is worth
noting that, unlike in Eq. (42), the hyperbolic tangent function tanh(·) no longer explicitly
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Figure 4: (a)-(f) Dispersion relations for intralattice spin-exchange dynamics
[see Eq. (45)]. Panels (a)-(c) correspond to the net ferromagnetic regime with
J̃a + J̃b ≥ 1/2, and panels (d)-(f) correspond to the net antiferromagnetic regime
with J̃a + J̃b ≤ 0. In panels (a) and (d), a band of unstable stationary wavenumbers
is observed, characterized by Re(λ̃±) ≥ 0 and Im(λ̃±) = 0, along with an intermedi-
ate band of unstable oscillatory wavenumbers where Re(λ̃±)≥ 0 and Im(λ̃±)> 0. In
panels (b) and (e), only unstable oscillatory wavenumbers are present. Panels (c) and
(f) feature a critical exceptional point at |k|= kR = k±I , where Re(λ̃±) = Im(λ̃±) = 0.
The auxiliary functions K1(J̃a, J̃b) and K2(J̃a, J̃b) are defined in Eqs. (28)-(29), and
the wavenumbers k±I and kR are given by Eqs. (31)-(32). Parameter values used in
each panel are chosen as in Fig. 2.

appears in Eq. (44). This absence results from a Taylor expansion of the hyperbolic tangent in
Eq. (42) to the smallest order in ℓ, which is warranted by the outer sum, and yields a linear
approximation of the arguments. In contrast, for single spin-flip dynamics [see Eq. (18)],
such an expansion is not required because there is no outer sum, and the hyperbolic tangent
therefore remains present.

4.4 Linear stability analysis

To gain insight into the behavior of Eqs. (44), we perform a linear stability analysis of the
uniform steady state mµ0 ∈ [−1, 1], which can be chosen freely and sets the total magnetization
in each lattice. We consider small perturbations of the form given by Eq. (24), where we
use λ̃ to distinguish the growth rate of exchange dynamics from those of the single spin-flip
dynamics, λ. Expanding Eqs. (44) to linear order in δmµ yields the eigenvalue problem

λ̃

�

δma

δmb

�

=
|k|2

2
L

�

δma

δmb

�

,
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where the matrix L is again given by Eq. (25). Hence, the growth rate λ̃ is related to the
eigenvalues of L [given by Eq. (27)] via

λ̃=
|k|2

2
λ , (45)

and are shown in Fig. 4 for parameter values similar to those used in Fig. 2. The multiplicative
factor of |k|2 in Eq. (45) arises from the presence of the conservation laws, which forces the
existence of a neutral mode (λ̃ = 0) at |k| = 0. The prefactor 1/2 reflects that spin exchange
arises from two independent single spin-flip events, effectively doubling the timescale com-
pared to single spin-flip dynamics. Since λ and λ̃ are directly related via Eq. (45), Re(λ) = 0
and/or Im(λ) = 0 directly imply Re(λ̃) = 0 and/or Im(λ̃) = 0. Consequently, the onset of the
Hopf and Allen-Cahn instabilities identified in Sect. 3.5 for λ also apply to λ̃ [33]. In partic-
ular, the bands of unstable wavenumbers for oscillatory and stationary modes are identical to
the ones in Sect. 3.5 as even the wavenumber values k±I and kR given by Eqs. (31)-(32) remain
the same. In the presence of two conservation laws, the Hopf instability becomes a conserved
Hopf instability, while the Allen-Cahn instability becomes a Cahn-Hilliard instability.

Upon incorporating higher-order gradient terms into the free-energy functional (19) (see
Sect. 7) to regularize the antiferromagnetic divergence of the eigenvalues in the limit |k| →∞
(see Fig. 4(d)-(f)), one obtains two nonreciprocally coupled phase-field crystal (PFC) equations
[69] (also called nonreciprocally coupled conserved Swift-Hohenberg equations). The disper-
sion relations with the ultraviolet catastrophe would then become physically well-defined cases
of conserved-Turing or conserved-wave instabilities [35].

4.5 Spurious gradient dynamics

A notable feature of Eqs. (44) is that they can be recast into the form of a spurious gradient
dynamics [37] (omitting the arguments (x, t)):

τ
∂ma

∂ t
=∇ ·
�

1− (ma)2

2(1+ Kb/Ka)
∇
�

δF̂[ma, mb]
δma

��

,

τ
∂mb

∂ t
=∇ ·
�

1− (mb)2

2(1+ Ka/Kb)
∇
�

δF̂[ma, mb]
δmb

��

,

(46)

where the spurious free-energy functional is given by

F̂[ma, mb] =
1
2

∫

dx

�

f̂ (ma, mb) +
∑

µ

�

1+ Kν/Kµ
�

Jµ |∇mµ|2
�

, ν ̸= µ ,

and the local spurious free-energy density reads

f̂ (ma, mb)≡
∑

µ

�

1+ Kν/Kµ
� �

Φ(mµ)− 2Hµmµ − 4Jµ(m
µ)2
�

− (Ka + Kb)m
amb , ν ̸= µ .

The dynamics in Eqs. (46) are referred to as spurious gradient dynamics because the effec-
tive mobilities become negative when Ka/Kb < −1, which is in violation of basic thermody-
namic principles [37]. It is important to note that the apparent divergence of the mobilities
at Ka = −Kb is canceled by the vanishing prefactor in front of the local spurious free-energy
density, as can be seen by applying l’Hôpital’s rule.4 Therefore, the dynamics remain well-
defined at this parameter value. In future work, we will exploit the spurious gradient form to
systematically chart the phase diagram of the nonreciprocal Ising model with two conserved
order parameters, cf. [37].

4Let x ≡ Ka/Kb. Then,

lim
x→−1

1+ x
1+ x

= 1 , and lim
x→−1

1+ 1/x
1+ x

= −1 .

Hence, no diverging terms remain at Ka = −Kb in Eqs. (46).
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5 One conservation law: Inter- and intralattice exchange dynam-
ics

Finally, we consider the scenario in which nearest-neighbor spins can interchange both within
and between the two lattices, as illustrated in Figs. 1(c) and 1(d), respectively. Under this
dynamics, the sum of the total magnetizations, M a(t) + M b(t), is conserved. Consequently,
we anticipate that the system is governed by a nonreciprocal reactive CH model with one
conservation law. The probability P(σ; t) for the system to be in spin configuration σ at time
t evolves according to the master equation

dP(σ; t)
dt

=
∑

i

�

w(σb
i ,σa

i )P(σ
ab
ii ; t)−w(σa

i ,σb
i )P(σ; t)
�

+
∑

µ

∑

i

∑

〈i j〉

�

w(σµj ,σµi )P(σ
µµ
i j ; t)−w(σµi ,σµj )P(σ; t)

�

,
(47)

where σab
ii denotes the spin configuration obtained from σ by exchanging spins σa

i and σb
i .

The first term on the right-hand side (r.h.s.) of Eq. (47) accounts for interlattice spin ex-
change, while the second term corresponds to intralattice exchange, as previously introduced
in Eq. (37). For a fixed initial number of up spins in each lattice, denoted by {N a

+, N b
+}, the dy-

namics is confined to a configuration space of size
� 2N

N a
++N b

+

�

. The transition rate for intralattice
exchange is given by Eq. (38), whereas the interlattice exchange is governed by

w(σa
i ,σb

i ) =
1

2τ

�

1− tanh

�

∆Eab
ii

2

��

, (48)

where∆Eab
ii denotes the change in local energy resulting from the exchange ofσa

i andσb
i , and

τ > 0 is an intrinsic timescale for the interlattice exchange of spins. For convenience we keep
the intrinsic timescales for inter- and intralattice exchange equal. As in Sect. 4, we assume
that interlattice spin exchange proceeds via two independent single spin-flip events. Under
this assumption, the energy change becomes

∆Eab
ii = (σ

a
i −σ

b
i )(h

a
i − hb

i ) ,

which vanishes when σa
i = σ

b
i , since an exchange of equivalent spins does not change the

state. In the case of perfect nonreciprocity with Ka = −Kb = K we find that the nonreciprocal
coupling vanishes in (48) since

ha
i − hb

i = Ha −Hb + Ja

∑

〈i j〉

σa
j − Jb

∑

〈i j〉

σb
j + K(σb

i +σ
a
i ) ,

where the last term vanishes because the transition only takes place when σa
i = −σ

b
i . Com-

bining Eqs. (47) and (48), one can derive the following exact expression for the time evolution
of the single-spin expectation value (omitting the t-dependence):

τ
dmµi
dt
=

1
2

�

〈(1−σµi σ
ν
i ) tanh(hµi − hνi )〉 −mµi +mνi

�

+
1
2

∑

〈i j〉

�

〈(1−σµi σ
µ
j ) tanh(hµi − hµj )〉 −mµi +mµj

�

, ν ̸= µ .
(49)

Our next task is to close Eq. (49) using the MF approximation.

21

https://scipost.org
https://scipost.org/SciPostPhys.20.1.005


SciPost Phys. 20, 005 (2026)

5.1 Mean-field approximation

We now evaluate Eq. (49) at the MF level, using the approximations given by Eqs. (8) and
(40), followed by the application of the exact identity in Eq. (10). This yields the following
expression (omitting the t-dependence):

τ
dma

i

dt
=

1
2

∑

〈i j〉

Maa
i j tanh

�

∂F(ma,mb)
∂ma

j
−
∂F(ma,mb)
∂ma

i
+

Ka−Kb

2
(mb

i −mb
j )

�

+Ri(m
a,mb) ,

τ
dmb

i

dt
=

1
2

∑

〈i j〉

Mbb
i j tanh

�

∂F(ma,mb)
∂mb

j

−
∂F(ma,mb)
∂mb

i

−
Ka−Kb

2
(ma

i −ma
j )

�

−Ri(m
a,mb) ,

(50)

where the first term on the r.h.s. originates from intralattice spin exchange and corresponds to
the r.h.s. of Eqs. (42). The free energy F(ma,mb)with mµ = {mµ1 , ..., mµN} is given by Eq. (12),
and the second term, Ri(ma,mb), arises from interlattice exchange and reads

Ri(m
a,mb)≡

Mab
ii (m

a,mb)

2
tanh

�

∂F(ma,mb)
∂mb

i

−
∂F(ma,mb)
∂ma

i
+

Ka−Kb

2
(ma

i +mb
i )

�

,

(51)
with the interlattice exchange mobility given by

Mab
ii (m

a,mb)≡ 1−ma
i mb

i − (m
a
i −mb

i ) tanh (〈ha
i 〉 − 〈h

b
i 〉) , (52)

which is nonnegative. An interesting consequence of Eq. (51) is the breakdown of the afore-
mentioned property related to the nonreciprocal coupling: for perfectly nonreciprocal cou-
plings, Eq. (51) is not independent of the nonreciprocal coupling strength, whereas Eq. (49)
is. This discrepancy arises due to the MF approximation, which replaces discrete spin vari-
ables σµi with continuous fields mµi . As a result, the approximation neglects the fact that cer-
tain discrete-spin interactions may identically vanish in specific configurations. Finally, note
that the external magnetic field Hµ, as expected, only enters in the reaction term Ri(ma,mb).
For a system of N spins, Eqs. (50) form a set of 2N nonlinearly coupled ordinary differential
equations, which can be solved numerically given appropriate initial conditions.

5.2 Lyapunov function for reciprocal interactions

When Ka = Kb (i.e., in the case of reciprocal interactions), the MF free energy F(ma,mb)
serves as a Lyapunov function for the dynamics governed by Eqs. (50). To demonstrate this,
we evaluate the time derivative of F(ma,mb). For the intralattice exchange contribution, we
can directly apply the bound given by Eq. (43), yielding the result

τ
dF
dt
= τ
∑

µ

N
∑

i=1

∂F
∂mµi

dmµi
dt

(50)
≤

(43)
−

1
2

N
∑

i=1

Mab
ii

�

∂F
∂ma

i
−
∂F
∂mb

i

�

tanh

�

∂F
∂ma

i
−
∂F
∂mb

i

�

≤ 0 ,

where the final inequality follows from the identity x tanh(x) ≥ 0 for all x ∈ R and the non-
negative mobilities.

5.3 Thermodynamic limit

Next, we determine the thermodynamic limit of Eqs. (50) (see Sect. 3.3). Taking {Nx , Ny}→∞
while keeping the system size {Lx , L y} = const., the lattice spacing vanishes, ℓ → 0. By
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expanding in powers of ℓ up to second order and employing the gradient expansion (17),
Eqs. (50) yield the following partial differential equations (omitting (x, t) arguments):

τ
∂ma

∂ t
=∇ ·
�

1− (ma)2

2
∇
�

δF[ma, mb]
δma

−
Ka − Kb

2
mb

��

+R(ma, mb) ,

τ
∂mb

∂ t
=∇ ·
�

1− (mb)2

2
∇
�

δF[ma, mb]
δmb

+
Ka − Kb

2
ma

��

−R(ma, mb) ,
(53)

where F[ma, mb] is given by Eq. (19), the reaction term R(ma, mb) is the thermodynamic
limit of Eq. (51)

R(ma, mb)≡
Mab(ma, mb)

2
tanh

�

δF[ma, mb]
δmb

−
δF[ma, mb]
δma

+
Ka − Kb

2
(ma +mb)

�

, (54)

and the mobility term Mab(ma, mb) is the thermodynamic limit of Eq. (52)

Mab(ma, mb)≡ 1−mamb − (ma−mb) tanh

�

∑

µ

(−1)δµ,b
�

Hµ + Jµ[4+∇2]mµ + Kµmν
�

�

,

(55)
with δµ,b = 1 when µ = b and 0 otherwise. From the structure of Eqs. (53), we identify
two nonreciprocally coupled Cahn-Hilliard equations with an additional nonreciprocal reactive
coupling that conserves the sum of both total magnetizations, similar to other Cahn-Hilliard
models with overall mass-conserving reaction terms [30–32] that themselves extend reaction-
diffusion models with mass conservation [38, 40, 45, 70] towards nonideal systems [71]. A
notable feature of the reaction term (54) is its strong dependence on the underlying free energy
functional F[ma, mb], analogous to the role of the underlying free energy in the kinetics of
mass action reactions for nonideal systems [71] and reactive thin-film hydrodynamics [72,73].

5.4 Expansion close to stationary states

Similar to our analysis in Sec. 3.4, we note that near stationary states the argument of the
hyperbolic tangent in Eq. (54) is small. Let us recall xµ is given by

xµ(ma, mb)≡
δF[ma, mb]
δmµ

+ (−1)δµ,a
Ka − Kb

2
mν , ν ̸= µ , (56)

so that |xµ| ≪ 1 close to stationarity. The hyperbolic tangent in Eq. (54) can then be expanded
as

tanh(x b − xa) = x b − xa +O((x b − xa)3) .

At the same time, we expand the mobility in Eq. (55) in powers of xµ. Using Eq. (10), Eq. (55)
can be rewritten (and thus expanded) as

Mab(ma, mb) = 1−mamb − (ma−mb) tanh
�

arctanh
�

[ma−mb]/[1−mamb]
�

+ x b − xa
�

=
[1− (ma)2][1− (mb)2]

1−mamb
+O(x b − xa) .

Consequently, sufficiently close to stationarity, Eqs. (18) reduce (to linear order in xµ) to the
following (much simpler) equations:

τ
∂ma

∂ t
≃∇ ·
�

1−(ma)2

2
∇xa(ma, mb)

�

+
[1−(ma)2][1−(mb)2]

1−mamb

�

x b(ma, mb)−xa(ma, mb)
�

,

τ
∂mb

∂ t
≃∇ ·
�

1−(mb)2

2
∇x b(ma, mb)

�

−
[1−(ma)2][1−(mb)2]

1−mamb

�

x b(ma, mb)−xa(ma, mb)
�

,

where xµ(ma, mb) is given by Eq. (56).
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5.5 Linear stability analysis

To understand the conditions under which small perturbations grow or decay, we analyze the
linear stability of uniform solutions to Eqs. (53). We consider small perturbations of the form
given in Eq. (24), where the uniform state mµ0 must lie on the reactive nullcline [44], defined
by

R(ma
0, mb

0) = 0 . (57)

In Fig. 5(a)-(c) we show the reactive nullcline (see the red line) for various parameter values.
One specific symmetric state on the reactive nullcline is given by

ma
0 = mb

0 =
Ha −Hb

4(Jb − Ja) + Kb − Ka
, for

�

�

�

�

Ha −Hb

4(Jb − Ja) + Kb − Ka

�

�

�

�

≤ 1 , (58)

which is shown as the red point in Fig. 5(a)-(c). Quite surprisingly, this symmetric solution
even exists in the presence of two unequal magnetic field Ha ̸= Hb.

We denote the growth rate of the perturbations by λ̂ to distinguish them from those in
Eqs. (27) and (45). Linearizing Eqs. (53) around the uniform steady state leads to the eigen-
value problem:

λ̂

�

δma

δmb

�

=

�

|k|2

2
L+R

��

δma

δmb

�

,

where L is defined in Eq. (25), and R is the Jacobian of the reaction term, evaluated at the
uniform steady state:

R≡
[1−(mb

0)
2][1−(ma

0)
2]

τ(1−ma
0mb

0)

�

Ja(4−|k|2)−Kb−[1−(ma
0)

2]−1 −Jb(4−|k|2)+Ka+[1−(mb
0)

2]−1

−Ja(4−|k|2)+Kb+[1−(ma
0)

2]−1 Jb(4−|k|2)−Ka−[1−(mb
0)

2]−1

�

.

In contrast to the analysis in Sect. 4.4, the growth λ̂ is not related in a simple way to the
eigenvalues of L, as the reaction term introduces a nontrivial contribution. We therefore focus
on the special case of the symmetric uniform steady state given by Eq. (58), leaving a more
detailed and systematic analysis of the complete spectral properties for future work. In this
case, the eigenvalues of |k|2L/2+R (and therefore the growth rate) read

λ̂± =
1

2τ

�

Θ±
p

Θ2 − 4∆
�

, (59)

where the trace Θ and determinant ∆ are given by

Θ ≡ (2+ |k|2)[(J̃a + J̃b)(4− |k|2)− 2]/2− K̃a − K̃b ,

∆≡ |k|2(4+ |k|2)
�

[1− J̃a(4− |k|2)][1− J̃b(4− |k|2)]− K̃aK̃b

�

.

Observe that ∆ = 0 at |k| = 0, and hence one eigenvalue λ̂± always vanishes at this point,
as expected in the presence of one conservation law. The second eigenvalue can be posi-
tive or negative at |k| = 0 depending on the sign of Θ, with associated eigenvector (−1, 1)T

corresponding to uniform magnetization redistribution between the two lattices. The second
eigenvalue also vanishes at |k|= 0 when Θ = 0, which occurs precisely for

λ̂±
�

�

k=0 = 0 =⇒ 4(J̃a + J̃b) = 2+ K̃a + K̃b . (60)

The corresponding eigenvectors are degenerate, taking the form (−1, 1)T. Equation (60) thus
defines the critical threshold between stable and unstable magnetization redistribution modes:
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Figure 5: (a)-(c) Reactive nullcline (red line) defined by Eq. (57), shown for parame-
ter values (a) below, (b) at, and (c) above the critical threshold given in Eq. (60). The
background illustrates the flow field for the uniform state, as governed by Eqs. (53).
In panel (c), the black dashed segment marks parts of the nullcline that are linearly
unstable with respect to uniform perturbations. The red point indicates the symmet-
ric uniform steady state [Eq. (58)] which is unstable in (c) and therefore evolves
along the line ma

0+mb
0 = const. towards one of two stable states (black points). (d)-

(f) Dispersion relations corresponding to linear perturbations around the symmetric
uniform steady state, as given by Eq. (59). In panel (d), both eigenvalues are non-
positive at |k| = 0, indicating linear stability. In panel (e), both eigenvalues vanish
at |k| = 0, marking the onset of a uniform instability. In panel (f), one eigenvalue is
positive at |k| = 0, indicating a stationary instability of a band of harmonic modes.
The zero crossing at k+1 is given by Eq. (34). Parameter values (Ja, Jb, Ka, Kb, Ha, Hb)
used in each panel are given by: (a, d) (0.2, 0.25,0.05,−0.05, 0.04,−0.04), (b, e)
(0.2, 0.323031,0.05,−0.05,0.04,−0.04), (c, f) (0.2,0.4, 0.05,−0.05,0.04,−0.04).
Note that at (0.2, 0.279083,0.05,−0.05, 0.04,−0.04) a Cahn-Hilliard instability oc-
curs, which is not explicitly shown.

• For 4(J̃a+J̃b)> 2+K̃a+K̃b we have λ+ > 0 and λ− = 0 at |k|= 0, indicating that uniform
magnetization redistribution amplifies over time. This is shown in Fig. 5(c), where the
symmetric uniform state (red point) is unstable at |k| = 0 and therefore evolves along
the line ma

0 +mb
0 = const. towards one of two stables uniform states indicated with the

black points.

• In contrast, for 4(J̃a+ J̃b)< 2+ K̃a+ K̃b we have λ+ = 0 and λ− < 0 at |k|= 0, implying
that uniform magnetization redistribution decays. This is shown in Fig. 5(a), where the
symmetric uniform state (red point) is stable. In Fig. 5(b) the symmetric uniform state
is at the onset of becoming unstable w.r.t. a uniform mode, as the slope of the reactive
nullcline at this point is tangent to the constant magnetization line ma

0 +mb
0 = const.

Note that before the onset of the uniform instability there is the onset of a Cahn-Hilliard in-
stability where a range of wavenumbers 0< k < k+1 with k+1 given Eq. (34) becomes unstable.
The onset of the Cahn-Hilliard instability occurs for

d2λ̂+
dk2

�

�

�

�

�

k=0

= 0 =⇒ (4J̃a − 1)(4J̃b − 1) = K̃aK̃b .
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Table 1: The sixteen distinct nonreciprocal partial differential equation models ob-
tained when combining the dynamical processes in the two lattices in all possible
ways. Only options are included where both lattices contribute to the dynamics.
Note that additional dynamics obtained when interchanging the two lattices are not
included. The terms Aµ, Bµ, and R are explained in the main text.

# single flip intra-ex. inter-ex. dynamical equations conservation
a b a b τ∂t m

a = τ∂t m
b = laws

1 x x - - - Aa Ab 0
2 x x - - x Aa +R Ab −R 0
3 x - - x x Aa +R Bb −R 0
4 x - - - x Aa +R −R 0
5 x x x x - Aa +Ba Ab +Bb 0
6 x x x - - Aa +Ba Ab 0
7 x x x x x Aa +Ba +R Ab +Bb −R 0
8 x x x - x Aa +Ba +R Ab −R 0
9 x - x x x Aa +Ba +R Bb −R 0
10 x - x - x Aa +Ba +R −R 0
11 - - x x x Ba +R Bb −R 1
12 - - x - x Ba +R −R 1
13 x - - x - Aa Bb 1
14 x - x x - Aa +Ba Bb 1
15 - - - - x R −R 1
16 - - x x - Ba Bb 2

Figure 5(d)-(f) illustrates the dispersion relations corresponding to values below, at, and above
the critical threshold of the uniform instability mode. Note that the parameter threshold de-
fined by Eq. (60) admits a clear physical interpretation. Consider the uniform symmetric
steady state where ma

0 = mb
0 = 0 for Ha = Hb, corresponding to an equal number of up and

down spins in each lattice. For positive coupling strengths Ja and Jb, it becomes energeti-
cally favorable to segregate the spin states, placing all up spins in one lattice and all down
spins in the other. When the values of Ja and Jb exceed the critical threshold in Eq. (60), this
energetic preference outweighs the entropic cost of demixing. As a result, the system under-
goes a spontaneous redistribution of magnetization between the lattices, and each spin species
preferentially occupies a distinct lattice. This mechanism underlies the instability of uniform
magnetization redistribution and drives the emergence of demixed configurations between the
two lattices.

6 Further combinations of spin-flip and spin-exchange dynamics

In the previous section, we have shown that the combination of inter- and intralattice exchange
dynamics leads to additive contributions in the resulting partial differential equations. This
additivity holds for all three types of kinetic updates of the considered Ising lattices, namely,
single spin-flip dynamics and both intra- and interlattice spin-exchange dynamics. Conse-
quently, partial differential equations corresponding to any combination of allowed kinetic
updates among the two lattices can be constructed by appropriately combining the following
three fundamental terms:
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• Single spin-flip dynamics:

τ
∂mµ

∂ t
=Aµ ≡ −Mµ(ma, mb) tanh

�

δF[ma, mb]
δmµ

− (−1)δµ,b
Ka − Kb

2
mν
�

,

with ν ̸= µ, the free energy F[ma, mb] given by Eq. (19), and mobility Mµ(ma, mb)
by Eq. (21). We abbreviate the r.h.s. as Aµ as the linearization of its reciprocal limit
corresponds to a noiseless model-A in the Hohenberg-Halperin classification [74].

• Intralattice spin-exchange dynamics:

τ
∂mµ

∂ t
= Bµ ≡∇ ·
�

1− (mµ)2

2
∇
�

δF[ma, mb]
δmµ

− (−1)δµ,b
Ka − Kb

2
mν
��

,

again with ν ̸= µ, and the free energy given by Eq. (19). We abbreviate the r.h.s. as Bµ
as its reciprocal limit corresponds to a noiseless model-B in the classification of [74].

• Interlattice spin-exchange dynamics:

τ
∂mµ

∂ t
= (−1)δµ,bR

= (−1)δµ,b
Mab(ma, mb)

2
tanh

�

δF[ma, mb]
δmb

−
δF[ma, mb]
δma

+
Ka−Kb

2
(ma+mb)

�

,

where the mobility Mab(ma, mb) is given by Eq. (55).

As an illustrative example, consider a scenario where single spin-flip dynamics is applied on
lattice a, while intralattice spin-exchange governs the dynamics on lattice b. For such dynam-
ics, the total magnetization in lattice b is conserved, resulting in one conservation law (see also
row 13 in Table 1). Combining both rules, we obtain a nonreciprocally coupled Allen-Cahn
and Cahn-Hilliard system which takes the form (omitting the arguments (x, t))

τ
∂ma

∂ t
=Aa = −Ma(ma, mb) tanh

�

δF[ma, mb]
δma

−
Ka − Kb

2
mb

�

,

τ
∂mb

∂ t
= Bb =∇ ·
�

1− (mb)2

2
∇
�

δF[ma, mb]
δmb

+
Ka − Kb

2
ma

��

.

The reciprocal limit of this coupled model corresponds to a noiseless model-C in the classifica-
tion of [74,75] as introduced in [76] to investigate systems with first-order phase transitions
in the presence of a single conservation law. These models have also found application in un-
derstanding phase separation and gelation phenomena in cellular fluids [77,78], and various
studies have focused on developing numerical methods to solve such systems [79,80].

Going beyond this specific example, one can construct sixteen distinct nonreciprocal partial
differential equation models that incorporate any combination of dynamical processes in the
two lattices. A corresponding list is given in Table 1. Of these sixteen models for two (non-
reciprocally) coupled fields, ten describe cases without a conservation law, five possess one
conservation law, and one — the nonreciprocal Cahn-Hilliard model — has two conservation
laws.

7 Conclusion

In this work, we have derived the macroscopic continuum field equations for two nonrecipro-
cally coupled scalar fields with zero, one, and two conservation laws, directly from a micro-
scopic model consisting of two nonreciprocally coupled Ising lattices with different types of
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single spin-flip and spin-exchange dynamics within and between the lattices. By employing
the mean-field approximation and taking the thermodynamic limit, we obtained three dis-
tinct classes of dynamical equations: the nonreciprocal Allen-Cahn model (18) (zero conser-
vation laws) for single spin-flip dynamics, the nonreciprocal Cahn-Hilliard model (44) (two
conservation laws) for intralattice spin-exchange dynamics, and the nonreciprocal reactive
Cahn-Hilliard model (53) with one conservation law for inter- and intralattice spin-exchange
dynamics. In each case, we have analyzed the associated linear instabilities of uniform steady
states and have provided conditions under which (conserved) Hopf, Allen-Cahn, and Cahn-
Hilliard-type instabilities arise, offering a direct connection between microscopic interactions
and emergent spatiotemporal patterns. Finally, we have demonstrated how the three types of
kinetic updates, namely single spin-flip dynamics, intralattice spin-exchange, and interlattice
spin-exchange, can be combined to construct sixteen distinct nonreciprocal partial differential
equation models that incorporate zero (ten models), one (five models) or two (one model)
conservation laws.

In the limit of purely reciprocal interactions, we have shown that the underlying free energy
functionalF[ma, mb] defined in Eq. (19) serves as a Lyapunov functional for the corresponding
dynamical equations. In the case of net antiferromagnetic interactions (Ja + Jb < 0), this free
energy leads to a divergence of the linear growth rate in the ultraviolet limit (|k| → ∞), as
observed in, for example, Fig. 2(d)-(f). To regularize this divergence and ensure linear stability
at short wavelengths, we can include higher-order gradient terms in the expansion of the free
energy functional Eq. (17). This yields an extended expression for the free energy:

F[ma, mb] =
1
2

∫

dx

�

f (ma, mb) +
1

12

∑

µ

Jµ
�

12|∇mµ|2 − (∂ 2
x mµ)2 − (∂ 2

y mµ)2
�

�

,

where we assume Neumann boundary conditions and f (ma, mb) is given by Eq. (20). Upon
inserting this free energy into Eqs. (18) and (44), the resulting continuum equations corre-
spond to two nonreciprocally coupled SH-type equations [25,29] in the case of single spin-flip
dynamics, or two nonreciprocally coupled PFC models [69] for intralattice spin exchange.

Building on these results, a natural next step is to move beyond linear stability analy-
sis and investigate the fully nonlinear dynamics of each model. In particular, it would be
highly valuable to study the emergence and coexistence of distinct dynamical phases—such
as steady states, oscillations, and traveling patterns—using numerical bifurcation and con-
tinuation methods as applied in [18, 22, 33, 37, 69]. These techniques can uncover complex
phase coexistence and bifurcations that lie beyond the reach of linear stability. Furthermore,
for the nonreciprocal reactive CH model with one conservation law, it would also be insight-
ful to apply the framework of local equilibria in diffusively coupled compartments introduced
in [44, 45], offering a coarse-grained perspective on pattern formation in strongly nonlinear
regimes. Moreover, going beyond the MF approximation using the pair approximation tech-
nique [81] enables the derivation of partial differential equations that capture the dynamics
of the square-lattice nonreciprocal Ising model more accurately.

While the MF approximation relies on Eqs. (8) and (40), which are not strictly valid for the
square lattice and in fact are known to induce an erroneous phase transition in 1D [81], the pair
approximation explicitly accounts for correlation effects and does not approximate the local
field. Although this more accurate method has been successfully applied to describe the overall
average magnetization and nearest neighbor spin correlations under single spin-flip dynamics
in the nonreciprocal Ising model [14], it has yet to be extended to such systems with spatially
varying fields. Such an extension could shed light on whether a Turing-type instability is truly
absent in the nonreciprocal Ising model, since it is known that the gradient-energy coefficient
in the pair approximation is a nonlinear function of the coupling strength [82].
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Finally, while the role of time-reversal symmetry breaking and dynamic phase transitions
has been explored in the extended nonreciprocal Cahn-Hilliard model with thermal noise [34],
it remains an open question how such symmetry breaking relates to dynamical phase transi-
tions in models with zero and one conservation law.

Beyond its immediate theoretical contributions, this study provides a foundational frame-
work for systematically deriving nonreciprocal field theories from the underlying microscopic
dynamics. Although previous work has addressed the case of single-species systems with non-
reciprocal interactions [3, 83] and the dynamics of three-species active-passive particle mix-
tures [84], a comprehensive derivation of the partial differential equations for all possible
combinations of conservation laws for two nonreciprocally coupled fields has remained elu-
sive. Our results fill this gap, offering a microscopic route to macroscopic equations that is
essential for understanding pattern formation in a wide range of nonequilibrium systems. In
particular, our findings complement the exact hydrodynamic analysis presented in [84], which
investigates nonreciprocal effective interactions in active-passive mixtures, by extending the
scope to the two-field case and deriving the partial differential equations for all possible con-
servation laws. Furthermore, our framework permits asymmetric transition rates in position
space, yielding an active spin model. In the absence of additional nonreciprocal couplings, a
mean-field description of this class of models was developed in [85], which demonstrated the
existence of a flocking transition. It would therefore be valuable to investigate how introducing
a second lattice together with nonreciprocal couplings alters this behavior.
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