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Abstract

We theoretically study how the superfluid and condensate deformation of a weakly in-
teracting ultracold Bose gas evolve during the ramp-up of an external weak disorder
potential. Both resulting deformations turn out to consist of two distinct contributions,
namely a reversible equilibrium one, already predicted by Huang and Meng in 1992,
and a nonequilibrium dynamical one, whose magnitude depends on the details of the
ramping protocol. For the specific case of the exponential ramp-up protocol, we are
able to derive analytical time-dependent expressions for the above quantities. After a
sufficiently long time, a steady state emerges that is generically out of equilibrium. We
take the first step in investigating its properties by studying its relaxation dynamics. In
addition, we analyze the two-time correlation function and elucidate its relation to the
equilibrium and the dynamical part of the condensate deformation.
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1 Introduction

The concept of disorder, in the form of a frozen random potential landscape, allows us to
realistically describe the distribution of impurities, defects, and other types of imperfections in
various quantum many-body systems, ranging from solid-state materials to ultracold quantum
gases. It is generally assumed that disorder is an unavoidable nuisance that weakens or even
prevents the emergence of quantum effects. However, under certain circumstances, disorder
has turned out to be crucial for novel quantum phenomena that have no clean counterpart [1].
Prime examples are Anderson localization of one-particle wave functions [2-5] or many-body
localization in isolated many-body systems [6-8]. These successes have led to the idea that
one can use properly tailored disorder as a tuning knob for open-system control of quantum
many-body systems.

However, for many disordered systems that occur in nature, the random potential land-
scape is not frozen, but changes in time either deterministically or stochastically. Thus, it
becomes important to study the disorder from the broader perspective that it may change
on some time scale. Such changes may occur naturally in an experimental situation when
the perturbation is turned on and off. Dynamic disorder with tunable correlation time [9]
or quenching [10] is often used intentionally to probe the properties of quantum many-body
systems. For example, quenching of disorder in an ultracold bosonic gas in a lattice has been
used experimentally to dynamically probe the quantum phase transition of the superfluid-Bose
glass at non-zero temperature [11]. Moreover, quenching can also lead to the appearance of
non-trivial steady states, as shown, for example, by the theoretical study of an interaction
quench of a 3D BEC in a static disordered potential [12]. There it was found that the quench
dynamics enhances the ability of the disorder to deplete the superfluid more than to deform
the condensate. In Ref. [13] we found that after the disorder is ramped up, the resulting sta-
tionary condensate deformation turns out to be a sum of two parts. One is an equilibrium
part, which actually corresponds to the adiabatic switching on of the disorder and was already
found by Huang and Meng in 1992 [14]. The other represents a dynamically induced part,
which depends on how fast the disorder is turned on.

The latter peculiar discovery warrants a more detailed investigation, which is carried out
in the present paper. In Sec. 2 we present the underlying perturbative mean-field theory for
describing a homogeneous Bose gas moving in a temporally controlled weak disorder poten-
tial. The subsequent Sections apply the formalism to the exponential ramp-up protocol. We
determine analytical, time-dependent expressions for the superfluid deformation in Sec. 3 and
for the condensate deformation in Sec. 4. A detailed analysis corresponding to the correlation
functions is given in Sec. 5, followed by concluding remarks in Sec. 6. The applied contour
integration method is outlined in Appendix A.
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2 Perturbative mean-field theory

At the initial time ¢t = 0, a Bose-Einstein condensate of identical bosons N at zero temperature
occupies the volume V and has a constant particle density n = N/V. It moves with velocity
v =HhK/m and is described by the homogeneous wave function exp(—iugt/h)¥y(x, t), where

. K>
Yo(x,t)=exp|iK-x—i—t |v/n, (D
2m
and uy = gn is the equilibrium chemical potential, with g being the contact interaction
strength. The thermodynamic limit N,V — oo with constant n will be implicitly assumed
in the final stage of all calculations. The condensate dynamics is modeled by the mean-field
time-dependent Gross-Pitaevskii equation, which at the time t = O reads

ih

Oy(x,t) [_ 2v?2

ot om — U + g% (x, t)|2:|‘1’o(X, t). (2)

The important characteristic time scale of mean-field dynamics is determined by the inverse
of the chemical potential Ty = fi/uy. Physically, it establishes the order of magnitude related
to the ratio of the condensate healing length and the speed of sound.

At later times t > 0, a weak external disorder potential u(x) is ramped up via the drive
function f(t), which takes values between 0 and 1, so that f(0) = 0 and tl_l)rgo f(t) =1.

We assume that the disorder potential has zero ensemble average at every point, (u(x)) = 0,
in order to eliminate the effects of a simple shift of the chemical potential. The two-point
correlation function is of the form

(uu(x)) = R(x—x), (3)

so that homogeneity is restored after the disorder ensemble averaging is performed. In the
k-space we have, correspondingly,

(@) =0,  (a@a)) = 2n)°sk+ kIR, €3

where, from now on, the tilde will denote the spatial Fourier transform. The evolution of
the condensate is now described by the disordered wave function ¥(x, t) obeying the time-
dependent Gross-Pitaevskii equation [13,15], which includes the time-dependent random po-
tential

ih

272
9‘1’3(’;’ 0_ [ ~ T u0f (0= o + g t)lz} U(x,0). 5)

For convenience, we introduce the auxiliary wave function (X, t) via the relation
2

U(x,t) =exp (iK-x—ith)w(x,t). (6)
2m

Note that due to the restored homogeneity, one has V(i (x,t)) = 0. We will consider the
regime where the disorder is a perturbation that is small compared to all other energy scales.
In this case, the auxiliary wave function (X, t) can be expanded as

w(X, t):¢0+w1(x) t)+¢2(XJ t)+’ (7)

where 1, = /n, while ¢y ,(x,t =0) =0 and ¢ ,(x, t) = O(|u(x)|*) for a > 1 are perturbative
corrections due to the disorder, which will allow us to calculate various quantities of interest.
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The disorder ramp-up with the condensate at rest, i.e. K= 0, was analyzed in [13]. There,
the primary quantity of interest was the condensate deformation [16], which up to the second
order is

q(6) = ([(x, OFF) = (@0, ) ~ (91 (x, OFF) = [(1h1(x, ) - (8)

As shown in [13], it represents a hallmark of non-equilibrium steady states of the system
reached long after the disorder has been ramped up. However, the observed non-equilibrium
steady states have not been characterized. The first step towards such a goal is to study the
dynamics and steady-state values of additional system quantities. With this in mind, we in-
vestigate here the superfluid properties of the disordered condensate. The disorder-averaged
momentum density can be decomposed as

(p(1)) = — iH(T"(x, V(1)) = HK(|(x, )*) — th(yp*(x, )V (x, 1)) C)

Since (|¥(x, t)|?) = n, the first term represents the momentum density of a clean homogeneous
moving condensate and we introduce the momentum density deformation as

(6p(t)) = iA(Y (%, VY (x, 1)) ~ iT{yp(x, VY (%, 1)), (10)

where the last expression is the second-order approximation in terms of first-order corrections.
The momentum density gives us access to the superfluid density tensor [17, 18] through the

relation 2 (i)
1 Di t
H()= 2= 11
ns,l_]( ) H 8Kj o (11)
By analogy, we define the superfluid deformation tensor in the presence of disorder as
13(5p(1)
Tls,l]( ) i EKJ o s ( )

which obeys the relation n,;;(t) = nd;; — 6n, ;;(t).
Furthermore, we are interested in the long-time behavior of the two-point connected cor-
relation function

(Y&, P (y, t + T))e = (P(x, OP*(y, t + T)) — (Y(x, ) (Yp*(y, t + T)), (13)

where T is the time delay, and relate its various limits to specific parts of the condensate
depletion. Using the second-order result for the correlation function

(Y, Py, t + T)) Az + o (1(x, ) + iy, t + T)) + (Y1 (x, OPi(y, t + T))

oo, ) + Y5y, t + T)) (14)

as well as

(Y, 1)) (Y (y, t + T)) 2+ o (p1(x, ) + iy, t + T)) + (Y1 (x, ) (Y5 (y, t + T))
+2Po(Pa(x, t) + 3y, t +T)),

we find that the connected correlation function up to the second order depends only on the
first-order wave function corrections

(Y, O (y, e+ T))e & (1 (x, Y1 (y, £+ T)) — (Y1 (X, ) (Y1(y, t + 7). (16)

To gain access to the second-order correct quantities of interest, we need only determine
the first-order perturbative corrections using Eq. (5). Since the resulting equations for the cor-
rections are linear, we use the Fourier and Laplace transformations, which reduce the problem

(15)

4
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to an algebraic linear system

2
ifsyy (k,5) = [ﬁwk + %K k+ g%] Pl s) + g (k,s) +AK)f (s)po,  (17a)

2

- i . -
—ifsi(k,s) = [ﬁwk - K-kt gwé] V3 (k,s) + gypiapr(s) + a(k)f (s)po,  (17b)

where Aiw, = 2k?/(2m) is the free particle dispersion. This linear system has the nontrivial
solution

- Yo wk—%K-k+is .
Piks)=—— suK)f (s), (18a)
R 02— (LK -k—is)

- Yo wk—l—%K-k—is .
¥ills) = — 20 S00£ (), (18b)
R Qi —(%K-k—is)

where 1Q, = /hwi(fw, +2gn) is the Bogoliubov dispersion. Using the inverse Laplace
transformation
wkﬂF%K-k:I:is £t

—i LRkt ok
—5 TRk R I 1), (19)
02— (LK k—is)
with the abbreviation o
Kk, t) = Q—" sin(Qt) £ cos(Qt), (20)
k
we finally get
Pi(k, t) = —oli(K) Ak, t), (21a)
ik, t) = —hoii(k) Ak, 1), (21b)
where .
Ak, 1) = J dt'e R ) (- 1), (22)
0

and we used the fact that X*(k, t) are functions of k = |k|. Note that X*(k, t)* = KF(k, t) and
Ai(— k t) =Af(k, t)" = AfK(k, t). Compared to the results of [13], the condensate motion
introduces an additional phase factor which depends on K- k.

In the special case of the condensate at rest, i.e., K= 0, inserting (21) into (8) reproduces
the previous result for the condensate deformation [13]

d3k
s (27)3

q()=n R(K)| Ay (k, )12, (23)

where we used Ay (k, t) = A (k, t)*. In addition, the connected correlation function up to the
second order becomes

d>k
R3 (27-[)3

(Y O (y, t +T)). =n R(K)e ALk, t) Ay (k, t + T). (24)

It depends on x —y and is therefore translation invariant due to the restored homogeneity. In
the general K # 0 case, we find the momentum density deformation

d>k

(6p(t)) =n @

R(KRk|AL(k, t)[, (25)

5
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as well as the superfluid deformation tensor

3k . 2|A-(k, t)|?
(0= 1 | K ragne 200

Mg (27)3 oK, (26)

K=0
Note that the above integrand is proportional to k;k; since one has

01Ag(k, t)?

rk; (*
=i— f dt't'[Ag(k, KT (k, t)) —Ay(k, ) K~ (k t)] f(t—t). (27
3KJ m 0

K=0
In this work we are interested in an isotropic system, so the only relevant elements of the

superfluid deformation tensor are diagonal and equal, i.e., 6n ;;(t) = 6n,(t)8;;. Thus, ony(t)
will be simply referred to as superfluid deformation.

3 Time-dependent superfluid deformation

In the following, we will consider the exponential-type disorder ramp-up protocol of [13]
fi)=1-e"7, (28)

where 7 is the characteristic ramp-up time. For small values of T < Ty, the quenched disorder
limit is approached, while for large © > 7y the equilibrium is reached adiabatically. We will
refer to the two aforementioned limits as T — 0 and T — 00, respectively. In this exponential-
type scenario, (22) becomes

. h

(k-1 —02]  2h0 (2K k+0)[o(EK-k+9) +1]

Ar(k,t) =
K K

(29)

(o F Qk)e_it(%K'k_Qk)

Af(i+7iKk-k)?—7202] 2 (EK-k—o)[t(EK-k—)+i]

Te_t/f[rwk F(i+ T%K-k)]

which will be used in the sequel. Note that the first term corresponds to the equilibrium value
as T — 00, while the rest is the dynamically introduced complement. We will first discuss the
case of the arbitrary disorder correlation function R(k) and then examine the delta-correlated
scenario.

3.1 Arbitrary correlated disorder

In the case of arbitrary correlated disorder, using (26)—(29) we obtain the full time-dependent
superfluid deformation

t/T —2t/T

27t%we

5“5,7(0 =

n d3k 500 2[4wk_ 2t%w  4ttwre” 30)

R(k)k
m Jgs (27)° of (202 + 1)2 (202 + 1)2 (r202 + 1)2
N Zwk(tf?’ﬂi +7(t —4T)Qi —2) cos(t€2y)
(202 +1)*
20 (T2(t +37)Q% + t + 7) sin(y)
Q3(7202 +1)*
2ttwre " cos(ty) Zkae_t/T(BTZQi + 1) sin(tQk)]
Qi (r205+1) Q3(v202 +1)° '
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In the long-time limit, the exponentially decaying terms vanish as well as the k-space integrals
of the oscillatory terms, which leads to the stationary superfluid deformation

. n d3k
ong . = t1_1)nolo 5nS,T(t) = . 2n)?

2 20, (27202 +1
Ok k( k )} 31

ﬁ(k)kz[
(w202 +1)
The function in the brackets above is positive and strictly decreasing for 7 > 0. It starts from
the maximum value 4wy / Q;{‘ as T = 0 and decays towards the asymptotic value 2w,/ Qi for
T — 00, The first value corresponds to the quenched regime, where we have

n d*k 4% k>

lim 6 = — k . 32
a0 e T g3 (2m)3 R )wk(ﬁwk+2gn)2 (32)

For adiabatic switch on of the disorder, on the other hand, the asymptotic equilibrium value is
reached and it satisfies the general relation

Tlin;lo ons . = % %11}1‘(1) ons ;. (33)
The considered scenario suggests that for an arbitrary disorder correlation R(k) and a generic
dynamical disorder switch-on protocol f(t), the final superfluid deformation has an equilib-
rium part and a dynamically induced part. For the exponential ramp-up, the latter part can be
at most as large as the equilibrium part. Thus, any excess of the superfluid deformation over
the equilibrium value is a hallmark of the non-equilibrium steady state, in the same way as the
condensate deformation [13].

3.2 Delta-correlated disorder

Let us now specialize in the delta-correlated disorder, which is characterized by
R(k) =R. (34)

It can be realized experimentally via a random distribution of many neutral atomic impurities
trapped in a deep optical lattice [19-21].

The analytical evaluation of the integral (30) for the superfluid deformation is quite de-
manding, since the integrand depends both algebraically and trigonometrically on the wave
vector. For this purpose, we use a convenient method based on contour integration around
a branch cut as described in detail in Appendix A. We assume that temporal quantities are
rescaled according to

t—t/Typ, T T/Tur> (35)

so that Ty will be the unit of time in the rest of the article. In this way, we obtain the full
time-dependent expression for the superfluid deformation

5ns,7;é1(t) . Bﬁe_t

)[T(e_t/f—l)—l]—Merf(\/t/ﬂ/7+1)

dum N 3\/E(T2—1 3(T+1)3/2 (36)
8 2(21 —3)y/Te /" iy
+§erf(\/?)— 3(r—1)2 (2—e T)erf(\/t/TVT—l),
which is valid for 7 # 1 and erf(x) denotes the error function. For T = 1 we obtain
&n,.q(t)  16erf(v1)—5v2erf(v20) N 16e~t(t —3)/t N 272 /(15— 4t) 37)

qum 6 W We ’
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in units of the Huang-Meng equilibrium condensate deformation [14]

m3/2 ﬁ
4nh® /g
This result is graphically represented in Fig. 1(a). Initially, at t = 0, the system is a condensate,

so the superfluid deformation is zero. Based on (36) and (37), the superfluid deformation at
early times t — O behaves asymptotically as

dym = (38)

6n, () 16t2  8t7/2(107 +21) N
dum N Sﬁfz 63ﬁ73 o

which is dominated by a t3/2 power-law. Conversely, in the long-time limit t — oo also the
stationary superfluid deformation is accessible from (36) and (37) and reads

(39)

6ns,7 i § _ Zﬁ(ZT +3)

= , 40
dum 3 S(T + 1)3/2 ( )
which is depicted in Fig. 1(b). In the sudden-quench scenario, we get
. 8
}-li% 5ns,r = quM ) (41)
while for the adiabatic switch on of the disorder we find
. 4
TILIEO 5ns,'r = quM ’ (42)

which is precisely the equilibrium Huang-Meng result [14].
Let us now investigate how the superfluid deformation relaxes to the long-time limit t—o0.
From (36) and (37) we get

B/(t,7)e”", ifo<t<1,
~ 4 By(t,m)e™", ifr=1, (43)
BHI(T)e_t/T, if > 1,

6nS,T(t) - 5ns,’r

duMm

where the respective prefactors are given explicitly as follows:

42t(1—7)+7—2]

Bi(t,7) = W NS (44a)

By(t,7)= S[Zt;f/%f/);?’], (44b)
4(3—2

Bp(t) = IE(T——;));//; (44¢)

We observe that the superfluid deformation approaches the asymptotic regime exponentially
on a unit time scale for 0 < T < 1 and otherwise on a time scale of 7. Recalling that the unit of
time is Typ, we can conclude that the asymptotic behavior is determined by the larger of the
two timescales involved: the mean-field-related or the switch-on-protocol-induced. Further
elaboration on this point can be found at the end of Appendix A. We note that (43) and (44)
are valid for any fixed value of 7. The apparent divergence of B;(t,t) and B;j;(t,7)as T — 1
arises because this limit conflicts with the assumption that the argument of the final error
function in (36) is asymptotically large.
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4 Time-dependent condensate deformation

In this section, we examine in the same way the full-time dependence of the condensate de-
formation. In the above scenario, from (23), (29), and (34) follows

nR d3k w,% o)i + Qi 20),2( cos(Qyt) 270)1% sin(; t)
==, W{ﬂ_;ﬁ 20t (1+7202) ot (1+7202) 03 (1+7202) “>)
(22— w?) (7202 — 1) cos(2t) 7 (Q2 — w?)sin(2t)
20% (1+7202)° Q3 (1+7202)
g 72 (1+T2w£) _t/T|:272 (wi—ﬂi)cos(ﬂkt) 3 ZTzwi
(1+202) ai(1re0f)f  F(1een))
N 27 (1+7:2wi) sin(Qt) ]}
o (1+7202)°

which coincides with Eq. (21) of Ref. [13]. Previously, the above integral was only determined
numerically, but now we can solve it analytically using the method of contour integration
around a branch cut from Appendix A. We obtain the closed-form expression
q.(t)  4ver(2r—1)e tTD/7 L 4 WEQ -2t +47)
dum vr(t—1) Jr

+ 2[1 —4¢2 —8’52(6_t/T + 1) + 87t]erf(ﬁ) + (8t2 +1272—167Tt + %) erf(\/ﬂ)

(46)

—t/7 —t/7 / _
+%[(ZT—1)(e_t/T(2t+3T)+4T)—2—i_ ]erf(%)
=2t/ / _
—%[4“1‘—1)(21’—1)+T(6T(2T—3)+5)]erf($)
Vi(t+1 V2te 2t
+\/T(T+1)(4T—2)erf( (;/F? ))+ﬁ(f:_l)[4t(’r—1)+3(3—4T)T+1],

which is also plotted in Fig. 1(a). This analytic result enables us to reveal the condensate
deformation behavior in several regimes and compare it with the superfluid deformation (36)
and (37). For example, for small times t — 0 we find that the condensate deformation has the
same t°/?-dominated power-law behavior

g.(t) 16t52 8[(32v2—66)7—35]¢t"/?
Quu  5V7TT2 1054/773

as the superfluid deformation (39). In the long-time limit we recover the previous result [13,
Egs. (27) and (28)]

+..., “47)

q: = tl_l)rgo q,r(t) = [g —4T2 + 2(2’[,' — 1) RY; T(T + 1)]qHM, (48)

and obtain that the condensate deformation approaches the asymptotic limit t — oo as

C(t,t)e” ", ifo<t<1,
~ 4 Cp(t)e™, ift=1, (49)
Cy(m)e 7, ifr>1.

qr(t) —(qz
dum
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(a) =ons.(t)/qum =2q-(t)/qum (b)

2.
2.5 2_2 ________ — 5nS,T/qHM
90 - QT/ M
1.5
1.5
1.3 S
0.5 1.0 ot
107° t 107° 107 100 10 10*° 10° T
(c) (d)
251 tmax
100 — Ons . (t)/qum
1
T 0 == () /am
— N/ qum
1.5+
2 — q;nax/qHM .x\ "
0.05 0.1 05 1015 T 0.05 0.1 Tc05 1015 T

Figure 1: (a) The superfluid deformation (solid lines) and condensate deformation
(dashed lines) as a function of the rescaled time t for three values of the rescaled dis-
order ramp-up time 7, = 1073, 1 p=1land 7, = 103. Both quantities are normal-
ized by the equilibrium Huang-Meng condensate deformation for the delta-correlated
disorder (g, see main text). (b) The stationary superfluid deformation (solid line)
and stationary condensate deformation (dashed line) as a function of 7. (c) The
maximum, and (d) the time corresponding to the maximum of the superfluid (solid
lines) and condensate (dashed lines) deformations as function of 7, exemplified by
the dots in (a). The vertical lines indicate the maximal ramp-up times after which
the overshooting above the stationary value does not occur. The two curves in (d)
intersect at 7. ~ 0.35.

The three corresponding amplitudes are given by

4
Cl(t,’l,')——m, (503)
34 8 28
C,,(t):—ﬁt3/2+ ‘/‘/_j+ ﬁﬁ_16’ (50b)
Co(ry= HERTCE =D =11 0o (500)

T—1

We notice that the superfluid deformation is slightly more sensitive than the condensate de-
formation to the presence of the disorder, see Fig. 1(a)-(b). However, both superfluid and
condensate deformations approach their respective equilibrium on the same time scale, show-
ing different algebraic amplitude dependencies. As in the case of superfluid deformation,
the asymptotic behavior of condensate deformation is determined by the larger of the two
timescales: the mean-field-related or the switch-on-protocol-induced. The next section will
discuss the relationship between condensate deformation and a specific disorder-averaged cor-
relation function.

Before moving on, we would like to point out a particular dynamical feature of both su-
perfluid and condensate deformations, as seen in Fig. 1(a). Specifically, for ramp-up times
7 < 1.5, both quantities overshoot their stationary values. They reach a maximum at a certain
point, as indicated by the dots, and then relax to the steady state. We explore such behavior

10
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in detail in Fig. 1(c)-(d). The former panel displays how the maximum values depend on 7,
while the latter shows when the respective maximums appear, i.e., the maximal overshooting
times t,,,,. For both quantities, there exists a certain maximal value of 7, after which the over-
shooting no longer occurs. As indicated by the vertical lines, the aforementioned overshooting
first ends for the condensate deformation around 7T & 1.2. For the superfluid deformation, it
ends around 7 A~ 1.5. Panel (d) shows that for T < 7. ~ 0.35, q.(t) reaches its maximum
slightly before 6n; .(t), while the opposite is true for T > 7.. The maximums appear within
the intermediate time window 1 < t.x S 10. One plausible physical mechanism behind the
overshooting is the excitation of high-energy Bogoliubov modes when the ramp-up protocol
is rapid enough. We verified that overshooting is still present in the linear ramp-up protocol.
Consequently, this qualitative feature appears to be protocol-independent. A more detailed
understanding of the underlying mechanisms would provide valuable insight into the corre-
sponding intermediate dynamics, which is left as future work.

5 Stationary correlation functions

We now analyze the stationary connected correlation function lim,_, ., (Y/(X, )Y *(y, t + T)),
(13), which could be accessed experimentally. To this end, the atomic gas is split into two
clouds, which are then allowed to expand. Then the interference probe is used with a matter
wave heterodyning and the coherence of the system is encoded in the first order correlation
function [22]. Focusing on the long-time limit regime of the connected correlation function
(24), the time integrals (22) have to be evaluated. Taking into account the disorder ramp-up
protocol (28), regardless of the random potential, the following result is obtained up to the
second order

p T+ Q) e T (w— )2

nPaf  an’Qf(r202+1)  4nPQf(r202+1)

tlirgoAg(k, Akt +T) = (51)
In the above equation, the exponentially decaying terms have been safely neglected, and the
remaining terms involving trigonometric functions turn out to have no contribution in the
stationary regime.

In the following, we consider the case of delta-correlated disorder (34). The corresponding
stationary expression for the connected correlation (24) is then

d°k ik-z[ of e+ @) | e T (wp— 2>

e
2

2 (27)° rPqy  antQl(v202+1) 470 (1202 +1)

where we use the shorthand notation (Y(z = x —y)yY*(T)). = t]_l)lgo (Y(x, W (y, t + T)),

hereafter. Note that the above connected correlation consists of an equilibrium and a dy-
namically induced part in the same manner as other quantities of interest. Moreover, for the
delta-correlated disorder, it really only depends on |z|. Note that we cannot evaluate the in-
tegral in (52) for arbitrary z and T. Therefore, in the following subsections we examine two
cases that are analytically accessible. On the one hand, we consider the equal-time connected
correlation function, i.e., we set T = 0, and on the other hand, we discuss the equal-space
connected correlation function, i.e., we set z = 0.

wwwwm=ﬂf ],Gm
R

5.1 Equal-time two-point connected correlation function

The T = 0 equal-time connected correlation (52) is real and after angular integration reads

sin (k|z))[_k Wi+
[hzﬂ;i 2n%Q (2272 + 1) ]

2nR

(2P (T =0)), = @n)? JO dkk

(53)
|z|
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Figure 2: Density plot representing the stationary equal-time two-point correlation
function (54) normalized by the equilibrium condensate deformation gy in terms
of rescaled spatial separation z and the rescaled characteristic ramp-up time 7, both
in logarithmic scale. Equal-time two-point correlation (left panel) as a function
of 7 for three values 10z, = 2z; = 2,/2 = 1 and (top panel) as a function of
z for three values 103 Ty = T = 1073 7, = 1. The purple curve corresponds to

(Y(2)¢*(T = 0)). = qum-
Evaluation of the above integral yields

3 1—e V2 2272 V% 23 _wm
<¢(z)w*(T=o»c=qHM{5e V3 y ' S22 e

V2z z z (54)
X [ngnh(%) — 72 cosh(%)}} )

where we introduced the dimensionless spatial separation z = |z|/& rescaled by the healing
length & =h/4/2gnm.

First, we plot the equal-time two-point correlation function in the top panel of Fig. 2. We
observe that for a fixed ramp-up time 7 it decreases monotonically in space and interpolates
between the sudden quench and an adiabatic ramp-up of the disorder, respectively,

3 1—e V2%
lim (T = O = | S + ﬁ] (55)
lim (2" (T = 0))e = g™ (56)

We notice that in the former case the correlation asymptotically decays to zero algebraically as
o< 1/z, while in the latter case the decay is exponential. This shows that the quench produces
long-range spatial correlations, as opposed to rapidly decaying equilibrium correlations.
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Furthermore, the left panel of Fig. 2 reveals that for any fixed distance z the connected
correlation function decreases monotonically with the ramp-up time 7. On the one hand,
there is no off-diagonal long-range order

Zl_i)nolo(qp(z)l,b*(T =0)). =0, (57)

i.e., the long-range spatial stationary correlations of the disordered Bose gas vanish. On the
other hand, when the two points spatially coincide, we find

lim (y (20*(T = 0))e = .. (58)

In this way, we obtain a connection between the equal-time two-point correlation function and
the stationary condensate deformation (48) for any ramp-up time 7. This analysis is consistent
with the generic drop of (54) along the diagonal of the central panel of Fig. 2.

5.2 Equal-space connected correlation function

The k-integral in the equal-space connected correlation (52) can be solved analytically for
z = 0 using the method developed in Appendix A. The result reads

(2= 0 (D). _,, YT
dum v
R i S) N s

+
VeI i(Vri—1+1)? V-1

y (\/T(T—l)) JTell™ \/T(T+1))
erfc + _— ],
JT VT +1 JT

where erfc(x) = 1 —erf(x) is the complementary error function and similarly as in (35) the
rescaling of the time delay T — T /7y is being employed. The behavior of the equal-space
connected correlation (59) is presented in Fig. 3. In part (a) we plot its amplitude normalized
by the equilibrium condensate deformation gy, while in part (b) we display its phase. The
top panels of parts (a) and (b) reflect the fact that the amplitude decreases monotonically from
the equal-time value

(2T—1+4i)—[472+2T(T+2i)—%]erfc(ﬁ) (59)

[272—(1+20)T—1+i]

[27:2 +(1+2i)T—1+ i]erfc(

(1,[)(Z = 0)1P*(T = 0))c =dqz, (60)

which is precisely the stationary condensate deformation, towards the Huang-Meng equilib-
rium condensate deformation at long time delays

im (42 = 014 (T)). = Gy (61

At the same time, the phase becomes zero in the above two limits, i.e., the equal-space correla-
tion (59) becomes real-valued. At intermediate time delays the connected correlation function
is complex and its phase features a maximum.

On the other hand, the left panels of parts (a) and (b) display the amplitude and phase of
(59) as functions of ramp-up time for three time delays. The plots manifest the complex-valued
sudden quench limit

lim,_,o (3 (z = 0)y*(T))

dum

c ﬁ - ; / 3
= 1+T;(2T—1+41)—|:2T(T+21)—E]erfc(ﬁ), (62)

as well as the equilibrium Huang-Meng limit

tim (4 (z = 0)%™(T))c = qrm - (63)
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Figure 3: Density plot of the amplitude normalized by the equilibrium condensate
deformation gy (a) and phase (b) of the equal-space connected correlation (59) as
functions of rescaled time delay T and the rescaled ramp-up time 7, both in logarith-
mic scale. In the left panels we used 10T, = T; = T,/2 = 1, while in the top panels
we have 10°7, =1, =1,/3=1.

In particular, the equal-space equal-time sudden quench yields the maximal stationary con-
densate deformation

lim (12 = O *(T = 0))c = gy (69

Both the amplitude and phase feature a single maximum along any horizontal or vertical cross-
section, as exemplified in the central panels of the parts (a) and (b) in Fig. 3. For a sufficiently
large ramp-up time 7 and/or time delay T, the amplitude approaches the value gy, while
the phase vanishes. The former condition is directly related to the adiabaticity of the driving
protocol.

6 Summary and outline

In this paper, we continue the study of Ref. [ 13] on the out-of-equilibrium dynamical properties
of Bose-Einstein condensates in a ramped-up weak delta-correlated disorder. On the one hand,
we advanced our understanding of the effects of weak disorder by analyzing and discussing
more physical observables. On the other hand, we developed a new computational technique
to obtain the respective results analytically. In Ref. [13] we found that the emerging stationary
condensate deformation, after the onset of the disorder, turns out to be a sum of a reversible
equilibrium part, which actually corresponds to the adiabatic switch-on of the disorder, and an
irreversible dynamically induced part, which depends on the details of the switch-on protocol.
Here we show that a similar decomposition into a reversible and an irreversible contribution
occurs for both the correlation function and the superfluid deformation. In the limiting case
of equal time and space, the connected correlation functions turn out to coincide with the
stationary condensate deformation for any ramp-up time.

These results have direct implications for the scenario examined in Ref. [23], where the
disorder is first switched on and then off. The total stationary superfluid deformation én, ;. -,
depends on both the respective time scales 7, and 7,. If both processes occur adiabatically, the
final superfluid deformation 6n; o, oo vanishes. If one of the two processes is adiabatic and the
other is quenched, we get 61 oo = 015 00,0 = 49m/3. And finally, if both the switching on
and off of the disorder are implemented as sudden processes, the two irreversible contributions
add up so that the total superfluid deformation is 6n; o = 8qyy\/3. Similar conclusions can
be drawn for the considered connected correlation functions.
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As an outlook, we mention that our results suggest that the disorder ensemble averaged
correlation functions, which are now experimentally accessible by new quantum gas micro-
scope detection schemes [24-26], should be explored in more detail. These advances nourish
the prospect of also investigating the fluctuation-dissipation theorem for dirty bosons. In this
sense, Ref. [27] recently analyzed the Maxwell relation between entropy and atom-atom pair
correlation and it serves as a proof of principle demonstration for further experimental devel-
opments.
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A Contour integration method

Here we present the method of solving the k-integrals when the integrand involves the Bo-
goliubov dispersion €, in a more complicated way than the algebraic one, which could be
solved straightforwardly by the residue theorem. An example is when the integrand contains
a trigonometric function of €. We encountered such integrals in the time dependence of
all quantities of interest. We will present a pedagogical example that includes all the major
difficulties we faced in solving such k-integrals.

To illustrate our method, we choose Eq. (59) as a pedagogical example. The equal-space
connected correlation function is a good illustration with the minimum ingredients necessary
to demonstrate our method. In the long-time limit, the equal-space connected correlation
function has two terms. The first corresponds to the Huang-Meng contribution associated
with the adiabatic switch on of the disorder, while the second is dynamically induced with a
trigonometric function depending on €

. w2 —iTQk _Q 2+ iTQk +Q 2
R(k)[ ke (wr — )" + et (wp + Q) ]’

24 204 2
R ON 4r2Q} (v202 + 1)

d3k

ED=n) oy

(A1)

which can be cast into a dimensionless form using the replacements k — k/&, T — Th/gn,
and 7 — Th/gn, yielding

(A.2)

(1) _ +J°° dk4¢§ (k? +1) cos (Tkvk2 +2) + ikvk2 + 2 sin (Tkvk2 + 2)
0

Irm T (k2 +2)*[72k2(k2 +2) + 1]
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Figure 4: (a) Integration contour C in the complex z-plane for T > 1. (b) For
0 < 7 < 1 the pole y at 2 = i/ is shifted infinitesimally to the right by ¢ > 0 in
order to not lie on the branch cut.

To solve the above integral, we employ the transformation x = kv'k2 + 2 and get

I(T o0 VxZ+1+x)elT>
< )=1+f dx@ ( )3/2 , (A.3)
daMm oo T /xZH1(VxZ+1+1)77 (72x2+ 1)

where we used vVx2+1—1 = x2/ (\/x2 +1+ 1) and Euler’s formula. The lower limit of
integration has been extended to —o0, taking into account the parity of different parts of the
integrand.

To solve the integral in (A.3), we apply the Cauchy residue theorem

} h(z)dz = 2mi ZR_ES h(z), (A.4)
C P’ Z2=2

to the complex plane contour C shown in Fig. 4, where
hz) V2 (V22 +1+z)el”
Z2)=— .
n zZ+1(VZ2+1+1)3/2(T222+1)

We are faced with an algebraic branch cut [i, +i0c0) along the imaginary line due to the afore-
mentioned transformation, which also appears in other methods [28]. The integrand has a
simple pole y at z = i/7 and there are no poles within the contour C. For T > 1 the pole y is
outside the branch cut, while for 0 < 7 < 1 it lies on the cut. In the latter case, one should
shift the pole infinitesimally to the right by € > 0 and take the limit € — O in the final step of
the calculation.

Let us introduce the real interval I = (—R,R), so that

f h(z)dz + f h(z)dz + f
I Cr c

The integral along the two disconnected parts of the semicircle Cy of radius R tends to zero as
R — oo. The contribution along the circle c, of radius r around the terminus of the branch
cut at z = i vanishes for r — 0. The integral along the circle c, is the negative residue at
% = i/7. The remaining two integrals along I, and I'. take into account the contribution of
the algebraic branch cut. Thus, assuming R — oo, we arrive at

(A.5)

h(z)dz + f h(z)dz + f h(z)dz + f h(z)dz=0. (A.6)
c I T

r Y > <

f h(z)dz = 2mi Re/s h(z)— h(z)dz—f h(z)dz. (A.7)
Z=1/T F<

—00 I
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The residue contribution is

«/E(v T2—1+ i)e_T/T

2miRes h(z) = s (A.8)
z=i/v \/72—1(«/72—1+7)3/2
while the integration around the branch cut yields
1 e}
J h(z)dz + f h(z)dz = lim i[ J h(in +¢&)dn + J h(in— s)dn]
L. . e—0" oo 1
o N2 .
:J dn(2—21)n +(2+4l)n_4e—Tn
1 3y n—1(n?r2-1)
-T
— [4T2 +2T(T +2i)—%]erfc(ﬁ)— ‘/3; (2T — 1 + 4i)
Jre T . 5
+——|1—-i+(1+2i)t—27°|erfc|v/T/TvT—1
i 0 20 =27 e (T T)
+ Jre'lt [1 —i—(1+2i)7 —2’L'2:| erfc(\/ T/tvV1T+ 1). (A.9)
vT+1

Subtracting (A.9) from the residue (A.8) gives the analytical expression in (59).

Finally, we would like to stress that the position of the pole y directly affects the asymptotic
behavior of the final resulting function at large times T. The latter is determined by the smallest
magnitude of z encountered along c, and c,, i.e., by the larger of the two involved timescales:
the mean-field-related 1 or the switch-on-protocol-induced 7 (in units of Ty;).
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