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Abstract

We study the symplectic structure and dynamics of Yang-Mills theory in the presence of
a boundary. We introduce a decomposition of the fields on a Cauchy slice such that the
symplectic form splits cleanly into independent bulk and edge parts. However, we find
that the dynamics inherently couples these two symplectic sectors, a feature arising from
the non-abelian nature of the gauge group. This is shown by extending to Yang-Mills
theory the dynamical edge mode boundary condition recently introduced in Maxwell
theory. We finish with analyses of the weak-field expansion and the horizon limit, finding
in the latter case that the dynamical interplay between bulk and edge degrees of freedom
persists.
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1 Introduction

As intuition suggests, the properties of a physical system on a constant-time slice can be an-
alyzed by partitioning the slice into smaller regions and studying how the regions interact at
their boundaries through cutting and gluing procedures. In gauge theories, the inherently non-
local nature of the gauge constraints requires a careful examination of the dynamical fields at
the boundaries to ensure gauge covariance. These boundary fields, often referred to as edge
modes, have garnered increasing attention within the scientific community. Notably, edge
modes have been identified as essential in gauge theories for correctly accounting for entan-
glement entropy across boundaries. This has been appreciated in abelian gauge theory [1–9],
in lattice gauge theory [10–12], and to a lesser extent in non-abelian gauge theory [13–22].

Edge modes have proved instrumental in understanding the gravitational degrees of free-
dom as well. Gravitational edge modes have been studied in [15,23–35]. In the framework of
the corner proposal in [15,36–40] (see also the reviews [41–43] and references therein), edge
modes are fundamental data sourcing the Noether charges at corners.1 Therefore edge modes
are naturally related to (quantum) reference frames [44–46]. Furthermore, similar to gauge
theories, having localized degrees of freedom at the edge is necessary to address the problem
of bulk factorization [47–51]. The importance of edge modes has also been discussed both in
AdS and in flat holography [52–57].

The common thread among these diverse applications of edge modes is the necessity of
incorporating localized fields at the boundary when analyzing local subsystems in gauge the-
ories and gravity. These boundary fields are indispensable for restoring gauge covariance,
ensuring the correct description of the subregion’s Hilbert space, and accurately accounting
for entanglement entropy. Given their importance, the corner proposal postulates that they
are fundamental ingredients of any gravity-quantization scheme. In [7], the authors initiated
a far-reaching analysis of suitable boundary conditions and decomposition of fields in the pres-
ence of edges. They successfully applied a boundary condition, called the dynamical edge mode
(DEM) boundary condition, to Maxwell theory [7] and to p-form gauge theories [8]. The final
aim of these works has been to carefully separate the bulk physics from the edge physics, both
at the symplectic and dynamical levels.

In this work, we upgrade the analysis proposed in [7] to non-abelian gauge theories. We
find a suitable field decomposition leading to a bulk-edge split of data,2 and compute the Pois-
son brackets among all elementary fields. In spite of this split, we observe that the dynamics
mixes bulk and edge physics, due to the non-abelianity of the gauge group. Our results pro-
vide important clues as to whether and how a similar split plays out in full non-perturbative
gravity, which is the ultimate goal of this line of research. Yang-Mills and gravity both have
non-abelian symmetry groups, so the successful split of phase space herein makes us opti-
mistic for gravity. Furthermore, despite the failure of the Yang-Mills Hamiltonian to split, the
gravitational Hamiltonian is famously a pure boundary term, so its split seems automatic.

The paper is organized as follows. We start in section 2 reviewing the basic ingredients
of Yang-Mills theory and the conventions employed. We then propose in section 3 the field
decomposition leading to the symplectic bulk-edge split, and compute the Poisson brackets. We
study the dynamics for a timelike boundary in section 4, showing how it inevitably mixes the
bulk and edge data. Selected topics are then presented in section 5: the fate of the dynamical
mixing in the weak field expansion, and the horizon limit, in which we still find a non-trivial
dynamical mixing. We relegate to appendix A some calculations relevant for this last point.
We eventually gather concluding remarks in section 6.

1In this framework edges are typically referred to as corners.
2Here by “bulk” we mean the interior of the Cauchy surface.
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2 Review of Yang-Mills

We work with classical Yang-Mills theory on a D-dimensional Lorentzian manifold M . We ini-
tially take M to be a causal diamond, i.e. the causal domain D(Σ) of some spatial hypersurface
Σ, although later in section 4.1 we will study the case when M ’s boundary is timelike. Our
gauge group is G, and we write g for the corresponding Lie algebra. The gauge field Aµ is
a g-valued connection. It defines the gauge-covariant derivative D, which acts on g-valued
objects as

Dµ(·) =∇µ(·) + [Aµ, · ] . (1)

The corresponding field strength is

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] . (2)

Note this is not quite the gauge-covariant exterior derivative of the gauge field. Under a finite
gauge transformation parametrized by G-valued Λ we have

Aµ→ Λ−1(Aµ +∇µ)Λ , Fµν→ Λ−1FµνΛ . (3)

Likewise, under an infinitesimal gauge transformation parametrized by g-valued λ we have

δAµ = Dµλ , δFµν = [Fµν,λ] . (4)

The action is

S =

∫

M
L =
−1

4g2
YM

∫

M
Tr
�

FµνFµν
�

, (5)

where we have suppressed the integration measure dD x
p
−g. The coupling gYM plays no role

in most of our discussion, so for convenience we set it to unity. The Lagrangian variation can
then be written as

δL = Tr
�

δAνDµFµν
�

−∇µ Tr[FµνδAν] . (6)

The first term gives the equation of motion,

DµFµν = 0 . (7)

From the total derivative term we read off the (pre-)symplectic potential density

θν ≡ −Tr
�

δAµFµν
�

. (8)

Viewing δ as the exterior derivative on (pre-)phase space and writing∧∧∧ for the wedge product
on phase space, we define the (pre-)symplectic density as

ων ≡ δθν = Tr
�

δAµ∧∧∧δFµν
�

. (9)

It is a one-form on spacetime and a two-form on phase space. We obtain the (pre-)symplectic
form by integrating ω’s flux through a Cauchy slice,

Ω≡
∫

Σ

∗ω . (10)

Since d ∗ω= 0 on shell, this is independent of the choice of Σ as long as ∂Σ is fixed.3 We will
work on shell from now on.

3Recall we are currently working on a causal diamond.
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Splitting the coordinates as xµ = (t, x i), with coordinates x i on Σ and gt i|Σ = 0, we define
the “electric” field on Σ as

Ei ≡ Fiµ tµ , (11)

where tµ is the future-directed unit normal vector to Σ. The equation of motion implies the
Gauss constraint

Di E
i = 0 . (12)

In terms of Ei we have

Ω=

∫

Σ

Tr
�

δAi ∧∧∧δEi

�

. (13)

Phase space is defined as the quotient of solution space by the degenerate directions of Ω,4

all of which will arise from gauge transformations. First note that any gauge parameter λ
restricting to zero on Σ will constitute a degeneracy of Ω. We can use these to set At = 0
everywhere on M . Once this is done, solutions are uniquely specified by data Ai , Ei on Σ.

There are still time-independent residual gauge transformations, parametrized by the
gauge parameter’s value on Σ. Consider plugging one of these into Ω. We write Iλ̂ for the
phase space interior product with the infinitesimal gauge transformation parametrized by λ,
so for example Iλ̂δAi = Diλ and Iλ̂δEi = [Ei ,λ]. One finds after some algebra that

Iλ̂Ω=

∫

∂Σ

Tr
�

λδEin
i
�

, (14)

where ni is the outward unit normal to ∂Σ in Σ. We see that any λ without support on ∂Σ
gives zero and therefore constitutes a degenerate direction of Ω, which must be quotiented
out. We call such gauge transformations “small”. In contrast, when λ is supported on ∂Σ it
is symplectically nontrivial and we call it “large”. In general the Noether (surface) charge of
a (gauge) symmetry is extracted as Iλ̂Ω = δQ[λ]. The charge associated with a large gauge
transformation is then

Q[λ]≡
∫

∂Σ

Tr
�

λEin
i
�

. (15)

To recapitulate, phase space is obtained by taking the space of Ai , Ei on Σ with Di E
i = 0

and quotienting by small gauge transformations. This leaves an infinite set of physical large
gauge symmetries and corresponding charges. Our primary goal in this paper is to understand
to what extent the associated degrees of freedom, i.e. the edge modes, can be isolated and
separated from the remaining bulk degrees of freedom.

3 Bulk-edge split

In this section we separate the degrees of freedom of Yang-Mills theory on a causal diamond
M = D(Σ) into bulk and edge parts, where the bulk modes are parametrized by functions on
Σ and the edge modes are parametrized by functions on ∂Σ. In this context the boundary
∂Σ can also be referred to as the corner, surface, or edge. In section 3.1 we demonstrate how
to split the symplectic form, and in section 3.2 we invert the symplectic form to obtain the
Poisson brackets among the elementary fields.

4See however [17] for another perspective.
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3.1 Symplectic split

We now introduce a decomposition of the phase space variables Ai , Ei that leads to a split of
the symplectic form and a consequent factorization of phase space into bulk and edge parts.
This decomposition is motivated by the successful decomposition made in [7] for Maxwell,
and carefully improved to take into account the non-abelian nature of the theory at hand. We
write

Ai = U−1(Ãi +∇i)U , Ei = U−1(Ẽi + S∇iβ)U , (16)

where the non-dynamical function S is positive and real-valued, the field U is G-valued, and
the other fields are g-valued. We will impose certain conditions to make this decomposition
unique. Then a choice of Ai , Ei will be equivalent to a choice of Ãi , Ẽi , U on Σ and a choice of
ni∇iβ |∂Σ on the boundary. By construction Ãi , Ẽi , and β will be gauge-invariant, and under
a gauge transformation by Λ we will simply have U → UΛ.

To start, we require the bulk fields to have vanishing boundary normals,

Ãin
i|∂Σ = Ẽin

i|∂Σ = 0 . (17)

We also require the terms in Ei to separately satisfy the Gauss constraint, which implies

D̃i Ẽ
i = D̃i(S∇iβ) = 0 , (18)

where D̃i is the gauge-covariant derivative with respect to Ãi , as opposed to Ai . As
long as Ãi is within the Gribov horizon [58] there is a unique solution for β ,5 with
Sni∇iβ |∂Σ = Uni EiU

−1|∂Σ as Neumann data. This in turn determines Ẽi , and thus the de-
composition is unique. We need another condition to make Ai ’s decomposition unique, but we
leave it unspecified for now. A natural choice will arise momentarily.

Using our decomposition and the identity

δAi = U−1δÃiU + Di(U
−1δU) , (19)

we can manipulate the symplectic form and obtain

Ω= −δ
∫

Σ

Tr
�

δAi E
i
�

= −δ
∫

Σ

Tr
��

U−1δÃiU + Di(U
−1δU)
�

E i
�

= −δ
∫

Σ

Tr
�

U−1δÃiU E i
�

−δ
∫

∂Σ

Tr
�

U−1δU Ein
i
�

= −δ
∫

Σ

Tr
�

δÃi(Ẽ
i + S∇iβ)
�

−δ
∫

∂Σ

Tr
�

U−1δU Ein
i
�

=

∫

Σ

Tr
�

δÃi ∧∧∧δẼ i +δÃi ∧∧∧ S∇iδβ
�

−δ
∫

∂Σ

Tr
�

U−1δU Ein
i
�

=

∫

Σ

Tr
�

δÃi ∧∧∧δẼ i −δ
�

∇i(SÃi)
�

∧∧∧δβ
�

−δ
∫

∂Σ

Tr
�

U−1δU Ein
i
�

.

(20)

The only obstruction to a bulk-edge split is the term δ
�

∇i(SÃi)
�

. This motivates imposing the
condition

∇i(SÃi) = 0 , (21)

5β is unique up to a constant shift, which drops out of ∇iβ and is therefore unimportant. We fix this ambiguity
by requiring
∫

∂Σ
β = 0.

5

https://scipost.org
https://scipost.org/SciPostPhys.20.1.013


SciPost Phys. 20, 013 (2026)

which at a mathematical level is essentially Lorenz or Landau gauge. The question of whether
or not this can be uniquely achieved is difficult [58], but beyond the scope of this paper. There
is at least no issue in perturbative contexts, where Landau gauge is standard. We will proceed
under the assumption that (21) can be imposed. Given (16), it is equivalent to the following
condition on U ,

∇i(S∇iUU−1) =∇i(SUAiU−1) , (22)

along with the Neumann data niAi|∂Σ = U−1ni∇iU |∂Σ. These determine U ’s bulk values in
terms of its boundary values, up to an ambiguity under left multiplication by any constant,
U → Λ0U . This is the non-abelian version of a zero mode ambiguity. This ambiguity manifests
in (21) as Ãi → Λ0ÃiΛ

−1
0 . We assume a smooth choice of representative is made for Ãi . Then Ãi

and U are uniquely determined by Ai .
6 In turn Ẽi and β are determined as well. We return to

these questions about determining Ãi , U , Ẽi , β in terms of Ai and Ei in a perturbative context
in section 5.1.

The decomposition for Ai in (16) is now unique, and the symplectic form reduces to

Ω=

∫

Σ

Tr
�

δÃi ∧∧∧δẼi

�

−δ
∫

∂Σ

Tr
�

U−1δU Ein
i
�

. (23)

Recalling that ni Ei|∂Σ = U−1Sni∇iβU , we see that the bulk integral involves only the bulk
fields Ãi , Ẽi and the boundary integral involves only the edge degrees of freedom U |∂Σ and
ni∇iβ |∂Σ. These edge modes are independent functions on the edge ∂Σ. The bulk extension
of β is determined by (18). The bulk extension of U satisfies (22), but if we view U as the
independent variable then any bulk extension is admissible by an appropriate choice of Ai .
However, since the symplectic form only involves U ’s boundary values, all extensions of a
given U |∂Σ are equivalent in the symplectic reduction. This is just the familiar fact, discussed
near (14), that small gauge transformations are symplectically trivial.

To write Ω in its final form we define

E⊥ ≡ ni Ei|∂Σ , (24)

and we note
δ(U−1δU) = −U−1δU ∧∧∧ U−1δU . (25)

We then have

Ω=

∫

Σ

Tr
�

δÃi ∧∧∧δẼi

�

+

∫

∂Σ

Tr
�

U−1δU ∧∧∧δE⊥ + U−1δU ∧∧∧ U−1δU E⊥
�

. (26)

This split of the symplectic form into bulk and edge parts is our first main result, enabled by
our decomposition (16). Consequently the total phase space, Γ , factorizes as a direct product,
Γ = Γbulk×Γedge. This property is nontrivial, particularly for non-abelian gauge theories, where
it was generally only known that Γedge ⊂ Γ . In our approach, we have successfully constructed
two independent symplectic structures: one for the bulk and another for the edge. As we will
show, unlike the scenario in [7], the Hamiltonian dynamics introduce a temporal intertwining
of these symplectic pairs, a phenomenon dictated entirely by the non-abelianity of the gauge
group.

6For completeness we note a further subtlety, analogous to the coordinate singularity at the origin in polar
coordinates. When Ãi = 0 the transformation U → Λ0U does not affect Ai at all. It represents a symplectic
degeneracy, which is quotiented out.
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3.2 Poisson brackets

We now derive the Poisson brackets satisfied by our fields by explicitly inverting the symplectic
form. The object δU is somewhat unnatural, outputting a tangent vector at the base point U .
In contrast, the object U−1δU outputs a tangent vector at the identity, which is canonically
identified as an element of the algebra. Thus we can define the phase space one-form

ua ≡ Tr
�

T aU−1δU
�

, (27)

where T a is a generator of g satisfying Tr
�

T aT b
�

= δab. Using this we define a convenient
frame of one-forms on phase space,

eM ≡
�

δÃa
i (x),δẼ i,a(x), ua(y),δEa

⊥(y)
�

. (28)

In this expression and what follows, we are using x for bulk points and y for boundary points.
Contraction of the multi-index M involves summing over discrete labels and integrating over
x or y . The symplectic form in these variables reads

Ω=
1
2
ΩMN eM ∧∧∧ eN

=

∫

Σ

δÃa
i (x)∧∧∧δẼ i,a(x) +

∫

∂Σ

�

ua(y)∧∧∧δEa
⊥(y) +

1
2

f abcua(y)∧∧∧ ub(y)Ec
⊥(y)
�

,
(29)

where the structure constants are defined by [T a, T b] = f abc T c . The matrix representation in
terms of our frame is

ΩMN =









0 δabδ
j
iδ(x − x ′) 0 0

−δabδi
jδ(x − x ′) 0 0 0
0 0 f abc Ec

⊥(y)δ(y − y ′) δabδ(y − y ′)
0 0 −δabδ(y − y ′) 0









, (30)

where δ(x − x ′) denotes the covariant Dirac delta function. The inverse matrix is

ΠMN =









0 −δabδ
j
iδ(x − x ′) 0 0

δabδi
jδ(x − x ′) 0 0 0

0 0 0 −δabδ(y − y ′)
0 0 δabδ(y − y ′) f abc Ec

⊥(y)δ(y − y ′)









. (31)

One confirms this by explicitly computing ΠMNΩN P = δM
P .

The Poisson bracket on functionals F , G on phase space is defined by

{F, G}= ΠMN eM [F]eN [G] , (32)

where eM is the frame of vectors dual to eM . Explicitly we have

eM =

�

δ

δÃa
i (x)

,
δ

δẼ i,a(x)
, U(y)T a,

δ

δEa
⊥(y)

�

, (33)

where T a is viewed as a tangent vector at the identity in the copy of G at y . We evaluate eM [F]
using the natural action of vectors on functions. For example δ

δÃa
i (x)
[Ãb

j (x
′)] = δabδi

jδ(x − x ′)

and (U(y)T a)[U(y ′)] = U(y)T aδ(y − y ′). The non-vanishing Poisson brackets among the
elementary fields are

{Ẽ i,a(x), Ãb
j (x
′)}= δab δi

j δ(x − x ′) ,

{Ea
⊥(y), U(y ′)}= U(y)T a δ(y − y ′) ,

{Ea
⊥(y), E b

⊥(y
′)}= f abc Ec

⊥(y)δ(y − y ′) .

(34)
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As anticipated, the bulk and edge degrees of freedom do not talk to each other. The Poisson
brackets of the edge modes among themselves have appeared in (2.39-41) of [15], but the
vanishing of the brackets between bulk and edge modes is new to the literature, and is a
nontrivial consequence of our particular choice of decomposition in (16).

Note that the Poisson bracket with the charge

Q[λ] =

∫

∂Σ

Tr[λ(y)E⊥(y)] , (35)

generates a gauge transformation by λ, as it should. These charges represent the large gauge
algebra as

{Q[λ1],Q[λ2]}=Q
�

[λ1,λ2]
�

. (36)

In conclusion, we have demonstrated a consistent method for decoupling the bulk symplec-
tic structure from its edge counterpart, all while preserving a non-vanishing Noether charge
in a fully gauge-covariant framework. This approach not only resolves a crucial structural
challenge but also lays the groundwork for significant advancements in the quantization of
the theory. In particular, it holds the potential to address longstanding questions about the
factorization of the Hilbert space, and may instruct us on other non-abelian theories such as
gravity. These developments form a cornerstone of our ongoing research agenda, opening
new avenues for exploration in the interplay between gauge theories, symmetries, and the
covariant phase space.

4 Timelike boundary

To understand how the dynamics impacts the kinematic split of the symplectic form, we con-
sider in this section a timelike boundary and study the effects of our field decomposition on the
Hamiltonian evolution. We begin in section 4.1 by reviewing and adapting to our non-abelian
setting the dynamical edge mode boundary condition of [7], then in section 4.2 we discuss
how the Hamiltonian gives rise to a term mixing the bulk and edge physics.

4.1 Dynamical edge mode boundary condition

We now consider placing Yang-Mills theory on a Lorentzian manifold M whose boundary ∂M
is timelike, rather than null. For simplicity we assume that M is static with metric

ds2 = gt t d t2 + gi jd x id x j , (37)

and that ∂t lies tangent to ∂M . The theory requires a boundary condition to be well-defined
on this manifold. Consider the variation of the action around a solution to the equation of
motion (7),

on-shell: δS =

∫

∂M
Tr
�

δAµFµνn
ν
�

. (38)

Here nµ is the outward unit normal vector to ∂M . If δS does not vanish then we do not have
a true saddle, and the theory is said to be variationally ill-defined.7

This can be remedied by imposing a boundary condition. An obvious option is to require
the pullback of the gauge field A to vanish on the boundary. That is, writing i∂M for the pullback
to ∂M ,

PEC: i∂M A= 0 . (39)

7This is closely related to the symplectic form being independent of deformations of the Cauchy surface’s bound-
ary ∂Σ.
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This is a minor generalization of the perfectly electrically conducting (PEC) or “relative” bound-
ary condition in electromagnetism. Another obvious choice is to require the normal compo-
nents of the field strength to vanish, or equivalently that the pullback of the dual field strength
vanishes,

PMC: i∂M ∗F = 0 . (40)

This generalizes the perfectly magnetically conducting (PMC) or “absolute” boundary condi-
tion in electromagnetism.

However, neither PEC nor PMC gives rise to edge modes: The PEC boundary condition
disallows large gauge transformations, while the PMC boundary condition sets E⊥ = 0. The
crucial observation in [7], which also applies here, is that one can define a new “dynamical
edge mode” (DEM) boundary condition allowing both E⊥ and large gauge transformations,

DEM: At |∂M = 0= nµFµi|∂M . (41)

This is essentially PEC for the time component and PMC for the spatial components. With
this choice of boundary conditions, the analysis performed in section 3.1 leads to a bulk phase
space which is precisely what one would get from the PMC boundary condition, so we can
write

ΓDEM = ΓPMC × Γedge , (42)

where the edge phase space is symplectomorphic to the causal diamond one.
Different boundary conditions are appropriate in different contexts, but the DEM bound-

ary condition appears to be natural whenever edge modes are expected to play a role. This
includes the calculation of entanglement entropy, the characterization of subregions, and the
calculation of partition functions in the presence of horizons. Furthermore it was argued in [7]
that in Maxwell theory the DEM boundary condition is shrinkable,8 and it is highly plausible
that this important property also holds in Yang-Mills.

4.2 Failure of the Hamiltonian split

Unlike in the abelian case, our decomposition (16) will not lead to a clean bulk-edge split of the
Hamiltonian. The unit time vector is

p

−g t t∂t , so the Hamiltonian generating S−1
p

−g t t∂t
on a constant time slice Σ is

H =

∫

Σ

1
S

Tr
�

1
2

Ei E
i +

1
4

Fi j F
i j
�

. (43)

Recalling the decomposition of the electric field in (16), and noting

U Fi jU
−1 = ∂iÃ j − ∂ jÃi + [Ãi , Ã j]≡ F̃i j , (44)

we see that the Hamiltonian is completely independent of U . This makes sense since it is
gauge-invariant. Using the decomposition (16) we can proceed further and obtain

H =

∫

Σ

Tr
�

1
2S

Ẽi Ẽ
i + Ẽ i∇iβ +

1
2

S(∇iβ)(∇iβ) +
1

4S
F̃i j F̃

i j
�

=

∫

Σ

Tr
�

1
2S

Ẽi Ẽ
i +

1
4S

F̃i j F̃
i j − β∇i Ẽ

i −
1
2
β∇i(S∇iβ)
�

+
1
2

∫

∂Σ

Tr
�

βSni∇iβ
�

.

(45)

8A boundary condition is said to be shrinkable if when applied to an infinitesimally small Euclidean hole the
result is as if there were no hole at all. See [7] for more details.
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Defining bulk, cross, and edge terms as

Hbulk ≡
∫

Σ

1
S

Tr
�

1
2

Ẽi Ẽ
i +

1
4

F̃i j F̃
i j
�

,

Hcross ≡ −
∫

Σ

Tr
�

β∇i Ẽ
i +

1
2
β∇i(S∇iβ)
�

,

Hedge ≡
1
2

∫

∂Σ

Tr
�

βSni∇iβ
�

=
1
2

∫

∂Σ

Tr
�

β(U E⊥U−1)
�

,

(46)

we have
H = Hbulk +Hcross +Hedge . (47)

The cross term can be further simplified using the Gauss constraint,

Hcross =

∫

Σ

Tr
�

β[Ãi , Ẽ i] +
1
2
β[Ãi , S∇iβ]
�

. (48)

Since the number of derivatives is now minimal, Hcross cannot be simplified further. Thus we
conclude that it is non-vanishing, demonstrating that the bulk and edge degrees of freedom
in Yang-Mills theory are dynamically coupled. Physically, this implies that while the kinematic
phase space can be decomposed into bulk and edge components on each Cauchy slice, the
dynamics inherently intertwines these two sectors. As a result, the decomposition of bulk and
edge fields on an evolved slice will incorporate a mixing of the fields from the previous slice,
driven by the presence of the cross term in the Hamiltonian. Notably, since this term is entirely
expressed through commutators, its origin can be traced to the non-abelian structure of the
gauge group. In contrast, this coupling is absent in Maxwell theory [7].

The edge Hamiltonian in terms of β is Hedge =
1
2

∫

∂Σ
Tr
�

βSni∇iβ
�

. From the condition
(18) one can in principle deduce ni∇iβ |∂Σ from β |∂Σ and vice versa. To formalize this let us
define an operator K on ∂Σ by

Kβ |∂Σ ≡ Sni∇iβ |∂Σ . (49)

The edge Hamiltonian can then be written

Hedge =
1
2

∫

∂Σ

Tr[βKβ] =
1
2

∫

∂Σ

Tr
�

(Kβ)
1
K
(Kβ)
�

, (50)

where 1
K is the inverse of K . However, one must be careful with these simple-looking expres-

sions. Since K depends implicitly on Ãi , the edge Hamiltonian is not truly independent of the
bulk degrees of freedom. Along with the cross term, this obstructs a bulk-edge split of the
dynamics.

5 Special cases

In this section we consider some special cases of our construction, and study whether simplifi-
cations occur. We start by analyzing the weak field limit, where we observe that the dynamics
decouples into bulk and edge parts, since the cross term is subleading and the edge Hamil-
tonian’s leading term is free of bulk influence. We then probe the horizon limit, where we
demonstrate that the dynamical bulk-edge mixing persists.
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5.1 Weak field expansion

We now consider the weak field expansion. Since the action in (5) is related to the action
with a canonically normalized kinetic term by the field redefinition Aµ → gYMAµ, the weak
field expansion is equivalent to the small coupling expansion. For clarity we will restore the
coupling in this subsection. We expand our fields order by order as

Ãi = gYMÃ(1)i + g2
YMÃ(2)i + . . . ,

Ẽi = gYM Ẽ(1)i + g2
YM Ẽ(2)i + . . . ,

β = gYMβ
(1) + g2

YMβ
(2) + . . .

(51)

The field U is slightly special, since small Ai does not necessarily imply that U itself is near the
identity. Rather U−1∇iU must be small. We can then use a constant U0 ∈ G and a g-valued
field α to parametrize U = U0eα, with the expansion

α= gYMα
(1) + g2

YMα
(2) + . . . (52)

The phase space splits exactly, so it will continue to split at every order in the weak field
expansion. The situation for the Hamiltonian is more interesting. The bulk and edge parts in
(46) contain terms quadratic in the fields, while the cross term is cubic in the fields and so it
is relatively suppressed,

H = Hbulk +Hcross +Hedge = g2
YM

�

H(2)bulk +H(2)edge

�

+O
�

g3
YM

�

. (53)

Furthermore, as we will demonstrate shortly, H(2)edge depends only on the boundary data. There-
fore there is an emergent split in the weak field limit, reducing to the abelian case. This limit is
often physically relevant. For example in the perturbative evaluation of a Euclidean partition
function the one-loop correction involves only the quadratic terms in the action, or equiva-
lently in the Hamiltonian. We therefore reach an important feature of Yang-Mills theory in the
weak field expansion: The bulk and edge fields are symplectically and dynamically completely
disentangled.

We now revisit the conditions defining U and β . Implicit in our decomposition (16) is the
idea that, given Ai and Ei , one should be able to deduce Ãi , U , Ẽi , and β . In principle this can
be accomplished by first using (22) to solve for U in terms of Ai ,

9 then stripping off U from Ai
to get Ãi , then using (18) to solve for β in terms of Ãi and Ei , and finally stripping off U and β
from Ei to get Ẽi . We are now in a position to comment on the existence of solutions at each
step in this procedure. The condition on U has the expansion

0=∇i(S∇ie
αe−α)−∇i(SeαAie

−α)

= gYM∇i
�

S∇iα
(1) − SA(1)i

�

+ g2
YM∇

i
�

S∇iα
(2) +

1
2

S
�

α(1),∇iα
(1)
�

− SA(2)i − S
�

α(1), A(1)i

�

�

+O
�

g3
YM

�

.

(54)

Note that U0 has dropped out completely, due to the above-mentioned ambiguity under left
multiplication by a constant. The O(gYM) term is the same sourced elliptic PDE found in [7]
for the Maxwell case. It uniquely determines α(1) up to a constant shift, with niA(1)i |∂Σ as
Neumann data. The only unknown part of the O(g2

YM) term is then α(2), and we find the same
type of elliptic PDE for it, with Neumann data

ni∇iα
(2)|∂Σ = ni
�

A(2)i +
1
2

�

α(1),∇iα
(1)
�

�

�

�

�

�

∂Σ

. (55)

9Recall this leaves an ambiguity by constant left multiplication U → Λ0U , which we choose to fix with some
arbitrary smooth choice of representatives.
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This pattern of PDEs determining α(n) in terms of lower order data continues to all perturbative
orders, fully determining α’s expansion up to zero modes. These zero modes and U0 are then
fully determined by the choice of representative. Therefore U is perturbatively well-defined.

With U in hand, Ãi is determined as

Ãi = UAiU
−1 −∇iUU−1 . (56)

The condition (18) on β can be expanded as

0= D̃i(S∇iβ)

=∇i(S∇iβ) +
�

Ãi , S∇iβ
�

= gYM∇i

�

S∇iβ (1)
�

+ g2
YM

�

∇i

�

S∇iβ (2)
�

+
�

Ã(1)i , S∇iβ (1)
��

+O
�

g3
YM

�

,

(57)

giving a series of PDEs for β (n). The Neumann data at each order follow from

Uni EiU
−1
�

�

∂Σ
= Sni∇iβ |∂Σ . (58)

The zero modes of the β (n) are undetermined, but they are unimportant since they drop out
of ∇iβ , which is what actually shows up in the field decomposition. We fix this ambiguity by
choosing
∫

∂Σ
β (n) = 0. Now β is perturbatively well-defined. Note in particular that the lead-

ing order condition on β does not involve Ãi , so there are no bulk contributions to the relation-
ship between β (1) and its normal derivative. This shows that H(2)edge =

1
2

∫

∂Σ
Tr
�

β (1)Sni∇iβ
(1)
�

depends only on boundary data, as mentioned above. It only remains to define the bulk electric
field,

Ẽi = U EiU
−1 − S∇iβ . (59)

This completes the process of deducing Ãi , U , Ẽi , β from Ai and Ei .

5.2 Horizon limit

We now study the horizon limit of our timelike boundary. The setup is as in section 2.5 of [7].
Specifically, consider a static manifold whose boundary is a static bifurcate horizon and let our
M be the subregion whose boundary is at a small spatial distance ϵ from the horizon. Within
each time slice Σ we establish Gaussian normal coordinates in a neighborhood of the horizon,
so that the full metric is

ds2 = gt t d t2 + dr2 + gabd xad x b . (60)

Here r is the normal coordinate, with r = 0 on the bifurcation surface and r = ϵ on ∂M . The
xa are coordinates on ∂Σ. Our assumption of a static bifurcate horizon implies

gt t = −κ2r2 +O(r4) , (61)

where κ is the surface gravity. In this subsection we will take S =
p

−g t t , corresponding to
the Hamiltonian generating ∂t .

We have shown that the bulk and edge degrees of freedom are dynamically coupled at
finite ϵ, but we would like to know if this mixing persists in the horizon limit. We will tackle
this question in the weak field approximation. The leading term of Hcross is already O(g3

YM),

Hcross = g3
YM

∫

Σ

Tr
�

β (1)
�

Ã(1)i , Ẽ(1),i
�

+
1
2
β (1)
�

Ã(1)i ,
p

−g t t∇iβ (1)
�

�

+O
�

g4
YM

�

. (62)
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Note this only involves the O(gYM) parts of the fields, which obey the same PDEs as in the
abelian case, and so their properties can be borrowed from [7]. In particular we have

β (1) =O
�

r0

logϵ−1

�

,
p

−g t t∇rβ
(1) =O
�

log r−1

logϵ−1

�

,
p

−g t t∇aβ
(1) =O
�

r−1

logϵ−1

�

,

(63)
as well as

Ẽ(1)r =O(r ϵ0) , Ẽ(1)a =O(r0ϵ0) , (64)

and
Ã(1)r =O(r ϵ0) , Ã(1)a =O(r0ϵ0) . (65)

The main observation is that the leading behavior of the Hamiltonian cross term is

H(3)cross =O
�

1
logϵ−1

�

, (66)

which, as we show in appendix A, is of the same order as H(3)edge. This behavior is readily seen
in the first term of (62). The second term in Hcross also contributes with this leading behavior,
which can be deduced from the part of the integral near the boundary.10

In conclusion we have found that H(3)cross is of the same order as H(3)edge, and therefore is not
relatively suppressed in the horizon limit. This is a clear indication that the dynamical mixing
of the bulk and edge degrees of freedom persists in the horizon limit.11,12

6 Final words

In this paper we discussed a suitable decomposition of the dynamical fields — the electric
field and the spatial gauge field — in Yang-Mills theory on a Cauchy surface with boundary.
We found an appropriate way to disentangle the bulk fields from the edge modes, such that the
symplectic structure splits and thus the phase space factorizes. With this decomposition, we
computed the Poisson brackets and showed that the bulk and edge degrees of freedom do not
talk to each other. That is, bulk fields Poisson-commute with edge fields. We then switched
our attention to timelike boundaries, and discussed how to implement the DEM boundary
condition proposed for Maxwell theory in [7]. Contrary to Maxwell theory, we showed that
the Yang-Mills Hamiltonian couples the bulk and edge contributions, due to a cross term. We
rewrote this cross contribution in terms of commutators to emphasize that it is entirely due
to the non-abelianity of the gauge group. Indeed, we then provided a weak field expansion
in gYM, in which we demonstrated that the cross term in the Hamiltonian vanishes at leading
order. We then discussed the horizon limit of the timelike boundary. Here the cross term
survives, leading to a mixed evolution that survives the limit.

There are many future avenues of investigation for which this work sets the stage. First,
a careful analysis of the partition function and entanglement structure of Yang-Mills theory
with the DEM boundary condition remains to be done, and is currently under investigation.
The one-loop partition function uses only the quadratic part of the action, and so it essentially

10Specifically one uses
∫

ϵ

dr r−1

(logϵ−1)2 =O
�

1
logϵ−1

�

.
11In fact, there is also mixing of bulk and boundary data in H (3)edge itself, due to the Ãi dependence in the operator

K .
12Although the edge Hamiltonian vanishes as the boundary approaches the horizon, the edge sector still con-

tributes to the entropy. This behavior is known in Maxwell [7] and is expected to persist in Yang-Mills, though
its precise origin remains subtle. Intuitively, as Hedge → 0, one has Tre−βHedge →∞, necessitating an additional
regularization that can leave a finite, physically relevant term.
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reduces to the abelian case. At higher loops the mixed term in the Hamiltonian poses an
interesting challenge, and we may anticipate that it will lead to important modifications with
respect to the abelian analysis.

Another interesting road to explore is the relationship between this work and Yang-Mills
theory in Minkowski space. First of all, we wish to understand how the DEM boundary condi-
tion and the symplectic split relates to the asymptotic symmetries of Yang-Mills [59–62] and
Einstein-Yang-Mills [63, 64]. Secondly, we intend to study how the field decomposition pro-
posed here intertwines with the celestial holographic description [65–69]. Lastly, we ask if our
work informs the soft split [70,71] and gluon soft theorems [72–75].

The most important future direction to explore is gravity. While there has been much
progress in recent years in the understanding of gravitational edge modes [23–25, 27–35],
it would be rewarding to study the field decomposition and achieve a complete symplectic
split among bulk and corner fields. To the best of our knowledge, this is still missing in the
literature, and could constitute an important step forward in the corner proposal [15,36–40].
We expect that our main results in this manuscript will extend to gravitational theories, and we
intend to study exactly how this can be achieved. Indeed, the fact that the symplectic structure
still splits when non-abelian effects are taken into account was an important cornerstone of
this paper, and paves the way for a similar pattern in gravity. Furthermore, the fact that the
gravitational Hamiltonian is already a boundary term indicates that such a symplectic split
should be preserved in the gravitational dynamics. In conclusion, the journey from Maxwell
theory [7] to gravity had to pass through Yang-Mills theory. This work has filled that gap,
preparing the ground for future explorations.
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A Weak and horizon limit of Hedge

In this appendix we show that in the simultaneous weak field and horizon limits the edge
Hamiltonian’s first subleading term in gYM is of order

H(3)edge =O
�

1
logϵ−1

�

. (A.1)

We start from (46),

Hedge =
1
2

∫

∂Σ

Tr
�

β(U E⊥U−1)
�

. (A.2)

Both E⊥ and U are independent of ϵ, which follows from the fact that their path integral
measure can be read off from the symplectic form, and that Ωedge is manifestly independent
of ϵ. Considering also that U E⊥U−1 starts at order O(gYM), we see that the ϵ dependence of
H(3)edge will come entirely from β (2).
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Consider the horizon limit of the weak field expansion (57) of the condition satisfied by
β . The leading term is

0=∇i

�p

−g t t∇iβ (1)
�

. (A.3)

It was shown in [7] that this PDE admits the separation of variables

β (1)(r, xa) =
∑

k ̸=0

β
(1)
k (r) fk(x

a) , (A.4)

where the fk(xa) are orthonormal eigenmodes of the Laplacian on ∂Σ, with non-negative
eigenvalues ∆∂Σ fk(xa) = λk fk(xa), and we omit the zero mode from the sum since it drops
out of the PDE. The asymptotic solution near the horizon was shown to be

β
(1)
k (r)∝ 1+

1
2
λkr2 log
Æ

λkr +O(r2) , (A.5)

from which one can deduce that the operator K , defined in (49), reduces in the ϵ→ 0 limit to

(Kβ)(1) =
logϵ−1

κ
∆∂Σβ

(1) . (A.6)

Since the quantity (U E⊥U−1)(1) is independent of ϵ, this implies that β (1) =O
�

1
logϵ−1

�

.
The first subleading term in β ’s condition (57) is

0=∇i

�p

−g t t∇iβ (2)
�

+
�

Ã(1)i ,
p

−g t t∇iβ (1)
�

. (A.7)

This is a PDE for β (2), similar to the previous PDE for β (1) except that now it is sourced by
the commutator term. Although Ã(1)r = O(r) due to the condition niÃi|∂Σ = 0, the other

components Ã(1)a are not small. Overall the commutator term is of order O
�

1
logϵ−1

�

, i.e. the

same size as β (1), and so the inhomogeneous part of β (2) will be of this same size. Note this
means β (2) is affected by Ã(1)a , indicating some dynamical mixing of the bulk and edge degrees
of freedom, as mentioned near (50).

The homogeneous part of β (2) is determined by the Neumann data
p

−g t t ni∇iβ
(2)|∂Σ = (Kβ)(2) = (U E⊥U−1)(2) . (A.8)

Once again neither E⊥ nor U scales with ϵ, so the homogeneous part of β (2) is O
�

1
logϵ−1

�

, just

like for β (1). Then overall

β (2) =O
�

1
logϵ−1

�

, (A.9)

and in turn we have the desired property (A.1).
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[48] J. Lin and Ð. Radičević, Comments on defining entanglement entropy, Nucl.
Phys. B 958, 115118 (2020), doi:10.1016/j.nuclphysb.2020.115118 [preprint
doi:10.48550/arXiv.1808.05939].

[49] E. Witten, Gravity and the crossed product, J. High Energy Phys. 10, 008 (2022),
doi:10.1007/JHEP10(2022)008 [preprint doi:10.48550/arXiv.2112.12828].

[50] T. G. Mertens, J. Simón and G. Wong, A proposal for 3d quantum gravity and its bulk factor-
ization, J. High Energy Phys. 06, 134 (2023), doi:10.1007/JHEP06(2023)134 [preprint
doi:10.48550/arXiv.2210.14196].

[51] E. Joung, P. Narayan and J. Yoon, Gravitational edge mode in asymptotically AdS2: JT
gravity revisited, J. High Energy Phys. 05, 244 (2024), doi:10.1007/JHEP05(2024)244
[preprint doi:10.48550/arXiv.2304.06088].

[52] W. Donnelly, D. Marolf, B. Michel and J. Wien, Living on the edge: A toy model for holo-
graphic reconstruction of algebras with centers, J. High Energy Phys. 04, 093 (2017),
doi:10.1007/JHEP04(2017)093 [preprint doi:10.48550/arXiv.1611.05841].

[53] H. Z. Chen, R. Myers and A.-M. Raclariu, Entanglement, soft modes, and celestial hologra-
phy, Phys. Rev. D 109, L121702 (2024), doi:10.1103/PhysRevD.109.L121702 [preprint
doi:10.48550/arXiv.2308.12341].

[54] V. Balasubramanian and C. Cummings, The entropy of finite gravitating regions, (arXiv
preprint) doi:10.48550/arXiv.2312.08434.

[55] H. Z. Chen, R. C. Myers and A.-M. Raclariu, Entanglement, soft modes, and celestial
CFT, J. High Energy Phys. 04, 074 (2025), doi:10.1007/JHEP04(2025)074 [preprint
doi:10.48550/arXiv.2403.13913].

[56] C. Akers, R. M. Soni and A. Y. Wei, Multipartite edge modes and tensor networks,
SciPost Phys. Core 7, 070 (2024), doi:10.21468/SciPostPhysCore.7.4.070 [preprint
doi:10.48550/arXiv.2404.03651].

[57] S. Colin-Ellerin and G. Lin, Generalized entropy of photons in AdS, J. High
Energy Phys. 05, 031 (2025), doi:10.1007/JHEP05(2025)031 [preprint
doi:10.48550/arXiv.2406.12851].

[58] V. N. Gribov, Quantization of non-Abelian gauge theories, Nucl. Phys. B 139, 1 (1978),
doi:10.1016/0550-3213(78)90175-X.

[59] A. Strominger, Asymptotic symmetries of Yang-Mills theory, J. High Energy Phys. 07, 151
(2014), doi:10.1007/JHEP07(2014)151 [preprint doi:10.48550/arXiv.1308.0589].

19

https://scipost.org
https://scipost.org/SciPostPhys.20.1.013
https://doi.org/10.21468/SciPostPhys.17.2.048
https://doi.org/10.48550/arXiv.2205.00913
https://doi.org/10.48550/arXiv.2206.01193
https://doi.org/10.1103/PhysRevD.89.085012
https://doi.org/10.48550/arXiv.1312.1183
https://doi.org/10.1016/j.nuclphysb.2020.115118
https://doi.org/10.48550/arXiv.1808.05939
https://doi.org/10.1007/JHEP10(2022)008
https://doi.org/10.48550/arXiv.2112.12828
https://doi.org/10.1007/JHEP06(2023)134
https://doi.org/10.48550/arXiv.2210.14196
https://doi.org/10.1007/JHEP05(2024)244
https://doi.org/10.48550/arXiv.2304.06088
https://doi.org/10.1007/JHEP04(2017)093
https://doi.org/10.48550/arXiv.1611.05841
https://doi.org/10.1103/PhysRevD.109.L121702
https://doi.org/10.48550/arXiv.2308.12341
https://doi.org/10.48550/arXiv.2312.08434
https://doi.org/10.1007/JHEP04(2025)074
https://doi.org/10.48550/arXiv.2403.13913
https://doi.org/10.21468/SciPostPhysCore.7.4.070
https://doi.org/10.48550/arXiv.2404.03651
https://doi.org/10.1007/JHEP05(2025)031
https://doi.org/10.48550/arXiv.2406.12851
https://doi.org/10.1016/0550-3213(78)90175-X
https://doi.org/10.1007/JHEP07(2014)151
https://doi.org/10.48550/arXiv.1308.0589


SciPost Phys. 20, 013 (2026)

[60] P. Mao and J.-B. Wu, Note on asymptotic symmetries and soft gluon theorems,
Phys. Rev. D 96, 065023 (2017), doi:10.1103/PhysRevD.96.065023 [preprint
doi:10.48550/arXiv.1704.05740].

[61] M. Campiglia and J. Peraza, Charge algebra for non-Abelian large gauge symmetries at
O(r), J. High Energy Phys. 12, 058 (2021), doi:10.1007/JHEP12(2021)058 [preprint
doi:10.48550/arXiv.2111.00973].

[62] L. Freidel, D. Pranzetti and A.-M. Raclariu, On infinite symmetry algebras in Yang-Mills
theory, J. High Energy Phys. 12, 009 (2023), doi:10.1007/JHEP12(2023)009 [preprint
doi:10.48550/arXiv.2306.02373].

[63] G. Barnich and P.-H. Lambert, Einstein-Yang-Mills theory: Asymptotic symme-
tries, Phys. Rev. D 88, 103006 (2013), doi:10.1103/PhysRevD.88.103006 [preprint
doi:10.48550/arXiv.1310.2698].

[64] M. Pate, A.-M. Raclariu, A. Strominger and E. Y. Yuan, Celestial operator products of gluons
and gravitons, Rev. Math. Phys. 33, 2140003 (2021), doi:10.1142/S0129055X21400031
[preprint doi:10.48550/arXiv.1910.07424].

[65] T. He, P. Mitra and A. Strominger, 2D Kac-Moody symmetry of 4D Yang-Mills the-
ory, J. High Energy Phys. 10, 137 (2016), doi:10.1007/JHEP10(2016)137 [preprint
doi:10.48550/arXiv.1503.02663].

[66] D. Kapec and P. Mitra, Shadows and soft exchange in celestial CFT, Phys.
Rev. D 105, 026009 (2022), doi:10.1103/PhysRevD.105.026009 [preprint
doi:10.48550/arXiv.2109.00073].

[67] L. Magnea, Non-Abelian infrared divergences on the celestial sphere, J. High
Energy Phys. 05, 282 (2021), doi:10.1007/JHEP05(2021)282 [preprint
doi:10.48550/arXiv.2104.10254].

[68] A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry al-
gebras for gauge theory and gravity, J. High Energy Phys. 11, 152 (2021),
doi:10.1007/JHEP11(2021)152 [preprint doi:10.48550/arXiv.2103.03961].

[69] A. Strominger, w1+∞ algebra and the celestial sphere: Infinite towers of soft
graviton, photon, and gluon symmetries, Phys. Rev. Lett. 127, 221601 (2021),
doi:10.1103/PhysRevLett.127.221601 [preprint doi:10.48550/arXiv.2105.14346].

[70] T. He and P. Mitra, Covariant phase space and soft factorization in non-Abelian gauge the-
ories, J. High Energy Phys. 03, 015 (2021), doi:10.1007/JHEP03(2021)015 [preprint
doi:10.48550/arXiv.2009.14334].

[71] A. Riello and M. Schiavina, Null Hamiltonian Yang-Mills theory: Soft symmetries and
memory as superselection, Ann. Henri Poincaré 26, 389 (2024), doi:10.1007/s00023-
024-01428-z [preprint doi:10.48550/arXiv.2303.03531].

[72] Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of glu-
ons and gravitons, Phys. Rev. D 90, 085015 (2014), doi:10.1103/PhysRevD.90.085015
[preprint doi:10.48550/arXiv.1405.1015].

[73] T. Adamo and E. Casali, Perturbative gauge theory at null infinity, Phys. Rev. D 91, 125022
(2015), doi:10.1103/PhysRevD.91.125022 [preprint doi:10.48550/arXiv.1504.02304].

20

https://scipost.org
https://scipost.org/SciPostPhys.20.1.013
https://doi.org/10.1103/PhysRevD.96.065023
https://doi.org/10.48550/arXiv.1704.05740
https://doi.org/10.1007/JHEP12(2021)058
https://doi.org/10.48550/arXiv.2111.00973
https://doi.org/10.1007/JHEP12(2023)009
https://doi.org/10.48550/arXiv.2306.02373
https://doi.org/10.1103/PhysRevD.88.103006
https://doi.org/10.48550/arXiv.1310.2698
https://doi.org/10.1142/S0129055X21400031
https://doi.org/10.48550/arXiv.1910.07424
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.48550/arXiv.1503.02663
https://doi.org/10.1103/PhysRevD.105.026009
https://doi.org/10.48550/arXiv.2109.00073
https://doi.org/10.1007/JHEP05(2021)282
https://doi.org/10.48550/arXiv.2104.10254
https://doi.org/10.1007/JHEP11(2021)152
https://doi.org/10.48550/arXiv.2103.03961
https://doi.org/10.1103/PhysRevLett.127.221601
https://doi.org/10.48550/arXiv.2105.14346
https://doi.org/10.1007/JHEP03(2021)015
https://doi.org/10.48550/arXiv.2009.14334
https://doi.org/10.1007/s00023-024-01428-z
https://doi.org/10.1007/s00023-024-01428-z
https://doi.org/10.48550/arXiv.2303.03531
https://doi.org/10.1103/PhysRevD.90.085015
https://doi.org/10.48550/arXiv.1405.1015
https://doi.org/10.1103/PhysRevD.91.125022
https://doi.org/10.48550/arXiv.1504.02304


SciPost Phys. 20, 013 (2026)

[74] A. Strominger, Lectures on the infrared structure of gravity and gauge the-
ory, Princeton University Press, Princeton, USA, ISBN 9781400889853 (2018),
doi:10.2307/j.ctvc777qv [preprint doi:10.48550/arXiv.1703.05448].

[75] W. Fan, A. Fotopoulos and T. R. Taylor, Soft limits of Yang-Mills amplitudes and confor-
mal correlators, J. High Energy Phys. 05, 121 (2019), doi:10.1007/JHEP05(2019)121
[preprint doi:10.48550/arXiv.1903.01676].

21

https://scipost.org
https://scipost.org/SciPostPhys.20.1.013
https://doi.org/10.2307/j.ctvc777qv
https://doi.org/10.48550/arXiv.1703.05448
https://doi.org/10.1007/JHEP05(2019)121
https://doi.org/10.48550/arXiv.1903.01676

	Introduction
	Review of Yang-Mills
	Bulk-edge split
	Symplectic split
	Poisson brackets

	Timelike boundary
	Dynamical edge mode boundary condition
	Failure of the Hamiltonian split

	Special cases
	Weak field expansion
	Horizon limit

	Final words
	Weak and horizon limit of H edge
	References

