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Abstract

In this work we study the dissipative quantum North-East-Center (NEC) model: a two-
dimensional spin-1/2 lattice subject to chiral, kinetically constrained dissipation and
coherent quantum interactions. This model combines kinetic constraints and chiral-
ity at the dissipative level, implementing local incoherent spin flips conditioned by an
asymmetric majority-vote rule. Through a cluster mean-field approach, we determine
the steady-state phase diagram of the NEC model under different Hamiltonians, consis-
tently revealing the emergence of two distinct phases, bistable and normal, across all
cases considered. We further investigate the stability of the steady-state with respect to
inhomogeneous fluctuations in both phases, showing the emergence of instabilities at
finite wavevectors in the proximity of the phase transition. Next, we study the noner-
godicity of the model in the bistable phase. We characterize the dynamics of minority
islands of spins surrounded by a large background of spins pointing in the opposite di-
rection. We show that in the bistable phase, the minority islands are always reabsorbed
by the surrounding at a constant velocity, irrespectively of their size. Finally, we propose
and numerically benchmark an equation of motion for the reabsorption velocity of the
islands where thermal and quantum fluctuations act independently at linear order.
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1 Introduction

The development of experimental platforms for quantum simulation has stimulated the study
of novel non-equilibrium phenomena, arising in exotic systems [1-4]. In this context, quan-
tum kinetically constrained models (KCMs) have emerged as a fascinating framework for the
study of non-equilibrium physics [5-7]. First introduced in the context of classical glasses [8],
KCMs are systems whose dynamics have to satisfy a certain set of rules, giving rise to non-
ergodic behaviors and slow relaxation. In the quantum realm, KCMs have shown a plethora
of interesting phenomena, ranging from anomalous dynamical properties [1,9-12] to weak
ergodicity breaking [13-15] and Hilbert space fragmentation [16-18].

The interplay of kinetic constraints and dissipation has been studied both in the context of
stability of the nonergodic features of KCMs when coupled to external environments [19,20],
and in the context of kinetically constrained dissipative processes [21-26]. The latter, in par-
ticular, have shown that the interplay of dissipative kinetic constraints and coherent dynamics
can lead to active phases of matter [27] as well as critical [28,29] and heterogeneous [24-26]
dynamics.

The intersection between these two classes of systems (KCMs and open quantum sys-
tems) opens an exciting playground for non-equilibrium physics. Indeed, in open quantum
many-body systems, interactions and dissipation compete and non-equilibrium phases of mat-
ter emerge [30] triggering dissipative criticalities [31-34] and stabilizing phases forbidden at
thermal equilibrium [35-37].

A promising avenue in the study of dissipative kinetically constrained systems corresponds
to chiral KCMs, where constraints are spatially asymmetric. These have garnered significant
interest in isolated systems, due to their peculiar dynamics [7,11, 12, 38, 39], whereas their
dissipative counterpart remains relatively unexplored. Particularly, two-dimensional lattice
models have escaped thorough investigation due to the limitations in theoretical and numerical
approaches. However, their study opens new directions in the interplay of dissipation and
kinetic constraints due to the possibility of designing angular-dependent chiral processes and,
at the same time, supporting dissipative phase transitions. In this context, the North-East-
Center (NEC) model provides a fascinating example of a two-dimensional dissipative KCM.
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Introduced by Toom in 1974 [40,41] as a classical majority vote model in the context of
cellular automata, it generalizes the East model to a two-dimensional plaquette and serves as
a toy model for the investigation of the effect of inversion symmetry breaking in 2-dimensional
systems. It was later shown in Ref. [42] that the dynamics of the NEC model lead to a bistable
phase, where two different steady-states emerge even in presence of classical noise [43], i.e.
when errors with respect to the majority-vote rule are introduced leading to an effective tem-
perature. More recently, a variational analysis has shown that the bistability in the NEC model
persists even in presence of quantum fluctuations [44], thus shaking the common belief that
quantum many-body systems cannot host robust bistable phases. The variational approach
exploited in Ref. [44] (originally proposed in Ref. [45]), however, does not allow to scale the
number of physical sites included in the treatment and thus systematically analyze the effect of
quantum fluctuations at increasing distances. This exact treatment of short-range physics has
been shown to be crucial to determine the structure of the steady-state phase diagram (see,
e.g., Ref. [46]) since it is known that mean-field-like decoupling can lead to artificial multiple
stable solutions [47]. Establishing whether these findings are stable against the systematic
inclusion of short-range quantum correlations and universal with respect to different classes
of coherent Hamiltonian interactions, remain exciting open questions. Furthermore, the non-
ergodic dynamics expected in the bistable region remain largely unexplored in the quantum
scenario. To this aim it is necessary to access the real-time evolution of spin islands. Again,
this aspect has not been addressed in [44] and calls for further investigations.

In this work, we compute the steady-state of the system and obtain the phase diagram for
the relevant parameters in the model, highlighting a finite ferromagnetic bistable region. In
particular, we study how different sources of quantum fluctuations, i.e. different Hamiltonians,
affect bistability. Specifically, we investigate Hamiltonians without kinetic constraints, mod-
els with constraints that respect the NEC geometry, and models with constraints that conflict
with the NEC geometry. Interestingly, we find that bistability in the NEC model is a universal
feature persisting irrespective of the microscopic details of quantum fluctuations. Nonetheless
these details affect the extent of the bistable phase, and we show that the presence of kinetic
constraints in the Hamiltonian results in strong bistability. We use a cluster mean-field (CMF)
ansatz [46] to systematically include short-range correlations considering clusters of increas-
ing size. We further introduce an inhomogeneous CMF method (iCMF) which allows to study
the real time dynamics of large two-dimensional systems starting from non-translationally-
invariant initial conditions.

We exploit the latter ansatz to investigate the dynamics in the bistable and normal phases
of inhomogeneous initial states where an island of spins pointing in the same direction is
surrounded by a background of spins in the opposite state. While in the normal phase the two
regions quickly mix yielding a unique steady-state, in the bistable phase islands are always
absorbed by their surrounding, irrespective of their size. The study of dynamics then highlights
how bistability is rooted in the nonergodic dynamics of the NEC model, where different initial
states evolve to different steady-states with opposite magnetization. The absorption of error
islands from a given background could be used as a strategy for quantum error correction [48-
50], where an undesired local flip to the wrong state is always absorbed by the surroundings.
We analyze the absorption velocity, showing that it is independent of island size in the bistable
phase, and we propose a phenomenological picture for the velocity that includes the effect of
both classical and quantum fluctuations.

The remainder of this paper is organized as follows. First, in Sec. 2 we introduce the jump
operators and the Hamiltonians that specify the NEC model and the Lindblad master equation.
In Sec. 3 we describe the CMF method including its inhomogeneous generalization used in the
study of dynamics. In Sec. 4 we study in detail the phase diagram of the NEC model under
the different sources of quantum fluctuations and in 5 we study the stability with respect to
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Figure 1: Pictorial representation of the various processes in the NEC model. (a):
The majority moves implemented by the jump operators in Eq. (2,3) align the spin at
the corner of the plaquette to the majority. (b): The chiral dissipative constraint im-
posed by the jump operators breaks ergodicity and leads to bistability. In the bistable
region, the steady-state can have either a large positive or large negative magnetiza-
tion, depending on the initial condition. Red and blue sites represent spin pointing
upwards and downwards, respectively. (c): The rate of the majority moves can be
lowered by classical fluctuations and coherent quantum dynamics. Classical fluc-
tuations act as moves against the majority which decrease the effectiveness of the
majority moves. In the sketch below the action of a local field on the Center site a;.‘
with strength Q [as in Eq. (10)] puts the plaquette in a coherent superposition thus
renormalizing the rate of the majority move (by a factor |CT|2) and opening a new
dissipative channel flipping the spin against the majority with a rate proportional to
valc|? according to the coefficients ¢y, c; with |c* + [¢)[* = 1.

inhomogeneous perturbations. Finally, in Sec. 6, we study the absorption dynamics of the
spin islands. In 7 we summarize our work, highlighting the potential of dissipative kinetically
constrained models as an avenue for non-equilibrium phases of matter and suggesting the
inhomogeneous cluster mean-field method as a viable way to study the dynamics of large
dissipative lattice systems in more than one spatial dimension.

2 The model

We study the dissipative dynamics and steady-state of a quantum spin system on a square
lattice. The dissipative process we consider implements a majority vote move on a plaquette

]14 :{];]+ex1]+ey}z (1)

formed by the active spin j at the vertex and by its Eastern (j + e,) and Northern (j + ey)
neighbors, e, , being two orthonormal versors. The spin at site j aligns its z component to the
direction of the majority within the plaquette, if it is not already pointing in that direction, as
pictorially shown in Fig. 1(a). This move can be represented by the action of the spin raising
and lowering operators cr;.t = %(o}‘ + w]y ) (of’y * being the Pauli matrices acting on the j-th
site) conditioned on the majority within the plaquette. This process is encoded in the following
jump operators

_ 1
LLV._1/7;ojE:= , 2)
= —p!
Liy=+/Tu0; PJ-I , (3)
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where P! is the projector onto the respective set of states corresponding to up/down majority

ite

P, =1 2+Zaf—l_[0f , 4
ite 4 i€;le i€l
P :1 2— Z oi + l_[ oi |- (5)
e 4 i€;le i€l

The plaquette Eq.(1), then, defines the basic geometry of the model; it is further chiral, as it
lacks inversion symmetry.

Following Ref. [42], we consider noise on top of the exact majority moves implemented
by Egs. (2,3). These classical fluctuations correspond to wrong moves, where the spin aligns
opposite to the majority in the plaquette

_ -l
L:5=,y;0.P 6
1,V YVO-J jlo > ( )
L.-=./7-0P, .
jp Ta%i % e, (7)

In the following, we fix the rate of the dissipative processes such thaty, +y; =71, +7r3 =7.
It is further convenient to combine the decay rates introduced above into a dimensionless
amplitude T and bias h defined as
-+ v - — Y-
T=Y“ Yv’ hz}’v Yu, ®
1 rT

measuring the overall strength of classical fluctuations and quantifying the imbalance of the
two noisy processes, respectively. When only dissipative processes are considered the dynamics
can be exactly mapped onto the one of classical Ising-like models [51] where T plays the role
of an effective temperature and h the one of a magnetic field.

In addition to the dissipative terms described above, we introduce quantum fluctuations
through a Hamiltonian generating coherent evolution. The open-system dynamics of the sys-
tem is then given by the Lindblad master equation [52] (hereafter we set i =1)

. . 1 .
o =—1[H,p]+Z(Lj,apL},a—E{L},aLj,a;p}), 9
j,a

with a = v, u, v, i labelling the different dissipative processes. As the plaquette chiral ge-
ometry plays a central role in the purely dissipative case [42], we will investigate quantum
fluctuations that break and preserve the chiral plaquette geometry. In the following, we say
that an operator has plaquette geometry if it acts non-trivially over the full plaquette.

For this purpose, we investigate different paradigmatic Hamiltonians which represent dif-
ferent possible sources of quantum noise. The simplest Hamiltonian with no plaquette geom-
etry is given by a homogeneous transverse (with respect to dissipation) magnetic field

Hy=0) 0%, (10)
J

which introduces independent single spin rotations.

As the dissipators inherently implement constraints through the majority within the pla-
quette, it is interesting to consider the interplay with kinetic constraints induced by the Hamil-
tonian. To this end, we introduce two different KCMs. (i) First, we study the two-dimensional
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Figure 2: Sketch of the cluster mean-field approach. The spin lattice is partitioned
into clusters (solid lines) that cover its entirety. The dynamics of a given cluster C
are governed by the CMF Hamiltonian Heyr and dissipator Lqyr both including on-
cluster and boundary terms. In this example we a show on-site Hamiltonian term h;
and a plaquette interaction that couples C with C’ and C”.

version of the PXP model [53], implementing the Rydberg blockade on the square lattice with
strength ; and a Rydberg anti-blockade with strength €,

PXP _ l I xml l T i xpl i
HPP = Z WP, P, oTP, Pl +QP|_ P oTEl Pl . (11)
j
Here IP’JT.l = %(1 + a?) are the projectors onto the up and down spin state, respectively. (ii) Sec-
ond, we introduce a NEC version of the PXP Hamiltonian defined above, where the projectors
act only on the North and East neighboring sites

PXP _ l l T 1

HY® =3 P, o7P),, +QP),, o7F,, . (12)
J

This Hamiltonian shares the chiral nature of the constraints implemented by the jump oper-

ators, thus introducing quantum fluctuations without breaking the plaquette geometry of the

NEC model [44].

3 Cluster mean-field approach

In this section we describe the CMF approach used in this work. For an extended introduc-
tion about this method the interested reader is referred to [46]. Here we briefly review the
approach highlighting the peculiarities due to the the presence of multi-site Hamiltonian and
dissipative terms acting on plaquettes of different shapes. We discuss both the inhomogeneous
and translationally invariant version of CMF, used to compute time evolution of arbitrary initial
states and the steady-state, respectively.

In full generality let us consider a Lindblad master equation p = —i[H, p] + L[p] with

Hamiltonian
H=Y hj+ > hp, (13)
j P

where h; encodes single-site spin terms and hp takes into account multi-spin interactions of
contiguous sites belonging to the plaquette P. For instance, if we focus on the Hamiltonian
(12) we have that

P = {jl. |j € lattice sites} , (14)
is the set of NEC plaquettes (1). Let us also consider the following dissipators
Llpl= Y Lilpl+ Y Lplpl, (15)
j P’

6
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where L;[p] = ljpl;‘—{l;lj;p}/z and Lp/[p]= lp/pfr ,—{l;,lp/;p}/z account for incoherent

processes acting on the j-th site and on the plaquette P’. Again lp/ is a jump operator acting
on contiguous sites forming the plaquette P’. For the dissipative NEC processes considered in
this work we have that P’ = P defined in Eq. (14).

Let us now consider the CMF ansatz for the system density matrix

pavr = Q) pe, (16)
C

where p. is the density matrix of the C-th cluster. This framework allows to systematically
go beyond the single-site Gutzwiller approximation considering spatially extended clusters
composed by many sites. In this work we will consider square-shaped clusters composed by
¢ x{ spins. Within this approach short-range correlations are taken into account exactly within
the cluster C while those among neighboring clusters are treated at a mean-field level. Inserting
the ansatz (16) into the master equation we get

pc =—1[Hemr, pcl+ Levrlpel, 17)

where Heoyp = He + Hpey and Loyr = L + Lp(c) are the CMF Hamiltonian and dissipator,
respectively. The on-cluster part includes Hamiltonian terms whose support lies entirely within

the cluster C

jec PeC
The boundary term can be written as
Hpey(t) = Z Treyze [ocmr(t)hp], (19)
PeB(C)

where B(C) is the boundary of the cluster and represents the mean-field interactions among
different clusters induced by Hamiltonian plaquette terms 7 whose support lies partially out-
side the cluster C. The trace in Eq. (19) is thus taken over the neighboring clusters C and
gives an operator with support entirely on C multiplied by a time dependent field that needs
to be computed self-consistently in time. The structure of the dissipative part mirrors the uni-
tary one where the on-cluster dissipator £, includes local and plaquette jump operators with
support entirely on the cluster and the boundary terms

Lo (Olpel= D, Trgse[Lplpome()]], (20)
P’eB(C)

take into account dissipative process on the plaquette P’ acting on the boundary B(C) whose
support is shared between C and the surrounding clusters. In this case the trace provides a
new set of jump operators with support on C multiplied by a time-dependent rate.

As a result the full dynamics are eventually simplified into the coupled reduced dynamics of
the clusters (see Fig. 2) that can be computed numerically or analytically (for small-size clus-
ters). In terms of complexity the CMF approach requires to compute the evolution of O(M dfz)
coupled nonlinear differential equations where M is the number of clusters that cover the lat-
tice (made of N = M{? sites), d is the local Hilbert space dimension (d = 2 for spin-1/2)
and ¢2 is the number of sites composing each cluster. This is the case if all the cluster den-
sity matrices are distinct, a condition needed when the dynamics of spatially inhomogeneous
states are considered. However, this condition can be relaxed when we consider translation-
ally invariant states imposing p. = p¢, VC,C’. This leads to a simplified version of the CMF
ansatz where only the evolution of a single representative cluster is needed [resulting into
O(dgz) equations]. In this case the thermodynamic limit N — oo is implicitly taken and the
steady-state is defined as

Pss = t1—1>rcr>lo pC(t) . (21

7
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4 Steady-state phase diagram

We study the phase diagram of the NEC model in the parameter space defined by the amplitude
of classical fluctuations T, their bias h and by the amplitude of quantum fluctuations €. In the
rest of the paper the Hamiltonian couplings will be expressed in units of y. In particular, to
establish the presence of bistability we perform hysteresis cycles on the bias h, adiabatically
sweeping h forwards and backwards from —1 — 1 using a small increment dh = 0.1. For each
point (2, T'), we evolve according to Eq. (17) an initial state corresponding to the steady-state
at the previous value of h py(h) = p,,(h £ dh), until the steady-state is reached p(h) = 0.

To probe bistabilityy, we focus on the magnetization in the steady-state,
m, = Tr[pg . i af /€2]. Within the bistable region, the forwards and backwards sweeps over
h result in different steady-state magnetization mgf ) We then define the order parameter
Am, = Imgf )_ mgb)l, which captures the presence of bistability.

As we show below, the results concerning the boundaries of the bistable region are already
converged when comparing the CMF results for clusters of size £ x £ with £ = 2 and { = 3,

thus suggesting that the results at £ = 3 capture all relevant correlations.

4.1 Robustness to different Hamiltonians

To understand the effect of quantum fluctuations on bistability, we compare three fundamen-
tally different cases. First, we use the NEC-symmetric PXP Hamiltonian Eq. (12), which shares
the same plaquette geometry of the dissipators. As such, this Hamiltonian is expected to have
weaker effects on the bistable phase. We then break the plaquette geometry via the 2d PXP
Hamiltonian (11), which however retains the constrained structure. Finally, we study the
effect of completely relaxing the constraint on neighboring sites, applying Eq. (10), which
performs free rotations about the x-axis.

As mentioned above, for each of these models we perform hysteresis cycles and compare
the magnetization in the forwards and backwards sweep. In Fig. 3(a) we present the steady-
state magnetization m, for the NEC-symmetric Hamiltonian at fixed Q; = Q, = Q2 = 0.1 and
for different amplitudes of the classical noise T € [0.1,0.25].! In this range of parameters,
bistability is revealed by the different values of mgf ) and mgb), indicating the presence of two
steady-states. As the amplitude T is increased (blue to red), the bistable region progressively
shrinks, until eventually it disappears for T Z 0.25.

Using the difference in steady-state magnetization Am, as an order parameter, we can fur-
ther obtain a phase diagram distinguishing the normal phase Am, = 0 from the bistable phase
Am, > 0. We show such a phase diagram for the NEC Hamiltonian in Fig. 3(b). At fixed Q the
bistable phase is symmetric around h = 0, and shrinks as T is increased. The bistable phase
shrinking follows a phase boundary defined by the phenomenological T-dependent critical
bias

T—T*
i =2(1- T -

as shown by the red dashed line fitting the data for h.. Here T* = T.(|Jh| = 1) and T.(h = 0)
define the critical temperatures at |h| = 1 and h = 0, respectively, and specify the value of
R = 4/T.(h=0)— T*. We also note that T* corresponds to the largest T such that the system
is bistable for all values of h. These two effective temperatures depend on the strength of the
Hamiltonian coupling, for 2 = 0.1 as in Fig. 3 we get T* ~ 0.08 and T.(h = 0) ~ 0.25.

IThe results are qualitatively similar for all other models studied.
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Figure 3: (a): Hysteresis curves for the steady-state magnetization of the constrained
plaquette model Eq. (12) show clear signatures of bistability. The forwards (full
circles) and backwards (empty circles) curves are different over a large region of
bias at various amplitudes T, defining an area of bistability. (b): Using Am, as an
order parameter, we obtain the phase diagram of the NEC model at fixed Q. The
boundaries of the bistable phase are captured by the formula (22) (red dashed line).

Taking a closer look at the decay of the order parameter Am, reveals an interesting behav-
ior distinguishing the transition at h = 0 from the rest. As we show in Fig. 4(a), at all non-zero
values of h the order parameter seems to present a discontinuous transition at T = T,.(h), with
a finite Am, within the bistable phase suddenly vanishing as the critical point is crossed. On
the other hand, at h = O this is not the case, and the order parameter gradually decreases,
limy_, - Am, = 0. Our finite £ analysis then suggests that the NEC model hosts two different
phase tcransitions, a first order transition at h # 0 and a continuous phase transition in the
absence of bias. A conclusive distinction of the two transitions, however, would require the
investigation of much larger cluster sizes, beyond current computational availability. Nonethe-
less, a continuous transition at h = 0 was already pointed out in the classical case [42].

We now explore the effect of increasing the quantum fluctuation amplitude by analyzing
the curves T.(h), as shown in Fig. 4(b). In analogy with the phase diagram shown in Fig. 3(b),
the critical amplitude curves are symmetric around h = 0 and show a robust quadratic behavior

T.(h) =R*(1—|h|)* + T, (23)

obtained inverting Eq. (22). As we increase (2, the curves shift to lower values, indicating a
shrinking of the bistable phase as quantum fluctuations become stronger. This is in agreement
with the expectation that coherent dynamics will eventually destroy bistability. However, the
bistable region persists up to considerable values of Q ~ 0.25.

We now check the convergence of the CMF ansatz by comparing the behavior of the sys-
tem at increasing cluster sizes £. In Fig. 5 we show that the critical curves for Q [Fig. 5(a)]
and T [Fig. 5(b)] do not change as the cluster size is increased. We compare the results for
¢ = 2,3 obtained evolving the density matrix with results for £ = 4 averaged over N = 500
trajectories, with a standard deviation corresponding to the error bars in the figure. The com-
parison between £ = 2 (dashed lines), £ = 3 (solid lines) and £ = 4 (dotted lines) shows good
convergence of our numerical simulations, thus suggesting that the bistable phase we observe
is stable with respect to the CMF approximation [46,47].

Qualitatively similar results hold for all other Hamiltonians defined in Sec. 2, as shown in
the Appendix. This highlights the universality of bistability in the NEC model and its stability
towards different microscopic coherent processes. However, the details of the model inducing
quantum fluctuations impact dramatically on the extension of the bistable phase. As we show
in Fig. 5, the model shapes the critical curves, both for 2 (¢) and T (d).

9
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Figure 4: (a): Analyzing the decay of Am, at different values of the bias highlights
thatath = 0 Am, — 0 as the amplitude reaches its critical value T,, thus suggesting a
continuous phase transition. On the other hand, at h # 0 Am,, attains a finite value at
the critical point, indicating a first order transition. (b): The critical amplitude T, as
a function of h for different values of Q. Similarly to the phase diagram, the critical
lines are symmetric around h = 0 and show a quadratic behavior as in Eq. (23).

As the strength of quantum fluctuations is increased (dark green to light blue), the
critical amplitude monotonically decreases.

We can understand these differences considering that the Hamiltonians (10), (11) and (12)
all induce local rotations about the x-axis on the Bloch sphere, thus inducing an effective de-
polarization of the z component of the spin. This process progressively destroys bistability and
plays a role similar to an effective temperature. However, in the three classes of Hamiltonians
considered the action of o is constrained by the status of a certain number of neighbors.
Precisely, Hy is unconstrained, while HYX? and H"* are constrained by two and four nearest

neighbors, respectively. As a consequence, the depolarizing action is stronger as the number
of constraints is smaller. This is in agreement with the numerical results in Fig. 5 (c),(d).

In conclusions, these results teach us that the microscopic details of the Hamiltonian are
not a fundamental ingredient to determine the qualitative structure of the steady-state phase
diagram, yet they are crucial in determining the extension of the phases. Following this line

of reasoning in the next section we test the robustness with respect to additional dissipative
processes.

4.2 Stability of the bistable region under unconstrained dissipation

Driven by the results of the previous section we now want to understand if the structure of the
steady-state phase diagram is stable against the presence of dissipative processes beyond the
NEC ones.

We choose the simplest jump operator with no kinetic constraints and no plaquette geom-
etry

Lj,x = \/fO';C. (24)

We then study the steady-state resulting from the purely dissipative dynamics generated by
the NEC operators Egs. (2-3,6-7) together with the dissipative free rotations along x given by
Ljy.

The dissipative perturbation affects bistability in a qualitatively similar way than the quan-
tum fluctuations presented in the previous Section. As we show in the Appendix, the bistable
phase shares the same features as in the Hamiltonian case. However, comparing quantitative

results from the action of L; , with the one of Hy shows a dramatic effect of replacing coherent
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Figure 5: (a): Critical amplitude of quantum fluctuations . as a function of T
for different biases. Comparison of £ = 2 (dashed lines) with £ = 3 (solid lines)
and £ = 4 (dotted lines) suggests convergence of the cluster mean-field approach.
(b): Critical amplitude of classical noise T, as function of Q. Again comparison of
¢ = 2,3 and 4 suggests convergence of CME Comparison of the curves for 2, (c) and
T, (d) at h = O for different representative models. The bistable phase is strongest
in the case of the PXP Hamiltonian. This suggests that kinetic constraints play an
important role, as they weaken the dephasing action of ¢*. We further compare
dissipative and coherent free independent rotations of each spin. The dissipative
action of aj.‘ has a weak effect on bistability, while its coherent counterpart results in
a quick destabilization of the bistable phase.

with dissipative spin rotations. As we show in Fig. 5 (c),(d), the dissipative perturbation has
a much weaker effect on bistability than its Hamiltonian counterpart.

This result highlights the robustness of the phase diagram with respect to additional dissi-
pation sources. The fact that we are not in a fine-tuned situation is important also for possible
concrete implementation (for example with Rydberg atoms) where the presence of incoherent
on-site dephasing is unavoidable.

5 Stability analysis

To gain more insight into the phase diagram presented in the previous section, and to provide
further proof of convergence of our CMF simulations, we perform a stability analysis [46,54].
This procedure consists in considering fluctuations on top of the cluster mean-field steady-
state and investigating their dynamics. Whenever fluctuations grow uncontrolled, the system
is unstable, whereas if fluctuations are reabsorbed, the steady-state is converged.

To this aim, let us consider the state of the n-th cluster (located at position r;,)

P =py+5p™ =py+ Y e*T5py, (25)
k
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where pg, is the homogeneous steady-state reached within the CMF approach (21) and & p™
are small spatial fluctuations expanded in plane waves with wavevector k = (k,,k,). The
wavevectors are limited to the region [—7n /¢, /{], as they are restricted to the first Brillouin
zone of the superlattice with unit cell given by the £ x £ cluster.

In the cluster mean-field approach, the Liouvillian super operator is split into on-cluster
and boundary terms. The latter are written as the product of operators with support on the n-th

()
h]. hj+eq:

cluster, and others with support on the neighboring one in direction q: Hg = ). ieB
— (n) gt @t 1 [yt ) ..

Lg = Zj€B lj lj+eq lj+equ 5 {lj+equ l]. lj+eq, } These operators are then evaluated

on the corresponding cluster wavefunction, and therefore the boundary terms are non-linear

super operators on the state p.

We now write the equation of motion for the state in Eq. (25)
p(n) = (_l[HC: ] + ‘CC) [pss + 6p(n):|

+ Z [ —ur [hj+eq(pss + 5P(n)):| I:h]’ Pss + 5p(n):|
qa=x,y

jeB, (26)

+

2
tr [lj+eq (pss + 5p(”))]’ ES.") [pss + 5p(”):|] + corner term,

where the corner term refers to the top right site in the cluster, where both the top and
the right neighboring clusters contribute to the expectation values; its expression, together
with details on the derivation of the equations for the stability analysis, are reported in Ap-
pendix C. We group the on-cluster terms with all the terms in the sum where the expectation
values are evaluated on the steady-state, which results in the cluster mean-field Liouvillian
acting trivially on the steady-state itself, Mcyr = —t[Heomr, '] + Lovr,  MemplPss] = 0.
We further linearize the remaining part of the equation of motion, neglecting all non-
linear terms in §p. Using the plane waves expression of the fluctuations we get
tr[Oj+eq Dk N § A e‘kqtr[Oj+eq5 Pkl- As we are working under the translationally
invariant assumption, the expectation value above corresponds to the respective operator eval-
uated on cluster n, and we drop the superscript n hereafter. The equation of motion then
becomes,

5.pk = MCMF[6pk] + Z etka |:_l [hj: pss] tr [hj+eq Spk]
=x,
qjquy (27)

+ 2% [tr [lj+eqpss]] an) [oss]tr [lj+eq5pk]] + corner term.

Finally, we notice that the expectation values can also be thought of as the action of a super
operator on the state 6 py, and, upon vectorization, they correspond to a vector in the enlarged
Hilbert space {(h jeq II, (1 jeq ||. Similarly, the commutator and dissipator with the steady-state
also become vectors, || P, Y, e c ), and the sum in the equation above corresponds to a sum
of rank-1 matrices given by the outer product of these vectors

2115 i) = [M + > et (—lnphj Mo 429 [t L s || 102, ) (e, ||)
et (28)

+ corner term] 16 o1 ) -
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Figure 6: The largest eigenvalue of the super operator Mj, at fixed k, = 0 fora 2 x 2
cluster. (a): Driving the transition with quantum fluctuations at T = 0 (hence h = 0)
yields a very sharp spreading of instability close to the critical point (vertical dashed
line), spawning from k, = O to all wavevectors and peaking at |k,| = /4. (b):
Classical fluctuations at = 0 and h = O present a similar behavior in the vicinity
of the critical point, although narrower and with no spatial structure, as the instable
region is peaked at k,, = 0.

In order to evaluate the behavior of fluctuations at a given value of k, we diagonalize the
matrix governing their dynamics according to Eq. (28) for a cluster of 2 x 2 sites. In particular,
the eigenvalue with the largest real part u, determines whether fluctuations will grow, stay
stable, or vanish in time. Since for an £ x { cluster the components of the vectors r,, must be
¢ times the elementary lattice vectors, the range of lattice momenta allowed are restricted to
the first Brillouin zone of the superlattice, |k, ,| < 7/{. Physically this means that we are
considering fluctuations with at most the periodicity of the cluster structure since shorter ones
|ky,y| > /¢ are already included exactly within the CMF ansatz.

As we show in Fig. 6 (where k, = 0), u; = 0 within the bistable phase, while it becomes
positive around the critical point, both when the transition is driven by quantum fluctuations
Q (a) and by the amplitude T (b).

The presence of p; > 0 in the vicinity of the transition (dashed lines) is related to criticality.
Indeed as we approach the critical point, fluctuations can grow and drive the system from one
of the two steady-states of the bistable phase in the unique one of the normal phase. Since the
steady-state is translationally invariant in both the phases, this process triggers an instability
at k = 0. A positive y; at criticality suggests that larger cluster sizes are needed to precisely
pinpoint the critical point, due to the build-up of long range correlations.

Interestingly, the critical region where u; > 0 features a different structure depending on
whether the transition is driven by quantum or thermal effects. In the former case [panel(a)]
the instability region is wider close to criticality and shows two pronounced peaks at |k, | = /4.
In the latter situation [panel(b)] the instability region is narrower, featuring a persistent in-
stability at k,, = 0 while larger wavevectors get progressively stable as T is increased.

Away from critical points the cluster mean field solution is stable at all wave vectors, indi-
cating its convergence. In the bistable phase, this corresponds to u; = 0 due to the presence
of 2 distinct steady-states. In fact, one can write p( = ps(sl) + ps(sz), where ps(sl) and ps(sz) are
the two steady-states. As such, the state p™ will be stationary itself. It then follows that the
super-operator describing the dynamics of fluctuations on top of one steady-state admits zero
eigenvalues.

13


https://scipost.org
https://scipost.org/SciPostPhys.20.1.019

e SciPost Phys. 20, 019 (2026)

() Q=0.1 ) mz(t)
{t=10 i
15 1.0
- ]
J 0.5
5 ]
e e e e e e | N e e et e e . . e e e e e 0.0
t =50 t =70 £ =25
15
—0.5
- -
5 o] : : ~1.0
5 .15 5 .15 5 .15 5 .15 5 .15 5 .15
L 7 7 7 ) ) /) 7

Figure 7: Dynamics of a square island of £| x £; down-spins in a square lattice of
2(, x 2{ spins, with £, = 10. We fix the amplitude to T = 0.1 and the bias to
h = 0.1, and tune the bistability by the value of Q. (a): Within the bistable region
the bubble is always absorbed by the surrounding phase, this mechanism allows the
presence of two distinct steady-states. From this initial configuration, the steady-state
magnetization is large and positive, in spite of h > 0 favoring negative magnetization.
(b): When bistability is lost the bubble mixes with its surroundings, spreading to
the entire lattice and destroying the initial order. In the normal phase the global
magnetization is small and negative in the steady-state.

6 Nonergodic dynamics

Finally, we use the iCMF method introduced above to investigate the dynamics of large square
lattices. We focus on initial states where a minority island, i.e. a square region composed of
£, x £, spins aligned with the bias, is embedded in a sea of spins pointing in the opposite
direction.

In the normal phase, there is a unique steady-state, and the island is expected to fade
away as the system evolves over long timescales. In this case, no information about the initial
conditions is retained at long times. In the bistable phase, instead, the fate of the island is
a priori unclear since the two steady-states are very close to the possible alignments. In this
case the role of the interface is crucial and the surface tension determines the dynamics of the
island.

The key physical mechanism enabling the bistability of the NEC model is the presence of
chiral dissipative processes. If the symmetry of the jump operators is restored by conditioning
the flip of the central spin to the majority of all the four nearest neighbor sites, the bistability
region disappears and the dissipative-only dinamics can be mapped onto a classical Ising sys-
tem below its critical point [51]. Here a circular bubble of radius r composed by spins of one
of the two phases evolves as [55]

d A
3= Bl (29)

where the first term induces the absorption (A > 0) of the bubble with a negative speed pro-
portional to 1/r and the second term is induced by a a small symmetry-breaking bias |h| < 1
that energetically favors (B > 0) or disfavors (B < 0) the phase inside the bubble. If B > 0
Eq. (29) admits a critical radius r, o< 1/h, for any arbitrary small bias h, above which the
bubble will expand indefinitely and will take over the entire system. At a classical level this
scenario drastically changes for the NEC model [42] due to the angular dependence of the
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surface tension caused by the peculiar plaquette structure. In this case we get [56]

d
Class. NEC d—: — _C+BJn, (30)

with C > 0. Here an arbitrary small bias is not enough to allow for the expansion and the
bubble is reabsorbed at approximately constant velocity, regardless of its radius. The classical
statistical mechanics of the interfaces shows that the Ising model displays metastability and
features an ergodic behaviour while the classical NEC model breaks ergodicity.

In order to understand how the NEC behavior is modified in the presence of quantum
fluctuations, we simulate the dynamics of a square lattice of linear dimension L = 20, obtained
through iCMF with £ = 2. We fix the amplitude and bias to T = h = 0.1 and we tune between
the normal and the bistable phase using the amplitude of quantum fluctuations, Q, induced
by the Hamiltonian (12). As h > 0 the island corresponds to down-spins [B > 0 in Eq. (30)].
We analyze the dynamics of islands of various size £ .

In Fig. 7, we show the dynamics of a large island, £; = 10, both in the bistable [panel (a) ]
and in the normal phase [panel (b)]. In the bistable phase, the island gets reabsorbed by the
surrounding down-spins at a certain velocity v. Due to the shape of the island this process
follows a precise pattern, starting from the top right corner and following the diagonal to the
bottom left corner. In the normal phase, 2 = 0.35, instead, the island disappears in favor of
the unique steady-state. It is worth noticing the faster equilibration timescale of the normal
phase, as compared to the bistable phase. This is expected since the relaxation timescale in
the bistable phase is determined by the reabsorption physics that takes place at the boundary
of the island and thus depends on its size.

A more thorough analysis reveals a dramatically different scaling for the relaxation
timescale, 7, in the two phases as the island size is changed. As we show in Fig. 8 (a), T
increases linearly with the bubble size £ in the bistable phase. This implies that the reabsorp-
tion velocity is independent from the island size [as in the classical case, see Eq. (30)] and
can be extracted by fitting the data with 7 = ﬁéT /v. Interestingly, by performing a scaling
analysis of the reabsorption velocity [Fig. 8 (b)] we find that both the quantum fluctuations
Q and the effective temperature T reduce the velocity. For small  and T we find that such
reduction is linear and the contributions from the two sources of fluctuations are independent.
Thus Eq. (30) becomes

%:—C+Bh+DT+EQ, (31)

with D,E > 0 that quantify the impact of thermal and quantum fluctuations at the lowest
order, respectively. From our analysis we find that

D~24+0.2, and E~0.25+0.04, (32)

hinting at a weaker effect of quantum fluctuations with respect to the thermal ones. Notice
that the intercept of the two curves in the inset of Fig. 8(b) is different, as for T the intercept
is given by —C + Bh + E(2 = 0.1), while for Q by —C + Bh + D(T = 0.1). The difference in
the intercept is then given by 0.1(D —E) ~ 0.2, compatible with the one observed numerically
and consistent with Eq. (31).

Approaching the critical point the absorption capacity of the system is weakened and even-
tually the whole lattice tends to align with the direction favored by h (negative magnetization).
As a consequence, for small £ the system is very far from the steady-state, and 7 gains an in-
verse proportionality to the size of the island as shown in Figure 8 (a) for Q = 0.2. Deep in
the normal phase T becomes approximately constant with respect to £;. This suggests a bulk
mechanism responsible for the dissolution of the island that does not involve the physics of
the boundary.
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Figure 8: (a): Timescale 7 for the full relaxation of the island at T = h = 0.1. In the
bistable phase T grows proportionally to the linear size of the island, | and increases
as 2 becomes larger. As 2 approaches the critical point, the linear increase with £ is
lost and eventually in the normal phase T becomes constant. In the bistable phase,
we determine the island velocity from the slope of the linear fit 7 ~ ﬁET/ v (dashed
line). (b): The reabsorption velocity is a monotonically increasing function of Q and
T. Data are obtained at fixed T =h = 0.1 (green curve) and 2 = h = 0.1 (red curve).
The shaded areas represent the critical value of 2 and T. Close to the transition, the
velocity becomes positive, as the system is not able to absorb the island anymore. In
the inset, we show a zoom-in of the small Q, T region. In this regime, the velocity
increases linearly as a function of Q and T as predicted in Eq. (31), and we extract
the constants D and E from a linear fit (dashed lines).

7 Conclusions and perspectives

In this work we explored the physics of the dissipative quantum North-East-Center model for
spin-1/2 on a square lattice. Exploiting extensive numerical calculations based on the cluster
mean-field approach we computed the steady-state phase diagram of the model in the presence
of different classes of Hamiltonians and competing dissipators.

The phase diagram hosts a bistable phase, featuring two steady-states with opposite macro-
scopic magnetization, and a normal phase with a unique steady-state. The transition between
these two phases is driven by thermal and quantum fluctuations, which eventually destroy the
mechanism giving rise to bistability. We defined a suitable order parameter for the bistable
phase, and we located the critical lines of the phase diagram. The convergence of the phase
boundaries with respect to the size of the clusters used in the ansatz ensures the accuracy of
our results.

Our findings indicate that the structure of the phase diagram is universal with respect to
the Hamiltonian dynamics and robust when an additional single-site dephasing channel is
added. This suggests that chiral kinetically constrained dissipative models could provide a
robust mechanism for genuine bistability in quantum many-body systems, beyond long-range
systems [57,58]. The linear stability analysis corroborates the validity of the cluster ansatz
and shows that the instabilities triggered at the critical points feature non-trivial directional
dependence, able to distinguish if the transition is induced by thermal or quantum fluctuations.

Using the inhomogeneous version of the cluster mean-field ansatz, we also investigated the
dynamical emergence of bistability. In analogy with the bubble absorption and proliferation
in Ising-like models, we analyzed the dynamics of initial states where islands of spin point in
the opposite direction with respect to the background. We found that bistability is rooted in
the capacity of the system of absorbing islands of arbitrary sizes, which persists in presence of
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coherent Hamiltonian dynamics, confirming robust bistability also in the quantum setting. We
characterized such dynamics and proposed an equation of motion for the islands reabsorption
velocity that captures the effect of coherent quantum dynamics at linear order. We further
showed that in the normal (non-bistable) phase the boundary mechanism leading to island
reabsorption is completely absent, and thus a bulk mechanism is responsible for the relaxation
to the (unique) steady-state.

This particular feature of the NEC model can provide an interesting route to stabilize quan-
tum states against random noise resulting in rare regions of an unwanted phase [48-50].

This work opens many possible research directions in the field of open quantum many-
body systems. Our approach can be easily generalized to higher spatial dimensionality, thus
allowing the study of this and similar models in dimensions D > 2. This could be exploited
to study the fate of bistability in hyper-cubic lattices, as well as to investigate the effect of
dissipators with different chiral structures, allowed in higher dimensional systems. In par-
ticular, the choice of chiral plaquettes with different geometries can reveal alternative, more
intricated, dynamical patterns leading to bistability. A different direction corresponds to the
comparison of the results obtained with CMF with other approximations such as the cumu-
lant expansion [59]. The two approaches are indeed complementary [60], as CMF takes into
account correlations of all order within a limited region, while the cumulant expansion treats
correlations with no spatial restriction, but only up to a certain order. Therefore, comparing
the two approaches can reveal novel features of the NEC model.

Our work highlights the connection between bistability and chiral kinetic constraints.
These are often related to the emergence of Hilbert space fragmentation [16,17], where some
parts of the Hilbert space are inaccessible to certain initial states. Investigating the possibility
of a connection between bistability and fragmentation in the NEC or similar models represents
a promising direction for future studies [19, 61].

Finally, the NEC model can provide an interesting direction within the framework of mea-
surement and feedback [62,63]. In this context, the dissipative processes characteristic of the
NEC model could be implemented as a measurement on the plaquette followed by the action
of the desired operator. This could provide a feasible experimental realization of the model,
e.g. in dual-species Rydberg experiments [64], where our findings could be tested.
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A Phase diagrams for all Hamiltonians

In Fig. 3 in the main text we reported the complete phase diagram of the NEC model under the
coherent dynamics of the HX* Hamiltonian. For completeness, here we report the analogous
phase diagrams obtained for the other models discussed.

In Fig. 9, we show the phase diagram obtained for £ = 3 and Q2 = 0.1. As we mentioned
in the main text, all the phase diagrams are qualitatively similar, sharing the same features.
This suggests that the quantum fluctuations introduced by the coherent part of the dynamics
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change the behavior of the system only quantitatively, with respect to the underlying NEC
dissipative dynamics.

As we observed already in Fig. 5, the different models perturb in different ways the dissi-
pative NEC phase diagram. In particular, we notice that Hy is the most effective in destroying
the ordered phase, reducing the critical amplitude T, at which the order parameter vanishes
for all values of h. On the contrary, the PXP Hamiltonian shows a very stable phase diagram.

We further provide additional details regarding the stability of the CMF ansatz in the dif-
ferent models, comparing the phase boundaries at £ = 2,3. In Fig. 10 (a) we show the critical
value of the quantum fluctuations €, for the Hamiltonian Hy, while in panel (b) we show the
critical dissipation rate T, for the incoherent spin rotations implemented by the jump operators
Liy. In both cases we compare the results obtained in the CMF with £ = 2 (dashed lines) and
¢ = 3 (solid lines) for different values of the bias. The comparison of the phase boundaries
confirm the convergence of the CMF results at £ = 3. Finally, in Fig. 10 (c¢) we compare the
hysteresis cycle for HPX®, showing a very good agreement between the different values of £.

Hxgc Hy Hpxp Lj,

< 0 1
<
0
14
Figure 9: Comparison of the bistability phase diagrams at £ = 3 and Q2 = 0.1 for
the different models presented in the main text. The phase boundaries have the
same qualitative shape, irrespective of the microscopic details, suggesting that this is
a universal characteristic of the underlying chiral dissipative part. The quantitative
shift agrees with the results presented in Fig. 5 in the main text.
(a) Hy (b) Ly «©
0.4 —— h =10 h=-0.2
—— h =05 h =0.0
a £ 0
0.21
e
0.0~ . b o s _1< -

0.0 0.1 0.2 0.30.0 0.1 02 03
T T

Figure 10: (a): Comparison of the phase boundaries for the Hamiltonian Hy between
the CMF ansatz at £ = 2 (dashed lines) and ¢ = 3 (solid lines). The results are insen-
sitive to the variation of the cluster size, suggesting that the relevant correlations are
correctly captured. (b): Similar comparison for the dissipative processes introduced
by L; .. Also in this case the results show convergence of the CMF approach. (c):
Comparison of the hysteresis cycle for the NEC Hamiltonian at Q = T = 0.1 shows
very good agreement between the magnetization at £ = 3 and at { = 2.
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B Considerations on the dynamics of generic initial states

In the main text, we discussed the dynamics towards the steady-state in the hysteresis cycle,
where the initial state corresponds to the steady-state of the previous bias instance. Here, we
investigate how generic states evolve under the NEC rule in the cluster mean-field approxima-
tion.

First, we consider a generic bistable system, where there exist two different steady-states
ps(sl) and ps(sz). Then, by linearity of the Lindlbad master equation, any linear combination of the
two steady-states is a steady-state itself. However, in the cluster mean-field approximation, the
Lindblad master equation is non-linear due to the expectation values decoupling the boundary
terms.

We define £M) = L’CMF(t)I o the Liouville super operator in the cluster mean-field approx-

imation evaluated from p N and analogously for the other steady-state. Then the equation of
motion in the cluster mean-ﬁeld approximation for p = aps(sl) +p ps(sz) becomes

= (aLD + L) (apD +pp?), (B.1)

and the initial state is not necessarily a steady-state anymore due to the cross terms. Therefore,
even states obtained by mixing the steady-states will eventually flow towards one of the two
steady-states. This is in agreement with our analysis showing that generic states flow towards
one of the two steady-states within the bistable phase.

In spite of this, in the thermodynamic limit, we expect the two steady-states to be or-
thogonal to one another, and therefore generic initial states will have large overlap only with
one of the two. This would lead to their evolution towards a single steady-state, irrespective
of the cluster mean-field approximation. This intuition is in agreement with our numerical
simulations, showing stability with respect to the increase of the size of the plaquette.

C Details on the stability analysis

In the main text, we presented the stability analysis of the NEC model. Here, we give a detailed
derivation of the equations used in the main text and we give the expression of the corner term.

In the stability analysis, we care about the fate of fluctuations on top of the steady-
state of the n-th cluster, §p™. We thus write the cluster mean field equation for a state
p™ =pg+65p™

()
" = —1[Hewe, pss + 601+ Loyl pss + 5p™]. €1

p =p+5p™ =5p
One could be tempted to simply split the rhs of the equation into the steady-state and fluctua-
tion parts, but that would be wrong, since the cluster mean field equation is non-linear in the
state, as it involves expectation values.

To make progress, we split the Hamiltonian and dissipators into cluster terms H¢, L,
acting linearly on the state p(™, and boundary terms, which instead involve expectation values.
The latter will be split into x, y and corner terms, corresponding to the right boundary, the
top boundary and the top right corner of the cluster. Due to the structure of the plaquette, this
site is special and involves expectation values evaluated on 2 different neighboring clusters.
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Therefore,

5p" =—1([He. pe] + [He, 5p ™1+ [Hp, . pss + 5p™]
+[Hg,. pss + 6 [ Hp,, pss + 5p™])
+ Lelps ]+ Le[6p™]+ L [pss +50™]
+Lg,[pss + 801+ L, [pss +5p™].

(C.2)

Let us now analyze the boundary terms, starting with B, and B,,, which can be treated on
the same footing. For the Hamiltonian part, we can write

[Hp,» 05+ 801 = 3 trlhja, (05 + 5p™)]hy, o + 5p ]
je€B,

= Z (tr[hj+eqpss] + t]-’l:hj+eq 5P(n)]) ([hj,pss] + [hj, 5p(n)]) ,
j€B,

(C.3)

where h; has support within the cluster, and hj+eq has support on the neighboring cluster to
the right ¢ = x or to the top q = y. For the dissipators, one has to be slightly more careful,
as in the jump term they act on both sides of the density matrix. In our cluster mean field
approach, the boundary jump operators are replaced by tr[l j+eqp]l j, thus

L, [ps + 891 = Y tillie, (b + 5 )L (s +8p ™M ull],, (o +5p™]
jE€B,

1
=ty (pss + 5p™)rTlse, (s + 8P ™ )HI L, pss + 5™}

= > Il (pss + 5p™)]1
j€B,

x [szssz]! +1;5pM1f — 5 (1, p5} + {z]rzj,ap(m})} .

(C4

We notice that the jump term is of the third order in the state, thus differing from the commu-
tator and anticommutator, which are second order.

We now analyze the corner boundary term, B,. In the top right corner of the plaquette,
operators are evaluated on two different neighboring plaquettes, the one in the y direction
and the one in the x direction. To account for these contributions, we write

[HBC: Pss + 5p(n)] =t [hc+ex (pss + 5p(n))] tr [hc+ey (pss + 6p(n)):| [hc’ Pss + 5p(n):|
=[(t[here,pss] + tr[here, 800) (tr [ hese pis | + tr [ ese, 50 ]) | (€5)
% (Thes pss] + [, 5p™])
and for the dissipative part

2 2
‘CBC [pss + 5p(n)] = |tr[lc+ex (pss + 5P(n))]| tr[lc+ey (pss + ‘Sp(n))]‘

. 1. ' (C.6)
x [lcpsslz’ +1:5p ™1 = 2 ({11, pss} + (UL, 5p(“>})} :

Due to the contribution of the two different neighboring clusters, the corner boundary term is

a higher order functional of the density matrix, with respect to the ordinary boundaries.
Combining the results of the equations above, and plugging them into Eq. (C.2) we then

obtain Eq. (26) in the main text. We now group together the terms acting on the cluster with
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the ones where the expectation value is evaluated on the steady-state, resulting in the cluster
mean field super operator My

R
Maye ==lHe, T+ Lot D, 2y tlhysy, pucllhy, 1+ 0Tl o) (41 -3 8.)
q=x,y jeB,

- ltr[hc+ex Pss ]tr[hc+ey Pss ] [hc: ]

A
+ |tr[lc+expss]lzltr[lc+eypss]|2 (lc : l; - E{lcrlc’ }) . (C.7)

By definition, Myl o] = 0. Neglecting non-linear terms in the fluctuations and noting that
in our case the operators [ j+e, are always Hermitian, we obtain

- (n)
6p" = Meur[5p™]
n i 1 4 n
+ Z Z [hj,pss]tr[hj+eq5p( )] + ztr[lj+eqpss] (ljpssl]T - E{l; lj: pss}) trl:lj+eq§p( )]
q=x,y jeB,
- l[hc, pss] (tr[hc+ex pss]tr[hc+ey 5p(n)] + tr[hc+ey pss]tr[hc+ex 6p(n)]) (CS)

o1 .
+ 2tr[lc+expss]tr[lc+ey pss] (lcpsslc’ - E{lé lc: pss})

X (tr[lc+exp53]tr[lc+ey5p(n)] + tr[lc+eypss]tr[lc+ex 6p(n)]) s

corresponding to Eq. (27) in the main text.

Following the same steps discussed in the main text, we can write the equation above as
a super operator acting on the fluctuation §p™ = Zk e'™®™ 5 p, . Upon vectorization, we then
obtain

2lI5pi) = [M + Y et (—zuphj» (e 4200 [ e[ Ly s | P2, ) «zmqn)
T
— 1 (trlhese, Pos MoR N (ete, Il + tTese, P55 Jon ) (hee ) .9

+ Ztr[ lc+ex Pss ]tr[ lc+ey Pss ]

x (trl:lc+expss:|“loﬁC » «lc+ey || + tr[lc+eypss]||pﬁc » «lc+ex ||)i| ”5pk» >

corresponding to Eq. (28) in the main text.
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