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Abstract

We apply the methods of [1] to compute generating series of D4D2D0 indices with a
single unit of D4 charge for several compact Calabi-Yau threefolds, assuming modularity
of these indices. Our examples include a Z, quotient of Rgdland’s pfaffian threefold, a
Zs quotient of Hosono-Takagi’s double quintic symmetroid threefold, the Z; quotient of
the bicubic intersection in P°, and the Zs quotient of the quintic hypersurface in P*. For
these examples we compute GV invariants to the highest genus that available boundary
conditions make possible, and for the case of the quintic quotient alone this is sufficiently
many GV invariants for us to make one nontrivial test of the modularity of these indices.
As discovered in [1], the assumption of modularity allows us to compute terms in the
topological string genus expansion beyond those obtainable with previously understood
boundary data. We also consider five multiparameter examples with h:1 > 1, for which
only a single index needs to be computed for modularity to fix the rest. We propose a
modification of the formula in [2] that incorporates torsion to solve these models. Our
new examples are only tractable because they have sufficiently small triple intersection
and second Chern numbers, which happens because all of our examples are suitable
quotient manifolds. In an appendix we discuss some aspects of quotient threefolds and
their Wall data.
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This is the mystery of the quotient, quotient
Upon us all, upon us all, a little rain must fall

Led Zeppelin, The Rain Song
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1 Introduction

Performing microstate counts for black holes in 4d \/ = 2 string vacua remains an open prob-
lem. These counts are related to bound states of D6, D4, D2, and DO branes in ITA compacti-
fications on a compact Calabi-Yau threefold Y, which are counted by generalised Donaldson-
Thomas invariants [2, 3].

Configurations with no D6 charge are counted by rank-0 generalised DT invariants, also
known as D4D2D0 indices. They admit a lift to an M-theory compactification on Y [4]. In
this M-theory setup the microstate counting problem can be approached by computing the
modified elliptic genus [5,6] of a 2d V' = (0, 4) SCFT, constructed by dimensionally reducing
the 6d N = (0, 2) theory on a divisor D, C Y. The vector p gives the D4 charge, and also
the homology class [D, ] = p'e; € H,(Y,Z) with €; a basis of 4-cycles. There is an important
distinction between the cases of irreducible and reducible divisors D,,. In the reducible case,
there is a modular anomaly which complicates the analysis [7-9].

As explained in [10] the D4D2DO0 indices, which depend on the Kihler parameters of Y
and vary discontinuously at walls of marginal stability, match with the indices computed by the
elliptic genus of the (0,4) SCFT when the complexified Kéhler parameters are sent to ico. In
this limit, the values taken by the D4D2D0 indices are sometimes referred to as MSW indices.

Our aim in this paper is to compute new explicit Abelian D4D2DO0 indices in this limit, with
“Abelian” specifying that we only consider an irreducible divisor. We are only able to do so by
making use of the methods pioneered in [1]. One component of their technique is to exploit
explicit formulae relating rank O generalised DT invariants to Pandharipande-Thomas invari-
ants, due to [11]. Next, they invoke the MNOP conjecture [12, 13] which relates the PT and
Gopakumar-Vafa invariants of Y. Gopakumar-Vafa invariants for the hypergeometric models
studied in [1], smooth complete intersections in weighted projective spaces, were available
in light of the solution approach to topological string theory developed in [14]. As we will
soon discuss, once sufficiently many MSW indices are known then all MSW indices for a given
irreducible divisor are known. In short, the techniques of [1] provide every MSW index for a
given irreducible D, once sufficiently many terms in the genus expansion of the topological
string free energy are known.

We will more fully explain the following equations in §3.4, and for now we only display
what we need to illustrate the basic motivation of this paper. For now it suffices to know that
the MSW index is labelled by a positive integer n and a subscript . The generating function
h,(7) for MSW invariants ﬁp,u(Au_ n) with D4 charge p is vector valued. Components of
this vector have a label u. Each component of this vector has a Fourier expansion given by

hp W(7) = Zﬁp,u(Au— )" q = e, e

n>0

The A, are certain rational numbers. In the case of an irreducible divisor D, it is conjec-
tured that this generating function transforms as a vector-valued modular form (VVMF) of
weight —1 — %, where b, is the second Betti number of Y. Although mathematically open,
this conjecture is physically very well justified by realising h;(7) in a decomposition of the
modified elliptic genus of the MSW SCFT, whereby modular symmetry of the SCFT leads to
the conclusion that h,(7) is a VVMF with this weight [5].

This modularity is at the heart of the program for computing these indices, which began
with [5,6]. While the direct computation of each individual index may be formidable, the
space of VVMFs with the correct transformation law is finite dimensional. Consequently one
only needs to compute finitely many indices to know them all (that is, for a single unit of D4
charge).
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Note that the set of monomials in each Fourier expansion (1) contains finitely many such
that q has a negative exponent, one for every pair (u,n) such that 0 < n < A,. These are
referred to as the polar terms. This is important to consider because the dimensionality of
the space of VVMFs with prescribed weight, multiplier system, and polar exponents A, is less
than or equal to the number of these polar terms (the difference is typically small relative to
the number of polar terms [15]). This means that the more polar terms there are, the more
indices one has to compute before modularity fixes the rest. One can see that there will be
more polar terms for a given model, and so that model will be more difficult, if that model has

* A large number of distinct .
* Large values of A,.

These numbers, which count the difficulty of a given model, can be computed in terms of data
of the divisor D, and the threefold Y. Recall that amongst the topological data of Y we have
the triple intersection and second Chern numbers:

Kijk = J e;NejAe, Coi = f c(Y)Ae;, 2
Y Y

where e; is a generating set for H2(Y, Z)gee and c,(Y) is the second Chern class of Y.
We will always choose our D4 charge vector p to be one of (1), (1,0), (1,0,0) according
to whether b, equals 1, 2, or 3. With this choice,

K111 +C21

24 )

the number of distinct w equals Det [Kl jk] , and Ap=

The remaining A, have different expressions, but are smaller than A,. It suffices for now to
just give Aq. This justifies the rough statement: models with small x;;; and c,; are easier.

To be more specific, a model is easy if it requires knowledge of the topological string free

energy only to a low genus. By this metric, the easiest model studied in [1] would be the

intersection of two sextic hypersurfaces in WP?,1,2,2,3,3' This model has x17; =1, ¢5; = 22.

As a result, there is only one polar term. It turns out that the index ﬁp’o(AO), giving the
coefficient of the most polar term, can be computed from «;j; and ¢, ; without knowledge of
any GV invariants. Therefore this model is solved almost immediately. We are led to wonder
if there are other such simple models out there.

This is more than simply a matter of doing less work. The methods of [14] do not provide
GV invariants to an arbitrarily high genus. One must impose certain boundary conditions at
each genus to fix the holomorphic ambiguity, and in practice there are not enough boundary
conditions past some model-specific genus. At the time of writing there exists no way to com-
pute GV invariants to an arbitrarily high genus for a compact Calabi-Yau threefold. For each
fixed model GV invariants are needed to a sufficiently high genus before the methods of [1]
can be utilised, so it is worthwhile to find cases where this condition is met. We seek Calabi-Yau
threefolds Y such that their topological data is sufficiently small that the set of GV invariants
of Y which can be computed using available boundary data is sufficient to compute enough
MSW indices for the rest to be fixed by modularity.

A first place to look might be the one parameter threefolds realised as complete intersec-
tions in Grassmannians, or the related Pfaffian threefold, for which topological string free en-
ergies were computed in [16,17]. Unfortunately, the smallest triple intersection number in this
set is k177 = 14 for Rgdland’s Pfaffian threefold [18], which makes obtaining enough MSW in-
dices unrealistic with available methods. Note that the hypergeometric model P’[2, 2, 3], with
K111 = 12, was omitted from the analysis of [ 1] owing to limited knowledge of GV invariants.
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There is another model in the literature known to only have a single polar term: the Zg
quotient of the quintic in P*, for which the modified elliptic genus was computed in [5]. This
inspires our approach. For a Calabi-Yau Y obtained as the quotient of a simply connected
threefold Y by a freely acting symmetry group Z,,, where h»(Y) = h*!(Y), one has

m_1 @ m_1 @
Kijk = p Nijk Coi T prl2i 4

We explain this relationship between the topological data of Y and Y in §B. We go on in
that appendix to discuss some interesting examples of quotient manifolds informed by that
discussion.

There is then hope to find amenable examples in the set of quotient manifolds, whose
topological data may be small because it is obtained by dividing the cover’s data by the order of
the quotient group.! After consulting the tables in [19], we are led to the examples in Table 1
(where we use the CICY notation [20]). We also consider the Double Quintic Symmetroid
model studied in [21], which admits a Z5 quotient.

This open problem of fixing the holomorphic ambiguity at higher genera can be addressed
with the modularity of MSW invariants, as carried out to great effect in [1]. For every h*! =1
model in Table 1, we compute as many topological string free energies as we can using the
boundary data specified in §A, where we list GV invariants. For the P*[5]/Zs and P°[3,3]/Z5
models, we are able to compute GV invariants beyond the maximal genus those boundary
conditions enable, by incorporating data from the MSW generating function and the explicit
formulae relating the MSW invariants to GV invariants. We are not the first to compute GV
invariants for P*[5]/Zs and P°[3,3]/Z;, which are mentioned on footnote 12 of [14] and
reference 14 of [22].2 For these models, our computations provide a small number of inde-
pendent checks on the modularity of MSW invariants.

Regrettably, we are unable to use the Abelian MSW indices to drive the genus expansions
for the (1,8) and (1,6) models higher than the genus 5 results we give in §A. We do compute a
handful of invariants at genera beyond 5, but these are insufficient to fix the topological string
free energies at these genera.

The simply connected covers of these models have derived equivalent partner manifolds,
respectively the intersection of seven degree 1 hypersurfaces in Gr(2,7) [18,23-25] and the
Reye congruence [21,26]. These respectively have Z, and Zs quotients, which we assume
to be derived equivalent partners of the (1,8) and (1,6) models. It is only by making this
assumption that we are able compute the invariants listed in §A.

Outline of paper In §2 we review aspects of quotient Calabi-Yaus that inform us, and in
§3 we review aspects of [1,11] which we avail of. These sections contain no new results,
are included only in the interest of self-containment, and can be safely skipped by experts.
Section §4 includes some discussion of the specific quotient geometries we study, and their
mirrors. Readers solely interested in seeing the Abelian D4D2D0 generating functions can
skip to sections §4.1.2, §4.2.2, §4.3.2, §4.4.2, and §5.

GV invariants are given in §A, and to higher degree in an ancillary Mathematica notebook.
In §B we discuss the Wall data of quotient manifolds. We apply our discussion to address some
questions posed in [27, 28] that concern the use of Wall data to distinguish diffeomorphism
classes of non-simply connected CY threefolds.

IThis is not the case for general quotients, as we discuss in §B.
2The P*[5]/Zs GV invariants were also computed independently by Emanuel Scheidegger in the course of
helpful conversations in the BICMR.
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Table 1: Quotient geometries studied in this paper.

(Rt R%h) Geometry Triple Intersection Numbers Cy
(1,21) P*[5]/Zs K117 =1 (10)
(1,25) P°[3,3]/Zs K111 =3 (18)
(1,8) (Pfaffian in P®) /Z, K111 = 2 (8)

S h doubl f
(1,6) (detlz:ll?rggnan(zgl qellicr?'[‘i]ceﬂ:P4)/ZS K111 = 2 (8)
Pz-g K111:K222:O 12
(2’29) ]P)z _3] /Z3 K112 = K122 =1 12
P31 1 1 0 K131 =0 Kypp=1 12
(2,20) P°[1 1 1 3] /2 Kiz2 =3 Koggp =3 18
PY1 1 1 1 1 K111 = Kg9p = 1 10
2,12 Z
(2.12) P11 1 1 1]/ > K112 = K192 = 2 10
P21 1 1 K111 = K23 = K333 =0 12
= = = ]_
318) ||B2|1 1 1|/z, fra s TR T 12
]P)Z 1 1 1 122 — R133 — K233 — 12
- K123 =2
P2[1 1 1 0 0 O K111 = K295 =0 12
(3,15) ]P)z 0 0 01 1 1 /ZS K112 = K122 = K113 = K223 =1 12
IEDS _1 1 1 1 1 1 K123 = K133 = K233 = K333 = 3 18

2 Quotients of CY threefolds by freely acting groups

Throughout this paper, Y will be the Calabi-Yau threefold obtained by taking the quotient
of another threefold Y by a freely acting symmetry group Z,,. We will always have a Z,,
action such that h1(Y) = h'>1(Y), equivalently b,(Y) = b,(Y). Here we review some details
particular to such threefolds which informs our computations.

2.1 Torsion in the second cohomology

Many relevant aspects of the homology and cohomology groups of quotient manifolds are
discussed in [29-31]. As we explain in Appendix §B, the second integral homology H,(Y,Z)
is torsion-free. By Poincaré duality, whereby

HY(Y,Z) = He_(Y,Z), (5)
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the fourth integral cohomology H*(Y,Z) = H,(Y, Z) will also be torsion free.
Importantly however, for the second cohomology we have

H(Y,2)= 7> 07, (6)

which has a 7, torsion factor. The Poincaré dual statement is H,(Y,Z) = H%(Y, Z), there is
Z,y, torsion in the fourth homology.

The fundamental group t;(Y) is Zy;, because Y is the quotient of the simply connected ¥
by Z,,. In general H,(Y, Z) is the abelianisation of 7,(Y), so in our case H,(Y,Z) = Z,,.

As explained in [30], (6) is guaranteed by the universal coefficient theorem

Tors(H,(Y, 7)) = Hom (Tors(H'"(Y, 7)), Q/Z) . 7
Using (5) and (7) one can then demonstrate (6) via
Tors (H2(Y, Z)) = Tors (H4(Y, Z))
= Hom (Tors (H>(Y,Z)),Q/Z)

= Hom (Tors (H,(Y,Z)),Q/Z)
= Hom (Zy, Q/Z) = Zy -

€))

2.2 Picard-Fuchs equations and mirror quotients

Computing topological string free energies requires some knowledge of the Calabi-Yau three-
fold X that is mirror to Y. We will denote by X the mirror threefold of the cover Y. When Y
is the (1,21) model P*[5]/Zs, it has long been known that X = X /Z< [32]. In every h™! =1
example listed in Table 1 we can identify a freely acting Z,; symmetry of the appropriate X
appearing in the literature.

We now argue that, for the quotients we consider, the Picard-Fuchs equations for both mir-
rors of Y and Y must be the same. Note that in the one parameter case (h"}(Y) = hV1(Y) = 1)
the genus 0 invariants n( ) are generated by the Yukawa coupling [33] through the Lambert
series

k
0 .
Ciee(@) =x111 + E n(k ) - qk , q= e2mit ©)

As explained in [34], the function Cm(q) puts the Picard-Fuchs operator into a canonical form:

LPr 921 2 0 d

64, =q—. (10)
1 Cy(q) 4 1 qdq

As we explain in Appendix §B, the triple intersection numbers share the relation k() = Ly ()

1m = M-
If we have similarly that .

5(0) Y _ v n(kO) Y )
then the Yukawa couplings (9) for Y and Y will be equal up to an overall multiple of M, hence
the Picard-Fuchs operators (10) for the two mirror geometries will be the same.

The required relation (11) is certainly true in cases where n(ko)’Y equals the count of rational
curves of degree k on Y, when all such curves are smooth. This follows because such a curve
has no unramified covers, and by assumption Z,, acts freely on Y, hence the preimage of each
such curve is M distinct copies of the curve in ¥, implying® (11).

(11

3The same degree k appears on both sides of (11), this follows from our discussion in §B which closely follows
the arguments of [29] (where a similar argument for such a relation (11) appears). For more general quotient
groups than Z,,, the degrees of the invariants on the LHS and RHS of (11) can differ (as in the example of [29]).
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The relation between n?{o) and curve counts is not so simple, as explained in [35, §2.1].

To be sure that the required relation (11) does hold, we appeal to the GLSM results of [36].

There, it is shown that the genus-0 invariants of n(o),y can be read off of the sphere partition

function Z 2(t t) of a GLSM with some gauge group H, whose large volume phase flows

to a sigma model on Y. To perform the same computation for n?{o) ¥ one should repeat this

computation but replace the gauge group H with H x Z;,;. The computation of the sphere
partition function goes through almost exactly the same for both models, however one must
divide by the order of the Weyl group of the gauge group, which differs in each model by a
factor of M. This leads to

75 (t,7) = 1ZY(~ 7). (12)

Following through with the prescription for computing genus-0 invariants outlined in [36],
and noting that t = for our quotients (as discussed in §B), one has that (12) implies (11).
This argument also provides the relation (4) that we discuss further in §B, since the triple
intersection and second-Chern numbers can similarly be read off from Zs.. This argument
also gives an equality between the Frobenius-basis periods of ¥ and Y, which gives another
demonstration that the mirrors of Y and Y have the same Picard-Fuchs operators.

From transposing the Hodge diamond, the Euler characteristic of X will be minus the Euler
characteristic of Y. This means that y(X) must equal ¥ (X)/M, since y(Y) = y(Y)/M. Since
;(()? )/M is the Euler characteristic of X /Z > Which also has the same PF equation (because the
fundamental period of X and X are identical), we proceed on the assumption that the mirror
of VisX =X/ Zj; when we compute GV invariants. Treating this problem more rigorously for
the (1,6) model could require a more involved understanding of issues discussed in §4.4.1.
Treating the mirror of the (1,8) geometry more carefully might proceed along the lines of [37].

2.3 The genus 1 topological string free energy

The reason that we needed to identify a mirror geometry (rather than merely a mirror PF

operator) in §2.2 is that the nature of the singularities that X can acquire for certain values of

the complex strcuture moduli provide important boundary data for higher genus computations.
The BCOV result for the genus 1 B-model topological string free energy is [38,39]

(1) _ 1 1,1 x(Y) 1 dt
FO (o) ==2 (34801 r) — 2 Y1og (@)~ 5 g dw) .
— e og(e) 15 2, Gl log(4).

X will become singular for certain moduli ¢ that solve a polynomial equation A(y) = 0. The
polynomial A is the discriminant of X. Let A be a product of factors A; that are irreducible
over Q. For ¢ a root of A;, X will become singular because a Lens space of the form $3/G;
shrinks, with G; being a group specific to the factor A;. The appearance of the |G;| in (13)
was discovered in [22], and explained by the fact that as the S®/G; shrinks a number |G;| of
hypermultiplets become massless.

Although it will not happen for the examples presently under study, we mention that it
was observed in [40] that at a root of some A; multiple distinct Lens spaces may shrink. The
proposal of [40] was that the number of such collapsing Lens spaces should appear in the
genus one free energy, multiplying the coefficients of log(4;) in (13). This is consistent with
the coefficient of log(A;) being minus the number of massless hypermultiplets divided by 12,
as per [22].
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3 GV-PT-D4D2DO relations

3.1 The GV and BCOV formulae

The Gromov-Witten invariants N'® of the Calabi-Yau threefold Y are computed by the all-

B
genus A-model topological string free energy [41]. The Gopakumar-Vafa invariants n%g) are

then obtained by a multicover formula [42, 43], with the integrality explained in physical

terms as giving counts of BPS particles in an M-theory compactification on Y (so necessarily

integral). A mathematical proof of integrality of the n;f), as defined by this multicovering

relation in terms of Gromov-Witten invariants, was given in [44].
The Gopakumar-Vafa formula reads

o
FAll Genu5(t, A) = Z XZg_ZF(g)(t)
§=0

=7 c(t)+l(t)+Z:/12g2 Z N(g) (14)

BEH,(Y,Z)

e+ S Sk = (2sin Zl)zg_zqmﬂ.

¢=0 BeH,(Y,Z) m=1

c(t) and [(t) are the cubic and linear polynomials in t that respectively appear in the genus 0
1,1 )
and genus 1 free energies. For a homology class 8, ¢™¥ denotes exp (Znim Z?:l ﬁitl). The

genus 0 A2 term, and the associated multicovering formula, were obtained in [33]. A refined
version of this formula incorporating discrete M-theory charges (which do not arise in this
paper) has been provided in [45,46].

In order to obtain the integers n%g )

, one uses mirror symmetry. This has been carried out
to great effect in [14,16,17], and we do not offer any new insights here not already contained
in those papers. The B-model and A-model free energies &) and F(&)(t) at a fixed genus are

related by

F(t) = my(p)22FE)(p) : (15)
p=1(t)
@ is the holomorphic series solution of the Picard-Fuchs system of X in the solution expansion
about a point of Maximal Unipotent Monodromy (MUM), with leading term 1 (more generally
this will be ¢*, where a is the distinct root of the indicial equation at the MUM point).

In the vicinity of a MUM point, a basis of b3(X) solutions can be found such that one
has leading term 1, h'}(Y) have logarithmic leading behaviour, h*}(Y) have log-squared be-
haviour, and a final solution has log-cubed asymptotics. The mirror map, which relates the
complexified Kéhler parameters of Y to the complex structure parameters ¢ of X, reads

_ Lwl,i((P)
2mi wo(p)

(16)

@,,(p) is the single-log solution to the Picard-Fuchs system, with leading behaviour
@ylog(y;)+ O(¢) at the MUM point.

There is a unique (up to scale) holomorphic (3,0) form 2 on X. The complex structure
moduli space M of X has a Kéhler structure, with Kéhler potential K given by

e_K=if QAQ. (17)
X

9
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This provides a Kihler connection J,,:K on a line bundle £ over M. One also has a Levi-Civita
metric connection Fjik from the metric G;; = 9,6;K.

The Yukawa coupling is a symmetric 3-tensor on M valued in £2, given by
Cijk:f Q/\a@ia@awkﬂ, (18)
X

which obeys D;Cji; = D;Ci, 6;Cjig = 0.

The S, permutation symmetry on the indices of D;Cjj; allows one to express C;j; using
a prepotential, the genus 0 B-model free energy F(®, which is a section of £2. One has
Cijx = D;D;D FO.

While the genus 0 result is holomorphic, only depending on ¢ and not ¢, the holomorphic
anomaly of Bershdasky-Cecotti-Ooguri-Vafa [38, 39] leads to a p dependence in the higher
genus F&) (¢, p), which are sections of £272¢. This anholomorphic dependence is not seen
in (15) because one takes the topological limit (introduced in [39], see also the discussion
in[17]):

F&(p) =F(p, ) (19)
P00
The genus 1 holomorphic anomaly equation is given in [38,39],
1—.
00, FV = G Cjun + (1= 2(Y)/24) Gy (20)
The solution is
— 1 Y 1
FO(p,9) == (3 +hbY(Y)— M)K — = log(det(G))
2 12 2
| R(Y) 2 (21

G,

[Tad T+
4

i=1

—log

The third term above is the genus 1 ambiguity, fixed by imposing boundary data at the hyper-
conifold and MUM point singularities. In the topological limit, in the one-parameter case, this
becomes (13).

The Holomorphic Anomaly Equations (HAE) express, for g > 2, the anholomorphic deriva-
tives of the free energy 7 in terms of free energies 7 at lower genera, h < g:

2 Fw(y,5) = Lo eicie e
2 pk 2
g—1 (22)
x| DD, FE (0, 8) + D (D F (0, 8) (D, F (0, 9)) | -
r=1

If the F<8) are known, then the above equation manifestly determines F(&) up to the
addition of a holomorphic function f®&(¢).

The most computationally practical way to proceed is to use the polynomial structure of
these free energies, as explained in [47-49]. One computes at each genus a polynomial P(&)
of bounded degree in certain propagator functions S¥/,S!,S (see for instance [48]), and the
free energy is the sum of this polynomial and the holomorphic ambiguity: F(&) = p(&) 4 (),
The recursion relation above becomes a recursive set of PDEs that define this polynomial P&
of the propagators.

The holomorphic ambiguity is a rational function (as is necessary for meromorphicity on
the moduli space), and by considering the possible singularities of F(&) it becomes clear that
f(&)s denominator can be completely fixed, and the growth at infinity bounded. This means
that at each genus there is a finite set of numbers to fix in order to completely determine f (¢ ),
the coefficients of the numerator polynomial of this rational function.
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3.2 Known constraints on the holomorphic ambiguity

One set of results we wish to stress in this paper, which exactly follows the analysis for sim-
ply connected hypergeometric models in [1], is that conjectural modularity of Maldacena-
Strominger-Witten invariants provides new constraints on the holomorphic ambiguity f .
This allows for explicit topological string expansions to a higher genus than previously possi-
ble. In order for these results to be evident, we here discuss previously established constraints
on the holomorphic ambiguity that we have used to compute the tables in Appendix §A. We
discuss these without including the prospect of incorporating the data obtained by directly
obtaining some curve counts using relative Hilbert schemes as was done in [14] for complete
intersections in weighted projective spaces.

For one-parameter hypergeometric models, the determination of f€)(¢) (and so F(& and
F®)) was carried out to a high genus by Huang-Klemm-Quackenbush in [14]. This problem
was revisited by Hosono-Konishi [16] for the Grassmannian/Pfaffian pair of models discussed
by Rgdland [18], and then for all one-parameter Grassmannian models by Klemm-Haghighat
[17]. Here we collect the salient results for the fixing of the ambiguity. From here forwards,
we will specialise to the one-parameter case h}(Y) =h?!(X) =1 witht=t! =¢.

At a conifold point, about which the mirror coordinate t, = k. +0(¢?) for some constant
k., the Schwinger-Gap computation of [14] provides the behaviour

—1)¢1B
FO(t) =G| =D X +0(1). (23)
2g(2g —2)t:*

B, is a Bernoulli number. |G.| are the same numbers appearing as exponents in (13), giving
the number of hypermultiplets that become massless at the conifold. We obtain this k, for each
of our examples Y by taking the k. for the covers Y, from the works [14,16,26], and dividing
by the order of the quotient group. This is the correct normalisation, based on the arguments
of [14] that relate k, to the mass of a shrinking D3 brane in IIB: Since our quotient acts freely,
the shrinking D3 brane in our examples are obtained as free quotients of the vanishing cycles
on the covers, and so this mass is divided by the order of the group.

The point at infinity, the origin in @-space where ¢ = %p for some constant f3, will be a
singularity of the Picard-Fuchs operator. The B-model free energy is subject to Kahler gauge
transformations that can add or remove singularities, but the A-model free energy is regular at
& = 0 for the models we study (see the discussion on C-points in [14] for cases where F&) is
singular at infinity). Poles of f () at infinity can and must cancel with poles of the propagators
SU, St S, and in the original ¢ coordinate these specific poles appear as polynomial terms in
f(&). There is a bound on the degree of this polynomial, coming from the prefactor wgg_z
in (15). Without making a change of Kéhler gauge, the expansion of @, about infinity has
leading term ¢, where a is the smallest entry of the Riemann symbol of the Picard-Fuchs
operator at 0.

Finally, as we have mentioned, the construction of the propagators may introduce “fake”
singularities. f () must cancel these. In practice one expects to encounter this problem when
one has an apparent singularity, which is a singularity of the Picard-Fuchs operator but not
a root of the geometric discriminant polynomial A. The highest pole order we encounter at
these apparent singularities is 3g — 3, just as in [16].

We will write again the discriminant A(¢) as [ [; A;(¢), where A; are irreducible over Q.
We allow for an apparent singularity at the root of the linear polynomial A,,,(¢). Moreover,
we from here on assume that ¢ = 0 is a MUM point with all indices in the Riemann symbol
equalling 0.

11
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Based on the considerations we have discussed above, the holomorphic ambiguity takes
the form

L(Zf)aJ . Z ZgZ—IZ Zdeg(Ai)—l b. . k‘Pk
f(g)(go) - bj(pj + k=1 b,
= ~ | = Ai(p)
Fixed by gap condition 24)
3g—3 g—1

bAppj i
+ Z —_— 4+ Z By’ .
j=0 Aapp () j=l(2g—2)a+1

~———
Fixed by regularity at Ayp,=0  Fixed by regularity at co

If there is no apparent singularity, then we discard the third term above. The fourth term arises
only as a result of choices made when constructing the propagators,* and is immediately fixed
by regularity at every genus so that it causes no conceptual obstacle.

The gap condition (23) (once k. is known), and regularity at Ay,,(¢) = 0 and infinity,
are sufficient to completely fix the second, third, and fourth terms in (24). It is therefore
best to discuss the remaining problem in determining f (€ as the problem of determining the
polynomial

[(2g—2)al _
blp)= > byl (25)
j=1

The constant term b, can always be computed without difficulty, because the constant term in
F&)(t)s expansion about a MUM point is known [42,51,52]. Moreover, for any fixed degree Q
(the positive integer giving the homology class in H,(Y,Z)) there is a maximal genus g,,..(Q)
such that n((zg) # 0 (this finiteness conjecture is now a theorem in light of [53]). By combining
the MNOP conjecture [12,13] with new results on Wall-crossing for rank-1 Donaldson-Thomas
invariants, assuming what was referred to in [1] as the BMT inequality [54,55], the authors
of [1] have argued that a bound is given by

Q¥ ,Q
[2K111 +EJ+1’ Q=K1

|22 +2|+1, 0<Q<wu.

3K111

8max(Q) < (26)

We assume in this work that this BMT inequality holds for the geometries we study, so that the
above bound can be applied. Furthermore, we must make this assumption in order to apply
the results of [1], Appendix A when we compute D4D2DO0 indices.

From (26), one can obtain a number Qcagtelnuovo(&) Such that for Q < Qcasteinuovo(&)s ng
vanishes as a consequence of (26). We stress that there may be degrees Q > Qcastelnuovo(&)
such that nég) is zero without being implied to vanish by (26), which in some examples is
observed to occur for Q close t0 Qcastelnuovo(€)-

So with a MUM point, we are able to place some constraints on the b ; in (25). However,
one must note that the number of Castelnuovo zeroes grows with the genus g asympotically as
v/2K111€. The number of indeterminate b; is | 2g —2 |a, which always outstrips the conditions
provided by the Castelnuovo zeroes as the genus g is increased.

“To be more specific, one constructs the propagators S¥,S',S as in [48] (equations 14, 16,17,18). There is
freedom to choose a subset of the propagator ambiguities s i hfk,hf, h;,h;; therein. We make the choice h}' = 0,
h} = 0 globally, and 5%1 = 0 in a patch containing ¢ = 0, whereupon specific rational functions h; and h,; are
forced upon us. This choice leads to the fourth term in (24), other choices may lead to further new terms that
can always be removed upon considering regularity (or indeed remove the fourth term altogether). Note that sfj
transforms under general coordinate transformations in the same manner as l"ll], and not as a tensor (see [50],
equation B.5), and so cannot be taken to vanish globally with our prior choices.
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It may happen (as for the (1,6) and (1,8) models) that ¢ = oo is also MUM point, from
which a different set of invariants n¢ can be computed. In these cases, the additional MUM
point provides additional Castelnuovo zeroes and one more constant term condition (in the
expansion about infinity).

3.3 The GV-PT correspondence

The relations between MSW and GV invariants that we wish to study and exploit in this paper
are stated in terms of Pandharipande-Thomas invariants PT(Q, n) [56] and Donaldson-Thomas
invariants DT(Q, n) [57] of the Calabi-Yau threefold Y. We will take a blindered approach to
these rich sets of invariants, only displaying their conjectured relation to GV invariants. The
generating functions for these invariants are

Zpr(y, @) = Z DT(Q,n)y%q",  Zp(y,9) = Z PT(Q,n)y*q". (27)
Qn Qn

The DT/PT relation, conjectured in [56] and proven in [58,59], yields an equivalence between
these two sets of invariants. The relation uses the MacMahon function M(q), and reads

Zpr(y,9) = M(—)* P Z (v, q), M(q) = l_[(l —q")7*. (28)
k>0

Maulik, Nekrasov, Okounkov, and Pandharipande conjecture an equivalence between
Donaldson-Thomas and Gromov-Witten theories [12,13]. This produces functional identities
that relate the topological string free energy with either Zpy or Zpr. Namely,

exp (FReduced(t’ A)) = ZPT (eZnit, _eil) 5 (29)

wherein Fgegyceq denotes FAI SN from (14) with the polynomial pieces c(t),1(t) and con-

stant contributions (8 = 0) discarded. To obtain PT invariants from a set of GV invariants
(themselves obtained by solving for the F(8)), one writes this relation in the plethystic form
due to [60]:

Zmax(Q)
Zor(y,Q=PE | > > (-1 'nP1—x)% 2178y | (=q,y). (30)
Q>0 g=0

The plethystic exponential is defined by

PE[f (x,y)](X,Y) = exp (Z %f (x",yk)) (31)
k=1

(x,y)=(X,Y)

3.4 D4D2DO0 indices

We will be deliberately brief in our treatment in this subsection, as these matters have already
been covered in [1], whose presentation we follow. We cover a bare minimum so that our
results in §4 and §5 can be more self-contained.

For an object E € DPcoh(Y), there is a Mukai vector yY(E) = Ch(E)+/Td(Y). Asin [61] we
use a basis (1,¢;,e', ey) of HE*(Y, Z),ee. Here ej Ael= 5§ey and fY ey = 1. We expand y(E)
following [61]:

y(E)=Ch(E)y/Td(Y) = p0 +piei —qiei +qoey - (32)

We will neglect the possibility of turning on torsional D4 charge, so that the divisor’s homology
class [D,, ] includes torsion pieces. In [5] the five such choices that could be made for P*[5]/Zs
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were argued to give identical sets of indices, explaining the factor of 5 in their equation (4.1)
(however, see our discussion following our equation (76)).
The components in the above expansion are subject to quantisation conditions:

. 1 . 1 1 ;
0 k 0
PP EZ,  PEL,  qGEL+ KPP - P, QE€LZ—icpt.  (33)
The integers p' , 1 < i < h»!(Y), define a divisor D, c Y. The divisor D, is the Poincaré dual
of ple;. There is a quadratic form on the lattice A = H,(Y,Z) = H%(Y, Z) given by the matrix

Kij = Kijkpk, (34)

and the inverse matrix « provides a quadratic form on the dual lattice
A = Hy(Y,Z) = H*(Y,Z). The form k;; embeds A into A* as a sublattice, and so there is
a lattice quotient A*/A. This quotient contains

IA*/A| = Det[Kijkpk] , (35)

elements, each a b,-vector with integer entries.

We will not in this paper provide a complete definition of generalised
Donaldson-Thomas invariants [3]. The generalised rational Donaldson Thomas invariant
Q(p° pl,q;,q0;t) = Q(y;t) is locally constant with respect to variations of the Kihler moduli
t but can change discontinuously at walls of marginal stability. There is a conjectural integer
refinement [3],

a0 =3 B0, 36
kly
which again jumps at walls of marginal stability in t-space. Q(y;t) and Q(y;t) coincide when
y is primitive. [61] explains that, apart from the case of b,(Y) = 1, this moduli dependence
persists in the large volume region of moduli space.

Now consider the rank 0 case p® = 0, for which the generalised DT invariants are also
termed D4D2DO0 indices. By going to the large volume attractor point (a procedure introduced
in [62]), the MSW invariants (terminology introduced in [10]) are obtained. These are given
as

Q00(0.p',4:,90) = lim (0, p', g, 03 —"/q; +1Ap"). 37)

Importantly, these MSW indices do not depend on any moduli. Moreover, as explained in [1]
they coincide with the Gieseker index in the case that b,(Y) = 1.

There is an autoequivalence on Dcoh(Y), termed spectral flow, sending an object E to
E ® Oy(k'e;) with each k! € Z. The components of the Mukai vector y(E) transform under
spectral flow as

p° = p°,
pi s pi+kip?,
k1 (38)
qi = qi — Kijkkjpk - —Kijkkjkk 0
2
; 1 o 1 .
do— qo—k'q; + EKijkklkJPk + gKijkklk]kpr.
In the case p° = 0, spectral flow leaves p' invariant. Also, in this case
do = 4o — K4 39
do =90 2K qlq]7 ( )
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is invariant under spectral flow. Furthermore, the class of the vector w with components

1 .
Mi =q; — EKijkapk , (40)

in the lattice quotient A*/A is invariant. These vectors u, representatives of spectral-flow
equivalence classes, are called glue vectors. They number |A*/A].

Having these spectral flow invariants means that there is a large redundancy in the la-
belling, and notation is streamlined by writing

ﬁp,‘u,(QO) :ﬁoo(ozpi) q;> QO)- (41)

Any Mukai vector components q;,q, that produce the spectral flow invariants u;,{, can be
used on the right hand side. Note that the MSW index is constant along orbits of the spectral
flow action on the Mukai vector components.

There are two important numbers associated to the divisor D,,. These are y (D) (the Euler
characteristic) and y (O(D,)) (the arithmetic genus plus 1). They are given by

. . 1 1
1(Pp) =xigp' PP +eaip’s  xp, = 1(ODp)) = cryp'pp + Seip’. (42)

Note that these quantities are both integers. It was proven in [63] (Corollary 3.3), in the case
Pic(Y) = Z, that 2, ,(go) vanishes unless

1
o < G0 =—x(D,). 43
do = q() 24)(( p) ( )
From the quantisation conditions, the g, defined in (39) with a fixed w is such that

1(Dp) 1 1 .,
2 — oK bt = Sip = Qo € Z. (44)

In light of (43) and (44), we have that ﬁp# (go) can only be nonvanishing for

Go = Ay — N A L g + S pgp (45)
do=A,—n, neN, w= o kY i + Suipt |

2 2
with Fr(x) = x—|[x].
The MSW indices will be collected into the generating function
M) = D Q@)™

A~ AMax
qo Sq()

— Z ﬁp,M(AM_ n) q—AM+n , q= e27riT .

n>0

(46)

There is an additional symmetry, . — —u, explained in [1] in terms of the derived duality
E — EV. This symmetry can also be seen as a consequence of the modularity transformations
detailed in the following subsection.

3.5 Modularity of MSW invariants

MSW indices are so named for the role that they play in the Maldacena-Strominger-Witten
SCFT [4], the two-dimensional N = (0, 4) SCFT constructed by reducing the M5 brane world-
volume theory on the divisor D,. The MSW invariants appear as Fourier coefficients of the
modified elliptic genus of the MSW SCFT, as explained in [10].
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Now, in the absence of subtle complications one can expect the modular symmetry of
the SCFT to be reflected in the elliptic genus, so that the MSW invariants are the Fourier
coefficients of a modular form. In [5, 6] the first examples of these modified elliptic genera
were computed by exploiting this modularity. In fact, the bound (43) on ¢, such that the MSW
index is nonvanishing follows physically from the unitarity bound, so that there is no state in
the SCFT with L, < 0 [10].

There are in fact substantial complications that arise when the divisor D, is reducible. In
this case, the generating series (46) for MSW invariants transforms as a weakly holomorphic
vector valued mock modular form, as discovered in [7-9]. For explicit examples, one can
see the work [64]. For progress on finding the generating functions in the mock modular
case, see [65]. In the N = 4 case, the utility of mock modular forms for black hole counting
problems was established in [66].

In this work, we will only ever consider the case of an irreducible divisor. In this case the
only nonzero term in the sum (36) is k = 1, so we have equality between the rational and
refined Donaldson-Thomas invariants: Q(y;t) = Q(y;t). We produce a number of new exam-
ples to accompany those of [1,2], and follow their presentation of the conjectured modularity
of MSW indices. Namely, for an irreducible divisor Dp the generating function (46) should
transform as a weakly holomorphic vector valued modular form of weight —1 — %.

This means that hy, ,(7) in (46), which is a function from the upper half plane to c/AL
has a specific transformation law under modular transformations of the parameter 7. The
modular group PSL(2,7Z) is the set of matrices

a b
YZ(C d)’ (47)

with integer entries, unit determinant, and %y identified. This acts on the upper half plane by
fractional linear transformations,

at+b
: . 48
y:ee cT+d (48)
The transformation law for h,, ,(7) is
b
Ry (1) = (T +d)™7F D0 M(y), hy 5(7), (49)
veA* /A

where M : PSL(2,Z) — GL(JA*/A|,C) is a particular representation of PSL(2,7Z). As dis-
cussed in [67,68], this representation is chosen so that the MSW generating function trans-
forms with multiplier system M,>* x My, where My is the multiplier system for the Siegel-
Narain theta functions discussed therein (and one should keep in mind across different papers
the conventions on 6 versus 6).

Since SL(2,7Z) is generated by the matrices

0 —1 11
S‘(1 0)’ T‘(o 1)’ 50
it suffices to provide the matrices M(S) and M(T). These are [2]

m(r), = (e Y e Yo dean)s .

(51)
(5) ? = (—1)*?» o(by—2)F—2mipkily;

o VIAf/A]

We hope it causes no confusion that u, v are themselves vectors with components y;, v;, which
label components of the matrices M, * and vector h, ,,. The 1 subscript in h; ,, indicates that
we are considering cases with a single unit of D4 charge (so an irreducible divisor).
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A vector valued modular form of negative weight cannot be bounded as 7 — ico, there
must be at least one nonzero polar term (see the discussion in [15]). Therefore, the space of
vector valued modular forms with a fixed negative weight and bounded order of poles is finite
dimensional. The dimension of this space is bounded above by the number of polar terms
(terms in the Fourier expansion with negative power of q). Importantly the dimension may be
strictly less than the number of polar terms, as discussed in [69]. The difference is explained by
the existence of certain cusp forms, with each such cusp form imposing one linear constraint on
the set of polar terms so that they admit completion to a modular form. An explicit dimension
formula is given in [15] (equation 3.9), making use of results in [70] (equation 6, page 100).

3.5.1 Basis of vector-valued modular forms

We shall make use of the basis constructed in [2], subsection 3.2.

One begins with the theta series (we use the same conventions for these as in [2], equation
(3.4)) oo

’l?gn’p)(T,Z) — Z (_1)mpkq7k emekZ . (52)
kez+2 4L

See that ﬁg‘m’p)(r,z) = ﬁgnl’fq)(’c,z) = ﬁg"&’p)(r,z). Note that we have used a as a subscript
instead of u (as in [2]) because we wish to consider multiparameter cases, so that our glue
vector w may have multiple components.

Now consider the functions

KD (1, 0), K even,
0{(7) = { FUs (53)
—5-0,0,"(7,0), K odd.

These are the r = 1 case of the functions given in [2], equation (3.7). The vectors
%) (1) are vector valued modular forms of weight 1/2 + (K Mod 2). They transform
a 0<a<K
with multiplier system
x) B — oBa+5)?s B K)(cy B e 3K —2ni%
M (T)a =eK 2 5(1 , M (S)a zﬁe K, (54)

The Serre derivative D acts on a modular form f of weight w by
w
DIf1=(a8,0) —~ 15Eaf (55)

where E, is the normalised Eisenstein series of weight 2. D[f ] is a modular form of weight
w+ 2.

In the one-parameter case (with irreducible divisor) A*/A = Z, , and the glue vectors w
all have one component, integers u in the range 0 < u < x;7;. We shall follow [2] exactly,
and express our generating series of MSW invariants as combinations of functions

Py (Eq(7), Eg(7)) D' [ 65 ()]

7)(1-)4K111+52,1

. (56)

Here P, is a quasihomogeneous polynomial of normalised Eisenstein series E4(7) and Eg(7),
chosen such that P, is a modular form of weight 2x,; + %Cz,1 —2—20— (k171 Mod 2). In the

case k111 = 1, there is a simplification as 9(51)(7) =n(7)° [2].
The functions (56) provide vector-valued modular forms of weight —%. They transform
with the b, =1 case of the multiplier system (51). It was shown in [2] that there are enough
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choices of £ and P, so that a complete basis of weight —1/2 VVMFs with the correct multiplier
system and polar exponents A, can be found among the functions (56).

In our specific multiparameter examples we have either b, = 2 or b, = 3. Our vectors
p will respectively be either (1,0) or (1,0,0). We observe that the multiplier systems (51)
for our examples match with those of n(t) 4A"/Al—c21—1+b2 pt [93(1:;/ Al)(r):l, where a maps
the glue vectors w into Z. 5. Moreover, this combination of theta and eta functions has the
correct polar exponents A, and we can express the MSW generating functions as a sum of
these functions multiplied by suitable powers of E4(7) and Eg(7).

In the course of studying our multiparameter examples the Rademacher expansion, ex-
tended to VVMFs in [71] and further detailed in [69, 72] has proved very useful. The multi-
plier system (51), weight —1 — %, polar exponents (45), and polar terms (provided by (57),
with our examples only having a single polar term) are sufficient to uniquely fix a VVME This
data can be inserted into the Rademacher expansion, equation (A.3) of [69], to produce the
non-polar terms. In practice one only sums a finite number of terms in the infinite sum and
observes this to be close to the true integer value. This method reproduces the modular forms
that we display in our results. Rademacher expansions were instrumental in the reproduction
of N/ = 8 microstate counts from the gravitational path integral in [73].

3.6 Feyzbakhsh’s explicit formulae

3.6.1 First theorem

The first of the explicit results that we shall make use of appears as Theorem 4 in Appendix A

of [1]. This is a stronger version of Theorem 1.1 of [11]. To begin with we will only consider

h11(Y) = 1, so that our D4 charge vector has a single component equalling p (which should

be set to one for the irreducible case). The result provides an expression for ﬁp,u (4o), subject

to a very strong constraint on the reduced DO-brane charge §,. In fact this constraint is so

strong that in our examples we are only able to apply the theorem for a single reduced DO
Amax __

charge, G5 = x(D,)/24, with residual D2 charge u = 0. In light of this we will not present
the theorem in full, but state the sole result that we make use of:

— (x(Dp)
PO\ 24

) = (#Hz(Y, Z)Torsion)2 (_1)1+XDP XDP ' (57)

This special case of the theorem was presented as equation (4.7) in [1], but there the factor
(#H 2(v, Z)Torsion)z was equal to 1 as all examples of Y therein were simply connected, with
torsion-free second cohomologies.

Our multiparameter examples with h"! > 1 will be solved if we can compute the single
polar term in each case. Since (apart from the (2,12) model) these examples do not satisfy
Assumption () of [1]’s Appendix A, we cannot rigorously apply (57) with p replaced by a
vector p. In line with the AGMP ansatz to be discussed in §3.7, we propose to do just this,
and apply (57) (with p — p) in our multiparameter examples to compute these single polar
terms. We are taking the ansatz proposed by the authors of [2] for this most polar term, and
multiplying by (#H 2(y, Z)Torsion)z. In every example known so far this works because for those
most polar terms the AGMP ansatz matches with the theorem from [1]. Although this remains
open for these multiparameter cases, it is our best guess. In case it is wrong, our generating
functions will still be correct up to scale, assuming modularity.

3.6.2 Second theorem

For all bar one of our h»! = 1 examples, the theorem (57) is sufficient for us to determine the
generating functions for Abelian D4D2D0 indices if we assume their modularity. To test the

18


https://scipost.org
https://scipost.org/SciPostPhys.20.1.015

e SciPost Phys. 20, 015 (2026)

modularity of D4D2DO0 indices and apply it to the problem of constraining the holomorphic
ambiguity, and to study the remaining case not solved by (57), we will make use of a different
formula. In this discussion we will have h'*}(Y) = 1, so that the D4 charge vector has a single
component equal to 1. We only apply this result to our h1! =1 cases.

The authors of [ 1] made use of Theorem 1 in their Appendix A. This builds on Theorem 1.2
in [11]. Proposition 2 in that same Appendix A generalises this theorem, in particular allowing
for torsion in H2(Y,Z). In the h»! = 1 cases we are interested in, the summation range in that
proposition works out to be the same as the range defined for Theorem 1. This means that
although we are considering manifolds with torsion in H2(Y,Z), the ultimate expression we
use will be the same as [1], equation (4.19).

Their result involves the function

(x+3, ifo<x<l,
\/2x+1, 1f1<x< ,
f:Rt—>R, f(x)={%x+§, if%£x<%, (58)
—x+%, if%$x<3,
sx+1, if3<x.

Additionally there are notations

X(Q/,m/)=m_m/+Q+Q/_X'D1,

/ / D (59)
dh=nl—m— (@ -~ 3@+Q)+ X2V,
2K111 24
Now suppose that
Q 3m
(Q,m)€Z+xZ, f(a)<—ﬁ (60)

Then there are relations [1]

PTQm)= Y, (—1)* @™y (Q,mPT(Q, m) oo (). (61)

(@,m")

where the sum runs over pairs (Q’, m’) that satisfy

OSQI SQ+K111(1+3—m),
2 2Q

(62)

<m <m

/2 /
g % Q—Q)+2 (Q+Q)

2 K111

The formula (61) appeared in [1] as equation (4.12). As explained there, the pairs (Q’, m’)
summed over only involve Q" < Q with strict inequality. For each Q’, there are finitely many
m’ allowed by (62). This means that (61) is recursive in Q.

Following [ 1], note that PT(0,0) = 1. So one can hope to invert (61) to obtain a recursive
expression for Q; ,(q). However, the integers Q = u, m = —y + a3 (Dl) 2K1111 Q> — %Q may
not satisfy (60) so that (61) cannot be used. The way around this problem, due to [1], is to
abuse spectral flow. There exists some k,,;, € Z, such that for all integers k > k_;, the pairs

D 1 1
(Qx, my) = (M+k’<111, 2(Dy) —Go— ——Q2—=Qy

J , 63
24 2617, K2 ) (63)
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satisfy (60). This is a spectral flow transformation, and the D4D2DO0 index £2; ,,(go) will be
the same for (Qy, m;) as it is for the original (Q, m). Thus, for each k > k,;, one can write the
Abelian D4D2DO0 index as®

(_1)mk+Qk—lD1

Q) ,(G))=—2——
1 (o) my + Qi — Xp,

(64)
x |PTQumd— D (1 @™y (@, m PT(Q, m)0,0,-¢ ()
(Q',m")#(0,0)

The g, in (64) are computed from (59) with (Q,m) replaced by (Qx,my). Similarly, the
2(Q’,m’) in (64) are computed as in (59) but with (Q, m) replaced by (Qy, m;). Note that
after suitably applying (61) and specialising (62), the summation range in (64) runs over
pairs (Q’, m’) satisfying the following inequalities:

/ 1 Bmk
0<Q <Qr+Kq11 E+E ,
- ——=<m <m+ -Q)+=(Qr+Q)).
g 2 S St (Qx—Q) 2(Qk Q)

3.7 The AGMP ansatz

The authors of [2] provide a physically-motivated formula for the polar terms in h; (7). Al-
though there are cases where this is known to be incorrect (see the note added in page 6, [2]
v2), it produces the correct result in many cases. As discussed in [1], a better understanding
of the range of validity of this expression would elucidate on proposed relations between the
polar terms and bound states of D6-D6-branes [74].

The AGMP Ansatz reads, in the case of a simply connected threefold with b, =1 (so that
the D4 charge p is given by an integer p),

@, (40) = (PP (pu+n— xp, IDT(w,n), (66)

where 0 < p < %pKul is taken, otherwise one uses the u <« pk;;; — u symmetry. Here
n is the integer from (45). (66) is equation (5.20) in [2], and equation (4.8) in [1]. This
can be obtained by truncating the sum provided by the rigorous theorem 4 of [1] (appendix
A) and ignoring the assumptions of said theorem. Since that sum includes an overall factor
(#H?(Y, Z)1orsion)?, We guess that in the non-simply connected case one should modify (66)
to

Q1 (40) = (FH*(Y, Z)1orsion)* (=120 (pu + n— xp )DT(u,n), (67)

and then study whether this formula fails or succeeds.

We raise this for two reasons. The first is that for P°[3,3]/Z5, the GV invariants that
we compute in §A are insufficient for us to use (64) with any valid spectral flow parameter
k > k.- We go on to use invalid values k < k,;, to arrive at a modular form, and note that
this naive result is in agreement with (67).

5By way of explanation, as in [1] we seek a useful expression for 21,(G0) = 2y, (Aﬂ—m) and wish
to use (61). However, it is not guaranteed that (Q,m) = (u,—g, + A,) satisfies the conditions (60). If
one replaces (Q,m) with (Qg,m,) as in (63), for a k such that (60) is satisfied, then one gets an in-
stance of (61) reading PT(Q,, m;) = (=1)*©9 (0, 0)PT(0,0)€ o, (AQ—mk) + corrections. This equation can
be rearranged to give ,,(g,), which does not appear in the corrections. Note that PT(0,0) = 1, and
D10, (AQk - mk) =0, (A“ — m) by spectral-flow invariance of generalised DT invariants. This rearrangement
gives Q, ,(go) = (—1)*©9(0,0)™! [PT(Qy, my) — corrections], which is exactly equation (64).
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The second reason is that the (1,8) and (1,6) models in our Table 1 are quotients of mani-
folds that famously have derived equivalent partner manifolds. Subject to the assumption that
both quotients, of two derived equivalent manifolds by the same group, are derived equiva-
lent we obtain the GV invariants presented in §A. It would be interesting to compute D4D2D0
indices for the Z, quotient of the codimension 7 complete intersection Calabi-Yau in Gr(2, 7),
and the Zs quotient of the Reye congruence. We do not have sufficiently many GV invariants
to utilise (64) in these cases, so must resort to trying (67) and (66). This does not work. The
AGMP ansatz predicts sets of polar terms that cannot be completed to modular forms.

We defer further study of these models to the future, and here only list the polar terms
provided by (67) before we move on to our more successful examples.

The first case of these problematic models is the Z, quotient of the
(1,1,1,1,1,1,1) intersection in Gr(2,7) [16-18], which has relevant topological data
K111 =6, ¢o1 = 12,HX(Y,Z) = Z & Z,.

The second case is the Zs quotient of the Reye congruence [21,26,75], which has k11, = 7,
o1 =10, HX(Y,Z) = Z & Zy,.

Equation (67) leads to

_ —200q17/24
_9gg-3/4
822;1_1/6 1600q—23/168

500 —71/168
. polar 343q_5/12 polar 1
First case: h; (1) = 0 , Second case: h;  (7)= 0 . (68)

343q75/12 °

176 500q_71/168
882q 1600q—23/168)

Using (66) instead only scales these vectors, and we still cannot obtain modular forms with the
correct transformation properties that have the above polar parts. This is a similar situation
as for the models X, 5, X3 5 5, and X, 5 5 , in Appendix C of [2].

4 One-parameter examples

4.1 Zs quotient of the quintic threefold, the (1,21) model

The quintic threefold P*[5] is given by the vanishing of a degree 5 polynomial in P*, and
we will take P* to have homogeneous coordinates [ Yo Y1:Ya:Y3: y4]. It has been known
since [32] that there is a 21-dimensional locus inside the 101-dimensional complex structure
moduli space of P*[5] such that the Zs action on P* generated by

2mi Zm.z 2m‘3 @.4

[3’03}’1f)’z1)’31)’4:|'—’[J’016T}’1ieT Ypies Vyzies }’4]: (69)

descends to a free Zs action on P*[5]. One could also make a linear change of coordinates so
that the Zg action is instead generated by y; — y;,1.

4.1.1 The mirror

Following [76,77], the mirror Laurent polynomial equation with complex structure parameter
pis
x1+x2+x3+x4+L=1. (70)
X1X9X3X4
The mirror of P*[5] is a subvariety of the toric variety labelled P, in [76]. As we only require
two things from the mirror, period integrals and an analysis of the Zs fixed points, it is sufficient
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for our purposes to have the coordinates x; live in a dense torus (C*)* C P,., whereupon the
locus of (70) is birational to the true smooth mirror. To recover the perhaps more familiar equa-
tion for the mirror quintic used in [33] one makes a replacement x; — ¢'/°x?/(x;x2x3X,),
. . . . 1 -1/5
homogenises to introduce xs, and then identifies Y pere = 5 ¢} ope -
The discriminant of (70) is well known, A =1—5° . The Picard-Fuchs operator has been

known since [33] to be a generalised hypergeometric equation with fundamental solution
1/5,2/5,3/5,4/5 55(10)
1, 1,1 ’ '
(8)
k

@o(p) =4F3 ( (71)
The computation of higher genus invariants n,>’ then proceeds almost exactly as in [14], with
orbifolds like the one to be discussed soon already mentioned in that paper as extra results.
The major substantial difference is that when one takes a Zs quotient, the conifold point is
replaced by a hyperconifold point. Instead of a shrinking S there is a shrinking Lens space
$3/7Zs, and this is taken into account when computing the genus one free energy. This change
cascades into all of the higher genus free energies.

It has been known since [32, 78], where the mirror quintic threefold was originally con-
structed, that the mirror of the quintic’s Zs quotient is the Zs quotient of the mirror. The
equation (70) has a Zs symmetry generated by x; — x, — X3 — x4 — ¢ /(x1X3x3x4). There
is a more symmetric presentation of (70), obtained by introducing a new coordinate x5 and
an additional equation as follows:

X1+XZ+X3+X4+X5=1, (72)
X1X9X3X4X5 = @ .

The Z5 symmetry is now x; — X;,;. At any fixed point all five x; are equal by assumption, and
then the first equation of (72) provides x; = % Then the second equation of (72) can only be
solved for one value of ¢, which coincides with the discriminant locus ¢ = 57°.

This means that when we compute the genus one free energy as in (13), we will have
|G1] =5.

4.1.2 Abelian D4D2DO0 indices

The quotient manifold P*[5]/Zs has topological data
K111 =1, ¢ =10, x =—40. (73)

Since x11; = 1, the VVMF h; , generating Abelian D4D2DO0 invariants will have rank 1. One
computes

1 1 ¥(D;) 11
XD126K111+EC2:1: 2(D1) =K1+ =11, A0:2—£=ﬂ~ (74)
As consequence of formula (8), Tors (H 2 (IP’4[5] / ZS)) = Zs. We can then use (57) to com-

pute
11

Since h; , has only one component (u = 0), and only a single term in the g-series for this
component has a negative exponent, the above computation completely fixes h; o. This exam-
ple has already been addressed in [5] (section 4), where it was realised that the solution must
take the form h; o = C n 1E,, with ) the Dedekind eta function, E, the weight-4 Eisenstein
series, and C an integer.
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We obtain

hyo(T) = 251 (7)1 E,(7)
=25q 1/24(1 +251q + 4877q* + 49378¢° + 360005q* + ... ) .

(76)

The prefactor of 25 differs to the result of [5], wherein the prefactor was taken to be 5. Now,
there the authors were aiming to compute degeneracies for all D4D2D0 bound states, and so
they summed over the torsion classes in H2(P*[5]/Zs, Z) to arrive at their factor of five. We
do not do this, but there is still a discrepancy as if we did sum over the torsion classes in this
manner then our prefactor would be 125.

4.1.3 Interplay with GV invariants

In Appendix §A, Table 5, we provide GV invariants up to genus 10. This is the highest genus
we can reach with the boundary conditions described therein.

We will now attempt to recompute £ (%) = 25 using the other explicit formula (64),
for which we require these GV invariants. The smallest value of the spectral flow parameter k
such that the pair (Qy, my) of (63) satisfy the inequality (60) is ki, = 2.

We will also consider the recomputation of ©2; (2—4 — 1) 25%251. Foru=0,§, = g5 *—1
the minimal allowed value of k is k,;, = 4.

u= 0, qo_qmaX k= kmmzz :

For k = ki, = 2, we have (Qy, m;) = (2,—3). The only pair in the range defined by (65) is
(Q’,m’) =(0,1). Since PT(0,1) = 0, the sum in (64) contributes nothing and so (64) provides
us with

m+Qr—xp )
910(11) (D—lpT(Qk,mk) Z—HL- (77)
24)  m+Q—1p, Qum=2-3) 2
We have used the PT-GV correspondence in the final equality. Since we have already indepen-
dently computed n(4) = —50 in Table 5, we see that the explicit formula (64) is confirmed.
u=0, qo—qmalX k=ky,+1=3":

Now we compute the same D4D2DO0 invariant as before, but with a different value for the
spectral flow parameter k. This time (Qj, m;) = (3,—6). Once again the only pair in the range
defined by (65) is (Q’,m") = (0, 1), and PT(0, 1) = 0, so the sum in (64) contributes nothing.
From (64) we read

11 _ (=1)™r &z, o
) ( ) =
My + Qi — Ap, (Qum)=(3.-6) 4

From Table 5, we already have ng)

from (64) is correct.

u=0,qo=3qy", k=kpin t2=4:

Now we have (Qy, m;) = (4,—10). There are two pairs in the range defined by (65), those
being (Q’,m’) = (0,1) and (0,2). Since PT(0,2) = PT(0,1) = 0, the sum in (64) contributes
nothing. From (64) we read off

= —100 and we once again confirm that the prediction

_ an
11 -1 m+Qr—xp, n

Q1,0 ( ) = ka(Qk, my) == 79
24)  m+Qu—1p, Qum)=(4-10) 7

This number does not appear in our tables §A as we required one additional datum to compute
the GV invariants at genus 11. By taking (79) as input we can solve the topological string to
genera 11,12,13. We display some new invariants in Table 2.
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Table 2: GV invariants for the quintic’s Zs quotient, obtained by combining (79) with
the results of §A.

k ng(ll) n;(lz) n5<13)

1 0 0 0

210 0 0

3 0 0 0

4 175 0 0

5 -7169430652 794737725 -61263800

6 || 2602101884428630 -231085360252560 59862993108300

7 || 87967441882643127859850 4756262670014883289150 111922686673158134550

8 151493784464416577906799492925 | 32156743263310689530717111260 | 4228191354832779283415651050

“:0: flo—qglax_L k:kmin:4 :

We now turn to recomputing a different D4D2D0 invariant, the first of our computa-
tions to test the modularity of (76) (whereby all terms in the g-series are fixed once we
fix the first term). For this case, we have (Qi,m;) = (4,—9). The contributing pairs
(Q’,m’) are (0,1), (0,2), (0,3), (1,—1), and (1,0). The first three cannot contribute because
PT(0,1) = PT(0,2) = PT(0,3) = 0. However, PT(1,—1) = n® and PT(1,0) = n{" + 20n{”
are both nonzero. Nonetheless, these pairs also do not contribute because the corresponding
values of g, violate (43).

Specifically, for (Q',m") = (1,—1) we find that g, = §7** + 1. For (Q’,m") = (1,0) we find

q Qg‘ax + 2. Therefore, the sum in (64) once agaln does not contribute and we read off
13 —1)™%tQ—2Dy 1
Q10 (__) = #PT(Q’O my) __ ( 10y zon(ll)) ) (80)
24 My +Qk — X, (Qm)=(4,-9)
(10)

We are pleased to report that, with n, ~ = —41150 from Table 5 and nf,ru) =175 from (79),

the tentative relation (80) does indeed hold: —%(—41150 +20%175) = 6275 = 25 % 251.
Additional GV invariants assuming (64):

By recomputing 2 o (;—i) , Q10 (—é—?‘) , Q10 (—g—Z) using k = 5, which respectively is
kmin + 3, Kmin + 1, kmin, We are able to obtain the following GV invariants:
(16)

n{" =2965700,  n{"® = —71000,

ng =275. (81)

This provides us with enough data to expand up to genus 15, as displayed in Table 3. After
incorporating (81) we are still in need of one more datum to obtain further genus 16 invariants.

Table 3: GV invariants for the quintic’s Zs quotient, obtained by combining (79) and
(81) with the results of §A.

K n§<14) ngs)

1 0 0

2 0 0

3 0 0

4 0 0

5 2965700 -71000

6 -12576522370080 2158870171160

7 3256013529576897075 -813245152733660750

8 330378094976934638810586210 14511004385732885931249005

9 2543092010804637552209780798490390 421954236680996731171378302165400
10 || 3250497633874077193629894835512058573790 | 1301446688552380479335402521670946275490
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Testing (64) with spectral flow parameter k < k,:

An important observation of [ 1] is that in some of their examples the explicit formula (64)
was able to correctly relate GV invariants with the indices read off from h; ,, even if they used
a value k for the spectral flow parameter such that (Qy, m;) did not satisfy the inequality (60).

Consider Q; , (%) , Q90 (—é—i) ,and Qo (—%) as read off from (76). These three numbers
are 25, 6275, and 121925. When we attempt to recompute these numbers using k = k,;, —1,
we obtain respectively 10, 6248+%, and 122096. These are all incorrect, although tantalisingly
close.

4.2 Zs quotient of the bicubic threefold, the (1,25) model

Now we turn to Y = P°[3, 3], the complete intersection of two cubic hypersurfaces in P°. As
explained in [75], members of this family can be found with freely acting Z; and Z3 x Z;
symmetries. The generators of Z; x Z3 act on the homogeneous coordinates y; of P> by the
actions

V1:Yo:Ys:Ya:Ys:Yel = Y2 Ys:Y1:Ya:Y5:Yel,
. (82)
1:Yo:Ys:Ya:Ys:Yel = [y1:8y2: C2y3:y4:ly5 : 4’2)’6], C=ezm/3-

Note that if we fix one of these actions, we can then change coordinates so that the Z5 has the
other action action on the new coordinates. We pick either of the above two Z5 actions and
here consider the quotient Y = P°[3,3]/Z,.

4.2.1 The mirror

Following [76,77], the mirror X of P°[3,3] is a complete intersection in the toric variety P .
from [76]. The Laurent polynomial equations defining this intersection are

X1 + X9 + X3 = 1 5
" (83)
X4 +xs+—————=1.
X1X9X3X4X5
The Picard-Fuchs operator is a generalised hypergeometric operator annihilating the funda-
mental period

1/3,1/3,2/3,2/3
@o(p) = 4F3( 111 ; 3680) . (84)
The discriminant is
A=1-729¢. (85)

The equations (83) have a Z; symmetry generated by simultaneously applying
X1 = X9 — X3 — X7 and x4 — x5 — @/(x1x3X3Xx4X5). We will once again introduce an
extra coordinate xg, so that we can write (83) as the intersection of three hypersurfaces

Xq +XZ +x3 = 1,
X4+X5+x6:1, (86)
X1X9X3X3X5Xg = @ .

Now our Z3 action is generated by the simultaneous x; = x5 = X3 = X1, X4 = X5 — Xg — X4.
We take X = X/Zs, and turn to studying fixed points. At a fixed point we must have
X1 = Xy = x3 and x4 = X5 = Xg. From the first two equations in (86), we must have all
x; = 1/3. The third equation in (86) can only be solved if ¢ = 37°, which solves A = 0.

This means that when we compute the genus one free energy, we take |G;| = 3 in (13).
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4.2.2 Abelian D4D2DO0 indices

The topological data of the quotient manifold P°[3,3]/Z; is

Kin=3, =18, y=-48. 87)
One computes
1 1
XD1:6K111+EC2=2> 2(D1) =Kq11 +cp =21,
(88)
D D 12 1 5
AOZX( 1):_’ Alz)(( 1)—Fr +- ==,
24 8 24 2K111 2 24

From (8), Tors (H2 (IF’S[B, 3]/23)) = Zs. Then (57) provides

Ql’o(g) :—18. (89)

Since k117 = 3, the VVMF h, , generating Abelian D4D2DO0 invariants will have rank 2. Each

component h; , and h; ; = h; , has a single polar term, and we must compute two terms in

either g-series in order to fix the entire h; ,,. We have no way of rigorously doing this.
Anyway, note that to compute Q; o (%) using (64), k., = 2. If we attempt to use k = 2,

then (64) provides Q, , (%) = ngo) /5. If we take the suggested GV invariant nélo) = —90 as
input data then we can solve the holomorphic anomaly equations up to genus g = 11, and are
left in need of extra data still to solve at g = 12.

We do not have sufficiently high genus GV invariants to compute any other terms in h; ,
using (64) with k > k.;,. But we can try to compute two entries using k = ki, — 1. We
tentatively find

7 ? 1
using k =2: Q10 (§ - 1) = 2 (ngg) + 18n(610)) =1566=9x%174,
5 ? 1 ©0)
usingk=1: 91,1(—) = _anf) =486 =9x%54.

Moreover, Q; ; (234) = 486 agrees with the modified AGMP ansatz (67). We have had to use
the value of ngo) previously predicted by using (64).

After fixing Q; (%) using (89) we only had to fix a single additional entry. We find that
the two highly speculative computations in (90) are consistent, in that if we assume either one
then the other is implied by the resulting expansion for h; ,. Based on this quasimiracle we
aggressively conjecture that

9 Eq(7)? +E4(T)3
M p(1)30 24 8

[~

hy ) 6(7) + 2E4(7)Eg(7)D [9,%)]) :

2 0.—7/8 2 3 4 ©D
hio(t) = 9q77/8(=2 +174q + 119052¢° + 5318746¢° + 117995460q"* + ... ) ,

2
hii(t) = 9q7/%*(54 +26838q + 1669194 + 44349552q° + 738224496¢* + ... ) .

We have not displayed h; 5(7) = hy ;(7).

We do not find any other entries of (91) to be computed correctly using (64) with k < ki,
besides (90). By recomputing €, ; (234) using k = k,;, = 2 we predict n(712) = —2916, which
provides new input so that we can solve for the topological string partition function at genus
12. The new GV invariants that we are able to compute using this input from (91) are listed

in Table 4.
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Table 4: Speculative GV invariants for the Z; quotient of the bicubic, assuming va-
lidity of (64) and (91).

k Speculative ng(m) Speculative nim Speculative ng(u)

1 0 0 0

2|0 0 0

3 0 0 0

410 0 0

5 0 0 0

6 || -90 0 0

7 || -84613626 1275750 -2916

8 || 9171367649964 -91871426772 4618959012

9 13003585821138309318 153778390444153740 365228012942442

10 || 1415928995638950548200644 76752945272483301322845 2017959285916872796176

11 || 44581192598784631364029390923 6134256441374176923994189962 508977170467926887932328988

12 || 669514061987901745772649256357758 180383720682931916283051956277939 32610350325425780729130502024368
13 || 6077335091750164066412936523391376463 | 2776349986355483474800145118100488378 | 906404671066163665506921981409451202

With further applications of (64) to recompute entries of (91), we can obtain further pre-
dictions

b ?
09 L 198, n(}) = —12478031532,
(92)
b} ?
n2) = 286364808,  n2) = —3163860, n? = 6318.

4.3 Z, quotient of Rgdland’s pfaffian threefold, the (1,8) model

Let A;, 0 <i < 6, be a set of seven 7 x 7 antisymmetric matrices. With x; giving homogeneous
coordinates on P®, introduce the matrix N = 21.6:0 x;A;. The subvariety of P® defined as the
locus of x; where Rank(N,) < 4 is, for generic A;, a smooth Calabi-Yau threefold which in
this section we denote Y. This construction is due to Rgdland, who also provided a candidate
mirror construction. Note that Y is not a complete intersection (instead it is the noncomplete
intersection of the vanishing loci of N,’s 6 x 6 Pfaffians), and so the machinery of toric geometry

is not readily available for constructing the mirror.

4.3.1 The quotient and the mirror

There is a non-freely acting Z- x Z, symmetry of P®, generated by x; — x;,; and x; — w'x;
with w a seventh root of unity. The tables of [19] include a Z, quotient of Y, which in this
section will be labelled by Y. Ideally, we would display a choice of matrices A; such that the
locus Rank(N,) < 4 is both smooth and admits one of the Z as a freely acting symmetry. We
opt for a more circuitous argument that such a choice exists, that works with a choice such that
Z7 % Z acts freely but the Rank(N,) < 4 locus is not smooth. Having done this, we will go on
to show that Rgdland’s proposal for the mirror is compatible with us taking the Z- quotient.
Existence of a smooth quotient Y:

Following [18], let E = C’ and consider E A E, which can be identified with the set of
7 x 7 skew-symmetric matrices N. Each N has 21 independent components that, working
projectively, furnish P(E A E) = P?°. Rgdland considers the locus in P(E A E) where N has
rank < 4, which defines the Pfaffian variety, the non-complete intersection in P?° given by the
vanishing of the Pfaffians of the seven 6 x 6 diagonal minors of N. Intersecting the Pfaffian
variety with a generic 6-plane P° in P2° provides a Calabi-Yau threefold ¥, which [18] denoted
X,
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Rgdland identifies an R = Z x Z, action on this P(EAE). If® ; is a basis of E, the R action

has generators o : e; — ej,; and 7 : e; — exp % jlej. H, and H will denote the subgroups

j j

generated by o and 7. The different choices of linear embeddings of the P® in P?° constitute
the complex structure moduli space of Y, and it was shown that h*>!(Y) = 50. Within the
50 dimensional space of complex structures of Y is a P? subvariety where the R actions on
P(E A E) and P° are compatible, so that R generically acts freely on Y. On this P2, ¥ has 49
double points and is not smooth. R acts freely and transitively on the set of 49 double points.
We will use ?sing to display this singular family fibred over the P2. We can take the quotient
by H,, to obtain a variety Y.

We will argue that Yg;,, admits a smooth deformation by appealing to a theorem of Fried-
man [79], which was proven by alternative topological methods in [80] (Theorem 1.2 therein).
This states that a Calabi-Yau threefold X with ordinary double point singularities admits a
smoothing iff there exists a relation ), 6;[Ci] = 0 in Ho(X™",R) with each §; # 0, where
X% is a small resolution of X obtained by replacing each ODP singularity p; with a smooth
rational (-1,-1) curve C; (such an X* exists). We therefore have a small resolution” Y+ with
some relation between the homology classes of the exceptional curves, but these curves are
exchanged freely and transitively by the R action and so we also have a free R action on Y.

If we quotient Y+ by Z, then we get Y;;lg, which is a small resolution of Y;,,. The homology

relations for Y lead to homology relations between the exceptional curves in Y, which there-
fore by Friedman’s theorem admits a smoothing Y. Note that this argument breaks down if
we quotient by Z, x Z-, because then there is only one exceptional curve, and so the necessary
nontrivial homology relation cannot be found in H 2(17+ [(Z7 x Z7),R).

Rather than count the number of Z, invariant deformations of ﬁing to obtain h%!(Y), we
resort to using the Euler characteristic: h>1(Y) =hb'(Y) = (x(Y)/7)/2 =8.

Towards a mirror construction:

Rodland [18] goes on to argue that a mirror X to Y can be constructed by going to a
line in this P? where iing acquires seven fixed points under H, then quotienting by H,, and
then resolving the singularities. We shall explain this, and emphasise that Rgdland’s mirror
construction is compatible with the H, quotient, and so propose that the mirror X of Y is
X/ Z. We leave it open to construct the mirror of the quotient more carefully, perhaps along
the lines of [37].

In Rgdland’s construction [y; : y, : y3] are homogeneous coordinates for the P? parameter
spaces of '?Smg and y; = 0 gives a line (with parameter y = y,/y;) on which the seven fixed
points of H, in P® lie on Y, and these fixed points are also ODP singularities. Note that for
generic points on the line y; = 0, H,, acts freely. On this line ?Sing has (49+7) double points.
The quotient ?smg /H . has 14 singularities: 7 double points (the image of the previous 49) and
7 further orbifold singularities. These are resolved to produce X. Now, if we quotient by H,,
we are left with two singularities, one ODP and one Z, orbifold. Resolving these produces
X /7., which we take to be our X.

Higher genus considerations:

The importance of identifying X is that we must work out what kind of Lens space shrinks
at the conifold singularities in order to proceed with higher genus computations. For Rgd-
land’s model, ?Sing acquires seven more ordinary double points when the line y; = 0 inside P2
intersects one of the other lines where H, does not act freely, and these seven singular points
are fixed under the H, action. This was found in [18] to occur for y?!—289y14—58y7+1 = 0.
Now, after taking the H, quotient in order to construct X, these seven singularities are
identified into a single singularity so that X has one ODP fixed under the H, action when

®He we use lowercase e to align with [18], these are not cohomology generators as in the rest of this paper.

"It is indeed known that there is a h>' = 2 CY3 resolution Y* of img, as this also appears in the tables of [19].
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A(y”) = y?' —289y'* —58y7 + 1 = 0. This means that X has a Z,-orbifold singularity for
these values of y, and so our genus one free energy (13) will have |G,| =7.

The Picard-Fuchs operator for X and X is given in [18], the mirror complex structure
coordinate is ¢ = y’. This has singularities at the three hyperconifold points where A(¢) =0,
an apparent singularity at ¢ = 1, and two MUM points at ¢ = 0 and ¢ = 00. The higher genus
problem for this operator, in the context of Y, was addressed by Hosono and Konishi in [16],
which provides the necessary practical methods (which we make use of) to impose regularity
at the apparent singularity and impose the conifold gap condition when the discriminant locus
A is irreducible. Where X is concerned, the additional MUM point at infinity is associated with
the Pfaffian variety’s derived equivalent partner, which is the intersection of seven degree-1
hypersurfaces in the Grassmannian Gr(2,7). We will assume that in our computations the
MUM point ¢ = oo is similarly associated to a Z, quotient of this intersection in Gr(2,7).
Our genus 1 computation, independently of this assumption, produces the same c, as our
assumption in the expansion about ¢ = oo. This additional geometry provides us more data
to constrain the holomorphic ambiguity: the constant term in the expansion about infinity and
also Castelnuovo vanishing of the GV invariants read off from the expansions about infinity
(these are in addition to those that we have at ¢ = 0).

Once again following [18], take P(EY A EY) = P?°. Inside this lives the Grassman-
nian Gr(2,7), and also the P'3 dual to our original P®. The intersection Gr(2,7) N P'3
is another Calabi-Yau threefold, proved to be derived equivalent to ¥ in [24] (with a dif-
ferent proof in [25] that follows more closely the “physics proof” of [23]). The group
R = H, x H, & 7, x Z; also acts on P(EY A E¥) and P!3, so we have again a freely
acting smooth Z- quotient (Gr(2, 7)0]P’13) /Z. 1t may be interesting to seek a proof of
D’coh[(Gr(2,7)NP'%)/Z,] = Dbcoh[Y/Z,].

4.3.2 Abelian D4D2DO0 indices

The topological data for this example is

K111 =2, ¢y =38, X =—14. (93)
We go on to compute
1 1
1D, :8K111+EC2:1, x(D1) =K111 +¢ =10,
(%94)
D 5 D 1> 1 1
AO:M:—, A1:X( 1)_Fr +—-|=—=.
24 12 24 2K111 2 3

From (8), Tors (H 2) = Z,. Then (57) provides

5
Q — | =49. 95
w(55) ©5)
Since k111 = 2, the VVMF h; , will have rank two. However, based on the above calculations
h; ; has no polar terms and h; ( has one polar term. Therefore, the problem is one-dimensional
and so completely solved by the above application of the theorem (57). We obtain the result

49 (_E6(T)
n(r)e\ 12

By () = 02() - 26,0 [607)] ).

96
hyo(7) =49q /12 (1 +136q + 2081q* + 18152¢° + 117028q* + ... ), (90)

hy1(7) =49q'3(56 + 1136q + 10912¢” + 75072q> + 414304q* +...) .
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4.3.3 Interplay with GV invariants

We are able to compute GV invariants for this model up to genus 5, as tabulated in Table 7.
Unfortunately, this is not a sufficiently high-genus set of invariants for us to make any checks
of (64) with k > k,,;,. We can attempt to compute € ; (—%) with k = k;,—; = 1 but this
gives the incorrect result 2870, which differs to 2744 = 49 % 56.

If we attempt to use (64) to compute Qg (%) and €, (—%), in both cases using
k = kpin = 2, then (96) predicts

n?’ =147, ¥ =-10976. 97)

We now attempt something extremely dubious, and use (64) with k = k,;, —1 = 2 to attempt
to compute € ( " 1) Together with (96) this leads us to

5 227 1
49*136=QL0(E—1) = 2( n? +12n)") = n® 15002, (98)

This is quite possibly the wrong value for n( ). We required one additional GV invariant at
genus 6 (beyond those predicted to be zero by the Castelnuovo bound) in order to solve for
the topological string free energy. This extremely speculative result could be used as input
data in this way, but the resulting integers read off may not the correct GV invariants, as far
as we know presently.

We can use (64) to compute 2, , (%) and Q2 (% - 1) using respectively k = k;;, +1 =3
and k = k,;; = 2. Then (96) predicts

n{® =—48216,  n{'¥ =343. (99)

If we attempt to use (64) to compute £ ; (—%), Q11 (—— 1), and Q, ; (—% —2) with

respectively k = ki, + 1 =3, k = ki = 3, and k = k;;, = 3, then we are led to

n(" = 26182268,  n{® =-1186192,  n{'® =2469. (100)

4.4 Zs quotient of Hosono-Takagi’s double quintic symmetroid threefold, the
(1,6) model

4.4.1 Some geometry

Hosono and Takagi have considered a number of different threefolds related by quotient maps,
mirror symmetry, and derived equivalence. We identify a Zs quotient of one of their geome-
tries, previously undiscussed to our knowledge. For this we compute Abelian D4D2D0 indices.
Here we briefly outline the constructions in [26] (only changing some notations so that we
align with our own conventions throughout this paper). They go on to further study the mirror
geometry in [81], prove their conjectured derived equivalence in [21], and study infinite order
birational automorphism groups in [82].

To begin with, one has the Reye Congruence Calabi-Yau threefold R, which can be realised
as the following Z, quotient of a complete intersection Calabi-Yau threefold in P* x P* with

hodge numbers (2, 52).
1,26
L P11 11 1|
R = IP’4[1 111 1] ' (101)
/2

The mirror of the complete intersection of five degree (1,1) hypersurfaces in P* x P* is obtained
using the Batyrev-Borisov mirror construction for complete intersections in toric varieties [83].
This produces a geometry with (!, h%1) = (52,2), realised as a complete intersection in the
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appropriate toric variety Py.. The mirror Reye Congruence K is then constructed as the Z,
quotient of this (52,2) geometry, with complex structure parameters set to the locus where the
threefold has a Z, symmetry. With U;, V;, 1 < i < 4 giving coordinates on a dense algebraic
torus (C*)8 in Py., the geometry K is birational to the Z, quotient of the locus

L@
U,UUsU,  ViVa VsV,

U +V,=1, =1, (102)

with the Z, action being U; «<— V. ¢ is the complex structure parameter, and the fundamental

period reads
(m1+m2)') n
o@=> 3 (Tl ) o (103)

n=0m;+my=n

Equation (2.9) of [26] provides the Picard-Fuchs operator that annihilates @ . Remarkably, in
addition to the MUM point at ¢ = 0 from which BPS expansions for R can be performed, there
is a MUM point at ¢ = oo. It was argued in [26] that BPS expansions about this additional
MUM point gave GV invariants for a geometry we will denote® Y. Y is the double cover of H,
where

5
H={[y1:yz:ys:y4:ys]€1P’4|Det[ZyiAi]=0}, (104)
i=1
branched along a genus 26 curve C. The A; are suitably generic 5 x 5 symmetric matrices, so
that H is the locus in P* where Y. y;A; has rank< 4. The curve C is the rank< 3 locus, along
which H has an A, type singularity. ¥ is smooth and simply connected. It was proven in [27]
that R and Y are derived equivalent.

We are not able to compute D4D2D0 indices for any of the geometries just discussed. It is
worth noting that a quotient geometry R/Zs appears in the tables of [19] (page 28).

There is a Zs symmetry of K. If we introduce additional coordinates Us, V5 defined by
U,U,U3U4Us = V1V, V3V, Vs = ¢ then this symmetry is generated by simultaneously effecting
Ui = Uitimodss Vi = Vit1mods- This is freely acting for ¢ not on the discriminant locus.
One can set about performing BPS expansions about ¢ = 0 to obtain GV invariants for R/Zs,
and one is left to wonder what to associate to ¢ = 0o. Notice that for certain A; the double
cover Y also has a freely acting Zs symmetry also. The Zs symmetry of H is generated by
¥Yi = Yi+1mod 5- Conveniently, Hosono and Takagi provide a set of matrices A; so that

Yo y1 0 0 ys

S5 Y1 Y3 Y2 0 O
ZJ’iAi =10 Y2 ¥4 y3 O, (105)
i=1 0 0 y3 ¥s s

s 0 0 y; ¥

provides a smooth Y, and the rank< 4 locus is symmetric under the y; = Y11 moas. We will
use Y to denote the quotient Y/ Zs. We conjecture that Y is derived equivalent to R/Zs. This
is supported by the genus O BPS expansion (as the GV invariants divide by 5) and also the
genus 1 expansion (from which we can read off the necessary cg =8= c;’ /5). Subject to this
assumption, we compute the GV invariants listed in §A by incorporating boundary conditions
from Castelnuovo vanishing and constant terms in expansions about both MUM points.

The Picard-Fuchs equation has an apparent singularity at ¢ = 7/4. There are hyperconi-
fold singularities where

A;=1-32p, and A,=1+11p—¢?, (106)

8This was denoted Y in [21,26]. We are reserving Y for the threefolds that we compute D4D2DO indices for,
so have forced ourselves to make this unpleasant change.
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vanish, where respectively there is a shrinking S°/Z,, and S®/Zs. This means that in (13) we
will have |G;| = 10 and |G,| = 5.

4.4.2 Abelian D4D2DO0 indices
The topological data for Y, obtained by dividing the data for Y given in [26] by 5, is
K111 =2, Cy =8, X =-—10. (107)

We go on to compute, much the same as for the Pfaffian quotient in the previous section,

1 1
XD, = g’ﬁu"‘ﬁcz =1, x(D1) =Kq11 + ¢ =10,
(108)
D 5 D 12 1 1
ng=2P)_ 5 a, = 22D g +2)=—2.
24 12 24 2K111 2 3

From (8), Tors (H 2) = Zs since Y is simply connected (a result of [26]). Then (57) provides

5
Q — | = 25. 10
1,0(12) (109)

We arrive at

25 (_E6(T)

S (e 26 [029)]).

hl,M(T) = n

110
hyo(7) =25q>/12(1 +136q + 2081q* + 18152¢° + 117028q* +... ) , (110)

hy1(7) =25q"% (56 + 1136q + 10912¢° + 75072q> + 414304q* +...) .

Up to an overall rational factor % this is the same as the result we obtained for the (1,8)
model (96). Therefore the ratio of Abelian MSW invariants for either of these models, with
the same charges, is a constant value as u and g are varied. The theorem (64) and the MNOP
conjecture would then imply infinitely many identities relating GV invariants of either model.
This may be of wider interest, although we do not at this time have any use for this surprising
relation.

4.4.3 Interplay with GV invariants

This analysis proceeds very similarly to that of the (1,8) model. Here we are again unable to
make any nontrivial tests of modularity or increase the maximal genus we can compute GV
invariants for. We will content ourselves to compute a few GV invariants assuming modularity.
Attempting to compute 91,1(_%) with k — kp;u — 1 = 1 gives the incorrect
1400 # 1570 = 25 % 56.
After computing Q4 o (%) and Q ; (—%) using k = k,;, = 2, we arrive at

n{’=75,  n® =5600. (111)

Dubiously using k = kpy, — 1 to compute Q4 (% — 1), and incorporating the above value
for ng), leads to

2729
n® =" —7700, (112)

and once again we only needed a correct value of nff) in order to extend the results of §A to
genus 6.
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After using (64) to compute Q, (%) and 2 (15—2 - 1), with respectively k = k;, +1 =3
and k = k,;, = 2, (110) predicts

n(? = -24600, nl® =175, (113)

We use (64) to compute ; ; (—%), Q11 (—% —1), and Q,, (—% —2) with respectively
k =kpn+1=3, k=kpi, =3, and k = ky,;;, = 3. Then (110) provides

n{"” =13361000,  n{"®=-605200,  n'® =12600. (114)

5 Multiparameter examples

Once again, we underline all polar terms. For these multiparameter models we have nothing
to say about higher genus GV invariants. Assuming modularity, all of these cases are solved
by computing their single polar terms. As we discussed following (57), we propose to apply
the result (57) (with p — p) in these examples in spite of the fact that only the (2,12) model
meets the Assumption () of [1] (while the rest of the models do not).

5.1 The (2,29) and (2,20) models

For both of these models we choose the homology class of our irreducible divisor to be
p = (1,0). Due to the (not freely acting) Z, symmetry of the (2,29) model under the exchange
of the two ambient P? factors before taking the Z; quotient, it does not make a difference for
this model if we instead take p = (0,1). However, choosing p = (0, 1) for the (2,20) model
does give a genuinely different problem, one that we are unable to solve in this paper.

For each of these models with this choice of divisor

IA*/A| = |Det[1<ijkpi:H = |Det[1<1]~k:|| =1. (115)

In light of this there is only a single glue vector, uw= (0,0). As a result the VVMF that generates
MSW invariants has rank 1, and so is a standard modular form. This modular form must have

weight —1 — % = —2. The g-series starts at ¢~ /2, which follows from
x(Dp) Kijkpipjpk + Cz,ipi Kiipt+en 12
00T Tox T 24 = Y =54 (116)
These considerations fix the modular form up to scale: it must be a multiple of E,n~'2.
We use (57) to compute the first MSW invariant. Since
1 - 1 ; ~
XDP = gKijkplP]Pk + ECZ,iPl =1, and HZ(Y’ Z)Torsion =173, 117)
we find 1
Ql,(O,O) (5) = 9 . (118)

The generating series of MSW invariants for both of the (2,29) and (2,20) models, with these
choices of divisor, are the same function. This is

hl,(O,O)(T) = 9E4(T)T’(T)_12
= 9q_1/2( 1 +252q+ 513092 + 54760q> + 419895q* (119)

+2587788q° +13630694¢° + ... ).

It may be of interest that this equals % times the MSW generating function of P*[5]/Zs,
given in equation (76).
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5.2 The (2,12) model

We choose to work with the irreducible divisor p = (1, 0), but the same result would be ob-
tained if we instead chose (0, 1). This is the only multiparameter model we study where the
divisor D), meets the technical condition (x) of [1], Appendix A.

Our VVMF will this time have rank 2, because

|A*/A| = |Det[1<ijkpi:H = |Det[1<1jk:|| =2. (120)
Our two glue vectors w are (0,0) and (0, 1). From (45) we compute

11 7
Do =5 Bon=Tg- (121)
The MSW generating function will be of rank two and weight -2. The first component has a
single polar term, and the second component will have no polar terms. Since there is only one
polar term this problem becomes one-dimensional, and will be solved once we compute the
first MSW index. Using (57), and

XDP =1, HZ(Y> Z)Torsion = ZS 5 (122)
we have that 11
Q — | =25. 123
1,(0,0) (2 4) (123)
The multiplier system (from equation (51)) that h1,u should have is
137i/12 4
e 0 1 1 1
M(T) = ( 0 e7ni/12) , M((S)= 7 (_1 1) : (124)
It turns out that this is the multiplier system for 7’)(’[)_179(5%L)(T), where we introduce
a((0,0))=0,  a((0,1))=1. (125)

n(r)‘”@o(‘z)(’r) transforms as a VVMF with weight -8. Note that multiplying by E, or Eg, or
acting with the Serre derivative D, gives a VVMF with a new weight but the same multiplier
system. We obtain a weight -2 VVMF with the correct leading term as follows:

25 Eg(7)
hu(T) = n(t)17 (_ 612 9%(”_2’54(7)17[Q%(T)D ’

hy 0,0y(7) =251/ 24( 1 +137q+2219¢ + 20508¢>

+139755¢* +779254¢° + .. ), (126)

hy (0.1y(7) = 25q”/ 24(56 +1192q + 12160q> + 88424q°
+514888q* +2564184° +... ).

This is % times the result we obtained for the Zs quotient of Hosono-Takagi’s double quintic
symmetroid threefold.

5.3 The (3,18) and (3,15) models

Finally we turn to the (3,18) and (3,15) models. We choose the divisor p = (1,0, 0). For the
(3,18) model we could equally well take (0, 1,0) or (0,0,1) and get the same final result. For
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the (3,15) model we would get the same result if we chose (0, 1,0), but (0,0, 1) is a different
problem altogether which we do not attempt to solve. The rank of the VVMF will be 2, since

|A*/A| = |Det[x;p' ]| = [Det[x155 ]| = 2. (127)

For representative glue vectors we take u to be either (0,0,0) or (0,0, 1) (this is not a unique
choice). From (45) we have

1 1
Roon=3:  Bpon=-—7- (128)
Once again, this problem is one-dimensional and solved by computing a single abelian MSW
invariant. We have

AD, = L, HZ(Y, Z)torsion = 23, (129)
and so (57) provides
1
£21,00,0,0) (5) =9. (130)
hy ,, should have weight —1 — % = —%, and multiplier system (from equation (51))
-1 0 et (1 1
M(T)—(O i)’ M(S)—ﬁ(_l 1). (131)
This is the multiplier system for n(r)_lseia)(fr), where
a((0,0,0)) =0, a((0,0,1))=1. (132)

n(f)_lseéa)(’r) has weight —17/2. Similarly to the (2,12) model then, we can obtain

9 ( Ee(7) (2
Sl

B\ 12 daw () 7 2E()D [%ffoh)]) :

hl,M(T) = n

M1 (0,0,0)(7) = 9q71/24( 1 +138q + 2358q° + 230044

+165117¢* +967374¢° + ... ), (133)

M1 (001)(7) = 997/%#(56 + 1248q + 1346492 + 103136
+631488q" +3298752¢° + ... ).

This is % times the result we obtained for the (2,12) model.

6 Discussion and outlook

We have provided nine new examples of modular generating functions of Abelian D4D2D0
indices, including five multiparameter cases, four of which remain subject to an assumption
we make on the polar term.

Future work should provide a better understanding of the problematic examples discussed
above equation (68). These could be studied more closely along the lines of this paper if we
had more GV invariants. A lack of available GV invariants, even in spite of the substantial
advances documented in [84], is eventually always a problem and new ways of computing
polar terms would hopefully circumvent this.
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It was already anticipated by [1] that certain multiparameter examples may be interesting
in light of the modular bootstrap for elliptic fibrations [50, 85,86]. Some of the multiparam-
eter models that we have considered are quotients of elliptically fibred threefolds, and so this
avenue might be fruitfully pursued using our new examples. It may be the case that the mod-
ularity associated to the elliptic fibration interacts in an interesting way with the modularity
associated to MSW indices. Along similar lines, the instanton numbers for some of the multi-
parameter geometries we have investigated possess an infinite Coxeter symmetry [87-89] that
may similarly provide nice interplay.

It remains to study the geometries investigated in this paper in cases with more than one
unit of D4 charge, so that the generating function is mock modular, as has been performed
in [64]. This also would require more GV invariants.
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A Tables of GV invariants, computed without assuming MSW

modularity

A.1 Zs quotient of the quintic, P*[5]/Zs

Table 5: GV invariants for the Zs quotient of the quintic threefold. The conifold gap
condition, regularity at the orbifold point, constant term, and the Castelnuovo bound

. 1
only allow us to expand to genus 10. It may be of interest that n(1 ) > ngo)‘
© & @
k n, n, n;
1| 575 750 10
2 || 121850 749650 316180
3 || 63441275 996355600 1812388645
4 || 48493506000 1485713351625 6832687291550
5 || 45861177777525 2360745222311890 21386162464746280
6 || 49649948423604400 3905048810312630500 60300725772067744370
7 || 59018210114169131850 6641344898623706083650 159076086322903496882380
8 || 75126432187495320710000 11526755459840114914978125 400786642257411458505334750
9 || 100768102083397048729021250 | 20318695348931590786593466250 | 976395092762568245382984038375
k nf) n(,:” nf(s)
1o 0 0
2 || 6605 -50 0
3 || 614019320 24204855 -411100
4 || 8454561591200 3245851807350 335376611250
5 || 62482623318387100 73547811444806780 37415860873266590
6 || 335260750296254643675 854728982385312743250 1113446999293082406000
7 || 1478729514546933367264780 6823074320028253950291680 17599173386900553095722050
8 || 5713442876756111478138384000 42686825299540747760264603450 188810123308116593206813525925
9 || 20066844116093245982572929494250 | 224965680778877016475984526332550 | 1554620412233924437357116215173950
k niﬁ) ngj) nf(s)
1o 0 0
2 0 0 0
3 || 20195 -100 0
4 5659153300 180837000 -19994300
5 7939819376947330 635259149779950 16737062529500
6 || 767600162108855476270 277471791066259667935 50751903422009320250
7 26800395547581653089999415 24570895165088774373417820 13554556528840296607908120
8 || 525864713996231860938258450860 950526985732429408456132354500 1129570844990003922419953775500
9 || 7063192000309086783572794733829590 | 21846585899244676317890567776136150| 46879050731802968075938206207601875
) (10)
k n, n,
1 0 0
2 0 0
3 0 0
4 1317930 -41150
5 -178612452360 47212463805
6 4404305636366815360 156953956651213430
7 || 4438049154836488965109000 840110455805420692507800
8 884720532073095769813844309260 454547508223416968855445391030
9 70459942662058756197493625575447620 | 74442134047236071014645216834582425
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A.2 Zs; quotient of the bicubic, P°[3,3]/Z,

Table 6: GV invariants for the Z; quotient of the bicubic threefold. The conifold gap
condition, regularity at the K-point (infinity), constant term, and the Castelnuovo
bound only allow us to expand to genus 9.

k n?{o) ng(l) ng) nf)
1 || 351 54 0 0
2 || 17604 18306 162 0
3 || 2141442 5827014 814545 1188
4 || 379816128 2051710641 971556336 51684048
5 || 83262630861 764607449610 824228247186 182228884866
6 || 20886988169844 295680170663946 593100643960080 321345364590549
7 || 5752151300274003 117337498455503898 387461098072391913 405461363439976596
8 || 1696280856142054320 47460584475061944453 237574270278361366560 418707568368082416330
9 || 527083572658852629315 | 19479816270442546690932 | 139308884883240104134116 | 378117918242281386340212
(4) (5) (6)

k n, n; n,

1 0 0 0

2 0 0 0

3 15 0 0

4 253152 -972 0

5 10108036467 53329320 -492723

6 61989938556828 3978481806297 50096328498

7 179505307950892326 35379506324522070 2880034261539471

8 346230234722519249238 146594736156533810400 31919837327756766684

9 516178348980696220839042 | 392321404995925930952196 | 171372524054889420881940

7 (8) ()

k n, n, n,

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 1458 0 0

6 -112622568 3255660 -4644

7 75185909775432 345720294045 2479109922

8 3380473998240899949 152773576290297936 2342948602615704

9 42744163756609489532478 | 5859503926986268013226 | 410009966496890836800

38


https://scipost.org
https://scipost.org/SciPostPhys.20.1.015

SciPost Phys. 20, 015 (2026)

A.3 Z, quotient of the Rgdland model

To compute the GV invariants in Table 7 and Table 8 we expand a single B-model free energy
about two different MUM points (¢ = 0 and ¢ = 00). We impose the conifold gap condition;
the constant term contributions in both expansions about 0 and oco; and the Castelnuovo
bounds for both geometries. These considerations only allow us to expand as high as genus 5.

Table 7: GV invariants for the Z, quotient of Rgdland’s Pfaffian threefold. Note

NONC)

(0) (€D) (2)
k n, n, n;
1 84 106 0
2 || 1729 9731 2597
3 || 83412 1189690 1548666
4 || 5908448 162847656 561111558
5 515627728 23784778992 165479914726
6 51477011901 3619073252171 43608601458779
7 || 5641036903908 566456134227334 10707782743676536
8 || 661894028378002 90513043864684029 2505000342181522444
9 81831403277082228 | 14692917426093647214 | 565787798626063356392
(3 (4 (5)
k n,; n, n,
1 0 0 0
2 21 0 0
3 282100 2870 0
4 || 425899488 73987368 1449231
5 316671278140 199905031018 41043809856
6 165288447125522 246295464565871 156541429038015
7 69737863611873408 198387291602887002 275064061320436234
8 25527142974989788328 122013764358829703549 308374855684567279377
9 || 8442139465760064106140 | 62231778734823700282532 | 256500030949655724914284
Table 8: GV invariants for the Z, quotient of Rgdland’s Grassmannian threefold.
k ng(o) ng) nf) nf) ngf) ng(s)
1|28 18 0 0 0 0
2 | 175 463 7 0 0 0
3 | 1820 11526 3248 0 0 0
4 | 28294 345024 321426 28245 35 0
5 || 530992 10778248 22523634 7781872 344386 378
6 || 11403315 352208877 1355627203 1134004599 219069333 7349629
7 || 268281804 | 11824000122 74410696766 120414777910 | 59050816048 8607660880
8 || 6755563416 | 405319921505 | 3848162314080 | 10540208130242 | 10243982279181 | 3762792168023
9 || 179169428732 | 14113739316490 | 190766199128806 | 809447642951500 | 1352699340656188 | 980390268886546
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A.4 Zs quotient of the Hosono-Takagi model

To compute the GV invariants in Table 9 and Table 10 we expand a single B-model free energy
about two different MUM points (¢ = 0 and ¢ = 00). We impose the conifold gap condition;
the constant term contributions in both expansions about 0 and oco; and the Castelnuovo
bounds for both geometries. These considerations only allow us to expand as high as genus 5.

We remark that, as is the case for the BPS computations performed in [26], the relation (15)
in this example includes an additional numerical factor 8262 required to correctly normalise
the Yukawa coupling for the geometry at the second MUM point if the naive @ obtained as
the power series solution with leading coefficient 1 is used.

Table 9: GV invariants for the Zg quotient of Hosono-Takagi’s threefold subvariety of
the double quintic symmetroid.

k nf) ng) nf)

1 110 88 0

2 3830 10920 2080

3 233110 1806540 1590820

4 || 21322480 330946550 750087075

5 2455996570 64415464108 290194401190

6 || 324701179500 13042591099243 100703783697240

7 || 47154769689380 2714327362683188 32628936131965760

8 7335485654525500 576387496496436593 10085276331992030630

9 1202660670835792580 | 124298318900133467068 | 3012093129341767122550
k nf) n§(4) nf)

1 0 0 0

2 10 0 0

3 215250 1570 0

4 417960730 57124730 938035

5 399276936750 196521594350 33494657920

6 269595086591590 307606088617415 159359084509985

7 147954130068172870 316701550590837000 351272641013964080

8 70724470876231474060 250482960584090792325 497771824466038411950

9 30631935324967527180560 | 165111821196548486009530 | 526934266333548120001620

Table 10: GV invariants for the Zs quotient of Hosono-Takagi’s Reye congruence

threefold. ngl) > n(lo).

k n;{o) ng) n(kz) ngf) n(k4) n(ks)

1 10 16 0 0 0 0

2 65 238 5 0 0 0

3 295 3001 1210 0 0 0

4 3065 54024 66665 7460 0 0

5 29715 905336 2616590 1177075 61840 60

6 377115 16967201 88967385 96235145 22425380 766775

7 || 4862130 315204632 2735270040 5767910725 3440264885 546451975

8 69723305 6098433011 79647092230 284786224085 339337810075 140415307660

9 1031662155 | 118674731165 | 2215776214620 | 12331891528815 | 25464777595225 | 21216255805620
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B Homotopy-homology relations, Kahler parameters, and Wall
data

We will study compact Calabi-Yau threefolds Y, obtained as quotients of simply connected
threefolds ¥ (themselves compact and Calabi-Yau) by a freely acting discrete group G. To
begin our discussion, we relax the assumptions in the body of this paper so that G is not
necessarily Z,,, and h>! may be different for Y and Y.
We have a quotient map
p:Y - YY/G. (B.1)

Y is the universal cover of Y. The threefold Y has a second cohomology H%(Y,Z) with in-
tegral generators e;, 1 < i < hb1, of the torsion-free part. The Kihler form « of Y and the
Neveu-Schwarz B-field B, are combined into the complexified Kdhler form of Y, which can be
expanded as

By+iw=tle;. (B.2)

These coordinates t! parametrise the A-model moduli space. Similarly, Y has its own set of
Kihler parameters t'.

Based on arguments by Aspinwall and Morrison [29], using results of [90], one can relate
the Kahler parameters t! and T' of Y and Y. The homology groups of quotient manifolds
have already been studied in detail in [31]. We review the aspects of the Aspinwall-Morrison
argument relevant to us, in order to explain how we obtain the Wall data that we used in this
paper. If we allow for quotients such that k! differs for Y and ¥ then a minor modification
to the argument presented in [29] must be incorporated.

n,, and H, will denote homotopy and homology groups. For each n, there is a Hurewicz
map

v,: t,(Y)— H,(Y,Z). (B.3)

And similarly for ¥ we have maps %, : m,(Y) — H,(Y,Z). Fixing a generator u, € H, (S"),
the map v, takes a homotopy class [ f ] (of maps S™ — Y) to the pushforward f,(u,,) € H,(Y).

va(f) = filuy). (B.4)

This map is used to define what were called in [90] the spherical subgroups ~"(Y) of H,(Y).
These are the images of each 7,(Y) under v,

Y X v, (m,(Y)) . (B.5)

X" is the set of homology classes generated by spheres. An exact sequence is provided by [90]
that relates homotopy and homology groups of Y:

0— 22(Y) = Hy(Y,Z) = Hy (m1(Y),Z) = 0. (B.6)

We should like to massage this relation, and extract an exact sequence relating the homology
groups of the spaces Y, Y, and the group G.

We remark that 7,(Y) & 1,(Y), as more generally the homotopy groups ;> of a space
and its universal cover are isomorphic. Moreover, since 7;(Y) = 0 there is an isomorphism
nz(?) = HZ(?, 7) (indeed this is implied by (B.6) if we replace Y by Y). Then the Hurewicz
map ¥, provides Z2(Y) = H,(Y, Z).

Crucially however, 2(Y) is not isomorphic to 2(Y) in general (but this was the case for
the example in [29]). Note that v, takes a homotopy class f to the homology class f,(u,), but
this map is not in general injective because non-homotopic spheres inside Y can still be homolo-
gous. The group action G may identify homology classes of ¥, in which case h»(Y) < kb1 (Y).
This leads to an identification

A (Y) = Hy(Y,2);, (B.7)
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where we introduce G-coinvariant second homology. This is the set of equivalence classes
under the G-action in the second homology of ¥. Now, from simply-connectedness of ¥ we
learn that the group 7;(Y), i.e. nl(? /G), is itself G. One uses these identifications to rewrite
(B.6) in such a way as to relate homologies:

0 — Hy(Y,2); 5 Hy(Y,Z) — Hy(G,Z) — O. (B.8)

The group H,(G,Z) is sometimes referred to as the Schur multiplier of G. The pushforward
map p, identifies Hy(Y,Z); with a subgroup of H,(Y,Z). There is a nonsingular pairing

HZ(?: Z)Free x Hz(?)Z)Free —Z, J ej - 5; ’ (B.9)
€l

where €' and e; respectively generate the torsion-free parts of the second integral homology
and cohomology. There is a similar such pairing for the quotient Y, and compatibility of (B.8)
with (B.9) tells us how the pullback p* acts on the integral cohomology generators. This is
necessary information for us to compute Wall data. Since the quotient map p effects a degree-
|G| covering of Y, we have that |G| fY V= f? p*(V) for V. € H%(Y,Z). So once we understand
how to perform the pullbacks, it becomes possible to express the topological data of Y in terms
of the data for Y.

From the naturality axiom of the Chern classes, p*(c,(Y)) = ca(?). This is how one shows
the well-known fact that the Euler characteristic always divides upon taking the quotient by a
freely acting symmetry group, irrespective of the details of (B.8):

X(Y)—f c3(Y) = |G|J p*(cs(Y)) = |G|f |X(Y) (B.10)

For the triple intersection and second Chern numbers,

o _1
Kiik Jyei/\e]-/\ek—EJ?p*(ei/\ej/\ek)

= |1?| ﬁp*(ei) Ap*(e)) Ap*(e),
! (B.11)
e =f oY) Ae = ij prca(Y)Ae) = iJ P (c2(Y)) A p*(e;)
’ v G| )¢ |G| )¢

=éﬁdﬁw%&
Y

One can use (B.11) to express the triple intersection and second Chern numbers of Y in terms
of the same data for ¥, but in order to do this one must know the explicit images p*(e;) as
combinations of the ¢;. These are obtained in each example by studying (B.8) and (B.9).

We will now turn to a non-exhaustive set of examples to illustrate the implications of
(B.8) in different cases. We will consider genus O curves C c Y and their smooth® images
C C Y under the quotient map. Since a smooth rational curve cannot have an unramified
cover (as follows from the Riemann-Hurwitz formula), and G acts freely on Y by assumption,
we learn that no genus 0 curves on Y are fixed by the G-action and the preimage of C is |G|

“We do not take care here to make our argument work for singular curves. However, to obtain our conclusions
on the relations between t; and t, we only require our following arguments with some smooth rational curve C on
Y. We do not consider the possibility of a Calabi-Yau threefold Y not containing any smooth C.
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disjoint curves C. The degree-vector of a curve C is the set of intersections of that curve with
a generating set e; of H2(Y, Z)pyees

deg(C)l = J e;. (B].Z)
[c]

The homology class of the curve C is expanded as [C] = deg(C);€’, similarly we have
[C] = deg(?)i?. The area of C is t'deg(C); and the area of a single curve C is ?ideg(é)i.
Since these areas must be equal (as these are identical curves), we read off relations between
tiand t.

Example 0, H,(G) = 0 and h"!(Y) = h1(Y):

All examples studied in this paper belong to this class, to which we pay the most attention.

In this simplest case we necessarily have H2(Y Z)g = HZ(Y Z) = Hy(Y,Z). As a conse-
quence of (B.8), the map p, takes each generator &' of H,(Y,Z) to a generator €' of H,(Y,Z),

p(E)=€". (B.13)

As a result, taking the quotient by G sends each curve in Y to a curve in Y with the same
degree:

deg(C); zf e; =J e =J e =J = deg(C); . (B.14)
[c] K(t4) p.(deg(@);&) deg(T);e/

The complexified area of C is deg(C);t!, and the complexified area of C is deg(C);t!. Since
these must be equal, we obtain for these examples

t' =71, (B.15)
Comparing (B.13) with (B.9), we get the pullback
p*(e) =¢. (B.16)

This allows us to compute the Wall data. For the triple intersection number, we have

(Y) * * * _ ~~ o~
Rk f eser = lGlfp(el]k) |G|f (ep"(e)p"(ex) = lGlJeee

(B.17)
1 ¥
= EKijk .
For the second Chern numbers,
(Y) _ _ 1 * _ * * _ 1 4
o= | caMe==| p(ca(Y)e))= | p(ca(Y)p (e)) =75 | caY)e;
oy Gl Jy % Gl J¢
(B.18)
_ 15
= ;.

C
G| =

Example 1, ]P’4[5]/ZSXZS:

This example is illustrative of the fact that the Wall data of Y cannot always be obtained
by dividing the Wall data of Y by |G|. This particular example was studied in [29], and there
is much more that is interesting about this model than we will cover. The salient point for us
is that Hy(Zs X Zs, Z) = Zs, which follows from a Kiinneth-type computation. This means that
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the fourth term in the sequence (B.8) is nonzero, unlike in Example 0. Both Y and Y have
bl =1,

From (B.8), we can be sure that p, is not surjective. However, that still allows for two
possibilities. Either we have Hy(Y,Z) = Z or Hy(Y,Z) = Z @ Zs. To distinguish between these
two cases, one must study the geometry carefully. There is necessarily a homology class v
not represented by a sphere, and either 5v = 0 or 5v generates H,(P*[5],Z). It was shown
in [29] that the latter is the case. As such

H,(Y,Z)=7Z, and p.(€)="5¢. (B.19)

Consider once again a genus 0 curve C on Y, whose preimage is 25 disjoint curves CcY.We
wish to relate the degree of C to the degree of a single curve C (not the full set of 25 taken
together).

deg(C) = J e= f e= f e= f e = 5deg(C). (B.20)
[c] (€D p.(deg(C)E) 5deg(C)e

We now demand that the area of C equals the area of a single curve C. This means that
deg(C)t = deg(C)t, and therefore
t=5t¢t. (B.21)

This was noted in [29], which provided the very important observation that the A-model mod-
uli space of P*[5] Jzsxz, furnishes a five-fold cover of the moduli space of P*[5]. Their equation
(12), exp(2mit) = exp(2mit)°, provides the above relation (B.21).
Comparing (B.9) with (B.19) provides us with the pullback map, which differs to that of
Example 0.
p*(e) =5e. (B.22)

We now turn to the triple intersection and second Chern numbers. For P*[5] /2%, ON€ obtains,
as has already been done in [29],

1
K111 = 747 pfe)Ap*e)Ap*(le) = —zf 5e A 5e A5e

|G| P4[5] 5 P4[5]
1

= §53(5) =25,

(B.23)
1 1
Cp = Gl P*(CZ(P4[5]/stZS))/\p*(e) = 5—2J co(P*[5]) A 5e

|G| P4[5] P4[5]
1

= 55(50) =10.

Note that when the dust settles the triple intersection number, as compared to that of the
quintic, has been multiplied by five. However, the second Chern number has been divided by
5. Moreover, the second Chern numbers of P4[5] Jzsxz and P*[5] /z5 are both equal to 10.

For a much more involved example wherein H,(G,Z) = 0 and both H,(Y, Z); and H,(Y, Z)
have torsion, one can see the examples and discussion in [31, 91, 92]. Note well that if
H,(G,Z) # 0, one must still study the non-spherical part of H,(Y,Z) before one is able to
take the above steps to compute the Wall data.

We also remark that, while in Examples 0 and 1 we have compared the areas of curves C
and C in order to obtain the relation between t and t, one could also consider the classical
part of the quantum volume of Y and Y. Since Vol(Y) = ﬁVol(?), we can anticipate in any
example that

kW ypipick = —_ ¥ Figik (B.24)


https://scipost.org
https://scipost.org/SciPostPhys.20.1.015

e SciPost Phys. 20, 015 (2026)

Knowledge of the relation between the k;;, thereby enables one to relate ¢ and t.

Example 2, H,(G) =0, h1(Y) < kb1 (Y):

In these cases, the h»'(Y) Kihler parameters ' are not all independent. Since G acts
nontrivially on the cohomology of ¥, exchanging some of the generators &', the corresponding
subset of the t! must all be set equal so that the Kihler form t'¢' is left invariant.

For concreteness, we will consider two examples at once. These have been discussed in
[93] (Appendix A.1 therein).

- hb1=3 ,h>1=47

Pl{1 1 0 0 0
FO~ptl1 01 1 1 1 yW=yWyz,,
P*10 1 1 1 1 1
) (B.25)
Plfo 0 o 2]" 7MY
Y@=pil1 1 11 , Y@ =y®)7,.

P11 1 1

We have used the CICY notation [20] to display complete intersections of polynomials in the
ambient spaces defined as the product of the projective spaces on the left, with the degrees of
the intersecting polynomials given by the entries of the matrices. An adjunction computation
[76] gives us the topological data of the covering manifolds,

W) _ (W) _ (W) _ ey _ (P _ (@) _

Kijjp = Kyp =Ky =0, Kjp = Kipp =Ky =0,
Yoy _ (W) _ Y@ _ (@) _
122 =Kizz =4, Kigy =Kjg3 =4,
(70) _ 7®) _

Kip3 =06, Kip3 =06,
YWy _ Wy _ Y@y _ (@) _

Kypy = Kpzz ~ =10, Kyyg = Kp3y =0,
Z6) 51 52) 5(2) (B.26)
) _ Yy @)y _ () _

Kygy  =K3zz =09, Kypy  =Kzzz =2,
Yoy _ Y@ _

62,1 =24, C2,1 =24,
Yoy _ Sy _ y® _ @) _
22  =C3 =50, Cop =Chg =44,

7 (Y1) =88, 1(T®)=—gs.

Any triple intersection numbers not displayed are obtained from the above by permuting in-
dices.

In both cases, the Z, symmetry of the threefold descends from the Z, symmetry of the
ambient space given by exchanging the lower two projective space factors. This means that
in both examples the Z, action exchanges the integral cohomology generators e, and e;. So
although each of Y, Y has h! = 3, we will set some Kihler parameters equal before
taking the quotient. In both examples there are two independent Kihler parameters,

Trand T2 =17°. (B.27)

The Hodge numbers of Y) and Y® are both (kb h>1) = (2, 24).

The second group cohomology H,(Z-, Z) is trivial, and so (B.8) guarantees that p, gives an
isomorphism between H,(Y, Z) and H,(Y, Z)¢ (crucially this is not the same as H (Y, 2) = 7).
Consider a genus 0 curve C on either YV or Y@, From (B.8) we learn that the image curve
C has degree

deg(C); = deg(C);, deg(C), = deg(C), + deg(C)s, (B.28)
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and therefore

tt=17, t2 =72, (B.29)

The pullback will map H%(Y,Z) to H*(Y,Z)®, the G-invariant subspace of H*(Y, Z).
p*(e]_) :El, p*(ez) :Ez +E3. (B.BO)

To see that this is the correct pullback relation, note that €, and €5 lie in the same equivalence
class in Ho(Y,Z);. Note that H3(Y,Q)¢ is spanned by €, and &, + &, with rational coeffi-
cients. It must be the case that p*(e,) = ae; + b(e, +¢3). To preserve (B.9), we need to have
f’é p*(e;)=0and fgz p*ey) = J.EB p*(e;) =1, which forces a =0 and b =1 as claimed.

The triple intersection and second Chern numbers can now be computed via (B.11). For
each triple i, j, k one expands p*(e;)p*(e;)p™(ex) to obtain

omy_ 1 o) _

K = —xK =0,
111 |G| 1
(y(l)) _ 1 (17(1)) (17(1)) _
K12 " = E 112 K13~ ) =0,
ooy _ 1 0 @wy @), O
122 = E Kigy ~+ 2K 3 "+ K35 7 | =10,
. (B.31)
(r®y _ (Y1) 2] (YW YO _
Koog " = E (Kzzz +3Kgp3 "+ 3Kg33 " T K333 " | =35,
(r@y 1 C(y(n) —19
2,1 |G| 2,1 4
(Y(l)) N 1 (?(l)) (17(1)) .
Cop "= E Coo 23 ) =50.
The same contractions relate the numbers for Y3 to those of Y@, yielding
@ @ @
K(llil)zo’ K(ﬁz)zo’ Kggz)zlo’
(y(Z)) (Y(Z)) (y(Z)) (B32)
Koo @ =20, €y = 12, Co = 44,

B.1 Remarks on Wall’s theorem and non-simply connected threefolds

B.2 The Hori-Knapp model

Our choice of the specific Y1, Y of Example 1 were not merely taken to illustrate how to use
(B.8) and (B.9) to compute topological data for quotients satisfying some specific properties
(namely H,(G,Z) = 0 and h>}(Y) < h"1(Y)). The topological data that we have computed
for these models allows us to address an open problem in the literature.

Consider the Calabi-Yau geometries discussed in [27]. Their nonabelian GLSM realised,
in two different phases (in their labelling, phases I, and IV), a pair of Calabi-Yau threefolds
with hodge numbers (k%! h%1) = (2,24). One of these (phase IV) had trivial fundamental
group, and so this geometry was known to be distinct to the quotient geometries Y1), y(?)
of [93]. Nonetheless, it was left as open to determine if their phase I, really did provide a
new Calabi-Yau threefold, or if this geometry was in the same diffeomorphism class as one of
YD, v3, Now that we have the full set of Wall data for the two quotient models we have
taken from [93], we can compare this to the Wall data of the phase I, geometry of [27] and
use the methods of [28] to check if the phase I, geometry lies in a distinct family of Calabi-Yau
threefolds.

46


https://scipost.org
https://scipost.org/SciPostPhys.20.1.015

e SciPost Phys. 20, 015 (2026)

Strictly speaking, Wall’s theorem [94] states that the homotopy type of a compact, simply
connected Calabi-Yau threefold with torsion-free homology is determined by the Wall Data
(triple intersection numbers, second Chern numbers, and Hodge numbers). At the time of
writing, this is not known to apply to non-simply connected threefolds (which we are studying
presently). Nonetheless, as argued in [28] it is anticipated on physical grounds that one can
drop the assumption of simply-connectedness. We note that there is no GL(2, Z) transforma-
tion with determinant +1 that takes the Wall data for phase I, of [27] to the Wall data that
we have computed here for either of YD, vy, We determine this by comparing the GCDs of
the sets of triple intersection numbers and second Chern numbers for each geometry. To use
the language of [28], these geometries are not Wall-equivalent. Therefore, we expect that the
geometry associated to phase I, is distinct from either of YV, Y(?) assuming that homotopic
non-simply connected threefolds must have the same Wall data.

B.3 Non-homotopic threefolds with the same Wall data

As we will now demonstrate, non-simply connected threefolds with the same Wall data need

not be homotopic. We guess that if Wall’s theorem can be generalised beyond the simply

connected case, then the Wall data must be extended to include the fundamental group.
Consider for the sake of nuisance two further geometries from [93] (Table 25 therein),

P7[2,2,2,2]/5,, and P7[2,2,2,2],. (B.33)

These are of the type considered in our discussion of Example O, with
Hy(Zg,Z) = Hy(Qg,Z) = 0. h'! = 1 for both quotients and their shared universal cover
P’[2,2,2,2]. Both quotient groups have the same order, |G| = 8. Nonetheless both quotient
geometries have different fundamental groups, respectively Zg and Qg (the quaternion group).
Therefore the manifolds cannot be homotopy equivalent. They have the same Wall data, ob-
tained by dividing the triple intersection, second Chern, and Euler numbers of P7[2,2,2,2] by
8: K11 =2,c,=8, y =—16, b1 =1.
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