
SciPost Phys. 20, 015 (2026)

New examples of Abelian D4D2D0 indices

Joseph McGovern

School of Mathematics and Statistics, University of Melbourne,
Parkville, VIC 3010, Australia

mcgovernjv@gmail.com

Abstract

We apply the methods of [1] to compute generating series of D4D2D0 indices with a
single unit of D4 charge for several compact Calabi-Yau threefolds, assuming modularity
of these indices. Our examples include a Z7 quotient of Rødland’s pfaffian threefold, a
Z5 quotient of Hosono-Takagi’s double quintic symmetroid threefold, the Z3 quotient of
the bicubic intersection in P5, and the Z5 quotient of the quintic hypersurface in P4. For
these examples we compute GV invariants to the highest genus that available boundary
conditions make possible, and for the case of the quintic quotient alone this is sufficiently
many GV invariants for us to make one nontrivial test of the modularity of these indices.
As discovered in [1], the assumption of modularity allows us to compute terms in the
topological string genus expansion beyond those obtainable with previously understood
boundary data. We also consider five multiparameter examples with h1,1 > 1, for which
only a single index needs to be computed for modularity to fix the rest. We propose a
modification of the formula in [2] that incorporates torsion to solve these models. Our
new examples are only tractable because they have sufficiently small triple intersection
and second Chern numbers, which happens because all of our examples are suitable
quotient manifolds. In an appendix we discuss some aspects of quotient threefolds and
their Wall data.
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This is the mystery of the quotient, quotient
Upon us all, upon us all, a little rain must fall

Led Zeppelin, The Rain Song
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1 Introduction

Performing microstate counts for black holes in 4d N = 2 string vacua remains an open prob-
lem. These counts are related to bound states of D6, D4, D2, and D0 branes in IIA compacti-
fications on a compact Calabi-Yau threefold Y , which are counted by generalised Donaldson-
Thomas invariants [2,3].

Configurations with no D6 charge are counted by rank-0 generalised DT invariants, also
known as D4D2D0 indices. They admit a lift to an M-theory compactification on Y [4]. In
this M-theory setup the microstate counting problem can be approached by computing the
modified elliptic genus [5,6] of a 2d N = (0,4) SCFT, constructed by dimensionally reducing
the 6d N = (0, 2) theory on a divisor Dp ⊂ Y . The vector p gives the D4 charge, and also
the homology class [Dp] = piεi ∈ H4(Y,Z) with εi a basis of 4-cycles. There is an important
distinction between the cases of irreducible and reducible divisors Dp . In the reducible case,
there is a modular anomaly which complicates the analysis [7–9].

As explained in [10] the D4D2D0 indices, which depend on the Kähler parameters of Y
and vary discontinuously at walls of marginal stability, match with the indices computed by the
elliptic genus of the (0,4) SCFT when the complexified Kähler parameters are sent to i∞. In
this limit, the values taken by the D4D2D0 indices are sometimes referred to as MSW indices.

Our aim in this paper is to compute new explicit Abelian D4D2D0 indices in this limit, with
“Abelian” specifying that we only consider an irreducible divisor. We are only able to do so by
making use of the methods pioneered in [1]. One component of their technique is to exploit
explicit formulae relating rank 0 generalised DT invariants to Pandharipande-Thomas invari-
ants, due to [11]. Next, they invoke the MNOP conjecture [12, 13] which relates the PT and
Gopakumar-Vafa invariants of Y . Gopakumar-Vafa invariants for the hypergeometric models
studied in [1], smooth complete intersections in weighted projective spaces, were available
in light of the solution approach to topological string theory developed in [14]. As we will
soon discuss, once sufficiently many MSW indices are known then all MSW indices for a given
irreducible divisor are known. In short, the techniques of [1] provide every MSW index for a
given irreducible Dp once sufficiently many terms in the genus expansion of the topological
string free energy are known.

We will more fully explain the following equations in §3.4, and for now we only display
what we need to illustrate the basic motivation of this paper. For now it suffices to know that
the MSW index is labelled by a positive integer n and a subscript µ. The generating function
hp(τ) for MSW invariants Ωp,µ(∆µ − n) with D4 charge p is vector valued. Components of
this vector have a label µ. Each component of this vector has a Fourier expansion given by

hp,µ(τ) =
∑

n≥0

Ωp,µ(∆µ − n)qn−∆µ , q= e2πiτ . (1)

The ∆µ are certain rational numbers. In the case of an irreducible divisor Dp it is conjec-
tured that this generating function transforms as a vector-valued modular form (VVMF) of
weight −1 − b2

2 , where b2 is the second Betti number of Y . Although mathematically open,
this conjecture is physically very well justified by realising h1(τ) in a decomposition of the
modified elliptic genus of the MSW SCFT, whereby modular symmetry of the SCFT leads to
the conclusion that hp(τ) is a VVMF with this weight [5].

This modularity is at the heart of the program for computing these indices, which began
with [5, 6]. While the direct computation of each individual index may be formidable, the
space of VVMFs with the correct transformation law is finite dimensional. Consequently one
only needs to compute finitely many indices to know them all (that is, for a single unit of D4
charge).
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Note that the set of monomials in each Fourier expansion (1) contains finitely many such
that q has a negative exponent, one for every pair (µ, n) such that 0 < n < ∆µ. These are
referred to as the polar terms. This is important to consider because the dimensionality of
the space of VVMFs with prescribed weight, multiplier system, and polar exponents ∆µ is less
than or equal to the number of these polar terms (the difference is typically small relative to
the number of polar terms [15]). This means that the more polar terms there are, the more
indices one has to compute before modularity fixes the rest. One can see that there will be
more polar terms for a given model, and so that model will be more difficult, if that model has

• A large number of distinct µ .

• Large values of ∆µ .

These numbers, which count the difficulty of a given model, can be computed in terms of data
of the divisor Dp and the threefold Y . Recall that amongst the topological data of Y we have
the triple intersection and second Chern numbers:

κi jk =

∫

Y
ei ∧ e j ∧ ek , c2,i =

∫

Y
c2(Y )∧ ei , (2)

where ei is a generating set for H2(Y,Z)Free and c2(Y ) is the second Chern class of Y .
We will always choose our D4 charge vector p to be one of (1), (1, 0), (1, 0,0) according

to whether b2 equals 1, 2, or 3. With this choice,

the number of distinct µ equals Det
�

κ1 jk

�

, and ∆0 =
κ111 + c2,1

24
. (3)

The remaining ∆µ have different expressions, but are smaller than ∆0. It suffices for now to
just give ∆0. This justifies the rough statement: models with small κi jk and c2,i are easier.

To be more specific, a model is easy if it requires knowledge of the topological string free
energy only to a low genus. By this metric, the easiest model studied in [1] would be the
intersection of two sextic hypersurfaces in WP5

1,1,2,2,3,3. This model has κ111 = 1 , c2,1 = 22.

As a result, there is only one polar term. It turns out that the index Ωp,0(∆0), giving the
coefficient of the most polar term, can be computed from κi jk and c2,i without knowledge of
any GV invariants. Therefore this model is solved almost immediately. We are led to wonder
if there are other such simple models out there.

This is more than simply a matter of doing less work. The methods of [14] do not provide
GV invariants to an arbitrarily high genus. One must impose certain boundary conditions at
each genus to fix the holomorphic ambiguity, and in practice there are not enough boundary
conditions past some model-specific genus. At the time of writing there exists no way to com-
pute GV invariants to an arbitrarily high genus for a compact Calabi-Yau threefold. For each
fixed model GV invariants are needed to a sufficiently high genus before the methods of [1]
can be utilised, so it is worthwhile to find cases where this condition is met. We seek Calabi-Yau
threefolds Y such that their topological data is sufficiently small that the set of GV invariants
of Y which can be computed using available boundary data is sufficient to compute enough
MSW indices for the rest to be fixed by modularity.

A first place to look might be the one parameter threefolds realised as complete intersec-
tions in Grassmannians, or the related Pfaffian threefold, for which topological string free en-
ergies were computed in [16,17]. Unfortunately, the smallest triple intersection number in this
set is κ111 = 14 for Rødland’s Pfaffian threefold [18], which makes obtaining enough MSW in-
dices unrealistic with available methods. Note that the hypergeometric model P7[2, 2,3], with
κ111 = 12, was omitted from the analysis of [1] owing to limited knowledge of GV invariants.
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There is another model in the literature known to only have a single polar term: the Z5
quotient of the quintic in P4, for which the modified elliptic genus was computed in [5]. This
inspires our approach. For a Calabi-Yau Y obtained as the quotient of a simply connected
threefold eY by a freely acting symmetry group ZM , where h1,1(Y ) = h1,1(eY ), one has

κ
(Y )
i jk =

1
M
κ
(eY )
i jk , c(Y )2,i =

1
M

c(
eY )

2,i . (4)

We explain this relationship between the topological data of Y and eY in §B. We go on in
that appendix to discuss some interesting examples of quotient manifolds informed by that
discussion.

There is then hope to find amenable examples in the set of quotient manifolds, whose
topological data may be small because it is obtained by dividing the cover’s data by the order of
the quotient group.1 After consulting the tables in [19], we are led to the examples in Table 1
(where we use the CICY notation [20]). We also consider the Double Quintic Symmetroid
model studied in [21], which admits a Z5 quotient.

This open problem of fixing the holomorphic ambiguity at higher genera can be addressed
with the modularity of MSW invariants, as carried out to great effect in [1]. For every h1,1 = 1
model in Table 1, we compute as many topological string free energies as we can using the
boundary data specified in §A, where we list GV invariants. For the P4[5]/Z5 and P5[3,3]/Z3
models, we are able to compute GV invariants beyond the maximal genus those boundary
conditions enable, by incorporating data from the MSW generating function and the explicit
formulae relating the MSW invariants to GV invariants. We are not the first to compute GV
invariants for P4[5]/Z5 and P5[3,3]/Z3, which are mentioned on footnote 12 of [14] and
reference 14 of [22].2 For these models, our computations provide a small number of inde-
pendent checks on the modularity of MSW invariants.

Regrettably, we are unable to use the Abelian MSW indices to drive the genus expansions
for the (1,8) and (1,6) models higher than the genus 5 results we give in §A. We do compute a
handful of invariants at genera beyond 5, but these are insufficient to fix the topological string
free energies at these genera.

The simply connected covers of these models have derived equivalent partner manifolds,
respectively the intersection of seven degree 1 hypersurfaces in Gr(2,7) [18, 23–25] and the
Reye congruence [21, 26]. These respectively have Z7 and Z5 quotients, which we assume
to be derived equivalent partners of the (1,8) and (1,6) models. It is only by making this
assumption that we are able compute the invariants listed in §A.

Outline of paper In §2 we review aspects of quotient Calabi-Yaus that inform us, and in
§3 we review aspects of [1, 11] which we avail of. These sections contain no new results,
are included only in the interest of self-containment, and can be safely skipped by experts.
Section §4 includes some discussion of the specific quotient geometries we study, and their
mirrors. Readers solely interested in seeing the Abelian D4D2D0 generating functions can
skip to sections §4.1.2, §4.2.2, §4.3.2, §4.4.2, and §5.

GV invariants are given in §A, and to higher degree in an ancillary Mathematica notebook.
In §B we discuss the Wall data of quotient manifolds. We apply our discussion to address some
questions posed in [27, 28] that concern the use of Wall data to distinguish diffeomorphism
classes of non-simply connected CY threefolds.

1This is not the case for general quotients, as we discuss in §B.
2The P4[5]/Z5 GV invariants were also computed independently by Emanuel Scheidegger in the course of

helpful conversations in the BICMR.
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Table 1: Quotient geometries studied in this paper.

( h1,1, h2,1 ) Geometry Triple Intersection Numbers c2

(1,21) P4[5]/Z5 κ111 = 1 (10)

(1,25) P5[3, 3]/Z3 κ111 = 3 (18)

(1,8) (Pfaffian in P6)/Z7 κ111 = 2 (8)

(1,6)
� Smooth double cover of

determinantal quintic in P4

�

/Z5 κ111 = 2 (8)

(2,29)
P2

P2

�

3
3

�

/Z3
κ111 = κ222 = 0
κ112 = κ122 = 1

�

12
12

�

(2,20)
P2

P5

�

1 1 1 0
1 1 1 3

�

/Z3
κ111 = 0 κ112 = 1
κ122 = 3 κ222 = 3

�

12
18

�

(2,12)
P4

P4

�

1 1 1 1 1
1 1 1 1 1

�

/Z5
κ111 = κ222 = 1
κ112 = κ122 = 2

�

10
10

�

(3,18)
P2

P2

P2





1 1 1
1 1 1
1 1 1



/Z3

κ111 = κ222 = κ333 = 0
κ112 = κ113 = κ223 = 1
κ122 = κ133 = κ233 = 1

κ123 = 2





12
12
12





(3,15)
P2

P2

P5





1 1 1 0 0 0
0 0 0 1 1 1
1 1 1 1 1 1



/Z3

κ111 = κ222 = 0
κ112 = κ122 = κ113 = κ223 = 1
κ123 = κ133 = κ233 = κ333 = 3





12
12
18





2 Quotients of CY threefolds by freely acting groups

Throughout this paper, Y will be the Calabi-Yau threefold obtained by taking the quotient
of another threefold eY by a freely acting symmetry group ZM . We will always have a ZM
action such that h1,1(Y ) = h1,1(eY ), equivalently b2(Y ) = b2(eY ). Here we review some details
particular to such threefolds which informs our computations.

2.1 Torsion in the second cohomology

Many relevant aspects of the homology and cohomology groups of quotient manifolds are
discussed in [29–31]. As we explain in Appendix §B, the second integral homology H2(Y,Z)
is torsion-free. By Poincaré duality, whereby

Hk(Y,Z)∼= H6−k(Y,Z) , (5)

6
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the fourth integral cohomology H4(Y,Z)∼= H2(Y,Z) will also be torsion free.
Importantly however, for the second cohomology we have

H2(Y,Z)∼= Zb2 ⊕ZM , (6)

which has a ZM torsion factor. The Poincaré dual statement is H4(Y,Z) ∼= H2(Y,Z), there is
ZM torsion in the fourth homology.

The fundamental group π1(Y ) is ZM , because Y is the quotient of the simply connected eY
by ZM . In general H1(Y,Z) is the abelianisation of π1(Y ), so in our case H1(Y,Z)∼= ZM .

As explained in [30], (6) is guaranteed by the universal coefficient theorem

Tors(Hi(Y,Z))∼= Hom
�

Tors(H i+1(Y,Z)),Q/Z
�

. (7)

Using (5) and (7) one can then demonstrate (6) via

Tors
�

H2(Y,Z)
�∼= Tors
�

H4(Y,Z)
�

∼= Hom
�

Tors
�

H5(Y,Z)
�

,Q/Z
�

∼= Hom (Tors (H1(Y,Z)) ,Q/Z)
∼= Hom (ZM ,Q/Z)∼= ZM .

(8)

2.2 Picard-Fuchs equations and mirror quotients

Computing topological string free energies requires some knowledge of the Calabi-Yau three-
fold X that is mirror to Y . We will denote by eX the mirror threefold of the cover eY . When Y
is the (1,21) model P4[5]/Z5, it has long been known that X = eX/Z5 [32]. In every h1,1 = 1
example listed in Table 1 we can identify a freely acting ZM symmetry of the appropriate eX
appearing in the literature.

We now argue that, for the quotients we consider, the Picard-Fuchs equations for both mir-
rors of Y and eY must be the same. Note that in the one parameter case (h1,1(Y ) = h1,1(eY ) = 1)
the genus 0 invariants n(0)k are generated by the Yukawa coupling [33] through the Lambert
series

Ct t t(q) = κ111 +
∞
∑

k=1

n(0)k
qk

1− qk
, q = e2πit . (9)

As explained in [34], the function Ct t t(q) puts the Picard-Fuchs operator into a canonical form:

LPF = θ2
q

1
Ct t t(q)

θ2
q , θq = q

d
dq

. (10)

As we explain in Appendix §B, the triple intersection numbers share the relation κ(Y )111 =
1
M κ

(eY )
111.

If we have similarly that

n(0),Yk =
1
M

n(0),
eY

k , (11)

then the Yukawa couplings (9) for eY and Y will be equal up to an overall multiple of M , hence
the Picard-Fuchs operators (10) for the two mirror geometries will be the same.

The required relation (11) is certainly true in cases where n(0),Yk equals the count of rational
curves of degree k on Y , when all such curves are smooth. This follows because such a curve
has no unramified covers, and by assumption ZM acts freely on eY , hence the preimage of each
such curve is M distinct copies of the curve in eY , implying3 (11).

3The same degree k appears on both sides of (11), this follows from our discussion in §B which closely follows
the arguments of [29] (where a similar argument for such a relation (11) appears). For more general quotient
groups than ZM , the degrees of the invariants on the LHS and RHS of (11) can differ (as in the example of [29]).
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The relation between n(0)k and curve counts is not so simple, as explained in [35, §2.1].
To be sure that the required relation (11) does hold, we appeal to the GLSM results of [36].
There, it is shown that the genus-0 invariants of n(0),

eY
k can be read off of the sphere partition

function Z eYS2(et , et ) of a GLSM with some gauge group H, whose large volume phase flows

to a sigma model on eY . To perform the same computation for n(0),Yk , one should repeat this
computation but replace the gauge group H with H × ZM . The computation of the sphere
partition function goes through almost exactly the same for both models, however one must
divide by the order of the Weyl group of the gauge group, which differs in each model by a
factor of M . This leads to

ZY
S2

�

t , t
�

=
1
M

Z eYS2

�

et , et
�

. (12)

Following through with the prescription for computing genus-0 invariants outlined in [36],
and noting that t = et for our quotients (as discussed in §B), one has that (12) implies (11).
This argument also provides the relation (4) that we discuss further in §B, since the triple
intersection and second-Chern numbers can similarly be read off from ZS2 . This argument
also gives an equality between the Frobenius-basis periods of eY and Y , which gives another
demonstration that the mirrors of Y and eY have the same Picard-Fuchs operators.

From transposing the Hodge diamond, the Euler characteristic of X will be minus the Euler
characteristic of Y . This means that χ(X ) must equal χ(eX )/M , since χ(Y ) = χ(eY )/M . Since
χ(eX )/M is the Euler characteristic of eX/ZM , which also has the same PF equation (because the
fundamental period of eX and X are identical), we proceed on the assumption that the mirror
of Y is X = eX/ZM when we compute GV invariants. Treating this problem more rigorously for
the (1,6) model could require a more involved understanding of issues discussed in §4.4.1.
Treating the mirror of the (1,8) geometry more carefully might proceed along the lines of [37].

2.3 The genus 1 topological string free energy

The reason that we needed to identify a mirror geometry (rather than merely a mirror PF
operator) in §2.2 is that the nature of the singularities that X can acquire for certain values of
the complex strcuture moduli provide important boundary data for higher genus computations.

The BCOV result for the genus 1 B-model topological string free energy is [38,39]

F (1)(ϕ) = −1
2

�

3+ h1,1(Y )−
χ(Y )

12

�

log (ϖ0)−
1
2

log
�

dt
dϕ

�

−
c2 + 12

24
log(ϕ)−

1
12

∑

i

|Gi| log(∆i) .
(13)

X will become singular for certain moduli ϕ that solve a polynomial equation ∆(ϕ) = 0. The
polynomial ∆ is the discriminant of X . Let ∆ be a product of factors ∆i that are irreducible
over Q. For ϕ a root of ∆i , X will become singular because a Lens space of the form S3/Gi
shrinks, with Gi being a group specific to the factor ∆i . The appearance of the |Gi| in (13)
was discovered in [22], and explained by the fact that as the S3/Gi shrinks a number |Gi| of
hypermultiplets become massless.

Although it will not happen for the examples presently under study, we mention that it
was observed in [40] that at a root of some ∆i multiple distinct Lens spaces may shrink. The
proposal of [40] was that the number of such collapsing Lens spaces should appear in the
genus one free energy, multiplying the coefficients of log(∆i) in (13). This is consistent with
the coefficient of log(∆i) being minus the number of massless hypermultiplets divided by 12,
as per [22].
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3 GV-PT-D4D2D0 relations

3.1 The GV and BCOV formulae

The Gromov-Witten invariants N (g)
β

of the Calabi-Yau threefold Y are computed by the all-

genus A-model topological string free energy [41]. The Gopakumar-Vafa invariants n(g)
β

are
then obtained by a multicover formula [42, 43], with the integrality explained in physical
terms as giving counts of BPS particles in an M-theory compactification on Y (so necessarily
integral). A mathematical proof of integrality of the n(g)

β
, as defined by this multicovering

relation in terms of Gromov-Witten invariants, was given in [44].
The Gopakumar-Vafa formula reads

FAll Genus(t,λ) =
∞
∑

g=0

λ2g−2F (g)(t)

= λ−2c(t) + l(t) +
∞
∑

g=0

λ2g−2
∑

β∈H2(Y,Z)

N (g)
β

qβ

= λ−2c(t) + l(t) +
∞
∑

g=0

∑

β∈H2(Y,Z)

∞
∑

m=1

n(g)
β

1
m

�

2sin
mλ
2

�2g−2

qmβ .

(14)

c(t) and l(t) are the cubic and linear polynomials in t that respectively appear in the genus 0

and genus 1 free energies. For a homology class β , qmβ denotes exp
�

2πim
∑h1,1

i=1 βi t
i
�

. The

genus 0 λ−2 term, and the associated multicovering formula, were obtained in [33]. A refined
version of this formula incorporating discrete M-theory charges (which do not arise in this
paper) has been provided in [45,46].

In order to obtain the integers n(g)
β

, one uses mirror symmetry. This has been carried out
to great effect in [14,16,17], and we do not offer any new insights here not already contained
in those papers. The B-model and A-model free energies F (g) and F (g)(t) at a fixed genus are
related by

F (g)(t) =ϖ0(ϕ)
2g−2F (g)(ϕ)
�

�

�

�

ϕ=ϕ(t)
. (15)

ϖ0 is the holomorphic series solution of the Picard-Fuchs system of X in the solution expansion
about a point of Maximal Unipotent Monodromy (MUM), with leading term 1 (more generally
this will be ϕα, where α is the distinct root of the indicial equation at the MUM point).

In the vicinity of a MUM point, a basis of b3(X ) solutions can be found such that one
has leading term 1, h1,1(Y ) have logarithmic leading behaviour, h1,1(Y ) have log-squared be-
haviour, and a final solution has log-cubed asymptotics. The mirror map, which relates the
complexified Kähler parameters of Y to the complex structure parameters ϕ of X , reads

t i =
1

2πi

ϖ1,i(ϕ)

ϖ0(ϕ)
. (16)

ϖ1,i(ϕ) is the single-log solution to the Picard-Fuchs system, with leading behaviour
ϖ0 log(ϕi) +O(ϕ) at the MUM point.

There is a unique (up to scale) holomorphic (3,0) form Ω on X . The complex structure
moduli space M of X has a Kähler structure, with Kähler potential K given by

e−K = i

∫

X
Ω∧Ω . (17)
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This provides a Kähler connection ∂ϕi K on a line bundle L over M. One also has a Levi-Civita
metric connection Γ i

jk from the metric Gi j̄ = ∂i∂ j̄K .

The Yukawa coupling is a symmetric 3-tensor on M valued in L2, given by

Ci jk =

∫

X
Ω∧ ∂ϕi∂ϕ j∂ϕkΩ , (18)

which obeys DiC jkl = DjCikl , ∂īC jkl = 0.
The S4 permutation symmetry on the indices of DiC jkl allows one to express Ci jk using

a prepotential, the genus 0 B-model free energy F (0), which is a section of L2. One has
Ci jk = Di Dj DkF (0).

While the genus 0 result is holomorphic, only depending on ϕ and not ϕ, the holomorphic
anomaly of Bershdasky-Cecotti-Ooguri-Vafa [38, 39] leads to a ϕ dependence in the higher
genus F (g)(ϕ,ϕ), which are sections of L2−2g . This anholomorphic dependence is not seen
in (15) because one takes the topological limit (introduced in [39], see also the discussion
in [17]):

F (g)(ϕ) = F (g)(ϕ,ϕ)

�

�

�

�

ϕ 7→∞
. (19)

The genus 1 holomorphic anomaly equation is given in [38,39],

∂ī∂ jF (1) =
1
2

C
nm
ī C jmn + (1−χ(Y )/24)Gī j . (20)

The solution is

F (1)(ϕ,ϕ) =
1
2

�

3+ h1,1(Y )−
χ(Y )

12

�

K −
1
2

log (det(G))

− log

�

�

�

�

�

∏

c

∆
|Gc |
12

c

h1,1(Y )
∏

i=1

(ϕi)
1
2+

c2,i
24

�

�

�

�

�

2

.

(21)

The third term above is the genus 1 ambiguity, fixed by imposing boundary data at the hyper-
conifold and MUM point singularities. In the topological limit, in the one-parameter case, this
becomes (13).

The Holomorphic Anomaly Equations (HAE) express, for g ≥ 2, the anholomorphic deriva-
tives of the free energy F (g) in terms of free energies F (h) at lower genera, h< g:

∂

∂ ϕk
F (g)(ϕ,ϕ) =

1
2

Cki jG
iiG j je2K(ϕ,ϕ)

×

�

Di DjF (g−1)(ϕ,ϕ) +
g−1
∑

r=1

�

DiF (r)(ϕ,ϕ)
� �

DjF (g−r)(ϕ,ϕ)
�

�

.

(22)

If the F (h<g) are known, then the above equation manifestly determines F (g) up to the
addition of a holomorphic function f (g)(ϕ).

The most computationally practical way to proceed is to use the polynomial structure of
these free energies, as explained in [47–49]. One computes at each genus a polynomial P(g)

of bounded degree in certain propagator functions S i j , S i , S (see for instance [48]), and the
free energy is the sum of this polynomial and the holomorphic ambiguity: F (g) = P(g) + f (g).
The recursion relation above becomes a recursive set of PDEs that define this polynomial P(g)

of the propagators.
The holomorphic ambiguity is a rational function (as is necessary for meromorphicity on

the moduli space), and by considering the possible singularities of F (g) it becomes clear that
f (g)’s denominator can be completely fixed, and the growth at infinity bounded. This means
that at each genus there is a finite set of numbers to fix in order to completely determine f (g),
the coefficients of the numerator polynomial of this rational function.
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3.2 Known constraints on the holomorphic ambiguity

One set of results we wish to stress in this paper, which exactly follows the analysis for sim-
ply connected hypergeometric models in [1], is that conjectural modularity of Maldacena-
Strominger-Witten invariants provides new constraints on the holomorphic ambiguity f (g).
This allows for explicit topological string expansions to a higher genus than previously possi-
ble. In order for these results to be evident, we here discuss previously established constraints
on the holomorphic ambiguity that we have used to compute the tables in Appendix §A. We
discuss these without including the prospect of incorporating the data obtained by directly
obtaining some curve counts using relative Hilbert schemes as was done in [14] for complete
intersections in weighted projective spaces.

For one-parameter hypergeometric models, the determination of f (g)(ϕ) (and so F (g) and
F (g)) was carried out to a high genus by Huang-Klemm-Quackenbush in [14]. This problem
was revisited by Hosono-Konishi [16] for the Grassmannian/Pfaffian pair of models discussed
by Rødland [18], and then for all one-parameter Grassmannian models by Klemm-Haghighat
[17]. Here we collect the salient results for the fixing of the ambiguity. From here forwards,
we will specialise to the one-parameter case h1,1(Y ) = h2,1(X ) = 1 with t= t1 = t.

At a conifold point, about which the mirror coordinate tc = kcϕ+O(ϕ2) for some constant
kc , the Schwinger-Gap computation of [14] provides the behaviour

F (g)(tc) = |Gc|
(−1)g−1B2g

2g(2g − 2)t2g−2
c

+O(1) . (23)

Bn is a Bernoulli number. |Gc| are the same numbers appearing as exponents in (13), giving
the number of hypermultiplets that become massless at the conifold. We obtain this kc for each
of our examples Y by taking the kc for the covers eY , from the works [14,16,26], and dividing
by the order of the quotient group. This is the correct normalisation, based on the arguments
of [14] that relate kc to the mass of a shrinking D3 brane in IIB: Since our quotient acts freely,
the shrinking D3 brane in our examples are obtained as free quotients of the vanishing cycles
on the covers, and so this mass is divided by the order of the group.

The point at infinity, the origin in ϕ̃-space where eϕ = 1
βϕ for some constant β , will be a

singularity of the Picard-Fuchs operator. The B-model free energy is subject to Kähler gauge
transformations that can add or remove singularities, but the A-model free energy is regular at
eϕ = 0 for the models we study (see the discussion on C-points in [14] for cases where F (g) is
singular at infinity). Poles of f (g) at infinity can and must cancel with poles of the propagators
S i j , S i , S, and in the original ϕ coordinate these specific poles appear as polynomial terms in
f (g). There is a bound on the degree of this polynomial, coming from the prefactor ϖ2g−2

0
in (15). Without making a change of Kähler gauge, the expansion of ϖ0 about infinity has
leading term ϕ̃a, where a is the smallest entry of the Riemann symbol of the Picard-Fuchs
operator at∞.

Finally, as we have mentioned, the construction of the propagators may introduce “fake”
singularities. f (g) must cancel these. In practice one expects to encounter this problem when
one has an apparent singularity, which is a singularity of the Picard-Fuchs operator but not
a root of the geometric discriminant polynomial ∆. The highest pole order we encounter at
these apparent singularities is 3g − 3, just as in [16].

We will write again the discriminant ∆(ϕ) as
∏

i∆i(ϕ), where ∆i are irreducible over Q.
We allow for an apparent singularity at the root of the linear polynomial ∆App(ϕ). Moreover,
we from here on assume that ϕ = 0 is a MUM point with all indices in the Riemann symbol
equalling 0.
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Based on the considerations we have discussed above, the holomorphic ambiguity takes
the form

f (g)(ϕ) =
⌊(2g−2)a⌋
∑

j=0

b jϕ
j +
∑

∆i





2g−2
∑

j=0

∑deg(∆i)−1
k=1 bi, j,kϕ

k

∆i(ϕ) j





︸ ︷︷ ︸

Fixed by gap condition

+
3g−3
∑

j=0

bApp, j

∆App(ϕ) j
︸ ︷︷ ︸

Fixed by regularity at ∆App=0

+
g−1
∑

j=⌊(2g−2)a⌋+1

B jϕ
j

︸ ︷︷ ︸

Fixed by regularity at∞

.

(24)

If there is no apparent singularity, then we discard the third term above. The fourth term arises
only as a result of choices made when constructing the propagators,4 and is immediately fixed
by regularity at every genus so that it causes no conceptual obstacle.

The gap condition (23) (once kc is known), and regularity at ∆App(ϕ) = 0 and infinity,
are sufficient to completely fix the second, third, and fourth terms in (24). It is therefore
best to discuss the remaining problem in determining f (g) as the problem of determining the
polynomial

b(ϕ) =
⌊(2g−2)a⌋
∑

j=1

b jϕ
j . (25)

The constant term b0 can always be computed without difficulty, because the constant term in
F (g)(t)’s expansion about a MUM point is known [42,51,52]. Moreover, for any fixed degree Q
(the positive integer giving the homology class in H2(Y,Z)) there is a maximal genus gmax(Q)
such that n(g)Q ̸= 0 (this finiteness conjecture is now a theorem in light of [53]). By combining
the MNOP conjecture [12,13]with new results on Wall-crossing for rank-1 Donaldson-Thomas
invariants, assuming what was referred to in [1] as the BMT inequality [54, 55], the authors
of [1] have argued that a bound is given by

gmax(Q)≤







�

Q2

2κ111
+ Q

2

�

+ 1 , Q ≥ κ111 ,
�

2Q2

3κ111
+ Q

3

�

+ 1 , 0<Q < κ111 .
(26)

We assume in this work that this BMT inequality holds for the geometries we study, so that the
above bound can be applied. Furthermore, we must make this assumption in order to apply
the results of [1], Appendix A when we compute D4D2D0 indices.

From (26), one can obtain a number QCastelnuovo(g) such that for Q ≤ QCastelnuovo(g), ng
Q

vanishes as a consequence of (26). We stress that there may be degrees Q > QCastelnuovo(g)
such that n(g)Q is zero without being implied to vanish by (26), which in some examples is
observed to occur for Q close to QCastelnuovo(g).

So with a MUM point, we are able to place some constraints on the b j in (25). However,
one must note that the number of Castelnuovo zeroes grows with the genus g asympotically as
p

2κ111 g. The number of indeterminate b j is ⌊2g−2⌋a, which always outstrips the conditions
provided by the Castelnuovo zeroes as the genus g is increased.

4To be more specific, one constructs the propagators S i j , S i , S as in [48] (equations 14, 16,17,18). There is
freedom to choose a subset of the propagator ambiguities sl

i j , h jk
i , h j

i , hi , hi j therein. We make the choice h11
1 = 0,

h1
1 = 0 globally, and s1

11 = 0 in a patch containing ϕ = 0, whereupon specific rational functions h1 and h11 are
forced upon us. This choice leads to the fourth term in (24), other choices may lead to further new terms that
can always be removed upon considering regularity (or indeed remove the fourth term altogether). Note that sl

i j

transforms under general coordinate transformations in the same manner as Γ l
i j , and not as a tensor (see [50],

equation B.5), and so cannot be taken to vanish globally with our prior choices.
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It may happen (as for the (1,6) and (1,8) models) that ϕ =∞ is also MUM point, from
which a different set of invariants n(g)Q can be computed. In these cases, the additional MUM
point provides additional Castelnuovo zeroes and one more constant term condition (in the
expansion about infinity).

3.3 The GV-PT correspondence

The relations between MSW and GV invariants that we wish to study and exploit in this paper
are stated in terms of Pandharipande-Thomas invariants PT(Q, n) [56] and Donaldson-Thomas
invariants DT(Q, n) [57] of the Calabi-Yau threefold Y . We will take a blindered approach to
these rich sets of invariants, only displaying their conjectured relation to GV invariants. The
generating functions for these invariants are

ZDT(y, q) =
∑

Q,n

DT(Q, n)yQqn , ZPT(y, q) =
∑

Q,n

PT(Q, n)yQqn . (27)

The DT/PT relation, conjectured in [56] and proven in [58,59], yields an equivalence between
these two sets of invariants. The relation uses the MacMahon function M(q), and reads

ZPT(y, q) = M(−q)χ(Y )ZDT(y, q) , M(q) =
∏

k>0

(1− qk)−k . (28)

Maulik, Nekrasov, Okounkov, and Pandharipande conjecture an equivalence between
Donaldson-Thomas and Gromov-Witten theories [12, 13]. This produces functional identities
that relate the topological string free energy with either ZDT or ZPT. Namely,

exp (FReduced(t,λ)) = ZPT

�

e2πit ,−eiλ
�

, (29)

wherein FReduced denotes FAll Genus from (14) with the polynomial pieces c(t), l(t) and con-
stant contributions (β = 0) discarded. To obtain PT invariants from a set of GV invariants
(themselves obtained by solving for the F (g)), one writes this relation in the plethystic form
due to [60]:

ZPT(y, q) = PE





∑

Q>0

gmax(Q)
∑

g=0

(−1)g−1n(g)Q (1− x)2g−2 x1−g yQ



 (−q, y) . (30)

The plethystic exponential is defined by

PE[ f (x , y)](X , Y ) = exp

�∞
∑

k=1

1
k

f
�

xk, yk
�

�
�

�

�

�

(x ,y)=(X ,Y )
. (31)

3.4 D4D2D0 indices

We will be deliberately brief in our treatment in this subsection, as these matters have already
been covered in [1], whose presentation we follow. We cover a bare minimum so that our
results in §4 and §5 can be more self-contained.

For an object E ∈ Dbcoh(Y ), there is a Mukai vector γ(E) = Ch(E)
p

Td(Y ). As in [61] we
use a basis (1, ei , ei , eY ) of HEven(Y,Z)Free. Here e j ∧ ei = δi

jeY and
∫

Y eY = 1. We expand γ(E)
following [61]:

γ(E) = Ch(E)
Æ

Td(Y ) = p0 + piei − qie
i + q0eY . (32)

We will neglect the possibility of turning on torsional D4 charge, so that the divisor’s homology
class [Dp] includes torsion pieces. In [5] the five such choices that could be made for P4[5]/Z5
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were argued to give identical sets of indices, explaining the factor of 5 in their equation (4.1)
(however, see our discussion following our equation (76)).

The components in the above expansion are subject to quantisation conditions:

p0 ∈ Z , pi ∈ Z , qi ∈ Z+
1
2
κi jkp j pk −

1
24

c2,i p
0 , q0 ∈ Z−

1
24

c2,i p
i . (33)

The integers pi , 1≤ i ≤ h1,1(Y ), define a divisor Dp ⊂ Y . The divisor Dp is the Poincaré dual
of piei . There is a quadratic form on the lattice Λ= H4(Y,Z) = H2(Y,Z) given by the matrix

κi j = κi jkpk , (34)

and the inverse matrix κi j provides a quadratic form on the dual lattice
Λ∗ = H2(Y,Z) = H4(Y,Z). The form κi j embeds Λ into Λ∗ as a sublattice, and so there is
a lattice quotient Λ∗/Λ. This quotient contains

|Λ∗/Λ|= Det
�

κi jkpk
�

, (35)

elements, each a b2-vector with integer entries.
We will not in this paper provide a complete definition of generalised

Donaldson-Thomas invariants [3]. The generalised rational Donaldson Thomas invariant
Ω(p0, pi , qi , q0; t) = Ω(γ; t) is locally constant with respect to variations of the Kähler moduli
t but can change discontinuously at walls of marginal stability. There is a conjectural integer
refinement [3],

Ω(γ; t) =
∑

k|γ

µ(k)
k2
Ω(γ; t) , (36)

which again jumps at walls of marginal stability in t-space. Ω(γ; t) and Ω(γ; t) coincide when
γ is primitive. [61] explains that, apart from the case of b2(Y ) = 1, this moduli dependence
persists in the large volume region of moduli space.

Now consider the rank 0 case p0 = 0, for which the generalised DT invariants are also
termed D4D2D0 indices. By going to the large volume attractor point (a procedure introduced
in [62]), the MSW invariants (terminology introduced in [10]) are obtained. These are given
as

Ω∞(0, pi , qi , q0) = lim
λ→∞

Ω(0, pi , qi , q0;−κi jq j + iλpi) . (37)

Importantly, these MSW indices do not depend on any moduli. Moreover, as explained in [1]
they coincide with the Gieseker index in the case that b2(Y ) = 1.

There is an autoequivalence on Dbcoh(Y ), termed spectral flow, sending an object E to
E ⊗OY (kiei) with each ki ∈ Z. The components of the Mukai vector γ(E) transform under
spectral flow as

p0 7→ p0 ,

pi 7→ pi + ki p0 ,

qi 7→ qi − κi jkk j pk −
1
2
κi jkk jkkp0 ,

q0 7→ q0 − kiqi +
1
2
κi jkkik j pk +

1
6
κi jkkik jkkp0 .

(38)

In the case p0 = 0, spectral flow leaves pi invariant. Also, in this case

q̂0 := q0 −
1
2
κi jqiq j , (39)
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is invariant under spectral flow. Furthermore, the class of the vector µ with components

µi := qi −
1
2
κi jkp j pk , (40)

in the lattice quotient Λ∗/Λ is invariant. These vectors µ, representatives of spectral-flow
equivalence classes, are called glue vectors. They number |Λ∗/Λ|.

Having these spectral flow invariants means that there is a large redundancy in the la-
belling, and notation is streamlined by writing

Ωp,µ(q̂0) = Ω∞(0, pi , qi , q0) . (41)

Any Mukai vector components qi , q0 that produce the spectral flow invariants µi , q̂0 can be
used on the right hand side. Note that the MSW index is constant along orbits of the spectral
flow action on the Mukai vector components.

There are two important numbers associated to the divisor Dp. These are χ(Dp) (the Euler
characteristic) and χ(O(Dp)) (the arithmetic genus plus 1). They are given by

χ(Dp) = κi jkpi p j pk + c2,i p
i , χDp

= χ(O(Dp)) =
1
6
κi jkpi p j pk +

1
12

c2,i p
i . (42)

Note that these quantities are both integers. It was proven in [63] (Corollary 3.3), in the case
Pic(Y )∼= Z, that Ωp,µ(q̂0) vanishes unless

q̂0 ≤ q̂max
0 =

1
24
χ(Dp) . (43)

From the quantisation conditions, the q̂0 defined in (39) with a fixed µ is such that

χ(Dp)

24
−

1
2
κi jµiµi −

1
2
µi p

i − q̂0 ∈ Z . (44)

In light of (43) and (44), we have that Ωp,µ (q̂0) can only be nonvanishing for

q̂0 =∆µ − n , n ∈ N0 , ∆µ =
χ(Dp)

24
− Fr
�

1
2
κi jµiµi +

1
2
µi p

i
�

, (45)

with Fr(x) = x − ⌊x⌋.
The MSW indices will be collected into the generating function

hp,µ(τ) =
∑

q̂0≤q̂max
0

Ωp,µ (q̂0)q
−q̂0

=
∑

n≥0

Ωp,µ

�

∆µ − n
�

q−∆µ+n , q= e2πiτ .
(46)

There is an additional symmetry, µ 7→ −µ, explained in [1] in terms of the derived duality
E 7→ E∨. This symmetry can also be seen as a consequence of the modularity transformations
detailed in the following subsection.

3.5 Modularity of MSW invariants

MSW indices are so named for the role that they play in the Maldacena-Strominger-Witten
SCFT [4], the two-dimensional N = (0,4) SCFT constructed by reducing the M5 brane world-
volume theory on the divisor Dp . The MSW invariants appear as Fourier coefficients of the
modified elliptic genus of the MSW SCFT, as explained in [10].
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Now, in the absence of subtle complications one can expect the modular symmetry of
the SCFT to be reflected in the elliptic genus, so that the MSW invariants are the Fourier
coefficients of a modular form. In [5, 6] the first examples of these modified elliptic genera
were computed by exploiting this modularity. In fact, the bound (43) on q̂0 such that the MSW
index is nonvanishing follows physically from the unitarity bound, so that there is no state in
the SCFT with L0 < 0 [10].

There are in fact substantial complications that arise when the divisor Dp is reducible. In
this case, the generating series (46) for MSW invariants transforms as a weakly holomorphic
vector valued mock modular form, as discovered in [7–9]. For explicit examples, one can
see the work [64]. For progress on finding the generating functions in the mock modular
case, see [65]. In the N = 4 case, the utility of mock modular forms for black hole counting
problems was established in [66].

In this work, we will only ever consider the case of an irreducible divisor. In this case the
only nonzero term in the sum (36) is k = 1, so we have equality between the rational and
refined Donaldson-Thomas invariants: Ω(γ; t) = Ω(γ; t). We produce a number of new exam-
ples to accompany those of [1,2], and follow their presentation of the conjectured modularity
of MSW indices. Namely, for an irreducible divisor Dp the generating function (46) should

transform as a weakly holomorphic vector valued modular form of weight −1− b2
2 .

This means that hp,µ(τ) in (46), which is a function from the upper half plane to C|Λ
∗/Λ|,

has a specific transformation law under modular transformations of the parameter τ. The
modular group PSL(2,Z) is the set of matrices

γ=

�

a b
c d

�

, (47)

with integer entries, unit determinant, and ±γ identified. This acts on the upper half plane by
fractional linear transformations,

γ : τ 7→
aτ+ b
cτ+ d

. (48)

The transformation law for hp,µ(τ) is

hp,µ(γ(τ)) = (cτ+ d)−1− b2
2

∑

ν∈Λ∗/Λ

M(γ) νµ hp,ν(τ) , (49)

where M : PSL(2,Z) 7→ GL(|Λ∗/Λ|,C) is a particular representation of PSL(2,Z). As dis-
cussed in [67, 68], this representation is chosen so that the MSW generating function trans-
forms with multiplier system M c2·p

η × Mθ , where Mθ is the multiplier system for the Siegel-
Narain theta functions discussed therein (and one should keep in mind across different papers
the conventions on θ versus θ).

Since SL(2,Z) is generated by the matrices

S =

�

0 −1
1 0

�

, T =

�

1 1
0 1

�

, (50)

it suffices to provide the matrices M(S) and M(T ). These are [2]

M(T ) νµ = eπi
�

(µi+
1
2κik pk)κi j(µ j+

1
2κ jl p

l)+ 1
12 c2,i p

i
�

δ ν
µ ,

M(S) νµ =
(−1)χDp

p

|Λ∗/Λ|
e(b2−2)πi

4 −2πiµiκ
i jν j .

(51)

We hope it causes no confusion that µ,ν are themselves vectors with components µi ,νi , which
label components of the matrices M ν

µ and vector h1,µ. The 1 subscript in h1,µ indicates that
we are considering cases with a single unit of D4 charge (so an irreducible divisor).
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A vector valued modular form of negative weight cannot be bounded as τ 7→ i∞, there
must be at least one nonzero polar term (see the discussion in [15]). Therefore, the space of
vector valued modular forms with a fixed negative weight and bounded order of poles is finite
dimensional. The dimension of this space is bounded above by the number of polar terms
(terms in the Fourier expansion with negative power of q). Importantly the dimension may be
strictly less than the number of polar terms, as discussed in [69]. The difference is explained by
the existence of certain cusp forms, with each such cusp form imposing one linear constraint on
the set of polar terms so that they admit completion to a modular form. An explicit dimension
formula is given in [15] (equation 3.9), making use of results in [70] (equation 6, page 100).

3.5.1 Basis of vector-valued modular forms

We shall make use of the basis constructed in [2], subsection 3.2.
One begins with the theta series (we use the same conventions for these as in [2], equation

(3.4))
ϑ(m,p)
α (τ, z) =

∑

k∈Z+ αm+
p
2

(−1)mpkq
m
2 k2

e2πimkz . (52)

See that ϑ(m,p)
α (τ, z) = ϑ(m,p)

α+m (τ, z) = ϑ(m,p)
−α (τ, z). Note that we have used α as a subscript

instead of µ (as in [2]) because we wish to consider multiparameter cases, so that our glue
vector µ may have multiple components.

Now consider the functions

θ (K)α (τ) =

(

ϑ(K ,1)
α (τ, 0) , K even,

− 1
2π∂zϑ

(K ,1)
α (τ, 0) , K odd.

(53)

These are the r = 1 case of the functions given in [2], equation (3.7). The vectors
�

θ (K)α (τ)
�

0≤α<K are vector valued modular forms of weight 1/2+ (K Mod 2). They transform
with multiplier system

M (K)(T ) βα = e
πi
K (α+

K
2 )

2
δ β
α , M (K)(S) βα =

e−
πi
2 K

p
iK

e−2πi αβK . (54)

The Serre derivative D acts on a modular form f of weight w by

D[ f ] = (q∂q f )−
w
12

E2 f , (55)

where E2 is the normalised Eisenstein series of weight 2. D[ f ] is a modular form of weight
w+ 2.

In the one-parameter case (with irreducible divisor) Λ∗/Λ ∼= Zκ111
, and the glue vectors µ

all have one component, integers µ in the range 0 ≤ µ < κ111. We shall follow [2] exactly,
and express our generating series of MSW invariants as combinations of functions

Pℓ
�

E4(τ), E6(τ)
�

Dℓ
�

θ
(κ111)
µ (τ)
�

η(τ)4κ111+c2,1
. (56)

Here Pℓ is a quasihomogeneous polynomial of normalised Eisenstein series E4(τ) and E6(τ),
chosen such that Pℓ is a modular form of weight 2κ111 +

1
2 c2,1 − 2− 2ℓ− (κ111 Mod 2). In the

case κ111 = 1, there is a simplification as θ (1)0 (τ) = η(τ)
3 [2].

The functions (56) provide vector-valued modular forms of weight −1
2 . They transform

with the b2 = 1 case of the multiplier system (51). It was shown in [2] that there are enough
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choices of ℓ and Pℓ so that a complete basis of weight −1/2 VVMFs with the correct multiplier
system and polar exponents ∆µ can be found among the functions (56).

In our specific multiparameter examples we have either b2 = 2 or b2 = 3. Our vectors
p will respectively be either (1,0) or (1,0, 0). We observe that the multiplier systems (51)
for our examples match with those of η(τ)−4|Λ∗/Λ|−c2,1−1+b2 Dℓ

�

θ
(|Λ∗/Λ|)
α(µ) (τ)
�

, where α maps
the glue vectors µ into Z|Λ∗/Λ|. Moreover, this combination of theta and eta functions has the
correct polar exponents ∆µ, and we can express the MSW generating functions as a sum of
these functions multiplied by suitable powers of E4(τ) and E6(τ).

In the course of studying our multiparameter examples the Rademacher expansion, ex-
tended to VVMFs in [71] and further detailed in [69, 72] has proved very useful. The multi-
plier system (51), weight −1− b2

2 , polar exponents (45), and polar terms (provided by (57),
with our examples only having a single polar term) are sufficient to uniquely fix a VVMF. This
data can be inserted into the Rademacher expansion, equation (A.3) of [69], to produce the
non-polar terms. In practice one only sums a finite number of terms in the infinite sum and
observes this to be close to the true integer value. This method reproduces the modular forms
that we display in our results. Rademacher expansions were instrumental in the reproduction
of N = 8 microstate counts from the gravitational path integral in [73].

3.6 Feyzbakhsh’s explicit formulae

3.6.1 First theorem

The first of the explicit results that we shall make use of appears as Theorem 4 in Appendix A
of [1]. This is a stronger version of Theorem 1.1 of [11]. To begin with we will only consider
h1,1(Y ) = 1, so that our D4 charge vector has a single component equalling p (which should
be set to one for the irreducible case). The result provides an expression for Ωp,µ (q̂0), subject
to a very strong constraint on the reduced D0-brane charge q̂0. In fact this constraint is so
strong that in our examples we are only able to apply the theorem for a single reduced D0
charge, q̂max

0 = χ(Dp)/24, with residual D2 charge µ = 0. In light of this we will not present
the theorem in full, but state the sole result that we make use of:

Ωp,0

�

χ(Dp)

24

�

=
�

#H2(Y,Z)Torsion

�2
(−1)1+χDpχDp

. (57)

This special case of the theorem was presented as equation (4.7) in [1], but there the factor
�

#H2(Y,Z)Torsion

�2
was equal to 1 as all examples of Y therein were simply connected, with

torsion-free second cohomologies.
Our multiparameter examples with h1,1 > 1 will be solved if we can compute the single

polar term in each case. Since (apart from the (2,12) model) these examples do not satisfy
Assumption (⋆) of [1]’s Appendix A, we cannot rigorously apply (57) with p replaced by a
vector p. In line with the AGMP ansatz to be discussed in §3.7, we propose to do just this,
and apply (57) (with p 7→ p) in our multiparameter examples to compute these single polar
terms. We are taking the ansatz proposed by the authors of [2] for this most polar term, and
multiplying by
�

#H2(Y,Z)Torsion

�2
. In every example known so far this works because for those

most polar terms the AGMP ansatz matches with the theorem from [1]. Although this remains
open for these multiparameter cases, it is our best guess. In case it is wrong, our generating
functions will still be correct up to scale, assuming modularity.

3.6.2 Second theorem

For all bar one of our h1,1 = 1 examples, the theorem (57) is sufficient for us to determine the
generating functions for Abelian D4D2D0 indices if we assume their modularity. To test the
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modularity of D4D2D0 indices and apply it to the problem of constraining the holomorphic
ambiguity, and to study the remaining case not solved by (57), we will make use of a different
formula. In this discussion we will have h1,1(Y ) = 1, so that the D4 charge vector has a single
component equal to 1. We only apply this result to our h1,1 = 1 cases.

The authors of [1]made use of Theorem 1 in their Appendix A. This builds on Theorem 1.2
in [11]. Proposition 2 in that same Appendix A generalises this theorem, in particular allowing
for torsion in H2(Y,Z). In the h1,1 = 1 cases we are interested in, the summation range in that
proposition works out to be the same as the range defined for Theorem 1. This means that
although we are considering manifolds with torsion in H2(Y,Z), the ultimate expression we
use will be the same as [1], equation (4.19).

Their result involves the function

f : R+ 7→ R , f (x) =







































x + 1
2 , if 0< x < 1 ,
q

2x + 1
4 , if 1≤ x < 15

8 ,

2
3 x + 3

4 , if 15
8 ≤ x < 9

4 ,

1
3 x + 3

2 , if 9
4 ≤ x < 3 ,

1
2 x + 1 , if 3≤ x .

(58)

Additionally there are notations

χ(Q′, m′) = m−m′ +Q+Q′ −χD1
,

q̂′0 = m′ −m−
1

2κ111
(Q′ −Q)2 −

1
2
(Q+Q′) +

χ(D1)
24

.
(59)

Now suppose that

(Q, m) ∈ Z+ ×Z , f
�

Q
κ111

�

< −
3m
2Q

. (60)

Then there are relations [1]

PT(Q, m) =
∑

(Q′,m′)

(−1)χ(Q
′,m′)χ(Q′, m′)PT(Q′, m′)Ω1,Q−Q′

�

q̂′0
�

, (61)

where the sum runs over pairs (Q′, m′) that satisfy

0≤Q′ ≤Q+ κ111

�

1
2
+

3m
2Q

�

,

−
Q′2

2κ111
−

Q′

2
≤ m′ ≤ m+

1
2κ111

(Q−Q′)2 +
1
2
(Q+Q′) .

(62)

The formula (61) appeared in [1] as equation (4.12). As explained there, the pairs (Q′, m′)
summed over only involve Q′ < Q with strict inequality. For each Q′, there are finitely many
m′ allowed by (62). This means that (61) is recursive in Q.

Following [1], note that PT(0,0) = 1. So one can hope to invert (61) to obtain a recursive
expression for Ω1,µ(q̂0). However, the integers Q = µ, m = −q̂0 +

χ(D1)
24 −

1
2κ111

Q2 − 1
2Q may

not satisfy (60) so that (61) cannot be used. The way around this problem, due to [1], is to
abuse spectral flow. There exists some kmin ∈ Z+ such that for all integers k ≥ kmin the pairs

(Qk , mk) =
�

µ+ kκ111 ,
χ(D1)

24
− q̂0 −

1
2κ111

Q2
k −

1
2

Qk

�

, (63)
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satisfy (60). This is a spectral flow transformation, and the D4D2D0 index Ω1,µ(q̂0) will be
the same for (Qk, mk) as it is for the original (Q, m). Thus, for each k ≥ kmin one can write the
Abelian D4D2D0 index as5

Ω1,µ (q̂0) =
(−1)mk+Qk−χD1

mk +Qk −χD1

×



PT(Qk, mk)−
∑

(Q′,m′ )̸=(0,0)

(−1)χ(Q
′,m′)χ(Q′, m′)PT(Q′, m′)Ω1,Qk−Q′(q̂

′
0)



 .

(64)

The q̂′0 in (64) are computed from (59) with (Q, m) replaced by (Qk, mk). Similarly, the
χ(Q′, m′) in (64) are computed as in (59) but with (Q, m) replaced by (Qk, mk). Note that
after suitably applying (61) and specialising (62), the summation range in (64) runs over
pairs (Q′, m′) satisfying the following inequalities:

0<Q′ ≤Qk +κ111

�

1
2
+

3mk

2Qk

�

,

−
Q′2

2κ111
−

Q′

2
≤ m′ ≤ mk +

1
2κ111

(Qk −Q′)2 +
1
2
(Qk +Q′) .

(65)

3.7 The AGMP ansatz

The authors of [2] provide a physically-motivated formula for the polar terms in h1,µ(τ). Al-
though there are cases where this is known to be incorrect (see the note added in page 6, [2]
v2), it produces the correct result in many cases. As discussed in [1], a better understanding
of the range of validity of this expression would elucidate on proposed relations between the
polar terms and bound states of D6-D6-branes [74].

The AGMP Ansatz reads, in the case of a simply connected threefold with b2 = 1 (so that
the D4 charge p is given by an integer p),

Ωp,µ (q̂0) = (−1)pµ+n+χDp (pµ+ n−χDp
)DT(µ, n) , (66)

where 0 ≤ µ ≤ 1
2 pκ111 is taken, otherwise one uses the µ ↔ pκ111 − µ symmetry. Here

n is the integer from (45). (66) is equation (5.20) in [2], and equation (4.8) in [1]. This
can be obtained by truncating the sum provided by the rigorous theorem 4 of [1] (appendix
A) and ignoring the assumptions of said theorem. Since that sum includes an overall factor
(#H2(Y,Z)Torsion)2, we guess that in the non-simply connected case one should modify (66)
to

Ωp,µ (q̂0) = (#H2(Y,Z)Torsion)
2(−1)pµ+n+χDp (pµ+ n−χDp

)DT(µ, n) , (67)

and then study whether this formula fails or succeeds.
We raise this for two reasons. The first is that for P5[3, 3]/Z3, the GV invariants that

we compute in §A are insufficient for us to use (64) with any valid spectral flow parameter
k ≥ kmin. We go on to use invalid values k < kmin to arrive at a modular form, and note that
this naive result is in agreement with (67).

5By way of explanation, as in [1] we seek a useful expression for Ω1,µ (q̂0) ≡ Ω1,µ

�

∆µ −m
�

and wish
to use (61). However, it is not guaranteed that (Q, m) ≡ (µ,−q̂0 + ∆µ) satisfies the conditions (60). If
one replaces (Q, m) with (Qk, mk) as in (63), for a k such that (60) is satisfied, then one gets an in-
stance of (61) reading PT(Qk, mk) = (−1)χ(0,0)χ(0, 0)PT(0,0)Ω1,Qk

�

∆Q −mk

�

+ corrections. This equation can
be rearranged to give Ω1,µ(q̂0), which does not appear in the corrections. Note that PT(0, 0) = 1, and
Ω1,Qk

�

∆Qk
−mk

�

= Ω1,µ

�

∆µ −m
�

by spectral-flow invariance of generalised DT invariants. This rearrangement
gives Ω1,µ(q̂0) = (−1)χ(0,0)χ(0, 0)−1 [PT(Qk, mk)− corrections], which is exactly equation (64).
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The second reason is that the (1,8) and (1,6) models in our Table 1 are quotients of mani-
folds that famously have derived equivalent partner manifolds. Subject to the assumption that
both quotients, of two derived equivalent manifolds by the same group, are derived equiva-
lent we obtain the GV invariants presented in §A. It would be interesting to compute D4D2D0
indices for the Z7 quotient of the codimension 7 complete intersection Calabi-Yau in Gr(2,7),
and the Z5 quotient of the Reye congruence. We do not have sufficiently many GV invariants
to utilise (64) in these cases, so must resort to trying (67) and (66). This does not work. The
AGMP ansatz predicts sets of polar terms that cannot be completed to modular forms.

We defer further study of these models to the future, and here only list the polar terms
provided by (67) before we move on to our more successful examples.

The first case of these problematic models is the Z7 quotient of the
(1,1,1,1,1,1,1) intersection in Gr(2,7) [16–18], which has relevant topological data
κ111 = 6, c2,1 = 12, H2(Y,Z) = Z⊕Z7.

The second case is the Z5 quotient of the Reye congruence [21,26,75], which has κ111 = 7,
c2,1 = 10, H2(Y,Z) = Z⊕Z10.

Equation (67) leads to

First case: hpolar
1 (τ) =

















−98q−3/4

882q−1/6

343q−5/12

0
343q−5/12

882q−1/6

















, Second case: hpolar
1 (τ) =





















−200q−17/24

1600q−23/168

500q−71/168

0
0

500q−71/168

1600q−23/168





















. (68)

Using (66) instead only scales these vectors, and we still cannot obtain modular forms with the
correct transformation properties that have the above polar parts. This is a similar situation
as for the models X4,2, X3,2,2, and X2,2,2,2 in Appendix C of [2].

4 One-parameter examples

4.1 Z5 quotient of the quintic threefold, the (1,21) model

The quintic threefold P4[5] is given by the vanishing of a degree 5 polynomial in P4, and
we will take P4 to have homogeneous coordinates

�

y0 : y1 : y2 : y3 : y4

�

. It has been known
since [32] that there is a 21-dimensional locus inside the 101-dimensional complex structure
moduli space of P4[5] such that the Z5 action on P4 generated by

�

y0 : y1 : y2 : y3 : y4

�

7→
�

y0 : e
2πi
5 y1 : e

2πi
5 ·2 y2 : e

2πi
5 ·3 y3 : e

2πi
5 ·4 y4

�

, (69)

descends to a free Z5 action on P4[5]. One could also make a linear change of coordinates so
that the Z5 action is instead generated by yi 7→ yi+1.

4.1.1 The mirror

Following [76,77], the mirror Laurent polynomial equation with complex structure parameter
ϕ is

x1 + x2 + x3 + x4 +
ϕ

x1 x2 x3 x4
= 1 . (70)

The mirror of P4[5] is a subvariety of the toric variety labelled P∆∗ in [76]. As we only require
two things from the mirror, period integrals and an analysis of theZ5 fixed points, it is sufficient
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for our purposes to have the coordinates x i live in a dense torus (C∗)4 ⊂ P∆∗ , whereupon the
locus of (70) is birational to the true smooth mirror. To recover the perhaps more familiar equa-
tion for the mirror quintic used in [33] one makes a replacement x i 7→ ϕ1/5 x5

i /(x1 x2 x3 x4),
homogenises to introduce x5, and then identifies ψthere =

1
5ϕ
−1/5
here .

The discriminant of (70) is well known, ∆= 1−55ϕ. The Picard-Fuchs operator has been
known since [33] to be a generalised hypergeometric equation with fundamental solution

ϖ0(ϕ) = 4F3

�

1/5, 2/5, 3/5, 4/5
1, 1, 1

; 55ϕ

�

. (71)

The computation of higher genus invariants n(g)k then proceeds almost exactly as in [14], with
orbifolds like the one to be discussed soon already mentioned in that paper as extra results.
The major substantial difference is that when one takes a Z5 quotient, the conifold point is
replaced by a hyperconifold point. Instead of a shrinking S3 there is a shrinking Lens space
S3/Z5, and this is taken into account when computing the genus one free energy. This change
cascades into all of the higher genus free energies.

It has been known since [32, 78], where the mirror quintic threefold was originally con-
structed, that the mirror of the quintic’s Z5 quotient is the Z5 quotient of the mirror. The
equation (70) has a Z5 symmetry generated by x1 7→ x2 7→ x3 7→ x4 7→ ϕ/(x1 x2 x3 x4). There
is a more symmetric presentation of (70), obtained by introducing a new coordinate x5 and
an additional equation as follows:

x1 + x2 + x3 + x4 + x5 = 1 ,

x1 x2 x3 x4 x5 = ϕ .
(72)

The Z5 symmetry is now x i 7→ x i+1. At any fixed point all five x i are equal by assumption, and
then the first equation of (72) provides x i =

1
5 . Then the second equation of (72) can only be

solved for one value of ϕ, which coincides with the discriminant locus ϕ = 5−5.
This means that when we compute the genus one free energy as in (13), we will have

|G1|= 5.

4.1.2 Abelian D4D2D0 indices

The quotient manifold P4[5]/Z5 has topological data

κ111 = 1 , c2 = 10 , χ = −40 . (73)

Since κ111 = 1, the VVMF h1,µ generating Abelian D4D2D0 invariants will have rank 1. One
computes

χD1
=

1
6
κ111 +

1
12

c2 = 1 , χ(D1) = κ111 + c2 = 11 , ∆0 =
χ(D1)

24
=

11
24

. (74)

As consequence of formula (8), Tors
�

H2
�

P4[5]/Z5

��∼= Z5. We can then use (57) to com-
pute

Ω1,0

�

11
24

�

= 25 . (75)

Since h1,µ has only one component (µ = 0), and only a single term in the q-series for this
component has a negative exponent, the above computation completely fixes h1,0. This exam-
ple has already been addressed in [5] (section 4), where it was realised that the solution must
take the form h1,0 = Cη−11E4, with η the Dedekind eta function, E4 the weight-4 Eisenstein
series, and C an integer.
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We obtain

h1,0(τ) = 25η(τ)−11E4(τ)

= 25q−11/24
�

1 + 251q+ 4877q2 + 49378q3 + 360005q4 + . . .
�

.
(76)

The prefactor of 25 differs to the result of [5], wherein the prefactor was taken to be 5. Now,
there the authors were aiming to compute degeneracies for all D4D2D0 bound states, and so
they summed over the torsion classes in H2(P4[5]/Z5,Z) to arrive at their factor of five. We
do not do this, but there is still a discrepancy as if we did sum over the torsion classes in this
manner then our prefactor would be 125.

4.1.3 Interplay with GV invariants

In Appendix §A, Table 5, we provide GV invariants up to genus 10. This is the highest genus
we can reach with the boundary conditions described therein.

We will now attempt to recompute Ω1,0

�11
24

�

= 25 using the other explicit formula (64),
for which we require these GV invariants. The smallest value of the spectral flow parameter k
such that the pair (Qk, mk) of (63) satisfy the inequality (60) is kmin = 2.

We will also consider the recomputation ofΩ1,0

�11
24 − 1
�

= 25∗251. For µ= 0, q̂0 = q̂max
0 −1

the minimal allowed value of k is kmin = 4.
µ= 0, q̂0 = q̂max

0 , k = kmin = 2 :

For k = kmin = 2, we have (Qk, mk) = (2,−3). The only pair in the range defined by (65) is
(Q′, m′) = (0,1). Since PT(0,1) = 0, the sum in (64) contributes nothing and so (64) provides
us with

Ω1,0

�

11
24

�

=
(−1)mk+Qk−χD1

mk +Qk −χD1

PT(Qk, mk)

�

�

�

�

(Qk ,mk)=(2,−3)
= −

n(4)2

2
. (77)

We have used the PT-GV correspondence in the final equality. Since we have already indepen-
dently computed n(4)2 = −50 in Table 5, we see that the explicit formula (64) is confirmed.
µ= 0, q̂0 = q̂max

0 , k = kmin + 1= 3 :

Now we compute the same D4D2D0 invariant as before, but with a different value for the
spectral flow parameter k. This time (Qk, mk) = (3,−6). Once again the only pair in the range
defined by (65) is (Q′, m′) = (0, 1), and PT(0,1) = 0, so the sum in (64) contributes nothing.
From (64) we read

Ω1,0

�

11
24

�

=
(−1)mk+Qk−χD1

mk +Qk −χD1

PT(Qk, mk)

�

�

�

�

(Qk ,mk)=(3,−6)
= −

n(7)3

4
. (78)

From Table 5, we already have n(7)3 = −100 and we once again confirm that the prediction
from (64) is correct.
µ= 0, q̂0 = q̂max

0 , k = kmin + 2= 4 :

Now we have (Qk, mk) = (4,−10). There are two pairs in the range defined by (65), those
being (Q′, m′) = (0, 1) and (0, 2). Since PT(0,2) = PT(0, 1) = 0, the sum in (64) contributes
nothing. From (64) we read off

Ω1,0

�

11
24

�

=
(−1)mk+Qk−χD1

mk +Qk −χD1

PT(Qk, mk)

�

�

�

�

(Qk ,mk)=(4,−10)
=

n(11)
4

7
. (79)

This number does not appear in our tables §A as we required one additional datum to compute
the GV invariants at genus 11. By taking (79) as input we can solve the topological string to
genera 11,12,13. We display some new invariants in Table 2.
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Table 2: GV invariants for the quintic’s Z5 quotient, obtained by combining (79) with
the results of §A.

k n(11)
k n(12)

k n(13)
k

1 0 0 0
2 0 0 0
3 0 0 0
4 175 0 0
5 -7169430652 794737725 -61263800
6 2602101884428630 -231085360252560 59862993108300
7 87967441882643127859850 4756262670014883289150 111922686673158134550
8 151493784464416577906799492925 32156743263310689530717111260 4228191354832779283415651050

µ= 0, q̂0 = q̂max
0 − 1, k = kmin = 4 :

We now turn to recomputing a different D4D2D0 invariant, the first of our computa-
tions to test the modularity of (76) (whereby all terms in the q-series are fixed once we
fix the first term). For this case, we have (Qk, mk) = (4,−9). The contributing pairs
(Q′, m′) are (0, 1), (0, 2), (0, 3), (1,−1), and (1, 0). The first three cannot contribute because
PT(0, 1) = PT(0, 2) = PT(0,3) = 0. However, PT(1,−1) = n(2)1 and PT(1, 0) = n(1)2 + 20n(2)1
are both nonzero. Nonetheless, these pairs also do not contribute because the corresponding
values of q̂′0 violate (43).

Specifically, for (Q′, m′) = (1,−1) we find that q̂′0 = q̂max
0 + 1. For (Q′, m′) = (1,0) we find

q̂′0 = q̂max
0 + 2. Therefore, the sum in (64) once again does not contribute and we read off

Ω1,0

�

−
13
24

�

=
(−1)mk+Qk−χD1

mk +Qk −χD1

PT(Qk, mk)

�

�

�

�

(Qk ,mk)=(4,−9)
= −

1
6

�

n(10)
4 + 20n(11)

4

�

. (80)

We are pleased to report that, with n(10)
4 = −41150 from Table 5 and n(11)

4 = 175 from (79),
the tentative relation (80) does indeed hold: −1

6(−41150+ 20 ∗ 175) = 6275= 25 ∗ 251.
Additional GV invariants assuming (64):

By recomputing Ω1,0

�11
24

�

, Ω1,0

�

−13
24

�

, Ω1,0

�

−37
24

�

using k = 5, which respectively is
kmin + 3, kmin + 1, kmin, we are able to obtain the following GV invariants:

n(14)
5 = 2965700 , n(15)

5 = −71000 , n(16)
5 = 275 . (81)

This provides us with enough data to expand up to genus 15, as displayed in Table 3. After
incorporating (81) we are still in need of one more datum to obtain further genus 16 invariants.

Table 3: GV invariants for the quintic’s Z5 quotient, obtained by combining (79) and
(81) with the results of §A.

k n(14)
k n(15)

k

1 0 0
2 0 0
3 0 0
4 0 0
5 2965700 -71000
6 -12576522370080 2158870171160
7 3256013529576897075 -813245152733660750
8 330378094976934638810586210 14511004385732885931249005
9 2543092010804637552209780798490390 421954236680996731171378302165400
10 3250497633874077193629894835512058573790 1301446688552380479335402521670946275490
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Testing (64) with spectral flow parameter k < kmin:
An important observation of [1] is that in some of their examples the explicit formula (64)

was able to correctly relate GV invariants with the indices read off from h1,µ, even if they used
a value k for the spectral flow parameter such that (Qk, mk) did not satisfy the inequality (60).

ConsiderΩ1,0

�11
24

�

, Ω1,0

�

−13
24

�

, andΩ1,0

�

−37
24

�

as read off from (76). These three numbers
are 25, 6275, and 121925. When we attempt to recompute these numbers using k = kmin−1,
we obtain respectively 10, 6248+1

3 , and 122096. These are all incorrect, although tantalisingly
close.

4.2 Z3 quotient of the bicubic threefold, the (1,25) model

Now we turn to eY ∼= P5[3, 3], the complete intersection of two cubic hypersurfaces in P5. As
explained in [75], members of this family can be found with freely acting Z3 and Z3 × Z3
symmetries. The generators of Z3 × Z3 act on the homogeneous coordinates yi of P5 by the
actions

[y1 : y2 : y3 : y4 : y5 : y6] 7→ [y2 : y3 : y1 : y4 : y5 : y6] ,

[y1 : y2 : y3 : y4 : y5 : y6] 7→ [y1 : ζy2 : ζ2 y3 : y4 : ζy5 : ζ2 y6] , ζ= e2πi/3 .
(82)

Note that if we fix one of these actions, we can then change coordinates so that the Z3 has the
other action action on the new coordinates. We pick either of the above two Z3 actions and
here consider the quotient Y ∼= P5[3,3]/Z3.

4.2.1 The mirror

Following [76,77], the mirror eX of P5[3, 3] is a complete intersection in the toric variety P∆∗
from [76]. The Laurent polynomial equations defining this intersection are

x1 + x2 + x3 = 1 ,

x4 + x5 +
ϕ

x1 x2 x3 x4 x5
= 1 .

(83)

The Picard-Fuchs operator is a generalised hypergeometric operator annihilating the funda-
mental period

ϖ0(ϕ) = 4F3

�

1/3, 1/3, 2/3, 2/3
1, 1, 1

; 36ϕ

�

. (84)

The discriminant is
∆= 1− 729ϕ . (85)

The equations (83) have a Z3 symmetry generated by simultaneously applying
x1 7→ x2 7→ x3 7→ x1 and x4 7→ x5 7→ ϕ/(x1 x2 x3 x4 x5). We will once again introduce an
extra coordinate x6, so that we can write (83) as the intersection of three hypersurfaces

x1 + x2 + x3 = 1 ,

x4 + x5 + x6 = 1 ,

x1 x2 x3 x4 x5 x6 = ϕ .

(86)

Now our Z3 action is generated by the simultaneous x1 7→ x2 7→ x3 7→ x1, x4 7→ x5 7→ x6 7→ x4.
We take X ∼= eX/Z3, and turn to studying fixed points. At a fixed point we must have
x1 = x2 = x3 and x4 = x5 = x6. From the first two equations in (86), we must have all
x i = 1/3. The third equation in (86) can only be solved if ϕ = 3−6, which solves ∆= 0.

This means that when we compute the genus one free energy, we take |G1|= 3 in (13).
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4.2.2 Abelian D4D2D0 indices

The topological data of the quotient manifold P5[3, 3]/Z3 is

κ111 = 3 , c2 = 18 , χ = −48 . (87)

One computes

χD1
=

1
6
κ111 +

1
12

c2 = 2 , χ(D1) = κ111 + c2 = 21 ,

∆0 =
χ(D1)

24
=

7
8

, ∆1 =
χ(D1)

24
− Fr

�

12

2κ111
+

1
2

�

=
5

24
.

(88)

From (8), Tors
�

H2
�

P5[3, 3]/Z3

��∼= Z3. Then (57) provides

Ω1,0

�

7
8

�

= −18 . (89)

Since κ111 = 3, the VVMF h1,µ generating Abelian D4D2D0 invariants will have rank 2. Each
component h1,0 and h1,1 = h1,2 has a single polar term, and we must compute two terms in
either q-series in order to fix the entire h1,µ. We have no way of rigorously doing this.

Anyway, note that to compute Ω1,0

�7
8

�

using (64), kmin = 2. If we attempt to use k = 2,

then (64) provides Ω1,0

�7
8

�

= n(10)
6 /5. If we take the suggested GV invariant n(10)

6 = −90 as
input data then we can solve the holomorphic anomaly equations up to genus g = 11, and are
left in need of extra data still to solve at g = 12.

We do not have sufficiently high genus GV invariants to compute any other terms in h1,µ
using (64) with k ≥ kmin. But we can try to compute two entries using k = kmin − 1. We
tentatively find

using k = 2 : Ω1,0

�

7
8
− 1
�

?
= −

1
4

�

n(9)6 + 18n(10)
6

�

= 1566= 9 ∗ 174 ,

using k = 1 : Ω1,1

�

5
24

�

?
= −

1
2

n(5)4 = 486= 9 ∗ 54 .

(90)

Moreover, Ω1,1

� 5
24

�

= 486 agrees with the modified AGMP ansatz (67). We have had to use

the value of n(10)
6 previously predicted by using (64).

After fixing Ω1,0

�7
8

�

using (89) we only had to fix a single additional entry. We find that
the two highly speculative computations in (90) are consistent, in that if we assume either one
then the other is implied by the resulting expansion for h1,µ. Based on this quasimiracle we
aggressively conjecture that

h1,µ
?
=

9
η(τ)30

��

E6(τ)2

24
+

E4(τ)3

8

�

θ (3)µ (τ) + 2E4(τ)E6(τ)D
�

θ (3)µ (τ)
�

�

,

h1,0(τ)
?
= 9q−7/8
�

−2 + 174q+ 119052q2 + 5318746q3 + 117995460q4 + . . .
�

,

h1,1(τ)
?
= 9q−5/24
�

54 + 26838q+ 1669194q2 + 44349552q3 + 738224496q4 + . . .
�

.

(91)

We have not displayed h1,2(τ) = h1,1(τ).
We do not find any other entries of (91) to be computed correctly using (64) with k < kmin

besides (90). By recomputing Ω1,1

� 5
24

�

using k = kmin = 2 we predict n(12)
7 = −2916, which

provides new input so that we can solve for the topological string partition function at genus
12. The new GV invariants that we are able to compute using this input from (91) are listed
in Table 4.
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Table 4: Speculative GV invariants for the Z3 quotient of the bicubic, assuming va-
lidity of (64) and (91).

k Speculative n(10)
k Speculative n(11)

k Speculative n(12)
k

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 -90 0 0

7 -84613626 1275750 -2916

8 9171367649964 -91871426772 4618959012

9 13003585821138309318 153778390444153740 365228012942442

10 1415928995638950548200644 76752945272483301322845 2017959285916872796176

11 44581192598784631364029390923 6134256441374176923994189962 508977170467926887932328988

12 669514061987901745772649256357758 180383720682931916283051956277939 32610350325425780729130502024368

13 6077335091750164066412936523391376463 2776349986355483474800145118100488378 906404671066163665506921981409451202

With further applications of (64) to recompute entries of (91), we can obtain further pre-
dictions

n(19)
9

?
= −198 , n(19)

10
?
= −12478031532 ,

n(20)
10

?
= 286364808 , n(21)

10
?
= −3163860 , n(22)

10
?
= 6318 .

(92)

4.3 Z7 quotient of Rødland’s pfaffian threefold, the (1,8) model

Let Ai , 0≤ i ≤ 6, be a set of seven 7×7 antisymmetric matrices. With x i giving homogeneous
coordinates on P6, introduce the matrix NA =

∑6
i=0 x iAi . The subvariety of P6 defined as the

locus of x i where Rank(NA) ≤ 4 is, for generic Ai , a smooth Calabi-Yau threefold which in
this section we denote eY . This construction is due to Rødland, who also provided a candidate
mirror construction. Note that eY is not a complete intersection (instead it is the noncomplete
intersection of the vanishing loci of NA’s 6×6 Pfaffians), and so the machinery of toric geometry
is not readily available for constructing the mirror.

4.3.1 The quotient and the mirror

There is a non-freely acting Z7 × Z7 symmetry of P6, generated by x i 7→ x i+1 and x i 7→ wi x i
with w a seventh root of unity. The tables of [19] include a Z7 quotient of eY , which in this
section will be labelled by Y . Ideally, we would display a choice of matrices Ai such that the
locus Rank(NA) ≤ 4 is both smooth and admits one of the Z7 as a freely acting symmetry. We
opt for a more circuitous argument that such a choice exists, that works with a choice such that
Z7×Z7 acts freely but the Rank(NA)≤ 4 locus is not smooth. Having done this, we will go on
to show that Rødland’s proposal for the mirror is compatible with us taking the Z7 quotient.

Existence of a smooth quotient Y :

Following [18], let E ∼= C7 and consider E ∧ E, which can be identified with the set of
7 × 7 skew-symmetric matrices N . Each N has 21 independent components that, working
projectively, furnish P(E ∧ E) ∼= P20. Rødland considers the locus in P(E ∧ E) where N has
rank ≤ 4, which defines the Pfaffian variety, the non-complete intersection in P20 given by the
vanishing of the Pfaffians of the seven 6 × 6 diagonal minors of N . Intersecting the Pfaffian
variety with a generic 6-plane P6 in P20 provides a Calabi-Yau threefold eY , which [18] denoted
XA.
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Rødland identifies an R∼= Z7×Z7 action on this P(E∧E). If6 e j is a basis of E, the R action
has generators σ : e j 7→ e j+1 and τ : e j 7→ exp(2πi

7 j)e j . Hσ and Hτ will denote the subgroups
generated by σ and τ. The different choices of linear embeddings of the P6 in P20 constitute
the complex structure moduli space of eY , and it was shown that h2,1(eY ) = 50. Within the
50 dimensional space of complex structures of eY is a P2 subvariety where the R actions on
P(E ∧ E) and P6 are compatible, so that R generically acts freely on eY . On this P2, eY has 49
double points and is not smooth. R acts freely and transitively on the set of 49 double points.
We will use eYsing to display this singular family fibred over the P2. We can take the quotient
by Hσ to obtain a variety Ysing.

We will argue that Ysing admits a smooth deformation by appealing to a theorem of Fried-
man [79], which was proven by alternative topological methods in [80] (Theorem 1.2 therein).
This states that a Calabi-Yau threefold X with ordinary double point singularities admits a
smoothing iff there exists a relation

∑

k δk[Ck] = 0 in H2(X+,R) with each δk ̸= 0, where
X+ is a small resolution of X obtained by replacing each ODP singularity pk with a smooth
rational (-1,-1) curve Ck (such an X+ exists). We therefore have a small resolution7

eY+ with
some relation between the homology classes of the exceptional curves, but these curves are
exchanged freely and transitively by the R action and so we also have a free R action on eY+.
If we quotient eY+ by Z7 then we get Y+sing, which is a small resolution of Ysing. The homology

relations for eY+ lead to homology relations between the exceptional curves in Y+, which there-
fore by Friedman’s theorem admits a smoothing Y . Note that this argument breaks down if
we quotient by Z7×Z7 because then there is only one exceptional curve, and so the necessary
nontrivial homology relation cannot be found in H2(eY+/(Z7 ×Z7),R).

Rather than count the number of Z7 invariant deformations of eYsing to obtain h2,1(Y ), we
resort to using the Euler characteristic: h2,1(Y ) = h1,1(Y )− (χ(eY )/7)/2= 8.

Towards a mirror construction:
Rødland [18] goes on to argue that a mirror eX to eY can be constructed by going to a

line in this P2 where eYsing acquires seven fixed points under Hτ, then quotienting by Hτ, and
then resolving the singularities. We shall explain this, and emphasise that Rødland’s mirror
construction is compatible with the Hσ quotient, and so propose that the mirror X of Y is
eX/Z7. We leave it open to construct the mirror of the quotient more carefully, perhaps along
the lines of [37].

In Rødland’s construction [y1 : y2 : y3] are homogeneous coordinates for the P2 parameter
spaces of eYsing and y3 = 0 gives a line (with parameter y = y2/y1) on which the seven fixed
points of Hτ in P6 lie on eY , and these fixed points are also ODP singularities. Note that for
generic points on the line y3 = 0, Hσ acts freely. On this line eYsing has (49+7) double points.
The quotient eYsing/Hτ has 14 singularities: 7 double points (the image of the previous 49) and
7 further orbifold singularities. These are resolved to produce eX . Now, if we quotient by Hσ
we are left with two singularities, one ODP and one Z7 orbifold. Resolving these produces
eX/Z7, which we take to be our X .

Higher genus considerations:
The importance of identifying X is that we must work out what kind of Lens space shrinks

at the conifold singularities in order to proceed with higher genus computations. For Rød-
land’s model, eYsing acquires seven more ordinary double points when the line y3 = 0 inside P2

intersects one of the other lines where Hσ does not act freely, and these seven singular points
are fixed under the Hσ action. This was found in [18] to occur for y21−289y14−58y7+1= 0.
Now, after taking the Hτ quotient in order to construct eX , these seven singularities are
identified into a single singularity so that eX has one ODP fixed under the Hσ action when

6He we use lowercase e to align with [18], these are not cohomology generators as in the rest of this paper.
7It is indeed known that there is a h1,1 = 2 CY3 resolution eY + of eYsing, as this also appears in the tables of [19].
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∆(y7) ≡ y21 − 289y14 − 58y7 + 1 = 0. This means that X has a Z7-orbifold singularity for
these values of y , and so our genus one free energy (13) will have |G1|= 7.

The Picard-Fuchs operator for eX and X is given in [18], the mirror complex structure
coordinate is ϕ = y7. This has singularities at the three hyperconifold points where∆(ϕ) = 0,
an apparent singularity atϕ = 1, and two MUM points atϕ = 0 andϕ =∞. The higher genus
problem for this operator, in the context of eY , was addressed by Hosono and Konishi in [16],
which provides the necessary practical methods (which we make use of) to impose regularity
at the apparent singularity and impose the conifold gap condition when the discriminant locus
∆ is irreducible. Where eX is concerned, the additional MUM point at infinity is associated with
the Pfaffian variety’s derived equivalent partner, which is the intersection of seven degree-1
hypersurfaces in the Grassmannian Gr(2, 7). We will assume that in our computations the
MUM point ϕ =∞ is similarly associated to a Z7 quotient of this intersection in Gr(2,7).
Our genus 1 computation, independently of this assumption, produces the same c2 as our
assumption in the expansion about ϕ =∞. This additional geometry provides us more data
to constrain the holomorphic ambiguity: the constant term in the expansion about infinity and
also Castelnuovo vanishing of the GV invariants read off from the expansions about infinity
(these are in addition to those that we have at ϕ = 0).

Once again following [18], take P(E∨ ∧ E∨) ∼= P20. Inside this lives the Grassman-
nian Gr(2,7), and also the P13 dual to our original P6. The intersection Gr(2,7) ∩ P13

is another Calabi-Yau threefold, proved to be derived equivalent to eY in [24] (with a dif-
ferent proof in [25] that follows more closely the “physics proof” of [23]). The group
R ∼= Hσ × Hτ ∼= Z7 × Z7 also acts on P(E∨ ∧ E∨) and P13, so we have again a freely
acting smooth Z7 quotient

�

Gr(2,7)∩ P13
�

/Z7. It may be interesting to seek a proof of
Dbcoh
��

Gr(2, 7)∩ P13
�

/Z7

�∼= Dbcoh
�

eY /Z7

�

.

4.3.2 Abelian D4D2D0 indices

The topological data for this example is

κ111 = 2 , c2 = 8 , χ = −14 . (93)

We go on to compute

χD1
=

1
6
κ111 +

1
12

c2 = 1 , χ(D1) = κ111 + c2 = 10 ,

∆0 =
χ(D1)

24
=

5
12

, ∆1 =
χ(D1)

24
− Fr

�

12

2κ111
+

1
2

�

= −
1
3

.
(94)

From (8), Tors
�

H2
�∼= Z7. Then (57) provides

Ω1,0

�

5
12

�

= 49 . (95)

Since κ111 = 2, the VVMF h1,µ will have rank two. However, based on the above calculations
h1,1 has no polar terms and h1,0 has one polar term. Therefore, the problem is one-dimensional
and so completely solved by the above application of the theorem (57). We obtain the result

h1,µ(τ) =
49

η(τ)16

�

−
E6(τ)

12
θ (2)µ (τ)− 2E4(τ)D

�

θ (2)µ (τ)
�

�

,

h1,0(τ) = 49q−5/12
�

1 + 136q+ 2081q2 + 18152q3 + 117028q4 + . . .
�

,

h1,1(τ) = 49q1/3
�

56+ 1136q+ 10912q2 + 75072q3 + 414304q4 + . . .
�

.

(96)
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4.3.3 Interplay with GV invariants

We are able to compute GV invariants for this model up to genus 5, as tabulated in Table 7.
Unfortunately, this is not a sufficiently high-genus set of invariants for us to make any checks
of (64) with k ≥ kmin. We can attempt to compute Ω1,1

�

−1
3

�

with k = kmin−1 = 1 but this
gives the incorrect result 2870, which differs to 2744= 49 ∗ 56.

If we attempt to use (64) to compute Ω1,0

� 5
12

�

and Ω1,1

�

−1
3

�

, in both cases using
k = kmin = 2, then (96) predicts

n(7)4 = 147 , n(9)5 = −10976 . (97)

We now attempt something extremely dubious, and use (64) with k = kmin−1= 2 to attempt
to compute Ω1,0

� 5
12 − 1
�

. Together with (96) this leads us to

49 ∗ 136= Ω1,0

�

5
12
− 1
�

???
= −

1
2

�

n(6)4 + 12n(7)4

�

=⇒ n(6)4
???
= −15092 . (98)

This is quite possibly the wrong value for n(6)4 . We required one additional GV invariant at
genus 6 (beyond those predicted to be zero by the Castelnuovo bound) in order to solve for
the topological string free energy. This extremely speculative result could be used as input
data in this way, but the resulting integers read off may not the correct GV invariants, as far
as we know presently.

We can use (64) to compute Ω1,0

� 5
12

�

and Ω1,0

� 5
12 − 1
�

using respectively k = kmin+1= 3
and k = kmin = 2. Then (96) predicts

n(12)
6 = −48216 , n(13)

6 = 343 . (99)

If we attempt to use (64) to compute Ω1,1

�

−1
3

�

, Ω1,1

�

−1
3 − 1
�

, and Ω1,1

�

−1
3 − 2
�

with
respectively k = kmin + 1= 3, k = kmin = 3, and k = kmin = 3, then we are led to

n(14)
7 = 26182268 , n(15)

7 = −1186192 , n(16)
7 = 24696 . (100)

4.4 Z5 quotient of Hosono-Takagi’s double quintic symmetroid threefold, the
(1,6) model

4.4.1 Some geometry

Hosono and Takagi have considered a number of different threefolds related by quotient maps,
mirror symmetry, and derived equivalence. We identify a Z5 quotient of one of their geome-
tries, previously undiscussed to our knowledge. For this we compute Abelian D4D2D0 indices.
Here we briefly outline the constructions in [26] (only changing some notations so that we
align with our own conventions throughout this paper). They go on to further study the mirror
geometry in [81], prove their conjectured derived equivalence in [21], and study infinite order
birational automorphism groups in [82].

To begin with, one has the Reye Congruence Calabi-Yau threefold R, which can be realised
as the following Z2 quotient of a complete intersection Calabi-Yau threefold in P4 × P4 with
hodge numbers (2,52).

R ∼=
P4

P4

�

1 1 1 1 1
1 1 1 1 1

�1,26

/Z2

. (101)

The mirror of the complete intersection of five degree (1,1) hypersurfaces in P4×P4 is obtained
using the Batyrev-Borisov mirror construction for complete intersections in toric varieties [83].
This produces a geometry with (h1,1, h2,1) = (52, 2), realised as a complete intersection in the
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appropriate toric variety P∇∗ . The mirror Reye Congruence
R

is then constructed as the Z2
quotient of this (52,2) geometry, with complex structure parameters set to the locus where the
threefold has a Z2 symmetry. With Ui , Vi , 1 ≤ i ≤ 4 giving coordinates on a dense algebraic
torus (C∗)8 in P∇∗ , the geometry

R
is birational to the Z2 quotient of the locus

Ui + Vi = 1 ,
ϕ

U1U2U3U4
+

ϕ

V1V2V3V4
= 1 , (102)

with the Z2 action being Ui↔ Vi . ϕ is the complex structure parameter, and the fundamental
period reads

ϖ0(ϕ) =
∞
∑

n=0

∑

m1+m2=n

�

(m1 +m2)!
m1!m2!

�5

ϕn . (103)

Equation (2.9) of [26] provides the Picard-Fuchs operator that annihilatesϖ0. Remarkably, in
addition to the MUM point at ϕ = 0 from which BPS expansions for R can be performed, there
is a MUM point at ϕ =∞. It was argued in [26] that BPS expansions about this additional
MUM point gave GV invariants for a geometry we will denote8

eY . eY is the double cover of H,
where

H =

¨

[y1 : y2 : y3 : y4 : y5] ∈ P4 | Det

� 5
∑

i=1

yiAi

�

= 0

«

, (104)

branched along a genus 26 curve C . The Ai are suitably generic 5× 5 symmetric matrices, so
that H is the locus in P4 where

∑

yiAi has rank≤ 4. The curve C is the rank≤ 3 locus, along
which H has an A1 type singularity. eY is smooth and simply connected. It was proven in [27]
that R and eY are derived equivalent.

We are not able to compute D4D2D0 indices for any of the geometries just discussed. It is
worth noting that a quotient geometry R/Z5 appears in the tables of [19] (page 28).

There is a Z5 symmetry of
R

. If we introduce additional coordinates U5, V5 defined by
U1U2U3U4U5 = V1V2V3V4V5 = ϕ then this symmetry is generated by simultaneously effecting
Ui 7→ Ui+1 mod 5, Vi 7→ Vi+1 mod 5. This is freely acting for ϕ not on the discriminant locus.
One can set about performing BPS expansions about ϕ = 0 to obtain GV invariants for R/Z5,
and one is left to wonder what to associate to ϕ =∞. Notice that for certain Ai the double
cover eY also has a freely acting Z5 symmetry also. The Z5 symmetry of H is generated by
yi 7→ yi+1 mod 5. Conveniently, Hosono and Takagi provide a set of matrices Ai so that

5
∑

i=1

yiAi =











y2 y1 0 0 y5
y1 y3 y2 0 0
0 y2 y4 y3 0
0 0 y3 y5 y4
y5 0 0 y4 y1











, (105)

provides a smooth eY , and the rank≤ 4 locus is symmetric under the yi 7→ yi+1 mod 5. We will
use Y to denote the quotient eY /Z5. We conjecture that Y is derived equivalent to R/Z5. This
is supported by the genus 0 BPS expansion (as the GV invariants divide by 5) and also the
genus 1 expansion (from which we can read off the necessary cY

2 = 8= c eY2 /5). Subject to this
assumption, we compute the GV invariants listed in §A by incorporating boundary conditions
from Castelnuovo vanishing and constant terms in expansions about both MUM points.

The Picard-Fuchs equation has an apparent singularity at ϕ = 7/4. There are hyperconi-
fold singularities where

∆1 = 1− 32ϕ , and ∆2 = 1+ 11ϕ −ϕ2 , (106)

8This was denoted Y in [21, 26]. We are reserving Y for the threefolds that we compute D4D2D0 indices for,
so have forced ourselves to make this unpleasant change.
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vanish, where respectively there is a shrinking S3/Z10 and S3/Z5. This means that in (13) we
will have |G1|= 10 and |G2|= 5.

4.4.2 Abelian D4D2D0 indices

The topological data for Y , obtained by dividing the data for eY given in [26] by 5, is

κ111 = 2 , c2 = 8 , χ = −10 . (107)

We go on to compute, much the same as for the Pfaffian quotient in the previous section,

χD1
=

1
6
κ111 +

1
12

c2 = 1 , χ(D1) = κ111 + c2 = 10 ,

∆0 =
χ(D1)

24
=

5
12

, ∆1 =
χ(D1)

24
− Fr

�

12

2κ111
+

1
2

�

= −
1
3

.
(108)

From (8), Tors
�

H2
�∼= Z5 since eY is simply connected (a result of [26]). Then (57) provides

Ω1,0

�

5
12

�

= 25 . (109)

We arrive at

h1,µ(τ) =
25

η(τ)16

�

−
E6(τ)

12
θ (2)µ (τ)− 2E4(τ)D

�

θ (2)µ (τ)
�

�

,

h1,0(τ) = 25q−5/12
�

1 + 136q+ 2081q2 + 18152q3 + 117028q4 + . . .
�

,

h1,1(τ) = 25q1/3
�

56+ 1136q+ 10912q2 + 75072q3 + 414304q4 + . . .
�

.

(110)

Up to an overall rational factor 25
49 this is the same as the result we obtained for the (1,8)

model (96). Therefore the ratio of Abelian MSW invariants for either of these models, with
the same charges, is a constant value as µ and q̂0 are varied. The theorem (64) and the MNOP
conjecture would then imply infinitely many identities relating GV invariants of either model.
This may be of wider interest, although we do not at this time have any use for this surprising
relation.

4.4.3 Interplay with GV invariants

This analysis proceeds very similarly to that of the (1,8) model. Here we are again unable to
make any nontrivial tests of modularity or increase the maximal genus we can compute GV
invariants for. We will content ourselves to compute a few GV invariants assuming modularity.

Attempting to compute Ω1,1(−
1
3) with k − kmin − 1 = 1 gives the incorrect

1400 ̸= 1570= 25 ∗ 56.
After computing Ω1,0

� 5
12

�

and Ω1,1

�

−1
3

�

using k = kmin = 2, we arrive at

n(7)4 = 75 , n(9)5 = 5600 . (111)

Dubiously using k = kmin − 1 to compute Ω1,0

� 5
12 − 1
�

, and incorporating the above value

for n(7)4 , leads to

n(6)4
???
= −7700 , (112)

and once again we only needed a correct value of n(6)4 in order to extend the results of §A to
genus 6.
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After using (64) to compute Ω1,0

� 5
12

�

and Ω1,0

� 5
12 − 1
�

, with respectively k = kmin+1= 3
and k = kmin = 2, (110) predicts

n(12)
6 = −24600 , n(13)

6 = 175 . (113)

We use (64) to compute Ω1,1

�

−1
3

�

, Ω1,1

�

−1
3 − 1
�

, and Ω1,1

�

−1
3 − 2
�

with respectively
k = kmin + 1= 3, k = kmin = 3, and k = kmin = 3. Then (110) provides

n(14)
7 = 13361000 , n(15)

7 = −605200 , n(16)
7 = 12600 . (114)

5 Multiparameter examples

Once again, we underline all polar terms. For these multiparameter models we have nothing
to say about higher genus GV invariants. Assuming modularity, all of these cases are solved
by computing their single polar terms. As we discussed following (57), we propose to apply
the result (57) (with p 7→ p) in these examples in spite of the fact that only the (2,12) model
meets the Assumption (⋆) of [1] (while the rest of the models do not).

5.1 The (2,29) and (2,20) models

For both of these models we choose the homology class of our irreducible divisor to be
p = (1, 0). Due to the (not freely acting) Z2 symmetry of the (2,29) model under the exchange
of the two ambient P2 factors before taking the Z3 quotient, it does not make a difference for
this model if we instead take p = (0,1). However, choosing p = (0, 1) for the (2,20) model
does give a genuinely different problem, one that we are unable to solve in this paper.

For each of these models with this choice of divisor

|Λ∗/Λ|=
�

�Det
�

κi jkpi
��

�=
�

�Det
�

κ1 jk

��

�= 1 . (115)

In light of this there is only a single glue vector, µ= (0,0). As a result the VVMF that generates
MSW invariants has rank 1, and so is a standard modular form. This modular form must have
weight −1− b2

2 = −2. The q-series starts at q−1/2, which follows from

∆(0,0) =
χ(Dp)

24
=
κi jkpi p j pk + c2,i p

i

24
=
κ111 + c2,1

24
=

12
24

. (116)

These considerations fix the modular form up to scale: it must be a multiple of E4η
−12.

We use (57) to compute the first MSW invariant. Since

χDp
=

1
6
κi jkpi p j pk +

1
12

c2,i p
i = 1 , and H2(Y,Z)Torsion

∼= Z3 , (117)

we find

Ω1,(0,0)

�

1
2

�

= 9 . (118)

The generating series of MSW invariants for both of the (2,29) and (2,20) models, with these
choices of divisor, are the same function. This is

h1,(0,0)(τ) = 9E4(τ)η(τ)
−12

= 9q−1/2
�

1 + 252q+ 5130q2 + 54760q3 + 419895q4

+ 2587788q5 + 13630694q6 + . . .
�

.

(119)

It may be of interest that this equals 9
25η(τ) times the MSW generating function of P4[5]/Z5,

given in equation (76).
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5.2 The (2,12) model

We choose to work with the irreducible divisor p = (1, 0), but the same result would be ob-
tained if we instead chose (0,1). This is the only multiparameter model we study where the
divisor Dp meets the technical condition (⋆) of [1], Appendix A.

Our VVMF will this time have rank 2, because

|Λ∗/Λ|=
�

�Det
�

κi jkpi
��

�=
�

�Det
�

κ1 jk

��

�= 2 . (120)

Our two glue vectors µ are (0, 0) and (0, 1). From (45) we compute

∆(0,0) =
11
24

, ∆(0,1) = −
7

24
. (121)

The MSW generating function will be of rank two and weight -2. The first component has a
single polar term, and the second component will have no polar terms. Since there is only one
polar term this problem becomes one-dimensional, and will be solved once we compute the
first MSW index. Using (57), and

χDp
= 1 , H2(Y,Z)Torsion

∼= Z5 , (122)

we have that
Ω1,(0,0)

�

11
24

�

= 25 . (123)

The multiplier system (from equation (51)) that h1,µ should have is

M(T ) =

�

e13πi/12 0
0 e7πi/12

�

, M(S) =
1
p

2

�

−1 −1
−1 1

�

. (124)

It turns out that this is the multiplier system for η(τ)−17θ
(2)
α(µ)(τ), where we introduce

α ((0,0)) = 0 , α ((0, 1)) = 1 . (125)

η(τ)−17θ (2)α (τ) transforms as a VVMF with weight -8. Note that multiplying by E4 or E6, or
acting with the Serre derivative D, gives a VVMF with a new weight but the same multiplier
system. We obtain a weight -2 VVMF with the correct leading term as follows:

h1,µ(τ) =
25

η(τ)17

�

−
E6(τ)

12
θ
(2)
α(µ)(τ)− 2E4(τ)D

�

θ
(2)
α(µ)(τ)
�

�

,

h1,(0,0)(τ) = 25q−11/24
�

1 + 137q+ 2219q2 + 20508q3

+ 139755q4 + 779254q5 + . . .
�

,

h1,(0,1)(τ) = 25q7/24
�

56+ 1192q+ 12160q2 + 88424q3

+ 514888q4 + 2564184q5 + . . .
�

.

(126)

This is 1
η(τ) times the result we obtained for the Z5 quotient of Hosono-Takagi’s double quintic

symmetroid threefold.

5.3 The (3,18) and (3,15) models

Finally we turn to the (3,18) and (3,15) models. We choose the divisor p = (1, 0,0). For the
(3,18) model we could equally well take (0,1, 0) or (0, 0,1) and get the same final result. For
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the (3,15) model we would get the same result if we chose (0,1, 0), but (0,0, 1) is a different
problem altogether which we do not attempt to solve. The rank of the VVMF will be 2, since

|Λ∗/Λ|=
�

�Det
�

κi jkpi
��

�=
�

�Det
�

κ1 jk

��

�= 2 . (127)

For representative glue vectors we take µ to be either (0, 0,0) or (0, 0,1) (this is not a unique
choice). From (45) we have

∆(0,0,0) =
1
2

, ∆(0,0,1) = −
1
4

. (128)

Once again, this problem is one-dimensional and solved by computing a single abelian MSW
invariant. We have

χDp
= 1 , H2(Y,Z)Torsion

∼= Z3 , (129)

and so (57) provides

Ω1,(0,0,0)

�

1
2

�

= 9 . (130)

h1,µ should have weight −1− b2
2 = −

5
2 , and multiplier system (from equation (51))

M(T ) =

�

−1 0
0 i

�

, M(S) =
eπi/4

p
2

�

−1 −1
−1 1

�

. (131)

This is the multiplier system for η(τ)−18θ
(2)
α(µ)(τ), where

α ((0,0, 0)) = 0 , α ((0, 0,1)) = 1 . (132)

η(τ)−18θ
(2)
α(µ)(τ) has weight −17/2. Similarly to the (2,12) model then, we can obtain

h1,µ(τ) =
9

η(τ)18

�

−
E6(τ)

12
θ
(2)
α(µ)(τ)− 2E4(τ)D

�

θ
(2)
α(µ)(τ)
�

�

,

h1,(0,0,0)(τ) = 9q−11/24
�

1 + 138q+ 2358q2 + 23004q3

+ 165117q4 + 967374q5 + . . .
�

,

h1,(0,0,1)(τ) = 9q7/24
�

56+ 1248q+ 13464q2 + 103136q3

+ 631488q4 + 3298752q5 + . . .
�

.

(133)

This is 9
25η(τ) times the result we obtained for the (2,12) model.

6 Discussion and outlook

We have provided nine new examples of modular generating functions of Abelian D4D2D0
indices, including five multiparameter cases, four of which remain subject to an assumption
we make on the polar term.

Future work should provide a better understanding of the problematic examples discussed
above equation (68). These could be studied more closely along the lines of this paper if we
had more GV invariants. A lack of available GV invariants, even in spite of the substantial
advances documented in [84], is eventually always a problem and new ways of computing
polar terms would hopefully circumvent this.
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It was already anticipated by [1] that certain multiparameter examples may be interesting
in light of the modular bootstrap for elliptic fibrations [50, 85, 86]. Some of the multiparam-
eter models that we have considered are quotients of elliptically fibred threefolds, and so this
avenue might be fruitfully pursued using our new examples. It may be the case that the mod-
ularity associated to the elliptic fibration interacts in an interesting way with the modularity
associated to MSW indices. Along similar lines, the instanton numbers for some of the multi-
parameter geometries we have investigated possess an infinite Coxeter symmetry [87–89] that
may similarly provide nice interplay.

It remains to study the geometries investigated in this paper in cases with more than one
unit of D4 charge, so that the generating function is mock modular, as has been performed
in [64]. This also would require more GV invariants.
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A Tables of GV invariants, computed without assuming MSW
modularity

A.1 Z5 quotient of the quintic, P4[5]/Z5

Table 5: GV invariants for the Z5 quotient of the quintic threefold. The conifold gap
condition, regularity at the orbifold point, constant term, and the Castelnuovo bound
only allow us to expand to genus 10. It may be of interest that n(1)1 > n(0)1 .

k n(0)k n(1)k n(2)k

1 575 750 10

2 121850 749650 316180

3 63441275 996355600 1812388645

4 48493506000 1485713351625 6832687291550

5 45861177777525 2360745222311890 21386162464746280

6 49649948423604400 3905048810312630500 60300725772067744370

7 59018210114169131850 6641344898623706083650 159076086322903496882380

8 75126432187495320710000 11526755459840114914978125 400786642257411458505334750

9 100768102083397048729021250 20318695348931590786593466250 976395092762568245382984038375

k n(3)k n(4)k n(5)k

1 0 0 0

2 6605 -50 0

3 614019320 24204855 -411100

4 8454561591200 3245851807350 335376611250

5 62482623318387100 73547811444806780 37415860873266590

6 335260750296254643675 854728982385312743250 1113446999293082406000

7 1478729514546933367264780 6823074320028253950291680 17599173386900553095722050

8 5713442876756111478138384000 42686825299540747760264603450 188810123308116593206813525925

9 20066844116093245982572929494250 224965680778877016475984526332550 1554620412233924437357116215173950

k n(6)k n(7)k n(8)k

1 0 0 0

2 0 0 0

3 20195 -100 0

4 5659153300 180837000 -19994300

5 7939819376947330 635259149779950 16737062529500

6 767600162108855476270 277471791066259667935 50751903422009320250

7 26800395547581653089999415 24570895165088774373417820 13554556528840296607908120

8 525864713996231860938258450860 950526985732429408456132354500 1129570844990003922419953775500

9 7063192000309086783572794733829590 21846585899244676317890567776136150 46879050731802968075938206207601875

k n(9)k n(10)
k

1 0 0

2 0 0

3 0 0

4 1317930 -41150

5 -178612452360 47212463805

6 4404305636366815360 156953956651213430

7 4438049154836488965109000 840110455805420692507800

8 884720532073095769813844309260 454547508223416968855445391030

9 70459942662058756197493625575447620 74442134047236071014645216834582425
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A.2 Z3 quotient of the bicubic, P5[3, 3]/Z3

Table 6: GV invariants for the Z3 quotient of the bicubic threefold. The conifold gap
condition, regularity at the K-point (infinity), constant term, and the Castelnuovo
bound only allow us to expand to genus 9.

k n(0)k n(1)k n(2)k n(3)k

1 351 54 0 0

2 17604 18306 162 0

3 2141442 5827014 814545 1188

4 379816128 2051710641 971556336 51684048

5 83262630861 764607449610 824228247186 182228884866

6 20886988169844 295680170663946 593100643960080 321345364590549

7 5752151300274003 117337498455503898 387461098072391913 405461363439976596

8 1696280856142054320 47460584475061944453 237574270278361366560 418707568368082416330

9 527083572658852629315 19479816270442546690932 139308884883240104134116 378117918242281386340212

k n(4)k n(5)k n(6)k

1 0 0 0

2 0 0 0

3 15 0 0

4 253152 -972 0

5 10108036467 53329320 -492723

6 61989938556828 3978481806297 50096328498

7 179505307950892326 35379506324522070 2880034261539471

8 346230234722519249238 146594736156533810400 31919837327756766684

9 516178348980696220839042 392321404995925930952196 171372524054889420881940

k n(7)k n(8)k n(9)k

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 1458 0 0

6 -112622568 3255660 -4644

7 75185909775432 345720294045 2479109922

8 3380473998240899949 152773576290297936 2342948602615704

9 42744163756609489532478 5859503926986268013226 410009966496890836800
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A.3 Z7 quotient of the Rødland model

To compute the GV invariants in Table 7 and Table 8 we expand a single B-model free energy
about two different MUM points (ϕ = 0 and ϕ =∞). We impose the conifold gap condition;
the constant term contributions in both expansions about 0 and ∞; and the Castelnuovo
bounds for both geometries. These considerations only allow us to expand as high as genus 5.

Table 7: GV invariants for the Z7 quotient of Rødland’s Pfaffian threefold. Note
n(1)1 > n(0)1 .

k n(0)k n(1)k n(2)k

1 84 106 0

2 1729 9731 2597

3 83412 1189690 1548666

4 5908448 162847656 561111558

5 515627728 23784778992 165479914726

6 51477011901 3619073252171 43608601458779

7 5641036903908 566456134227334 10707782743676536

8 661894028378002 90513043864684029 2505000342181522444

9 81831403277082228 14692917426093647214 565787798626063356392

k n(3)k n(4)k n(5)k

1 0 0 0

2 21 0 0

3 282100 2870 0

4 425899488 73987368 1449231

5 316671278140 199905031018 41043809856

6 165288447125522 246295464565871 156541429038015

7 69737863611873408 198387291602887002 275064061320436234

8 25527142974989788328 122013764358829703549 308374855684567279377

9 8442139465760064106140 62231778734823700282532 256500030949655724914284

Table 8: GV invariants for the Z7 quotient of Rødland’s Grassmannian threefold.

k n(0)k n(1)k n(2)k n(3)k n(4)k n(5)k

1 28 18 0 0 0 0

2 175 463 7 0 0 0

3 1820 11526 3248 0 0 0

4 28294 345024 321426 28245 35 0

5 530992 10778248 22523634 7781872 344386 378

6 11403315 352208877 1355627203 1134004599 219069333 7349629

7 268281804 11824000122 74410696766 120414777910 59050816048 8607660880

8 6755563416 405319921505 3848162314080 10540208130242 10243982279181 3762792168023

9 179169428732 14113739316490 190766199128806 809447642951500 1352699340656188 980390268886546
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A.4 Z5 quotient of the Hosono-Takagi model

To compute the GV invariants in Table 9 and Table 10 we expand a single B-model free energy
about two different MUM points (ϕ = 0 and ϕ =∞). We impose the conifold gap condition;
the constant term contributions in both expansions about 0 and ∞; and the Castelnuovo
bounds for both geometries. These considerations only allow us to expand as high as genus 5.

We remark that, as is the case for the BPS computations performed in [26], the relation (15)
in this example includes an additional numerical factor 82g−2 required to correctly normalise
the Yukawa coupling for the geometry at the second MUM point if the naive ϖ0 obtained as
the power series solution with leading coefficient 1 is used.

Table 9: GV invariants for the Z5 quotient of Hosono-Takagi’s threefold subvariety of
the double quintic symmetroid.

k n(0)k n(1)k n(2)k

1 110 88 0
2 3830 10920 2080
3 233110 1806540 1590820
4 21322480 330946550 750087075
5 2455996570 64415464108 290194401190
6 324701179500 13042591099243 100703783697240
7 47154769689380 2714327362683188 32628936131965760
8 7335485654525500 576387496496436593 10085276331992030630
9 1202660670835792580 124298318900133467068 3012093129341767122550

k n(3)k n(4)k n(5)k

1 0 0 0
2 10 0 0
3 215250 1570 0
4 417960730 57124730 938035
5 399276936750 196521594350 33494657920
6 269595086591590 307606088617415 159359084509985
7 147954130068172870 316701550590837000 351272641013964080
8 70724470876231474060 250482960584090792325 497771824466038411950
9 30631935324967527180560 165111821196548486009530 526934266333548120001620

Table 10: GV invariants for the Z5 quotient of Hosono-Takagi’s Reye congruence
threefold. n(1)1 > n(0)1 .

k n(0)k n(1)k n(2)k n(3)k n(4)k n(5)k

1 10 16 0 0 0 0
2 65 238 5 0 0 0
3 295 3001 1210 0 0 0
4 3065 54024 66665 7460 0 0
5 29715 905336 2616590 1177075 61840 60
6 377115 16967201 88967385 96235145 22425380 766775
7 4862130 315204632 2735270040 5767910725 3440264885 546451975
8 69723305 6098433011 79647092230 284786224085 339337810075 140415307660
9 1031662155 118674731165 2215776214620 12331891528815 25464777595225 21216255805620
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B Homotopy-homology relations, Kähler parameters, and Wall
data

We will study compact Calabi-Yau threefolds Y , obtained as quotients of simply connected
threefolds eY (themselves compact and Calabi-Yau) by a freely acting discrete group G. To
begin our discussion, we relax the assumptions in the body of this paper so that G is not
necessarily ZM , and h1,1 may be different for Y and eY .

We have a quotient map
ρ : eY 7→ Y ∼= eY /G . (B.1)

eY is the universal cover of Y . The threefold Y has a second cohomology H2(Y,Z) with in-
tegral generators ei , 1 ≤ i ≤ h1,1, of the torsion-free part. The Kähler form ω of Y and the
Neveu-Schwarz B-field B2 are combined into the complexified Kähler form of Y , which can be
expanded as

B2 + iω= t iei . (B.2)

These coordinates t i parametrise the A-model moduli space. Similarly, eY has its own set of
Kähler parameters et i .

Based on arguments by Aspinwall and Morrison [29], using results of [90], one can relate
the Kähler parameters t i and et i of Y and eY . The homology groups of quotient manifolds
have already been studied in detail in [31]. We review the aspects of the Aspinwall-Morrison
argument relevant to us, in order to explain how we obtain the Wall data that we used in this
paper. If we allow for quotients such that h1,1 differs for Y and eY then a minor modification
to the argument presented in [29] must be incorporated.
πn and Hn will denote homotopy and homology groups. For each n, there is a Hurewicz

map
νn : πn(Y ) 7→ Hn(Y,Z) . (B.3)

And similarly for eY we have maps eνn : πn(eY ) 7→ Hn(eY ,Z). Fixing a generator un ∈ Hn (Sn),
the map νn takes a homotopy class [ f ] (of maps Sn 7→ Y ) to the pushforward f∗(un) ∈ Hn(Y ).

νn( f ) = f∗(un) . (B.4)

This map is used to define what were called in [90] the spherical subgroups Σn(Y ) of Hn(Y ).
These are the images of each πn(Y ) under νn,

Σn(Y ) ∼= νn (πn(Y )) . (B.5)

Σn is the set of homology classes generated by spheres. An exact sequence is provided by [90]
that relates homotopy and homology groups of Y :

0→ Σ2 (Y )→ H2(Y,Z)→ H2 (π1(Y ),Z)→ 0 . (B.6)

We should like to massage this relation, and extract an exact sequence relating the homology
groups of the spaces eY , Y, and the group G.

We remark that π2(Y ) ∼= π2(eY ), as more generally the homotopy groups πi≥2 of a space
and its universal cover are isomorphic. Moreover, since π1(eY ) ∼= 0 there is an isomorphism
π2(eY ) ∼= H2(eY ,Z) (indeed this is implied by (B.6) if we replace Y by eY ). Then the Hurewicz
map eν2 provides Σ2(eY )∼= H2(eY ,Z).

Crucially however, Σ2(Y ) is not isomorphic to Σ2(eY ) in general (but this was the case for
the example in [29]). Note that νn takes a homotopy class f to the homology class f∗(un), but
this map is not in general injective because non-homotopic spheres inside Y can still be homolo-
gous. The group action G may identify homology classes of eY , in which case h1,1(Y )≤ h1,1(eY ).
This leads to an identification

Σ2(Y )∼= H2(eY ,Z)G , (B.7)
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where we introduce G-coinvariant second homology. This is the set of equivalence classes
under the G-action in the second homology of eY . Now, from simply-connectedness of eY we
learn that the group π1(Y ), i.e. π1(eY /G), is itself G. One uses these identifications to rewrite
(B.6) in such a way as to relate homologies:

0 7→ H2(eY ,Z)G
ρ∗7→ H2(Y,Z) 7→ H2(G,Z) 7→ 0 . (B.8)

The group H2(G,Z) is sometimes referred to as the Schur multiplier of G. The pushforward
map ρ∗ identifies H2(eY ,Z)G with a subgroup of H2(Y,Z). There is a nonsingular pairing

H2(eY ,Z)Free ×H2(eY ,Z)Free 7→ Z ,

∫

εi

e j = δ
i
j , (B.9)

where εi and e j respectively generate the torsion-free parts of the second integral homology
and cohomology. There is a similar such pairing for the quotient Y , and compatibility of (B.8)
with (B.9) tells us how the pullback ρ∗ acts on the integral cohomology generators. This is
necessary information for us to compute Wall data. Since the quotient map ρ effects a degree-
|G| covering of Y , we have that |G|

∫

Y V =
∫

eY ρ
∗(V ) for V ∈ H6(Y,Z). So once we understand

how to perform the pullbacks, it becomes possible to express the topological data of Y in terms
of the data for eY .

From the naturality axiom of the Chern classes, ρ∗(ca(Y )) = ca(eY ). This is how one shows
the well-known fact that the Euler characteristic always divides upon taking the quotient by a
freely acting symmetry group, irrespective of the details of (B.8):

χ(Y ) =

∫

Y
c3(Y ) =

1
|G|

∫

eY
ρ∗(c3(Y )) =

1
|G|

∫

eY
c3(eY ) =

1
|G|
χ(eY ) . (B.10)

For the triple intersection and second Chern numbers,

κ
(Y )
i jk =

∫

Y
ei ∧ e j ∧ ek =

1
|G|

∫

eY
ρ∗(ei ∧ e j ∧ ek)

=
1
|G|

∫

eY
ρ∗(ei)∧ρ∗(e j)∧ρ∗(ek) ,

c(Y )2,i =

∫

Y
c2(Y )∧ ei =

1
|G|

∫

eY
ρ∗(c2(Y )∧ ei) =

1
|G|

∫

eY
ρ∗(c2(Y ))∧ρ∗(ei)

=
1
|G|

∫

eY
c2(eY )∧ρ∗(ei) .

(B.11)

One can use (B.11) to express the triple intersection and second Chern numbers of Y in terms
of the same data for eY , but in order to do this one must know the explicit images ρ∗(ei) as
combinations of the eei . These are obtained in each example by studying (B.8) and (B.9).

We will now turn to a non-exhaustive set of examples, to illustrate the implications of
(B.8) in different cases. We will consider genus 0 curves eC ⊂ eY and their smooth9 images
C ⊂ Y under the quotient map. Since a smooth rational curve cannot have an unramified
cover (as follows from the Riemann-Hurwitz formula), and G acts freely on eY by assumption,
we learn that no genus 0 curves on eY are fixed by the G-action and the preimage of C is |G|

9We do not take care here to make our argument work for singular curves. However, to obtain our conclusions
on the relations between et i and t, we only require our following arguments with some smooth rational curve C on
Y . We do not consider the possibility of a Calabi-Yau threefold Y not containing any smooth C .
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disjoint curves eC . The degree-vector of a curve C is the set of intersections of that curve with
a generating set ei of H2(Y,Z)Free,

deg(C)i =

∫

[C]
ei . (B.12)

The homology class of the curve C is expanded as [C] = deg(C)iεi , similarly we have
[eC] = deg(eY )ieεi . The area of C is t ideg(C)i and the area of a single curve eC is et ideg(eC)i .
Since these areas must be equal (as these are identical curves), we read off relations between
et i and t.

Example 0, H2(G)∼= 0 and h1,1(Y ) = h1,1(eY ):
All examples studied in this paper belong to this class, to which we pay the most attention.
In this simplest case we necessarily have H2(eY ,Z)G ∼= H2(eY ,Z) ∼= H2(Y,Z). As a conse-

quence of (B.8), the map ρ∗ takes each generator eεi of H2(eY ,Z) to a generator εi of H2(Y,Z),

ρ∗(eε
i) = εi . (B.13)

As a result, taking the quotient by G sends each curve in eY to a curve in Y with the same
degree:

deg(C)i =

∫

[C]
ei =

∫

ρ∗([eC])
ei =

∫

ρ∗(deg(eC) j eε j)
ei =

∫

deg(eC) jε j

ei = deg(eC)i . (B.14)

The complexified area of eC is deg(eC)iet i , and the complexified area of C is deg(C)i t i . Since
these must be equal, we obtain for these examples

t i = et i . (B.15)

Comparing (B.13) with (B.9), we get the pullback

ρ∗(ei) = eei . (B.16)

This allows us to compute the Wall data. For the triple intersection number, we have

κ
(Y )
i jk =

∫

Y
eie jek =

1
|G|

∫

eY
ρ∗(eie jek) =

1
|G|

∫

eY
ρ∗(ei)ρ

∗(e j)ρ
∗(ek) =

1
|G|

∫

eY
eeiee jeek

=
1
|G|
κ
eY
i jk .

(B.17)

For the second Chern numbers,

c(Y )2,i =

∫

Y
c2(Y )ei =

1
|G|

∫

eY
ρ∗(c2(Y )ei) =

∫

eY
ρ∗(c2(Y ))ρ

∗(ei) =
1
|G|

∫

eY
c2(eY )ei

=
1
|G|

c eY2,i .

(B.18)

Example 1, P4[5]/Z5×Z5
:

This example is illustrative of the fact that the Wall data of Y cannot always be obtained
by dividing the Wall data of eY by |G|. This particular example was studied in [29], and there
is much more that is interesting about this model than we will cover. The salient point for us
is that H2(Z5×Z5,Z)∼= Z5, which follows from a Künneth-type computation. This means that
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the fourth term in the sequence (B.8) is nonzero, unlike in Example 0. Both Y and eY have
h1,1 = 1.

From (B.8), we can be sure that ρ∗ is not surjective. However, that still allows for two
possibilities. Either we have H2(Y,Z)∼= Z or H2(Y,Z)∼= Z⊕Z5. To distinguish between these
two cases, one must study the geometry carefully. There is necessarily a homology class υ
not represented by a sphere, and either 5υ = 0 or 5υ generates H2(P4[5],Z). It was shown
in [29] that the latter is the case. As such

H2(Y,Z)∼= Z , and ρ∗(eε) = 5ε . (B.19)

Consider once again a genus 0 curve C on Y , whose preimage is 25 disjoint curves eC ⊂ eY . We
wish to relate the degree of C to the degree of a single curve eC (not the full set of 25 taken
together).

deg(C) =

∫

[C]
e =

∫

ρ∗([eC])
e =

∫

ρ∗(deg(eC)eε)
e =

∫

5deg(eC)ε
e = 5deg(eC) . (B.20)

We now demand that the area of C equals the area of a single curve eC . This means that
deg(C)t = deg(eC)et, and therefore

et = 5t . (B.21)

This was noted in [29], which provided the very important observation that the A-model mod-
uli space of P4[5]/Z5×Z5

furnishes a five-fold cover of the moduli space of P4[5]. Their equation
(12), exp(2πiet ) = exp(2πi t)5, provides the above relation (B.21).

Comparing (B.9) with (B.19) provides us with the pullback map, which differs to that of
Example 0.

ρ∗(e) = 5ee . (B.22)

We now turn to the triple intersection and second Chern numbers. For P4[5]/Z5×Z5
one obtains,

as has already been done in [29],

κ111 =
1
|G|

∫

P4[5]
ρ∗(e)∧ρ∗(e)∧ρ∗(e) =

1
52

∫

P4[5]
5e ∧ 5e ∧ 5e

=
1
52

53
�

5
�

= 25 ,

c2 =
1
|G|

∫

P4[5]
ρ∗(c2(P4[5]/Z5×Z5

))∧ρ∗(e) =
1
52

∫

P4[5]
c2(P4[5])∧ 5e

=
1
52

5
�

50
�

= 10 .

(B.23)

Note that when the dust settles the triple intersection number, as compared to that of the
quintic, has been multiplied by five. However, the second Chern number has been divided by
5. Moreover, the second Chern numbers of P4[5]/Z5×Z5

and P4[5]/Z5
are both equal to 10.

For a much more involved example wherein H2(G,Z)∼= 0 and both H2(eY ,Z)G and H2(Y,Z)
have torsion, one can see the examples and discussion in [31, 91, 92]. Note well that if
H2(G,Z) ̸= 0, one must still study the non-spherical part of H2(Y,Z) before one is able to
take the above steps to compute the Wall data.

We also remark that, while in Examples 0 and 1 we have compared the areas of curves eC
and C in order to obtain the relation between t and et, one could also consider the classical
part of the quantum volume of Y and eY . Since Vol(Y ) = 1

|G|Vol(eY ), we can anticipate in any
example that

κ
(Y )
i jk t i t j tk =

1
|G|
κ
eY
i jk
et i
et j
etk . (B.24)
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Knowledge of the relation between the κi jk thereby enables one to relate t and et.
Example 2, H2(G)∼= 0, h1,1(Y )< h1,1(eY ):

In these cases, the h1,1(eY ) Kähler parameters et i are not all independent. Since G acts
nontrivially on the cohomology of eY , exchanging some of the generators eei , the corresponding
subset of the et i must all be set equal so that the Kähler form et i

eei is left invariant.
For concreteness, we will consider two examples at once. These have been discussed in

[93] (Appendix A.1 therein).

eY (1) ∼=
P1

P4

P4





1 1 0 0 0 0
1 0 1 1 1 1
0 1 1 1 1 1





h1,1=3 , h2,1=47

, Y (1) ∼= eY (1)/Z2 ,

eY (2) ∼=
P1

P3

P3





0 0 0 2
1 1 1 1
1 1 1 1





h1,1=3 , h2,1=47

, Y (2) ∼= eY (2)/Z2 .

(B.25)

We have used the CICY notation [20] to display complete intersections of polynomials in the
ambient spaces defined as the product of the projective spaces on the left, with the degrees of
the intersecting polynomials given by the entries of the matrices. An adjunction computation
[76] gives us the topological data of the covering manifolds,

κ
(eY (1))
111 = κ(
eY (1))

112 = κ(
eY (1))

113 = 0 , κ
(eY (2))
111 = κ(
eY (2))

112 = κ(
eY (2))

113 = 0 ,

κ
(eY (1))
122 = κ(
eY (1))

133 = 4 , κ
(eY (2))
122 = κ(
eY (2))

133 = 4 ,

κ
(eY (1))
123 = 6 , κ

(eY (2))
123 = 6 ,

κ
(eY (1))
223 = κ(
eY (1))

233 = 10 , κ
(eY (2))
223 = κ(
eY (2))

233 = 6 ,

κ
(eY (1))
222 = κ(
eY (1))

333 = 5 , κ
(eY (2))
222 = κ(
eY (2))

333 = 2 ,

c(
eY (1))

2,1 = 24 , c(
eY (2))

2,1 = 24 ,

c(
eY (1))

2,2 = c(
eY (1))

2,3 = 50 , c(
eY (2))

2,2 = c(
eY (2))

2,3 = 44 ,

χ(eY (1)) = −88 , χ(eY (2)) = −88 .

(B.26)

Any triple intersection numbers not displayed are obtained from the above by permuting in-
dices.

In both cases, the Z2 symmetry of the threefold descends from the Z2 symmetry of the
ambient space given by exchanging the lower two projective space factors. This means that
in both examples the Z2 action exchanges the integral cohomology generators e2 and e3. So
although each of eY (1), eY (2) has h1,1 = 3, we will set some Kähler parameters equal before
taking the quotient. In both examples there are two independent Kähler parameters,

et1 and et2 = et3 . (B.27)

The Hodge numbers of Y (1) and Y (2) are both (h1,1, h2,1) = (2, 24).
The second group cohomology H2(Z2,Z) is trivial, and so (B.8) guarantees that ρ∗ gives an

isomorphism between H2(Y,Z) and H2(eY ,Z)G (crucially this is not the same as H2(eY ,Z)∼= Z3).
Consider a genus 0 curve eC on either eY (1) or eY (2). From (B.8) we learn that the image curve
C has degree

deg(C)1 = deg(eC)1 , deg(C)2 = deg(eC)2 + deg(eC)3 , (B.28)
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and therefore
t1 = et1 , t2 = et2 . (B.29)

The pullback will map H2(Y,Z) to H2(eY ,Z)G , the G-invariant subspace of H2(eY ,Z).

ρ∗(e1) = ee1 , ρ∗(e2) = ee2 +ee3 . (B.30)

To see that this is the correct pullback relation, note that eε2 and eε3 lie in the same equivalence
class in H2(eY ,Z)G . Note that H2(eY ,Q)G is spanned by ee1 and ee2 + ee3 with rational coeffi-
cients. It must be the case that ρ∗(e2) = aee1 + b(ee2 + ee3). To preserve (B.9), we need to have
∫

eε1
ρ∗(e1) = 0 and

∫

eε2
ρ∗(e2) =
∫

eε3
ρ∗(e2) = 1, which forces a = 0 and b = 1 as claimed.

The triple intersection and second Chern numbers can now be computed via (B.11). For
each triple i, j, k one expands ρ∗(ei)ρ∗(e j)ρ∗(ek) to obtain

κ
(Y (1))
111 =

1
|G|
κ
(eY (1))
111 = 0 ,

κ
(Y (1))
112 =

1
|G|

�

κ
(eY (1))
112 + κ(
eY (1))

113

�

= 0 ,

κ
(Y (1))
122 =

1
|G|

�

κ
(eY (1))
122 + 2κ(
eY (1))

123 +κ(
eY (1))

133

�

= 10 ,

κ
(Y (1))
222 =

1
|G|

�

κ
(eY (1))
222 + 3κ(
eY (1))

223 + 3κ(
eY (1))

233 + κ(
eY (1))

333

�

= 35 ,

c(Y
(1))

2,1 =
1
|G|

c(
eY (1))

2,1 = 12 ,

c(Y
(1))

2,2 =
1
|G|

�

c(
eY (1))

2,2 + c(
eY (1))

2,3

�

= 50 .

(B.31)

The same contractions relate the numbers for Y (2) to those of eY (2), yielding

κ
(Y (2))
111 = 0 , κ

(Y (2))
112 = 0 , κ

(Y (2))
122 = 10 ,

κ
(Y (2))
222 = 20 , c(Y

(2))
2,1 = 12 , c(Y

(2))
2,2 = 44 .

(B.32)

B.1 Remarks on Wall’s theorem and non-simply connected threefolds

B.2 The Hori-Knapp model

Our choice of the specific Y (1), Y (2) of Example 1 were not merely taken to illustrate how to use
(B.8) and (B.9) to compute topological data for quotients satisfying some specific properties
(namely H2(G,Z) = 0 and h1,1(Y ) < h1,1(eY )). The topological data that we have computed
for these models allows us to address an open problem in the literature.

Consider the Calabi-Yau geometries discussed in [27]. Their nonabelian GLSM realised,
in two different phases (in their labelling, phases I+ and IV ), a pair of Calabi-Yau threefolds
with hodge numbers (h1,1, h2,1) = (2, 24). One of these (phase IV ) had trivial fundamental
group, and so this geometry was known to be distinct to the quotient geometries Y (1), Y (2)

of [93]. Nonetheless, it was left as open to determine if their phase I+ really did provide a
new Calabi-Yau threefold, or if this geometry was in the same diffeomorphism class as one of
Y (1), Y (2). Now that we have the full set of Wall data for the two quotient models we have
taken from [93], we can compare this to the Wall data of the phase I+ geometry of [27] and
use the methods of [28] to check if the phase I+ geometry lies in a distinct family of Calabi-Yau
threefolds.
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Strictly speaking, Wall’s theorem [94] states that the homotopy type of a compact, simply
connected Calabi-Yau threefold with torsion-free homology is determined by the Wall Data
(triple intersection numbers, second Chern numbers, and Hodge numbers). At the time of
writing, this is not known to apply to non-simply connected threefolds (which we are studying
presently). Nonetheless, as argued in [28] it is anticipated on physical grounds that one can
drop the assumption of simply-connectedness. We note that there is no GL(2,Z) transforma-
tion with determinant ±1 that takes the Wall data for phase I+ of [27] to the Wall data that
we have computed here for either of Y (1), Y (2). We determine this by comparing the GCDs of
the sets of triple intersection numbers and second Chern numbers for each geometry. To use
the language of [28], these geometries are not Wall-equivalent. Therefore, we expect that the
geometry associated to phase I+ is distinct from either of Y (1), Y (2), assuming that homotopic
non-simply connected threefolds must have the same Wall data.

B.3 Non-homotopic threefolds with the same Wall data

As we will now demonstrate, non-simply connected threefolds with the same Wall data need
not be homotopic. We guess that if Wall’s theorem can be generalised beyond the simply
connected case, then the Wall data must be extended to include the fundamental group.

Consider for the sake of nuisance two further geometries from [93] (Table 25 therein),

P7[2,2, 2,2]/Z8
, and P7[2, 2,2, 2]/Q8

. (B.33)

These are of the type considered in our discussion of Example 0, with
H2(Z8,Z) ∼= H2(Q8,Z) ∼= 0. h1,1 = 1 for both quotients and their shared universal cover
P7[2,2, 2,2]. Both quotient groups have the same order, |G| = 8. Nonetheless both quotient
geometries have different fundamental groups, respectively Z8 andQ8 (the quaternion group).
Therefore the manifolds cannot be homotopy equivalent. They have the same Wall data, ob-
tained by dividing the triple intersection, second Chern, and Euler numbers of P7[2,2, 2,2] by
8: κ111 = 2, c2 = 8, χ = −16, h1,1 = 1.
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