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Abstract

The XXX spin-% Heisenberg chain with non-diagonal boundary fields represents a cor-
nerstone model in the study of integrable systems with open boundaries. Despite its
significance, solving this model exactly has remained a formidable challenge due to the
breaking of U(1) symmetry. Building on the off-diagonal Bethe Ansatz (ODBA), we de-

rive a set of nonlinear integral equations (NLIEs) that encapsulate the exact spectrum
of the model. For U(1) symmetric spin-l chains such NLIEs involve two functions a(x)

and a(x) coupled by an integration kel%nel with short-ranged elements. The solution
functions show characteristic features for arguments at some length scale which grows
logarithmically with system size N. In the case considered here the U(1) symmetry is bro-
ken by the non-diagonal boundary fields and the equations involve a novel third function
c(x), which captures the inhomogeneous contributions to the T-Q relation in the ODBA.
The kernel elements coupling this function to the standard ones are long-ranged and
lead for the ground-state to a winding phenomenon. In log(1 + a(x)) and log(1 + a(x))
we observe a steep change by 2ri at a characteristic scale x; of the argument. Other fea-
tures appear at a value x, which is of order log N. These two length scales, x; and x,, are
independent: their ratio x,/x, is large for small N and small for large N. Explicit solu-
tions to the NLIEs are obtained numerically for these limiting cases, though intermediate
cases (x;/xqo ~ 1) present computational challenges. This work lays the foundation for
studying finite-size corrections and conformal properties of other integrable spin chains
with non-diagonal boundaries, opening new avenues for exploring boundary effects in
quantum integrable systems.
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1 Introduction

The XXX spin-% chain with periodic boundary conditions is a seminal representative of quan-
tum integrable systems. A mathematically sufficient condition for integrability is the Yang-
Baxter equation [1], a fundamental tool that has shaped much of our modern understanding
and has led to the dicovery of many new integrable systems. While the XXX chain with pe-
riodic boundary conditions was solved by Bethe in the famous paper [2], integrability in the
presence of boundaries introduces rich and intricate challenges.

Non periodic boundary conditions significantly influence integrable systems, and their ex-
ploration has a long history. For instance, the single-component Bose gas with delta-function
interactions and open boundaries was solved in [3]. The XXX spin-% chain with parallel bound-
ary fields has been successfully solved using both coordinate and algebraic Bethe Ansatz meth-
ods [4,5], with finite-size corrections studied in [6].

Extending these goals to more general boundary conditions and models required new the-
oretical tools, such as Sklyanin’s reflection algebra [5, 7], which elegantly accounts for the
factorization of scattering processes at the chain ends. This framework is the basis of the
proof of integrability for the Heisenberg spin chain with general non-parallel boundary fields
in [8].

However, non-parallel boundary fields break the U(1) symmetry of the system, presenting
a formidable challenge to traditional Bethe Ansatz methods. To address this, several advanced
techniques have been developed. For example, T-Q relations have been applied to specific
cases of the partially anisotropic Heisenberg model, the XXZ chain, such as for root of unity
cases of the anisotropy [9] or for special choices of the boundary parameters [10,11]. Fusion
techniques have also provided insights through hierarchies of transfer matrices satisfying T-
and Y -systems [12]. More recently, the off-diagonal Bethe Ansatz (ODBA) [13,14] introduced
an elegant framework leveraging commuting transfer matrices and inhomogeneous T-Q rela-
tions. Two such formulations of the ODBA for the XXX spin-% chain have been developed [14],
and the completeness of one of these approaches [13] has been argued in [15].

Alternative methods have also emerged, including the modified algebraic Bethe Ansatz,
which incorporates chiral basis states into the algebraic Bethe Ansatz framework [16-20], the
chiral coordinate Bethe ansatz [21], and separation of variables techniques, which have been
applied to increasingly general boundary conditions from [22,23] to [24].

Recent studies have focused on deriving physical properties that are independent of the
boundary field angles, such as the ground-state energy, surface energy, and low-lying excita-
tions in the thermodynamic limit [25]. In this paper, we present a new analysis to the isotropic
Heisenberg chain with arbitrary boundary fields, explicitly retaining terms that depend on the
angle between the boundary fields. Starting from the inhomogeneous T-Q relation with two
Q-functions [13,14], we derive the ground-state energy, surface energy, and finite-size correc-
tions, offering a comprehensive perspective on these fundamental quantities.


https://scipost.org
https://scipost.org/SciPostPhys.20.1.012

e SciPost Phys. 20, 012 (2026)

The paper is organized as follows. In Section 2 we summarize the results of the ODBA
approach [13, 14] which we use as our starting point. In this paper we focus on the case
of negative p,q parameters (negative longitudinal components of the boundary fields) and
leave other combinations for a future publication. In Section 3 we identify useful auxiliary
functions that satisfy a set of functional equations. These equations are rewritten as linear
equations for the Fourier transforms of the auxiliary functions. By use of the analyticity of the
eigenvalue function these linear equations close. Section 4 presents the analytic results for the
bulk and surface energies and numerical results for the auxiliary functions. The paper closes
with conclusions in Section 6.

2 The inhomogeneous T-Q relation

For the spin-1/2 Heisenberg model with isotropic bulk interaction the Hamiltonian of the sys-
tem with arbitrary boundary fields can be brought to the form

i 1 1
H:Z(?j-8j+1+50§+a(af\,+§01’§),

Jj=1

where N is the number of sites, and p, q, and & are boundary parameters.
We start by using the inhomogeneous T-Q relation of [13, 14] with two Q-functions. We
introduce new combinations of the boundary parameters that are useful for our purposes

E=(1+EDY2, pri=—2p,  pyi=—2q/&;. M

We study the eigenvalue function for the associated transfer matrix for an even number of sites
N and rescale the function by dropping a constant factor (i/2)?N*2

A(x) = A1(x) + A5(x) + A3(x), (2)

where we also reparameterized the argument u = ix/2—1/2 used in [14] by the new variable
x. The summands in (2) are

M) i= g B2 ey
qa(x)

As(x) i= s () 2O =2 (5
q1(x)

$2(x)
q1(x)q2(x)’
where g;(x) and g,(x) are polynomials of degree N with q;(x) = g,(—x). The zeros of g,(x)

are called Bethe roots. See Fig.1a for the depiction of zeros of g,(x) for short system size.
The functions ¢;(x), ¢o(x), ¢p3(x) are explicitly given by

$r(x) =&, “Ofcx)(x — p(x) := (x +i+ip)(x +i+ipy),
Po(x) :=2(1— & )(x? + 1)1, (4)
ba(x) ==&, “”ff)(x +i)ANH B(x) = (x —i—ip;)(x —i—ipy).

In [14] the Bethe roots are calculated for relatively short chains by numerically solving for the
Bethe equations. These equations are derived from the condition that all potential poles in (2)
cancel resulting in an analytic function A(x). We do not write down these equations explicitly
as we do not use them.
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(a) The Bethe roots, i.e. the zeros of g,(x). (b) The zeros of A(x).

Figure 1: Depiction of Bethe roots and zeros of the eigenvalue function for the
ground-state and parameters {p,q, {} = {—0.6,—0.3,1.2}. This choice is representa-
tive of the situation in which both p and q are negative. Note the existence of two
extremal roots with large negative imaginary parts. All other roots lie very close to
the real axis.

3 Transformation of functional equations to integral equations

Here we adopt a different resp. opposite approach to deriving Bethe ansatz equations from
the analyticity of the eigenvalue function. We avoid the calculation of the Bethe roots and
use the analyticity of A(x) itself. The entire reasoning is based on identifying a set of suitable
analytic functions satisfying sufficiently many functional equations. These will be rewritten
by use of the Fourier transform into (non-linear) integral equations of convolution type. In
analogy to [26,27], we find that the following functions are useful

b(x) = W B(x) =1+ b(x) = i\((’;)) , )
1 1
b(x) := % B(x):=1+b(x)= i((’;)), (6)
 Aa(0)A(x) ._ A 00) + Ao (x) ][ Ag(x) + As(x)]
c(x):= —Al(x)lg(x) , Clx):=14+c(x)= 7er () () . 7

Note that b, b, ¢ are defined in terms of the (not explicitly known) functions appearing in (2).
These functions plus the constant 1 are called B, B, C and also factorize into the same factors
Aiy A+ Ay, Ay + A5 as well as A.

The asymptotic behaviour of the functions for large arguments is

A(X) ~ 2. x2N+2’

_ ) ®
b(co)=b(00)=2/&1—1,  c(00)=4(1/87—1/&1).

The function A(x) is analytic, even and possesses a number 2N + 2 of zeros.

Numerical calculations for the largest eigenvalue of the transfer matrix—corresponding to
the lowest eigenvalue of the Hamiltonian-show that N zeros of A(x) have imaginary parts
greater than +1 with most of them close to +2, the same number of zeros have imaginary
parts less than —1 and most of them close to —2, and two zeros X, lie on the real axis. See
Fig. 1b for the depiction of zeros of A(x) for short system size.

4
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By use of the above definitions and of the cancellation of poles in (2) resp. the Bethe ansatz
equations we conclude that

xqo(x)[Aa(x) + A3(x)] Dlx) = xq1 (3))[A1(x) + A5(x)]
(x +1)2N+1 ’ T (x —i)2N+1 ’
are polynomials of degree N + 2.

The rational functions b, E, ¢, B, B, C allow for the following factorizations in terms of
polynomials

D(x) :=

)

(x +i)2N+1 D(x)

b = st — DAV gy (x + 20)
_ (x =12+ D(x)
b(x) = CSt'G(x)(x TN gy (x — 20)°
c(x) = cst. xi A.(x) <
@(x)p(x) g1 (x + 2i)gx(x — 2i) (10)
_ X qa(x)
B(x) = cst. 20— DBV o (x + 20) A(x),
= . X q1(x)
B(x) = CSt'G(x)(x T gy 2i)A(x),
C(x)=cst D)D)

()P (x) g1 (x +2i)gp(x —2i)
where in principle we may identify the (non-zero) constants, but we will not need those.

We want to “solve” these functional equations of multiplicative type with constant shifts in
the arguments. The first step is the application of the logarithm, turning the product form into
additive form. In the second step we apply the Fourier transform which turns functions with
shifts in the arguments to transforms with simple factors leading eventually to a set of linear
equations. Care has to be taken that the Fourier transform exists and the region of convergence
of the inverse transform, the Fourier representation, is wide enough for our purposes. For
these reasons we deal with the logarithmic derivatives of the equations above upon which the
polynomial factors turn into Fourier transformable functions. At the end of these procedures,
the non-linear integral equations emerge. The strategies for solving these equations are largely
numerical and are described in Sect. 4.

In case of the largest eigenvalue, A(x) has two zeros in the strip |Im(x)| < 1+ € (where €
is small and positive) lying symmetrically at points x, on the real axis. The function c(x) has
four zeros on the real axis, namely x, and the zero at O of second order. Hence the logarithmic
derivatives of A(x) and c(x) do not have Fourier representations in the strip |Im(x)| < 1+ €.
We therefore introduce the analytic and non-zero functions A(x), (x) by

A(x) = A9(x)A(x), Ao(x) := (x —x0)(x + xo),

c(x) = x*Ao(x)e(x). (11)

The logarithmic derivatives of A(x) and ¢(x) have Fourier representations in suffiently wide
strips around the real axis.
We use the Fourier transform pair

Fio=1= f dxe ®f(x),  flx)= f dk e f (k), (12)

21 |_ o oo

with the alternative notation FT[f ] = fwhere the standard argument of FT[f ] is an implicit
k. Note that _ _
f(x) > f(k), implies f(x+ic) <> e kf(k). (13)
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We will often use the simple explicit Fourier transforms of (the logarithmic derivatives of)
linear factors

FT[ d | (x +i )] —ie™, k>0, (14)
— 108X 1C =
dx 8 Im(c)>0 0, k<0,

B 0, k>0,

TIm@<0 ] je—ck K <0. =

Next we introduce a shorthand for the Fourier transform of the logarithmic derivative of a
function f (x), which is very useful but potentially misleading

f :=FT[ilogf(x)], (16)
dx

i.e. the same symbol f without specifying the argument k shall mean a new function (in gen-
eral) different from f(x). At first sight this looks confusing if not non-sensic. However in
practical calculations, misunderstandings are almost excluded: the same symbols appearing
above in multiplicative relations now appearing in additive relations have a different mean-
ing. This notation keeps the symbols manageable as the use of several levels of tildes, bars or
indices is avoided.

From the above (14,15) we immediately calculate the transforms for the logarithmic
derivatives of ¢(x) resp. p(x) (noting that p,q < 0, i.e. p;,p, > 0) and by use of the no-
tation (16)

—i(e”(M+Pk 4 o=(4p2)ky - f > 0, _ o, k>0,

0, k<O, i(e(*+Pik 4 (+p2)ky -k <,

The functions q; (x) and g,(x) have zeros mostly close to the real axis; see, however, exceptions
in Fig. 1a. For the logarithmic derivatives of g, (x) resp. g,(x) we use Fourier representations
in the upper resp. lower half plane with vanishing Fourier components for k < 0 resp. k > 0.
For p;,p, > 0 and small system size the functions D(x) resp. D(x) have zeros in the upper
resp. the lower half-plane. This is also the case for all system sizes if p;,p, > 1 and certain
cases of p; > 1 > p, > 0 which is what we consider in this paper. In any case, for large system
size the bulk of the zeros of D(x) resp. D(x) is close to Im(x) = 42 resp. Im(x) = —2. For the
logarithmic derivatives of D(x) resp. D(x) we use Fourier representations in the semi-planes
Im(x) < +2 resp. Im(x) > —2 with vanishing Fourier components for k > 0 resp. k < 0.
Now we apply the described transform to (10) and obtain

fork>0: b=—(2N+1)ie_k—<p—e_2kq1,
b=(2N +1)ie ¥ +D,
c=—p—eq +A,
2k ~ (18)
B=—p—e ““q; +A,
B =—i+ (2N + 1)ie ™ —2icos(kxg) +q; + A,
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and
fork <0: b=—2N +1)ie*+D,
b= (2N +1)ie* — g —e%*q,,
Ez—@—equz +A,

~ (19)
B=i—(2N +1)iek + 2icos(kxy) +q,+ A,

§:—¢—62kq2+7\,
C=—-p+D—e*q,.

The last three equations of (18) can be solved for q;, D, A in terms of B, B, C and this inserted
into the first three equations gives

_ —i—(2N + 1)iek —e** ¢ —2icos(kx,) B—B

fork>0: b

1+e2k 1+e2k’
7 i+ (2N + 1)iek + e** + 2icos(kx,) B—B ‘C
B 1+e2k 1+e2k 7’ (20)
¢=B,
Ko —(2N + 1)i+iek + ek + 2ie* cos(kx,) e*B+B

ek(1 + e2k) 1+e2k -~
The last three equations of (19) can be solved for q,, D, A in terms of B, B, C and this inserted
into the first three equations gives

_ —ie?* — (2N + 1)ie* + ¢ — 2ie?* cos(kx,) o2k B—B

fork<O0: b= +C

1+ ek 14+e2k " 77
7 ie?k + (2N + 1)iek — ¢ + 2ie?* cos(kx,) _ % B —B
1+e2k 14e2k’ (21)
¢=B,
i (2N + 1)ie®* —ie?* + @ —2ie?  cos(kx,) e**B+B
(1+e2k) 1+e2k °

For many applications it is useful to consider these functions on shifted contours
a(x):=b(x—i), A():=B(x—i), a(x):=b(x+i), Alx):=B(x+i), (22)

because a(x) and a(x) have a high order zero at x = 0 rendering these functions (and later
logA(x) and logA(x)) very small on large parts of the real axis. It will appear that in some of
the formulas below, the shift x — x +i should be understood as a x — x £ (1 — ¢)i with small
positive €.

The Fourier transforms of a, A, @, A and b, B, B, B are related by factors etk
azekb, AzekB, a:e—kE, A=¢eB. (23)
For these function we obtain the equations
fork>0:
—i— (2N + 1)iek — e?* ¢ — 2i cos(kx ek —
ek +ek ek +ek

. —2k . —k . —2k —k
_ ie7* 4+ (2N + 1)ie “ + ¢ + 2ie”*“ cos(kx e —
a= ( ) 4 (kxo) _ (e *A—A)+e*C, (24

ek +ek ek + ek
T=e*A,
~  —(2N +1ie 2k +ie ™ + ek + 2ie7* cos(kx,) A+A
A= + ,
ek +ek ek +ek
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and

—ie?k — (2N + 1)ie* + @ — 2ie?* cos(kx,) N ek

fork<0: a (A—e?A) + ek c,

ek + ek ek 4 ek
_ i+(2N + 1ie* —e %G + 2icos(kxg) ek (e 2kA—7)
a= - € - )

ek + e~k ek + e~k (25)
~ kA
c=¢e"A,
i (2N + 1)ie? —ie* + e*p — 2iek cos(kx,) N A+A
B ek + ek ek + ek’

Finally we have to carry out the inverse Fourier transform which yields us expressions for the
derivatives of the functions loga(x), loga(x), logc(x) as sums of explicit functions and con-
volution integrals of explicit functions with the derivatives of the functions logA(x), logA(x),
log C(x). After deriving these equations we take the integral and determine the constants of
integration.

As a first step we carry out the inverse Fourier transforms of the explicit functions. These
functions are related to the digamma function 1. By use of the integral formula

o
1 dt
¥(z) = f - T (26)
0 (Q+e)ylt
and the substitution 1 + t = e¢* we find
&0 —(4z—1)k
0 ek+e
This yields for a typical combination of terms appearing in the equation for log A(x)
0 - rk ) e stk
()= | dkem—e® | dk e (28)
oo € teT 0 ek +e-

i . . . .
=7 [¢(%(r+3+1x)) + (%(r + 1—1x))—1p(%(r+ 1+ix))— (%(r +3—ix))].
Integrating this with respect to x and suitably fixing the integration constant yields

F(%(r +3+ ix))l"(%(r +3 —ix))
T(z(r+1+ix))T(z3(r +1—ix))

L(x,r):=log +1log(4) =log(x)+ O (%) s (29)

where the asymptotics is given for large arguments.
The next combination appears in the expressions for loga(x) and loga(x)

0 ek ] R e Tk
k(x,r):= J dk————e*x +J dk—————elkx (30)
0

k 4 a—k k 4 o=k
oo €Efte ek+e

1 . . . .
= Z[w(%(r+3+1x))+1/)(%(r+3—1x))—1/)(%(r+1 +1x))—1/)(%(r+ 1—1x))] .
The integral of this function with respect to x is called a(x,r)

F(%(r +3 —ix)) F(%(r +1+ ix))
F(%(r +3+ ix)) F(%(r +1 —ix))

a(x,r):=ilog

(—> iz + O(l)for x — ioo) . (3D
2 X

Note that the introduced functions £(x,r), L(x,r), x(x,r), a(x,r) are real valued for real
arguments x, r.
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By use of these explicit functions we find for the eigenvalue function A(x)

log A(x) = log A(x) +log Ao(x)
= (2N + 1)L(x,2)—L(x,1)+ L(x,p1) + L(x,ps)

32
+log(x2—x(2))—L(x—xo,1)—L(x+x0,1) (32)
+ e (logA+logA),
where the convolution * of two functions f, g is defined by
1
fxg(x)= Efdyf(x—y)g(y), (33)
and the function e(x) is given by the Fourier integral with explicit result
S plkx s
e(x) :=J dk — = 2 . (34)
oo €F+e*  coshgx
The integral expressions for the functions loga(x), loga(x), logc(x) are
T . ) .
loga(x) = (2N + 1)logtanh (ZX) + 51 +logag, —ia(x—i,1)
+ia(x —i,p;) +ia(x —i,py) —ia(x —xo—i,1) —ia(x + xg—1i,1)
+Ky1 %108(A/Aoo) + K13 %108(A/Aso) + K3 %10g(C/Cos) » (35)

loga(x) = (2N + 1)logtanh (%x) — gi +loga, +ia(x +1i,1)

—ia(x +1i,pp) —ia(x +1i,py) +ia(x —xg+1i,1) +ialx + xy +1i,1)
+ Ky #108(A/Aco) + Kog #108(A/Avo ) + Ky3 % 10g(C/Coo) , (36)
logc(x) =log [coo - x? (x2 — xg)] + K37 x10g(A/Aso) + K3 * log(A/Aso) —4logR,  (37)

where the asymptotic values Aoy = 1+doo, Aoy = 1+00o and Coo = 144, are easily obtaineg
from (8) and do, = b, := b(0o0) etc. The convolutions in (37) are done with logA and logA

evaluated on symmetric intervals [—R, +R] with R — oco. The kernel matrix is

k(x,1) —k(x—(2—¢e),1) —i/(x—1)
K(x)=|—-xk(x+(2—¢€),1) k(x,1) i/(x+1) | (e small and positive). (38)
i/(x +1i) —i/(x —1) 0

Note that the careful prescription for the convolution integrals is necessary because of the
slow asymptotics of K3; and K, and the curious property that the functions logA and logA
show non-trivial windings at some argument x;, see Fig. 2 for a system with size N = 103,
still to be considered small on grounds that become clearer shortly. The equations (35), (36),
(37) are non-linear integral equations (NLIEs) for the functions a, a, ¢, because A =1+a,
A=1+a, C = 1+c. Numerical solutions are obtained by iterative treatments and evaluations
of the convolution integrals by the Fast Fourier Transform. The kernel elements involving the
e-regularization parameter have, in their Fourier representation, a product structure consisting
of two factors: one that decays exponentially as argument k — +00 (resp. k — —o00) and
approaches a finite limit as k — —oo (resp. k — +00), and another factor of the form
exp(ek) (resp. exp(—ek)). These kernel elements are multiplied by Fourier transforms of
functions that themselves decay exponentially as k — £00. Consequently, it is justified to set
€ = 0 in this context. In parallel, the zero x, of A(x) is found from solving a(xy+1i) = —1 by
evaluating the right hand side of (35) off the real axis. Another problem which is more serious

9
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Re log A
ImlogA —

_8 | | | | |
-20 -10 0 10 20

Figure 2: Graphs of the functions logA and logC for the ground-state eigenvalue
of the spin-1/2 XXX chain with boundary parameters p = —0.6, ¢ = —0.3, £ = 0.2
and system size N = 10%. The function logA (not shown) is the complex conjugate
of logA. The function logC is real and even. The real (imaginary) part of logA
is even (odd). There are two important length “scales” in the system. First of all,
there are the positions +x of the zeros of the function log C (remember C = 1+¢
and c(£xy) = 0). Here x, = 5.167.. ~ %logN. In the plot, the zeros can not be
read off, because the function log C looks flat in [—x, +x] where it actually takes
small positive values and noticeably negative values outside this interval. In the
same interval [—x, +x, ] the real and imaginary parts of log A take vanishingly small
values, outside they approach non-zero asymptotics. The behaviour of the imaginary
part of logA is most interesting. After developing into some shoulder for x > xg it
takes a steady increase for arguments x in the vicinity of some value x; ~ 10.9 (> x;)
and approaches +2n for x — +00. Note that in the vicinity of the same +x; the
function log C shows minima.

is the treatment of the convolutions of the =+i/(x % 1) kernels with the logA/A., and logA/A
functions. This results in a function with —4log|x| asymptotics, clearly not to be done by
numerical calculations. In the next section we show how to introduce counter-terms that can
be treated analytically with a remaining convolution integral that can be done numerically.

4 Bulk and surface energies, first numerical results

There is a different and numerically better posed method to formulate the NLIEs than done
above. We introduce simple subtraction terms in the convolution part such that the involved
functions show vanishing asymptotics. And for the compensation we use counter terms in
the driving (source) terms of the NLIEs. The proof of this form of NLIEs uses as intermedi-
ate step the differentiated form of the NLIEs where no issues of convergence arise. There the
subtractions and compensation terms are introduced. They can be chosen to be simply of ra-
tional function type, i.e. the kernel K convolved with suitable rational functions yields rational
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functions. After formulating the NLIEs for the derivatives (loga(x))’, ..., (logA(x)), ...the
NLIEs are integrated with respect to the argument x and the integration constants are fixed
by considering the limit x — oo. The result is

_ X—Xpp X~ X4
loga log(A/Aso) log(x )

— X, X—X_
logc X=X,y X—Xpy
log(C/Cso).

The parameters x,, and x,_ are complex numbers with positive real part and positive
resp. negative imaginary parts, x;, and x;_ are defined similarly with negative real parts.
The introduced functions subtract the winding behaviour observed in the functions logA and
logA. Now the inhomogeneity d is a tuple of three functions containing the counter terms

d;(x)=(2N + 1)logtanh(gx) + gi—ia(x —1i,1)

+ia(x —i,p;) +ia(x —i,py) —ia(x —xo—i,1) —ia(x + xq—1i,1)

o —2i x—x. —9i
+log(aoox Xy =20 X —Xp 1)’ 40)
X=X, X —Xx_
T T, . .
dy(x) = (2N + l)logtanh(zx) - 51 +ia(x+1i,1)
—ia(x +1,p;) —ialx +1,py) +ia(x —xg+1,1) +ia(x + xy +1,1)
— X, 421 x—x_+2i
+log(aoox X, i x—x 1) 1)
X = Xt X = X4
ds(x) =1 G (42)
BT e e D — g — D —x A D —xp 1) )

The concrete values of x,, and x;. drop out of the calculations. This is most transparently
understood in the differentiated form of the expressions. The kernel elements x act in the
combination of x(x,1) + xk(x F(2—€)i,1) = £[i/(x £ie) —i/(x F 2i)] on a rational func-
tion, appearing from the derivatives of the introduced terms on the right hand side of (39),
which gives a similar rational function with shifted zeros and poles. Likewise the action of
the +i/(x £ 1) kernel elements yield related rational functions. These are the expressions that
appear in (40)-(42). The chosen values of x,, and x;. affect at most the accuracy of the
calculations. For practical purposes we choose for these numbers

Xri:)z’l:l:ig, xli:_)’zliig, (43)

with some & > 0 and %, is an estimate of the location of the transition of the imaginary part
of log A from small resp. practically zero values to +27 as explained in Fig. 2.

A natural approach to the numerical iteration of the NLIEs is to choose initial data for
logA, logA, and logC in the form of functions whose qualitative behaviour resembles that
of solutions obtained directly from the Bethe ansatz equations. Such calculations of course
are possible only for small system sizes (N ~ 10). For such systems the function a(x) takes
vanishingly small values for arguments x close to 0. Increasing x beyond values of about
%logN leads to a noticeable increase of the absolute value of a(x) with some small positive
angle with respect to the real axis. Then for larger values of the argument, at some x;, the
values of a(x) move sharply into the complex plane around the point —1 which is encircled
exactly once in counter-clockwise manner. This is the reason for the sharp increase of Im(logA)
in Fig. 2.
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By use of qualitatively similar initial data for the iterative treatment of the NLIEs we found
convergence for much larger system sizes like that shown in Fig. 2 for N = 103. This is achieved
by working with for instance 2log[tanh(x — x; —im/4) tanh(x + x; —in/4)] functions for the
imaginary part of logA and estimates for x;. The iterated application of the NLIEs on such ini-
tial data with a “good choice of the value” for x; leads to convergence: for values of x; chosen
too large (small) the transition point of the resulting function moves to larger (smaller) values
clearly marking an instability. However, increasing the system size further will ultimately and
independently of the chosen boundary parameters lead to the loss of convergence.

Independent of the system size we found that the zero x, of the function c(x) scales like
% log N. The point x, also separates ranges of the argument x for which a(x) takes vanishingly
small values, due to the leading tanh?V H(%x) factor resulting from the NLIEs, and larger
values of x with a(x) being of order 1. From the NLIEs it is also obvious and actually necessary
that a(x) describes the encircling of —1 and hence logA shows two times an increase of the
imaginary part by 2mi. Then the function logc(x) has an asymptotic behaviour that is no
longer of order log x*, but instead it is now the logarithm of a rational function with order 4
polynomials in the numerator and in the denominator. It is or seems absolutely natural that
the encircling of —1 by a(x) happens at arguments close to a value x; which is larger than x:
only for x > x, the values a(x) move away from 0.

For large system sizes we simply did not find any suitable initial data set with the wind-
ing occurring at some x; > x, whether we chose x; much larger than x, or of similar size.
For a failure of convergence many scenarios are conceivable, but the resolution of the prob-
lem appeared in the least expected manner. The winding happens in the “forbidden region”
[—xp, +Xo] where the values of the function a(x) seem to be tied to O.

For sufficiently small system sizes we see that the zeros of g;(x) and g,(x) with largest
positive (negative) real parts form complex conjugate pairs of a pole and a zero of the function
A(x). Following the function A(x) for real values of x straight through the complex conjugate
pole/zero pair results into A(x) performing a loop around 0. The scaling of this extremal
pole/zero pair with increasing size N is difficult to follow. Increasing N from very small values
shows a motion of the pairs away from the origin.

We postulate that for some system size this trend reverses and the extremal pairs move
back to the origin from which they keep a finite distance in the limit N — oo. The condition
for this to happen is that the separation of the zero and pole in the pair is approaching 0
exponentially fast. Under this condition, the above decribed winding happens so fast that the
convolution integrals produce contributions that cancel the leading (2N + 1)logtanh %x. On
the basis of this reasoning we found solutions of the NLIEs with much larger system sizes like
those illustrated in Fig. 3.

Next we turn to the calculation of finite size-corrections. From the eigenvalue expression
(32) the energy is obtained by

E=— Zii logA(x)] —N
dx

—i

=—(2N +1)2i€(—i,2) =N + 2i[£(—i,1) — £(—i, p;) — £(—i, p5)]

1 (44)
+21[, + - +€(—i—x0,1)+€(—i+x0,1)}
1+X0 1— X
—2i[e (10gA+logZ)~_i:| .
By use of (28) we obtain
. . . r+2 _ r _%
2 0(—i, r) _¢( y ) ¢(4) . (45)
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Figure 3: Plot of the functions logA and logC for the ground-state eigenvalue of
the spin-1/2 XXX chain with parameters and colour coding as in Fig. 2 for larger
system sizes N = 10° (dashed lines) N = 10° (solid lines). The function logC is
zero at +x, with value xy = 9.24...(13.68...) ~ %logN for N = 10° (10%). We
note the qualitative differences to Fig. 2. Here, the point x;, at which the imaginary
part of logA increases sharply (!) from O to +2m, has a value less (!) than xg.
Within the resolution of the figure this is a step function. The point x; is rather
well defined with value x; = 0.83...(0.64...) for N = 10° (10°). Note that x,
increases and x; decreases with N. The function log C takes positive and noticeably
large values within the interval [—x,, +x,] and rather flat negative values outside.
In the neighbourhood of +x; of the sharp transitions of the imaginary part of logA
the function log C shows maxima.

Here and in the following calculations we make use of the functional equations and special
argument identities

w(x+1)=¢(x)+§,

Y1 —x)—p(x)=rmcot(nx), PEB)—yp()=m,
(1) —1p(3) = 2log2.
With these identities the first line of (44) gives the known bulk and boundary contributions

to the ground state energy of the antiferromagnetic XXX spin-1/2 chain with boundary fields
in the thermodynamic limit [28-30]:

2 2 1
Eg=N—14+—+4+—+Neéw+feu +O| = |,
P1 D2 N

€00 =—4log2, foo =m—2log2+ Z (zp(%)—@b(

k=1,2

P t2 (46)
4 )) '

The surface energy also agrees with the XXX limits of the results in [31] and [32] (including
T — 0).
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Similarly, one finds

1 1
21[-4_ + - +£(—i—x0,1)+€(—i+x0,1)]=ncot%(l+ix0)+ncot%(1—ixo)
i+x, i—x
0 0 ) 47)
=—<T = 4e(xq)
cosh Zx 07

In summary the ground state energy of the spin chain with non-diagonal boundary fields is
E = Eg +4e(xo) +2i [ * logA|i —e’x log;\\_i] . (48)

Note that E — E, = O(1/N), because e(x,) ~ 1 and the function logA(x) + logA(x) takes
non-negligeable values only for arguments |x| > x,. The calculation of the 1/N corrections
involves the dilog-trick and quantitative calculations for the functions A, A, C in the scaling
limit N — o0o. These results will be communicated in separate publications.

5 Alternative contours

The main application of NLIEs is the study of finite size corrections for large system sizes.
To this end, the above introduced functions A, A, C on the chosen contours are the means
of choice. For finite system size the iterative numerical solution scheme suffers from certain
instabilities as described in Sect. 4. We found - literally — ways to improve the stability of the
iterative procedure: we consider the introduced functions on different integration contours.
Instead of specializing the meromorphic function B(z) on the contour R —i we specialize it on
a contour R — 6i lying above the two extremal roots x,;, cf. Fig. 1a, and below the other
roots that are close to the real axis. The functions A(x) = B(x—i) and A®)(x) = B(x—&i) thus
defined can be analytically continued into each other, but have rather different properties:
A®)(x) does not show any winding, both asymptotics of Im logA(®)(x) are zero, see Fig. 4.
This is because q5(x5 /) = B(x3,,;) = 0. Similarly, the zeroes of q;(z) = q5(—2) and B(2)
are xy /] = x;r e This leads further to the following relations of convolution integrals of a
function k(x) with logA and A®)

(k xlogA)(x) = (k * logA(‘S)) (x —i+6i) +iK(x — x9; —1) +iK(x — x5, —1), (49)
(k xlogA)(x) = (k * log;\m) (x +i—01) —iK(x —xq; +1) —iK(x — X1, +1), (50)
where K(x) is the integral of k(x), i.e. K’ = k, and the additional terms result from residue

contributions. The above relations are most tranparently checked in their differentiated form.
The integral equations for the functions log a®(x), loga(é)(x), logc(x) are

loga(‘s)(x) = (2N + 1)logtanh (%(x +(1— 6)1)) + gi +logas, —ia(x—i,1)

+ia(x —61,p;) +ia(x — 61, py) —ia(x — xy— 6i,1) —ia(x + xy — i, 1)
+ia(x —xy;—0i,1) +ia(x —x; , —6i,1)
+ia(x —xy; —0i,1) +ia(x —xy , — 6i,1)

—(5) —
+ KS) * log(A(‘S)/Aoo) + Kg) * log(A( )/Aoo) + Kg) x10g(C/Coso), (51)
loga(5)(x) = (2N + 1)logtanh (g(x —(1- 5)1)) - gi +logd o, +ialx + 6i,1)
—ia(x + 6i,p;) —ia(x + 6i,py) +ia(x — xg + 6i,1) +ia(x + xo + 6i,1)

—ia(x —xy; +06i,1) —ia(x —x; , +6i,1)

14


https://scipost.org
https://scipost.org/SciPostPhys.20.1.012

e SciPost Phys. 20, 012 (2026)

—ia(x —xg; +6i,1) —ia(x — x5, + 6i,1)

+K§?) *log(A(5)/Aoo) +K§g) x1og(A" " /Aso) +K§g) x10g(C/Coo), (52)
x? (x2 — xg)

(x— Xl,l)(x - xl,r)(x - Xz,l)(x - Xz,r)

logc(x) =log |:coo

+ K 10g(A® A o) + KD 5 10g(A” [Ass) .- (53)

Here the kernel matrix is

k(x,1) —Kk(x—261,1) —i/(x— 6i)
K@) =| —x(x+26i,1) x(x,1) i/(x+6i) |. (54)
i/(x + 61) —i/(x — 6i) 0

Note that in this case, because of the absence of the winding phenomenon, no counter terms
are necessary. Instead, we have explicit contributions to the source terms from functions de-
pending on the locations of the extremal roots x; ,;; and x, ,;; (which are complex conjugate
to each other). These roots are to be found from solving a(‘s)(xz’r + 6i) = —1 by evaluating
the right hand side of (51) below the real axis.

Note that the functions a and A may be denoted a'® and AV, but they do not satisfy the
above NLIEs. For this it would be necessary that the imaginary part of x, ,,; be smaller than
—1.

The energy formula (48) together with (50) takes the form

E = Ey+4e(xo) —2e(xy ) —2e(xy,1) — 2e(xy ) — 2e(xq 1)

_ (55)
+2i [e’ * logA(5)|5i —e % logA(5)|_5i] .

Evaluated for systems with boundary parameters p = —0.6, ¢ = —0.3, £ = 0.5 and system
sizes N = 12 and N = 24, this yields energy values —23.7997... and —45.2062... which
lie close to the results of Lanczos calculations —23.8004... and —45.2068... The deviations
are of order O(10~*) where the Lanczos data come with 14 digits accuracy. We are rather
satisfied with these results in view of the convergence issues discussed above. In addition,
the long-range nature of the Cauchy kernel requires careful treatment if truely high accuracies
are intended. As pointed out at the beginning of this section, our main goal is the analytic
treatment of finite size corrections in the thermodynamic/scaling limit.

6 Conclusion

The XXX spin chain with non-diagonal boundary fields stands as a prominent yet challenging
example of quantum integrable systems with non-trivial boundaries [8-10,12-15,17-20, 22~
25]. Despite its relevance for the theory of integrable systems the exact solution has remained
a longstanding problem. A great part of a satisfactory solution is realized by the derivation
of inhomogeneous T-Q relations and the corresponding Bethe equations, discovered by the
off-diagonal Bethe Ansatz (ODBA) [13, 14] and further understood and extended in other
work [15,17-20,22-24]. The analytic treatment of these equations has so far been limited to
the thermodynamic limit [ 30], without retaining terms that characterize finite-size corrections.
While bulk and surface energies, as well as certain excitations, were analyzed in [25, 30],
finite-size effects remained elusive. In this work, we successfully construct nonlinear integral
equations (NLIEs) to tackle this challenge.
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Figure 4: (a) Plots of the functions logA and logC for the system with boundary
parameters p = —0.6, ¢ = —0.3, £ = 0.5 and system size N = 12. The arrows in-
dicate the characteristic points x, (the zero of logC) and x; (where the imaginary
part of logA strongly increases from small values to 27). (b) Plots of the functions
logA® and log C (same data as in (a)) for the same parameters and § = 0.25. In this
case no winding occurs: the imaginary part of log A®) tends to zero as the argument
approaches £00. However, both the real and the imaginary parts of this function ex-
hibit oscillations. The arrows mark the same locations as in panel (a). It now becomes
clear that these points are associated with the real parts of two zeros of the function
A the real part of its logarithm assumes large negative values. For the chosen
boundary parameters we have x, = 2.4868... and x, ,; = +4.7322...—i-0.3365...
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A key advancement in our work is the introduction of the function c(x), which accounts
for the inhomogeneous term in the T-Q relation. This complements the classical functions
a(x) and a(x) and allows for the complete description of the system. When the boundary
fields are taken parallel the NLIEs simplify significantly, reducing to two coupled equations
without long-range kernel terms. These simplified equations are computationally efficient to
solve. However, for non-parallel boundary fields, i.e. non-zero values of the parameter & the
situation is different. First of all, we observe the winding phenomenon, the functions logA(x)
and logA(x) show sudden changes by 27i at some characteristic scale x; of the argument. At
a rather different value x, the function log C(x) turns zero. Second, we realized that the two
scales x; and x; are independent. We succeeded in obtaining explicit numerical results for
large and small values of the ratio x; /x, which are taken for small and large system size N.

This study represents the first step in our broader project to explore the conformal prop-
erties of the Heisenberg spin chain through the lens of NLIEs. The large N results allow for
future analytical study of the finite size properties of the system with non-parallel boundary
fields. The next step will be the derivation of a suitable scaling limit of the NLIEs. Prelimi-
nary studies have yielded a simplified kernel matrix still with the same long-range terms, but
all regular terms being simplified to delta-functions. The full understanding of this and the
combined analytical-numerical investigations require additional work that will be published
elsewhere.

By starting with the isotropic XXX model, we have developed a framework that paves
the way for generalizations to the XXZ spin chain with arbitrary open boundary conditions.
Our approach is designed to address the challenges posed by the loss of U(1) symmetry in
these systems and to provide a robust method for analyzing finite-size corrections and related
properties.

Ultimately, we aim to contribute not only to the theoretical understanding of integrable
models but also to their application in broader contexts, such as statistical mechanics and
condensed matter physics, where boundary effects play a critical role.
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