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Abstract

Anomalies of global symmetries provide important information on the quantum dynam-
ics. We show the dynamical constraints can be organized into three classes: genuine
anomalies, fractional topological responses, and integer responses that can be realized
in symmetry-protected topological (SPT) phases. Coset symmetry can be present in many
physical systems including quantum spin liquids, and the coset symmetry can be a non-
invertible symmetry. We introduce twists in coset symmetries, which modify the fusion
rules and the generalized Frobenius-Schur indicators. We call such coset symmetries
twisted coset symmetries, and they are labeled by the quadruple (G, K ,ωD+1,αD) in D
spacetime dimensions where G is a group and K ⊂ G is a discrete subgroup, ωD+1 is
a (D + 1)-cocycle for group G, and αD is a D-cochain for group K . We present several
examples with twisted coset symmetries using lattice models and field theory, includ-
ing both gapped and gapless systems (such as gapless symmetry-protected topological
phases). We investigate the anomalies of general twisted coset symmetry, which presents
obstructions to realizing the coset symmetry in (gapped) symmetry-protected topologi-
cal phases. We show that finite coset symmetry G/K becomes anomalous when G cannot
be expressed as the bicrossed product G = H \ K , and such anomalous coset symmetry
leads to symmetry-enforced gaplessness in generic spacetime dimensions. We illustrate
examples of anomalous coset symmetries with A5/Z2 symmetry, with realizations in lat-
tice models.
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1 Introduction

In recent years, generalization of group-like symmetry, called non-invertible symmetry, has
developed rapidly with many examples in field theories and lattice models (see e.g. [1–9]).
Non-invertible symmetry differs from group-like symmetry in that their fusion rules are not
invertible. The symmetry operators do not obey a group multiplication law, and instead form
a (higher) fusion category. While there is much progress in understanding mathematical prop-
erties of non-invertible symmetries, they often require sophisticated techniques in fusion cat-
egories which could be challenging to compute explicitly.
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In this work, we will study a class of non-invertible symmetries that come from cosets G/K
where K ⊂ G is a not necessarily a normal subgroup of G, continuing our previous work [10]
(see also [11–19] for other examples). The coset symmetry is obtained by starting with a
theory with G symmetry and gauging the possibly non-normal subgroup K . The coset symme-
try defects can be constructed using a sandwich construction. Inside the sandwich we have
a G symmetry defect (possibly with ’t Hooft anomalies), and outside the sandwich the non-
anomalous K subgroup is gauged, possibly with a topological action, and the interfaces on the
two sides correspond to Dirichlet boundary condition of K gauge field (see Fig. 1).

In this definition, the coset symmetry comes with Rep(K) symmetry– they are generated by
the Wilson lines of K gauge field. In particular, this means that although as cosets G′/K ′ = G/K
for K ′ = K/N , G′ = G/N for common normal subgroup N of G, K , the symmetries G/K and
G′/K ′ differ by Rep(K), Rep(K ′). The groups G, K depend on the spectrum of topological lines
– if they form Rep(K), then the pair of groups are (G, K ⊂ G) such that G/K equals the coset.
In particular, if the coset is a group and there are no topological line operators, then K = 1. If
the coset is not a group, then there must be topological line operators. We will discuss more in
the detail the definition of coset symmetry in Sec. 2. In particular, we will introduce suitable
twists for the symmetry that can change the fusion rules and higher group structures of the
coset symmetry.

Coset symmetry has been found in many physical contexts. For example, Alice electro-
dynamics at low energy has O(2)/ZC2 symmetry, where the charge conjugation symmetry is
gauged. In such systems, there are Alice rings– the twist defects for charge conjugation sym-
metry, which have been observed in experiments such as the recent spin-1 Bose Einstein con-
densation for 23Na or radioactive 87Rb atoms [20,21]. Thus the presence of dynamical Alice
rings (i.e. twisted defects for charge conjugation), such as those formed from dynamically
unstable monopoles, is an experiment signature for the coset symmetry.

We will investigate the anomalies of coset symmetries. Anomalies are important properties
of global symmetries, and we will focus on the obstruction to symmetry-protected topological
phases, i.e. a gapped systems with a unique, symmetric ground state on any manifold. This
is important in constraining the dynamics: this type of anomaly forces the low energy physics
to be nontrivial. There is another definition of anomaly in the literature as an obstruction to
gauging the symmetry, but we will not discuss it in detail here (see Sec. 5 for more comments).

An important tool for understanding these anomalies is the bulk topological quantum field
theory (TQFT) in one higher dimension that describes the symmetry defects [22–27]. That
is, the theory in D dimension is considered as a bulk TQFT in (D + 1) dimension on a thin
interval, sandwiched by the boundary conditions. The global symmetry of the theory is then
realized by topological operators of the gapped boundary at one end of the interval. If the bulk
TQFT admits another gapped boundary whose nontrivial boundary topological excitations do
not overlap with those of the symmetric gapped boundary, then the bulk TQFT reduces on an
interval with the boundary conditions provides a trivially gapped phase with the symmetry –
this means that there is no first type of anomaly for the symmetry. Such methods have been
used to rule out trivially gapped phase with non-invertible symmetries in [6,7].

In this work, we will explore the constraints on the low energy spectrum of the system
enforced by anomalies of coset symmetries.

1.1 Obstruction to SPT phases: Three situations

Let us elaborate more on the obstruction to SPT phases. For (internal) invertible symmetries,
if we only specify the fusion rules without any further information, then for a given set of
fusion rules there are non-anomalous invertible symmetries that can be realized in SPT phases
and such symmetries also can be gauged. If the non-anomalous symmetries carry nontrivial
topological response, then the invertible symmetries with non-quantized responses cannot be
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realized in SPT phases. For example, if we specify the U(1) fusion rule for 0-form symmetry
and also fractional Hall response in 2+1D, such symmetry cannot be realized in SPT phases
since the response is not integer, though the U(1) symmetry can still be gauged (see e.g.
[28,29]).

When the symmetry is invertible, the obstruction to SPT phases fall into the following
categories:

(1) The symmetry has an ’t Hooft anomaly, described by nontrivial bulk invertible phase
with topological action ωD+1 ̸= dβD (here D is the spacetime dimension). In particular,
the bulk topological term cannot be continuously tuned to zero without breaking the
relevant symmetries. Such symmetry cannot be realized in SPT phases.

(2) The symmetry does not have an ’t Hooft anomaly, but it has a fractional topological
response. This is described by ωD+1 = dβD ̸= 0. βD is the fractional response. The bulk
term is a boundary term that is not well-defined by itself without a bulk. Such symmetry
cannot be realized in SPT phases.

(3) The symmetry does not have ’t Hooft anomalies, and also does not have fractional topo-
logical response ωD+1 = 0. Such symmetry can be realized in SPT phases.

We remark that the fractional/integer response can be captured by the symmetry defect
configurations where the defects intersect. For example, if the defect locally can be described
by a current, the response is given by the parity-odd contact terms in the current operator
product expansion: in 2+1D, it is given by [10,30]

Jµ(x)Jν(0) ⊃
iσH

2π
εµνλ∂

λδ3(x) , (1)

where σH is the response coefficient and this is in Euclidean spacetime.
While the bulk TQFT understanding of the situations (1),(3) is reasonably well, the bulk

TQFT understanding of situation (2) is less useful. In particular, a fractional response can be
any exact bulk cocycle, i.e., group cochain in D dimension.

When the symmetry is non-invertible, in general it is an open problem how to distinguish
the categories, in particular separate the categories (1),(3) from (2). Here, we will focus on the
simpler situation of coset symmetry, where the bulk TQFT is still a gauge theory for ordinary
groups, and we can still use the above distinctions for the three categories.

1.2 Summary of results

We show a general coset symmetry in D spacetime dimensions can be described by the quadru-
ple (G, K ,ωD+1,αD), where K is a subgroup of G, ωD+1 is a (D+ 1)-cocycle for group G with
U(1) coefficient, such that ωD+1|K = dαD. Such symmetry is obtained by starting with in-
vertible G symmetry with an ’t Hooft anomaly ωD+1, and then gauging a K subgroup sym-
metry with the twist ωD. This is a generalization of the group theoretical fusion category for
D = 2 [31] and the group theoretical fusion 2-category for D = 3 [32] to generic spacetime
dimensions. The twists have the following consequences on the algebraic structure of the coset
symmetry:

• The twist ωD+1 can modify the fusion rules and associator of the symmetry.

• The twist αD can modify the fusion rules of the symmetry.

When both ωD+1 = 0,αD = 0, we call the coset symmetry an untwisted coset symmetry.
In our discussion, we include the fractional topological response as part of the symmetry

data similar to how systems with Lieb-Schultz-Mattis (LSM) anomalies from translation and
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filling constraints, one also has to specify the filling [33,34]. The filling is not a piece of data
from the symmetry algebra and indeed does not appear in the symTFT construction, but can
still impose important constraints on dynamics. It would be interesting to understand how to
incorporate this data into the symTFT description.

We note that the twist ωD+1 constrains the possible coset symmetries: it rules out the
subgroup K , along with the symmetry lines Rep(K), if ωD+1|K is not exact.

In addition, the presentation of the coset symmetry (G, K ,ωD+1,αD) is in general redun-
dant: there can be two presentations describe the same symmetry. For instance, this can arise
when the bulk TQFT admits two (or more) descriptions: one as G gauge theory with topolog-
ical action ωD+1, and another as G′ ̸= G gauge theory with topological action ω′D+1.

In the following, let us summarize the physical consequences of the coset symmetry in
general quantum systems.

Dynamical consequence of anomalies We show that the finite coset symmetry leads to the
following constraint on the dynamics:

• If a finite group G = H \ K is a bicrossed product of K with another group H, then the
coset symmetry in D ≥ 3 can be realized in symmetric gapped phases.1 Furthermore, if
one can find a choice of the subgroup H ⊂ G in the expression G = H \ K such that the
twist ωD+1 restricted to H becomes trivial, i.e., [ωD+1|H] = 0 in HD+1(BH, U(1)), then
the coset symmetry is anomaly free and can be realized in SPT phases.

• If a finite group G cannot be expressed as a bicrossed product G = H \ K with any
subgroup H ⊂ G, then the coset symmetry is anomalous and exhibits symmetry-enforced
gaplessness. That is, if the system preserves both the Rep(K) symmetry of Wilson lines
and the 0-form coset non-invertible symmetry, the system must be gapless.

For instance, the coset non-invertible symmetries A5/Z2, A6/A5 do not admit the expression
in terms of bicrossed product, and these coset symmetry with or without twist give examples of
anomalous coset symmetries that lead to symmetry-enforced gaplessness. Meanwhile, generic
finite coset symmetry can be realized in K gauge theory with spontaneously broken symme-
tries, which is a gapped phase that spontaneously breaks the Rep(K) symmetry of Wilson lines.

We also discuss dynamical scenarios for continuous coset symmetries that cannot be real-
ized by SPT phases. We show that continuous coset symmetry can enforce the dynamics to
be gapless, such as the coset symmetry G = SU(2), K = finite subgroup of SU(2), and ωD+1
given by Witten anomaly in D = 4 spacetime dimensions.

Any system with coset symmetry with anomalies or fractional responses must flow to non-
trivial phases. We present examples of systems with fractional responses of coset symmetry
that originate from nontrivial twists ωD+1,αD. For example, the twisted coset symmetry in
two 2+1D massless Dirac fermions coupled to Z2 gauge field can be enriched with twisted
coset symmetry O(2)/Z2, withω being the theta term corresponds to the O(2)1/2,1/2 fractional
Chern-Simons term and α = 1

2η being half of the minimal Z2 Chern-Simons term, where the
notation is the same as [35]. Such twisted coset symmetry exhibits fractional response and
cannot be realized in SPT phases.

Systems with finite G/K coset symmetries can be realized in lattice models of K gauge
theory. We discuss two examples of lattice gauge theories: K gauge theory with untwisted
coset symmetry (H \K)/K (without anomaly), and Z2 gauge theory with the untwisted coset
symmetry A5/Z2 (with anomaly). We demonstrate that one can condense electric charges of
K gauge theory while preserving (H \ K)/K symmetry, which leads to the Higgs phase of K

1For two subgroups H, K of G, G is the bicrossed product G = H\K if and only if G can be expressed as G = HK
and H ∩ K = {id}. Equivalently, each group element g ∈ G has a unique expression as g = hk with h ∈ H, k ∈ K .
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gauge theory. The Higgs phase is regarded as an SPT phase with (H \ K)/K symmetry, being
consistent with the fact that untwisted (H \ K)/K symmetry is anomaly free. In contrast, we
demonstrate that the coset A5/Z2 symmetry forbids the condensation of electric charges in
Z2 gauge theory; the anomaly of A5/Z2 symmetry gives the obstruction to the Higgs phase
preserving the coset symmetry. In a companion paper [36], we will discuss a larger class of
lattice gauge theory models with coset symmetry realized in Higgs phases, and explore their
responses and anomalies.

The rest of the paper is organized as follows. In section 2, we introduce twisted coset
symmetry that generalizes the coset symmetry labeled by G and subgroup K . In section 3 we
discuss the anomalies of twisted coset symmetries as obstructions to their realization in SPT
phases. In section 4 we construct explicit lattice models with anomalous coset symmetries.
In section 5 we comment on the obstruction to gauging the twisted coset symmetry, as well
as discuss several future directions. There are two appendices: in appendix A we discuss
the anomaly-free condition for coset symmetries with G given by bicrossed product, and in
appendix B we discuss an example of anomalous coset symmetry A6/A5.

2 Twisted coset non-invertible symmetries

2.1 Definition of twisted coset symmetry: (G, K ,ωD+1,αD)

In this section, we will generalize the definition of coset symmetry in [10] for spacetime di-
mension D, into the following data (G, K ,ωD+1,αD) that describes gauging a subgroup K ⊂ G
in invertible G symmetry:

• A group G and a finite subgroup K ⊂ G. They give the coset G/K . For a given coset, the
groups G, K are such that the topological line operators are Rep(K). In particular, the
coset symmetry has a subcategory given by (D − 1)Rep(K) that consists of the Wilson
lines of K and their condensation descendants. When G and K do not have a common
normal subgroup N , the coset symmetry is said to be minimal.

• Topological action for G in D + 1 spacetime dimension, ωD+1 ∈ HD+1(BG, U(1)). This
represents that G symmetry has an ’t Hooft anomaly characterized by bulk SPT response
ωD+1.

• Topological action for K in D spacetime dimension, αD ∈ C D(BK , U(1)). The subgroup
K needs to satisfy

ωD+1|K = dαD , (2)

where ωD+1|K is the pullback under the inclusion K → G.2 Different αD are related
by αD → αD + ηD with ηD ∈ Z D(BK , U(1)). This represents that an anomaly free sub-
group K ⊂ G is gauged with the twist valued in αD, and the twist can be shifted by
D-dimensional SPT response ηD. Such a shift in αD may or may not change the symme-
try category depending on the cohomology class [ηD], as we will see in Sec. 2.1.1.

“Sandwich construction” of twisted coset symmetry A large class of symmetry defects for
the twisted or untwisted coset symmetries can be expressed in terms of a “sandwich construc-
tion” following the description in [10] (see Figure 1).

In the middle there is symmetry defect of the symmetry G, with ’t Hooft anomaly described
by cocycle ωD+1 for spacetime dimension D. On the two sides of the G defect we place con-
densation defects of K gauge theory, given by Dirichlet boundary conditions of the K gauge

2A similar constraint is also imposed in the study of Cheshire strings in twisted gauge theories [37].
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Figure 1: Sandwich construction for twisted coset symmetry defects in D spacetime
dimensions. The middle region has anomalous G symmetry defect, with anomaly
given by cocycle ωD+1. In the outer region on the two sides, the K ⊂ G symmetry is
gauged with topological action αD. The two interfaces separating the region is given
by Dirichlet boundary condition of the K gauge field. The subgroup K is finite to
ensure the defect is topological. The symmetry defect of the K gauge theory has the
form of the sandwich Ũg =DRep(K) × Ug ×DRep(K).

fields. Outside the sandwich the K symmetry is gauged with topological action αD. That is,
the symmetry defect is expressed by the combination

Ũg =DRep(K) × Ug ×DRep(K) , (3)

where Ug is the g ∈ G symmetry defect of the anomalous G symmetry, and DRep(K) is a half-
gauging defect of K with the topological action αD. The half-gauging defects have the fusion
rule

DRep(K) ×DRep(K) =
∑

k∈K

Uk , DRep(K) × Uk =DRep(K) , Uk ×DRep(K) =DRep(K) . (4)

It follows that the sandwich defects obey the fusion rule

Ũg × Ũh =
∑

k∈K

Ũgkhk−1 . (5)

One can see that the twistωD+1 does not modify the fusion rules of the above symmetry defects
{Ũg}, since the twists do not affect the fusion rules of Ug operators (only the associators of
these operators are modified by the phase factors).

This topological defect Ũg becomes simple if and only if K ∩ gK g−1 = {id}. We emphasize
that the sandwich defects generally do not give simple topological operators. In particular,
the operator Ũg in (3) is not simple for any g ∈ G when the coset symmetry is not minimal,
i.e., G and K shares a nontrivial common normal subgroup N . In that case, one can find a
sandwiched topological defect Ũ ′g with smaller degeneracy as Ũ ′g = DRep(K/N)UgNDRep(K/N);
this is obtained by first gauging N symmetry of the theory and then considering the sandwich
of G/N symmetry defect by the half gauging of K/N . This implies that the above Ũg in (3)
is not simple in such coset symmetry, but rather obtained after combining the smaller coset
symmetry defect Ũ ′g with the condensation defect for Rep(K) Wilson lines.

Although the fusion rule of the sandwiched defects is independent of the twist ωD+1, the
fusion rules of the simple topological operators will be modified by the twist ωD+1 in general.
In Sec. 2.2, we discuss the modified fusion rule of the twisted coset symmetry in detail.
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holonomy gMagnetic defect Gauged SPT defect

Figure 2: The magnetic defect in G gauge theory with holonomy g in the presence of
topological action for G becomes attached to a gauged SPT defect given by twisted
compactification of the topological action on a circle with holonomy g.

Magnetic defect Magnetic defect

Magnetic defect

Emits gauged SPT defect

Figure 3: The topological action in G gauge theory modifies the junction of magnetic
or dyonic defects with additional gauged SPT defects.

2.1.1 Description using bulk TQFT

We can describe the twisted coset symmetry using a bulk symmetry TQFT with a gapped bound-
ary, given by G gauge theory in (D + 1) spacetime dimensions with topological action ωD+1,
and the gapped boundary has K gauge group with action αD. The topological operators on the
gapped boundary corresponds to the coset symmetry operators specified by (G, K ,ωD+1,αD).

As we have seen above, αD can be shifted by αD → αD + ηD with an element
ηD ∈ Z D(BG, U(1)). When [ηD] ∈ HD(BG, U(1)) is obtained by restricting the G SPT response
[η′] ∈ HD(BG, U(1)) to K ⊂ G, the shift by ηD represents the action of invertible global sym-
metry (called gauged SPT symmetry) of the bulk G gauge theory on the boundary [38]. In this
case, the shift αD → αD + ηD does not modify the symmetry category, since the gauged SPT
defect ηD induces the automorphism of the topological operators at the boundary. Meanwhile,
when ηD is not obtained by the restriction of G SPT response to K , the shift αD → αD + ηD
generally modifies the symmetry category of operators at the boundary, including its fusion
rule. Nontrivial αD that cannot be removed by ηD represents a fractional response. The effect
of αD on the symmetry category structure will be discussed in detail in Sec. 2.3.

The bulk G gauge theory has higher group symmetry that depends on the bulk cocycle
ωD+1 as studied in [38]. In the rest of the section, we will use the bulk description to study
properties of coset symmetry via bulk-boundary correspondence. We will shortly see that the
higher-group structure in the bulk G gauge theory affects the algebraic structure of the coset
symmetry (G, K ,ωD+1,αD). Later in Sec. 3, we will use the bulk TQFT description to study
anomalies of coset symmetries as obstructions to realization in symmetric, invertible phases.

2.2 Modified fusion rules from twist

The coset 0-form symmetry defects correspond to the magnetic defects in the bulk G gauge
theory. The pure magnetic defects are labeled by the conjugacy classes of G. When the gauge
group is non-Abelian, the product of two conjugacy classes [g1], [g2] give a direct sum of
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conjugacy classes ⊕g[g1 g g2 g−1], and thus the fusion of magnetic fluxes is in general non-
Abelian even in the absence of a topological twist ωD+1 for the G gauge field.3 When the
conjugacy class is in the center of G, the fusion of these fluxes is Abelian for ωD+1 = 0.

As discussed in [38], the topological action ωD+1 of G gauge theory can modify the fusion
rule of the magnetic defects. This is because the magnetic defect of holonomy g ∈ G extended
in (D−1) dimensions is attached to the additional gauged SPT defect in D dimensions given by
the slant product igωD+1. The attached gauged SPT can be decomposed into two parts: one
part, called iA

gωD+1 can make the magnetic defects obey non-invertible fusion rules. The other
part, called, iB

gωD+1, modify the junction of magentic defects. They are explicitly expressed as
follows

igωD+1 = iA
gωD+1 +

1
|ωD+1|

d
�

iB
gωD+1

�

, (6)

where |ωD+1| is the order of [ωD+1] in HD+1(BG, U(1)).
The above operations iA

g , iB
g are defined as follows. Suppose that [ωD+1] has the order of

k = |ωD+1| in HD+1(BG, U(1)), then one can fix a cocycle representative which takes value in
2πZ/k for any (D+ 2) group elements:

ωD+1 =
2π
k
(ωD+1)k mod 2πZ , (7)

with a Zk valued cocycle (ωD+1)k. Then, its slant product ig[(ωD+1)k] also has the value
2πZ/k. Now, suppose that the cohomology class [ig (ωD+1)k] has the order of k′ in
HD(BG, U(1)). Then there exists a cocycle representative (igωD+1)′k′ which takes value in
2πZ/k′ for any (D+ 1) group elements, and the cocycle ig[(ωD+1)k] is written as

ig[(ωD+1)k] =
k
k′
�

igωD+1

�′
k′ + d(i′gωD+1)k′′/k

′′ , (8)

where the second term d(i′gωD+1)k′′/k′′ represents the difference from a cocycle representative
�

igωD+1

�′
k′ by a coboundary. (i′gωD+1)k′′ takes value in 2πZ/k′′ with some integer k′′. We

simply denote the above decomposition of igωD+1 by

igωD+1 = iA
gωD+1 +

1
|ωD+1|

d(iB
gωD+1) , (9)

where |ωD+1|= k is the order of [ωD+1] in HD+1(BG, U(1)), and iB
gωD+1 ∈

2π
k′′ Z.

The contribution from iA
g modifies the fusion rules of magnetic defects, while iB

g modifies
the junction of magnetic defects [38] (see Figure 3). As a consequence, the fusion rule of the
coset symmetry on the gapped boundary of the bulk G gauge theory is also modified. The
boundary condition breaks G to subgroup K , and the boundary action for K is αD. Below, we
describe the fusion rule of coset symmetries realized by the topological defects of the boundary.

Modified fusion from iA First, let us briefly recall how the slant product iA modifies the
fusion rules of magnetic defects in the bulk G gauge theory. The Dijkgraaf-Witten twist ωD+1
generally adds non-invertibility of the magnetic defects through the slant product iA mentioned
above. For instance, the magnetic defects carrying holonomy in Z(G) is invertible in untwisted
gauge theory, but becomes non-invertible with the fusion rule [38]

Vg × Vg ′ = Vg+g ′
1
N

 

∑

λ∈Z(G)

Wiλ igωD+1

! 

∑

λ′∈Z(G)

Wiλ′ ig′ωD+1

!

�

{Wiλ′′ ig+g′ (ωD+1) : λ′′ ∈ Z(G)} , (10)

3Note that in general, the fusion of pure magnetic fluxes can also include electric defects: these are the electric
defects that become trivial when restricted to the common stabilizer subgroup of G preserved by the fluxes.
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and
Vg ×Wiλ igωD+1

= Vg , ∀λ ∈ Z(G) , (11)

where Vg is the magnetic defect carrying the center holonomy g ∈ Z(G), and Wω is the gauged
SPT defect labeled by the group cohomology ω.

Reflecting such fusion rules of the magnetic defects in the bulk, the fusion rules of coset
symmetry on the boundary are modified ifωD+1 satisfiesωD+1|K = dα and also [iA

gωD+1]K ̸= 0.
In other words, although the restriction of ωD+1 to subgroup K is exact, it is no longer exact
if we first take the slant product of ωD+1 with respect to G.

An example is G = Z2×G′, withωD+1 = a∪ω′D where a is the Z2 1-cocycle andω′ is a G′

cocycle of degree D. The subgroup is K = G′. The cocycle ωD+1 restricted to K is trivial, since
it vanishes for a = 0. However, if we first take the slant product with respect to the nontrivial
holonomy in Z2, this gives igωD+1 =ω′D which can be a nontrivial cocycle of K = G′.

The property that the coset symmetry is attached to a gauged SPT defect implies that the
coset symmetry becomes “more non-invertible” in the presence of twists: for magnetic defects
with center holonomy, there are non-invertible fusion rule obtained by replacing iλigωD+1 in
(10), (11) to [iλigωD+1]K .

Modified fusion from iB Let us briefly recall how the slant product iB modifies the fusion
rule of magnetic defects in the bulk G gauge theory. The slant product iB modifies the (D−2)-
dimensional junction of the magnetic defects by attaching the end of the gauged SPT defects
in (D− 1) dimensions. In other words, the fusion algebra of the magnetic defects is extended
by the gauged SPT defects.

For instance, let us consider the 1-form symmetry generated by the magnetic defects Vg
of center holonomy g ∈ Z(G). Since the twist makes some of these magnetic defects non-
invertible, the invertible magnetic defects are labeled by

Zω(G)≡ {g ∈ Z(G) : [iA
gωD+1] = 0 ∈ HD(BG, U(1))} . (12)

The 1-form symmetry of these magnetic defects then becomes the central extension

1→ HD−1(BG, U(1))→ G(1)→ Zω(G)→ 1 , (13)

which is characterized by the second cohomology Ωω [38]

Ωω(g, g ′) =
1

|ωD+1|

�

iB
gωD+1 + iB

g ′ωD+1 − iB
g+g ′ωD+1

�

, (14)

where |ωD+1| is the order of [ωD+1] in the group HD+1(BG, U(1)).
Let us now discuss how the above central extension affects the structure of the coset sym-

metry. We define Zω(G/K) := Zω(G)/(Zω(G)∩K), which is the group of nontrivial coset sym-
metry defects on the boundary carrying the center holonomy. Here let us consider the cases
where Zω(G) has the form of direct product, Zω(G) = Zω(G/K)×K ′, with K ′ = Zω(G)∩K . The
generic cases will be studied in Sec. 2.3. In this case, Ωω directly induces the central exten-
sion of the coset symmetry, and defines an extension class in H2(Zω(G/K), HD−1(BK , U(1))).
This is obtained by restriction to the group Zω(G/K) ⊂ Zω(G), together with the restriction of
gauge group G→ K in HD−1(BG, U(1)).

The coset 0-form symmetry at the boundary then has the following central extension due
to the bulk cocycle ωD+1,

1→ HD−1(BK , U(1))→ G(0)G/K → Zω(G/K)→ 1 , (15)
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characterized by the restriction of Ωω. As we will see in Sec. 2.3, in the presence of the
boundary twist αD the class for the central extension Ωω will be further modified by slant
product of αD.

In the following, we will give concrete examples to illustrate how the cocycles modify the
fusion rules.

2.2.1 Example of modified fusion rules from iA

A well-known example for the modified fusion rule of coset symmetry is the twisted Z3
2 gauge

theory in (2+1)D, which is equivalent to the D8 gauge theory and its boundary realizes the
non-invertible twisted coset symmetry Rep(D8).

Let us consider G = Z3
2 and K = Z2

2 in D = 2 spacetime dimension, and
ωD+1 = (−1)a1∪a2∪a3 where a1, a2, a3 generate the Z2 1-cocycles for the three Z2 symmetries.
The subgroup K corresponds to the boundary condition a3|= 0.

In the bulk G gauge theory, the electric charges ei i.e. Wilson lines of ai obey Z3
2 fusion

rule, while the magnetic defects m1, m2, m3 obey the fusion rule

mi ×mi = 1+ e j + ek + e jek , i, j, k distinct. (16)

The electric charge e3 are condensed on the boundary, while e1, e2 are not. The magnetic
defect m3 can move parallel to the boundary and gives the coset symmetry, it obeys the fusion
rule

m3 ×m3 = 1+ e1 + e2 + e1e2 , (17)

which corresponds to the non-invertible fusion rule of Rep(D8). The magnetic defects m1, m2
terminates on the boundary, and their fusion rules are m1×m1 = 2(1+e2), m2×m2 = 2(1+e1),
where we have used e3 ∼ 1.

Such coset symmetry fusion rule is different from the “untwisted” coset symmetry with
ωD+1 = 0, where the coset symmetry obeys Z2 fusion rule up to tensor product with Rep(Z2

2).

2.2.2 Example of modified fusion rules from iB

Let us consider another example to illustrate the modified fusion rule from the iB term. Con-
sider D = 4, and G = Z2 ×Z2, with

ω5 = (−1)a
4
1∪a2 = (−1)(da1/2)∪(da1/2)∪a2 , (18)

where a1, a2 generate the Z2 one-cocycles of the two Z2’s, and the last expression we take a
lift of a1 to Z4 cochain. The subgroup is the first Z2, K = Z2. The coset symmetry on the
boundary corresponds to the magnetic defect of a2.

In the 5D bulk gauge theory, the cocycle ω5 modifies the property of the magnetic de-
fect for a2, which is created by volume operator supported on some volume V . The twisted
compactification of ω5 on a circle with a2 holonomy is a total derivative,

∫

M4

(da1/2)∪ (da1/2) =

∫

V
a1 ∪ da1/4 , (19)

where ∂M4 = V . Thus the magnetic volume operator carries “fractional” gauged SPT defect
described by the right hand side above. This implies that the junction of the magnetic defect
emits the gauged SPT defect

(−1)
∫

a1∪da1/2 = (−1)
∫

a3
1 , (20)

which represents the response of the Z2 Levin-Gu SPT in (2+1)D. In other words, the 1-form
symmetry in the bulk generated by the magnetic defect for a2 becomes the central extension
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Z2→ Z4→ Z2 extended by the gauged SPT defect. Let us denote the excitation by sLG stands
for the Levin-Gu SPT, then the fusion rule is

m2 ×m2 = sLG . (21)

On the boundary, the SPT defect for a1 is nontrivial. and thus the fusion rule of the coset
symmetry on the boundary is modified by the presence of nontrivial cocycle ω5.

2.3 Effect of αD on coset symmetry

Different choices of αD are related by α′D = αD + ηD with ηD ∈ HD(BK , U(1)) the K SPT
response. When ηD is obtained by restricting G SPT response to the subgroup K ⊂ G, this
correspond to fusing the boundary with a gauged SPT defect for G in the bulk. In that case,
the shift αD → αD + ηD does not modify the symmetry category, as the gauged SPT defect
induces the automorphism of the topological operators at the boundary. However, note that
the shift by ηD in general does not have such bulk interpretation. When ηD is not obtained by
the bulk gauged SPT defect, the shift αD→ αD +ηD can modify the symmetry category.

The boundary action αD means that when a magnetic defect for K terminates on the bound-
ary to give rise to dynamical K gauge field holonomies on the boundary, the ending locus has
additional gauged SPT defects for the K remnant gauge group as discussed in [38]. Such
changes of condensed objects by shifting α→ αD +ηD modify the symmetry category.

Concretely, let us consider the group of center magnetic defects in the bulk Zω(G), as
defined in (12). The bulk center symmetry Zω(G) is given by the central extension of the
coset symmetry Zω(G/K) at the boundary,

Zω(G)∩ K → Zω(G)→ Zω(G/K) . (22)

Let us write the above extension class ν ∈ H2(Zω(G/K), Zω(G) ∩ K). While in Sec. 2.2.2
we have seen that the coset symmetry Zω(G/K) gets extended due to the bulk cocycle ωD+1
through the slant product iB, the boundary cochain αD also extends the coset symmetry
through its slant product. This is because the gauged K SPT defects generally get identified
with the K magnetic defects at boundary up to condensed objects, meaning that the gauged
K SPT defects replace the group Zω(G)∩ K in (22) in the structure of coset symmetry.

The coset symmetry has the form of the central extension with the gauged K SPT defect,

1→ HD−1(BK , U(1))→ G(0)G/K → Zω(G/K)→ 1 , (23)

whose extension class is characterized by

Ω( g̃, g̃ ′) =
1

|ωD+1|

�

iB
( g̃,0)ωD+1 + iB

( g̃ ′,0)ωD+1 − iB
( g̃+ g̃ ′,ν( g̃, g̃ ′))ωD+1

�

�

�

�

K
+ iν( g̃, g̃ ′)αD , (24)

where g̃, g̃ ′ ∈ Zω(G/K), and we label the elements of Zω(G) by a pair
( g̃, k̃) ∈ Zω(G/K) × (Zω(G) ∩ K). Also |K means the restriction to the group K . Below, we
will provide an example where αD modifies the fusion rule by the extension.

2.3.1 Example of modified fusion rules from αD

Let us consider the untwisted coset symmetry in D = 2 with

(G, K ,ω3,α2) = (Z4 ×Z2,Z2 ×Z2, 0, 0) . (25)

This corresponds to the gapped boundary of Z4 × Z2 gauge theory in (2+1)D. Let us denote
the electric and magnetic particles of Z4, Z2 gauge theory as {e, m}, {e′, m′} respectively. The
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condensed particles at the boundary is then generated by m2, e2, m′. The symmetry at the
boundary is generated by the lines of m, e, e′. They generate the anomalous Z3

2 symmetry,
where the first two Z2 symmetries for m, e have the mixed ’t Hooft anomaly. This mixed ’t
Hooft anomaly is understood from i mutual braiding between Z4 particles e and m, so that
one Z2 symmetry defect carries the fractional charge 1/2 under the other Z2 symmetry.

Then let us turn on the boundary action α2 = (−1)a∪a′ , where a, a′ denote two Z2 gauge
fields at the boundary:

(G, K ,ω3,α2) = (Z4 ×Z2,Z2 ×Z2, 0, (−1)a∪a′) . (26)

The SPT action α2 shifts the condensed particles; it exchanges the particles by
m2 → m2e′, m′ → m′e at the boundary, so the condensed particles are now generated by
m2e′, e2, m′e. Note that this action of α2 on condensed anyons is not an automorphism of the
bulk Z4×Z2 gauge theory, and α2 cannot be obtained from the gauged SPT defect in the bulk.
The symmetry at the boundary is still generated by the lines of m, e, e′, but they now generate
the non-anomalous Z4×Z2 symmetry, as m2 ∼ e′ up to condensed particles. We note that the
electric particle e′ gives the central extension of the coset symmetry m from Z2 to Z4; e′ corre-
sponds to the slant product of α2 shown in the description of (24). This shows that different
choices of α2 can modify the fusion rule of the coset symmetry.

2.4 Modified Frobenius-Schur indicator from twist

As discussed in [39], the Frobenius-Schur indicator κa is a Z2 valued piece of data associated
with self-dual topological lines a = ā. It is part of the F symbols for such topological lines, in
particular [F aāa

a ]11 = [F aaa
a ]11 where 1 is the vacuum object. There is also a Frobenius-Schur

indicator as part of the associator data for 0-form symmetries in 1+1d. These two Frobenius-
Schur indicators are related to each other: the topological defects whose fusion are modified
by the Frobenius-Schur indicator in 1+1d can be thought of as living on the boundary of a Z2
0-form symmetry domain wall that extends to 2+1d bulk, and the Frobenius-Schur indicator is
given by whether the Z2 symmetry has nontrivial bosonic SPT (see e.g. [6,7]). After gauging
theZ2 symmetry in the bulk, theZ2 symmetry fluxes give rise to new self-dual topological lines,
whose associators carry information about the bosonic Z2 SPT. Such SPTs can be described a
3-cocycle for group Z2 [40]. There is only one nontrivial such cocycle, corresponding to the
Levin-Gu phase [41], and this is consistent with the Frobenius-Schur indicator being Z2 valued
in 2+1d.

In analogy, in this work, we define a generalized Frobenius-Schur indicator as a particular
part of the data describing the associator of topological defects in 3+1d, in 1-1 correspondence
to SPTs of the bulk symTFT. For bulk symmetry G, the generalized Frobenius-Schur indicator
is labeled by G-SPT in the bulk, as described by a (D+1)-cocycle ωD+1 for group G [40], and
they are phase factors that relate different ways of fusing (D+1) symmetry defects for G. Such
a cocycle corresponds to an anomaly for the G symmetry (both an obstruction to realization in
SPT phases and obstruction to gauging the G symmetry). The bulk TQFT description for the
Frobenius-Schur indicator is the Boltzmann weight given by the phase factor associated with
intersection of (D+ 1) symmetry defects at a point.

The generalized Frobenius-Schur indicator for twisted coset symmetry can be derived using
the “sandwich construction” for the coset symmetry defects. Since the G symmetry defects in
the middle have associator given by ωD+1, it also gives the associator of the twisted coset
symmetry defects. See Figure 4 for the illustration of the associator in D = 2.

For example, let us start with a system with anomalous G symmetry in D spacetime di-
mensions with anomaly given by cocycle ωD+1, such that the subgroup K is non-anomalous:
ωD+1|K = dαD. Then we can gauge the K subgroup symmetry, and the new system has twisted
coset symmetry with associator again given by ωD+1.
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g1 g2 g3 g1 g2 g3

Figure 4: Associator of twisted coset symmetry (G, K ,ωD+1,αD) is inherited from
the associator ωD+1 of twisted G symmetry using the sandwich construction. The
blue lines are interfaces of Dirichlet boundary condition of the K gauge field, and the
black lines are the G symmetry defects.

2.5 Redundancy in definition

The presentation of twisted coset symmetry by (G, K ,ωD+1,αD) is in general redundant: there
can be two quadruples (G, K ,ωD+1,αD) and (G′, K ′,ω′D+1,α′D) that describe the same coset
symmetry. Here let us describe several occasions where such redundancy is observed.

• For instance, this can happen when two different labels of the bulk gauge theory
(G,ωD+1) results in the same TQFT. Such redundancy in labeling of the twisted gauge
theory is ubiquitous in (2+1)D with D = 2. For instance, the twisted Z3

2 gauge theory in
(2+1)D is equivalent to D8 gauge theory. Accordingly, the coset symmetry (Z3

2,Z2
2,ω3, 0)

is equivalent to (D8, D8, 0, 0) whenω3 = (−1)a1a2a3 with Z3
2 gauge fields, as described in

Sec. 2.2.1.

• This can happen even when the labels of the bulk gauge theory are identical. For in-
stance, some of (1+1)D SPT phases with finite G symmetry have a trivial torus partition
function, but become nontrivial on closed surfaces with higher genus. Let us take such
a G SPT phase given by α ∈ H2(BG, U(1)). Then, the coset symmetries (G, G, 0,α)
and (G, G, 0, 0) in D = 2 are identical, both of which are given by Rep(G). This cor-
responds to a pair of distinct gapped boundaries of G gauge theory whose condensed
particles (Lagrangian algebra anyon) are identical, though the algebraic structure of the
Lagrangian algebra is still distinguished by their multiplication morphisms. The gapped
boundary (G, G, 0,α) is obtained by acting the 0-form symmetry of G gauge theory gen-
erated by the gauged SPT defect α on the boundary (G, G, 0, 0). This 0-form symmetry
does not permute anyons, and only acts on the junction of anyons, dubbed a soft sym-
metry [42,43].

• This can happen even when the bulk gauge groups are distinct. For instance, it is known
that there exists a pair of distinct finite groups G1, G2 satisfying Rep(G1) = Rep(G2) as
a fusion category [44] (without symmetric structure). Therefore, in D = 2 the coset
symmetry (G1, G1, 0, 0) is identical to (G2, G2, 0, 0) where both are given by Rep(G1).

2.6 Examples of theories with twisted coset symmetries

We now give a few examples of systems with twisted coset symmetries, both on the lattice and
in the continuum.

2.6.1 Lattice models with twisted coset symmetry

To be concrete, we will construct a lattice model with twisted coset non-invertible symmetry.
We will begin by constructing a lattice model with anomalous invertible 0-form symmetry, and
then gauge a non-anomalous and non-normal subgroup.
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Let us start with 2+1D toric code enriched with S3×Z2 0-form symmetry using the anoma-
lousZ2×Z2 one-form symmetry generated by the electric and magnetic line operators. In terms
of the one-form symmetry background fields Be, Bm, the symmetry enrichment is given by the
relation [45]

Be = A∗η2 , Bm = A∗η1 ∪ A′ mod 2 , (27)

where η2 is the nontrivial generator in H2(BS3,Z2) = Z2 and η1 is the nontrivial generator in
H1(BS3,Z2) = Z2 (i.e. the charge conjugation gauge field), A is the background gauge field for
S3 and A′ is the background gauge field for Z2. Due to the mixed anomaly between the electric
and magnetic one-form symmetry, the S3 × Z2-enriched toric code has anomaly described by
the bulk term

π

∫

Be ∪ Bm = π

∫

A∗(η1 ∪η2)∪ A′ . (28)

The lattice model with such symmetry enrichment can be constructed following the method
in [46].

Next, we gauge the non-normal Z2 subgroup symmetry in S3. Since the anomaly vanishes
for A′ = 0, i.e., absence of gauge field for the other factorized Z2, we are allowed to gauge this
symmetry. The resulting theory has (S3/Z2)×Z2 twisted coset non-invertible symmetry:

�

G = S3 ×Z2, K = Z2 × 1, ω4 = η1 ∪η2 ∪ x1, α3 = 0
�

, (29)

where x1 is the generator of H1(BZ2, U(1)) = Z2.

2.6.2 Critical points with twisted coset symmetry

We will present a critical theory that has fractional response for coset non-invertible symmetry.
The example is given by massless Dirac fermion in 2+1d, coupled to Z2 gauge field where
the Z2 gauge transformation complex conjugates the Dirac fermion. Before gauging the Z2
symmetry, the theory has O(2) symmetry, and the O(2) symmetry has fractional response

O(2)1/2,1/2 +Dirac fermion, (30)

where the subscript denotes fractional Chern-Simons level for both the continuous and the
Z2 part, following the notation in [35]. Since the Z2 symmetry complex conjugates the Dirac
fermion that consists of two Majorana fermions, it leaves one of the Majorana fermion invariant
and flips the sign of the other Majorana fermion. After gauging the Z2 symmetry, the symmetry
is the coset symmetry O(2)/Z2. The coset symmetry has α = 1

2η where η is the effective
action for the minimal Z2 Chern-Simons term given by gauging the Z2 symmetry in the root
Z2 fermionic SPT phase. The coset symmetry has ω given by an exact cocycle, which contains
fractional response of O(2)/Z2 symmetry.

We can also consider discrete symmetry. For example, take a Dirac fermion, and focus on
theD4n = Z2n⋊Z2 ⊂ O(2) = U(1)⋊Z2 subgroup of the previous example. The previous discus-
sion carries over to give massless fermion with fractional response for the coset (Z2n⋊Z2)/Z2
symmetry.

3 Anomalies as absence of SPT phases

An important application of anomalies is their constraints on the dynamics. In this section
we will study whether the coset symmetry can be realized in a trivially gapped phase. If not,
then we will say the coset symmetry has intrinsic anomalies as obstructions to SPT realization.
Anomalies of the coset symmetries generally leads to the tight dynamical constraints such as
symmetry-enforced gaplessness, as we will see below.
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3.1 Anomaly conditions

While the computation of the properties such as fusion rules and associators of the coset sym-
metry from the data (G, K ,ωD+1,αD) can be difficult, we can use the bulk-boundary corre-
spondence to understand the intrinsic anomalies of the coset symmetry, i.e. the anomalies
present in any systems with the coset symmetry.

The bulk-boundary correspondence has been widely used in studying the anomaly, i.e.
obstruction to SPT realization, of non-invertible symmetries [6,7]. Here, the bulk is described
a twisted G gauge theory in (D + 1) spacetime dimensions with cocycle ωD+1, and the coset
symmetry is on the boundary with the boundary condition that breaks G to subgroup K , with
ωD+1|K = dαD. The topological operators on this gapped boundary with the boundary action
αD describes the twisted coset symmetry (G, K ,ωD+1,αD). A generic gapped system with this
coset symmetry can be given by the bulk TQFT on a thin interval, where one end of the interval
is given by the gapped boundary G → K with the boundary topological action αD, while the
other end is given by another choice of gapped boundary.

The question we ask is the following: can we realize an SPT phase with the coset symmetry
from the bulk-boundary description? If there is no such an SPT phase, then the symmetry has
anomaly as obstruction to such realization.

To engineer an SPT phase, we need to choose a gapped boundary of the bulk G gauge the-
ory with topological actionωD+1, such that the bulk on the interval with the gapped boundary
on the other end reduces to an SPT phase with the coset symmetry. This requires that no
operators can simultaneously end on the two boundaries. The operators in the bulk G gauge
theory can be generated by the basic Wilson line and magnetic operators under fusion or con-
densation, and we will only need to see if the these basic operators can simultaneously end on
the two boundaries.

The gapped boundaries for the G gauge theories are labeled by

• A subgroup K ′ ⊂ G such that [ωD+1|K ′] = 0.

• A choice of boundary topological term for K ′, i.e. choice of α′D in ωD+1|K ′ = dα′D.

For the reduction of the bulk on the interval with the above gapped boundary on other end
to give rise to an SPT phase, we need to require the following conditions:

(1) The subgroups K , K ′ for the gapped boundaries need to
satisfy [ωD+1|K] = 0, [ωD+1|K ′] = 0, i.e., they become exact cocycles under pullback
using the inclusion map K , K ′ ⊂ G. This also guarantees that the magnetic operators of
K , K ′ holonomy are not attached to gauged SPT operators [38].

(2) There are no magnetic operators that connect the two boundaries, K ∩ K ′ = 1.

(3) There are no Wilson line operators that connect the two boundaries: the only irrep R
whose decomposition under K and K ′ both contain identity is the trivial irrep R= 1.

If all possible choices of the subgroup K ′ ⊂ G violate at least one of the above conditions (1)-
(3), then the coset symmetry has an intrinsic anomaly – it cannot be realized by SPT phases,
and any systems with such coset symmetry cannot flow to a trivially gapped phase.

We note that the difference in the data αD does not affect the SPT realization – since it is
purely on the boundary, it does not contribute to this anomaly.

3.2 SPT phases with twisted coset symmetry (H \ K)/K

Let us first study the coset symmetry without anomalies, where one can explicitly find the SPT
phases. We show that the twisted coset symmetry (G, K ,ωD+1,αD) can be realized in the SPT
phase if the following two conditions are satisfied:
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• G is expressed as the bicrossed product with some subgroup H ⊂ G as G = H\K . Namely,
for two subgroups H, K of G, G can be expressed as G = HK and H ∩ K = {id}. Equiva-
lently, each group element g ∈ G has a unique expression as g = hk with h ∈ H, k ∈ K .4

• There exists a choice of the above H ⊂ G satisfying [ωD+1|H] = 0.

To check this, let us consider a bulk symmetry TQFT in (D+1)D on an interval, where the G
gauge theory with the twistωD+1 is sandwiched by a pair of gapped boundary conditions. One
of the gapped boundary breaks the gauge symmetry G→ K , while the other breaks as G→ H.
We note that this SSB pattern G → H is made possible thanks to the above two conditions.
The coset symmetry defects are realized as the topological operators at the boundary G→ K .
One can see that this system realizes the SPT after shrinking the interval by the following:

• Since H ∩ K = {id}, there are no magnetic operators ending on both boundaries.

• One can also check that there are no irrep of G such that its decomposition under the sub-
groups H, K simultaneously contains the trivial representations of H, K . This is shown in
Appendix A. It implies that there are no Wilson line stretching between two boundaries.

Since the gapped boundary G → H can be additionally twisted by a group cohomology
[ηD] ∈ HD(BH, U(1)), a subclass of SPT with (H\K)/K symmetry in D spacetime dimensions
is classified by the group cohomology HD(BH, U(1)). For untwisted coset symmetries with
ωD+1 = 0, the SPT can be obtained by starting with the SSB phase with G→ H with the SPT
action ηD for the unbroken symmetry, and then gauging the broken K symmetry. An explicit
lattice model for an SPT with untwisted (H \ K)/K symmetry will be presented in Sec. 4.1.

3.3 Anomalies of twisted coset symmetry: Anomaly from bulk cocycle

The twist ωD+1 in the coset symmetry typically leads to the nontrivial anomalies. To illustrate
the obstruction to SPT phase with coset symmetry due to nontrivial twistωD+1, let us consider
the example G = G0 × G1 and K is given by a non-normal subgroup of G0. Moreover, there is
nontrivial ωD+1 given by topological term for G1. Then on any gapped boundary, G1 needs to
break to subgroup K1 such thatωD+1|K1

= dα, and in particular the reference boundary G→ K
breaks G1 completely. This means that there are Wilson lines of G1 that can connect the two
boundaries and thus violating condition (3) presented in Sec. 3.1. This gives an example of
anomalous twisted coset non-invertible symmetry.

Below we will also discuss examples of coset non-invertible symmetries with trivial bulk
cocycle that cannot be realized in SPT phases.

3.4 Anomalies of untwisted coset non-invertible symmetry

In Sec. 3.2 we have seen that the untwisted (H\K)/K symmetry is non-anomalous and admits
realization in SPT phases. Meanwhile, if the untwisted coset symmetries G/K does not have
an expression G = H \ K with some subgroup H ⊂ G, one can show that G/K is anomalous.
We will demonstrate this statement in general in Sec. 3.6.1. Here, let us provide an example
of such anomalous finite coset non-invertible symmetry without twist.

3.4.1 A5/Z2 symmetry

Consider an alternating group A5 and its subgroup K = Z2. We will focus on the case with
D = 3 for simplicity. Since A5 is simple, K is not a normal subgroup and A5/Z2 is non-
invertible. This is a minimal coset symmetry. Also, A5 does not have a subgroup H with

4When H is a normal subgroup, the bicrossed product reduces to the semidirect product H ⋊ K .

17

https://scipost.org
https://scipost.org/SciPostPhys.20.1.006


SciPost Phys. 20, 006 (2026)

order 30 = |A5|/|Z2|, so A5 cannot be expressed as the bicrossed product H \ K with K = Z2.
So A5/Z2 is a candidate of the coset non-invertible symmetry that does not admit realization
in SPT phases.

Let us consider the symmetry TQFT for the coset G/K symmetry, which is the G = A5 gauge
theory. One boundary breaks the gauge group G→ K , and the other breaks G→ K ′ with some
subgroup K ′ ⊂ G.

The (2+1)D A5 gauge theory has the anyons labeled by ([g],π) with [g] ∈ Conj(G) is the
conjugacy class of g ∈ G, and π is an irrep of the centralizer Z(g) of g ∈ G. The anyons with
g = 1 corresponds to the electric particles carrying the irrep of G.

There are five irreps of A5 including the trivial one. The character table is given as follows:













1 1 1 1 1
4 0 1 −1 −1
5 1 −1 0 0

3 −1 0 1+
p

5
2

1−
p

5
2

3 −1 0 1−
p

5
2

1+
p

5
2













, (31)

where each row corresponds to the irrep π1,π4,π5,π3,π′3.
The Lagrangian algebra for the boundary condition A5→ Z2 is given as follows:

AK = (1, 1)⊕ 2(1,π4)⊕ 3(1,π5)⊕ (1,π3)⊕ (1,π′3)

⊕ ([(1, 2)(3, 4)], 1)⊕ ([(1,2)(3, 4)],σ) ,
(32)

where σ is the irrep of Z((1, 2)(3,4)) = Z2
2 satisfying σ((1,2)(3,4)) = 1,σ((1, 3)(2,4)) = −1.

Note that the boundary condition G → K can condense all electric particles of the theory,
in the sense that AK contains all electric particles in the sum. Nevertheless, this boundary
condition is different from the Dirichlet boundary condition G→ 1 with the Lagrangian algebra

A1 = (1,1)⊕ 4(1,π4)⊕ 5(1,π5)⊕ 3(1,π3)⊕ 3(1,π′3) . (33)

The above form of AK immediately tells that the coset symmetry A5/Z2 is anomalous.
To see this, we check that the condensed particles for any boundary condition G → K ′ has a
nontrivial overlap withAK . When K ′ ̸= G, some nontrivial electric particle (1,π j) is condensed
at the G→ K ′ boundary condition, which leads to an overlap.5 When K ′ = G, ([(1, 2)(3,4)], 1)
is condensed, which again leads to an overlap. This completes the argument that A5/Z2 is
anomalous. In Appendix B, we introduce another example of untwisted coset symmetry which
is anomalous, given by A6/A5.

3.5 Dynamical scenario: Symmetric gapped phases

In Sec. 3.2 we have seen that the coset symmetry G/K with the twist ωD+1 admits realization
in SPT phases, if G is expressed as a bicrossed product G = H\K with a subgroup H ⊂ G such
that [ωD+1|H] = 0. In this section, we will show that once a finite group G is expressed as a
bicrossed product G = H \ K , the G/K symmetry in D ≥ 3 dimensions with any twist ωD+1
always admits realization in symmetry-preserving gapped phases.

5In general, an irrep π is condensed at the G→ K ′ boundary iff
∑

k′∈K ′ χπ(k
′) > 0. With this in mind, one can

see that any boundary condition G → K ′ with K ′ ̸= G has some condensed irrep π ̸= 1 as follows. For a regular
representation, we get

∑

k′∈K ′ χreg(k′) = |G|. When the regular rep is split into the irreps, the trivial rep contributes
by |K ′| to the rhs. So when |G| > |K ′| there must be a nontrivial irrep π with

∑

k′∈K ′ χπ(k
′) > 0, which must be

condensed.
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To see this, we again consider the symmetry TQFT where the bulk TQFT is given by the
G gauge theory with twist ωD+1. The symmetry-preserving gapped phase corresponds to the
thin interval of the bulk gauge theory sandwich by a pair of gapped boundaries: one boundary
breaks the gauge group G → K , and the other breaks G → H. Since [ωD+1|H] can still be
nontrivial in general, the G → H boundary is realized by the D-dimensional non-invertible
TQFT with H symmetry carrying the anomaly [ωD+1|H]. Such an anomalous TQFT can be
generally obtained by a finite gauge theory through the group extension of H by a finite gauge
group [47, 48]. By shrinking the size of the interval, we get a symmetry-preserving gapped
phase with (H \ K)/K symmetry with generic twist.

3.6 Dynamical scenario: Symmetry-enforced gaplessness

In the previous section, we have seen that finite (H \ K)/K symmetry with generic twist can
be realized in symmetry-preserving gapped phases. Here we study the inverse statement; if a
finite group G does not admit the expression in terms of bicrossed product G = H\K with any
subgroup H ⊂ G, the system preserving the coset symmetry G/K must be gapless. We show
this statement fully in general in spacetime dimensions D ≥ 3.

3.6.1 Symmetry-enforced gaplessness: An example

As an example, let us explicitly see that the A5/Z2 symmetry exhibits symmetry-enforced gap-
lessness. Suppose that there exists a gapped phase in D spacetime dimensions with A5/Z2
symmetry, where the (D−2)-form symmetry generated by the Z2 Wilson line is unbroken. We
can gauge the (D − 2)-form symmetry generated by the Wilson line, which brings the theory
back to the gapped phase with A5 symmetry. Then the dual Z2 = {1, s} symmetry must be
broken. So the A5 symmetry must have a nontrivial SSB pattern to the subgroup A5 → H.
Now there is no subgroup of A5 with order |A5|/|Z2| = 30, so there exists g ∈ A5 with g ̸= s
where g, gs are broken. This implies that the 0-form coset non-invertible symmetry Ũg of the
original theory is broken. This shows that the gapped phase with A5/Z2 must spontaneously
break either the (D − 2)-form Z2 symmetry or the 0-form non-invertible symmetry, and thus
leads to the symmetry-enforced gaplessness.

3.6.2 General statement about symmetry-enforced gaplessness

This argument can be extended to generic finite coset symmetry G/K , which may or may not
be twisted. The argument for spacetime dimensions D ≥ 3 is fully general.

In the case of D = 2, the statement is shown when any subgroup K ′ ⊂ K has trivial 2nd
group cohomology, H2(BK ′, U(1)) = 0. For instance K = ZN satisfies this property, so G/ZN
symmetry in (1+1)D exhibits symmetry-enforced gaplessness when G cannot be expressed as
H \ZN .

Below, we consider a gapped system with G/K symmetry preserving the Rep(K) Wilson
lines, and assume that G cannot be expressed as a bicrossed product H \ K . We then show
that some 0-form symmetry in G/K must be broken, therefore G/K symmetry cannot be fully
preserved in gapped phases.

When Rep(K) (D−2)-form symmetry is preserved in D ≥ 3, we claim that gauging Rep(K)
symmetry always yields the dual K symmetry fully broken spontaneously. To see this, sup-
pose we obtain a phase where K ′ ⊂ K symmetry is preserved. Gauging the K symmetry back
leads to finite group K ′ gauge theory. In such theory above D ≥ 3, the K ′ Wilson lines are de-
confined, and the Rep(K ′) subcategory symmetry is spontaneously broken. This implies that
K ′ = {id}. The same argument applies in D = 2 when Rep(K) has no nontrivial SPTs, i.e.
H2(BK ′, U(1)) = 0 for any subgroup K ′ ⊂ K .
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Then, let us gauge the (D − 2)-form symmetry of the Rep(K) Wilson lines, which leads
to the phase with G symmetry with K ⊂ G fully broken. We can then express G as G = QK ,
where Q ⊂ G is a set of representatives from each element of the left coset of K in G. Since
G is not a bicrossed product, one cannot find a choice of Q such that Q is a group. This is
incompatible with the SSB pattern G → H with the symmetry group satisfying |H| = |G|/|K |
where one can have Q = H, so the unbroken subgroup H has the order |H| < |G|/|K |. This
implies that there exists q ∈ G such that all of the group elements in qK are broken. Now, the
0-form non-invertible symmetry in G/K labeled by this q ∈ G must be broken.6 This shows
that the coset symmetry with G/K without an expression in terms of bicrossed product exhibits
symmetry-enforced gaplessness in D > 2 and the same result holds for certain K in D = 2.

3.6.3 Symmetry-enforced gaplessness of continuous coset symmetry

When the coset symmetry is continuous, certain anomalies imply the system must be gapless,
similar to the symmetry-enforced gaplessness discussed in [7, 49–51]. We will focus on con-
tinuous coset symmetries with continuous G and finite group K , where the discreteness of K
guarantees the coset symmetry defects described by the “sandwich construction” are topolog-
ical defects and thus generate symmetries.

A large class of such anomalies comes from the anomalies of G symmetry such that under a
symmetry transformation the anomaly is nontrivial on spacetimes where TQFTs can only have
positive partition functions, and thus any systems with such anomalous G symmetry must
be gapless (if the continuous G symmetry is spontaneously broken, the Goldstone modes are
also gapless). If there were any gapped system with the corresponding coset symmetry, after
gauging the finite Rep(K) symmetry this would give another gapped system with anomalous
G symmetry, and we would have a contradiction. Therefore any system with such anomalous
coset symmetry must be gapless.

For example, take D = 4 and G = SU(2) with ω5 given by Witten anomaly [52],7 and K
given by any finite subgroup of SU(2). Such K is non-anomalous since finite group symmetry
does not have nontrivial instanton number on S4, while Witten anomaly means that there is
an odd number of fermion zero modes in the presence of background with minimal SU(2)
instanton number on S4 [52]. Suppose there were any gapped system with such anomalous
coset symmetry, then by gauging Rep(K)we would recover a gapped system with anomalous G
symmetry. However, such system would be forbidden by Witten anomaly, since a fermion parity
(−1)F transformation changes the sign of the partition function on S4 with SU(2) instanton
background and thus the partition function vanishes, which cannot happen for TQFT partition
functions on S4. Therefore we conclude that any system with such anomalous coset symmetry
must be gapless.

6To see this, recall that the coset symmetry Ũq can be represented as a sandwiched operator
Ũq = DRep(K)UqDRep(K) using a half-gauging defect DRep(K) (see Figure 1). Taking trace of this operator within

the low-energy Hilbert space gives Tr
�

Ũq

�

= Tr
�

UqDRep(K)DRep(K)

�

= Tr
�

Uq(
∑

k∈K Uk)
�

. If qK are all broken, we
obtain Tr

�

Ũq

�

= 0 on a sphere. This implies that Ũq is spontaneously broken.
7Witten anomaly is a fermionic anomaly which is not described by group cohomology, but rather expressed as

the topological term η∪p1(SU(2)) for spin structure η and p1(SU(2)) is the first Pontryagin class of SU(2) bundles
describing the instanton number of SU(2). Hence, the coset symmetry presented here involves the twist by the
spin invertible phase, which is a fermionic generalization of the twisted coset symmetry (G, K ,ωD+1,αD) discussed
in this paper. The topological term for the inflow of Witten anomaly corresponds to the Gu-Wen supercohomology
SPT phase in (4+1)D, characterized by the fourth cohomology class H4(BSU(2),Z2) = Z2 generated by the mod
2 reduction of the Pontryagin class p1(SU(2)) [53].
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3.7 Dynamical scenario: Gapped phases with broken symmetries

3.7.1 Gapped phases with unbroken 0-form symmetry but broken (D−2)-form symme-
try

Let us also describe another dynamical scenario where the system is gapped and symmetric
under 0-form symmetry, but the (D − 2)-form symmetry is spontaneously broken. In D ≥ 3,
any finite coset symmetry can be realized in gapped phases under such symmetry breaking.

To see this, we note that anomalous finite group G symmetry in D ≥ 3 spacetime dimen-
sions with anomaly described by group cohomology or beyond group cohomology bosonic
anomalies can always be realized by symmetric gapped phases [47, 54]. Since in the coset
symmetry (G, K ,ωD+1,αD), the subgroup K is anomaly-free ωD+1|K = dαD, we can gauge
the subgroup K symmetry in such symmetric gapped phase with anomalous G symmetry. As
K is a finite group, this produces another symmetric gapped phase, and thus we construct a
symmetric gapped phase with the coset symmetry.

3.7.2 Gapped phases with broken 0-form symmetries

Let us consider the dynamical scenario where the 0-form discrete coset symmetry in
(G, K ,ωD+1,αD) is spontaneously broken. What is the constraint on the vacua on sphere in
D ≥ 2? Note that since the Wilson lines can be contracted on spheres, Rep(K) acts trivially on
spheres and is unbroken, and similarly the symmetry generated by the condensation defects
of Rep(K) is also unbroken. Thus the number of vacua is given by spontaneously broken G
symmetry vacua identified by the K gauge symmetry:

#vacua ∈
|G|
|K |
Z . (34)

Description using bulk TQFT The spontaneously 0-form symmetry breaking phase can also
be described using the bulk TQFT, where the vacua are described by topological local operators
given by Wilson lines stretching between the boundary with coset symmetry and the other
reference gapped boundary (here, let us consider D ≥ 3 so the magnetic flux excitations in the
bulk are not point-like). The minimal nontrivial number of vacua realizing anomalous coset
symmetry is given by the minimal number of nontrivial irreducible representations of G whose
decompositions under the subgroup K and another subgroup K ′ contain the identity.

As an example, consider spontaneously broken coset symmetry
(G = S3 = Z3 ⋊ Z2, K = Z2,ωD+1 = 0,αD = 0). For the coset symmetry to be broken, we
choose the reference boundary to be the e-condensed boundary, where the Wilson lines are
the irreducible representations 1, 1-dimensional Z2 Wilson line W , and the 2-dimensional rep-
resentation σ that combines the charge-(±1) representations of Z3. The Wilson lines that can
extend between the two boundaries are those that decompose under Z2 contains the identity,
and they are 1,σ. Thus there are 1+2= 3 point operators (counting with dimension), which
give rise to 3 vacua, in agreement with (34).

4 Lattice model with anomalous coset symmetry

Here we study lattice models of finite gauge theory with anomalous or non-anomalous coset
symmetry. We will see that the anomalies can forbid the Higgs phases of the gauge theory
preserving the coset symmetry.
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4.1 Non-anomalous case: K gauge theory with (H \ K)/K symmetry

Let us consider a K gauge theory with untwisted (H \K)/K symmetry in generic D spacetime
dimensions. The lattice model can be described in generic spatial dimensions, but let us work
on 2d space (D = 3) for simplicity. We start with the trivial gapped phase with G = H \ K
symmetry,

HH\K = −
∑

v

 

∑

g∈H\K

−→
X g

v

!

. (35)

Since G = H \ K is a bicrossed product, each state |g〉 with g ∈ G can be uniquely expressed
by a pair |g〉= |h, k〉, h ∈ H, k ∈ K , g = hk. The theory after gauging K is given by

H(H\K)/K = −
∑

v

 

∑

g=(h,k)

−→
X g

v

!

−
∑

p

Bp , (36)

with the exact K Gauss law constraint

−→
X (1,k)

v Ak
v = 1 . (37)

Here we defined the group-based Pauli X like operators as

−→
X g |h〉= |gh〉 ,

←−
X g−1

|h〉=
�

�hg−1
�

. (38)

Ak
v , Bp are the Hamiltonian terms of the quantum double model with the gauge group K

Ak
v =
−→
X k

N(v)
−→
X k

E(v)
←−
X k−1

W (v)
←−
X k−1

S(v) , Bp = δk01k13k−1
02 k−1

23 ,0 . (39)

These terms are shown in Figure 5. This Hamiltonian has the coset (H \ K)/K symmetry
generated by the operator

Ũg = ΠD
�

∏

v

−→
X g

v

�

DΠ , (40)

where Π is the projection onto the K Gauss law, and D is the projection onto the trivial K
gauge field

D =
∏

e

δ1,ke
. (41)

Its fusion rule is given by

Ũg × Ũg ′ =
∑

k∈K

Ũgkg ′k−1 . (42)

Note that when g = hk, Ũg = Ũh. With this in mind, one can consider a perturbation which
preserves the coset (H \ K)/K symmetry. The perturbation is given by the Hamiltonian

V = −
∑

e=〈vv′〉

δk−1
v kekv′

, (43)

where gv = hvkv , gv′ = hv′kv′ . This perturbation commutes with the Gauss law. This also
commutes with the coset symmetry since V commutes with the operator

−→
X h with h ∈ H.
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Figure 5: The edges nearby a vertex v and a plaquette p.

The perturbed Hamiltonian

H0
(H\K)/K = −

∑

v

 

∑

g=(h,k)

−→
X g

v

!

−
∑

e=〈vv′〉

δk−1
v kekv′

, (44)

with the K Gauss law is a trivial gapped phase preserving the coset symmetry. This phase is
regarded as the Higgs phase of the K gauge theory with the electric charges condensed, where
the ground state is given by an SPT phase with (H\K)/K symmetry. The ground state is given
by

|GS〉=
∑

{gv}

⊗

v
|gv〉

⊗

e=〈vv′〉

�

�kvk−1
v′
�

. (45)

This is consistent with the fact that the (H \ K)/K coset symmetry is non-anomalous.

4.1.1 SPT phases with (H \ K)/K symmetry

The Hamiltonian (44) gives an example of SPT phases with the coset (H\K)/K symmetry. The
other SPT phases with the same coset symmetry can be obtained by using the disentanglers
of the H SPT phases. To see this, let us consider the trivial H SPT phase on a lattice with the
local Hilbert space {|h〉 , h ∈ H} on each vertex,

H0
H =

∑

v

�

∑

h∈H

−→
X h

�

, (46)

and then the generic H SPT labeled by ω ∈ HD(BH, U(1)) can be obtained by conjugating H0
H

by a finite depth circuit Uω, HωH = UωH0
H U†

ω. A subclass of SPT phases with (H \ K)/K is also
labeled by the group cohomology ω ∈ HD(BH, U(1)). The distinct SPT phases are then given
by Hω(H\K)/K = UωH0

(H\K)/K U†
ω, where Uω acts on vertices through {hv} with gv = hvkv .

4.2 Anomalous case: Z2 gauge theory with A5/Z2 symmetry

Here we study the Z2 gauge theory with the coset A5/Z2 symmetry. We start with the trivial
gapped phase with A5 symmetry

HA5
= −

∑

v

 

∑

g∈A5

−→
X g

v

!

. (47)

Let us write a generator of Z2 as s = (1,2)(3,4). One can take a subset Q ⊂ A5 with |Q| = 30
such that A5 = Q ⊔ Qs, Q = Q−1, and id ∈ Q. The set Q with such properties satisfies
sQ = Qs, sQs = Q. Note that Q is not a group, since A5 is simple and does not have a nor-
mal subgroup, or simply from the fact that A5 does not have a subgroup with order 30. To
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gauge the Z2 symmetry, we introduce a single qubit on each edge for the Z2 gauge field. Then
the theory after gauging the Z2 symmetry is expressed as

HA5/Z2
= −

∑

v

 

∑

g∈A5

−→
X g

v

!

−
∑

p

Bp , (48)

where Bp is the plaquette operator

Bp =
∏

e⊂∂ p

Ze . (49)

The Z2 Gauss law constraint is given by

−→
X s

vAv = 1 . (50)

The gauged Hamiltonian HA5/Z2
commutes with the Z2 Gauss law. This Hamiltonian has the

coset A5/Z2 symmetry

Ũg = ΠD
�

∏

v

−→
X g

v

�

DΠ , (51)

where Π is the projection onto the Z2 Gauss law, and D is the projection onto the trivial Z2
gauge field

D =
∏

e

�

1+ Ze

2

�

. (52)

Its fusion rule is given by

Ũg × Ũg ′ = Ũg g ′ + Ũgsg ′s . (53)

Note that when g = qs, we have Ũg = Ũq, so the symmetry operator can be labeled by the
element q ∈Q.

Due to the ’t Hooft anomaly, anyon condensation of Z2 gauge theory to the trivial gapped
phase is expected to violate the coset A5/Z2 symmetry. Since D projects out the states with the
Z2 magnetic fluxes, one cannot condense magnetic fluxes while preserving the coset symmetry.
To see how the symmetry forbids the condensation of electric charges, let us consider the
following gauge invariant term condensing the charges

V = −
∑

e=〈vv′〉

Zv ZeZv′ , (54)

where we define Zv as Zv |q〉 = |q〉 , Zv |qs〉 = −|qs〉 for q ∈ Q. This operator commutes with
the Z2 Gauss law, but does not commute with the coset symmetry Ũg . To see this, let us
recall that Q is not a group and Q is not closed under the left q ∈ Q action. This implies
that

−→
X q

v Zv = Zv
−→
X q

v is not satisfied by all q ∈ Q, so the commutation fails for some Ũq with
q ∈ Q. This is in contrast to the K gauge theory with non-anomalous (H \ K)/K symmetry,
where we could condense electric charges to bring the theory into a trivial gapped phase, while
preserving the coset symmetry.
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5 Discussion and outlook

5.1 Comment on obstruction to gauging

In this paper, we mainly focused on the ’t Hooft anomalies of coset symmetries as obstruction
to SPT phases. Meanwhile, there is another definition of ’t Hooft anomaly as whether one can
gauge the symmetry. These two definitions of anomalies are equivalent for invertible internal
symmetries, but bifurcate for non-invertible symmetries. For non-invertible symmetries, the
obstruction to gauging and obstruction to SPT phases are generally different. For example,
the non-invertible symmetry given by Fibonacci fusion rules in (1+1)D cannot be realized in a
trivially gapped phase, but the Fibonacci fusion category has an algebra object containing the
non-invertible object and can be gauged [55].

For general non-invertible symmetry, gauging the symmetry means inserting “mesh” of
symmetry defects, whose consistency relies on existence of an algebra object in the symmetry
category. For a given symmetry category, it is in general difficult to enumerate all of the possible
algebra objects. In the case of finite coset symmetry without twist (G, K , 0, 0), one can always
gauge the G/K symmetry via sequential gauging; we first gauge the symmetry generated by
Rep(K)Wilson lines, and then gauge the G symmetry. This sequential gauging corresponds to
an algebra object of the symmetry category with the form of

AG/K =DRep(K) ×

�

⊕

g∈G
Ug

�

×DRep(K) , (55)

up to overall normalization factor. Here DRep(K) is a half gauging of Rep(K)Wilson lines, and
Ug is the g ∈ G symmetry defect of the theory after gauging Wilson lines. Inserting a fine mesh
of AG/K yields the theory after the sequential gauging.

We note that the algebra object AG/K becomes degenerate in general, in the sense of
〈AG/K , 1〉 > 1 with 〈A, x〉 := dim(Hom(A, x)). The algebra object with 〈AG/K , 1〉 = 1 is
called a haploid algebra, so AG/K with generic finite untwisted coset symmetry may or may
not be haploid. For instance, let us consider the anomalous fusion category symmetry A5/Z2
in (1+1)D. In this case AA5/Z2

has 〈AA5/Z2
, 1〉 = 2. Also, the algebra object AA5/Z2

does not
factorize as AA5/Z2

= 2A′ with a haploid algebra object A′.8 Therefore the algebra object for
the sequential gauging of A5/Z2 is not haploid. Given that the existence of haploid algebra
object has implications for gauging the symmetry [55], it would be interesting to find such
physical applications of non-haploid algebra objects.

5.2 Future directions

There are a number of future directions:

Dynamical consequences and concrete realizations It would be interesting to find rela-
tions between the coset symmetry data (G, K ,ωD+1,αD) and experimentally measurable quan-
tities. For example, when ωD+1 is an exact cocycle, it is related to topological responses.

In addition, it would be interesting to find more dynamical applications for coset symme-
tries in simple models. For example, we can explore phase transitions in lattice models with
coset symmetries [12].

8This can be seen as follows. Since AA5/Z2
has total quantum dimension dim(AA5/Z2

) = 2|A5| = 120, such A′
would satisfy dimA′ = |A5|= 60. This total dimension is maximal in the sense that for any simple x we must have
〈A′, x〉 = dx with dx the quantum dimension of x . However, since A5/Z2 does not admit the realization in SPT
phases, A5/Z2 does not have such a haploid algebra object with the maximal total quantum dimension [55].
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A large class of systems with coset symmetry comes from Higgs phase of gauge theories,
where a gauge group G is broken to a subgroup K that remains gauged. Such system neces-
sarily have coset symmetry with trivial twist ωD+1 = 0, since the original system must be free
of gauge anomaly. In a companion paper we will discuss these applications in more details.

Generalization to fermionic systems While the coset symmetry studied here is described by
G gauge theory in the bulk with boson Wilson line, it would be interesting to study “fermionic
coset symmetry” where the bulk is a gauge theory with emergent fermions. This includes the
cases that the symmetry line operators included in the coset symmetry are not bosons (unlike
those in Rep(K) in the coset symmetry discussed in the paper). For example, this occurs when
we allow the presence of a fermionic lines that are Wilson lines of fermion parity. We can also
explore potential generalizations of coset symmetries that can only exist due to presence of
physical fermions.

Relation to higher fusion categories In general spacetime dimension D, the coset symme-
try describes a fusion (D − 1)-category. Higher fusion categories are mysterious and it would
be interesting to use the coset symmetry as specified by the data (G, K ,ωD+1,αD) to explore
properties of higher fusion categories such as their consistency conditions for fusion and braid-
ing. For example, consistency condition on fusion can originate from the cocycle conditions
for ωD+1.

When D = 3, the coset symmetry describes a fusion 2-category [32], and it would be
interesting to compare the data (G, K ,ω4,α3)with the fusion 2-category classification [56]. In
particular, while we show that αD can change the algebraic structure of the symmetry including
its fusion rule, it would be interesting to further explore its role.

Explore variety of theories related by gauging coset symmetries While the focus of the
paper is obstruction to SPT phases, it can be interesting to discuss the obstruction to gauging
as discussed partially in section 5.1, and also the relation between theories related by gauging
coset symmetries. For example, quantities like critical exponents in theories related by gauging
a discrete symmetries are the same.
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A Anomaly-free condition for (H \ K)/K coset symmetries

We will discuss the untwisted (i.e. ωD+1 = 0,αD = 0) coset symmetry with G = H \ K for
some subgroup H, and the K subgroup is gauged. We show that there are no irrep ρ ∈ Rep(G)
such that its decompositions under the subgroups H, K simultaneously contains the trivial
representations of H, K . We will prove it by contradiction.
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Suppose there exists such irrep ρ acting on the vector space V , which decomposes into
ρ = 1 ⊕ . . . under H, K . Since the decomposition under K contains a trivial representation,
one can take a state |ψ〉 satisfying ρ(k) |ψ〉= |ψ〉 for any k ∈ K .

Then, let us take a vector space Ṽ ⊂ V spanned by ρ(h) |ψ〉 with any h ∈ H. One can
immediately check that irrep ρ acts within Ṽ . Pick some state ρ(h′) |ψ〉 ∈ Ṽ with h′ ∈ H. For
g = hk ∈ G, h ∈ H, k ∈ K ,

ρ(g) ·ρ(h′) |ψ〉= ρ(h)ρ(k)ρ(h′) |ψ〉= ρ(hh′′) |ψ〉 ∈ Ṽ , (A.1)

with kh′ = h′′k′′ for some h′′ ∈ H, k′′ ∈ K . Since ρ is an irrep, we get V = Ṽ . This implies any
state of V is expressed as a linear combination of states in the form of ρ(h) |ψ〉.

Now since the decomposition of ρ contains a trivial representation under H, there exists
a non-vanishing state |λ〉 =

∑

h∈H λhρ(h) |ψ〉 satisfying ρ(h) |λ〉 = |λ〉 for any h ∈ H. This
implies

|λ〉=
1
|H|

∑

h∈H

ρ(h) |λ〉=

�

1
|H|

∑

h′∈H

λh′

��

∑

h∈H

ρ(h)

�

|ψ〉 ∝

�

∑

h∈H

ρ(h)

�

|ψ〉 . (A.2)

So, one can take λh = 1 for any h ∈ H for the definition of |λ〉. One can check that |λ〉 is
invariant under the action of k ∈ K . We have

ρ(k) |λ〉=
∑

h′∈H

ρ(kh′) |ψ〉 . (A.3)

One can immediately see that kh1 and kh2 with h1 ̸= h2 leads to the expression khi = h′ik
′
i

with distinct elements h′1 ̸= h′2 of H.9 This implies

ρ(k) |λ〉=
∑

h′∈H

ρ(kh′) |ψ〉=
∑

h∈H

ρ(h) |ψ〉= |λ〉 . (A.4)

Then, this state |λ〉 realizes the 1d irrep of G. For g = hk ∈ G,

ρ(g) |λ〉= ρ(h)ρ(k) |λ〉= |λ〉 . (A.5)

This is in contradiction with ρ is an irrep of G, which completes the proof.

B Anomalous A6/A5 coset symmetry

Let us provide another example of anomalous finite coset symmetry without a twist. Consider
an alternating group G = A6 and its subgroup K = A5. Since A6 is simple, A5 is not a normal
subgroup and A6/A5 is non-invertible. A5, A6 do not have a common normal subgroup so this
is a minimal coset symmetry.

Also, A6 cannot be expressed as a bicrossed product of two subgroups H, K with K = A5.
This can be verified by checking that every subgroup H of order 6= |A6|/|A5| has a nontrivial
overlap with A5. So A6/A5 is a candidate of the coset non-invertible symmetry that does not
admit realization in SPT phases.

Let us consider the symmetry TQFT for the coset G/K symmetry, which is the G = A6
gauge theory. One boundary breaks the gauge group G→ K , and the other breaks G→ K ′. If
|K ′| ≥ 6, K ∩ K ′ ̸= {id}. This implies the presence of a nontrivial magnetic operator stretching
between the ends of the interval, which leads to the nontrivial degeneracy of states. To find

9Let us check the contraposition. Suppose that kh1 = hk1, kh2 = hk2 with h ∈ H. This implies k1h1 = k2h2, so
h1h−1

2 = k−1
1 k2. Since H ∩ K = {id} we get h1 = h2.
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SPT we need to look for the cases with |K ′| ≤ 5. Writing K = A5 = 〈(1,2, 3,4, 5), (1, 2,3)〉, the
choices of the nontrivial subgroup K ′ ⊂ A6 with K ∩ K ′ = {id} are listed as follows (up to the
permutation isomorphism):

Z2 = 〈(1, 2)(3,6)〉, A3 = Z3 = 〈(1,2, 6)〉 ,

Adiag
3 = Z3 = 〈(), (1,2, 3)(4,5, 6), (1, 3,2)(4,6, 5)〉 ,

Z2
2 = 〈(), (1, 2)(3,6), (1,3)(2,6), (1,6)(2, 3)〉 ,
Z4 = 〈(), (1, 2,5, 6)(3, 4), (1, 5)(2,6), (1,6, 5,2)(3, 4)〉 ,
Z5 = 〈(1, 2,3, 4,6)〉 .

(B.1)

Let us study if the interval realizes an SPT with these groups K ′ listed above. It is useful
to explicitly write down the character table of A6 (generated by GAP):



















1 1 1 1 1 1 1
5 1 2 −1 −1 0 0
5 1 −1 2 −1 0 0
8 0 −1 −1 0 −ω5 −ω4

5 −ω2
5 −ω

3
5

8 0 −1 −1 0 −ω2
5 −ω

3
5 −ω5 −ω4

5
9 1 0 0 1 −1 −1
10 −2 1 1 0 0 0



















, (B.2)

where ω5 is the 5th root of unity. Each row corresponds to an irrep R1, . . . , R7, and each
column corresponds to a conjugacy class C1, . . . , C7. The representative and the size of each
conjugacy class is given in Table 1.

We will see that for K ′ listed above, the 5d irrep R2 contains a trivial rep under both
K = A5, K ′. In general, G irrep R contains direct sum of d trivial reps under H ⊂ G if

∑

h∈H

χR(h) = d|H| . (B.3)

The sum of characters can be directly evaluated for H = K , K ′, R= R2 using the character table
as follows:

∑

k∈A5

χR2
(k) = χR2

(C1) + 15χR2
(C2) + 20χR2

(C3) + 12χR2
(C6) + 12χR2

(C7) = 60 ,

∑

k∈Z2

χR2
(k) = χR2

(C1) +χR2
(C2) = 6 ,

∑

k∈A3

χR2
(k) = χR2

(C1) + 2χR2
(C3) = 9 ,

∑

k∈Adiag
3

χR2
(k) = χR2

(C1) + 2χR2
(C4) = 3 ,

∑

k∈Z2
2

χR2
(k) = χR2

(C1) + 3χR2
(C2) = 8 ,

∑

k∈Z4

χR2
(k) = χR2

(C1) +χR2
(C2) + 2χR2

(C5) = 4 ,

∑

k∈Z5

χR2
(k) = χR2

(C1) + 4χR2
(C7) = 5 .

(B.4)

Hence the number of trivial reps under K , K ′ is always positive, d > 0. This implies that R2
can terminate at both ends of the interval for any choices of K ′ listed above. So the A6/A5
coset symmetry admits no realization in SPT phases.
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Table 1: Conjugacy classes of A6 that corresponds to the character table.

C1 C2 C3 C4 C5 C6 C7

Element () (1, 2)(3, 4) (1,2,3) (1,2, 3)(4, 5,6) (1, 2,3, 4)(5,6) (1, 2,3, 4,5) (1, 2, 3, 4, 6)

|Ci| 1 45 40 40 90 72 72
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