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Abstract

The study of open system dynamics is of paramount importance both from its funda-
mental aspects as well as from its potential applications in quantum technologies. In the
simpler and most commonly studied case, the dynamics of the system can be described
by a Lindblad master equation. However, identifying the Lindbladian that leads to gen-
eral non-equilibrium steady states (NESS) is usually a non-trivial and challenging task.
Here we introduce a method for reconstructing the corresponding Lindbladian master
equation given any target NESS, i.e., a Lindbladian Reverse Engineering (LRE) approach.
The method maps the reconstruction task to a simple linear problem. Specifically, to the
diagonalization of a correlation matrix whose elements are NESS observables and whose
size scales linearly (at most quadratically) with the number of terms in the Hamiltonian
(Lindblad jump operator) ansatz. The kernel (null-space) of the correlation matrix cor-
responds to Lindbladian solutions. Moreover, the map defines an iff condition for LRE,
which works as both a necessary and a sufficient condition; thus, it not only defines,
if possible, Lindbladian evolutions leading to the target NESS, but also determines the
feasibility of such evolutions in a proposed setup. We illustrate the method in different
systems, ranging from bosonic Gaussian systems, dissipative-driven collective spins and
random local spin models.
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1 Introduction

The quest of estimating maps characterizing the dynamics of quantum systems has significantly
increased in the recent years, with both theoretical and experimental advances. The general
goal is to infer the underlying dynamical equations that drive a system, given only (full or
partial) information about the system properties. Several approaches have been proposed,
both for closed [1–20] and open system [22–39] dynamics.

In the simplest scenario, that of closed systems (an idealization of a system perfectly iso-
lated from its environment), the dynamics is fully characterized by its Hamiltonian according
to Schrödinger’s equation. While in a conventional approach one assumes complete knowl-
edge of the Hamiltonian Ĥ(t), and the goal is to determine the evolution of the system |ψ(t)〉,
the challenge now is the opposite. That is, given a quantum state |ψ(t)〉, the goal is to recon-
struct the Hamiltonian Ĥ(t) for which the state is the solution of the Schrödinger’s equation,
which we denote as Hamiltonian reverse engineering (HRE). The most studied case concerns
time-independent systems, aiming at the engineering of Hamiltonians for specific ground or
excited states [1–10]. The extension to quantum quench protocols and time-dependent Hamil-
tonians has also been discussed [11–20]. It is worth mentioning some relevant implications
of such studies, e.g. understanding the classes of Hamiltonians that could generate tailored
many-body correlations on their eigenstates, or generating possible shortcuts to adiabaticity.

Reverse engineering in open systems has also been explored. In this case, however, the dy-
namics are usually more intricate and harder to solve. A common simplification is to consider
a specific class of open dynamics whose system is weakly interacting with the environment
and constrained by a Born-Markovian approximation. The effective dynamics of the system
can thus be expressed by a Lindbladian master equation (L) [21]. Various strategies have been
proposed for a Lindbladian Reverse Engineering (LRE), based on both exact methods [22–29]
and variational principles [30–39].

On the one hand, LRE based on exact methods allow a precise (exact) reconstruction of
the map. However, they are either restricted to a small subset of the possible Lindbladian evo-
lutions, such as those whose steady states necessarily satisfy a detailed balance condition [22],
support pure dark states [23,24] or are constrained to be Gaussian [25]; or have an impracti-
cal computational cost for their implementation, such as in full process tomography [26–28].
In this latter case, given a system with Hilbert space dimension d, one must perform d2 mea-
surements in order to reconstruct the corresponding (Krauss operators) map. The cost of the
method thus scales exponentially with the dimensionality of the system, and becomes infea-
sible in most practical cases. Therefore variational methods [30–39] have been proposed in
order to fill these gaps, as they are able to reconstruct general maps with reduced computa-
tional complexity.
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The essential procedure in variational LRE methods is to collect the information about the
Lindbladian indirectly by the evolution of a finite number of different initial states, observables
and/or evolution times. These data do not need to fill all possible measurement outcomes,
thus reducing the computational cost but still allowing to reconstruct the Lindbladian within
a controlled accuracy threshold. The reconstruction process follows by searching in the space
of possible Lindbladians (the Lindbladian ansatz) for the one that best fits the measurement
results. The search is usually performed by minimizing a predefined “cost function”, such as
maximum likelihood estimators for the measurement probability distributions [30,32,33,35],
neural network loss functions [38, 39], semidefinite programming [34], among others [31].
It is important to recall that the cost functions are generally either non-linear or non-convex
estimators, making the minimization a non-trivial and demanding task.

In this work we propose a variational LRE method for target non-equilibrium steady states
(NESS). The method has a significantly reduced complexity on both the required data and the
associated Lindbladian estimation cost function. Specifically, given a target NESS, the method
requires a number of NESS observables that scales linearly (at most quadratically) with the
number of terms in the Lindbladian Hamiltonian (jump operator) ansatz. In addition, the Lind-
bladian estimator is a linear function of the measurement observables, and the cost function
minimization task is mapped to a simple eigenvalue and eigenvector problem. The recon-
structed Lindbladian is obtained by simply diagonalizing a correlation matrix, where the null
eigenvalues correspond to Lindbladian solutions. It is important to note that this is an iff rela-
tion, as we discuss, unlike other approaches where the analogous relation is only a necessary
one (i.e., the reconstructed Lindbladian is the one that necessarily matches to the sampled
input data, with no guaranteed extrapolation from it). In this way our method works both
as a sufficient condition for the reconstruction of a Lindbladian, as well as a “no-go theorem”
whose absence of null eigenvalues in the correlation matrix determines the impossibility of
the Lindbladian ansatz to generate the corresponding NESS. In other words, the method has
the ability not only to define with certainty, if possible, Lindbladian evolutions that lead to
a desired NESS but also to determine the feasibility of such evolutions in a proposed setup.
We note that our proposed method focus only in steady state engineering, i.e., reconstructing
a Lindbladian that specifically achieves NESS on its asymptotic long-time dynamics, without
discrimination on its finite time properties.

We apply the method in different models, from Gaussian bosonic models to collective spin
systems. By systematically exploring the Lindbladian ansatz, we can identify different types
of interactions that give rise to the same desired NESS. This knowledge can open interesting
perspectives for the field, providing valuable insights into out-of-equilibrium phases and phase
transitions, where different phases of matter can emerge from the competition between co-
herent and dissipative terms of the Lindbladian. Thus, the technique can be used to envision a
range of different physical settings capable of generating specific phases of matter, each with
great potential for practical applications.

The manuscript is organized as follows. In Sec.2 we formulate our method forLRE towards
a target nonequilibrium steady state. In Sec.3 we illustrate the approach across different sys-
tems, including bosonic Gaussian (3.1), dissipative-driven collective spin (3.2) and random
local spin models (3.3). In Sec.4 we analyze the robustness of the method against random
fluctuations in the target NESS. Finally, conclusions and perspectives are presented in Sec.5.

2 Lindbladian reconstruction algorithm

In this paper we consider open quantum system whose dynamics description is given by a
Markovian master equation. More specifically, the time evolution for the density matrix ρ̂ is
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described by the the generalized GKS-Lindblad master equation,

d
d t
ρ̂ = L[ρ̂] =

J
∑

j

c jLH
j [ρ̂] +

K
∑

j,k

γ j,kLD
j,k[ρ̂] , (1)

where L is the Lindbladian superoperator, with coherent driving terms

LH
j = −i[ĥ j , ρ̂] , (2)

and dissipative ones

LD
j,k =
�

ℓ̂ jρ̂ℓ̂
†
k −

1
2
{ℓ̂†

kℓ̂ j , ρ̂}
�

. (3)

The coherent driving terms are spanned by a set of J Hermitian operators {ĥ j}Jj=1 with corre-
sponding real coefficients c j ∈ R. The dissipative terms are spanned by a set of K jump opera-
tors {ℓ̂ j}Kj=1, with corresponding rates γ j,k ∈ C, elements of the dissipative matrix γ which is a
positive semidefinite matrix, ensuring the complete positivity of the dynamical map. A crucial
aspect of LRE is the selection of such a set of Hamiltonian and jump operators. This prior
selection is fundamental to the reconstruction process and is inherently related to the physical
operations capable of generating the steady state. Thus, the choice of the basis not only re-
flects the underlying physics of the system but is also consistent with the identification of the
physical operations that lead to the non-equilibrium steady states (NESS). In the subsequent
sections, we will illustrate how this choice of basis can affect the method.

The reverse engineering approach assumes that the steady state ρ̂ss (i.e., the state reached
in the infinite time limit by the dynamics) of the system is known, and asks the question of
what are the coefficients {c j} and rates {γ j,k} of the corresponding Lindbladian necessary to
generate such a steady state. In other words, we are interested in solving the steady state
equality L[ρ̂ss] = 0 but not from the density matrix perspective, rather from its Lindbladian
superoperator. Precisely, we aim at solving the following task:

solve L[ρ̂ss] = 0 , (4)

with variables

�

c j ∈ R , j = 1, ..., J ,

γ j,k ∈ C , j, k = 1, ..., K .
(5)

We first notice that given a system with a Hilbert space dimension d, the steady state con-
dition of Eq.(4) corresponds to solving a set of d (possibly nonlinear) equalities among the
variables of Eq(5). The complexity of this direct approach grows with the Hilbert space di-
mension, making the solution challenging for general systems (e.g. in many-body 1/2-spin
systems whose Hilbert space dimension can grow exponentially with the number N of con-
stituents, d = 2N ). Different approaches can be used to avoid dealing with such a highly
complex task, as e.g. focusing on specific classes of NESS [22–28] or within variational LRE
approaches [30–39]. However, even in variational approaches, the reconstruction task can be
reduced to either nonlinear or non-convex estimation problems, which are still nontrival de-
pending on the specific system under study. An approach closer to this work worth remarking,
also specifically focused on target NESS, is the one based on solving the Heisenberg equations
of motion for specific observables [15,36]. Although the reconstruction task is linear with the
size of the Lindbladian ansatz (similar to ours - as we discuss below), it is not an iff relation and
strongly depends on the set of observables chosen to solve within its Heisenberg equations.

In this work we propose a new approach to obtain the corresponding Lindbladian super-
operator for a given non-equilibrium steady state. We map the task of Eqs.(4)-(5) into the
diagonalization of a (J + K2) × (J + K2) positive semidefinite matrix, M̂(ρ̂ss), thus avoiding
the Hilbert space dimensional complexity. In order to do so, we first recall a notion of rapidity
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for the Lindbladian dynamics, R(ρ̂) = Tr(L[ρ̂]†L[ρ̂]). This function computes the square of
the Frobenius norm of the operator L[ρ̂], i.e., the squared norm of the time derivative for the
state ρ̂. On the one hand, if the state is the steady state, the rapidity must vanish. On the
other hand, if the rapidity vanishes, since L[ρ̂]†L[ρ̂] is a positive semidefinite operator, the
state must be a steady state, ρ̂ = ρ̂ss. Therefore, a null rapidity is a necessary and sufficient
condition for the Lindbladian steady state,

R(ρ̂) = 0 ⇐⇒ ρ̂ = ρ̂ss . (6)

We can reformulate the above relation to simpler terms. We first expand the rapidity using
Eq.(1), obtaining that

R(ρ̂) =
∑

j,k

c jck Tr
�

LH
j [ρ̂]L

H
k [ρ̂]
�

+
∑

j,k,m

c jγk,m Tr
�

LH
j [ρ̂]L

D
k,m[ρ̂]
�

+
∑

j,k,m

γ∗j,kcm Tr
�

LD
j,k[ρ̂]

†LH
m[ρ̂]
�

+
∑

j,k,m,n

γ∗j,kγm,n Tr
�

LD
j,k[ρ̂]

†LD
m,n[ρ̂]
�

,

(7)

where we use the hermicity of the Lindbladian coherent components, c j=c∗j andLH
j [·]=L

H
j [·]

†,
∀ j. The above relation can be written in a matrix form,

R(ρ̂) = 〈ϕL| M̂(ρ̂) |ϕL〉 , (8)

where the (J + K2)× 1 Lindbladian vector |ϕL〉 concatenates the parameters c j and γ j,k and
M̂(ρ̂) is a (J+K2)×(J+K2) correlation matrix obtained from the state properties. Specifically,

|ϕL〉=























c1
...
cJ
γ1,1
γ1,2

...
γK ,K























, (9)

M̂(ρ̂) =























Tr
�

LH
1 [ρ̂]L

H
1 [ρ̂]
�

· · · Tr
�

LH
1 [ρ̂]L

H
J [ρ̂]
�

Tr
�

LH
1 [ρ̂]L

D
11[ρ̂]
�

· · · Tr
�

LH
1 [ρ̂]L

D
K ,K[ρ̂]
�

. . .
...

...
. . .

...

Tr
�

LH
J [ρ̂]L

H
J [ρ̂]
�

Tr
�

LH
J [ρ̂]L

H
1,1[ρ̂]
�

· · · Tr
�

LH
J [ρ̂]L

D
K ,K[ρ̂]
�

Tr
�

LD
1,1[ρ̂]L

D
1,1[ρ̂]
�

. . . Tr
�

LD
1,1[ρ̂]L

D
K ,K[ρ̂]
�

H.c.
. . .

...

Tr
�

LD
K ,K[ρ̂]L

D
K ,K[ρ̂]
�























.

We then notice that, since M̂(ρ̂) is a positive semidefinite operator, the rapidity is null iff the
Lindbladian vector |ϕL〉 is an eigenstate of the correlation matrix with a null eigenvalue. In
summary,

M(ρ̂) |ϕL〉= 0 ⇐⇒ ρ̂ = ρ̂ss . (10)

Therefore, we mapped the reverse engineering task Eqs.(4)-(5) to finding the eigenvector with
null eigenvalue of the correlation matrix M(ρ̂ss).
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A few properties are important remarking:

• The method reduces the reverse engineering complexity to a simpler diagonalization
procedure, further reducing the dimensional cost to a (J + K2)× (J + K2) matrix;

• The method gives both a necessary and a sufficient condition for generating the NESS.
Thus it not only identifies possible Lindbladians for a given steady state, but could also
verify the impossibility to generate a steady state for a given class of Lindbladians, anal-
ogous to a “no-go theorem”. More precisely, given a class of Lindbladians (i.e., using a
specific set of Hermitian operators ĥ j and jump operators ℓ j in Eq.(1)) if the correlation
matrix M̂(ρ̂ss) has no null eigenvalues, one could never reach exactly the corresponding
steady state within this class of dynamics.

• The positive semi-definiteness of the dissipative matrix γ, a sufficient condition for
Markovianity, is not explicitly imposed in the correlation matrix definition. Conse-
quently, solutions that fail to satisfy this condition may not correspond to physical dy-
namical maps. Checking whether this is the case is usually a difficult task. One could
circumvent these issues by post-processing the solution given by the method and ex-
plicitly imposing the Markovianity; e.g. once the kernel space of the correlation matrix
M̂(ρ̂ss) is obtained (possibly degenerate), (i) either a post-selection process is performed
to select the solutions satisfying γ≥ 0, (ii) or given the solution γ≯ 0 one approximates
it to a Markovian dissipative matrix. A straightforward approach is to set any negative
eigenvalue of the dissipative matrix to zero, especially when these negative eigenvalues
are orders of magnitude smaller than the positive ones. We discuss these ideas in more
details in the examples of the next section. Recent works have proposed using nega-
tive decoherence rates, as they appear in the canonical form of the master equation, to
characterize non-Markovianity [42–45]. In this context, it would be interesting to in-
vestigate whether the negative eigenvalues of the dissipative matrix obtained within our
framework could be interpreted as signatures of non-Markovian dynamics, associated
with system-environment interactions that allow partial reversals of earlier dissipative
processes. We leave such an analysis as a perspective for future work.

Before presenting our results for specific examples, we outline below the general procedure
used to apply the method.

Step 1. Select a target NESS and define suitable operator bases for both the Hamiltonian
({ĥ j}) and the jump operators ({ℓ̂ j}), chosen to capture the relevant physical configurations
of interest.

Step 2. Construct the corresponding correlation matrix (Eq.(9)) and determine its kernel.
If the kernel is empty, one may return to Step 1 and enlarge the operator bases. Alternatively,
the dynamics associated with the smallest eigenvalue of the correlation matrix can be analyzed.

Step 3. Once a solution (|ϕL〉) is obtained, its physicality must be verified. This involves
checking that, up to a global phase, the Hamiltonian coefficients are real and that the dissipa-
tive matrix is positive semidefinite. If these conditions are not met, one may either return to
Step 1 or approximate the solution by a Markovian dynamical model, as detailed above.

We illustrate this procedure in the following section through explicit examples.

3 Examples

In this section we apply our method to different systems, namely, with (i) bosonic Gaussian
steady states, (ii) spin systems with collective dissipation and (iii) spin models with random
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short-range interactions and local dissipation. These quantum states possess unique properties
that can play a pivotal role in the development of quantum technologies [46], therefore with
great interest for engineering methods. Moreover, these are well-established and extensively
studied systems with analytical results that help to illustrate important aspects of the method.

3.1 Bosonic Gaussian states

We first consider the reverse engineering of Lindbladians generating single-mode bosonic
Gaussian steady states, as coherent or squeezed vacuum states.

3.1.1 Coherent steady states

Coherent states hold significant importance within the realm of quantum physics, especially in
the domain of quantum optics [47]. These are states of the quantum harmonic oscillator with
minimal uncertainty (minimum quantum noise in the canonical conjugate variables, specif-
ically the quadratures) and exhibit the most analogous evolution to the classical harmonic
oscillator [48], i.e. ∆X∆Y = 1

4 , with ∆X = ∆P = 1
2 , where ∆A=

Æ

〈Â2〉 − 〈Â〉2, quadratures
X̂ = 1p

2

�

â† + â
�

, P̂ = ip
2

�

â† − â
�

, and â(â†) is the bosonic annihilation (creation) operator. A
single-mode coherent state is described as [47,48],

|α〉 ≡ D̂(α) |0〉= exp
�

αâ† −α∗â
�

|0〉 , (11)

where |0〉 is the ground state of the harmonic oscillator, i.e. â |0〉 = 0, and D̂(α) is known
as the displacement operator, α ∈ C. The coherent state is an eigenstate of the annihilation
operator with eigenvalue α, i.e. â |α〉= α |α〉 and the displacement operator is an unitary that
shifts the annihilation operator by α, D̂(α)†âD̂(α) = â+α.

We assume single particle bosonic operators for the coherent and dissipative operator basis
in the Lindbladian (Eq.(1)): {ĥ j}= {(â+â†)/

p
2, (â−â†)/i

p
2} and {ℓ̂ j}= {â, â†}. This choice

is reasonable since coherent states can be generated with the displacement operator, a function
of linear operators, acting in the vacuum. The correlation matrix can be written as,

M̂(|α〉〈α|) =



















1 0 −
p

2
4 i(α−α∗) 0 0

p
2

4 i(α−α∗)
1 −

p
2

4 (α+α
∗) 0 0

p
2

4 (α+α
∗)

1
2 |α|

2 0 0 −1
2 |α|

2

1
2 0 0

H.c. 1
2 0

2+ 1
2 |α|

2



















. (12)

The kernel of M̂(|α〉〈α|) is one-dimensional. Thus, in this scenario the method provides a
unique eigenvector with null eigenvalue,

|ϕL〉α =

















−
p

2
4i (α−α

∗)p
2

4 (α+α
∗)

1
0
0
0

















, (13)

or in other words, a unique Lindbladian spanned in the basis {h j} and {ℓ j} leading to such
coherent steady states, characterized by the master equation,

d
d t
ρ̂ = −i[Ĥ, ρ̂] +

�

L̂ρ̂ L̂† −
1
2
{ L̂† L̂, ρ̂}
�

, (14)
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with,

Ĥ = −
i
2
α∗â+

i
2
αâ† , L̂ = â . (15)

The coherent state emerges from a non-trivial interplay between the unitary and dissipa-
tive parts of the model, i.e. [Ĥ, L̂] ̸= 0. While attaining this specific solution might not pose
significant challenges in this preliminary illustration, its significance also lies in demonstrat-
ing that, under the assumption of linear Hamiltonian and linear jump operators—specifically,
{ĥ j} = {(â+ â†)/

p
2, (â− â†)/i

p
2} and {ℓ̂ j} = {â, â†}—the method yields a unique solution

in Lindblad form, |ϕL〉α, up to a multiplicative factor, within the chosen basis.

3.1.2 Squeezed vacuum steady states

Squeezed vacuum are states of minimum uncertainty but the noise in one of the quadratures is
below of corresponding noise in the vacuum state, consequently the noise of the other quadra-
ture is amplified [47, 48], i.e. ∆X∆Y = 1

4 , with ∆X = 1
2 e−r and ∆P = 1

2 er , where r is called
the squeezed parameter. Such states play an important role in quantum metrology, as e.g.
improving laser interferometers [49,50]. Moreover, they hold great potential for applications
in the field of quantum cryptography, fortifying secure optical communication [51, 52]. A
single-mode squeezed vacuum state can be defined as,

|ξ〉 ≡ Ŝ(ξ) |0〉= exp
�

ξ∗â2 − ξ(â†)2
�

|0〉 , (16)

where Ŝ(ξ) is the squeezed operator and ξ = reiθ , with r > 0 and θ ∈ R. The squeezed
vacuum state is an eigenstate of the operator b̂ = â cosh(r) + â†eiθ sinh(r) with eigenvalue
zero, i.e. b̂ |ξ〉= 0. The squeezed operator is an unitary acting on the annihilation operator â
as a Bogoliubov transformation, Ŝ(ξ)†âŜ(ξ) = â cosh (r)− â†eiθ sinh (r).

Squeezed states can be generated through non-linear processes resulting from the
interaction between bosons, involving quadratic Hamiltonians [53, 54]. We therefore
apply our method expanding the Hamiltonian basis with bosonic quadratic operators,
{ĥ j} = {(â2 + (â†)2)/

p
2, (â2 − (â†)2)/i

p
2}. To demonstrate the applicability of the method

in identifying different dynamics that produces the target states, we will select two jump op-
erators basis.

Single particle jump operators.- As a first attempt, we propose jump operators spanned by
single particle operators: {ℓ̂ j}= {â, â†}. Note that from the relation b̂ |ξ〉= 0 we can already
infer one possible solution, a purely dissipative dynamics, Ĥ = 0, with a single lindblad jump
operator by ℓ̂ ≡ b̂. In fact, the correlation matrix M̂(|ξ〉〈ξ|) (see Appendix (A)) has a three-
dimensional kernel and can be expanded by the orthogonal vectors,

�

�ϕL1

�

ξ
=

















−
p

2
2 sin(θ )p
2

2 cos(θ )
− tanh(2r)

e−iθ sech(2r)
eiθ sech(2r)

tanh(2r)

















,
�

�ϕL2

�

ξ
=

















p
2

2 cos(θ )p
2

2 sin(θ )
0

ie−iθ cosh(2r)
−ieiθ cosh(2r)

0

















, and
�

�ϕL3

�

ξ
=

1
2















0
0

cosh(2r) + 1
e−iθ sinh(2r)
eiθ sinh(2r)
cosh(2r)− 1















.

(17)
The first two solutions have non-positive dissipative matrix, {λ j (γ1)} = {−1, 1} and
{λ j (γ2)} = {− cosh(2r), cosh(2r)}, where λ j(A) is the j-th eigenvalue of A and γk is the
dissipative matrix of the k-th solution. Therefore, we cannot guarantee that they represent
physical dynamics. The third solution is the previously commented purely dissipative dynam-
ics, characterized by Ĥ = 0̂ and ℓ̂= b̂.

We can explore alternative Markovian solutions by examining the superposition of the three

eigenstates of M̂(|ξ〉〈ξ|). Assuming |ϕL〉ξ =
∑3

j=1 a j

�

�

�ϕL j

¶

ξ
, with a j ∈ R ∀ j, the dissipative
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matrix is positive semi-definite, i.e. γ≥ 0 iff a1 = a2 = 0. Therefore, for the basis choice, linear
jump operators, the only Markovian dynamics will be governed by the purely dissipative so-
lution
�

�ϕL3

�

ξ
. The possibility of obtaining a Markovian solution, where the squeezed vacuum

steady state emerges through the interaction between the unitary and dissipative components,
is explored in the subsequent discussion by considering an alternative basis for the dissipative
term.

Two-particle jump operators.- Now, considering an interaction among the bosons arising
from their coupling with the environment, we expand the jump operators by two-particle op-
erators: {ℓ̂ j} = {â2, (â†)2}. We compute the correlation matrix M̂(|ξ〉〈ξ|) (see Appendix (A))
which has an one-dimensional kernel,

|ϕL〉ξ =

















p
2 sin(θ ) sinh(4r)

−
p

2cos(θ ) sinh(4r)
3+ 4cosh(2r) + cosh(4r)

e−2iθ (1− cosh(4r))
e2iθ (1− cosh(4r))

3− 4cosh(2r) + cosh(4r)

















. (18)

Therefore, in this scenario the dynamics can be described by the master equation,

Ĥ = i
�

e−iθ â2 − eiθ
�

â†
�2�

sinh(4r) ,

ℓ̂= −e−2iθ
p

2(cosh(2r) + 1)â2 +
p

2(cosh(2r)− 1)
�

â†
�2

.
(19)

Interestingly, we observe in this way that by postulating interactions between bosons resulting
from their coupling with the environment, the competition between Hamiltonian and dissipa-
tive dynamics can manifest as a squeezed state in long time regime.

3.2 Driven-dissipative collective spin model

We study in this section the method for a collective spin system. The model describes a set
of N 1/2-spin systems collectively coupled to a Markovian environment, leading to a GKS-
Lindbladian master equation evolution

d
d t
ρ̂ = LDD[ρ̂]≡ −iωo[Ŝ

x , ρ̂] +
κ

S

�

Ŝ−ρ̂Ŝ+ −
1
2
{Ŝ+Ŝ−, ρ̂}
�

, (20)

where S = N/2 is the total spin of the system, Ŝα =
∑

j σ̂
α
j /2 with α = x , y, z are collective

spin operators, Ŝ± = Ŝ x ± iS y are the excitation and decay operators, and σ̂αj is the Pauli spin
operator for the j’th spin. Inheriting the SU(2) algebra of their constituents, the collective
operators satisfy the commutation relations [Ŝα, Ŝβ] = iεαβγSγ Ŝγ. Due to the collective nature
of their interactions, the model conserves the total spin S2 = (Ŝ x)2+(Ŝ y)2+(Ŝz)2. The model
encompasses an interplay between coherent driving and incoherent decay, with coherent rate
ωo and an effective decay rate κ. It is commonly used to describe cooperative emission in cav-
ities [55–58] and was recently shown to support a time crystal phase with the spontaneously
breaking of continuous time-translational symmetry [59,60]. In the strong dissipative regime,
κ/ω0 > 1, the spins in the steady state predominantly align in the spin-down direction along
z-axis. Conversely, in the weak dissipative case, κ/ω0 < 1, the dynamics is characterized by
persistent temporal oscillations of macroscopic observables [59] and a continuous growth of
correlations [61,62].

The steady states of the Lindbladian are obtained analytically [57,58], with the form

ρ̂ss =
1
N
η̂†η̂ , with η̂=

N+1
∑

j=0

�

Ŝ−
−iωoN/2κ

� j

, (21)
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Figure 1: Lindbladian reverse engineering for the collective steady states of Eq.(21),
in the weak dissipative regime ω/κ = 2. In all panels values below ≈ O(10−10) are
beyond our numerical accuracy, and are interpreted as effectively null. We show in
(a) the elements of the kernel eigenvector |ϕL〉 for the correlation matrix M̂(ρ̂ss).
The elements correspond to the set of parameters in the constructed Lindbladian. In
panel (b) we show the two lowest eigenvalues of the correlation matrix M̂(ρ̂ss), dis-
playing in the (inset-panel) only the second eigenvalue in a log-log scale, in order to
highlight its gapless behavior. In panel (c) we show the eigenvalues of the dissipative
matrix γ for the lowest eigenstate (kernel) of the correlation matrix.

where N is the normalization constant. Due to the collective nature of the steady state we
chose the basis for the Lindbladian also composed of collective operators {ĥ j} = {Ŝx , Ŝy , Ŝz}
and {ℓ̂ j} = {Ŝx , Ŝy , Ŝz}. Employing the method numerically for the above steady states in
systems with finite size N we recover the exact Lindbladian dynamics of Eq.(20). Precisely, we
obtain a unique eigenvector |ϕL〉 in the kernel of the correlation matrix M̂(ρ̂ss), with elements
given by,

c1 =ω0 , c2 = c3 = 0 ,

γ1,1 = γ2,2 =
p
κ , γ2,1 = γ

∗
1,2 = i

p
κ ,

γ3,1 = γ
∗
1,3 = γ3,2 = γ

∗
2,3 = γ3,3 = 0 .

(22)

We illustrate the behavior in the weak dissipative case, ω0/κ = 2. In Fig.(1a) we show the
absolute value of the obtained Lindbladian parameters, for different system sizes. We observe
the nullity (i.e., below the numerical accuracy of the order ≈ O(10−10)) of parameters c2, c3
and γ3, j with j = (1,2, 3), in addition to the information that |γ1,k|= |γ2,k| for k = (1, 2).

The two smallest eigenvalues of the correlation matrix are displayed in Fig.(1b). For finite
sizes we observe a unique kernel solution (i.e., with eigenvalue below the numerical accuracy
of the order ≈ O(10−10)), while observing a decrease in the second eigenvalue for larger N . It
is well-known that the model is gapless in the weak dissipative regime [59,63]. The vanishing
of the second eigenvalue with the increasing system size N (inset panel of Fig.(1b)) appears
to capture this characteristic of the model. The eigenvalues of the dissipative matrix γ for the
solution (kernel) of M̂(ρ̂ss) are showed in Fig.(1c). Observe that the dissipative matrix for the
kernel solution has just one nonnull eigenvalue, confirming that we can associate it with only
one jump operator (collective decay).

3.3 Random local model

We now turn to a many-body local model of a spin-1/2 chain with random local interactions
and single-site jump operators [5]. The model Hamiltonian includes both on-site and nearest-
neighbor two-body interaction terms,

Ĥ j =
∑

j,α

c j,ασ̂
α
j +
∑

j,α,β

c j,α,β σ̂
α
j σ̂
β
j+1 , (23)
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Figure 2: (a) The two lowest eigenvalues of the correlation matrix M̂(ρ̂s) in the
random local model, for varying dissipative strength αD. (b) The norm difference
between the steady obtained from the reverse engineered Lindbladian ρ̂M

s and the
exact one ρ̂s. All results here are averaged over 200 random realizations of the system
coefficients.

while the dissipative dynamics is driven by local operators of the form

L̂ j =
∑

α

d j,ασ̂
α
j , (24)

where σ̂αj indicates the Pauli operator in the α ∈ {x , y, z} direction acting on the j’th site.
The Hamiltonian coefficients c j,α and c j,α,β are sampled from a Gaussian distribution with
zero mean and unit variance, under open boundary conditions cN ,α,β = 0. Similarly, the real
and imaginary parts of the dissipative coefficients d j,α are drawn from independent Gaussian
distributions with zero mean and standard deviation αD, which sets the overall strength of the
dissipation.

We analyze chains of size N = 5 over the range αD ∈ (0,
p

10). For each random re-
alization of the coefficients, the non-equilibrium steady state (NESS) is obtained via exact
diagonalization of the Lindbladian superoperator. In applying the procedure described in Sec.
II, we adopt an ansatz basis consisting of single and two-body Pauli operators for the Hamilto-
nian terms, {ĥα,β

j,k }= {σ
α
j ,σαj σ

β

k }
N
j,k=1, and single-body Pauli operators for the jump operators

{ℓ̂αj }= {σ
α
j }

N
j=1, with α,β = x , y, z.

The two smallest eigenvalues of the correlation matrix are shown in Fig.(2a). In this
regime, the kernel of M̂ is one-dimensional (values below≈ O(10−10) are assumed null within
numerical accuracy), uniquely determining the reconstructed Lindbladian parameters consis-
tent with the NESS for αD ≲ 1. On the other hand, for large dissipative strength αD ≳ 1,
we observe the closing of the eigenvalue gap, therefore indicating that due to the emerging
degeneracy the method may not be fully precise in this regime. Indeed, in order to assess
the accuracy of the method, we compute the steady state obtained from the reconstructed
Lindbladian solution, ρ̂M

s , and compare it with the expected exact NESS, ρ̂s, obtained from
solving the Lindbladian of Eqs. (23) and (24). The results are displayed in Fig.(2b), where
their norm difference remains close to zero throughout the αD ≲ 1 regime, confirming the
reliability of the reconstruction in the weak dissipative regime, while becoming uncertain in
the strong case, due to the emerging degeneracy.
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4 Robustness of the method

In this section, we investigate the robustness of the method against random fluctuations in the
target steady state. Specifically, we consider a target steady state represented in the following
form

ρ̂ε =
1
Nε

�

εÎ/ tr (Î) + (1− ε) ρ̂s

�

, (25)

with ε the strength of the random fluctuations mixing the unperturbed steady state with white
noise represented by the identity matrix Î. The state ρ̂s denotes the NESS of the model, and
Nε is the normalization constant.

4.1 Driven-dissipative collective spin model

We first apply our method to the perturbed steady state ρ̂εs of the collective spin model, using
ρ̂s as given in Eq.(21). We expand the Hamiltonian and jump ansatz operators by collective
operators along the x and y directions, {ĥ j}= {Ŝx , Ŝy} and {ℓ̂ j}= {Ŝx , Ŝy}.

Strong dissipative case (κ/ω0 > 1). We first observe that for any ε ̸= 0 perturbation, the
correlation matrix M̂(ρ̂ε) has no null eigenvalues - see Fig.(3a). Specifically, we find that the
smallest eigenvalue has a quadratic dependence with the perturbation strength and decays
with system size,

λ1(M̂(ρ̂ε))∼ ε2/N , (26)

with ε ≪ 1. The nonnull eigenvalues for the correlation matrix do not guarantee the direct
application of our method, i.e., that ρ̂ε is indeed a steady state of the reverse engineered Lind-
bladian. On the other hand, due to the vanishing of the smallest eigenvalue with system size
it suggests that the method should still be feasible for large system sizes. We therefore investi-
gate the reversed engineered Lindbladian Lε corresponding to this minimum eigenvalue. We
also remark here that the eigenvalues for the dissipative matrix λ(γ) of Lε are all nonnegative,
therefore assuring the complete positivity for the map.

In Fig.(3b) we show how the steady state of Lε, denoted by ρ̂εs , compares to the unper-
turbed one ρ̂s through their norm difference. We obtain that,

∥ρ̂εs − ρ̂s∥ ∼ ε/N
3
2 . (27)

Hence we see that the Lindbladian Lε can still be used to generate a steady state similar to
the exact (unperturbed) one, with the level of precision increasing as one increases the system
size.

Weak dissipative case (κ/ω0 < 1). This case has subtle properties which require a more
careful analysis. Similar to the strong dissipative case the correlations matrix M̂(ρ̂ε) has no
null eigenvalues given an ε ̸= 0 perturbation, with the smallest eigenvalue following a scaling
relation similar to Eq.(26) - see Fig.(3c). Therefore we could once again consider the reversed
engineered Lindbladian Lε related to this minimum eigenvalue. However, the dissipative ma-
trix γ̂ of such Lindbladian is not positive; specifically, it has one negative eigenvalue. As we
discuss, despite being orders of magnitude smaller than the positive eigenvalues, the presence
of this negative eigenvalue precludes the assurance of complete positivity for the map. One
approach to address this issue is to disregard the negative eigenvalue of the dissipative matrix
by making it null, i.e., with the transformation

λ j(γ̂) =max
�

λ j(γ̂), 0
�

, ∀ j . (28)

In this way the corresponding Lindbladian, which we denote by L+ε , is now a complete posi-
tivity map by definition.
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Figure 3: (a) The smallest eigenvalue λ1(M̂ε) of the correlation matrix M̂(ρ̂ε) as
a function of the perturbation ε, for different sizes N and in the strong dissipative
regime, ω0/κ = 1/2. (b) We show the norm difference between ρ̂εs and ρ̂s in the
strong dissipative regime. (c) The first eigenvalue of the correlation matrix at the
weak dissipative regime,ω0/κ= 2. (d) The norm difference between ρ̂εs and ρ̂s and
(inset panel) between ρ̂ε,+s and ρ̂s, for ω0/κ= 2.

In Fig.(3d) we show how the steady state of Lε and Lε, denoted as ρ̂ε and ρ̂ε,+s , respec-
tively, compare to the unperturbed one ρ̂s. The results in both cases show similar behaviors.
The curves exhibit a highly non-linear behavior for perturbations greater than an εsaturation
(note the logarithmic scale), which gradually transition to a smoother, linear behavior with
a scaling similar to Eq.(27) for smaller perturbations. The value of εsaturation correlates with
the size N , specifically, εsaturation decreases as N increases. It is well-established that the decay
time τ for the collective spin model exhibits an exponential increase with size [59, 63]; par-
ticularly, in the thermodynamic limit the decay rate vanishes and the lifetime of oscillations
diverge. The numerical simulations indicate that τ∼ 1/εsat , thus, for long lifetime dynamics,
the perturbative term exerts a greater influence.

4.2 Random local model

We now extend the robustness analysis to the random local model of Sec. 3.3, applying the
method to the perturbed steady state defined in Eq. (25), with ρ̂s obtained from numerically
solving the NESS of Eqs. (23) and (24).

We first observe that, for certain ranges of αD and ε, the correlation matrix M̂ε exhibits
no null eigenvalues, as shown in Fig. (4a). Therefore, following the same procedure as in
the previous section, we consider the reverse-engineered Lindbladian Lε associated with the
smallest eigenvalue. The Lindbladian Lε may exhibit a non-positive dissipative matrix, γ̂ε.
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Figure 4: (a) The smallest eigenvalue λ1(M̂ε) of the correlation matrix M̂(ρ̂ε), for
varying perturbation ε and dissipative strength αD. (b) The norm difference between
the steady obtained from the reverse engineered Lindbladian, ρ̂εs , and the exact one
ρ̂s. All figures are shown on a logarithmic scale. The results presented here are
averaged over 30 random realizations of the system coefficients.

Complete positivity of the dynamics is then enforced using the prescription of Eq. (28). In
Fig.(4b) we show how the steady state of L+ε , denoted ρ̂εs , compares with the unperturbed
one ρ̂s through the logarithm of their norm difference. The Lindbladian Lε is capable of
reproducing a non-equilibrium steady state closely matching the exact one, with improved
accuracies at smaller perturbations ε and dissipative strength αD.

5 Conclusions and perspectives

We have introduced a method for determining Lindbladian superoperators from a non-
equilibrium steady state. The method is based on the identification of the kernel of a cor-
relation matrix obtained from the NESS and the definition of a basis for the Lindbladian. The
existence of a null element in the domain kernel together with the positive semidefiniteness of
the dissipative matrix gives an iff condition for reconstruction of the Lindbladian that gener-
ates the NESS. By exploring the method in different systems, we also observed how different
Lindbladian bases can associate different types of dynamics with the same NESS. In a future
work, it would be interesting to use this property to study dissipative phases and phase tran-
sitions. Furthermore, it would be interesting to investigate the elements of the correlation
matrix kernel that, despite exhibiting negative decoherence rates, could describe the underly-
ing non-Markovian dynamics of the physical systems.

Another promising applications of our method is that of finding alternative Lindbladians
for a given target NESS. Specifically, given a NESS generated by a specific LindbladianLfull, one
may address the question if this same state could be engineered by an alternative Lindbladian
Lalt ̸= Lfull. The alternative Lindbladian could potentially be more experimentally feasible,
bringing the preparation and use of the NESS closer to the realms of practicality. Our prelim-
inary studies are encouraging. Analysing the random spin model and its corresponding input
NESS (ρ̂exact,N ESS) under such perspective, we used our method to reverse-engineer a Lind-
bladian under a constrained ansatz: we forbid dissipative channels at certain sites but allowed
for longer-range Hamiltonian interactions. The method successfully found an alternative Lind-
bladian whose steady state had a fidelity of ≈ 99% with the original target state (ρ̂exact,N ESS).
The obtained reverse engineered Lindbladian dealt with the lack of dissipation by exploiting
the Hamiltonian interactions in a longer-range, thereby recovering the same class of NESS.
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This suggests that a desired complex non-equilibrium steady state (NESS) could potentially
be engineered by a different, and possibly more experimentally feasible, set of controls — for
example, trading challenging local dissipation for tunable long-range interactions.
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A Correlation matrices for squeezed vacuum NESS

In this Appendix we show correlation matrices M̂ξ obtained from choosing the squeezed vac-
uum as steady state, ρ̂s = |ξ〉〈ξ|, and quadratic operators for the Hamiltonian basis,
{ĥ j}= {(â2 + (â†)2)/

p
2, (â2 − (â†)2)/i

p
2}.

A.1 Single particle jump operators

For one body jump operators {ℓ̂ j}= {â, â†}, the correlation matrix is given by

Mξ
11 =

1
2
(3− cos(2θ ) + (1+ cos(2θ )) cosh(4r)) , Mξ

12 =
1
2

sin(2θ )(cosh(4r)− 1) ,

Mξ
13 = −

p
2

2
sin(θ ) sinh(2r) , Mξ

14 = Mξ∗
15 =

i
p

2
2

cosh(2r) , Mξ
16 = −

p
2

2
sin(θ ) sinh(2r) ,

Mξ
22 =

1
2
(3+ cos(2θ ) + (1− cos(2θ )) cosh(4r)) , Mξ

23 =
p

2
2

cos(θ ) sinh(2r) ,

Mξ
24 = Mξ∗

25 = −
p

2
2

cosh(2r) , Mξ
26 =
p

2
2

cos(θ ) sinh(2r) ,

Mξ
33 =

5
8
− cosh(2r) +

3
8

cosh(4r) , Mξ
34 = Mξ∗

35 =
1
2

eiθ (sinh(2r)−
3
4

sinh(4r)) ,

Mξ
36 =

3
8
(cosh(4r)− 1) , Mξ

44 = Mξ
55 =

1
8
(1+ 3 cosh(4r)) , Mξ

45 =
3
8

e−2iθ (cosh(4r)− 1) ,

Mξ
46 = Mξ∗

56 = −
1
2

e−iθ (sinh(2r) +
3
4

sinh(4r)) , Mξ
66 =

5
8
+ cosh(2r) +

3
8

cosh(4r) . (A.1)

A.2 Two-particle jump operators

For two-body jump operators {ℓ̂′j} = {â
2, (â†)2}, we can write the correlation matrix entries

as

M ′ξ11 =
1
2
(3− cos(2θ ) + (1+ cos(2θ )) cosh(4r)) , M ′ξ12 =

1
2

sin(2θ )(cosh(4r)− 1) ,

M ′ξ13 = −
p

2
2

sin(θ ) (sinh(4r)− sinh(2r)) , M ′ξ14 = M ′ξ∗15 = −
i
p

2
2

eiθ sinh(4r) ,

M ′ξ16 = −
p

2
2

sin(θ ) (sinh(4r) + sinh(2r)) ,

M ′ξ22 =
1
2
(3+ cos(2θ ) + (1− cos(2θ )) cosh(4r)) , M ′ξ23 =

p
2

2
cos(θ )(sinh(4r)− sinh(2r)) ,
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M ′ξ24 = M ′ξ∗25 =
p

2
2

eiθ sinh(4r) , M ′ξ26 =
p

2
2

cos(θ ) (sinh(4r) + sinh(2r)) ,

M ′ξ33 =
71
32
−

13
4

cosh(2r) +
3
2

cosh(4r)−
3
4

cosh(6r) +
9

32
cosh(8r) ,

M ′ξ34 = M ′ξ∗35 =
1
8

e2iθ (−
29
4
+ 3 cosh(2r) + 5 cosh(4r)− 3cosh(6r) +

9
4

cosh(8r)) ,

M ′ξ36 =
1
4
(
15
8
− 3cosh(4r) +

9
8

cosh(8r)) ,

M ′ξ44 = M ′ξ55 =
1
8
(
91
4
+ 23cosh(4r) +

9
4

cosh(8r)) , Mξ
45 =

9
32

e−4iθ (3− 4cosh(4r) + cosh(8r)) ,

M ′ξ46 = M ′ξ∗56 =
1
8

e−2iθ (−
29
4
− 3cosh(2r) + 5 cosh(4r) + 3 cosh(6r) +

9
4

cosh(8r)) ,

M ′ξ66 =
71
32
+

13
4

cosh(2r) +
3
2

cosh(4r) +
3
4

cosh(6r) +
9

32
cosh(8r) . (A.2)
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