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Abstract

We extend the Symmetry Topological Field Theory (SymTFT) framework beyond internal
symmetries by including geometric data that encode spacetime symmetries. Concretely,
we enrich the SymTFT of an internal symmetry by spacetime symmetries and study the
resulting symmetry-enriched topological (SET) order, which captures the interplay be-
tween the spacetime and internal symmetries. We illustrate the framework by focus-
ing on symmetries in 1+ 1D. To this end, we first analyze how gapped boundaries of
2+ 1D SETs affect the enriching symmetry, and apply this within the SymTFT framework
to gauging and detecting anomalies of the 1+ 1D symmetry, as well as to classifying
1+ 1D symmetry-enriched phases. We then consider quantum spin chains and explic-
itly construct the SymTFTs for three prototypical spacetime symmetries: lattice transla-
tions, spatial reflections, and time reversal. For lattice translations, the interplay with
internal symmetries is encoded in the SymTFT by translations permuting anyons, which
causes the continuum description of the SymTFT to be a foliated field theory. Using this,
we elucidate the relation between Lieb-Schultz-Mattis (LSM) anomalies and modulated
symmetries and classify modulated symmetry-protected topological (SPT) phases. For
reflection and time-reversal symmetries, the interplay can additionally be encoded by
symmetry fractionalization data in the SymTFT, and we identify mixed anomalies and
study gauging for such examples.
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1 Introduction

Symmetries have long provided a powerful perspective and an essential tool in theoretical
physics. From the early triumphs of Noether’s theorem [1] to the modern notion of gener-
alized global symmetries initiated by [2] (see [3–9] for recent reviews), symmetry principles
have yielded deep insights into a plethora of physics and phenomena, from phases of matter
and their transitions, to dualities of quantum field theories. The power of symmetries lies in
their ability to distill a system’s universal features while remaining agnostic to its potentially
complicated details.

2

https://scipost.org
https://scipost.org/SciPostPhys.20.1.007


SciPost Phys. 20, 007 (2026)

B
phys
TS

B
sym
S

Z(S) Xd+1 × [0,1]
Compactification

Interval

TS
Xd+1

Figure 1: The S-symmetric theory TS on (d + 1)D spacetime Xd+1 is related to the
((d + 1) + 1)D SymTFT Z(S) of S by the interval compactification of the slab theory
(Bsym

S ,Z(S),Bphys
TS ) on spacetime Xd+1 × [0, 1]. The B

sym
S boundary realizes the S

symmetry defects and the boundary B
phys
TS encodes the dynamics of TS . The interval

compactification is an exact relation due to the topological properties of Z(S). More
specifically, the interval compactification induces an isomorphism from the “sand-
wich” (Bsym

S ,Z(S),Bphys
TS ) to TS .

A powerful framework for separating the universal, symmetry-based properties of a theory
from its theory-specific details is the symmetry topological field theory (SymTFT) [2,10–47].1

The SymTFT is a symmetry-based bulk-boundary correspondence that relates a quantum the-
ory with global symmetry to a topological theory in one higher dimension, as shown in Fig. 1.
As we review in Appendix A, the SymTFT provides a physical realization/representation of
the symmetry defects and charges of a (generalized) symmetry. It is useful for performing
the “calculus” of symmetry defects and deducing symmetry-allowed phenomena, thereby pro-
viding conceptual clarity and finding new applications of symmetries. Among its various ap-
plications, those we consider in this paper are its applications to diagnosing ’t Hooft anoma-
lies [16,27–29,32,55–57] and to classifying phases of matter [16,19,24,25,58–66].

Since its inception, SymTFT has been undergoing rapid development and has been formu-
lated for discrete and continuous internal (generalized) symmetries. Despite this impressive
progress, a significant gap remains: spacetime symmetries remain largely outside the standard
SymTFT framework. Spacetime symmetries, such as time-reversal, spatial reflections, lattice
or continuum translations, and boosts, are ubiquitous in realistic systems and underpin a wide
range of physical phenomena. The most straightforward generalization of SymTFT for space-
time symmetries would involve dynamically gauging spacetime symmetries. However, un-
like their internal counterparts, spacetime symmetries fail to admit conventional background
gauge fields and symmetry defects. The difficulties of formulating such a gauge theory leave
a systematic understanding of SymTFT for spacetime symmetries still elusive.

One approach to formulating a SymTFT for spacetime symmetries is to replace the space-
time symmetry with an effective internal symmetry and consider the SymTFT for that effective
internal symmetry. This approach closely follows the philosophy that lies at the heart of the
crystalline equivalence principle [67–71], which states that the classification of some invertible
phases protected by crystalline symmetries is in one-to-one correspondence with the classifica-
tion of invertible phases protected by an internal symmetry. However, significant conceptual
differences exist between internal and spacetime symmetries that would not be captured by
simply replacing the spacetime symmetry with an effective internal symmetry. For example,
the difference between their defects (see [72, 73] for a detailed survey in the context of one-

1Different communities—hep-th, cond-mat, and math-ph—independently initiated the developments over the
past decade that led to the SymTFT. Depending on the community, the SymTFT is also called topological holography
and Symmetry Topological Order (SymTO). In general, the TFT defining the SymTFT can have trivial topological
order, potentially including non-trivial local operators [48–52] or by being an invertible theory [35]. In this work,
the SymTFTs considered always have non-trivial topological order. Related concepts to the SymTFT can be found
in various foundational papers on quantum field theory, e.g., Refs. 53 and 54.
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dimensional lattice translations, and [74] for discussion on the fractonic nature unique to
crystalline defects in higher dimensions). Furthermore, crystalline equivalence principle type
arguments can fail for phases failing to meet the “liquid” property introduced in [67]. These in-
clude, for example, subsystem symmetry protected topological (SPT) phases [75–82]. Hence,
it is desirable to have a construction of the SymTFT that treats spacetime symmetries honestly,
which we will do in this work.

1.1 Summary

In this paper, we extend the SymTFT framework to spacetime symmetries using a symmetry-
enriched topological (SET) order as the SymTFT. The intrinsic topological order of the SET
realizes the SymTFT of an internal symmetry, and its enriching symmetry is the spacetime
symmetry. Different symmetry enrichments correspond to different interplays between the
internal and spacetime symmetries (e.g., mixed anomalies and group extensions). From a field
theory point of view, our construction yields the SymTFT of an internal symmetry coupled to
background fields corresponding to geometric structures of spacetime (e.g., Stiefel–Whitney
classes and foliation structures). Among other things, we apply this spacetime symmetry-
enriched SymTFT to classifying spacetime symmetry-enriched phases of matter and diagnosing
Lieb-Schultz-Mattis (LSM) anomalies.

We start in Section 2 discussing how SETs can be used as SymTFTs and why they naturally
arise for symmetries that cannot be straightforwardly gauged (i.e., spacetime symmetries).
Throughout the section, and this section alone, we will assume that the enriching symmetry has
well-defined topological defects. By doing so, we can use aspects of the well-known framework
for bosonic SETs [83]while developing helpful intuition for later when the enriching symmetry
is a spacetime symmetry.

Gapped boundaries play a central role in the SymTFT framework, and in Section 2.1.1,
we examine how a gapped boundary modifies an SET’s enriching symmetry Q in 2+ 1D. We
assume Q is a finite invertible symmetry and that the topological order is bosonic. A gapped
boundary of an SET is obtained by condensing anyons that form a Lagrangian condensable
algebra L. If there is a non-trivial action of Q on the anyons, denoted by ρ, the presence of a
gapped boundary can explicitly break Q down to a subgroup QL = {q ∈Q | ρq(L)∼= L}. The
remaining QL symmetry operators, however, do not necessarily form the group QL: the gapped
boundary can cause QL to be extended by a group AL describing operators on the boundary.
These AL operators themselves are symmetries, implemented by uncondensed anyon lines on
the boundary. We show that the enriching symmetry QL and boundary symmetry AL form the
total symmetry group GL described by the group extension (see Fig. 2)

1→ AL→ GL→QL→ 1 . (1)

The action of QL on AL in GL is inherited from the action ρ of Q on the anyons. We further
show that the extension class in (1) is non-trivial if and only if there is an anyon in L with
fractional QL symmetry charge. In this paper, we do not investigate the interplay with possi-
ble non-invertible symmetries on the boundary, instead focusing on examples with invertible
symmetries and Abelian AL and QL for simplicity.

Having established how Q is affected by a gapped boundary and how it interplays with
AL, we then apply the symmetry-enriched SymTFT to study discrete gauging and to classify
Q-enriched gapped phases.

As in the standard SymTFT framework, discrete gauging is implemented by changing the
symmetry boundary (the top boundary in Fig 1). For a symmetry boundary with Lagrangian
algebra L, the group GL describes the symmetry captured by the symmetry-enriched SymTFT.
This includes the symmetry encoded by symmetry-enrichment and the symmetry encoded by
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the symmetry boundary. Changing the symmetry boundary amounts to discrete gauging only
the AL sub-symmetry, but not the full GL symmetry. Changing the symmetry boundary gener-
ally changes the groups AL and QL as well as their extension (1). These changes capture the
properties of the dual symmetry arising from gauging, which includes new interplays involving
Q (e.g., extensions and anomalies).

Q-enriched phases are phases where QL
∼=Q is a subgroup of GL and is not spontaneously

broken. We show how such phases are classified using a sandwich of the Q-enriched SymTFT,
similar to that shown in Fig. 1. As explained in Section 2.1.3, here, the symmetry and physical
boundaries of the SymTFT are restricted to Q-symmetric Lagrangian algebras. A Q-symmetric
Lagrangian algebra L satisfies ρq(L)∼= L for all q ∈Q and carries no fractional Q symmetry
charge. These Lagrangian algebras correspond to boundaries that do not affect the enriching
symmetry. That is, they are ones for which QL

∼=Q and the extension class of (1) is trivial.
There can, however, still be an action of Q on AL, making GL

∼= AL⋊Q. A powerful application
of this classification is diagnosing ’t Hooft anomalies of the total symmetry. Indeed, if there
are no Q-enriched SPTs, there will be no GL SPTs and hence an ’t Hooft anomaly for GL.

An example of a symmetry-enriched SymTFT we consider throughout Section 2 is Z2 topo-
logical order in 2+ 1D enriched by a Z2 symmetry. For this SET, the enriching Z2 symmetry’s
action ρ is trivial and the e anyons carry fractional Z2 charge (see Appendix E for a commut-
ing projector model realizing this SET). We show that the symmetry-enriched SymTFT with
Lagrangian algebra Lm = 1⊕m describes an anomalous Z2×Z

(e)
2 symmetry. This is anoma-

lous because Lm is the only Z2-symmetric Lagrangian algebra, so the only Z2-enriched gapped
phase has Z(e)2 spontaneously broken and there are no Z2×Z

(e)
2 SPTs. The other Lagrangian

algebra is Le = 1⊕ e, which is not Z2-symmetric since e carries fractional Z2 charge. Due to
the symmetry fractionalization, the symmetry-enriched SymTFT with this symmetry bound-
ary describes a Z4 symmetry, which extends Z2 by the boundary Z(m)2 symmetry. Changing

from the Le boundary to the Lm boundary amounts to gauging the Z(e)2 sub-symmetry of the

anomalous Z2×Z
(e)
2 symmetry and, as expected, leads to a dual Z4 symmetry.

After Section 2, the remainder of the paper focuses on explicit models of spacetime
symmetry-enriched SymTFTs. We concentrate on spacetime symmetries ubiquitous to 1+ 1D
quantum spin chains: lattice translations in Section 3, spatial reflections in Section 4, and
time reversal in Section 5. We present examples of the symmetry-enriched SymTFTs with
these spacetime symmetries from both the Euclidean field theory and quantum lattice model
perspectives, often times providing derivations from one to the other.

Lattice translations of a one-dimensional spin chain in the translation-enriched SymTFT
become discrete spatial translations in the direction parallel to the boundary in Fig. 1. One-
dimensional lattice translations in 2 + 1D SETs cannot undergo symmetry fractionalization.
Instead, their interplay with anyons is only through non-trivial anyon automorphisms, which
makes the anyons position-dependent excitations [84]. When this occurs, the symmetry-
enriched SymTFT is not an honest-to-goodness TFT. Instead, it is a foliated field theory that
couples to a foliation structure of spacetime that causes the SymTFT to be topological only in
the interval compactification direction.2 Throughout Section 3, we show how this translation-
enriched SymTFT can be applied to modulated symmetries3 and LSM anomalies involving
lattice translations. A useful application is in classifying modulated SPTs, which we do for
specific modulated symmetries in examples and later present a general classification in Sec-
tion 3.1.3.

2Strictly speaking, the SymTFT does not need to be topological in all directions. It only needs to be topological
in the direction parallel to the interval compactification direction to induce the isomorphism in Fig. 1.

3Modulated symmetries are internal symmetries that act in a non-uniform, spatially modulated way. They are
generalizations of, for example, dipole symmetries. We refer the reader to Ref. 85 for an introduction and recent
survey of modulated symmetries.
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We consider dipole and exponential symmetries as examples in Sections 3.1.1 and 3.1.2,
respectively, and general LSM anomalies of translation and finite Abelian symmetries in Sec-
tion 3.2. In both of these, we consider lattice and field theory perspectives. The translation-
enriched SymTFT makes the relation between LSM anomalies and modulated symmetries
transparent. In particular, we show in Section 3.2.2 that there is always a discrete gauging
that relates LSM anomalies between lattice translations and finite Abelian group symmetries
to modulated symmetries.

As an example, we consider a translation-enriched SymTFT whose underlying topological
order is Z2 ×Z2 topological order that is enriched by lattice translations Tx in the x direction.
The anyons of the topological order are generated by e1, e2, m1, and m2, with ei and mi having
mutual braiding by the phase π. The Tx translation symmetry enriches this topological order
by transforming the anyons as

Tx(e1) = e1e2 , Tx(e2) = e2 , Tx(m1) = m1 , Tx(m2) = m1m2 . (2)

This action of Tx on the anyons is the only non-trivial data specifying the symmetry enrichment.
Because of the enrichment by Tx , this SymTFT is only topological in the y direction.

This simple example is discussed in both Sections 3.1.2 and 3.2, and we present a quantum
code and Euclidean field theory description of it. The stabilizers of the former are

Ar =
X X

X

X
r

, Br =

Z

Z

Z Z

r

, (3)

where X and Z are Pauli matrices transforming qubits that reside on the edges of the square
lattice. The continuum Euclidean action of the latter is the foliated field theory

S[e] = −
2i
2π

∫

�

ea ∧ db−eb ∧ da− ea ∧eb ∧ e
�

, (4)

where e = Λdx is a background foliation field with Λ−1 a necessary UV cutoff (i.e., a lattice
spacing). We write down the logical operators/topological defect lines explicitly, showing
they satisfy (2). There are six Lagrangian condensable algebras, four of which are translation-
symmetric while the other two are not. The translation-symmetric Lagrangian algebras are

L1 = 1⊕ e1 ⊕ e2 ⊕ e1e2 , L2 = 1⊕m1 ⊕m2 ⊕m1m2 , (5)

L3 = 1⊕m1 ⊕ e2 ⊕m1e2 , L4 = 1⊕m1e2 ⊕ e1m2 ⊕ e1e2m1m2 . (6)

The Lagrangian algebras

L5 = 1⊕ e1 ⊕m2 ⊕ e1m2 , L6 = 1⊕ e1e2 ⊕m1m2 ⊕ e1e2m1m2 , (7)

are not translation-symmetric because they satisfy Tx(L5)∼= L6 and Tx(L6)∼= L5. When spec-
ifying symmetry boundaries, L1,2,4 correspond to Z2 dipole symmetries, L3 to a Z2 ×Z2 sym-
metry with an LSM anomaly involving translations, and L5,6 to a Z2 ×Z2 symmetry with a
non-invertible translation. The L1 boundary, for example, has a dipole symmetry because its
symmetry defects m1 and m2 transform under Tx as a monopole and dipole, respectively. On
the other hand, the L3 boundary describes a Z2 ×Z2 symmetry. It is not modulated because its
symmetry defects e1 and m2 do not transform under Tx when L3 is condensed, and it has an
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LSM anomaly because L3 has no translation-symmetric magnetic Lagrangian algebras. Lastly,
the L5 and L6 boundaries describe non-invertible translations implemented by first discrete
gauging to change L5 or L6 to, for example, L2, then performing Tx (a symmetry of L2), and
then discrete gauging to return to L5 or L6.

In Sections 4 and 5, we consider SymTFTs enriched by spatial reflections and time rever-
sal, respectively. Unlike one-dimensional translations, these spacetime symmetries can exhibit
symmetry fractionalization. For simplicity, we focus on Z2 topological orders in 2+ 1D en-
riched by these two symmetries. In both cases, the reflection and time-reversal symmetries
enrich the topological order by acting trivially on m anyons while fractionalizing onto the e
anyon. These examples closely resemble the internal Z2 symmetry fractionalization exam-
ple discussed above. Namely, the e condensed boundary is a symmetry boundary where the
reflection and time reversal are extended by a Z2 symmetry operator, giving rise to a Z4 reflec-
tion/time reversal symmetry. The m condensed boundary encodes a mixed anomaly between
an internal Z2 symmetry and the reflection/time reversal symmetries. In both of these Sec-
tions, we present lattice models of these symmetry-enriched SymTFTs as well as quantum spin
chain models realizing these symmetries.

For example, in Section 4, the stabilizer code Hamiltonian we consider can be recast as the
toric code, whose stabilizers

Ar =
X X

X

X
r

, Br =

Z

Z

Z Z

r

. (8)

The e and m anyons correspond to a violations of Ar = 1 and Br = 1, respectively. The spatial
reflection symmetry operator we study, which commutes with the toric code Hamiltonian, is4

UR = R
∏

r

X r ,x , (9)

where R is the lattice reflection operator about the center of the links 〈(0, ry), (1, ry)〉 and X r ,x
acts on the qubit at the link 〈(rx , ry), (rx + 1, ry)〉. This reflection operator satisfies U2

R = 1
and generates a ZR

2 reflection symmetry. The e anyons of the toric code carry fractional UR
symmetry charge. Indeed, the string operator Z(0,0),x , which creates a pair of e anyons about
the UR reflection center, carries −1 symmetry charge under UR. Therefore, for an R symmetric
configuration of e anyons, each e anyon carries fractional UR symmetry charge. For the smooth
boundary condition—the m condensing boundary—of the toric code, UR operator is unaffected
and acts as a ZR

2 operator which locally anti-commutes with the boundary We =
∏

boundary Z
logical operator signaling an LSM anomaly. The smooth boundary, therefore, describes an LSM
anomalous ZR

2 ×Z2 symmetry. On the other hand, for the rough boundary—the e condensing
boundary—the UR operator becomes a ZR

4 operator

UR = R
∏

r

X r ,x

∏

er∈boundary

X erx
er ,y . (10)

4We derive the stabilizer code and reflection operator in Section 4.2.1 by gauging a Z4 reflection operator in
a paramagnet Hamiltonian. The resulting stabilizer code (156) and reflection operator (158) appear different
from (8) and (9), respectively, but are equivalent. The operators in Section 4.2.1 become the simplified versions
presented here by (1) enforcing the stabilizer Zr = 1, (2) shifting the site qubits acted by Pauli operators (eX r , eZr )
to neighboring horizontal links and dropping the tildes: (eX r , eZr ) 7→ (X r ,x , Zr ,x ), and (3) shifting each qubit on a
plaquette rightward to the nearest vertical link: (X p, Zp) 7→ (X r ,y , Zr ,y).
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Here, the UR symmetry operator is dressed by a modulated boundary operator so that it com-
mutes with the boundary stabilizers. The new reflection symmetry operator satisfies U2

R =Wm,
where Wm is the boundary Wm =

∏

boundary X logical operator. Therefore, the rough boundary
describes a ZR

4 reflection symmetry. Thus, gauging the Z2 symmetry of the LSM anomalous
ZR

2 ×Z2 symmetry leads to a dual ZR
4 reflection symmetry.

2 Symmetry enriched SymTFT

In this paper, we extend the SymTFT framework to incorporate spacetime symmetries and
their possible non-trivial interplays with internal symmetries. Such interplays could arise from
’t Hooft/LSM anomalies or non-trivial symmetry extensions. To systematically capture such
symmetries using the SymTFT framework, we will consider SymTFTs of internal symmetries
enriched by spacetime symmetries. The interplay between internal and spacetime symme-
tries is encoded in the spacetime symmetry enrichment of the SymTFT. An example of such a
spacetime symmetry-enriched SymTFT was considered in [47].

To motivate why spacetime symmetry-enriched SymTFTs provide a natural description,
let us first recall a common construction of SymTFTs. Typically, a SymTFT is constructed by
gauging the symmetry of an SPT phase. For simplicity, in this paper we will specialize to 1+ 1D
symmetry described by a finite group G. In this setting, the SymTFT is a Dijkgraaf-Witten (DW)
theory, which can be constructed by starting with the 2+1D G-SPT associated with the ’t Hooft
anomaly ω ∈ H3(BG, U(1)) of G and subsequently gauging G.

Suppose the total symmetry group G has a normal subgroup N , and let Q denote the
quotient group G/N . When G consists of only internal symmetries, there are two equivalent
ways to construct the SymTFT for G. One approach is to start with the G-SPT and gauge G.
Alternatively, one can first gauge N , arriving at a Q-enriched N -DW theory, and then gauge
Q.5 This process can be summarized in the following commutative diagram:6

G-SPT G-DW Theory

Q-enriched N -DW Theory

N Q

G

(11)

where each arrow is labeled by the symmetry being gauged. The interplay between N and Q
is encoded in the symmetry enrichment data of Q on the N -DW theory. The G-DW theory is
deducible from the Q-enriched N -DW theory [83, 90]. Thus, while the G-DW theory serves
as the SymTFT for the G symmetry, the Q-enriched N -DW theory provides an alternative per-
spective for understanding various aspects of the G symmetry. While we specialized to DW
theories enriched by invertible symmetries, this perspective applies to general SymTFTs with
non-invertible symmetry enrichment.

5When N is not a normal subgroup of G, the quotient Q = G/N does not define an ordinary group symmetry but
rather a non-invertible G/N coset symmetry [86, 87]. Gauging this non-invertible symmetry in the N Dijkgraaf-
Witten theory produces the G DW theory.

6Mathematically, the symmetry defects of the 2 + 1D G-SPT are described by the fusion 2-category 2-VecG .
Meanwhile, the symmetry defects of the G-DW theory (modulo condensation defects) are captured by the center
Z(VecωG ) of VecωG . When ω is trivial, the symmetry defects of the Q-enriched N -DW theory are given by the
relative center ZVecG

(VecN ), which forms a Q-crossed braided extension of Z(VecN ) [88,89]. Equivariantizing the
Q-crossed braided fusion category amounts to gauging Q [83]. In this case, the equivariantization of ZVecG

(VecN )
yields Z(VecG), as expected from gauging Q. For non-trivial ω, the symmetry defects are described by a different
Q-crossed braided fusion category, whose equivariantization results in Z(VecωG ).

8

https://scipost.org
https://scipost.org/SciPostPhys.20.1.007


SciPost Phys. 20, 007 (2026)

We remark that symmetry-enriched SymTFTs have also been studied in the context of non-
invertible duality symmetries [29, 55, 91, 92]. These duality symmetries are constructed by
half-gauging some symmetry S [93, 94]. The SymTFT for the full symmetry including both
S and the duality symmetry can be obtained by gauging an anyon-automorphism symmetry
of the S SymTFT. Therefore, by analyzing the anyon-automorphism symmetry enrichment on
the S SymTFT, one can learn about the non-invertible duality symmetry.

In this paper, we are interested in symmetries G that involve both internal and spacetime
symmetries with a non-trivial interplay. Specifically, we consider scenarios where the quotient
group Q ∼= G/N represents a spacetime symmetry while the normal subgroup N represents an
internal symmetry. In this case, it is not clear how to gauge the spacetime symmetry Q, which
obstructs the direct construction of the SymTFT for the full symmetry G. Nevertheless, the
Q-enriched N -DW theory can still be constructed by starting with the G-SPT and gauging N .

In the remainder of this section, we will explore the general structure of Q-symmetry-
enriched SymTFTs, treating Q as if it were an internal symmetry to develop intuition. Such an
internal symmetry could describe a spacetime symmetry through the crystalline equivalence
principle [67–71]. In the subsequent sections, we will study explicit examples of spacetime
symmetry-enriched SymTFTs, both on the lattice and in the continuum.

2.1 SymTFT frameworks with symmetry enrichment

Two fruitful applications of the SymTFT frameworks are discrete gauging and classifying
phases, which are reviewed in Appendix A. The former is implemented by changing the gapped
(topological) symmetry boundary, while the latter uses topological interfaces like those in
Fig. 3. In this section, we will discuss how these applications generalize for 2+ 1D symmetry-
enriched SymTFTs. Similar to SymTFTs without symmetry enrichment, gapped boundaries will
play a central role in these applications of the symmetry-enriched SymTFT. However, gapped
boundaries of SETs have received considerably less attention than those of topological orders
(see [47, 89, 92, 95–97] for some previous discussion on SET boundaries). Therefore, before
presenting these generalizations, we will first discuss some general aspects of gapped bound-
aries for SETs.

2.1.1 An aside: Gapped boundaries of SETs

This subsection will discuss gapped boundaries of 2+ 1D Q-enriched bosonic topological or-
ders, where Q is a discrete group. A systematic study of the boundaries of SETs lies outside
the scope of this paper. Instead, we will highlight a few properties relevant to our present dis-
cussion. Recall that the symmetry enrichment data consists of the action of Q on the anyons
of the topological order, which we denote by ρ,7 and the symmetry fractionalization class
given by [η] ∈ H2(BQ, Aρ),8 where A is the group of Abelian anyons [83].9 There is also the
H3(BQ,U(1)) class describing whether Q is realized anomalously on boundaries, which we
always assume is trivial.

Consider a gapped boundary of the SET whose condensed anyons are described by the
Lagrangian algebra L of the underlying topological order. When ρ is non-trivial, this boundary
typically breaks the bulk symmetry Q explicitly down to a subgroup QL. Indeed, the Q-action
ρ on the anyons induces an action on a Lagrangian algebra L→ ρq(L). This transforms the

7The action ρ can change the anyon labels and can act non-trivially on the anyons fusion/splitting spaces.
8Symmetry fractionalization can be understood as the dressing of trivalent junctions of Q symmetry defects

by Abelian anyons, which defines an A 1-form symmetry. The 2-cocycle η(q1, q2) specifies which Abelian anyon
decorates the junction formed by fusing q1 and q2 symmetry defects.

9We assume the Postnikov class H3(BQ, Aρ) vanishes. A non-trivial Postnikov class forces Q to spontaneously
break in the bulk, which is not allowed in the symmetry-enriched SymTFT framework we are exploring.
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anyons of L=
⊕

a na a to the anyons

ρq(L) =
⊕

a
na ρq(a) , (12)

and also acts on the fusion space of the Lagrangian algebra, i.e., on the junctions of the anyons
in L. This implies that, as illustrated on the left panel of Fig. 2, a Q symmetry defect can act
on the boundary and transform L to ρq(L). When ρq(L)∼= L for all q ∈Q, the Lagrangian
algebra L is said to be Q-stable, and the enriching bulk symmetry QL

∼=Q. However, if L is not
Q-stable, there is a q ∈Q such that ρq(L) ̸= L, which causes Q to be explicitly broken down to

QL = {q ∈Q | ρq(L)∼= L} . (13)

From a Hamiltonian perspective, this means that the symmetry operator Uq changes the bound-
ary conditions from L to ρq(L), and does not commute with the Hamiltonian near the bound-
ary when ρq(L) ̸∼= L.

The gapped boundary also has its own boundary symmetries, generated by the uncon-
densed anyons on the boundary. The uncondensed Abelian anyons on the boundary form the
group AL. We denote by GL the group formed by all of the invertible symmetry operators, both
the QL operators that act non-trivially in the bulk and the AL operators that act non-trivially
only on the boundary. It is described by the group extension10

1→ AL→ GL→QL→ 1 . (14)

The action of QL on AL in (14) is inherited from the action ρ. The extension class of (14) is
non-trivial if there exists a non-trivial η(q1, q2) ̸∈ L for q1, q2 ∈QL. Indeed, if such an anyon
exists, the QL symmetry would be enlarged by a group extension on the boundary, as shown
by the right panel of Fig. 2. From a Hamiltonian perspective, this means that the symmetry
operators Uq satisfy

Uq1
× Uq2

= Uq1q2
×Wη(q1,q2) , (15)

where Wη(q1,q2) is the string operator for the anyon η(q1, q2) acting along the gapped boundary.
When the symmetry-enrichment is trivial, i.e., when ρ is the identity automorphism and [η]
is trivial, QL

∼=Q and GL
∼= AL ×Q.

An important class of gapped boundaries are those whose Lagrangian condensable algebra
is Q-symmetric [89, 95, 96]. A Q-symmetric condensable algebra A is a condensable algebra
that:11

1. is Q-stable, i.e., ρq(A)∼=A ;

2. no anyons in A carry fractional Q charge.

We note that a boundary whose condensable algebra has anyons carrying fractional symmetry
charge generally causes the symmetry to spontaneously break on the boundary.

Notably, a gapped boundary with a Q-symmetric condensable algebra L neither explicitly
breaks nor extends Q. First, it does not explicitly break Q since L is Q-stable. Second, perhaps
less obviously, it does not extend Q, i.e., the sequence (14) splits. This follows from L having
to condense all η(q1, q2) anyons to satisfy property 2 of being Q-symmetric. Indeed, because
L is Lagrangian, every anyon not in L must braid non-trivially with at least one anyon in

10In general, the full symmetry can be a non-invertible symmetry due to the non-Abelian anyons. By restricting
to the invertible symmetry AL, we focus on its invertible sub-symmetry.

11A condensable algebra satisfying these two conditions is a Q-equivariant algebra [89].
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Lρq(L)
q

L

q1 q2

q1q2
η(q1,q2)

Figure 2: Consider a gapped 1+ 1D boundary (shown in gray) of a 2+ 1D Q-enriched
topological order. When Q symmetry defects (shown in purple) end on the boundary,
they have two distinct types of interplay. (Left) When the Q-action ρ on anyons is
non-trivial, it induces a Q action on the boundary Lagrangian algebra L, denoted by
ρq(L). (Right) When the symmetry fractionalization class [η] is non-trivial, a triva-
lent junction of Q symmetry defects can end on the boundary, sourcing a η(q1, q2)
topological defect line on the boundary.

L.12 Since a Q-symmetric L does not include anyons with fractional Q charge, the η(q1, q2)
anyons do not braid with any anyons in L, and therefore they must be condensed since L is
Lagrangian. Because every η(q1, q2) anyon is condensed, the boundary extension mechanism
never occurs.13 Importantly, not every Q-enriched topological order admits a Q-symmetric
Lagrangian algebra.14

Let us consider an example where a Z2 symmetry enriches a 2+ 1D Z2 topological order,
i.e., the Z2 toric code. The anyons are denoted by {1, e, m, f }, where e and m are bosons that
braid non-trivially with each other, and f = e×m is a fermion. There are two Lagrangian
condensable algebras:

Le = 1⊕ e , Lm = 1⊕m . (16)

Suppose the Z2 action ρ on the anyons is trivial, but the symmetry fractionalization class is
non-trivial. In particular, we consider the fractionalization pattern η(−1,−1) = m, such that
the e anyon carries a fractional Z2 charge (see Appendix E for an exactly solvable lattice model
realizing this SET). In this case, the Lagrangian algebra Lm is Z2-symmetric. In contrast, the
Lagrangian algebra Le is Z2-stable but not Z2-symmetric since the e anyon carries a fractional
charge. In the presence of an e-condensed boundary, the Z2 symmetry operator squares to an
m string operator on the boundary. This extends the QL = Z2 bulk symmetry to GL = Z4 on
the boundary.

In general, there can be two gapped boundaries that share the same Lagrangian algebra
but differ by the spontaneous breaking of QL. We will always work with the gapped boundary
for a given L that minimally spontaneously breaks QL and has the fewest local topological
operators.

12This can be proven using that a Lagrangian algebra L=
⊕

a na a satisfies
∑

a Sbana = nb, where S is the topo-
logical S matrix [98]. For any anyon b not in L, nb = 0 and this equation becomes

∑

a Sbana = 0. Because
Sb1 = db/D > 0, where D is the total quantum dimension,

∑

a ̸=1 Sbana < 0. Therefore, there must be some anyon
a with na ̸= 0 that has Sba ̸= 0 and braids non-trivially with b. We thank Carolyn Zhang for informing us of this
proof.

13Using the same reasoning, we find that any boundary for which the extension class of (14) is non-trivial must
condense anyons carrying fractional symmetry charge and spontaneously break the enriching symmetry.

14For example, 2+1D Z2 topological order, i.e., 2+1D Z2 toric code, enriched by a Z2 symmetry that exchanges
e and m anyons does not have a Z2-symmetric Lagrangian algebra.
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2.1.2 Discrete gauging with the quiche

Having discussed some aspects of gapped boundaries of SETs, we now turn to applying the
symmetry-enriched SymTFT to discrete gauging. As reviewed in Appendix A, discrete gauging
for the standard SymTFT is performed by changing the symmetry boundary. For the Q-enriched
SymTFT, suppose the total G-SymTFT can be constructed by gauging Q in a Q-enriched N -
SymTFT (i.e., the situation shown in (11)). N -SymTFT is nothing but a N gauge theory (i.e.,
the ground state subspace of Kitaev’s N quantum double model). As mentioned, the non-trivial
enrichment of Q will encode the interplay between the Q and N symmetries that defines the
total symmetry G. The corresponding “quiche” for this symmetry-enriched SymTFT is

B
sym
G

Q-enriched N gauge theory .

The gapped boundary B
sym
G has the electric Lagrangian algebra Le of N gauge theory con-

densed, and hosts topological defects describing the ALe
∼= N symmetry. In the presence of

this gapped boundary, the enriching symmetry Q becomes QLe
, and the symmetry-enriched

quiche describes the total symmetry GLe
∼= G through the group extension (14).

Changing the Lagrangian algebra specifying the boundary condition from Le to L′ leads to
a new symmetry boundary condition. It follows from the SymTFT without enrichment that this
change corresponds to gauging the N sub-symmetry of G. When N is Abelian, the resulting
quiche is

B
sym
G∨

Q-enriched N gauge theory ,

which has an enriching QL′ 0-form symmetry in its bulk and a AL′
∼= N∨ symmetry on its

boundary. This quiche now describes the total symmetry GL′
∼= G∨ formed by the enriching QL′

and boundary AL′
∼= N∨ symmetries. The interplay between QL′ and N∨ is generally different

from the interplay between QLe
and N , which captures the effect of Q on the dual symmetry

N∨ arising from gauging N . While the Q-enriched SymTFT can be used to gauge the N sub-
symmetry of G, it cannot gauge a sub-symmetry of G involving the Q symmetry.

Let us contextualize this general discussion to the previously considered example of a
Z2-enriched Z2 topological order (we will consider more examples throughout the paper).
The two Lagrangian algebras Lm and Le both describe Z2 symmetries on the top boundary
(i.e., ALe

= ALm
= Z2). When the top boundary has Lm condensed, the Z2-enriched sym-

metry is unaffected, and the total symmetry described by the quiche is Q× ALm
= Z2 ×Z2.

When the top boundary has Le condensed, the enriched symmetry is extended by ALe
, and

the quiche describes a Z4 symmetry. Therefore, gauging the ALm
= Z2 sub-symmetry of

GLm
=Q× ALm

= Z2 ×Z2 leads to a dual GLe
= Z4 symmetry. This suggests that the quiche

with the Lm boundary describes an anomalous Z2 ×Z2 symmetry [99], which we will confirm
in the next subsection.

This example is a particular instance of something more general. Namely, starting with a
symmetry boundary specified by a Q-symmetric Lagrangian algebra and changing boundary
conditions to one whose Lagrangian algebra contains anyons with fractional symmetry charges
will result in an extension of Q via the mechanism described in the previous section.
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IA

B
sym
S

Z(S)

Z(S)/A

Figure 3: The classification of quantum phases characterized by a symmetry S us-
ing the SymTFT Z(S) is based on interfaces IA with condensable algebras A of the
SymTFT. See Appendix A for an introduction.

2.1.3 Gapped phases with the sandwich

We now discuss how symmetry-enriched SymTFTs can be used to classify gapped phases. For
simplicity, we will assume the entire symmetry group G is formed by a normal, Abelian sub-
group N of G and quotient group Q ∼= G/N , and consider the SymTFT for N enriched by Q.
The generalization to non-Abelian N is straightforward.

Like for SymTFTs without symmetry enrichment, we consider the sandwich configuration
shown in Fig. 3, where the 1+ 1D symmetry is determined by the gapped top boundary and
different gapped bottom boundaries correspond to different gapped phases. Since the top and
bottom boundaries are gapped, they have corresponding Lagrangian algebras. While the La-
grangian algebra of the top boundary is generally unconstrained, not every Lagrangian algebra
can be condensed on the bottom boundary. Indeed, recall that the enriching symmetry can be
modified by a gapped boundary whose Lagrangian algebra is not Q-symmetric. Since the total
symmetry G should not depend on the bottom boundary, the Lagrangian algebra for the bot-
tom boundary must not change the enriching symmetry. This is always satisfied, for instance,
if the Lagrangian algebra for the bottom boundary is Q-symmetric. However, depending on the
top boundary, a non Q-symmetric Lagrangian algebra can also leave the enriching symmetry
invariant.15

In this paper, we will consider symmetry-enriched SymTFT sandwiches whose top and
bottom boundaries have Q-symmetric Lagrangian algebras condensed.16 In this case, the en-
riching Q symmetry is not affected by either gapped boundary, and the SymTFT describes the
semidirect product symmetry group G = N ⋊Q. These symmetric sandwiches of the symmetry-
enriched SymTFT can realize all Q-enriched gapped phases of the total symmetry G, which are
phases where Q ⊂ G is not spontaneously broken. This construction is the natural extension of
the Lagrangian algebra approach to classifying gapped phases, which is reviewed in Appendix
A for the case without symmetry enrichment. While it cannot realize all gapped phases of G,
it can still detect anomalies of G, even those that depend on Q. Indeed, if there are no Q-
enriched gapped phases that are SPTs, then there are no G SPTs and G is anomalous.17 Mixed
anomalies involving Q and N generally manifest by the Lagrangian algebras that would have
corresponded to SPTs not being Q-symmetric. Importantly, this approach applies to spacetime
symmetries, which is the paper’s focus, in which case these mixed anomalies are the so-called
LSM anomalies.

15For example, an extension of Q due to a non Q-symmetric Lagrangian algebra condensed on the bottom bound-
ary can be trivialized by a top boundary with appropriate condensed Lagrangian algebra.

16Going beyond Q-symmetric Lagrangian algebras is subtle. For one, the typical separation of kinematics and
dynamics provided by the SymTFT’s top and bottom boundaries does not apply. For instance, the top boundary
can spontaneously break the enriching symmetry by condensing anyons with fractional charge. Furthermore,
it is unclear whether anomalies can be detected using non Q-symmetric Lagrangian algebras. In particular, the
symmetry boundary could describe an anomaly-free symmetry but spontaneously break the enriching symmetry,
thereby causing the sandwich never to have a unique ground state.

17The anomalies of G captured here are ones that involve the subsymmetry N . Self-anomalies of Q, on the
other hand, would not be detected using only the data provided. They are reflected in the defectification class
H3(BQ,U(1)) of the SET, which we have assumed to be trivial.
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To consider an example, let us return to the Z2-enriched Z2 topological order discussed
previously. The only symmetric Lagrangian algebra is the magnetic Lagrangian algebra
Lm = 1⊕m. When Lm is condensed on the top boundary and bottom boundaries, the sand-
wich describes a Z2 ×Z2 symmetry with the spontaneous symmetry breaking (SSB) pattern
Z2 ×Z2→ Z2 (where the unbroken symmetry is the enriching Z2 symmetry). Since Lm is
the only Z2-symmetric Lagrangian algebra, there are no other Z2-symmetric Z2 ×Z2 gapped
phases and, therefore, no SPTs. We conclude that Lm describes a Z2 ×Z2 symmetry that is
anomalous. This is consistent with how changing Lm to Le in the quiche causes Z2 ×Z2 to
become Z4: the anomaly leads to an extension, as expected.

This example is a special case of a more general property. Namely, if the symmetry frac-
tionalization class [η] is non-trivial, then every symmetric Lagrangian algebra L corresponds
to an anomalous symmetry. Indeed, every Q-symmetric L contains η(q1, q2), resulting in a
nontrivial overlap among all Q-symmetric L and therefore spontaneous symmetry breaking
phases.

2.2 Symmetry enrichment from symmetry interplays

Having discussed how the quiche and sandwich frameworks generalize to symmetry enriched
SymTFTs, we now explore the possible forms of symmetry enrichment that can occur in these
theories.

2.2.1 Group extensions

Consider an anomaly-free 0-form symmetry in (d + 1)-dimensional spacetime described by a
finite group G. Suppose G has an Abelian normal subgroup A. Then, G can be formulated as
a group extension:

1→ A→ G→Q→ 1 , (17)

where Q ∼= G/A is the quotient group. As reviewed in Appendix B, this group extension is
characterized by two key pieces of data. Firstly, denoting the automorphism group of A by
Aut(A), there exists a group homomorphism ρ : Q→ Aut(A) that describes the action of Q
on A. Secondly, for a given ρ, inequivalent extensions are labeled by the cohomology classes
[c] ∈ H2(BQ, Aρ), where BQ is the classifying space of Q, and Aρ is a Q-module with underlying
Abelian group A and Q-action given by ρ. The elements of G can be represented by pairs
(a, q) ∈ A×Q, with group multiplication given by

(a1, q1) · (a2, q2) =
�

a1 +ρq1
(a2) + c(q1, q2), q1q2

�

, (18)

where c is a representative 2-cocycle of the cohomology class [c].
We graphically represent the symmetry defects of G by black lines and label them by the

group elements of G as (a, q). A general G symmetry defect can be decomposed into an A and
a Q symmetry defect, which we represent by red and blue lines, respectively. The decomposi-
tion follows the group multiplication law (18), which are summarized by the following fusion
diagrams:

a q

(a, q)

,

q ρq−1(a)

(a, q)

. (19)
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Using these fusion rules, we arrive at the following interplays between the a and q symmetry
defects:

ρq(a)

a

q

q

,

c(q1, q2)

q1 q2

q1q2

. (20)

The diagram on the left shows how Q symmetry defects act on A symmetry defects via the group
homomorphism ρ. The diagram on the right shows how A symmetry defects can terminate at
trivalent junctions of Q symmetry defects, where we highlight the boundary of the A symmetry
defects with red dots. By Poincaré duality, this configuration implies that on a triangulated
spacetime, the background gauge fields Q and A for Q and A, respectively, satisfy the following
conditions on each 2-simplex of ordered vertices (i jk):

Qi jQ jk =Qik , Ai j +ρQi j
(A jk)−Aik = c(Qi j ,Q jk) . (21)

These conditions can be compactly written as dQ= 1 and dρA=Q∗c, where Q∗c denotes the
pullback of the 2-cocycle c by Q.

We now proceed to construct the SymTFT for the A sub-symmetry, while carefully tracking
its interplay with the Q symmetry. This is achieved by gauging the A sub-symmetry of a trivial
G-SPT in (d + 2) dimensions. It leads to an A gauge theory enriched by the Q symmetry. From
a Euclidean field theory perspective, the symmetry enrichment is encoded in the coupling
between the Q background field and the A SymTFT, which gives rise to the following partition
function for the SymTFT:

Z[Q] =
∑

A,B
exp

�

i

∫

X
B ∪ (dρA−Q∗c)

�

. (22)

Here, the sum is over all 1-cochains A ∈ C1(Xd+2, A) and d-cochains B ∈ Cd(Xd+2, A∨). When
the background gauge field Q is turned off, this reduces to an A gauge theory, that is, the A
SymTFT. The coupling to Q implies that the Q symmetry defects have a non-trivial interplay
with the electric and magnetic defects of A SymTFT. In what follows, we will show that a non-
trivial ρ results in a non-trivial action of Q on both the electric and magnetic defects, whereas
a non-trivial [c] induces fractional Q symmetry charges on the electric defects. We will follow
the analysis in [99–101].

The A SymTFT has a A∨ = Hom(A, U(1)) d-form symmetry, which is dual to the A 0-form
symmetry that were gauged. The symmetry defects of this A∨ d-form symmetry are the Wilson
lines of A. These Wilson lines are labeled by the group elements χ ∈ A∨, which are in one-to-
one correspondence with the irreducible representations of A. They take the form

Wχ(C) = e i
∮

C χ(A) , (23)

where C is a 1-cycle in spacetime. These Wilson lines are the electric defects of the A SymTFT.
Other than these electric defects, the SymTFT also has codimension-2 magnetic defects, which
are the boundaries of the codimension-1 A symmetry defects that were gauged. Since these A
symmetry defects become trivial after gauging, their boundaries become genuine codimension-
2 defects. These magnetic defects are labeled by the group elements a ∈ A and take the form

Va(M) = e i
∮

M a(B) , (24)

where M is a d-cycle in spacetime. They generate an A 1-form symmetry.
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Before gauging A, the Wilson lines Wχ have non-trivial interactions with the G symmetry
defects. Representing the Wilson lines as green lines, we have the following relations:

ρ∨q (χ)

χ

q

q

a

χ

= e iχ(a) ,

a

χ

. (25)

Note that although all defects are drawn as lines, only the green ones are truly one-
dimensional; the blue and red ones denote codimension-1 defects. The left diagram shows
that when a Wilson line Wχ passes through the boundary of an a-symmetry defect, it picks up
a phase e iχ(a). On the other hand, the right diagram illustrates the action of a q-symmetry de-
fect on a Wilson line via the group homomorphism ρ∨ : Q→ Aut(A∨), where Aut(A∨) denotes
the automorphism group of A∨. This group homomorphism ρ∨ is determined by the group
homomorphism ρ. Consider the following process

ρq(a) a

q

q

χ

= e
i [χ(ρq(a))−ρ∨q−1 (χ)(a)]

ρ∨q−1(χ)

ρq(a) a

q

q

, (26)

where in going from the LHS to the RHS, we hold the four-way junction fixed and move the
Wilson line across it. The Wilson line first picks up a phase e iχ(ρq(a)) when it crosses the left

boundary of the ρq(a)-symmetry defect, and then another phase e
− iρ∨

q−1 (χ(a)) when crossing
the right boundary of the a-symmetry defect. Alternatively, one can reach the RHS via a
different sequence of moves: starting from the LHS, first move the q-symmetry defect past
the right boundary of a-symmetry defect, then move the Wilson line past the ρq(a)-symmetry
defects, and lastly move the q-symmetry defect back to its initial position to arrive at the RHS.
This process does not create any phase. The consistency of the two processes therefore implies
that

exp
�

iρ∨q (χ)(a)
�

= exp
�

iχ(ρq−1(a))
�

, (27)

which fixes the group homomorphism ρ∨ in terms of the group homomorphism ρ.
After gauging A, the Wilson lines Wχ become the symmetry defects of the dual A∨ d-

form symmetry. The right diagram of (25) then implies that the Q symmetry defects act
on these A∨ symmetry lines via the group homomorphism ρ∨. The Q symmetry defects also
act on the codimension-2 symmetry defects Va of the A 1-form symmetry. Recall that these
codimension-2 defects are the boundaries of the codimension-1 A symmetry defects that were
gauged. Since the Q symmetry defects act on the A symmetry defects by ρ before gaug-
ing, they also act on the codimension-2 A symmetry defects by ρ after gauging. All the
codimension-1, 2, and d + 1 symmetry defects of the SymTFT form a split (d + 1)-group sym-
metry (G(0), G(1), . . . , G(d),α(1),α(2), . . . ,α(d)), where G(k) is the k-form symmetry group and
α(k) is the action of G(0) on G(k). When d = 1, G(1) = A× A∨ and α(1)q ((a,χ)) = (ρq(a),ρ∨q (χ)),
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while for d ̸= 1,

G(k) =



















Q , k = 0 ,

A , k = 1 ,

A∨ , k = d ,

Z1 , else,

α(k) =











ρ , k = 1 ,

ρ∨ , k = d ,

id , else,

(28)

where id represents the trivial action.
The extension class [c] of the group extension (17) affects the ’t Hooft anomaly of the

(d + 1)-group symmetry. Before gauging A, we have the following relation:

c(q1, q2)

q1 q2

q1q2

ρ∨[q1q2]−1(χ)χ

= e iχ(c(q1,q2))

c(q1, q2)

q1 q2

q1q2

ρ∨[q1q2]−1(χ)χ
. (29)

Since gauging A trivializes its symmetry defects, the trivalent junctions of Q 0-form symmetry
defects after gauging are dressed by the A 1-form symmetry defects (which were the boundary
of the codimension-1 A symmetry defects). When wrapping the A∨ d-form symmetry defects
of the SymTFT around the trivalent junctions, they pick up a phase as illustrated below:

q1 q2

q1q2

χ

= e iχ(c(q1,q2))

q1 q2

q1q2

. (30)

This means that the A∨ d-form symmetry defects carry fractional Q symmetry charges – a
hallmark of symmetry fractionalization. This symmetry fractionalization is characterized by
the 2-cocycle c(q1, q2), which specifies which A 1-form symmetry defects decorate the trivalent
junctions of Q 0-form symmetry defects [83,102,103]. Since the A∨ d-form symmetry defects
are charged under the Q 0-form symmetry, there is an obstruction to gauging both symmetries
simultaneously, giving rise to an ’t Hooft anomaly of the full (d + 1)-group symmetry.

2.2.2 Mixed anomalies

Another possible form of interplay between two symmetries is a mixed anomaly. Consider
a 0-form symmetry in (d + 1)-dimensional spacetime described by a finite group G. When
the symmetry is internal, its anomalies are in one-to-one correspondence with G-SPTs in
((d + 1) + 1)D, which are classified by the cohomology Hd+2(BG, U(1)). Having already dis-
cussed the interplays via group extensions, we now focus on the case where G is a product
group G = A×Q, with A an Abelian finite group. For such a product group, the cohomology
Hd+2(BG, U(1)) factorizes by the Künneth formula

Hd+2
�

BG, U(1)
�

=
⊕

p+q= d+2
p,q≥0

H p
�

BQ, Hq
�

BA, U(1)
�

�

. (31)
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When interpreted as G-SPTs, the cohomology group for a given q corresponds to SPTs built
from decorating q-dimensional A-SPTs onto the q-dimensional junctions of Q symmetry de-
fects [104–106]. Mixed anomalies between A and Q are captured by those cohomology groups
with q ̸= 0, d + 2.

After gauging A, the G-SPT becomes an A gauge theory enriched by the residual Q sym-
metry. Importantly, the Q symmetry defects remain decorated, but now by the gauged A-SPT
defects, which are a class of topological defects in the A gauge theory constructed by gauging
lower-dimensional A-SPTs [107,108]. Through these decoration patterns, the mixed anomaly
of G determines how Q enriches the A gauge theory.

Let us now explore this effect when d = 1. In this case, the A gauge theory is (2+ 1)-
dimensional. It has both electric defect lines Wχ(C) labeled by χ ∈ A∨ and magnetic defects
lines Va(C) labeled by a ∈ A. There are two possible ways to decorate the Q symmetry defects,
which correspond to the following two cohomology groups

[ν] ∈ H1
�

BQ, H2
�

BA, U(1)
�

�

,

[η] ∈ H2
�

BQ, H1
�

BA, U(1)
�

�

.
(32)

Below, we discuss the effects of these decorations.
A representative ν of [ν] defines a group homomorphism ν: Q→ H2(BA, U(1)). Physically,

it dresses a (1+ 1)D gauged A-SPT νq defect on a q ∈Q symmetry surface defect. As a result,
acting a q-symmetry defect on a magnetic defect line Va(C) causes

Va(C)→ Va(C)Wιaνq
(C) , (33)

where ιaνq ∈ H1(BA, U(1)) is an irreducible representation of A defined by the slant product

ιaνq( ea ) =
νq( a, ea )

νq( ea, a )
. (34)

This action on Va follows from the circle compactification in the presence of an a holonomy
of the 1+ 1D A-SPT νq producing the 0+ 1D A-SPT

∫

S1
a
νq = ιaνq [109], which after gauging

A becomes Wιaνq
in (33). Therefore, when ιaν is non-trivial, the Q symmetry enriches the A

gauge theory by acting non-trivially on the A magnetic defect lines, hence implementing an
anyon automorphism.18 When Q is Abelian, this enrichment can alternatively be described by
the cohomology class ω2 ∈ H2

�

BA, H1(BQ, U(1))
�

in the Künneth formula, which contributes
to the A gauge theory action

S ⊃ i

∫

X3

Q∪A∗ω2 , (35)

where Q ∈ H1(X3,Q) is a background Q gauge field and A ∈ H1(X3, A) the dynamical A gauge
field. This term enforces q-symmetry defects to be dressed by the gauged 1+ 1D A-SPT
q ·ω2 = νq.

A representative η of [η] is a 2-cocycle η: Q×Q→ H1(BA, U(1)). It dresses the gauged
0+ 1D A SPT η(q1, q2) on the trivalent line junction formed by fusing q1 ∈Q and q2 ∈Q sym-
metry surface defects. The gauged 0+ 1D A SPT η(q1, q2) is the electric defect line Wη(q1,q2).
Therefore, the magnetic defect lines Va braid non-trivially with Q symmetry defect junction
lines and carry fractional Q symmetry charge. [η] describes the symmetry fractionalization

18When ιqν is trivial, Q symmetry defects can still act non-trivially on the TQFT by implementing soft braided
tensor autoequivalences of the UMTC [110,111]. These are braided tensor autoequivalences that do no transform
topological defect lines, but act non-trivially on their trivalent junctions (i.e., the Hom spaces of the UMTC).
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pattern of Q in the A gauge theory. This symmetry enrichment contributes to the A gauge
theory’s action

S ⊃ i

∫

X3

A∪Q∗η2 . (36)

Note that this term is equivalent to the term in (22) after replacing A by B when d = 1.

3 SymTFT enriched by lattice translation

In this section, we consider SymTFTs enriched by a discrete spatial translation symmetry in
2 + 1D. Such translation symmetries naturally arise from an underlying spatial lattice. The
resulting lattice-translation-enriched SymTFTs describe symmetries in 1 + 1D that exhibit a
non-trivial interplay with the lattice translations.

We will focus on two well-known interplays involving a finite internal symmetry described
by the Abelian group G. The first is spatially modulated G symmetries in 1+ 1D [85,112–119].
The second is LSM anomalies between lattice translations and uniform G symmetry [72,120–
130]. These interplays have been explored throughout the literature, and a fairly general
understanding of them has developed. We will, therefore, investigate their SymTFTs at a
more general level before exploring examples.19 Readers who prefer to see examples first can
refer to the example sections before reading the general constructions.

We will show that the SymTFTs for these Abelian finite G symmetries are described by G
gauge theory non-trivially enriched by lattice translations. For both types of interplay, lattice
translations induce an anyon automorphism of the G gauge theory’s topological order. Such
translation symmetry enriched topological orders (SETs) have recently gathered much atten-
tion [84, 133–144], exhibiting UV/IR mixing and having anyons with restricted mobility and
position-dependent braiding.

Furthermore, we show that as field theories, these SymTFTs are necessarily not topological
in spatial directions parallel to the boundary. Therefore, they are not topological field theories.
Despite not being a topological field theory, since the SymTFT is topological in the interval
compactification direction, the interval compactification shown in Fig. 1 can still be performed
to relate the SymTFT sandwich (Bsym

S ,Z(S),Bphys
TS ) to the physical theory TS . The notion of

not being topological in one direction is made precise by foliated field theory [143–152]. This
makes the continuum SymTFT a foliated field theory: it does not depend on a background
metric of spacetime but does depend on a background foliation20 of spacetime. In this case,
if the 1+ 1D spacetime is the (x , t) plane, then the 2+ 1D foliation structure describes leaves
spanning each (y, t) plane orthogonal to the boundaries.

3.1 Modulated symmetries

A finite G symmetry is a spatially modulated symmetry if the total symmetry group is G ⋊ϕ ZL
where ZL denotes lattice translations on a periodic lattice with L number of lattice sites. The

19Examples of SymTFTs for specific modulated symmetries have appeared in [47,131,132].
20Strictly speaking, the continuum SymTFT depends on slightly more data than the foliation structure. A codi-

mension 1 foliation is described by a 1-form foliation field eµ that is normal to the leaves of foliation. The foliation
field has a scaling redundancy eµ ∼ exp[− f ] eµ where f is a scalar field. A foliated field theory, however, depends
on the norm of the foliation field in a mild way. For flat foliation, the foliation field is closed de = 0. We can
then define a finite spacing between leaves from the foliation field by requiring that

∫

e = 1 between adjacent
leaves. In this formulation, the integral

∮

e along the foliation field determines the total number of leaves, and the
scaling eµ→ exp[− f ] eµ amounts to modifying the spacing between leaves. We refer the reader to Appendix C for
an introduction to foliation structures.
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group homomorphism ϕ : ZL → Aut(G), where Aut(G) is the automorphism group of G, de-
scribes how G is spatially modulated through the action of lattice translations on G. For ex-
ample, let us specialize to a class of modulated Zn

N symmetries in 1+ 1D system of ZN qudits
whose symmetry generators are represented by

Uq =
∏

j

(X j)
f (q)j , (37)

where X is the ZN generalization of the Pauli X operator and q = 1,2, . . . , n. The ZN -valued
lattice functions F = { f (1), f (2), . . . , f (n)} are independent,21 and are such that each Uq is order
N . They encode the action of lattice translations on Zn

N by

T mUqT−m =
∏

j

(X j)
f (q)j−m , (38)

the right-hand side of which can be decomposed into a product of various Uq operators. Unless
specified otherwise, we will assume that the number of lattice sites L in the direction of the spa-
tial modulation is divisible by the period of the spatial modulation (i.e., that T LUqT−L = Uq).
Perhaps the most standard modulated symmetry of this type is the ZN dipole symmetry. This
is a ZN ×ZN modulated symmetry whose lattice functions are f (1)j = 1 and f (2)j = j, and the

translation operator T acts as T U1T−1 = U1 and T U2T−1 = U−1
1 U2.

In what follows, we will construct the SymTFT for the modulated Zn
N symmetry gener-

ated by (37). For simplicity, we will specialize to lattice functions F such that the algebra of
symmetric operators—the so-called bond algebra [153]—is generated by two types of local
operators.22 Namely, we will assume that this algebra is

B[F] =
­

X j ,
∏

l

Z
Dj,l

l

·

, (39)

where Dj,l are ZN -valued matrix elements of the L × L matrix D that satisfy

1.
∑

l Dj,l f (q)l = 0 mod N ,

2. D0,k = 0 if k < 0 or k > n,

3. Dj+k,l = Dj,l−k,

4. gcd(D0,0, N) = gcd(D0,n, N) = 1.

The first and second conditions, respectively, ensure that the operator
∏

l Z
Dj,l

l is symmetric
and local. The third condition ensures that the bond algebra B[F] is closed under translations
and implies that Dj,l = D0,l− j . Lastly, the fourth condition ensures that D0,0, D0,n ̸= 0 mod N
and is a technical requirement for B[F] to be generated by only the two types of operators
in (39) (see [85, Section 4.1] for further discussion). We note that from the second and third
condition, we can write Di, j in the basis of finite difference matrices [∆]i, j = δi+1, j −δi, j as

Di, j =
n
∑

l=0

Cl [∆
l]i, j , (40)

where [∆l]i, j =
∑l

a=0(−1)l−a
� l

a

�

δi+a, j is defined recursively by [∆l]i, j= [∆l−1]i+1, j − [∆l−1]i, j
with the initial condition [∆0]i, j = δi, j . The first and fourth condition above put constraints
on the allowed coefficients Cl in Di, j .

21More precisely, the functions are independent over the ring Z/NZ in the sense of Ref. [85, Section 3.1].
22In Ref. [85, Section 4.1], sufficient conditions on S are derived for the bond algebra to be of this form.
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Quantum code perspective

The corresponding SymTFT can be constructed by first extending the modulated symmetry to
2+ 1D, identifying the associated 2+ 1D trivial SPT phase,23 and then gauging the modulated
symmetry. For modulated symmetries (37) in 1+ 1D whose bond algebra is (39), gauging
(without discrete torsion) the entire modulated symmetry induces the gauging map [85]

X †
j →

∏

l

X
DT

jl

l ,
∏

l

Z
Djl

l → X j . (41)

This can be implemented using the Gauss operator G j = X j
∏

l(X l,l+1)
DT

jl , where X l,l+1 act on
newly introduced ZN qudits on the links. This leads to the dual bond algebra

B∨[F] =
­

Z j ,
∏

l

X
DT

j,l

l

·

, (42)

and dual modulated symmetry generated by

U∨q =
∏

j

(Z j)
f (q)− j . (43)

The transpose DT has a similar decomposition in terms of the finite difference operators ∆ as
D does (see (40)). In particular, it is straightforward to show that [∆l] ji = (−1)l[∆l]i−l, j and,
therefore,

[DT]i j =
n
∑

l=0

(−1)l Cl [∆
l]i−l, j . (44)

The 2+ 1D extension of the modulated symmetry (37) to the square lattice is generated
by

∏

r

(X r )
f (q)rx , (45)

where r = (rx , ry) ∈ ZLx
×ZL y

is a two-dimensional lattice vector. This symmetry operator is
modulated in the x-direction, but commutes with translations in the y-direction. Therefore,
the symmetry generated by (45) can be gauged using the Gauss operator Gr = X r Ar where

Ar = . . .
r

X D0,n X D0,n−1 X D0,1 X D0,0

X †

X

≡
∏

X DT
X †

X
r

. (46)

The flux term, made of only Z operators that commutes with Ar , is

Br =

. . .

. . .

Z

Z†

Z D0,0 Z D0,1 Z D0,2 Z D0,n−1 Z D0,n

r

≡

Z

Z†

∏

Z D

r

. (47)

23In this context, the trivial SPT phase refers to the SPT phase whose fixed-point state is a product state. The
corresponding SymTFT is constructed from the trivial SPT because the modulated symmetry operators (37) are
onsite and, thus, anomaly-free. Indeed, the symmetries they generate can be gauged [85]. However, modulated
symmetries can have anomalies, in which case the SPT would be non-trivial.
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The local constraint Br = 1 is the flatness condition involved in gauging finite symmetries.
The SymTFT is found by applying the gauging map implemented by Gr to the trivial sym-

metric theory. As a quantum code, the trivial theory has only one type of stabilizer X r and
the code space is C (i.e., the single state that satisfies X r = 1 for all r ). From the Gauss law
Gr = 1, the stabilizer X r becomes Ar under the gauging map. The flatness condition Br = 1
is imposed by further introducing Br as a stabilizer. Therefore, the SymTFT can be expressed
as the code space of a Calderbank-Shor-Steane (CSS) code of ZN qubits on a square lattice
whose stabilizers are Ar and Br . Notice that for a uniform ZN symmetry where F = {1}, then
D =∆x and the stabilizer code reduces to the ZN toric code.

It is straightforward to check that Ar and Br commute for all sites r . Therefore, the code
space is spanned by all states |ψ〉 satisfying Ar |ψ〉= Br |ψ〉= |ψ〉 for all r . The logical op-
erators act on qudits along a closed loop. They depend only on this loop’s homology class,
making them topological operators. For instance, with periodic boundary conditions in the x
direction, the logical operators winding around the x direction are generated by

W (q) =
L
∏

rx=1

(Zr ,x)
f (q)−rx , V (q) =

L
∏

rx=1

(X r ,y)
f (q)rx . (48)

The subscript r ,µ denotes the link 〈r , r + µ̂〉, where µ̂ is the unit vector in the µ-direction.
Furthermore, the site ry is not specified in (48) since the logical operators are topological and
do not depend on ry in the code space.

As a topological order, the code space has Zn
N topological order. However, it is non-trivially

enriched by lattice translations in the x direction. Indeed, the logical operators W (q) and V (q)

do not commute with translations in the x direction. Instead, such lattice translations act as
a non-trivial anyon automorphisms. As discussed in Section 2, this arises from the mixing of
spatial and internal symmetries before gauging the internal symmetry.

To verify that this quantum code is the SymTFT for the modulated symmetry, we consider
a spatial boundary at y = L y . The different choices of boundary degrees of freedom and
boundary stabilizers correspond to different symmetries captured by this SymTFT. For instance,
the rough boundary has no degrees of freedom on the boundary links ((rx , L y), x) and is
specified by the boundary stabilizer

Brough
r =

. . .Z
Z D0,0 Z D0,1 Z D0,2 Z D0,n−1 Z D0,n

r

≡
Z

∏

Z D

r

. (49)

This stabilizer commutes with all Ar . The logical operator V (q) acting on this boundary com-
mutes with the stabilizer and, therefore, is a symmetry of the 1+ 1D theory. The boundary
logical operator W (q), however, is trivialized. Therefore, this boundary encodes the symmetry

generated by
∏Lx

rx=1(X(rx ,L y−1),y)
f (q)rx , which are the modulated symmetry operators (37). On

the other hand, the smooth boundary has ZN qudits on the boundary links and the boundary
stabilizers are

Asmooth
r =

. . .
r

X D0,n X D0,n−1 X D0,1 X D0,0

X
≡

∏

X DT

X
r . (50)

On this boundary, the logical operators V (q) are trivialized while the logical operators W (q)

commute with the stabilizer and act non-trivially. Therefore, the smooth boundary encodes
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the symmetry generated by
∏Lx

rx=1(Z(rx ,L y ),x)
f (q)−rx , which is the dual modulated symmetry (43).

In general, there are other boundary conditions where different subsets of logical operators
are trivialized. We will consider the complete characterization of gapped boundary conditions
later when studying explicit examples.

Field theory perspective

Having constructed the SymTFT for the modulated symmetry (37) from a quantum code per-
spective, we now complement this discussion by considering this SymTFT from a field theory
perspective. Consider a cubic Euclidean spacetime lattice whose sites we denote by the integer-
valued vector r ≡ (rt , rx , ry). The ZN Pauli operators are related to lattice fields ar ,µ and br ,µ
by

Zr ,x = e
2π i

N ar ,x , Zr ,y = e
2π i

N ar ,y ,

X r ,x = e
2π i

N br+ x̂− ŷ ,y , X r ,y = e−
2π i

N br ,x .
(51)

The lattice fields ar ,µ and br ,µ are integer-valued. Furthermore, we use the notation
ar ,µ = −ar+µ̂,−µ (and similarly for br ,µ) with µ̂ denoting one of the three spacetime basis
vector t̂, x̂ , or ŷ . The lattice field br ,µ is most naturally associated with links of the dual lat-
tice. We have shifted the sites of the dual lattice by the vector 1

2( x̂ − ŷ) to the direct spacetime
lattice. The change from dual to direct lattice causes the x̂ − ŷ shift for br+ x̂− ŷ ,y in X r ,x and
the minus sign in front of br ,x in X r ,y .

In terms of these lattice fields, the stabilizer constraints Ar = 1 and Br = 1 are

(br+ ŷ ,x − br ,x) +
n
∑

j=0

D0, j br+ x̂− j x̂ ,y ≡∆y br ,x + DT
x br+ x̂ ,y = 0 mod N , (52)

n
∑

j=0

D0, j ar+ j x̂ ,y − (ar+ ŷ ,x − ar ,x)≡ Dx ar ,y −∆y ar ,x = 0 mod N . (53)

The code space can then be described by the Euclidean lattice Lagrangian

Lr =
2π i
N

�

ar ,y∆t br ,x − ar ,x∆t br+ x̂− ŷ ,y + br+ x̂ ,t(Dx ar ,y −∆y ar ,x)

− ar+ ŷ− t̂,t(∆y br ,x + DT
x br+ x̂ ,y)

�

,
(54)

where, for example,∆t br ,x ≡ br+ t̂,x − br ,x . The first two terms inLr enforce ar ,µ and br ,µ to
obey commutation relations consistent with ZX = e2π i/N X Z . In the last two terms, ar ,t and
br ,t are Lagrange multipliers enforcing the constraints (52) and (53). This lattice Lagrangian
has the gauge redundancy

ar ,t ∼ ar ,t +∆tαr , ar ,x ∼ ar ,x + Dxαr , ar ,y ∼ ar ,y +∆yαr ,

br ,t ∼ br ,t +∆tβr , br ,x ∼ br ,x − DT
x βr+ x̂ , br ,y ∼ br ,y +∆yβr ,

(55)

and its equations of motion are

Dx ar ,y −∆y ar ,x = 0 , ∆t ar ,y −∆y ar ,t = 0 , ∆t ar ,x − Dx ar ,t = 0 ,

∆y br ,x + DT
x br+ x̂ ,y = 0 , ∆t br ,y −∆y br ,t = 0 , ∆t br ,x + DT

x br+ x̂ ,t = 0 .
(56)

As we will see, the Lagrangian (54) is the SymTFT for the modulated symmetry (37). It
is an anisotropic lattice BF theory. For uniform symmetries, where F = {1}, the Dx matrix
satisfies Dx ar ,y =∆x ar ,y and DT

x br+ x̂ ,y = −∆x br ,y , and (54) reduces to the level-N lattice
BF theory 2π i

N b ∪ da.
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The theory (54) has no local degrees of freedom. Its physical observables are all extended
defect lines. Denoting by C an oriented cycle on the spacetime lattice, the gauge-invariant
defect lines can be generated from

W (q)(C) = exp





2π i
N

∑

(r ,µ)⊂C

A(q)rx ,µ ar ,µ



 , V (q)(C) = exp





2π i
N

∑

(r ,µ)⊂C

B(q)rx ,µ br ,µ



 , (57)

where the integer-valued matrices are

A(q)rx ,µ =

¨

f (q)−rx
, µ= x ,

∆−1
x f (q)−rx

Dx , µ= t, y ,
B(q)rx ,µ =

¨

f (q)rx
, µ= x ,

−∆−1
x f (q)rx

DT
x Tx , µ= t, y .

(58)

The operator Tx transforms br ,µ→ br+ x̂ ,µ and ∆−1
x is the inverse of ∆x (i.e., the indefinite

sum operator). The gauge invariance of W (q)(C) and V (q)(C) follows from Stokes theorem
and property 1 of Dx . However, with periodic boundary conditions in the x-direction, there
is an additional constraint that allowed topological defects [W (q)]n and [V (q)]n must satisfy
n f (q)−rx

= n f (q)−rx+Lx
mod N and n f (q)rx

= n f (q)rx+Lx
mod N , respectively, to be gauge invariant.

The defect lines W (q) and V (q) both satisfy ZN fusion rules [W (q)]N = [V (q)]N = 1. Fur-
thermore, using Stokes theorem and the equations of motion (56), it is easy to show that they
are topological defect lines:

〈W (q)(C + ∂ D)〉= 〈W (q)(C)〉 , 〈V (q)(C + ∂ D)〉= 〈V (q)(C)〉 . (59)

While these are topological defects, the translation rx → rx + 1 transforms them non-trivially
whenever f (q)rx

̸= 1. Therefore, these are modulated 1-form symmetries of the field theory.
This makes the SymTFT a Zn

N topological order enriched by translations in the x-direction.
This enrichment is specified by a group homomorphism ϕ : ZLx

→ Aut(Zn
N ). In fact, the same

homomorphism appears at the beginning of this section in the definition of the 1+ 1D modu-
lated symmetry. It describes the action of translation on V (q). The action on W (q) follows from
replacing t ∈ ZLx

with t−1 in ϕ.
Let us verify that this is the SymTFT for the modulated symmetry (37). Consider a bound-

ary at y = L y with the Dirichlet boundary conditions ar ,µ |ry=L y
= 0. On this boundary, the

topological defect lines W (q) = 1 while V (q) remains unchanged. Therefore, this topological
boundary encodes a symmetry generated by V (q). For a cycle C running along the x-direction,
V (q) forms the modulated symmetry (37). Therefore, this boundary is the symmetry bound-
ary of the modulated symmetry (37). Similarly, choosing the Neumann boundary conditions
br ,µ |ry=L y

= 0 causes W (q) to be unchanged on the boundary while V (q) = 1. Therefore, this

symmetry boundary encodes a symmetry generated by W (q) which is a modulated symmetry
operator with the modulation function f (q)−rx

. Therefore, this symmetry boundary corresponds
to the dual modulated symmetry (43) obtained by gauging the original modulated symme-
try (37).

The above discussion of the SymTFT used lattice field theory for clarity. The continuum
limit of (54) is naturally formulated in terms of a topological defect network [154]. Often
times, the continuum limit can be found by simply replacing lattice derivatives ∆µ with ∂µ
(recall (40) and (44)) and replacing 2π

N ar ,µ and 2π
N br ,µ with U(1) gauge fields aµ and bµ,

respectively. The continuum theory, however, is not a topological field theory. Indeed, discrete
translations in the x-direction are non-trivial since they permute the topological defect lines.
Moreover, the number of anyon types depends on Lx when the x-direction of space is compact,
so the partition function can change as the size of space in the x-direction is changed. How-
ever, it is still topological in the y and t directions, making it a type of foliated field theory. In
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particular, there are leaves spanning each y t plane, each of which is dressed by an invertible
condensation defect surface [155] that implements the anyon permutation arising from dis-
crete x-translations. These leaves and permutations encode in the continuum SymTFT how
the 1+ 1D symmetry is spatially modulated.

3.1.1 Example: Exponential symmetry

For the first example, we consider a class of ZN exponential symmetries. This is a modulated
symmetry which in a system of ZN qudits has symmetry operators generated by

U =
L
∏

j=1

(X j)
k j

. (60)

That is, there is a single modulation function F = {k j} and the parameter k ∈ Z defines the
type of exponential symmetry. We restrict ourselves to k such that gcd(k, N) = 1 so k j with
j < 0 is well defined in multiplication modulo N . For example, when N = 5 and k = 2, then
k−1 = 3. This exponential symmetry forms a ZN ⋊ϕ ZL symmetry with lattice translations,
where the group homomorphism ϕ : ZL → Aut(ZN ) describes the action

T U T−1 = Uk−1
. (61)

A simple quantum lattice model commuting with (60) is

L
∑

j=1

�

Z−k
j Z j+1 + hX j

�

+H.c. (62)

Furthermore, the bond algebra of the exponential symmetry is of the type (39) [85]. The
matrix D satisfying Di jk

j = 0 mod N is

Di, j = δi+1, j − kδi, j ≡∆i, j +δi, j (1− k) . (63)

Furthermore, the dual symmetry obtained by gauging the entire exponential symmetry is
(see (43))

U∨ =
L
∏

j=1

(X j)
k− j

. (64)

For general k, this generates a different exponential symmetry than (60).
The SymTFT of this exponential symmetry is a ZN topological order enriched by lattice

translations in the x-direction to encode (61). We will discuss it both from the quantum code
and field theory perspectives.

Quantum code perspective

The stabilizers defining the quantum code description of the corresponding SymTFT are (46)
and (47) with D given by (63). That is, for general k coprime to N , they are

Ar =
X X †k

X †

X
r

, Br =

Z

Z†

Z†k Z

r

. (65)
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This stabilizer code is of the type studied in Ref. 156. Using (57), the logical operators of the
code act on a cycle C of the square lattice, and are generated by

V [C] =
∏

(r ,µ)⊂C

�

[X r ,y]
σ krx

δµ,x + [X r− x̂+ ŷ ,x]
−σ krx

δµ,y

�

, (66)

W [C] =
∏

(r ,µ)⊂C

�

[Zr ,x]
σ k−rx

δµ,x + [Zr ,y]
σ k−rx+1

δµ,y

�

, (67)

where σ captures the orientation of C (i.e., σ = ±1 when C is running in the ± x , y direc-
tions.). For example, graphical depictions of these logical operators for a small 3× 2 rectan-
gular cycle are

X krx
X krx+1

X krx+2

X †krx+3

X †krx+3
X †krx+2

X †krx+1
X †krx

X krx

X krx

r

V = ,

Zk−rx Zk−rx−1
Zk−rx−2

Zk−rx−2

Zk−rx−2

Z†k−rx−2
Z†k−rx−1

Z†k−rx

Z†k−rx+1

Z†k−rx+1

r

W = .

For such contractible cycles C = ∂ D, these logical operators can be rewritten as products of
(Ar )k

rx and (Br )k
−rx , respectively. Therefore, they are topological operators in the code space.

The logical operators V and W with C running in the +x direction at fixed ry are isomorphic
to the exponential symmetry operator (60) and its dual symmetry operator (64), respectively.
For a general cycle C , they follow ZN ×ZN fusion rules. Furthermore, for V running in the x
(y) direction and W in the y (x) direction, the two operators fail to commute by the phase
exp

�2π i
N k

�

. Therefore, the quantum code describes a ZN topological order.
Under a single lattice translation in the x direction, these logical operators satisfy

Tx V T−1
x = V k−1

, Tx W T−1
x =W k . (68)

These are, respectively, the same transformations as Tx acting on the exponential symmetry
and its dual symmetry. This action of translations on the logical operators makes the SymTFT
a ZN topological order enriched by lattice translations.

A complementary characterization of this SET is through position-dependent excita-
tions [84]. Indeed, let us denote a gapped excitation (i.e., an error of the code) corre-
sponding to Ar = exp

�2π i
N n

�

and Br = exp
�2π i

N n
�

by ner and nmr , respectively. They satisfy
Ner = Nmr = 0. Furthermore, these excitations are created by the Pauli operators X r ,µ and
Zr ,µ, which gives rise to the relations

mr+ ŷ = mr , k−1mr+ x̂ = mr , er+ ŷ = er , er+ x̂ = k−1er . (69)

These equalities mean that the excitation appearing on left-hand-side of the equations are
of the same anyon-type as those appearing on the right-hand-side, i.e., they belong to the
same superselection sector. Solving these recurrence relations, we express the anyon-types at
position r are given by

mr = krxm , er = k−rx e . (70)

Since the anyon-type depends on the x-component of the excitation’s position, the topo-
logical order is non-trivially enriched by lattice translations in the x-direction. Fur-
thermore, when the lattice has periodic boundary conditions, the anyon-types have
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to satisfy mr = mr+Lx x̂ and er = er+Lx x̂ , which gives rise to the additional constraints
(kLx − 1)m= (k−Lx − 1)e= 0. Therefore, the number of globally distinguishable excitations
on a torus is gcd(kLx − 1, N)gcd(k−Lx − 1, N), which equals the ground state degeneracy on a
torus.

The smooth and rough boundary stabilizers of this quantum code are

Asmooth
r =

X X †k

X
r

, Brough
r =

Z
Z†k Z

r

. (71)

The rough boundary condition causes W = 1 on the boundary but leaves V on the boundary
unchanged. Therefore, this boundary symmetry is generated by V , which is the exponential
symmetry. The smooth boundary is the opposite, and it is the symmetry boundary for the dual
exponential symmetry. Therefore, gauging the exponential symmetry is implemented in the
SymTFT by changing the rough boundary to the smooth boundary.

Field theory perspective

The Euclidean lattice Lagrangian defining the field theory description of the exponential sym-
metry’s SymTFT is (54) with D given by (63). It can be written as

Lr =
2π i
N

�

ar ,y∆t br ,x − ar ,x∆t br+ x̂− ŷ ,y + br+ x̂ ,t(∆x ar ,y −∆y ar ,x)

− ar+ ŷ− t̂,t(∆y br ,x −∆x br ,y)
�

+
2π i
N
(k− 1)( ar+ ŷ− t̂,t br+ x̂ ,y − br+ x̂ ,t ar ,y) .

(72)

The first line of Lr is level-N lattice BF theory and can be compactly written as 2π i
N b ∪ da.

The second line arises from the modulated nature of the exponential symmetry. It is turned
off when k = 1 and the ZN exponential symmetry becomes a uniform ZN symmetry.

The topological defect lines of (72) follow from the general expression (57). Using that
for exponential symmetry (60), Dx =∆x + 1− k and frx

= krx , the topological defect lines are
formed by

W [C] = exp





2π i
N

∑

(r ,µ)⊂C

�

k−rx ar ,µδ|µ|,x + k−rx+1ar ,µδ|µ|,y + k−rx+1ar ,µδ|µ|,t
�



 , (73)

V [C] = exp





2π i
N

∑

(r ,µ)⊂C

�

krx br ,µ δ|µ|,x + krx br ,µ δ|µ|,y + krx br ,µδ|µ|,t
�



 , (74)

where C is a cycle of the spacetime lattice. The equations of motion of (72) make W and V
topological defects. They also have non-trivial mutual braiding with a Hopf link configuration
equaling the phase exp

�2π i
N k

�

, and are the topological defects of ZN topological order. Under
the transformation Tx : r → r + x̂ , they transform as

W [C]→W k[C] , V [C]→ V k−1
[C] . (75)

Therefore, W and V are modulated topological defect lines. This makes the SymTFT a ZN
topological order non-trivially enriched by lattice translations, which induces the anyon auto-
morphism (75).
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As a continuum field theory, the lattice translation action on the anyons manifests as a
foliation structure on spacetime. Indeed, the continuum limit of (72) is the action

S[e] =
iN
2π

∫

b ∧ da− (k− 1) a ∧ b ∧ e , (76)

where the foliation 1-form field e = Λ dx with Λ−1 a lattice spacing—a necessary UV cutoff
for (76). S is a foliated field theory because it depends on the background foliation field e.
It is a flat foliation whose leaves are the (y, t) planes of spacetime. The action has the gauge
redundancy

a ∼ a+ dα+ (1− k)α e , b ∼ b+ dβ − (1− k)β e , (77)

which depends on the foliation structure. The second term in S[e] is an insertion of a conden-
sation defect of level-N BF theory on each leaf of the foliation that acts on topological defect
lines as (75). It is turned off when k = 1, in which case the modulated symmetry becomes a
uniform ZN symmetry and the SymTFT action is ordinary level-N BF theory.

The symmetry boundary at fixed y for the exponential symmetry arises from choosing
the Dirichlet boundary condition at = ax = 0. Indeed, for this choice of boundary condition,
the topological defect line W = 1 while V is unchanged, which is an exponential symmetry
defect in the (x , t) plane. On the other hand, the Neumann boundary condition bt = bx = 0
trivializes V while leaving W unchanged. W on the boundary is the symmetry defect for the
dual exponential symmetry. Therefore, gauging the exponential symmetry in the SymTFT is
implemented by changing the Dirichlet to Neumann boundary condition.

Application: Classifying phases

Gapped and gapless states protected by a symmetry are classified by condensable algebras
of the symmetry’s SymTFT. Condensable algebras for ZN topological order are formed by all
possible fusions of ea and mb such that ab = 0 mod N . Here, e and m are bosons with e2π i/N

mutual statistics and they corresponds to the logical operators/topological defects W k−1
and

V . The constraint ab = 0 mod N ensures that ea and mb have trivial mutual statistics. They
form the group under fusion

Aa,b = 〈ea, mb〉 , (78)

generated by ea and mb, where we assume a and b divide N . Aa,b is a Lagrangian algebra
and corresponds to a gapped phase if |Aa,b|= N . These Lagrangian algebras are associated
with the different symmetry-breaking patterns of ZN in 1+ 1D. Furthermore, the Lagrangian
algebra corresponding to the symmetry boundary is A1,0.

For a uniform ZN symmetry, the above condensable algebras would be the end of the
story. However, for the exponential symmetry, the SymTFT is enriched by translations, and
the condensable algebras may not be invariant under the translation action

Tx : (e, m)→
�

ek, mk−1
�

. (79)

Those not invariant correspond to phases for which translations must be explicitly broken to
realize. However, each condensable algebra Aa,b is, in fact, invariant under (79). Indeed, as
a group, Aa,b is isomorphic to the product group

Aa,b
∼= {1, ea, e2a, . . .} × {1, mb, m2b, . . .} . (80)

Then, because k is coprime to N , the transformation (79) will generally permute the elements
of {1, ea, e2a, . . .} and {1, mb, m2b, . . .}, but leaves Aa,b invariant. Therefore, a ZN exponential
symmetry has the same number of gapped and gapless states as a ZN uniform symmetry.
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For a ZN ×ZN exponential symmetry whose symmetry operators with two flavors of qu-
dits per site are

∏

j[X
(1)
j ]

k j
and

∏

j[X
(2)
j ]

q j
, the phases’ classification is more interesting. The

SymTFT of this exponential symmetry is a ZN ×ZN topological order enriched by lattice trans-
lations such that

Tx : (e1, m1, e2, m2)→
�

ek
1, mk−1

1 , eq
2, mq−1

2

�

. (81)

The Lagrangian algebra defining the symmetry boundary is A= 〈e1, e2〉. There are N magnetic
Lagrangian algebras with respect to this symmetry boundary (those whose overlap with A is
trivial), and they have the general form An = 〈1, m1en

2 , m2e−n
1 , . . .〉 with n= 0, 1, . . . , N − 1.

For a uniform ZN ×ZN symmetry, they correspond to the N different SPTs. However, not
all An are generally invariant under (81). For example, when N = 8, k = 3, and q = 5,
only An with n= 0, 4 is invariant. More generally, An corresponds to an allowed SPT if
n(kq− 1) = 0 mod N . Therefore, depending on k and q, there can be fewer translation-
invariant ZN ×ZN exponential symmetry SPTs than there are uniform ZN ×ZN symmetry
SPTs. This agrees with the observation in Ref. 157.

Application: (Anomalous) Non-invertible reflection

As we saw both from the quantum code and field theory perspectives, gauging the exponen-
tial symmetry is performed in the SymTFT by changing the rough/Dirichlet boundary to the
smooth/Neumann boundary. This is implemented by first performing the unitary transforming

UKW : (X r ,x , X r ,y , Zr ,x , Zr ,y)→
�

Zr+ x̂− ŷ ,y , Z†
r ,x , X †

r+ x̂− ŷ ,y , X r ,x

�

, (82)

and then the reflection

R: (X r ,x , X r ,y , Zr ,x , Zr ,y)→
�

X †
R(r )− x̂ ,x , XR(r ),y , Z†

R(r )− x̂ ,x , ZR(r ),y

�

, (83)

where R(r ) = (−rx , ry). The operator RUKW is a symmetry of the SymTFT on a torus, trans-
forming the stabilizers (65) by

RUKW : (Ar , Br )→
�

BR(r )− x̂− ŷ , A†
R(r )− x̂

�

. (84)

Therefore, it also exchanges the rough/Dirichlet and smooth/Neumann boundary conditions
and, relatedly, transforms V and W running in the x direction by (V, W †)→ (W k−1

, V k). How-
ever, since it implements the gauging map of the exponential symmetry, it is a non-invertible
reflection in any 1+ 1D system described by the SymTFT. An operator for this non-invertible
reflection and 1+ 1D quantum spin models with it as a non-invertible reflection symmetry
were constructed in Ref. 85.

The non-invertible reflection as a symmetry is always anomalous for a single ZN exponen-
tial symmetry (i.e., there are no SPT phases compatible with the non-invertible reflection). In-
deed, the only SPT phase of a ZN exponential symmetry corresponds to the Lagrangian algebra
A0,1 = 〈1, m, . . .〉, which is not invariant under (m, e)→ (ek−1

, m−k). For the double ZN expo-

nential symmetry generated by
∏

j[X
(1)
j ]

k j
and

∏

j[X
(2)
j ]

q j
, we can deduce necessary, but not

sufficient conditions for an anomaly. In particular, when there is only one SPT corresponding to
the Lagrangian algebra 〈1, m1, m2, . . .〉 of the SymTFT, the non-invertible reflection symmetries
will all be anomalous. Using the result from the previous section, this occurs whenever the
only solution to n(kq− 1) = 0 mod N is n= 0. For example, this is satisfied when k = q = 2
with N = 5.
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3.1.2 Example: Dipole symmetry

We next consider a ZN dipole symmetry in 1+ 1D system of ZN qudits, which is generated by
the symmetry operators

U1 =
L
∏

j=1

X j , U2 =
L
∏

j=1

(X j)
j . (85)

Along with lattice translations, this forms a (ZN ×ZN )⋊ϕ ZL symmetry, where the group ho-
momorphism ϕ : ZL → Aut(ZN ×ZN ) describes

T U1T−1 = U1 , T U2T−1 = U−1
1 U2 . (86)

A simple lattice model with a ZN dipole symmetry is the ZN dipolar clock model

L
∑

j=1

�

Z†
j−1Z2

j Z†
j+1 + hX j

�

+H.c. (87)

The bond algebra of a ZN dipole symmetry is of the type (39) for all N [85], and the matrix
D is

Di j = [∆
2]i j = δi+2, j − 2δi+1, j +δi, j . (88)

Because [DT]i, j = Di−2, j , the dual symmetry from gauging a ZN dipole symmetry is also a ZN
dipole symmetry.

The quantum code description of the SymTFT of a G × Z(G) dipole-type symmetry, for
which G = ZN is a ZN dipole symmetry, was constructed in Ref. 47. Here, we will discuss
the SymTFT for ZN dipole symmetry and its applications both from a quantum code and field
theory perspective.

Quantum code perspective

With the D matrix in Eq. (88), the stabilizers (46) and (47) become

Ar =
X X−2 X

X †

X
r

, Br =

Z

Z†

Z Z†2 Z

r

. (89)

This stabilizer code has been studied in [47,144] (albeit in a different unitary frame). Denoting
by C an oriented cycle of the square lattice, following Eq. (57) the logical operators are formed
by

V (1)[C] =
∏

(r ,µ)⊂C

�

[X r ,y]
σδµ,x + [X

†
r−2 x̂+ ŷ ,x X r− x̂+ ŷ ,x]

σδµ,y

�

, (90)

W (1)[C] =
∏

(r ,µ)⊂C

�

[Zr ,x]
σδµ,x + [Z

†
r ,y Zr+ x̂ ,y]

σδµ,y

�

, (91)

V (2)[C] =
∏

(r ,µ)⊂C

�

[X r ,y]
σrxδµ,x + [X

†
r−2 x̂+ ŷ ,x]

σrx [X r− x̂+ ŷ ,x]
σ(rx−1)δµ,y

�

, (92)

W (2)[C] =
∏

(r ,µ)⊂C

�

[Z†
r ,x]

σrxδµ,x + [Zr ,y]
σrx [Z†

r+ x̂ ,y]
σ(rx−1)δµ,y

�

. (93)
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Graphical representations of these logical operators for a small contractible cycle are

X X X

XX †

XX †
X †X †X †

X †

X †

X

X

r

V (1)

,

Z Z Z
Z†

Z†

Z

Z

Z† Z† Z†

Z

Z

Z†

Z†

r

W (1)

,

X rx X rx+1 X rx+2

X rx+2X †rx+3

X rx+2X †rx+3
X †rx+2X †rx+1X †rx

X †rx−1

X †rx−1

X rx

X rx

r

V (2)

,

Z†rx Z†rx+1 Z†rx+2
Z rx+3

Z rx+3

Z†rx+2

Z†rx+2

Z rx Z rx+1 Z rx+2

Z†rx

Z†rx

Z rx−1

Z rx−1

r

W (2)

.

For any contractible cycle, the logical operators can be written as products of Ar , Br , Arx
r , and

Brx
r , respectively. Therefore, they are all topological operators in the code space, depending

only on the homology class of the cycle C .
The logical operators form the group Z4

N under multiplication. Furthermore, for the op-
erator V (a) running in the x (y) direction and the operator W (b) in the y (x) direction, one
finds the algebra

V (1)W (1) =W (1)V (1) , V (1)W (2) = e2π i/N W (2)V (1) ,

V (2)W (1) = e2π i/N W (1)V (2) , V (2)W (2) = e2π i/N W (2)V (2) .
(94)

Therefore, the quantum code describes a ZN ×ZN topological order.24 Under translation by
one site in the x direction, the logical operators wrapping the x direction transform as

Tx V (1)T−1
x = V (1) , TxW (1)T−1

x =W (1) ,

Tx V (2)T−1
x = [V (1)]−1V (2) , TxW (2)T−1

x =W (1)W (2) .
(95)

The lattice translation acts non-trivially on the logical operators, which causes the ZN ×ZN
topological order to be non-trivially enriched by lattice translations.

24With the S matrix data (94), the corresponding mutual Chern-Simons theory’s K matrix is

K =







0 −N 0 N
−N 0 N 0
0 N 0 0
N 0 0 0






.

It is then easy to find an element U ∈ SL±(4,Z) that brings UKUT to the canonical K matrix for ZN ×ZN topological
order. For example,

UKUT =







0 N 0 0
N 0 0 0
0 0 0 N
0 0 N 0






, with U =







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1






.

In this basis, the logical operators are generated by V (1), [W (1)]†W (2), V (2) and W (1).
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The symmetry enrichment is also characterized in terms of position-dependent excita-
tions [84]. We denote by n er and nmr gapped excitations corresponding to Ar = exp

�2π i
N n

�

and Br = exp
�2π i

N n
�

, respectively. They satisfy N er = N mr = 0. Furthermore, these excita-
tions are created by the Pauli operators X r ,µ and Zr ,µ, which gives rise to the relations

mr+ ŷ = mr , mr+ x̂ +mr− x̂ = 2mr , er+ ŷ = er , er+ x̂ + er− x̂ = 2er . (96)

Solving these recurrence relations, we find that their anyon-types at position r are given by

mr = m1 − rx m2 , er = e1 + rx e2 . (97)

Since these excitations depend on the lattice position r , the ZN ×ZN topological order is
non-trivially enriched by translations. Furthermore, under periodic boundary conditions
in the x-direction, the anyon types further satisfy Lxm2 = Lxe2 = 0. Therefore, there are
[N gcd(Lx , N)]2 globally distinguishable anyons, and [N gcd(Lx , N)]2 ground states on a spa-
tial torus.

The smooth and rough boundary stabilizers of this quantum code are

Asmooth
r =

X X †2 X

X
r

, Brough
r =

Z
Z Z†2 Z

r

. (98)

The rough boundary condition causes W (1) =W (2) = 1 on the boundary but leaves V (1) and
V (2) on the boundary unchanged. Therefore, the symmetry corresponding to this boundary
is generated by V (1) and V (2), which is ZN dipole symmetry. The smooth boundary is the
opposite, and it is the symmetry boundary for the dual dipole symmetry. This is generated
by W (1) and W (2), which is the same ZN dipole symmetry. Therefore, gauging the ZN dipole
symmetry is implemented in the SymTFT by changing the rough to smooth boundary.

Field theory perspective

The Euclidean lattice Lagrangian (54) describing this code space is

Lr =
2π i
N

�

ar ,y∆t br ,x − ar ,x∆t br+ x̂− ŷ ,y + br+ x̂ ,t(∆
2
x ar ,y −∆y ar ,x)

− ar+ ŷ− t̂,t(∆y br ,x +∆
2
x br− x̂ ,y)

�

.
(99)

The topological defect lines of this SymTFT follow from the general expression (57). Using
that Dx =∆2

x and f (1)rx
= 1, f (2)rx

= rx , the topological defect lines are formed by

V (1)[C] = exp





2π i
N

∑

(r ,µ)⊂C

�

br ,µ δµ,x − ∆x br− x̂ ,µδµ,y − ∆x br− x̂ ,µδµ,t

�



 , (100)

W (1)[C] = exp





2π i
N

∑

(r ,µ)⊂C

�

ar ,µδµ,x + ∆x ar ,µδµ,y + ∆x ar ,µδµ,t

�



 , (101)

V (2)[C] = exp





2π i
N

∑

(r ,µ)⊂C

�

rx br ,µδµ,x + (br− x̂ ,µ − (rx − 1)∆x br− x̂ ,µ)(δµ,y +δ|µ|,t)
�



 , (102)

W (2)[C] = exp





2π i
N

∑

(r ,µ)⊂C

�

−rx ar ,µδµ,x + (ar ,µ − (rx − 1)∆x ar ,µ) (δµ,y +δ|µ|,t)
�



 , (103)
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where C is a cycle of the spacetime lattice. The equations of motion of (99) make these
topological, and it is straightforward to check that they are the topological defects of a ZN×ZN
topological order. Under the transformation Tx : r → r + x̂ , they transform as

V (1)→ V (1) , W (1)→W (1) , V (2)→ [V (1)]−1 V (2) , W (2)→W (1)W (2) . (104)

Therefore, the SymTFT is a ZN ×ZN topological order non-trivially enriched by lattice trans-
lations in the x-direction.

The symmetry boundary at fixed y for the dipole symmetry arises from choosing the Dirich-
let boundary condition at = ax = 0. Indeed, for this choice of boundary condition, the topolog-
ical defect lines W (1) =W (2) = 1 while V (1) and V (2) are unchanged. V (1) and V (2) describe ZN
dipole symmetry defects in the (x , t) plane. On the other hand, the Neumann boundary condi-
tion bt = bx = 0 trivializes V (1) and V (2) while leaving W (1) and W (2) unchanged. Therefore,
gauging the exponential symmetry in the SymTFT is implemented by changing the Dirichlet
to Neumann boundary condition.

The continuum limit of the lattice Lagrangian (99) is the symmetric tensor gauge theory

L =
i N

2πΛ

�

ay∂t bx x − ax x∂t by + bt(∂
2
x ay − ∂y ax x)− at(∂y bx x + ∂

2
x by)

�

, (105)

where Λ−1 is the lattice spacing which serves as a necessary UV cutoff (on dimensionful
grounds). The typical ∂x derivatives of level-N BF theory are instead ∂ 2

x derivatives, mak-
ing the Lagrangian a type of dipolar BF theory [143, 144, 158]. In its current presentation,
however, the foliation structure of the continuum SymTFT is not manifest. However, perform-
ing a duality transformation (see Appendix D for details), the SymTFT can equivalently be
formulated as [144]

S[e] = −
i N
2π

∫

�

ea ∧ db−eb ∧ da− ea ∧eb ∧ e
�

, (106)

where a, ea, b, and eb are U(1) gauge fields and e = Λdx is a background foliation field describ-
ing a flat foliation whose leaves are (y, t) planes. The gauge redundancy of (106) is

a ∼ a+ dα+ eα e , b ∼ b+ dβ + eβ e ,

ea ∼ ea+ deα , eb ∼ eb+ deβ ,
(107)

which depends explicitly on the foliation field. The foliation term dresses each leaf with a
condensation defect of ZN ×ZN gauge theory that implements the anyon permutation (104).
Turning off this foliation field causes the translation enriched ZN ×ZN gauge theory to become
ZN ×ZN gauge theory without any non-trivial translation enrichment.

The presentation (106) of the ZN dipole SymTFT further reveals that this SymTFT can be
constructed by gauging the ZN ×ZN symmetry of the invertible theory [144]

Z[ ea,eb, e] = exp

�

iN
2π

∫

ea ∧eb ∧ e

�

. (108)

This is a field theory description of a ZN ×ZN weak SPT (i.e., an SPT protected by an internal
ZN ×ZN symmetry and lattice translations [127, 159–161]), with ea and eb the background
ZN ×ZN gauge fields. In particular, it is 1+ 1D ZN cluster states in each (y, t) plane of the
foliation described by e. Such invertible foliated field theories are the anomaly-inflow theories
for LSM anomalies between internal symmetries and translations [127, 161], which makes
clear that this SymTFT has a symmetry boundary with an LSM anomaly. We will discuss more
on this relation with LSM anomalies in Section 3.2.
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Application: Classifying phases

Having constructed the SymTFT for a ZN dipole symmetry, we can now classify 1+ 1D phases
protected by the symmetry (see Fig. 3). The condensable algebras of ZN ×ZN topological
order are groups and have the general form

¦

eai
1 ebi

2 mci
1 mdi

2 | aici + bidi = aic j + bid j + cia j + di b j = 0 mod N
©

. (109)

The anyons e1, e2, m1, and m2 self bosons. We choose the convention such that they respec-
tively correspond to the logical operators/topological defects [W (1)]† W (2), W (1), V (1) and V (2)

of the topological order. The Lagrangian algebra corresponding to the symmetry boundary for
the ZN dipole symmetry is 〈e1, e2〉, generated by e1 and e2 via their fusion.

Not all of these condensable algebras are closed under the translation action

T : e1, e2, m1, m2 7→ e1e2, e2, m1, m−1
1 m2 . (110)

Those that are not closed under (110) correspond to phases that can only be realized by ex-
plicitly breaking discrete translation symmetry. To investigate how the interplay due to trans-
lations affects the classification, we consider only condensable algebras closed under (110).
Including only translation-invariant condensable algebras, the Hasse diagram25 of the SymTFT
for N = 2 is

1

e2 m1e2 m1

e1, e2 m1, e2 m1e2, m2e1 m1, m2

where each box (node) is labeled by the generator(s) of that condensable algebra (which is
a group in this case). The condensable algebras not closed under translations that are not
included in the Hasse diagram are

〈e1〉 , 〈e1e2〉 , 〈m2〉 , 〈m1m2〉 ,
〈e1m2〉 , 〈m1m2e1e2〉 , 〈e1, m2〉 , 〈e1e2, m1m2〉 ,

(111)

with the last two being Lagrangian algebras.
Physically, the nodes of the Hasse diagram label states of matter, and the arrows between

them describe symmetry-allowed deformations between phases. Therefore, the bottom row
characterizes gapped states, and all other rows characterize gapless states. In the above Hasse
diagram, there are four gapped states and four gapless states, corresponding to gapped SPT

25A useful way of organizing condensable algebras when discussing their applications in classifying phases is
using a Hasse diagram [60]. A Hasse diagram is a graphical representation of a finite partially ordered set. In
this context, it is the set of all condensable algebras {A} of the SymTFT ordered by inclusion. Graphically, it is a
graph whose nodes are labeled by condensable algebras with an oriented edge pointing from A1 to A2 if A1 is a
subalgebra of A2. The nodes are arranged in rows based on the quantum dimension of the condensable algebra.
Following Ref. 60, we arrange the rows in increasing order of the quantum dimensions. This places the smallest
condensable algebra on the top row (i.e., A = {1}) and the largest ones on the bottom row (i.e., the Lagrangian
algebras). This gives the Hasse diagram a downward orientation, which we denote using arrows. When arrows
are not drawn, Hasse diagrams typically have an implied upward orientation.
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and SSB states or gapless SPT and SSB—gSPT and gSSB—states. For the Z2 dipole symmetry
boundary A= 〈e1, e2〉, the Hasse diagram is

Canonical Z2 dipole gSPT

Zd
2 gSSB gSPT 1 gSPT 2

Zm
2 ×Z

d
2

SSB
−→ 1 Zm

2 ×Z
d
2

SSB
−→ Zm

2
Cluster state SPT Product state SPT

We denote by Zm
2 and Zd

2 the uniform and modulated Z2 subgroups, respectively, of the Z2
dipole symmetry (i.e., m for monopole and d for dipole). Therefore, in translation-invariant
theories, there are two SSB and two SPT gapped states characterized by a Z2 dipole symmetry.
Furthermore, there is one gapless SSB state with two superselection sectors (i.e., two universes
from an emergentZ2 1-form symmetry) resulting from the spontaneously brokenZd

2 symmetry,
and two gapless SPT states. These two gSPT states differ in their decorated domain wall
patterns by a relative 0 + 1d Z2 SPT. Interestingly, at the level of the symmetry, there is no

obstruction to reach any of these three gapless states starting from the Zm
2 ×Z

d
2

SSB
−→ Zm

2 state
using a single deformation.

A ZN dipole symmetry has the same number of SPTs as a uniform ZN ×ZN symme-
try [157]. Indeed, in the SymTFT, they correspond to the Lagrangian condensable alge-
bras 〈m1en

2 , m2e−n
1 〉 where n ∈ {0, 1, . . . , N − 1}, and are all invariant under the translation

action (110). A ZN ×ZN dipole symmetry, however, has fewer SPTs than a uniform Z4
N sym-

metry [157]. Let us see how this arises through the ZN ×ZN dipole SymTFT, which is simply
the ZN dipole SymTFT stacked with itself.

We denote the anyons of theZN×ZN dipole SymTFT by {1, e1, m1, e2, m2,ee1, em1,ee2, em2, . . .}
where the subscript on each anyon follow the same convention as for the ZN dipole SymTFT.
The symmetry boundary corresponding to a ZN ×ZN dipole symmetry corresponds to the La-
grangian subgroup 〈e1, e2,ee1,ee2〉. The magnetic Lagrangian algebras with respect to this sym-
metry boundary are26

〈m1eC12
2 ee C13

1 ee C14
2 , m2e−C12

1 ee C23
1 ee C24

2 , em1e−C13
1 e−C23

2 ee C34
2 , em2e−C14

1 e−C24
2 ee −C34

1 〉 , (112)

with Ci j ∈ ZN . There are six ZN -valued parameters labeling these (i.e., C12, C13, C14, C23,
C24, C34), which correspond to the N6 = |H2(BZ4

N , U(1))| different uniform Z4
N SPTs. How-

ever, not all of these are closed under translations. Those that are satisfy C13 = 0 mod N and
C14 + C23 = 0 mod N . These translation-invariant magnetic Lagrangian subgroups are

〈m1 e C12
2 ee −C23

2 , m2 e−C12
1 ee C23

1 ee C24
2 , em1 e−C23

2 ee C34
2 , em2 e C23

1 e−C24
2 ee −C34

1 〉 , (113)

and they correspond to ZN ×ZN dipolar SPTs. Because there are four ZN -valued parameters
(i.e., C12, C23, C24, C34), there are N4 = |H2(BZ4

N , U(1))/(H2(BZ2
N , U(1)))2| SPTs protected by

a ZN ×ZN dipole symmetry. This matches the classification from Ref. 157.

26The magnetic Lagrangian algebras for the ZN ×ZN dipole symmetry can be derived by starting with the
group 〈m1e C11

1 e C12
2 ee C13

1 ee C14
2 , m2e C21

1 e C22
2 ee C23

1 ee C24
2 , em1e C31

1 e C32
2 ee C33

1 ee C34
2 , em2e C41

1 e C42
2 ee C43

1 ee C44
2 〉 and then applying the

constraints Cii = 0 mod N (without an implied summation) and Ci j + C ji = 0 mod N to ensure each anyon has
bosonic mutual and self statistics.
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3.1.3 Classifying modulated SPTs

From the exponential and dipole symmetry examples presented in Section 3.1.1 and Sec-
tion 3.1.2, respectively, we saw how the translation-enriched SymTFT is useful for classifying
modulated SPTs [157, 162–164]. Here, we will discuss aspects of this classification for more
general finite modulated symmetries in 1+ 1D.

Consider a 2+ 1D SymTFT Z(S) for the symmetry S, and suppose the SymTFT is enriched
by lattice translations Tx by one site in the x-direction. If S is a modulated symmetry, then
its corresponding symmetry boundary of Z(S) has defects that are non-trivially acted on by
Tx . That is, given the Lagrangian algebra LS of this symmetry boundary, there is an anyon
a ̸∈ LS for which Tx(a) ∈ LS but Tx(a) ̸∼= a on the symmetry boundary. It is important that
Tx(a) ̸∼= a holds not only in the SymTFT bulk but also on the symmetry boundary. It is possible
that Tx(a) ̸∼= a in the bulk, but Tx(a)∼= a when a resides on the symmetry boundary. This
possibility occurred, for example, in Section 3.1.2 when translations acted on the anyon e1
by Tx(e1) = e1e2 in the bulk, but acted trivially on e1 on the 1⊕m1 ⊕ e2 ⊕m1e2 condensed
boundary since e2 is condensed on the boundary. We will denote by ρT the automorphism of
S induced by restricting the translation anyon automorphism Tx to the symmetry boundary.

The classification of modulated S-SPTs without lattice translation symmetry is the same as
the classification of uniform S-SPTs. Indeed, let us first forget about the enriching translation
symmetry and consider the SymTFT Z(S) by itself. In this case, the magnetic Lagrangian
algebras for LS are Lagrangian algebras of S that overlap trivially with LS . They are classified
by the Fiber functors of the fusion category S [16] and are in one-to-one correspondence to
uniform S-SPT.

When modulated SPTs are discussed in the literature, it is often implicitly assumed that
translation symmetry is preserved. A translation-invariant modulated S-SPT, which we will
refer to as just a modulated S-SPT from here on, corresponds to a Tx -stable27 magnetic La-
grangian algebra for LS . Those that are not Tx -stable correspond to S-SPTs that explicitly
break lattice translations. The Tx stable magnetic Lagrangian algebras form a subset in the set
of all magnetic Lagrangian algebra of LS . Consequently, the number of modulated S-SPTs is
always less than or equal to the number of uniform S-SPTs [157].

Let us contextualize this classification to the invertible finite symmetry case, where S is a
finite group G and the SymTFT is 2+ 1D G gauge theory. The electric anyons are labeled by
irreps Γ ∈ Rep(G) of G, and the magnetic anyons by conjugacy classes [g] ∈ Cl(G) of G. The
G symmetry boundary has the electric Lagrangian algebra LG =

⊕

Γ∈Rep(G) dΓ Γ condensed,
where dΓ the dimension of the irrep Γ . The Tx action on the magnetic anyons induces a group
automorphism ρT ∈ Aut(G) on the symmetry boundary that describes the semi-direct product
structure between the modulated G symmetry with lattice translations.

The different magnetic Lagrangian algebras for LG are classified by the projective repre-
sentations H2(BG, U(1)) of G and correspond to different G-SPTs. There is always the mag-
netic Lagrangian algebra L=

⊕

[g]∈Cl(G)[g], and any other magnetic Lagrangian algebras will
differ by their condensed anyons and algebra structure. The action of Tx on the magnetic
Lagrangian algebras induces an action of Tx on H2(BG, U(1)), which is naturally given by the
pullback of ρT ∈ Aut(G). For a representative 2-cocycle ω(g1, g2) ∈ Z2(BG, U(1)), this action
is ρ∗T ω(g1, g2) =ω(ρT (g1),ρT (g2)). Therefore, the Tx -stable magnetic Lagrangian algebras,
which correspond to modulated G-SPTs, are classified by the ρT -invariants of H2(BG, U(1)):28

{[ω] ∈ H2(BG, U(1)) | ρ∗T [ω] = [ω]} . (114)
27Recall from Section 2.1.1 that a Tx -stable condensable algebra A is one for which Tx (A)∼=A.
28This agrees with the classification found using matrix product state [165] and real-space/defect network con-

structions for modulated SPTs [166,167]. We thank Shang-Qiang Ning and Daniel Bulmash for related discussions.
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3.2 LSM anomaly with translations

Another way translation and internal symmetries can interplay is through LSM anomalies. An
internal symmetry has an LSM anomaly involving translations if it cannot realize a translation-
invariant SPT state. However, if the internal symmetry is anomaly-free, there is an SPT state
that is symmetric with respect to the internal symmetry but explicitly breaks the translations.
Such LSM anomalies have many similarities with ’t Hooft anomalies and can be interpreted as
mixed ’t Hooft anomalies between internal and translation symmetries [72,130,168–170].

Like ’t Hooft anomalies, LSM anomalies between invertible internal symmetries and lattice
translations have an anomaly inflow mechanism. The anomaly inflow theory in one-higher
dimension is a crystalline SPT protected by the internal and lattice translation symmetry [67,
127, 161, 171, 172]. For example, a well known LSM-anomaly in a 1+ 1D system of qubits is
realized by the Z2 ×Z2 symmetry operators UX =

∏L
j=1 X j and UZ =

∏L
j=1 Z j [128,173,174].

A manifestation of this anomaly is the projective algebra UX UZ = (−1)LUZ UX with a lattice-
size-dependent phase factor arising from the local projective representation X j Z j = −Z jX j .
This is interpreted as Z2 ×Z2 being projectively represented in the presence of translation de-
fects [72,130]. The inflow theory is a 2+ 1D weak Z2 ×Z2 SPT.29 It is constructed by layering
1+ 1DZ2×Z2 SPTs on each (y, t) plane orthogonal to the (x , t) boundary, which by themselves
correspond to the 1+ 1D cluster state (i.e., the 1+ 1D invertible theory Z[A, B] = (−1)

∫

A∪B).
Knowing the inflow theory of these LSM anomalies, we can find the SymTFT by gauging

the internal symmetry of the weak SPT. In what follows, we consider the LSM anomaly in-
volving one-dimensional lattice translations and an internal symmetry described by the finite
Abelian group G. These LSM anomalies are classified by H2(BG, U(1)),30 which corresponds
to the different local G projective representation of the onsite G symmetry operators. The
corresponding inflow theory is a 2+ 1D weak G SPT, with 1+ 1D G SPTs corresponding to
the cohomology class of H2(BG, U(1)) dressing the (y, t) planes of 2+ 1D spacetime. Since
G is finite Abelian, it has the canonical isomorphism as the product group G ∼=

∏n
I=1ZNI

and
H2(BG, U(1))∼=

∏

I<J ZNI J
with NI J ≡ gcd(NI , NJ ). The 1+ 1D G SPTs can be characterized by

the anti-symmetric matrix K whose elements KI J ∈ {0,1, . . . , NI J − 1} for I < J describe theZNI

symmetry charge carried byZNJ
symmetry defects in the SPT state. The matrix K appears in the

1+ 1D LSM anomaly through the local projective representation U ( j)I U ( j)J = e2π i
KIJ
NIJ U ( j)J U ( j)I of

the onsite ZNI
and ZNJ

symmetry operators UI =
∏L

j=1 U ( j)I and UJ =
∏L

j=1 U ( j)J , respectively.
In what follows, we will construct the SymTFT from both a quantum code and Euclidean

field theory perspective.

Quantum code perspective

From a quantum code perspective, the 2+ 1D weak G ∼=
∏n

I=1ZNI
SPT is described by a

quantum code whose code space is one-dimensional on all lattices. To construct this code,
we consider a square lattice on a torus and place ZNI

qudits (I = 1,2, . . . , n) on each site
r ∼ r + Lx x̂ ∼ r + L y ŷ . They are acted on by the respective clock and shift operators Z (I)r
and X (I)r , and the total Hilbert space is ⊗rCN1N2···Nn . The code space is specified by the mutu-

29A weak G SPT is an SPT protected by an internal G symmetry and lattice translations. The adjective “weak”
is used to emphasize that weak SPTs are fragile to spatial disorder that explicitly breaks the discrete translation
symmetry [127,159–161]. In line with this terminology, sometimes SPTs protected by only an internal symmetry
are called strong SPTs.

30From the crystalline equivalence principle [67, 69–71], these LSM anomalies are classified by
H2(BG, H1(BZ, U(1)) ) arising in the Künneth decomposition of H3(B[G ×Z], U(1) ). See Ref. 130 for a derivation
of this classification using topological defects.
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ally commuting stabilizers31

A(I)r = X (I)r

n
∏

J=1

[O(I ,J)r ]
NJ
NIJ

KI J , where O(I ,J)r =

¨

Z (J)†r− ŷ Z (J)r , J < I ,

Z (J)†r Z (J)r+ ŷ , J > I .
(115)

The factor of NJ/NI J is included in front of KI J to ensure each A(I)r is an order NI operator. There
is a single state |ψ〉 satisfying A(I)r |ψ〉= |ψ〉 for all r and I . This is an SPT state, satisfying
UI |ψ〉= |ψ〉 for each ZNI

symmetry operator UI =
∏

r X (I)r . The corresponding SPT entangler
is

UK =
∏

r

U 〈r ,r+ ŷ〉
K , where U 〈r ,r+ ŷ〉

K =
∑

{g }

e2π i
∑

I<J
KIJ
NIJ

g(I)r

�

g(J)r+ ŷ−g(J)r

�

|g 〉〈g | , (116)

which satisfies UK X (I)r U−1
K = A(I)r .

To gain some intuition for this general quantum code, let us consider n= 2,
N1 = N2 = N , and K12 = 1. In this case, the stabilizers become A(1) = [Z (2)r ]

†X (1)r Z (2)r+ ŷ and

A(2) = Z (1)r− ŷ X (2)r [Z
(1)
r ]

†, which for a fixed rx are the stabilizers for the ZN cluster state. There-
fore, the state |ψ〉 in this example is a weak ZN cluster state, protected by ZN ×ZN and lattice
translations in the x direction.

As previously mentioned, this weak G SPT state is characterized by the anti-symmetric
matrix KI J , which specifies the decorated domain wall pattern. Indeed, consider inserting a
UJ symmetry defect (i.e., non-dynamical domain wall) along the non-contractible cycle of the
dual lattice passing through the links 〈 (rx , L y), (rx , 1) 〉. This gives rise to the twisted boundary

condition Z (J)r+L y ŷ = e−
2π i
NJ Z (J)r and modifies the stabilizers

A(I)r

Insert UJ defect
−−−−−−−−−−→











[e−2π i
KIJ
NIJ ]δry ,L y A(I)r , I < J ,

A(I)r , I = J ,

[e−2π i
KIJ
NIJ ]δry ,1A(I)r , I > J .

(117)

The modified stabilizers cause the code space to change. It is still one-dimensional, but the
state |ψJ 〉 in the code space now satisfies

A(I)r |ψJ 〉=











[e2π i
KIJ
NIJ ]δry ,L y |ψJ 〉 , I < J ,

|ψJ 〉 , I = J ,

[e2π i
KIJ
NIJ ]δry ,1 |ψJ 〉 , I > J .

(118)

Therefore, |ψJ 〉 satisfies UI |ψJ 〉= e2π i
KIJ
NIJ

Lx |ψJ 〉. Consequently, for the SPT state |ψ〉, each
segment of the UJ domain wall running in the ± x̂ direction carries ± NI

NI J
KI J units of ZNI

sym-
metry charge.

To construct the SymTFT, we now gauge the G symmetry of the stabilizer code. This is
implemented by the gauging map

X (I)r →
X (I)† X (I)

X (I)

X (I)†

r
, Z (I)r Z (I)†r+ x̂ → Z (I)r ,x , Z (I)r Z (I)†r+ ŷ → Z (I)r ,y , (119)

31Using the stabilizers A(I)r , one can write down a commuting projector Hamiltonian model whose unique gapped
ground state is the SPT state. In particular, the Hamiltonian is H = −

∑

r ,I P(I)r with P(I)r = N−1
I

∑NI
j=1 [A

(I)
r ]

j the

projector onto the A(I)r = 1 states.
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for each flavor of qudit. This maps the quantum code to a new quantum code with ZNI
qudits

on the edges of the square lattice and whose stabilizers are

A(I)r =
X (I)† X (I)

X (I)
∏n

J=I Z (J)
NJ
NIJ

KJ I

X (I)†
∏I−1

J=1 Z (J)
NJ
NIJ

KJ I

r
, B(I)r =

Z (I)

Z (I)†

Z (I)† Z (I)

r

. (120)

These are mutually commuting operators, and each A(I)r and B(I)r are order NI . A(I)r arises as the
image of (115) under the gauging map. B(I)r arises from the cokernel of the gauging map and
generates all local operators in the cokernel. The stabilizer condition B(I)r = 1 is the flatness
condition enforced when gauging a finite symmetry.

The logical operators of this code are all topological loop operators. The logical operators
built out of only Z (I) operators take the simple form

W (I)(C) =
∏

(r ,µ)⊂C

[Z (I)(r ,µ)]
σ(C) , (121)

where σ(C) = ±1 captures the orientation for the cycle C of the square lattice. They are topo-
logical because of the flatness condition B(I)r = 1. The logical operators involving X operators
are more complicated. For a cycle Cx running in the x-direction at fixed y , there are the logical
operators

V (I)(Cx) =
∏

(r ,µ)⊂Cx

�

X (I)r ,y

I−1
∏

J=1

[Z (J)r ,x]
rx

NJ
NIJ

KI J

n
∏

M=I

[Z (M)r+ ŷ ,x]
rx

NM
NI M

KI M

�

. (122)

For a contractible cycle C = ∂ D, the logical operator V (I) can be written as a product of sta-

bilizers [A(I)r ]
†
∏I−1

J=1[B
(J) NJ

NIJ
KI J rx

r− ŷ ]
∏n

M=I[B
(M) NM

NI M
KI M rx

r ] for sites r in D. Therefore, since this

equals 1 in the code space, V (I) for a general cycle is a topological operator. These logical
operators imply that the quantum code has

∏n
J=1ZNJ

topological order. Indeed, each W (I)

and V (I) are order NI operators, and for V (I) running in the x (y) direction and W (J) in the y

(x) direction, the operators fail to commute by the phase e
2π i
NI
δI J .

The quantum code’s topological order has a non-trivial interplay with lattice translations.
In particular, a lattice translation Tx by one site in the x-direction transforms the logical oper-
ators in the code space by

Tx : V (I)→ V (I)
n
∏

J=1

[W (J)]−
NJ
NIJ

KI J . (123)

Therefore, the quantum code has non-trivial symmetry-enriched topological order, with the
Tx lattice symmetry inducing a non-trivial anyon automorphism. This interplay between crys-
talline symmetry and topological order originates from the quantum code being constructed
by gauging a weak SPT.

The symmetry-enriched topological order can alternatively be characterized in terms of
position-dependent anyons [84]. A similar analysis was carried out in Ref. 144 for the special
case of n= 2, N1 = N2, and K12 = N1 − 1. We denote a gapped excitation (i.e., an error) cor-

responding to A(I)r = e
2π i
NI

n and B(I)r = e
2π i
NI

n by neI(r ) and nmI(r ), respectively. They satisfy
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the ZNI
relations NIeI(r ) = NImI(r ) = 0. These excitations are created by the Pauli operators

X (I)r ,µ and Z (I)r ,µ, which gives rise to the additional relations

eI(r )− eI(r + ŷ) = 0 , eI(r )− eI(r + x̂) = 0 , mI(r )−mI(r + ŷ) = 0 ,

mI(r )−mI(r − x̂)−
n
∑

J=I

NJ

NI J
KI JeJ (r )−

I−1
∑

J=1

NJ

NI J
KI JeJ (r + ŷ) = 0 .

(124)

Solving these recurrence relations, we find

eI(r ) = eI , mI(r ) = mI + rx

n
∑

J=1

NJ

NI J
KI JeJ . (125)

Therefore, the excitations depend on the lattice position r , implying that the topological order
is non-trivially enriched by translations. Furthermore, with periodic boundary conditions in
the x-direction, mI(r ) = mI(r + Lx x̂) gives rise to the constraint that

∑n
J=1

NJ
NI J

KI J LxeJ = 0 for
all I . Therefore, the number of globally distinguishable anyons and ground degeneracy on a
spatial torus depends on Lx , indicating that the SymTFT is not topological in the x direction.

To verify that this stabilizer code and its translation symmetry-enriched topological or-
der is the SymTFT for the translation LSM anomaly, we introduce a spatial boundary in the
y-direction. In particular, we consider the quantum code’s rough boundary, which is charac-
terized by the boundary stabilizers

B(I);rough
r =

Z (I)
Z (I)† Z (I)

r

. (126)

On this boundary, the W (I) operators become 1 while the V (I) operators become

V (I)rough =
Lx
∏

rx=1

�

X (I)(rx ,L y−1),y

I−1
∏

J=1

Z
(J) NJ

NIJ
KI J

(rx ,L y−1),y

�

. (127)

The operators V (I)rough are order NI and form a uniform
∏n

J=1ZNI
symmetry. Despite V (I) cor-

responding to modulated operators in the bulk, Tx acts trivially on V (I)rough since W (I)
rough = 1.

Furthermore, V (I) on the boundary are onsite and furnish a local projective representation
that causes

V (I)rough V (J)rough = exp
�

2π i
KI J

NI J
Lx

�

V (J)roughV (I)rough . (128)

Therefore, the rough boundary encodes the
∏n

J=1ZNI
symmetry with an LSM anomaly involv-

ing lattice translations.

Field theory perspective

From a Euclidean field theory perspective, the SymTFT is constructed by gauging the
G ∼=

∏n
I=1ZNI

symmetry of an invertible field theory. This invertible field theory describes
a weak 2+ 1D G SPT, which is the inflow theory for the LSM anomaly. In what follows, we
consider three-dimensional Euclidean spacetime to be a cubic lattice. The inflow theory for
the LSM anomaly can then be described by the lattice partition function

Z[A(I)] = exp

�

2π i
∑

I<J

KI J

NI J

∑

r

�

A(I)r ,tA
(J)
r+ t̂,y
− A(I)r ,yA(J)r+ ŷ ,t

�

�

, (129)
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where A(I)r ,µ is a background ZNI
lattice gauge field associated to the edge 〈r , r + µ̂〉. It satisfies

the flatness condition dA(I)r ,µν ≡∆µA(I)r ,ν −∆νA
(I)
r ,µ = 0.

The matrix K specifies the cohomology class of H2(BG, U(1)) characterizing the weak SPT

(i.e., K determines [ω] ∈ H2(BG,R/Z) such that Z = e2π i
∫

M2
A∗ω for [A] ∈ H1(M2, G)). In-

deed, consider the backgrounds A(I)r ,µ = δrt ,0δµ,t and A(J)r ,µ = δry ,0δµ,y for fixed I and J , with

all other A(•)r ,µ = 0. This choice of backgrounds correspond to ZNI
and ZNJ

symmetry defects
inserted along (x , y) and (t, x) planes of spacetime.32 For these backgrounds, the partition

function Z[A(I)] = e2π i
KIJ
NIJ

Lx . Each intersection point of these ZNI
and ZNJ

symmetry defects

contributes the phase e2π i
KIJ
NIJ to Z[A(I)]. Therefore, for this invertible theory, a ZNJ

domain

wall in a (t, x) plane carries NI
NI J

KI J Lx units of ZNI
symmetry charge.

To construct the SymTFT, we now make the background gauge fields dynamical (i.e.,
gauge the G symmetry). Denoting the dynamical gauge fields by lowercase a(I), the lattice
Lagrangian for the SymTFT is

Lr = 2π i

� n
∑

I=1

1
NI

�

b(I) ∪ da(I)
�

r +
∑

I<J

KI J

NI J

�

a(I)r ,t a
(J)
r+ t̂,y
− a(I)r ,y a(J)r+ ŷ ,t

�

�

. (130)

We refer the reader to the first line of (72) for an explicit expression of b(I) ∪ da(I). The newly
introduced lattice fields b(I) are Lagrange multipliers enforcing the flatness condition on a(I).

This description of the SymTFT has the gauge redundancy

a(I)r ,µ ∼ a(I)r ,µ +∆µα
(I)
r , b(I)r ,µ ∼ b(I)r ,µ +∆µβ

(I)
r +δµ,x NI

�

∑

J<I

KI J

NI J
α
(J)
r− t̂
+
∑

J>I

KI J

NI J
α
(J)
r+ ŷ

�

, (131)

and its equations of motion are

da(I)r ,µν = 0 , db(I)r ,µν =

�

∑

J<I

NI

NI J
KI J a(J)

r− t̂,µ
+
∑

J>I

NI

NI J
KI J a(J)r+ ŷ ,µ

�

δν,x − {µ↔ ν} . (132)

When KI J = 0, the SymTFT is just a
∏n

J=1ZNJ
gauge theory. Otherwise, for non-zero K , the

holonomies of b are modified due to the twist term in (130). Indeed, denoting by C a cycle
of the Euclidean spacetime lattice, the gauge-invariant defect lines are formed by the electric
defect lines

W (I)(C) = exp



 i
∑

(r ,µ)⊂C

a(I)r ,µ



 , (133)

and magnetic defect lines

V (I)(C) = exp



 i
∑

(r ,µ)⊂C

b(I)r ,µ + f (I)r ,µ

�

∑

J<I

NI

NI J
KI J a(J)

r− t̂,µ
+
∑

J>I

NI

NI J
KI J a(J)r+ ŷ ,µ

�



 , (134)

where f (I)r ,x = rx and f (I)r ,t = f (I)r ,y = rx − 1.

The defect lines W (I) and V (I) both satisfy ZNI
fusion rules, and from the equations of mo-

tion (132), they are topological defect lines. Furthermore, W (I)(C) and V (J)(C) are bosonic

32Recall that finite Abelian G gauge fields are in one-to-one correspondence to G symmetry defects by Poincaré
duality H1(MD, G)∼= HD−1(MD, G).
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lines and have exp
�

2π i
NI
δI J

�

mutual braiding. Therefore, the SymTFT has
∏n

J=1ZNJ
topolog-

ical order. While these are topological defects, the lattice translation Tx in the x direction
transforms them non-trivially whenever there is a KI J ̸= 0. In particular, they transform as

Tx : V (I)→ V (I)
n
∏

J=1

[W (J)]−
NJ
NIJ

KI J . (135)

Therefore, these are modulated 1-form symmetries of the SymTFT. This makes the SymTFT a
∏n

J=1ZNJ
topological order non-trivially enriched by translations in the x-direction.

To verify that this is the SymTFT for the finite Abelian G symmetry with LSM anomaly, we
consider the Dirichlet boundary condition as ,x = as ,t = 0 where s = (rx , L y , rt). This bound-
ary trivializes the W (I) topological defects. The V (I) topological defects, however, are non-
trivial. Indeed, consider the cycle Cbdy in the (t, x) plane formed by lattice vectors s − ŷ .

Using the Dirichlet boundary conditions and the equations of motion a(I)s− ŷ ,t = −∆t a
(I)
s− ŷ ,y and

a(I)s− ŷ ,x = −∆x a(I)s− ŷ ,y , the boundary magnetic defects simplify to

V (I)(Cbdy) = exp



 i
∑

(r ,µ)⊂Cbdy

b(I)r ,µ − f (I)r ,µ

�

∑

J<I

NI

NI J
KI J ∆µa(I)

r− t̂,y

�



 . (136)

When Cbdy runs along a fixed rt , this simplifies to V (I) = exp
�

i
∑

rx
b(I)r ,x +

∑

J<I
NI
NI J

KI J a(I)
r− t̂,y

�

.

Despite V (I) corresponding to modulated topological defect lines in the bulk, Tx acts on them
trivially on the boundary since W (I) = 1 on the boundary. In a Hamiltonian formalism, where
time is continuous, the local on-site operators of V (I) form a projective representation described
by KI J since b(I)x and a(I)y fail to commute. Therefore, V (I)(Cbdy) are the symmetry defects for
a finite Abelian symmetry with LSM anomaly involving translations.

The above discussion of the SymTFT used lattice field theory for clarity. Its continuum
limit is

S =
i

2π

∫

∑

I

NI a(I) ∧ db(I) −
i

2π

∫

∑

I<J

lcm(NI , NJ )KI J a (I) ∧ a (J) ∧ e , (137)

where the 1-form e = Λdx and Λ is a UV cutoff related to the lattice spacing. The background
field eµ is sometimes viewed as the background gauge field for lattice translation. Here, we find
that this “background gauge field for lattice translation” is more precisely a differential form
related to leaves of a foliation of spacetime. Indeed, (137) is not a TQFT. Because translations
in the x-direction act non-trivially on the topological defect lines, the partition function can
change as the size of space in the x-direction is changed. However, it is still topological in
the y and t directions, making it a type of foliated field theory. Each leaf of the foliation is
dressed by an invertible condensation surface defect of G gauge theory that implements the
anyon automorphism (135). These dressed leaves encode in the continuum SymTFT how the
1+ 1D symmetry has an LSM anomaly with translations.

3.2.1 LSM theorem from the SymTFT

The SymTFT can be used to prove that the LSM anomaly of G ∼=
∏n

I=1ZNI
is an obstruction to

translation-invariant SPT states (i.e., the LSM theorem). We denote by eI and mI the anyons
corresponding to the logical operators/topological defects W (I) and V (J), respectively. Because
W (I)=1 on the LSM anomaly symmetry boundary, the Lagrangian condensable algebra corre-
sponding to the symmetry boundary is ALSM = 〈e1, e2, . . . , en〉, generated by the eI anyons via
their fusion. In this notation, the symmetry defects are mI , which form all of the anyons not
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in ALSM. They are uniform symmetries since the translation action on mI is trivial when the
eJ anyons are condensed.

G-SPT phases correspond to Lagrangian algebras that have a trivial overlap with ALSM.
These condensable algebras AC are characterized by an anti-symmetric matrix C and are gen-
erated by all fusion combination of mI

⊗

J e NJ CI J/NI J
J anyons:

AC = 〈mI

⊗

J
e NJ CI J/NI J

J | I = 1, 2, . . . , n〉 . (138)

However, for these to correspond to translation-invariant SPTs, they must be invariant under
the anyon automorphism

mI → mI e
− N1

NI1
KI1

1 e
− N2

NI2
KI2

2 · · · e
− Nn

NIn
KIn

n , eI → eI , (139)

induced in the SymTFT by a single lattice translation in the x-direction. Under this trans-
formation, the condensable algebra AC →AC−K . Therefore, lattice translations change the
decorated domain wall pattern and all G-SPTs can only be realized by explicitly breaking lat-
tice translation symmetry. This is precisely the LSM anomaly: no translation-invariant G SPTs
exist.

Another signature of the LSM anomaly is that a translation invariant SPT state can be
realized if G is explicitly broken to a particular sub-symmetry Gsub. This can also be seen using
the SymTFT. Indeed, explicitly breaking G to Gsub modifies the SymTFT by forgetting a subset
of the G topological order anyons. If the translation action becomes trivial on this subset of
anyons, then there exists translation-invariant Gsub SPT states. For example, when n= 3 and
K13 = 0, the translation action on anyons can be trivialized by forgetting the e2 and m2 anyons.
Therefore, by explicitly breaking ZN1

×ZN2
×ZN3

with this LSM anomaly to ZN1
×ZN3

, the LSM
anomaly is trivialized and there exist translation-invariant ZN1

×ZN3
-SPTs.

3.2.2 Dual symmetries from gauging

The SymTFT can be used to explore gauging internal symmetries with LSM anoma-
lies. For example, gauging the G ∼=

∏n
I=1ZNI

symmetry without discrete torsion is imple-
mented by changing the symmetry boundary’s condensable algebra ALSM = 〈1, e1, e2, . . . , en〉
to Am = 〈1, m1, m2, . . . , mn〉. The Lagrangian condensable algebra Am describes a symmetry
boundary for a uniform G symmetry whose symmetry defects correspond to the anyons eI .
However, Am is not invariant under the anyon automorphism (139). Therefore, due to the
LSM anomaly, gauging G causes the ordinary lattice translations to explicitly break. How-
ever, there is a non-invertible lattice translation operator DT that arises from the gauging.
It is implemented a first acting Dm→LSM that performs the Kramers-Wannier transformation
switching Am→ALSM, then acting by lattice translations T , and then acting DLSM→m to ap-
ply another Kramers-Wannier like transformation to switch back ALSM→Am. In the SymTFT
without boundary, Dm→LSM and ALSM→Am are invertible anyon automorphisms, but in the
1+ 1D theory they are non-invertible. The non-invertible operator DT =DLSM→m T Dm→LSM
generalizes the non-invertible translations discussed in [47,130].

One can also use the SymTFT to gauge sub-symmetries of G. For example, we gauge a ZNI

sub-symmetry of G by replacing each eI in AI by mI . The resulting Lagrangian condensable
algebra AI = 〈e1, . . . , eI−1, mI , eI+1, . . . , en〉 is invariant under the translation action (139). Be-
cause AI does not include eI , it describes a modulated symmetry. Indeed, its symmetry defects
are formed by mJ for J ̸= I and eI . Using that the anyons in AI are condensed, these sym-
metry defects transform as mJ → mJ eNI KI J/NI J

I , eI → eI under translations. Therefore, gauging
ZNI

causes the uniform G symmetry with LSM anomaly to become a modulated G symmetry.
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This line of thinking can be used to show that most Lagrangian condensable algebras of the
SymTFT correspond to symmetry boundaries for modulated symmetries. This generalizes the
relation between LSM anomalies and dipole symmetries from [47,130,170].

The modulated symmetry described by the AI boundary is sometimes anomaly-free, ad-
mitting SPT phases. Possible SPT phases correspond to Lagrangian condensable algebras that
have a trivial overlap with AI . Such condensable algebras AC are labeled by an antisymmet-
ric n× n matrix C and are of the form (138) but with eI↔ mI . This condensable algebra is
invariant under the lattice translation’s action when

NI

NIaNI b
(CIaKI b − KIaCI b)−

1
Nab

Kab ∈ Z , ∀ a, b ̸= I . (140)

For example, this is always satisfied when n= 2. Therefore, every ZN1
×ZN2

symmetry with a
translation LSM anomaly is dual to an anomaly-free modulated symmetry by gauging ZN1

or
ZN2

. However, such dual symmetries are not always anomaly-free. For example, when n= 3,
if there is an a and b with Kab ̸= 0 such that NIa = NI b = 1 while Nab ̸= 1, then (140) cannot
be satisfied. Therefore, this example has no translation-invariant AC , and its symmetries have
no translation-invariant SPT states.

4 SymTFT enriched by reflection

We now turn our attention to reflection symmetry, focusing on systems where it interacts non-
trivially with internal symmetries. This interaction may appear as an LSM-like anomaly or a
non-trivial group extension of reflections by internal symmetries. Interestingly, as we show,
these two cases are connected through discrete gauging and, thus, share a common SymTFT
enriched by reflection symmetry. This differs from the translation-enriched SymTFTs in Sec-
tion 3 as the reflection symmetry will display non-trivial symmetry fractionalization [175–
179], which will play an essential role in the following discussion.

4.1 Example: LSM anomalies and extensions with reflections

Before constructing the reflection-enriched SymTFT, it is instructive to consider a 1+ 1D mod-
els that realize the symmetry interplays we will consider.

Lattice model perspective

We will start with a lattice model realizing an LSM anomaly between reflection and internal
symmetries. Consider a 1+ 1D lattice of L sites with a single qubit on each site j acted on by
the Pauli operators Z j and X j . Suppose the system enjoys a Z2 internal symmetry generated
by

UX =
L
∏

j=1

X j . (141)

Further, we assume there is a ZR
2 reflection symmetry generated by

UR = R
L
∏

j=1

Z j , (142)

where R is the site-centered reflection operator satisfying RX jR
† = X− j and RZ jR

† = Z− j . An
example of a Hamiltonian with this Z2 ×ZR

2 symmetry is

H =
L
∑

j=1

(Z jYj+1 − Yj Z j+1) , (143)
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where Yj = iX j Z j . While UR commutes with this Hamiltonian, notice that R does not. This
Hamiltonian has many more symmetries other than the internal Z2 symmetry and reflection
symmetry, which we will not consider here.

The Z2 ×ZR
2 symmetry generated by (141) and (142) has an LSM anomaly, i.e., there is no

nondegenerate and gapped ground state with this Z2 ×ZR
2 symmetry. There are many ways

to see this. One way to argue for the LSM is to use that the UR operator acts like an internal
symmetry at the reflection centers, e.g., at j = L. Then, at these reflection-center sites, the
symmetry operators UX and UR realize a non-trivial, local projective representation of Z2 ×ZR

2.
Since this projective representation cannot be trivialized by any regrouping or redefinition of
the lattice degrees of freedom, by the lattice homotopy conjecture introduced in Ref. 180,
there is an LSM anomaly for Z2 ×ZR

2. Another way to argue for the LSM anomaly is through
its relation to a well-known LSM anomaly between the Z2 ×Z2 internal symmetry generated
by
∏L

j=1 X j and
∏L

j=1 Z j and the reflection symmetry generated R [170,180].33 Since the UR

operator is nothing but the product of
∏L

j=1 Z j and R, there is a type-II-like LSM anomaly for
Z2 ×ZR

2 symmetry induced from the type-III-like LSM anomaly of the Z2 ×Z2 ×Z2 symmetry
generated by

∏L
j=1 X j ,

∏L
j=1 Z j , and R.

As we now demonstrate, a consequence of the LSM anomaly between Z2 and ZR
2 is that

the dual symmetry arising from gauging Z2 is part of a Z4 reflection symmetry.34 To gauge the
Z2 symmetry, we introduce a qubit onto each link 〈 j, j + 1〉 of the lattice and denoted by X j,x
and Z j,x its Pauli operators. The site and link qubit operators satisfy the Gauss law

G j = X j−1,x X jX j,x = 1 . (144)

Because UX =
∏L

j=1 G j , the Gauss law trivializes the original Z2 symmetry. Gauging also leads
to a new, dual Z2 symmetry generated by

U∨X =
L
∏

j=1

Z j,x . (145)

Indeed, the Hamiltonian (143) after minimal coupling becomes
∑

j(Z j Z j,x Yj+1 − Yj Z j,x Z j+1),
which commutes with U∨X . The original ZR

2 reflection symmetry operator (142) is not gauge
invariant but can be made gauge invariant upon minimal coupling. Assuming that the number
of sites L is even, the gauge-invariant version of UR is

U∨R = R
L
∏

j=1

Z j

L/2
∏

n=1

Z2n,x = R
L
∏

j=1

Z j(Z j,x)
j+1 . (146)

The R operator acts on the site qubit operators just as before and now acts on the link qubit
operators as R X j,xR† = X− j−1,x and R Z j,xR† = Z− j−1,x . Although the reflection symmetry gen-
erated by UR is a ZR

2 symmetry, the reflection symmetry operator U∨R after gauging is a Z4
operator, satisfying

(U∨R )
2 = U∨X . (147)

33This a type-III-like LSM anomaly. It manifests through, for example, the
∏L

j=1 X j and R symmetry operators

furnishing a projective representation of Z2 ×Z2 in the presence of a
∏L

j=1 Z j symmetry defect. Indeed, inserting

the
∏L

j=1 Z j symmetry defect at the link 〈n, n+ 1〉 causes the reflection operator R to become the twisted opera-

tor Rtw =
�

∏n
j=−n Z j

�

R. This satisfies the projective algebra Rtw

�

∏L
j=1 X j

�

= −
�

∏L
j=1 X j

�

Rtw, which defines the

projective Z2 ×Z2 representation. This projective representation similarly arises for the
∏L

j=1 Z j and R symmetry

operators after inserting a
∏L

j=1 X j symmetry defect.
34Similar group extensions arising from gauging internal symmetries with LSM anomalies exist for lattice trans-

lations, as discussed in Section 3 and Refs. 47,85,130,170.
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This extension of the ZR
2 symmetry by the dual Z2 symmetry is a consequence of the LSM

anomaly.

Field theory perspective

The LSM anomaly between the Z2 internal and ZR
2 reflection symmetries is characterized by an

anomaly inflow theory, which is an invertible TFT in one higher dimension. We denote by X3
the 2+ 1D spacetime manifold for the anomaly inflow theory. The action of the inflow theory
is constructed from the background gauge fields A∈ H1(X3,Z2) of internal Z2 symmetry and
the first Stiefel-Whitney class w1 ∈ H1(X3,Z2) of X3 (i.e., the connection of the orientation
bundle on X3). The ZR

2 reflection symmetry couples to the first Stiefel-Whitney class w1. The
Z2 ×ZR

2 LSM anomaly is then characterized by the SPT action

iπ

∫

X3

A∪ Bock(w1) , (148)

where ∪ is the cup product and Bock: H1(X3,Z2)→ H2(X3,Z2) is the Bockstein homomor-
phism. Introducing the Z-lift ŵ1 of w1, the action can also be written as

iπ
2

∫

X3

A∪δŵ1 . (149)

Following the reasoning from Ref. 100, the symmetry extension of ZR
2 to ZR

4 after gaug-
ing Z2 can be understood using (149). Gauging the internal Z2 symmetry promotes its
background gauge field A to a dynamical gauge field, which we denote by a. The SPT ac-
tion (149) then depends on a dynamical field a as iπ

2

∫

X3
a ∪δŵ1. The dependence of a

in the bulk can be removed using the background gauge field A∨ of the dual Z2 symme-
try. On the boundary of the SPT, A∨ couples to a through iπ

∫

∂ X3
a ∪ A∨, which is equal to

iπ
∫

X3
δ(a ∪ A∨) = iπ

∫

X3
a ∪δA∨ by Stokes’ theorem. The dependence on a in the bulk can

then be canceled by requiring A∨ satisfies

δA∨ +
1
2
δŵ1 = 0 mod 2 . (150)

This constraint implies that ŵ1 + 2A∨ is a Z4 cocycle and, therefore, the reflection symmetry
is extended to a ZR

4 symmetry by the Z2 dual symmetry.

4.2 Reflection enriched SymTFT

We now construct the reflection-enriched SymTFT for the Z2 ×ZR
2 symmetry with LSM

anomaly and the ZR
4 reflection symmetry and discuss its applications. Since these two sym-

metries are related by discrete gauging, they share the same SymTFT. We will focus on the
SymTFT as a quantum lattice model (i.e., stabilizer code). The field theory for this symmetry-
enriched SymTFT is the non-orientable TFT discussed above constructed by promoting A into
a dynamical gauge field in (149).

4.2.1 Stabilizer code

We construct the lattice model for the SymTFT by gauging the SPT for the ZR
4 reflection sym-

metry (146). Since the ZR
4 reflection symmetry is anomaly-free, this SPT is a trivial param-

agnet. It is defined on a square lattice with a qubit at each site r ≡ (rx , ry) and horizontal
link 〈r , r + x̂〉 of the lattice. Their respective Pauli operators are denoted by (Zr , X r ) and
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(Zr ,x , X r ,x) (we follow the same notation for sites and edges of the square lattice used in Sec-
tion 3). Its Hamiltonian is

Hpara = −
∑

r

(Zr + Zr ,x) , (151)

where
∑

r sums over all lattice sites. The ZR
4 reflection symmetry operator (145) when acting

in two spatial dimensions is35

U∨R = R
∏

r

Zr (Zr ,x)
rx+1 , (152)

where R is the site-centered reflection that satisfies

R X(rx ,ry )R
† = X(−rx ,ry ) , R Z(rx ,ry )R

† = Z(−rx ,ry ) ,

R X(rx ,ry ), xR† = X(−rx−1,ry ), x , R Z(rx ,ry ), xR† = Z(−rx−1,ry ), x .
(153)

The reflection operator U∨R commutes with the paramagnet Hamiltonian Hpara.
We now gauge the internal Z2 subgroup of the ZR

4 reflection symmetry, which is generated
by

U∨X = (U
∨
R )

2 =
∏

r

Zr ,x . (154)

Gauging maps the paramagnet with qubits on sites and horizontal links to a topologically or-
dered model with two qubits on each site and one qubit on each plaquette. We use the notation
(X , Z) for the plaquette-qubit operators and (eX , eZ) for the new site-qubit operators. This gaug-
ing map does not transform the original site qubit operators (i.e., it transforms X r → X r and
Zr → Zr ) and its effect on the horizontal link qubits is

X

X

→ Z

X X → eZ

, Zr ,x → Ar ,x =
eX eX

X

X
r

. (155)

After gauging, the paramagnet Hamiltonian becomes

H = −
∑

r

(Zr + Ar ,x + Br ,y) , (156)

where the stabilizer Br ,y energetically enforces the gauging’s flatness condition and given by

Br ,y =

eZ

eZ

ZZ
r

. (157)

The last two terms in the Hamiltonian (156) is the Hamiltonian of a toric code, which captures
the topological order of the SymTFT. On the other hand, the first term causes one species of

35Here we abuse notation by using the same notation for the symmetry operators in 2+ 1D as we did in 1+ 1D.
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site qubits to form a product state at low-energies, decoupling them from the IR. The reflection
symmetry operator (152) after gauging the internal Z2 symmetry becomes

U∨R = R
∏

r

Zr eX r , (158)

where R is the site-centered reflection acting in the expected way on all three species of qubits.
This operator satisfies (U∨R )

2 = 1 on an infinite square lattice.
The Hamiltonian (156) has Z2 topological order enriched by the reflection symme-

try (158). It has four types of anyons: the trivial anyon 1, the e anyon, the m anyon, and the
f = e×m anyon. The e (resp. m) anyon resides on horizontal (resp. vertical) edges of the lat-
tice where Ar ,x ̸= 1 (resp. Br ,y ̸= 1). The e anyons carry fractional U∨R symmetry charge. This
fractionalization pattern can be diagnosed by the eigenvalue of the reflection symmetry for a
reflection-symmetric configuration of e anyons [175,178,179]. Indeed, a reflection-symmetric
pair of e anyons is created by the operator

We(ry , l) =
l
∏

rx=−l

eZr , (159)

with l ∈ Z. This string operator is charged under the reflection symmetry as
U∨R We (U∨R )

† = −We. Since a pair of e anyons carries integer reflection symmetry charge, each
e anyon individually carries fractional charge. On the other hand, the m anyons do not carry
fractional reflection symmetry charge. Indeed, a reflection-symmetric pair of m anyons is cre-
ated by the string operator

∏l+1
rx=−l X rx−

1
2 ,ry+

1
2
, which commutes with the reflection symmetry:

U∨R Wm =WmU∨R .
In summary, the SymTFT has a Z2 topological order enriched by a reflection symmetry that

fractionalizes on the e anyons but not on the m anyons.

4.2.2 Gapped boundary conditions

Let us now discuss the gapped boundary conditions of this SymTFT. Since the reflection-
enriched SymTFT has an underlying Z2 topological order, there are two classes of gapped
boundaries: the e condensing and the m condensing boundary.

Let us first consider the m condensing boundary (i.e., the smooth boundary of the toric
code). To do so, we consider a quiche with a top boundary along the row ry = 0 of the square
lattice. The lattice sites of this square lattice quiche are (rx , ry) ∈ Z×Z≤0. The boundary
condition is specified by the boundary stabilizers

A(smooth)
rx ,x =

eX eX

X

(rx , 0)

. (160)

The m anyon logical operator operator on the top boundary can be written as

W (smooth)
m =

∏

rx

X rx+
1
2 ,− 1

2
=
∏

rx

A(smooth)
rx ,x . (161)

Therefore, W (smooth)
m = 1 in the ground state subspace, indicating that this boundary is, in fact,

the m condensing boundary. On the other hand, the e anyon logical operator on the boundary
W (smooth)

e and reflection operator U (smooth)
R in the presence of this boundary are, respectively,

W (smooth)
e =

∏

rx

eZ(rx ,0) , U (smooth)
R = R

∏

ry≤0,rx

Zr eX r . (162)
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These operators commute with all stabilizers and generate Z2 ×ZR
2 symmetries. Furthermore,

by the same reasoning in Section 4.1, the internal Z2 symmetry generated by W (smooth)
e and ZR

2

reflection symmetry generated by U (smooth)
R have an LSM anomaly. In particular, W (smooth)

e and

U (smooth)
R form a local projective representation at the reflection-center row rx = 0. Therefore,

the m condensing boundary of the reflection-enriched SymTFT encodes the Z2 ×ZR
2 symmetry

with LSM anomaly.
On the other hand, the e condensing boundary (i.e., the rough boundary of the toric code)

truncates the lattice along the row of vertical edges connecting sites at ry = 0 and ry = 1. The
lattice sites are still (rx , ry) ∈ Z×Z≤0, but now there are qubits on the boundary plaquettes
centered at (rx +

1
2 , 1

2). The boundary stabilizers are

B(rough)
rx ,y =

eZ

ZZ

(rx , 0)

.
(163)

The e anyon logical operator on this boundary can be written as

W (rough)
e =

∏

rx

eZ(rx ,0) =
∏

rx

B(rough)
rx ,y . (164)

Therefore, W (rough)
e = 1 in the ground state subspace, which confirms that this is the e condens-

ing boundary. The m anyon logical operator on the boundary is unaffected by the boundary
stabilizer. It is given by

W (rough)
m =

∏

rx

X rx+
1
2 , 1

2
, (165)

and generates a Z2 symmetry on the boundary. The reflection symmetry operator in the pres-
ence of the e condensing boundary is different from that of the m condensing boundary. In-
deed, the reflection operator U (smooth)

R is not a symmetry. However, it can be modified on the
boundary to become a symmetry, resulting in the conserved reflection operator

U (rough)
R = R

 

∏

ry≤0,rx

Zr eX r

!

�

∏

rx

�

X rx+
1
2 , 1

2

�rx

�

≡ U (smooth)
R

∏

rx

�

X rx+
1
2 , 1

2

�rx
. (166)

This is a ZR
4 reflection operator, extended by the Z2 symmetry Wm on the boundary:

�

U (rough)
R

�2
=W (rough)

m . (167)

Gauging the Z2 symmetry generated by the boundary logical operator is implemented by
changing boundary conditions. For instance, switching from the m condensing to e condensing
boundary corresponds to gauging the Z2 symmetry generated by W (smooth)

e . Therefore, we see
from the reflection-enriched SymTFT that a Z2 ×ZR

2 symmetry with LSM anomaly is related
to a ZR

4 reflection symmetry by gauging the internal Z2 sub-symmetry. This agrees with what
we found in subsection 4.1 when working explicitly with qubit models in 1+ 1D.

4.2.3 LSM theorem from SymTFT

The LSM anomaly of the Z2 ×ZR
2 symmetry can also be diagnosed using the symmetric sand-

wich construction discussed generally in Section 2.1.3. The m and e condensing boundaries
constructed above correspond to the Lagrangian algebras Lm = 1⊕m and Le = 1⊕ e, respec-
tively, of the Z2 topological order. Because e anyons carry fractional reflection charge, Le is not
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a reflection-symmetric Lagrangian algebra. However, Lm is reflection-symmetric, and the only
symmetric sandwich is one whose top and bottom boundaries are the m condensing boundary.
Therefore, the only ZR

2-enriched gapped phase with a Z2 ×ZR
2 symmetry has a two-fold ground

state degeneracy and spontaneously breaks the internal Z2 symmetry. The fact that there are
no Z2 ×ZR

2 SPTs is exactly the LSM anomaly between internal Z2 and reflection symmetries.

5 SymTFT enriched by time-reversal

In this section, we consider 2+ 1D SymTFTs enriched by time-reversal symmetry (TRS). Simi-
lar to Section 4, we will focus on an example that shows how time-reversal enriched SymTFTs
can capture the interplays between Z2 symmetries and ZT

2 TRS. In particular, we consider a
Z2 × ZT

2 symmetry with mixed anomaly and a ZT
4 symmetry and show they have the same

time-reversal enriched-SymTFT. These interplays are captured in the SymTFT by the fraction-
alization of the TRS, which gives rise to a local Kramers degeneracy [83,178,181].

5.1 Example: Anomalies and extensions with time-reversal

Before constructing the SymTFT, we first explore an explicit example of these interplays be-
tween Z2 and ZT

2 symmetries in 1+ 1D.

Lattice model perspective

Consider a 1+ 1D lattice model of qubits with a single qubit on each site j. We assume the
number of lattice sites L is even and the Pauli operators satisfy periodic boundary conditions
X j+L ≡ X j and Z j+L ≡ Z j . For this example, we consider the Z2 ×ZT

2 symmetry generated by
the operators

U =
L
∏

j=1

Z j , UT = K
L/2
∏

n=1

�

e i π4 X2n−1Y2n e− i π4 Y2nX2n+1
�

, (168)

where K is the complex conjugation operator. These operators are symmetries of, for example,
the XX model

HXX =
L
∑

j=1

(X j X j+1 + Yj Yj+1) . (169)

The XX model has many other interesting symmetries that we will not consider.36 It is ob-
vious that the unitary operator U is a symmetry operator and commutes with the XX model
Hamiltonian, i.e., [HXX, U] = 0. The anti-unitary operator UT satisfies

UT X jU
†
T =

¨

X j , j odd,

X j−1X jX j+1 , j even,
UT YjU

†
T =

¨

−Yj−1YjYj+1 , j odd,

−Yj , j even,
(170)

and using these relations, it is straightforward to verify that UT is also a symmetry operator of
the XX model.

The Z2 ×ZT
2 symmetry generated by (168) has a mixed anomaly between Z2 and ZT

2 . This
follows from the fact that the unitary Z2 ×Z2 symmetry generated by U and the unitary part
of UT (i.e., UT without K) has a mixed anomaly [182, 183]. A consequence of the mixed
anomaly is that the ZT

2 TRS operator becomes a ZT
4 TRS operator after gauging the unitary

36The XX model has a plethora of interesting symmetries, including non-invertible symmetries and Onsager
symmetries, which are infinite-dimensional Lie group symmetries [182].
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Z2 symmetry. Indeed, the gauging map for the symmetry generated by U can be implemented
using the Kramers-Wannier transformation

Z j → Z j Z j+1 , X jX j+1→ X j+1 . (171)

After gauging, there is a dual Z2 symmetry generated by U∨ =
∏L

j=1 X j and the TRS operator
UT under (171) becomes

U∨T = K
L/2
∏

n=1

�

e i π4 Y2nZ2n+1 e− i π4 Z2nY2n+1
�

. (172)

This TRS operator satisfies

(U∨T )
2 =

L/2
∏

n=1

�

e i π2 Y2nZ2n+1 e− i π2 Z2nY2n+1
�

=
L/2
∏

n=1

( iY2nZ2n+1) (− i Z2nY2n+1) = U∨ , (173)

and, therefore, is a ZT
4 symmetry operator. As a consequence of the mixed anomaly, the ZT

2
symmetry before gauging has been extended by the dual Z2 symmetry after gauging to become
a ZT

4 symmetry.

Field theory perspective

The relationship between the anomalous Z2 × ZT
2 symmetry and ZT

4 symmetry can also be
understood through an anomaly inflow theory in one higher dimension. This is the same in-
vertible TFT that characterized the LSM anomaly between internal Z2 symmetry and reflection
in Sec. 4.1. In particular, the invertible TFT is given by the SPT action

iπ
2

∫

X3

A∪δŵ1 , (174)

where X3 is a 2+ 1D spacetime manifold, A∈ H1(X3,Z2) is the background gauge field for the
internal Z2 symmetry, and ŵ1 is the Z-lift of the first Stiefel-Whitney class w1 ∈ H1(X3,Z2)
of X3. Using the same argument for the reflection-symmetry with LSM anomaly, we find that
the SPT action captures the extension of time-reversal symmetry to ZT

4 when the internal Z2
symmetry is gauged (i.e., when A is made dynamical).

5.2 Time-reversal enriched SymTFT

We now consider the SymTFT for the anomalous Z2 ×ZT
2 symmetry and ZT

4 symmetry. Like
for the reflection-enriched SymTFT in Section 4.2, this SymTFT has a Z2 topological order
enriched by ZT

2 TRS that fractionalizes on the e anyons. In the field theory language, this
SymTFT is obtained by promoting the background gauge field A in the SPT action (174) to a
dynamical one. Here, we will consider the corresponding stabilizer code Hamiltonian, which
is the same as that constructed in Appendix E.

5.2.1 Stabilizer code

On each site r of the square lattice resides a Z4 qudit while on each link resides a qubit. The
Z4 qudit operators are denoted by Xr and Zr , while the Pauli operators of the qubits are σx

r ,µ
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and σz
r ,µ. The physical Hilbert space is subject to the local constraint

X 2
r Ar = 1 , where Ar =

σx σx
σx

σx
r

. (175)

The stabilizer code Hamiltonian on the constrained physical Hilbert space is given by

H = −
∑

r

(Xr +X †
r + Br ) , where Br =

σz

σz

σz σz

r

. (176)

It has Z2 topological order. One way to see this is to note that it has an anomalous Z2 ×Z2
(non-topological) 1-form symmetry generated by Ar and Br , which is spontaneously broken.
A pair of e anyons is created by the string operator Zrσ

z
r ,µZ

†
r+µ̂, and a pair of m anyons by

σx
r ,µ. The Hamiltonian (176) also commutes with the TRS operator

UT = K
∏

r

Xr , (177)

where K is the complex conjugation. We work in the basis where X , σz , and σx are real
and hence commute with K while KZK = Z†. On an infinite lattice, the TRS operator UT
generates a ZT

2 symmetry since

(UT )
2 =

∏

r

X 2
r =

∏

r

Ar = 1 . (178)

The ZT
2 symmetry is fractionalized on the e anyons. We can probe this fractionalization by

inserting a single, static e anyon at the site r0. The presence of this non-dynamical anyon mod-
ifies each observable O of the model to We,r0

OW †
e,r0

, where We,r0
= Zr0

∏

ℓ⊂P σ
z
ℓ

is an infinite
e anyon string operator with P a path from r0 to infinity. For example, the Hamiltonian (176)
becomes

He =We,r0
H W †

e,r0
= H + (1− i)Xr0

+ (1+ i)X †
r0

, (179)

which describes the same TRS-enriched Z2 topological order, but now with a single e anyon
trapped at site r0. On the other hand, the TRS operator (177) becomes

UT ;e =We,r0
UT W †

e,r0
= iZ2

r0
UT . (180)

While UT ;e commutes with the modified Hamiltonian He, the original TRS operator UT does
not. This modified TRS operator satisfies

U2
T ;e = −1 , (181)

and furnishes the non-trivial projective representation of the ZT
2 symmetry. Therefore, there

is a Kramers degeneracy arising from inserting a single e anyon, which is sometimes called
a “local Kramers degeneracy” and is a key signature of TRS fractionalization [83, 178, 181].
We note another manifestation of the ZT

2 symmetry fractionalization is that the string operator
We,r0

for a single e anyon satisfies UT We,r0
U†

T = iWe,r0
. Hence, a single e anyon can be regarded

as carrying a fractional charge i of the ZT
2 symmetry.
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5.2.2 Gapped boundary conditions

There are two classes of gapped boundaries for this TRS-enriched Z2 toric code: the e condens-
ing and m condensing boundaries. Just as for the reflection-enriched SET example discussed
in Section 4.2.2, as symmetry boundaries, they lead to two different symmetries.

The m condensing is the smooth boundary of the Z2 topological order. It is obtained
by truncating the lattice along the ry = 0 row of sites, yielding a lattice formed by sites
(rx , ry) ∈ Z×Z≤0. The Br stabilizers are unaffected by this truncation, but the Ar operator
in the local constraint (175) is modified on this boundary. The local constraint on the ry = 0
boundary sites is

X 2
(rx ,0) A

(smooth)
rx

= 1, where A(smooth)
rx

= σx σx

σx

(rx , 0)

. (182)

The m anyon logical operator on this boundary can be written as

W (smooth)
m =

∏

rx

σx
(rx ,−1),y =

∏

rx

X 2
(rx−1,0) . (183)

Therefore, W (smooth)
m = 1 in the ground state subspace, which confirms that this is the m con-

densing boundary. The e logical operator on the boundary is unaffected by the boundary
stabilizer. It is given by

W (smooth)
e =

∏

rx

σz
(rx ,0),x , (184)

and generates aZ2 symmetry on the boundary. With this boundary condition, the TRS operator
is unchanged. However, it now squares to

U2
T ≡

∏

rx

 

A(smooth)
rx

∏

ry<0

A(rx ,ry )

!

= 1 . (185)

Therefore, this symmetry boundary encodes a Z2 ×ZT
2 symmetry. In fact, as we will show

momentarily, this Z2 ×ZT
2 symmetry has a mixed anomaly.

The e-condensing boundary is obtained by choosing the rough boundary conditions. For
this stabilizer code model, this is one where the lattice is truncated along the ry = 1 row of
sites, yielding a lattice formed by sites (rx , ry) ∈ Z×Z≤1 with qubits on the boundary ry = 1
sites and no degrees of freedom on the boundary horizontal links. The local constraint (175)
is unchanged and implemented on all bulk sites ry ≤ 0. The boundary plaquette stabilizers
are modified to be

B(rough)
rx

=
σz

σz σz

(rx , 0)

Z Z†

. (186)

The e anyon logical operator on this boundary can be written as

W (rough)
e =

∏

rx

σz
(rx ,0),x =

∏

rx

B(rough)
rx

. (187)
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Therefore, W (rough)
e = 1 in the ground state subspace, which confirms that this is the e con-

densing boundary. The m logical operator on the boundary is unaffected by the boundary
stabilizer and given by

W (rough)
e =

∏

rx

σx
(rx ,0),y , (188)

and generates aZ2 symmetry on the boundary. With this boundary condition, the TRS operator
is unchanged and squares to

U2
T =

∏

r

X 2
r =

∏

rx

�

X 2
(rx ,1)σ

x
(rx ,0),y

�

. (189)

Therefore, in the ground state subspace, U2
T =W (rough)

e and the ZT
2 bulk symmetry is extended

to ZT
4 symmetry at the boundary.
Gauging the Z2 symmetry corresponding to the boundary logical operator is implemented

by changing boundary conditions. Thus, we see from the SymTFT perspective how anomalous
Z2 ×ZT

2 symmetry is related to a ZT
4 TRS by gauging the internal Z2 sub-symmetry.

5.2.3 Mixed anomaly from SymTFT

The mixed anomaly of the Z2 ×ZT
2 symmetry is diagnosed using the symmetric sandwich con-

struction discussed generally in Section 2.1.3. The m and e condensing boundaries constructed
above correspond to the Lagrangian algebras Lm = 1⊕m and Le = 1⊕ e, respectively, of the
Z2 topological order, and only Lm is time-reversal-symmetric. Therefore, the only symmetric
sandwich is one whose top and bottom boundaries are the m condensing boundary. Thus, the
only ZT

2 -enriched gapped phase with a Z2 ×ZT
2 symmetry has a two-fold ground state degen-

eracy and spontaneously breaks the internal Z2 symmetry. The fact there are no Z2 ×ZT
2 SPTs

is the mixed anomaly between internal Z2 and ZT
2 symmetries.

6 Outlook

In this paper, we have extended the SymTFT framework to go beyond internal symmetries
and incorporate spacetime symmetries. To do so, we considered the SymTFT of the internal
symmetry, i.e., a topological order, and enriched it with spacetime symmetries to construct an
SET. To illustrate this framework and its applications to gauging and diagnosing anomalies, we
focused on invertible internal symmetries and crystalline/time-reversal symmetries in 1+ 1D
(see Section 1.1 for a detailed summary). Many interesting follow-up directions arise from
our work that further develop this symmetry-enriched SymTFT framework. Here, we discuss
three particular tantalizing extensions.

While we considered spatial translations in this paper (see Section 3), we did not consider
temporal translations. Discrete temporal translations play a crucial role in, for example, peri-
odically driven systems [184] and time crystals [185], and it would be interesting to develop a
SymTFT perspective of such phenomena. Enriching the SymTFT by ordinary temporal transla-
tions could make it become a Floquet enriched topological order [186], which would naturally
capture temporally modulated symmetries. More generally, the SymTFT could be a type of
dynamical code, e.g., Floquet codes [187]. Extending the SymTFT to out-of-equilibrium phe-
nomena has received limited attention [188], and considering Floquet enriched topological
orders and dynamical codes as SymTFTs offers an interesting starting point for future work.

Another exciting direction to consider is spacetime symmetries in greater than 1+ 1D.
Crystalline symmetries in higher than one spatial dimension are much richer, now includ-
ing discrete rotations and various reflection symmetries. With richer crystalline symmetries
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come richer interplays with internal symmetries. Even the interplays involving spatial trans-
lations can become richer. For example, d-dimensional translations can fractionalize in the
((d + 1) + 1)D SymTFT only when d > 1. Furthermore, d-dimensional translations can form
magnetic translations, leading to an extension with a U(1) (higher-form) symmetry, only when
d > 1.

Lastly, in this paper, we showed how anomalies can be detected using the SymTFT. For
instance, we explored LSM anomalies involving translations in Section 3 and spatial reflec-
tions in Section 4. However, there are weaker LSM-like constraints called SPT-LSM theorems
that provide obstructions to trivial SPTs [47, 166, 172, 189–191]. One way or another, these
SPT-LSM theorems arise from lattice translations, and it would be interesting to see their man-
ifestations in the symmetry-enriched SymTFT framework developed here.
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A Introduction to SymTFT

In this Appendix, we review basic aspects of the symmetry topological field theory (SymTFT)
framework. The SymTFT Z(S) of a symmetry S in (d + 1)D is a (d + 2)D topological theory
used to separate the kinematic aspects of S from the dynamics of a (d + 1)D theory TS with
symmetry S. The formal development and applications of the SymTFT perspective of symme-
tries is being intensely pursued [2,11–41,43–47], which we briefly review here. The reader is
refereed to Refs. 5,58 for a more thorough introduction.

We denote the braided fusion d-category describing the topological defects of the SymTFT
Z(S) by Z(S). When d = 1 and S is a fusion category, Z(S) is the Drinfeld center of S and
Z(S) is the Turaev-Viro TFT TV(S) [192]. A defining feature of general Z(S) is the existence of
a gapped boundary condition B

sym
S on which the topological defects in Z(S) become the sym-

metry defects of S. For 2+ 1D SymTFTs that are non-trivial topological orders, these gapped
boundaries are classified by the Lagrangian algebras of Z(S) [193–196]. The topological de-
fects in Z(S) that can end on this boundary correspond to the symmetry charges of S. This
gapped boundary encodes the kinematic aspects of the symmetry S. It, along with the SymTFT
Z(S), depend only on S and are independent of the details of TS . On the other hand, the dy-
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namics of TS are encoded in a separate boundary B
phys
TS of the SymTFT. These two boundaries

and the SymTFT bulk make up the data (Bsym
S ,Z(S),Bphys

TS ) and form the sandwich picture
shown in Fig. 1.

The SymTFT Z(S) is required to be topological in the additional dimension absent from
TS . Since it is topological in this new dimension, the sandwich (Bsym

S ,Z(S),Bphys
TS ) can be

bijectively mapped to the theory TS by performing an interval compactification (see Fig. 1).
It is typically the case that Z(S) is topological in all directions, and is a TFT. However, strictly
speaking, it only needs to be topological in the compactification direction (e.g., see Refs. 150,
152). For some of the SymTFTs constructed in the bulk of the paper, Z(S) is topological in the
compactification direction but not in any other direction.

There are two equivalent formulations of the SymTFT Z(S) used in the literature. The first
formulates the SymTFT using quantum codes, and the second uses Euclidean field theory. Let
us review both of these perspectives.

In the quantum code perspective, the SymTFT is described by the code space of a quantum
code, and its topological defects are related to the code’s topological logical operators. The
topological aspect of Z(S) manifests in the logical operators being topological in at least the
direction in which the interval compactification is performed. However, in most cases they are
topological in all directions. This quantum code can be represented as the ground state sub-
space of a commuting projector Hamiltonian model. Fig. 4 shows how the SymTFT sandwich
on a spatial lattice is organized in this quantum code description.

In the Euclidean field theory perspective, the SymTFT is generally a foliated field theory.
This foliated field theory does not depend on a background Riemannian metric but can depend
on a background foliation structure of spacetime. It is topological in at least the direction in
which the interval compactification is performed. Furthermore, it becomes a topological field
theory when the foliation structure is turned off. Again, in most cases, the SymTFT will be
topological in all directions and be a topological field theory without any foliation backgrounds
turned on.

Whether it be from the quantum code or Euclidean field theory perspectives, the SymTFT
has numerous powerful applications. Here we review two: discrete gauging and classifying
gapped and gapless phases.

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

B
sym
S

Z(S)

B
phys
TS

Figure 4: Shows how, in the quantum code description of the SymTFT, the cells of
the spatial lattice for a 2+ 1D SymTFT are organized into the SymTFT sandwich
(Bsym

S ,Z(S),Bphys
TS ). The stabilizers defining the SymTFT Z(S) act only on purple

edges in the bulk, and the boundary stabilizers defining the symmetry boundary act
on at least one top boundary edges belonging to B

sym
S . Stabilizers or terms in the

Hamiltonian acting on the bottom boundary edges Bphys
TS encode the dynamics of the

1+ 1D theory TS . After the interval compactification, only the black edges remain,
and they become the edges and sites, respectively, of the 1+ 1D spatial lattice for TS .
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Discrete gauging of S is performed in the SymTFT formalism by changing the gapped
boundary B

sym
S . This is often visualized using the “quiche” construction

B
sym
S

Z(S) . (A.1)

The top boundary B
sym
S is gapped, and its topological defects form the symmetry S. Discrete

gaugingS is performed by replacing the gapped boundaryBsym
S with another gapped boundary

B
sym
S∨ . The topological defects on B

sym
S∨ form the dual symmetry S∨ that arises after gauging.

Therefore, two symmetries related to one another by discrete gauging have the same SymTFT
Z(S), and Z(S) is a label for the gauging web of a symmetry.

The SymTFT can also be used for classifying gapped and gapless phases of TS character-
ized by S. Let us now specialize our discussion to d + 1= 1+ 1 dimensional theories where S
is a finite 0-form symmetry described by a fusion category, which we denote by S. Phases char-
acterized by S are classified by condensable algebras A of Z(S) [24, 59, 60]. In the SymTFT
formalism, this classification is based on the “club quiche” picture shown in Fig. 3, where
Z(S)/A denotes the theory resulting from condensing A in Z(S) and IA is the topological
interface between Z(S) and Z(S)/A. The topological defects of Z(S)/A are described by the
Drinfeld center Z(S ′) of the fusion category S ′. The interface IA is a physical realization of
the functor S → S ′. Physically, S ′ describes the symmetries acting on the gapless degrees of
freedom in the phase corresponding to A.

When Z(S ′) is trivial, the theory Z(S)/A has no remaining non-trivial topological defects
from Z(S) and A is a Lagrangian algebra of Z(S). When A is Lagrangian, it classifies gapped
phases. In fact, the gapped boundary Bsym

S realizing S is characterized by a Lagrangian algebra
we denote by LS . When A= LS , it corresponds to the phase where the entire S symmetry is
spontaneously broken. In general, the intersection A∩LS of A and LS describes the number
of ground states in the phase classified by A and SSB pattern. When A∩LS = 1, none of
S is spontaneously broken, and A describes a symmetry protected topological (SPT) phase.
Furthermore, when the condensable algebra A is not Lagrangian, it classifies a gapless phase
which can be a gapless SSB or SPT phase by the same criteria from the intersection A∩LS .

B Introduction to group extensions

In this Appendix, we review the basics of group extensions and their classification.37 In particu-
lar, we consider a group G described by a group extension involving a group Q and a Q-module
Aρ. Recall that a Q-module Aρ is an Abelian group A along with a group action ρ : Q× A→ A
satisfying ρq1

(ρq2
(a)) = ρq1q2

(a) and ρq(a1 + a2) = ρq(a1) +ρq(a2) for all q• ∈Q and a• ∈ A.
Denoting by Aut(A) the automorphism group of A, the group action ρ is equivalently described
as the group homomorphism

ρ : Q→ Aut(A) . (B.1)

When G is described by this group extension, it is said to be “an extension of Q by A”.
A defining property of a group extension is that the groups G, Q, and A satisfy the short

exact sequence
1→ A

ι
−→ G

π
−→Q→ 1 , (B.2)

37The reader may also refer to [197, Chapter IV] for an alternative introduction to the subject.
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where 1 denotes the order one group. As a short exact sequence, the inclusion and projection
homomorphisms ι and π, respectively, satisfy im(ι) = ker(π). Therefore, given a group ele-
ment a ∈ A, its image ι(a) ∈ G under ι satisfies π(ι(a)) = 1, where 1 is the identity element
of Q. This implies that Q is isomorphic to the quotient group G/ι(A) and ι(A) is always a nor-
mal subgroup of G. Clearly, G can always be described by this group extension if G ∼= A×Q,
in which case the extension is called a trivial extension. However, there are generally many
inequivalent ways to extend Q by A, each of which describes a different group G. Two ex-
tensions of Q by A are equivalent if there exists a group isomorphism T : G1→ G2 making the
commutative diagram

1 A

G1

Q 1

G2

ι1 π1

ι2

T

π2

, (B.3)

i.e., ι2 = T ◦ ι1 and π1 = π2 ◦ T .
Before continuing further, let us pause here to overview two simple examples:

1. The group G = Z2 ×Z2 can be described as an extension of Q = Z2 by A= Z2 with trivial
ρ. In other words, there is the short exact sequence of groups

1→ Z2
ι
−→ Z2 ×Z2

π
−→ Z2→ 1 . (B.4)

Indeed, consider the presentations Z2 ×Z2
∼= 〈a, b | a2 = b2 = 1〉 and Z2

∼= 〈c | c2 = 1〉.
Then, we can choose the inclusion homomorphism to satisfy ι(c) = a, which is the gen-
erator of the normal subgroup ι(Z2) = 〈a | a2 = 1〉 of Z2 ×Z2. Furthermore, choosing
the projection homomorphism π such that π(b) = π(ab) = c, we find that π(ι(c)) = 1
and so im(ι) = ker(π).

2. The group G = Z4 can also be described as an extension of Q = Z2 by A= Z2 with trivial
ρ. Since Z4 is not isomorphic to Z2 ×Z2, this is a different extension than in the first
example. It is described by the short exact sequence

1→ Z2
ι
−→ Z4

π
−→ Z2→ 1 . (B.5)

Indeed, let us use the presentations Z4
∼= 〈a | a4 = 1〉 and Z2

∼= 〈c | c2 = 1〉 such that
ι(c) = a2. With this choice of the inclusion homomorphism, ι(Z2) = 〈a2 | a4 = 1〉 is the
normal Z2 subgroup of Z4. The projection homomorphism π satisfies π(a) = π(a3) = c,
which is the quotient map π: Z4→ Z4/Z2.

3. The Dihedral group of order 8 D8 can be described as an extension of Q = Z2 by A= Z4
with non-trivial ρ. The corresponding short exact sequence is

1→ Z4
ι
−→ D8

π
−→ Z2→ 1 . (B.6)

Indeed, in the presentation D8
∼=



r, s | r2 = s4 = 1, rsr−1 = s3
�

, the image of the inclu-
sion homomorphism ι(Z4) =




s | s4 = 1
�

. Further presenting Q = Z2
∼= 〈c | c2 = 1〉, the

projection homomorphism π satisfies π(si) = 1 and π(rsi) = c, where i = 0, 1,2,3. The
group action ρ is non-trivial because rsr−1 = ρr(s) = s3, making Z4 a non-trivial Z2-
module.
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The Q-module structure on A, particularly the action ρ of Q on A, can be naturally formu-
lated using the short exact sequence (B.2). To do so, we introduce a lift s : Q→ G such that
π(s(q)) = q for all q ∈Q. The group action ρ can then be specified as

ρq(a) = s(q) ι(a) s(q)−1 . (B.7)

Indeed, this expression satisfies the homomorphism condition of (B.1) because ι is a homo-
morphism. Furthermore, ρq(a) does not depend on the choice of lift s. Indeed, the lift can be
changed by

s(q)→ f (q) s(q) , (B.8)

for any f (q) ∈ ι(A) because im(ι) = ker(π). However, this change does not affect ρq(a) since
A is Abelian and s(q) acts on ι(a) by conjugation. Relatedly, we also note that the prod-
uct s(q1)s(q2) is not necessarily s(q1q2). The most general product rule compatible with
the homomorphism condition π(s(q)) = q is s(q1)s(q2) = c(q1, q2) s(q1q2) for some function
c : Q×Q→ ι(A). This function must satisfy c(q, 1) = c(1, q) = s(1) for all q ∈Q.

It is convenient to denote the group elements of G by elements (a, q) of the set A×Q. Using
this notation, the inclusion and projection homomorphisms are

ι(a) = (a, 1) , π((a, q)) = q . (B.9)

This notation is also useful for writing down the group multiplication of G. Indeed, recall-
ing (B.7) and s(q1)s(q2) = c(q1, q2) s(q1q2), the group elements of G must satisfy

(a1, q) · (a2, 1) = (ρq(a2), 1) · (a1, q) , (B.10)

(0, q1) · (0, q2) = (c(q1, q2), q1q2) . (B.11)

It can be readily checked that the group multiplication rule satisfying these conditions is

(a1, q1) · (a2, q2) = (a1 +ρq1
(a2) + c(q1, q2), q1q2) . (B.12)

From the group multiplication, G is a trivial extension of Q by A (i.e., G ∼= A×Q) if ρ and c
are trivial. non-trivial extensions arise from non-trivial group actions ρ and functions c.

Let us contextualize this notation in the two previously considered examples where
A=Q = Z2. We will represent the group elements of A by {0, 1} with modulo 2 addition and
those of Q by {1,−1} with multiplication. Therefore, the elements of both Z2 ×Z2 and Z4 will
be labeled by {(0, 1), (1, 1), (0,−1), (1,−1)}.

1. The group Z2 ×Z2 is a trivial extension of Q = Z2 by A= Z2, and therefore both ρ and
c are trivial. Its group multiplication indeed is of the form (B.12) with trivial ρ and c.

2. The group Z4, on the other hand, must be a non-trivial extension. Indeed, the Z4 group
multiplication takes the form of (B.12) with trivial ρ and

c(q1, q2) =

¨

1 , q1 = q2 = −1 ,

0 , else.
(B.13)

This presentation is related to Z4
∼= 〈a | a4 = 1〉 by (0, 1)→ 1, (1, 1)→ a2, (0,−1)→ a,

and (1,−1)→ a3.

Having discussed how a group G can be described as an extension of Q by A, we now
move to classifying such group extensions. Isomorphism classes of extensions are related to
inequivalent choices of the group action ρ and function c(q1, q2). As discussed, different group
actions correspond to different homomorphisms ρ : Q→ Aut(A). So what remains is to deduce
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the classes of c(q1, q2) leading to inequivalent extensions. Firstly, we note that for the group
multiplication rule (B.12) to be associative, we require

ρq1
(c (q2, q3))− c (q1q2, q3) + c (q1, q2q3)− c (q1, q2) = 0 . (B.14)

This implies that c must be a 2-cocycle c ∈ Z2(BQ, Aρ). However, these 2-cocycles do not
each lead to inequivalent extensions. Indeed, recall that the change of lift (B.8), which in our
current notation is (a, q)→ (a+ f (q), q), implements a group isomorphism of G that does not
change the extension class. The group multiplication rule (B.12) implies that the 2-cocycle
c(q1, q2) transforms under this group isomorphism as

c(q1, q2)→ c(q1, q2) + f (q1) +ρq1
( f (q2))− f (q1q2) . (B.15)

In fact, this is same as shifting c(q1, q2) by the 2-coboundary d f ∈ B2(BQ, Aρ). There-
fore, the extension classes depend on the 2-cocycle c only through its cohomology class
[c] ∈ H2(BQ, Aρ). Thus, in summary, the group extension class of G is specified by the data

G = (Q, A,ρ, [c]) . (B.16)

Before concluding this Appendix, let us discuss two commonly encountered specialized
cases of (B.16). The first is group extensions for which the group action ρ is trivial. Then,
by (B.7), the normal subgroup ι(A) of Q is a subgroup of the center Z(Q) of Q. In this case,
the group extension is called a central extension. The other commonly encountered scenario
is that the cohomology class [c] is trivial. Such group extensions are called split extensions.
They differ from trivial extensions by the group action ρ, making G the semi-direct product
group Q⋉ρ A.

C Background foliation fields

A QFT defined on a (d + 1)-dimensional spacetime M can have various background fields.
Perhaps the most familiar is when M is equipped with a Riemannian metric gµν. Then, a QFT
on M can depend explicitly on gµν. Another commonly encountered background field for a
QFT is a background gauge field Aµ for a global symmetry G. This arises as the G-connection
of a principal G-bundle on M . Lastly, another typical background field is a spin structure. If M
is a spin manifold, it can be equipped with a background spin structure ρ. This is necessary
for QFTs with spinor fields.

A smooth, orientable manifold can also be equipped with a foliation structure. Mathemat-
ically, a codimension n foliation is a particular decomposition of a manifold formed by a col-
lection of pairwise-disjoint, connected, immersed codimension n submanifolds called leaves.
In particular, each point in spacetime must have a neighborhood whose first n local coordi-
nates in each leaf are constant. Informally, a manifold with a codimension n foliation can
be regarded as an infinite number of layered/stacked codimension n manifolds infinitesimally
close to one another. Codimension n foliations are described by an n-form foliation field which
is never zero. A QFT can couple to this background foliation field, and those that do are called
a foliated QFT. A manifold can be simultaneously equipped with multiple foliation structures,
and a foliated QFT can depend on more than one foliation field.

Let us focus on a codimension 1 foliation of spacetime described by the background 1-form
foliation field eµ. A codimension 1 foliation is defined as the kernel of eµ. This means that
at each point xµ in spacetime, the leaf containing xµ is one whose tangent vector vµ satisfies
eµvµ = 0. Therefore, eµ is orthogonal to each leaf. However, not all 1-forms define a foliation
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structure. As already mentioned, eµ must be non-zero everywhere. Furthermore, by Frobenius’
theorem, the foliation field e must also satisfy the integrability condition38

e ∧ de = 0 . (C.1)

One of the simplest foliations of a manifold are flat foliations where de = 0.
The integrability condition implies that e satisfies

de = e ∧β , (C.2)

for some 1-form β . This 1-form β is not unique. It is ambiguous up to a shift by a scalar
field c, which transforms it as β → β + c e. In addition to this ambiguity, there is also a
gauge redundancy in the foliation field under rescaling by a scalar field f : e→ exp[− f ] e and
β → β + d f . This rescaling does not affect the leaves and the foliation structure. Using this
redundancy, we can always make the foliation field closed de = 0 locally.

There is however an obstruction to making the foliation field closed globally. It is character-
ized by the de Rham cohomology class [β∧dβ], known as the Godbillon-Vey invariant, which
is a cobordism invariant of foliations [198]. The 3-form β∧dβ is closed. By acting the exterior
derivative d on (C.2), we find e∧dβ = 0, which implies that dβ = e∧γ for some 1-form γ and,
thus, d(β∧dβ) = 0. The Godbillon-Vey invariant is free from the redundancy in β . Under
β → β + d f , it transforms as β∧dβ ∼ β∧dβ + d( f dβ), which does not change the de Rham
cohomology class. Furthermore, under β → β + c e, it transforms as β∧dβ → β∧dβ + d(c de),
which again does not change the de Rham cohomology class.

D ZN dipole SymTFT as a foliated field theory

In Section 3.1.2, we found that the SymTFT for a ZN dipole symmetry in 1+ 1D is the 2+ 1D
ZN symmetric tensor gauge theory

L =
i N

2πΛ

�

ay∂t bx x − ax x∂t by + bt

�

∂ 2
x ay − ∂y ax x

�

− at

�

∂y bx x + ∂
2
x by

� �

. (D.1)

It has the ZN dipole gauge redundancy

at ∼ at + ∂tα , ax x ∼ ax x + ∂
2
x α , ay ∼ ay + ∂yα ,

bt ∼ bt + ∂tβ , bx x ∼ bx x − ∂ 2
x β , by ∼ by + ∂yβ .

(D.2)

In this Appendix, following Ref. 144, we derive the duality from this ZN tensor gauge theory
to the foliated field theory (106).

We first decompose the tensor gauge fields ax x and bx x in terms of the fields ax , eax , bx ,
and ebx as

ax x = ∂x ax −Λ eax , bx x = −(∂x bx −Λebx) . (D.3)

This introduces a gauge redundancy

ax ∼ ax +Λeα , ebx ∼ ebx +Λeβ ,

eax ∼ eax + ∂x eα , ebx ∼ ebx + ∂x
eβ .

(D.4)

38When (C.1) is not satisfied, the leaves defined by eµ fail to be “nice” codimension 1 submanifolds and instead
densely fill a codimension 0 region of spacetime. For instance, 1-forms α for which α∧dα > 0 define contact
structures of 3-manifolds. The contact structure is given by the kernel of the contact 1-form α, which is the subject
of contact geometry.
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Using this field redefinition, the Lagrangian (D.1) can be written as

L = −
i N
2π

�

eax(∂y bt − ∂t by)−ebx(∂y at − ∂t ay)−Λ−1(∂x by − ∂y bx)(∂x at − ∂t ax)

+Λ−1(∂x ay − ∂y ax)(∂x bt − ∂t bx)
�

.
(D.5)

We next introduce the fields eay and eby related to (ax , ay) and (bx , by) by

∂x ay = ∂y ax −Λ eay , ∂x by = ∂y bx −Λeby . (D.6)

Enforcing these constraints using the Lagrange multiplier fields eat and ebt , we can write the
Lagrangian (D.5) as

L = −
i N
2π

�

eax(∂y bt − ∂t by)− eay(∂x bt − ∂t bx)−ebx(∂y at − ∂t ay) +eby(∂x at − ∂t ax)

+ eat(∂x by − ∂y bx +Λeby)−ebt(∂x ay − ∂y ax +Λ eay)
�

.
(D.7)

The presentation (D.7) of the ZN tensor gauge theory has a manifest foliation structure.
Indeed, the action can be written using differential forms as

S[e] = −
i N
2π

∫

�

ea ∧ db−eb ∧ da− ea ∧eb ∧ e
�

, (D.8)

where e = Λdx is a background foliation 1-form field describing a flat foliation whose leaves
are the (y, t) planes of spacetime. In this presentation, the gauge redundancy (D.2) and (D.4)
is

a ∼ a+ dα+ eα e , b ∼ b+ dβ + eβ e ,

ea ∼ ea+ deα , eb ∼ eb+ deβ ,
(D.9)

depending explicitly on the foliation field.

E Z2 symmetry fractionalization in Z2 topological order

In this Appendix, we will explore an exactly solvable lattice model realizing Z2 topological
order enriched by a Z2 0-form symmetry that fractionalizes. It is particularly instructive to
compare this example with the spacetime symmetry enrichment discussed in Sections 4 and 5.

To construct such a model, we start by considering Z4 qudits on sites r of the square lattice,
which are acted on by the clock and shift operators

Z4 = X 4 = 1 , ZX = iXZ , (E.1)

with periodic boundary conditions. The lattice Hamiltonian is the paramagnet

HSPT = −
∑

r

�

Xr +X †
r

�

, (E.2)

which commutes with the Z4 0-form symmetry operator U =
∏

r Xr . Gauging the entire Z4
symmetry maps the model (E.2) to the Z4 Toric Code (i.e., Z4 gauge theory). To construct the
SET model, we will instead gauge the Z2 sub-symmetry of Z4 generated by U2. Since Z4 is a
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non-trivial extension of Z2 by Z2, then from Section 2.2.1, this should lead to a Z2 topological
order enriched by a Z2 symmetry that fractionalizes.39

To gauge the Z2 ⊂ Z4 sub-symmetry, we first introduce qubits onto the edges of the square
lattice, whose Pauli operators we denote by σx and σz . The gauging procedure is specified by
the Gauss operator

Gr = X 2
r Ar , where Ar =

σx σx
σx

σx
r

. (E.3)

That is, the physical Hilbert space is the subspace of
⊗

r (C4
site ⊗C

2
x-link ⊗C

2
y-link)

∼= C8Lx L y
,

spanned by states |ψ〉 satisfying Gr |ψ〉= |ψ〉. We also enforce the flatness conditions

Br ≡

σz

σz

σz σz

r

= 1 . (E.4)

However, we will enforce this energetically instead of kinematically. This causes the Hamilto-
nian (E.2) to become

HSET = −
∑

r

(Xr +X †
r + Br ) . (E.5)

Indeed, HSET commutes with the Gauss operator Gr and the low-energy subspace satisfies
Br = 1.

The Hamiltonian HSET has a Z2 ×Z2 1-form symmetry, whose symmetry operators are
generated by W (γ) =

∏

e⊂γσ
z
e and V (γ∨) =

∏

e⊂γ∨ σ
x
e . Indeed, W and V commute with HSET

for all 1-cycles γ and γ∨ of the square lattice and its dual lattice, respectively. This 1-form
symmetry is anomalous and spontaneously broken in the model HSET, which gives rise to Z2
topological order. The Hamiltonian also commutes with the operator U =

∏

r Xr . Due to the
Gauss law, this operator satisfies U2 = 1 and generates a Z2 0-form symmetry operator. Fur-
thermore, this operator becomes the identity operator in the ground state subspace. Therefore,
the Hamiltonian HSET is in an SET phase with Z2 topological order enriched by a Z2 0-form
symmetry.

As mentioned, we expect this Z2 0-form symmetry to be fractionalized. We can diagnose
this symmetry fractionalization using the disorder operators of the Z2 0-form symmetry U
and the Z2 1-form symmetry W . Here, the disorder operators are the symmetry operators
truncated to act on their respective subspaces but with boundaries. They are the movement
operators for their respective symmetry defects. The Z2 0-form symmetry disorder operator is

U(Σ) =
∏

r⊂Σ
Xr , (E.6)

39The field theory description of this SET follows from (22). The action is S = iπ
∫

X
b ∪ (δa− Bock(A)), where

a and b are dynamical Z2-valued cochains, A is a background Z2 gauge field described by a Z2-valued cochain,
and Bock: H1(X ,Z2)→ H2(X ,Z2) is the Bockstein homomorphism. Embedding these cochains into U(1) gauge
fields, we can write this action as S = 2 i

2π

∫

X
b ∧ (da− 1

2 dA).
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which is the truncation of the symmetry operator U to a connected patch Σ of the lattice. The
Z2 1-form disorder operator for an oriented path P from site r1 to r2 is

W (P) = Zr1

�

∏

e⊂P

σz
e

�

Z†
r2

. (E.7)

The endpoints of W (P) are dressed by Z operator such that W (P) commutes with Gr and U .40

Acting W (P) on the ground states creates a pair of e anyon excitations.
The symmetry fractionalization is manifest in the projective algebra

U(Σ)W (P) = i link(∂Σ,∂ P)W (P)U(Σ) , (E.8)

which shows that a single e anyon carries fractional Z2 0-form symmetry charge. We can relate
this to the symmetry defects perspective of symmetry fractionalization. Using that X 2

r = Ar in
the gauge-invariant subspace, the square of the Z2 0-form symmetry disorder operator is

D(Σ)× D(Σ) = V (∂Σ) . (E.9)

Therefore, fusing two U symmetry defects gives the trivial symmetry operator with a V sym-
metry defect dressing the fusion junction:

U U

1

V . (E.10)

From the general theory of anyon condensation in SET, condensing the e anyons is expected
to spontaneously break the Z2 0-form symmetry (see [89, Example 5.2]). This condensation
can be implemented by adding the corresponding string operators Wr ,µ = Zrσ

z
r ,µZ

†
r+µ̂ to the

Hamiltonian and increasing the coupling λ. The resulting Hamiltonian is:

Hλ = HSET −λ
∑

(r ,µ)

�

1
4

4
∑

n=1

W n
r ,µ

�

. (E.11)

This Hamiltonian is gauge invariant since it commutes with the Gauss law operator Gr . It also
preserves both the Z2 0-form symmetry U and the Z2 1-form symmetry W (γ). In the λ→∞
limit, the Hamiltonian becomes exactly solvable, with ground states stabilized by the mutually
commuting constraints

Gr =Wr ,µ = Br = 1 .

In practice, it suffices to impose the first two constraints, since the third follows from the
second.

Let us count the number of ground states in this limit. The full Hilbert space (including
gauge-non-invariant states) has dimension 4Lx L y · 22Lx L y . There are 2Lx L y independent Gauss
law constraints Gr = 1, one at each site. Naively, there are 42Lx L y constraints of the form
Wr ,µ = 1, one on each of the 2Lx L y links. However, the Wr ,µ = 1 constraints are overspecified.

40The Z2 1-form symmetry operator W (γ) =
∏

e⊂γσ
z
e is better written as W (γ) =

∏

(r ,µ)⊂γZrσ
z
r ,µZ

†
r+µ̂ such that

it is a product of local operators obeying the same algebra with U and Gr as W (γ) does. When written this way,
the disorder operator W (P) is a straightforward truncation of W (γ).
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First, the product of W 2
r ,µ = Z2

rZ
†2
r+µ̂ around each plaquette is automatically 1. Among the

Lx L y plaquettes, only Lx L y − 1 such relations are independent, which reduces the number of
independent Wr ,µ constraints by a factor of 2Lx L y−1. In addition, there is further redundancy
from nonlocal relations: the product of W 2

r ,µ along the entire x-direction or y-direction is also
automatically 1. These two additional redundancies contribute an overcounting by a factor of
22. Altogether, the number of independent constraints is:

2Lx L y · 42Lx L y

2Lx L y−1 · 22
= 2−1 · 42Lx L y .

Therefore, the dimension of the ground state subspace is:

GSD=
4Lx L y · 22Lx L y

2−1 · 42Lx L y
= 2 . (E.12)

A convenient basis for this two-dimensional ground state subspace is

|GS1〉=
∏

r

�

1+ Gr

2

�

|1, 1〉 , |GS2〉=
∏

r

�

1+ Gr

2

�

| i , 1〉 , (E.13)

where we denote by |a, b〉 the product state satisfying Zr |a, b〉= a |a, b〉 and
σz

r ,µ |a, b〉= b |a, b〉. These two ground states satisfy U |GS1〉= |GS2〉. Therefore, the Z2 sym-
metry generated by U is spontaneously broken.

Another way to understand the spontaneous Z2 symmetry breaking is as follows. If we
momentarily ignore the Gauss law constraint Gr = 1, the symmetry operator U generates a
Z4 symmetry. Further neglecting the link degrees of freedom simplifies the operator Wr ,µ

to ZrZ
†
r+µ̂, and the ground states stabilized by this operator realize a spontaneously broken

phase of the Z4 symmetry generated by U . After restoring the link degrees of freedom and
reimposing the Gauss law constraint Gr = 1, this amounts to gauging the Z2 ⊂ Z4 subgroup
generated by U2. As a result, the spontaneously broken Z4 phase is mapped to a spontaneously
broken Z2 phase.

Since condensing e anyons throughout space spontaneously breaks the Z2 0-form symme-
try, the SET’s gapped boundary that condenses e anyons also leads to spontaneous symmetry
breaking. Indeed, we can condense the e anyons on the spatial boundary ry = L y by enforcing
Zsσ

z
s ,xZ

†
s+ x̂ = 1, where s = (rx , L y). After a unitary transformation, this polarizes the qubits

on the top link to the σz = 1 state and causes the Br operators involving the spatial boundary
to become

Brough
s− ŷ =

σz
σz σz

Z† Z

s − ŷ

. (E.14)

This is the rough boundary of the SET. In the low-energy subspace where Brough
r = 1, the Z4

qudits on the boundary sites s will obey (Brough
s− ŷ )

2 = Z2
s Z

2
s+ x̂ = 1 for all s . Therefore, in

the thermodynamic limit, Z2
s acquires an expectation value and the symmetry generated by

U =
∏

r Xr is spontaneously broken on the boundary. In the presence of the rough boundary,
however, U is no longer a Z2 symmetry operator. It is now an order four operator, satisfying

U2 =
∏

r

Ar =
∏

rx

σx
s− ŷ ,yX

2
s . (E.15)
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Therefore, with this boundary condition, the spontaneous symmetry breaking pattern is

Z4
SSB
−→ Z2.
The above analysis considered a basis in which the physical Hilbert space did not have a

tensor product factorization. Before concluding this Appendix, let us solve the Gauss law by
entering a unitary frame where the physical Hilbert space has a tensor product factorization.
In particular, we use the onsite unitary operator

W =
∏

r

�

1+Zr + Ar (1−Zr )
2

�

, (E.16)

to perform the basis transformation

Xr → Xr e i π4 (1−Ar ) , Zr → Zr ,

σx
r ,µ→ σ

x
r ,µ , σz

r ,µ→ σ
z
r ,µOrOr+µ̂ ,

(E.17)

where 2Or = Ar (Z†
r −Zr )−Z†

r −Zr . In this basis, the Gauss law is X 2
r = 1. Therefore, each

Z4 qudit becomes a qubit after gauging whose Pauli operators are Zr ≡ Z2
r and Xr ≡ X r ≡ X †

r .
The SET Hamiltonian then becomes

W HSETW † = −
∑

r

(X r + X r Ar ) + Br ) +H.c. , (E.18)

and the Z2 symmetry operator U in this frame is

W UW † =
∏

r

X r e i π4 (1−Ar ) . (E.19)

The Z2 1-form symmetry operators are still W (γ) =
∏

e⊂γσ
z
e and V (γ∨) =

∏

e⊂γ∨ σ
x
e .

However, their associated string operators are now σz
r ,µ
eO+r eO

−
r+µ̂ and σx

r where

2 eO±r = ±Ar (1− Zr )− 1− Zr . The e string operator is quite complicated, which is required
for it to be symmetric under (E.19).
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