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Abstract

In this paper, we give a rigorous mathematical justification for the relaxation time ap-
proximation (RTA) model. We find that only the RTA with an energy-independent relax-
ation time can be justified in the case of hard interactions. Accordingly, we propose an
alternative approach to restore the collision invariance lacking in traditional RTA. Be-
sides, we provide a general statement on the non-analytical structures in the retarded
correlators within the kinetic description. For hard interactions, hydrodynamic poles are
the long-lived modes. Whereas for soft interactions, commonly encountered in relativis-
tic kinetic theory, the gapless eigenvalue spectrum of linearized collision operator leads
to gapless branch-cuts. We note that particle mass and inhomogeneous perturbations
would complicate the above-mentioned non-analytical structures.
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1 Introduction

Over the past several decades, relativistic hydrodynamics has notably contributed to char-
acterizing the dynamic evolution of Quark-Gluon Plasma (QGP), as observed in heavy-ion
collision experiments at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Col-
lider (LHC) [1]. Within the framework of phenomenological modeling for these collisions, the
initialization time of hydrodynamic simulation is usually set to be less than 1 fm/c to match
experimental observations. This suggests that the system may rapidly equilibrate. Moreover,
the applicability of hydrodynamics has been noted to extend into less expected domains, in-
cluding small collision systems like nucleus-nucleon and proton-proton collisions [2,3], which
implies that these small collision systems could possibly exhibit fluid-like behaviors. What
is the dynamic mechanism that triggers rapid equilibration? Why does relativistic hydrody-
namics also work well for small systems? Regarding the first question, it has been proposed
that hydrodynamics can be viewed as an attractor governing the late-time behavior of sys-
tems as they approach equilibrium [4]. At the early stage of evolution, the system tends to
flow towards the hydrodynamic attractor, even when far from local equilibrium, which may
account for rapid hydrodynamization. Thus, hydrodynamization may have a broader appli-
cation range than thermalization, contrasting with the conventional view that hydrodynamics
is a truncated gradient expansion near local equilibrium. Despite significant advancements, it
remains an open question how hydrodynamization emerges from a general dynamic system
with diverse microscopic interactions.

As the first step towards understanding how relativistic nonequilibrium systems reach ther-
mal equilibrium, the properties of retarded correlation functions have recently garnered exten-
sive research interests. Two-point retarded correlation functions are pivotal, as they provide
a wealth of insights into the transport characteristics of multi-particle systems, particularly
how an equilibrium system responds to off-equilibrium disturbances within the linear regime.
Moreover, non-analytical structures—such as poles or discontinuities in Fourier space—are
crucial for determining the system’s evolutionary patterns. Poles are indicative of collective
excitations that evolve towards equilibrium, corresponding to the persistent hydrodynamic
modes, whereas the presence of non-hydrodynamic modes, which could be cuts or poles, is
intrinsically linked to the emergence of hydrodynamic phenomena and the applicability of hy-
drodynamics. Research has shown that the correlators contain only poles at infinite 't Hooft
coupling in large N thermal N' = 4 Super Yang-Mills (SYM) theory. In the holographic de-
scription, the spectra of correlation functions correspond to the ring-down spectra of dual
linearly perturbed black holes: the quasinormal modes [5,6]. However, in Ref. [5], the au-
thors argue that the branch-cut structure emerges in the regime of weak, but finite 't Hooft
coupling, indicating a possible transition behavior controlled by the ’t Hooft coupling. Mo-
tivated by this illuminating finding, Paul Romatschke calculated thermal correlators of large
N gauge theories in effective kinetic theory [7] (see also [8,9]), reporting the onset of tran-
sition behavior for hydrodynamic poles. In other related studies, including analytical esti-
mates [10], qualitative models [11, 12], and numerical calculations [13, 14], the dominant
non-analytical structure is found to be the branch-cut rather than poles, thus posing the 'poles
or cuts?’ dilemma. Specifically, this dilemma initially refers to the mathematical essence of
non-hydrodynamic excitations. In this work, we also use it to denote the comparison of the life-
time of hydrodynamic/non-hydrodynamic excitations. Also, it is worth noting that in a recent
study [15] on the transient dynamics of quasinormal modes within a holographic framework,
the authors demonstrated the existence of arbitrarily long-lived excitations arising from sum-
mation of short-lived quasinormal modes. These correspond to initial conditions in which a
packet of energy is localized near the future horizon, a feature that bears a resemblance to the
numerical results presented in [13,14]. This may suggest a deeper and more direct connec-
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tion between the linear response behaviors described by weakly-coupled kinetic theory and
strongly-coupled holographic theories.

As a universal low-energy effective theory, hydrodynamics describes the collective, macro-
scopic dynamics over large distances and time scales. As previously mentioned, elucidating
the relationship between the microscopic dynamics of matter’s fundamental constituents and
the macroscopic dynamics of coarse-grained degrees of freedom is a fundamental question.
Typically, collective macroscopic dynamics heavily relies on the intricate microscopic dynamic
details involving a vast number of degrees of freedom: for instance, a microscopic theory is
required to determine the relevant coefficients in the macroscopic description. In principle, an
accurate description of a dynamic system necessitates a comprehensive treatment of all par-
ticles at the microscopic level. However, tracking the evolution of all particles is impractical;
thus, a reduced description of microscopic degrees of freedom is essential. In scenarios of weak
coupling, where the concept of quasiparticles is applicable, kinetic theory serves as an effective
tool for describing many-body systems, with the relevant degrees of freedom being statistical
distribution functions. For example, the BBGKY hierarchy equation describes the coupled dy-
namic evolution of n-particle distribution functions [16-19]. The BBGKY hierarchy equation
is an infinite tower of integro-differential equations, making it challenging to solve without
truncation. By disregarding n-particle correlations (for n > 2) and truncating this infinite se-
ries of integro-differential equations to the lowest order, the renowned Boltzmann equation is
recovered, which describes the evolution of the one-particle distribution function. Despite its
omission of nearly all particle correlations, the Boltzmann equation maintains profound phys-
ical significance and is capable of characterizing various non-equilibrium phenomena within
kinetic theory. Notably, hydrodynamic behavior can be derived from the long-wavelength
limit of the Boltzmann equation. Hence, the Boltzmann equation is an excellent candidate,
particularly for weakly coupled cases, for elucidating how hydrodynamization is achieved in
a dynamic system and how the multitude of microscopic degrees of freedom condense into
coarse-grained hydrodynamic degrees of freedom.

However, the Boltzmann equation still contains an intractable collision integral, render-
ing its analytical or numerical solution challenging. Even with the simplest interactions, such
as the hard-sphere potential, the linearized Boltzmann equation’s collision operator retains
a complex structure, making its analysis extremely difficult, see [20] for related discussions
on the linearized collision operator spectrum for hard-sphere interaction. Recently, the eigen-
spectrum of the linearized Boltzmann collision operator in massless scalar ¢# theory was an-
alytically determined [21]. However, extending this to other realistic interactions remains a
significant challenge.! Marle [23,24], and Anderson and Witting (AW) [25] proposed an ap-
proximation of the relativistic Boltzmann equation using a simplified collision operator, effec-
tively extending the BGK (Bhatnagar, Gross, and Krook) model to the relativistic domain [26].
In the case of Marle, the proportionality factor is given by m/tg, with m the mass of the par-
ticles and T the relaxation time, whereas for AW model, it is u - p/tz. We focus on the latter
case in this work. The AW model, also known as the relaxation time approximation, omits
much of the dynamic information in the full collision operator. Firstly, it disregards nonlin-
earity. Secondly, its validity hinges on a clear separation between the eigenvalue representing
the slowest relaxation and the others. Despite these limitations, the relaxation time approx-
imation addresses practical challenges, enabling analytic and semi-analytic solutions for the
simplified Boltzmann equation. This approach paves the way for an insightful and instructive
analysis. Furthermore, the AW RTA model has been extended to a more general form with
nontrivial energy dependence. However, the justification of this extended RTA model within
kinetic theory awaits rigorous validation, which is another topic of interest.

IThe first analytical eigenspectrum was obtained by C. S. Wang Chang and U. E. Uhlenbeck in the context of
monatomic gases in the non-relativistic case (see chapter IV of [22]).
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The paper is organized as follows. In Sec. 2, we briefly review the basic aspects of the lin-
earized Boltzmann equation. In Sec. 3, we revisit the formulation of relaxation time approx-
imation within the linearized Boltzmann equation. In this section, we provide a justification
for the RTA, based on general mathematical considerations regarding the eigenspectrum struc-
ture of the linearized collision operator. It turns out that the RTA is well-justified exclusively
in scenarios involving relativistic hard interactions. Sec. 4 serves as an application of the find-
ings from Sec. 3 to address the non-analytical structures contained in the retarded correlation
functions. In Sec. 5, we introduce a novel relaxation time approximation by truncating the
full linearized operator, anticipating a broader range of applicability. Summary and outlook
are given in Sec. 6.

Natural units kg = ¢ = A = 1 are employed. The metric tensor is given
by gt” = diag(1,—1,—1,—1) , while A** = g*” — ufu” is the projection ten-
sor orthogonal to the four-vector fluid velocity u*. The abbreviation dP stands for
[dp= ﬁ [d*p6(p®)5(p* —m?).

Note Upon finalizing our manuscript, we became aware of a concurrent and highly pertinent
study by L. Gavassino [27], which also focuses on the discussions about gapless modes, and
has some overlap with our results.

2 Linearized Boltzmann equation

As the lowest order truncation of the relativistic BBGKY hierarchy, the on-shell relativistic
Boltzmann equation describes the non-equilibrium evolution of a weakly coupled system,

p-9f(x,p)=Clf], ey
C[f] = JdP/dPldPZ(f(x:pl)f(x:pZ)_f(X’p)f(xap/))wp,p’—)pl,pz > (2)

where f(x,p) is the one-particle distribution function in phase space, and C[f ] represents
the collision kernel. Here we neglect the external force and focus on local two-body collisions
and the classical statistics. Furthermore, W, ,,_,, , = (2m)8s0(s,0)6(p + p’ — p; — p2)
with the differential differential cross section o (s,®) encoding the interaction information.
In subsequent discussions, the differential cross-section is alternatively expressed as o(g,©)
depending on g = v/—(p —p’) - (p — p’). Here s represents the total center-of-momentum en-
ergy squared and © is the scattering angle in the center-of-momentum frame. The detailed
balance property, W, .. ,, = W, .., v, inherent to the transition rates, is implicitly con-
sidered in the above expression. Note that Eq. (1) is specific to one-component systems; for
generalizations to multi-component systems, refer to [28,29].

As mentioned before, the complicated Boltzmann equation is often linearized to facilitate
a more straightforward analysis. Following the linearization procedure, we expand the distri-
bution function around the local equilibrium state f (x, p) = fo(x, p)(1+ x(x,p)), then Eq. (1)
transforms into the following form,

Df (x,p) +E, 'p18,f (x, p) = —fo(x, p) Lol x 1, 3)

with the linearized collision operator

—Lolx1= Ep_1 f dP’dPlszfo(x,p’)WI,,p/_>l,1,l,2 @

x (x(x,p1) + x(x,pa) — x(x,p) — x(x,p"),

4
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where D=u-0, E, =u-p and p=Avrp - The local equilibrium distribution is defined as

folx,p) = exp[E(x) —B(x)-p], )

where * = %, = %, p = % with the local temperature T(x), and the chemical potential
u(x) associated with the conserved particle number. Evidently, the collisional invariance of
1 and p,, is respected by construction. From a mathematical standpoint, it can be verified
that the linearized collision operator L is self-adjoint and positive semidefinite within the
square-integrable Hilbert space [28],

f dPfo(P)E, ¥ (p)Lo¢(p) = J dPfo(p)E, ¢ (P)Lo¥(p),
(6)
J dPfo(P)E,(p)Loy(p) 2 0,

where the spacetime dependence is neglected for simplicity.

In certain special cases, an additional simplification proves particularly useful. When it
comes to the normal mode solution of the kinetic equation, the background around which
the distribution function is expanded is typically assumed to be a homogeneous and static
equilibrium configuration f,,(p). For the sake of subsequent discussions, we introduce this
simplification as well. Adopting the expansion f (x,p) = f.q(p)(1 + x(x,p)), Eq. (3) can be
further simplified to

O x(x,p)+v-Vy(x,p)=—Lolx], 7

where v = p%, V4= Ag g, and we should change fj,(x, p) into f,,(p) in the above expressions

accordingly.

3 Revisiting the relaxation time approximation

The relaxation time approximation of the Boltzmann equation, known as the BGK model in
the nonrelativistic case and the AW model in the relativistic case, offers an effective descrip-
tion within kinetic theory. Notably, its simple mathematical structure facilitates the analytical
extraction of underlying physics, albeit at the cost of precision. In this section, we examine the
relationship between the RTA model and its complete form, the (linearized) Boltzmann equa-
tion, to elucidate the approximation’s limitations, specifically when the model is valid within
the framework of linearized kinetic theory. Note as an aside, the relaxation time is allowed to
possess power-law energy dependence, conveniently parameterized as follows [11,30,31]

TR == (ﬂEp)atR . (8)

Here, a is an arbitrary constant controlling the energy dependence of the relaxation time,
while ty is independent of momentum. The specific value of a is believed to depend on the
dynamic details and corresponds to various physical scenarios: a = 0 corresponds to the tradi-
tional AW RTA [25]; a = 0.38 is argued to well approximate the effective kinetic descriptions
of quantum chromodynamics [30-32]; while @ = 0.5 is a good modeling in extreme out-
of-equilibrium perturbations, e.g., jets, in this case 7y is related to the famous jet stopping
time [33,34]. The successes achieved through flexible parameterization suggest that the RTA
may effectively model realistic scenarios in practical applications. Irrespective of phenomeno-
logical considerations from practical simulations, we concentrate solely on the mathematical
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aspects of the RTA model. We demonstrate below that the energy dependence is ascribed to
the redefinition of the linearized collision operator

Df (x,p)+E, " p""8,f (x,p) = —folx, PIE, “Lal 2], ©)

where £, = E;‘EO represents the redefined linearized collision operator with £, and £, being
specific instances. It is easily proved that £, inherits the positive semidefinite and self-adjoint
properties from L. This can be achieved by redefining the weight function within the inner
product definition as f,(x, p)E ;_a in Eq. (6), which means the square-integrable function space
should be also altered accordingly. It should be noted that the corresponding integrals within
the definitions should converge, which excludes very large values for a. In the following
subsections 3.2 and 3.3, we illustrate that naively truncating £, leads to a form resembling
the energy-dependent RTA; however the resulting RTA-like model is not well-defined.

3.1 Anderson and Witting model

The traditional RTA proposed by Anderson and Witting is a relativistic generalization of the
BGK model

EP
p-2f(x.p)=——(f(x.p)—folx.p)), (10)
R

where 7 is energy-independent, corresponding to @ = 0 in Eq. (8). The above equation can
be rewritten as

DF (x,p)+ B 98, (x,p) = ~folx, D)2 (x,D), an
R

By substituting L[ y ] with % x in Eq. (3), effectively treating L, as an identity operator (up
to a constant factor), Eq. (3) simplifies to Eq. (11). Note we have specified the linearized
collision operator L, as our focus in this subsection. As will be manifest, % can be identified
as the smallest eigenvalue of L.

To elucidate this, by linearizing the Boltzmann equation around a stationary homogeneous
distribution f,,(p) and focusing on spatially uniform transport, we arrive at the equation

atX(t:p):_'CO[X]: (12)

which can be formally solved to get y(t) = e ot y(0). Since L, is self-adjoint and semi-

positive, the linear perturbation from equilibrium decays exponentially, which is consis-
tent with stability requirements. The same working logic applied to Eq. (11) leads to
%'(t) = e7/"r%’(0). By comparison, it is natural to interpret Ty as the relaxation time for
the linear perturbation from equilibrium, and Eal as the infinite-dimensional relaxation time
matrix (we adopt the terminology “matrix” although it may not be appropriate to use it when
the eigenvalue spectrum is continuous).

Recognized as a self-adjoint and semipositive operator in Hilbert space, £, may contain
both discrete and continuous eigenvalues. By expressing y as a linear combination of the
eigenfunctions v, of L,

2(60)= D (), Lolx]= D vucal)n(p), (13)

n

where Y implicitly includes the integral over the continuous eigenvalue spectrum, and we
use v, to denote the eigenvalues of £,. With the eigenfunction expansion, Eq. (12) can be
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resolved to reach

5
2(6,0) = (O, (ple ™ +C(p) = > (00 (ple ™ + D cu(O)fa(p) + C(p), (14)

n n>5 n=1
5

2(p) = D chOnpa(ple ™/ = > el (O, (p)e /™ +C'(p)

n n=1 (15)
= > Ol +C'(p).
n>5

For comparative purposes, we also present the expansion form of y’ = >} c/(t)y,(p). Addi-

tionally, the counter term —25 c’ (0)y,,(p)e~t/** is introduced to account for the absence of

collision invariance in the tracilitilor;lal RTA, as further discussed in Sec.5. Note C(p), C’(p) are
integration constants. In the above equations, the eigenvalues are sequenced in ascending or-
der when increasing n. As clearly seen in Eq. (14), the collision invariants, 1,,(n = 1, - - - 5) with
zero eigenvalues y,, = 0, contribute to the deviation function y but remain unchanged with
time. In the solution of Eq. (14), the second term, reflecting the contribution from collision
invariants, can also be regarded as an integration constant. By comparing Eqs. (14) and (15),
we can deduce that the traditional RTA simplifies the model by condensing the entire nonzero
eigenvalue spectrum into a single representative eigenvalue, v, — % Given the exponentially
decaying form, 1/7 should be identified as the smallest eigenvalue, where the mode )¢ per-
sists until the late stage of evolution. In other words, other modes with a larger eigenvalue,
which should have been absent from an earlier time, extend their lifetime to the final stage in
this approximation.

However, the RTA model is justified only when the eigenvalue sequence y,, is distinctly sep-
arated from the origin. If this is not the case, such as when the eigenvalue spectrum extends
continuously from the origin to other nonzero points, the relaxation time cannot be defined
as the inverse of the smallest eigenvalue, as it might diverge, leading to the elimination of
collisional effects. Thus, the justification of the RTA heavily depends on the eigenspectrum
structure of the linearized Boltzmann collision operator, particularly the characteristics of the
eigenspectrum near the origin. As shown in 3.4 of this section, the traditional RTA is per-
missible only in scenarios of “hard-interaction” collisions, where the eigenspectrum of the
linearized collision operator features a continuous range from v, (v, > 0) to 0o, along with
possibly some discrete points. In such scenarios, a gap exists between the origin and other
nonzero eigenvalues, providing a basis for constructing the RTA.

3.2 Energy-dependent relaxation time approximation (a > 0)

As noted in the convenient parameterization Eq. (8), the relaxation time, the only parameter
reflecting the microscopic dynamic details within the RTA model, is allowed to exhibit energy
dependence. It has long been believed that incorporating various energy dependence can
reveal characteristic features of bottom-up thermalization and uncover hidden aspects of the
full kinetic description [11]. Furthermore, the linearized kinetic equation within the energy-
dependent relaxation time approximation has been successfully applied to jet physics [33,34],
hydrodynamic simulations [30,31], and Weyl semimetals [35]. Does this imply that the model
or approximation is well-justified? One caution should be taken: an approximated model may
capture some aspects of the underlying physics relevant to specific issues but may fail to do so
for others. Nevertheless, elucidating how an approximation is derived from a complete theory
is always highly significant. In this subsection, we show mathematically how this model can be
similarly derived from the linearized Boltzmann equation, and how an inconsistency appears
hindering the sound justification of the model.
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Before delving into a more general discussion, let’s consider the specific case where a =1
in Eq. (8) for concreteness. The model thus becomes

p-2f(x,p)=———(f(e0) = folx,p)). (16)
Btr

This can be further rewritten as

Df (x,p) +E, " p""8,f (x,p) = —fo(x, p)

PE, tRx(x,p), a7

which can be compared with Eq. (9) but now the replacement of £; — ﬁ should be invoked.
This specific example aligns precisely with the energy-dependent RTA utilized in [11,21].

Without delving into repetitive details, we now proceed to a general discussion concerning
L, with positive a, termed as £,

£(0) = 2O/ 4 D)

(18)
= d (00, (p)e "/ + Z d,(0)®,(p) + D(p),
n>5 n=1
7/(60) = 2, (O (p)e P =Y O )P 1 D (p)
n=1 (19)
= Zdn(om(p)e‘“ PES) 1 D' (p),
n>5

where {y/,¥,} represents the eigensystem of L. = E;‘EO, and D(p),D’(p) are integration
constants. Given that EY > 0, it still holds that the eigen modes with a larger eigenvalue fade
away more quickly. Depending on whether the eigenspectrum continuously extends to the
origin, we decide to retain the smallest eigenvalue but zero or not. It seems that the story
remains no changes at all compared to what has been done in the previous subsection.

However, that is not the case, as the relaxation timescale for eigenfunctions is Ep“ / y;: the
perturbation contributed by the hard modes takes longer time to relax towards equilibrium.
With a fixed E,,, approximating the linearized collision kernel with a single eigenvalue is valid,
as it suffices to identify the slowest mode. If varying E,, we may always encounter the fol-
lowing situation Eg / Y/e < E;‘, / y’7 (p < p’), indicating that slower modes are excluded in the
energy-dependent RTA. Hence, it’s insufficient to consider only y¢; we must account for an
infinite series of y/. This renders the RTA derivation process questionable from a physical
standpoint. Unlike AW RTA, the proposed relaxation time, expressed as EI‘)" /15, lacks an upper
bound. Indeed, as Eg grows large enough, the hierarchy among the eigenvalues y/, becomes
irrelevant, suggesting that £,. can not support an energy-dependent RTA, regardless of the
interactions involved: we don’t even have to discuss the eigenvalue spectrum structure of
£a>0'

3.3 Energy-dependent relaxation time approximation (a < 0)

The lack of a well-defined relaxation time is due to the lack of a gap: As illustrated in Section
3.2, a bounded energy-dependent relaxation time cannot be identified therein, but we can
take a lesson from Eq. (8). It can be proved that such a gap can exist if the following three
conditions are met:

1. The redefined linearized collision operator has nonzero eigenvalues separated from the
origin.


https://scipost.org
https://scipost.org/SciPostPhys.20.1.020

e SciPost Phys. 20, 020 (2026)

2. The particles in consideration are massive.

3. a takes the negative value in the parameterization Eq. (8).

The necessity of the third condition can be relaxed if we deviate from the widely used param-
eterization in Eq. (8). Additionally, the second condition may also be loosened by employing
alternative parameterizations. In this analysis, we focus our attention on the parameterization
specified in Eq. (8).

Solving the corresponding linearized Boltzmann equation

at%(t:p) = —E;a£a<0[)(], (20)
yields the formal solution effortlessly
x(0) = e Eeo1(0). @1)

We “naively” truncate £, to the smallest nonzero eigenvalue v (or the nonzero infimum if
the spectrum is continuous) to reproduce Eq. (8). Thus, the relaxation timescale for the pertur-
m

,a . This indicates that all modes attenuate

E
bation decay is precisely Y—‘,’ bounded from above by -
6 6

/
at a finite rate with the slowest rate interpreted as the inverse relaxation time, 1/7z = %, in

a

. . . . E
contrast to what we encounter in 3.2. But if the particles are massless, then it follows that Y—’,’
6

is unbounded, and the well-defined RTA is also lacking for the similar reason shown in 3.2.
However, we confirm that 7z = ’;—, equates to the scenario where a =0, i.e., the AW RTA,

and does not introduce a new class of6RTAs. This verification is ruled by the following physical
argument. Suppose an observer perturbs the system in equilibrium with a small-amplitude
spatially homogeneous disturbance at t = 0, then the observer records when the disturbance
dissipates to none. It is reasonable to require that Egs. (3), (9), and their corresponding RTAs
(if any) give the same relaxation timescale.

Assuming that the eigenvalue spectrum of L is gapped, the relaxation scale is given by Yl—ﬁ
according to Eq. (3). If we try to describe the system using Eq. (9) with a < 0, the relaxation
scale is then dictated by the mode with the longest lifetime, and reads Tz(p — 0) = ';f—g Hence

att = ’;1—,, the observer announces that the system returns to its equilibrium state. Given that
6

the same experiment is conducted for the same system, the observer should give identical

a
observation results, as Eq. (9) is an equivalent transformation of Eq. (3), i.e. L~ ’;—/ For
6

> Ye
the a < 0 case, even if there is an upper bound for relaxation scales and one can manufacture
an energy-dependent (or precisely mass-dependent) RTA, it is still a redundant description
compared to AW RTA. In summary, an energy-dependent RTA should not be regarded as a
well-defined truncation to its UV complete theory, i.e., the linearized Boltzmann equation,
irrespective of the interaction details. It is suggestive to keep only the description provided
by L, because it is simplest without energy-dependent factor, and the mathematical analysis
specifically for £ is readily available [36,37].

The observer argument above can provide an equivalent justification for reconciling the
seemingly contradictory aspects between two detailed calculations for massless scalar ¢* the-
ory with leading order interaction [14,21]. Denicol and Noronha analytically calculate the
eigenspectrum of £; and obtain a series of discrete eigenvalues [21]. By utilizing the observer
argument again, we can conclude that the eigenspectrum of £, must extend continuously to-
wards the origin, and thus gapless. This conclusion is consistent with the mathematical aspect:
one can show that for leading order scalar ¢* theory, o(g,®) ~ % = m < %, so the in-
teraction falls within the soft interaction category according to the criteria given in [36,37].
Furthermore, the gapless continuous eigenspectrum has also been confirmed in recent calcu-

lations [14,27,38].
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3.4 Hard interaction vs soft interaction

Based on the above discussions, the Anderson and Witting model seems to be the only can-
didate with a potentially well-defined justification. However, it’s important to note that this
justification is contingent upon the eigenspectrum properties near the origin, which are, in
turn, dependent on the specifics of the interactions. In this subsection, we will demonstrate
that the aforementioned interaction details pertain to the softness of the interaction: the inter-
action is classified as soft or hard based on the differential cross-section’s form, as encapsulated
in the following two mathematical theorems [36,37]. Before presenting these, let’s briefly re-
view the basic aspects. Following [36,37], we linearize the Boltzmann equation around the
global equilibrium distribution. But quite differently, the distribution function is written as

FG6p) = fog(P) + £ *(P)E (x, D), (22)

and the linearized Boltzmann equation is cast into

o ¥(x,p)+v-Vi(x,p)=—Lol¥]1=—v(pP)¥(x,p) +K[¥], (23)
with
1

v(p) = fe](.l/z(p)p()_l J dP/dPl dPZfeq (p/)Wp,p’—q)l,pZ flT() 5 (24)
eq \P

KL71= £0)p5" f dP’dpldpzfeq(p’)wp,pqpl,pz("fj;’pl) Lps) _Zbop )), @25
eq (pl) eq (pZ) eq (p/)

where v(p) represents the collision frequency and we introduce a compact operator K. Here
we maintain the same notations as in the previous context to avoid complicating the overall
notation system, although the expansion Eq. (22) looks quite different. Furthermore, it is
immediately observable that Eq. (23) shares the similar form as Eq. (7). As a result, they should
also share the similar formal solution 7(t) = e “of 7(0) when the system is homogeneously
perturbed. In both cases, whether considering Eq. (23) or Eq. (7), y or 7 should be regarded
as the perturbation above the same equilibrium state. Given that both Egs. (23) and (7)
are derived from the same Boltzmann equation through linearization, we would not expect
the eigenspectrum for £, in Eq. (23) to differ from that in Eq. (7). If this were the case,
the decay behavior of the perturbation would exhibit significant differences, signifying the
physical inconsistency. This is another successful application of the observer argument from
the previous subsection. Therefore, we argue that the eigenspectrum of £ should be identical
in Egs. (23) and (7), and this is why we maintain the same notations. Then let’s come to the
core of this subsection:

Theorem 1 Assume that 3y > —2,0 < 3 < vy +2,B > 0 and ¢; > 0, so that

gﬂ+1
o(g,0) > Bz
hard.

sin’ ©, then v(p) > vo(po/m)P/? where v, is a constant, the interaction is

Theorem 2 Assume that 30 < a < 4, y > —2 and B’ > 0, so that o(g,0) < B’g~*sin" ©, then

w(p) < vo(po/m)~¢/2 < vy, the interaction is soft, where
a, for 0<a<3,
e=1a—2, for 3<a<4, (26)

6+1, for a=3, and 0<6<1,

and vy is a constant.
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Where the proofs of these theorems can be found in [37].

Analyzing the collision frequency v(p) enables us to distinguish between relativistic soft
and hard interactions. Mathematical analysis indicates that relativistic interactions tend to
be softer than their nonrelativistic counterparts [36,37]. It can be also proved that for soft
interactions —L is a bounded operator with the eigenspectrum [—v,,,,, 0], whereas for hard
interactions, —L is unbounded, featuring an eigenspectrum of [—00,—v,,;,, ], where v,,,,, and
Ymin can be estimated by the extrema of v(p). Given the eigenspectrum properties presented
here, we conclude that the AW RTA is only well-justified in the case of hard interactions. For
example, in the Weinberg-Salam theory at low energies [28], e.g., four fermions interaction in
the electroweak sector well below the gauge boson masses, the typical differential cross section
behaves as 0(g,0) ~ s = g2 +4m? > ijg > ijg sin® with the conditionsy =1, =2,B=1
in Theorem 1. Consequently, the model of a gas consisting of elastically colliding neutrinos in
the low-energy limit permits an RTA description of transport phenomena.

As most relativistic interactions are soft according to Theorem 2, the AW RTA lacks a solid
foundation in the majority of cases. For instance, in the extensively studied scalar ¢# theory,
the interaction is soft as exhibited in the previous section. This softness results in a branch-cut
structure that extends across the entire negative imaginary axis in the retarded correlators
[13,39].

There is one comment left. When interactions are too complicated so that their classifi-
cation as hard or soft cannot be easily known, we recommend employing the finite-element
method described in [14] for analyzing the eigenspectrum properties. By implementing the
outlined procedures therein, we can establish the dictionary between various field theories
and the eigenspectrum structure within their linearized kinetic description. In this sense, we
can exhaust all commonly used interactions admitting an RTA description.

4 Pole or cut — The non-analytical structures in retarded correla-
tors

Two-point retarded correlation functions are crucial and insightful as they encapsulate rich
information about the transport properties of many-body systems. Their analytical structures
can reflect the characteristic properties of how thermal equilibrium is reached. For instance,
the non-analytical structures — poles or cuts in Fourier space, govern the evolution behavior of
the system: poles describe collective excitations evolving towards equilibrium corresponding
to hydrodynamic modes, while the presence of cuts or non-hydrodynamic modes is closely
linked to the emergence of hydrodynamic behavior and the applicability of hydrodynamics.
Thus, the research into the analytical properties of retarded correlators is profound, which
is initially explored by Romatschke in the weakly-coupled kinetic theory [7]. Romatschke’s
findings highlight two key features in the analytical properties of the retarded correlators:
the cuts are gapped corresponding to non-hydrodynamic modes, below which hydrodynamic
poles dominate as long-lived degrees of freedom; the hydrodynamic poles cease to exist for
some critical value of the wavenumber reminiscent of the phenomenon of onset transitions,
which are successfully reproduced within the mutilated RTA model detailed in [40]. As a
supplement, we note that the universal behavior of onset transitions has been reported for a
long time in the context of the nonrelativistic kinetic theory using the mutilated model [22].
However, the AW RTA adopted in [7] is less well-founded than its nonrelativistic counterpart,
given that interactions tend to be softer in relativistic scenarios: the universal onset transitions
in nonrelativistic systems may be rarely observed in relativistic systems due to varying degrees
of interaction softness.
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Later on, Kurkela and Wiedemann reexamined the behavior of the retarded correlators,
beginning with the parametrized energy-dependent RTA as described in Eq. (8), with a par-
ticular focus on the case when a = 1 [11]. Their conclusions, however, stand in contrast to
those in [7]: there is no sharp onset of hydrodynamic behavior; the structure of cuts turns
into the entire strip Im w < 0,—k < Re w < k from a gapped line given in [7]. They also state
that the appearance of poles in the first (physical) Riemann sheet of retarded correlation func-
tions is a matter of choosing a particular analytical continuation and thus cannot be related
unambiguously to the onset of fluid dynamic behavior. However, as demonstrated in 3.2, their
model corresponding to Eq. (8) with a = 1 exhibits inconsistencies: it can only be seen as an
incomplete truncation to its ultraviolet (UV) completion — the linearized Boltzmann equation,
because an infinite number of slow modes are excluded. Although the analysis given in [11] is
still illuminating, we choose to work with RTA only in the hard interaction case for theoretical
consistency.

As observed, these two studies introduced above correspond to the models discussed in
3.1 and 3.2. In this place, we want to give a general statement on the topic of non-analytical
structures in the (stress-stress) retarded correlators. Before proceeding, let’s elaborate on how
to derive the non-analytical structure if the interactions are soft. In this case, the eigenvalue
spectrum of L is gapless and the typical stress-stress retarded correlation function is given by

Gr() =f ay L) 27)
0

w+iy’

where we use y to denote the continuously distributed eigenvalues, and the weight function
p(y) is nonzero in the integration range. This expression can be derived from the Fourier
transform of the linearized Boltzmann equation Eq. (3) in the limit of vanishing k [13, 39].
This expression clearly exhibits discontinuity as we shift from w = —iy + € to w = —iy —e,
indicating the presence of a branch-cut line extending from —iv,,,, to O.

In the limit of vanishing mass and nonzero k, extracting the non-analytical structure be-
comes unmanageable. We first assume that cos 6, regarded as an operator in momentum-space
functions, commute with £, then we can replace w by w — kcos 8, where 9 is the angle be-
tween spatial components of p and k. Then we can cast Gg(w) into

1 v,
e p(r)
Gr(w, k) ~ d 0 d s 28
r(e, k) f_l cos Jo Yw—kcos@-l—iy (28)

where the integration over cos 6 must be performed in the momentum integral. The resulting
expression is

Vmax

1
Gr(w, k) ~ z f dyp (y)(log(w +k+iy)—log(w—k+iy) ) . (29)
0

This results in the branch-cut structure
Im w=-—y, —k <Rew <k, 0<Y < Vnax>» (30)

where v,,,, = 00 for a massless theory (see Eq. (31)). Ultimately, the resulting branch-cut
structure seemingly reproduces the result for nonzero k given in [11].2

However, a reminder should be given that Eq. (30) relies heavily on the commutation
approximation for cos 6 and L, which breaks down when £ is the complete linearized Boltz-
mann collision operator. In other words, the structure in Eq. (30) should be modified. For

2 [11] is based on the choice of £,, or more precisely, an incomplete truncation of £, as shown in 3.2. For
completeness and consistency, a thorough study extending [38] to spatially inhomogeneous perturbations is war-
ranted.
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situations involving hard interactions, the extent of modification should be minimal as the
RTA can be seen as a good approximation to the complete linearized collision operator in that
case.

Based on the above statement, determining the non-analytical structures in the retarded
correlation functions equates to solving for the eigenspectrum of £,. However, a contradic-
tory question arises: both [13] and [14] demonstrate that the cut extends across the entire
negative imaginary frequency axis, contrasting with the bounded region [—i v,,,,, 0] inferred
from mathematical analysis. The discrepancy vanishes because, in the context of a massless
theory with soft interactions, the collision frequency becomes unbounded [37]

y(p) — oo, when p—0. (31)

Therefore, v,,,, = ©0, and these results are consistent with each other.
For clarity, we give a summary of this section by reconsidering the interplay of nonzero
particle mass m and wavenumber k, and our statement can be summarized as follows:

* Hard interactions: the RTA is a well-defined approximation relative to its UV complete
theory.

— m =0 or k = 0: Romatschke’s analysis applies: the retarded correlators (including
stress-stress correlator) exhibit a gapped branch-cut line (only two endpoints are
branch points)

1
Imw=——, —k <Rew <k, (32)
TR
associated with nonhydrodynamic modes. Below this gap, there is a window where
hydrodynamic modes become the long-lived degrees of freedom.

- m # 0,k # 0: The non-analytical structures of the retarded correlators be-
come complicated due to the interplay between the nonzero particle mass m and

wavenumber k. Upon inspecting the derivation detailed in [7], we find that if the
pkcos 0 de-

pending on p. This could introduce additional complex structures into correlators
after performing momentum integral, beyond the poles or gapped cuts predicted
by Romatschke. We leave this discussion to future work. For now, we can only
conclude that the non-analytical structure remains in the form of Eq. (32). The
remarkable distinction is that the points lying within the branch-cut line are all
branch points.

particles are massive, the free-streaming term is proportional to v-V ~

* Soft interactions. The RTA does not constitute a well-defined model. The simplifying
assumptions should at least retain the eigenvalues and eigenfunctions of £ near the
origin, specifically within the region [0, V4, -

— k =0: In this case, the stress-stress correlator possesses a branch cut described by
Vo <Imw <0, Rew =0, (33)

which in the limit of vanishing mass matches the conclusion drawn in [13]. Strictly
speaking, the author focuses on the discussions on the symmetrized 2-point func-
tion therein, but the retarded correlation function can be related to it through KMS
relation. At weak coupling where the relevant frequencies will be suppressed by
powers of the coupling, the result aligns with Eq. (33), which is further confirmed
in a related study discussing £, [38].
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pkcos @

issue should be trickier than the case of massive RTA. Even if m = 0, it is still
difficult to reach a concise-form conclusion due to the non-commutativity of cos 6
and L;. Therefore, the non-analytical structures don’t exhibit regular shapes like
Eq. (30).

— k # 0: The complication arising from also exists in this scenario, and the

In the end of this section, we would like to add several comments as follows:

* Although failing to reach a definite conclusion in the cases involved with nonzero k
or/and m, we plan to numerically solve the issue following finite-element analysis given
in [14], which is left to future work. For instance, for soft interactions, we can examine
the simplest interaction case, scalar ¢* theory with leading-order interaction, which is
expected to reveal the property of non-analytical structures qualitatively.

* If Eq. (30) holds, hydrodynamic modes are completely embedded in this strip, leading
to the conclusion that nonhydrodynamic modes related to free-streaming dynamics are
long-lived degrees of freedom compared to hydrodynamic modes. According to our
proposed non-commutativity between cos 6 and £, Eq. (30) would be modified so that
there could be a window where hydrodynamic modes dominate as long-lived modes.
In this sense, the physical picture may change by reconsidering the impact of the non-
commutativity.

* In this script (likewise in [27]), we focus on the gapped/gapless property of nonhydro-
dynamic modes. By using the terminology “dominant” or “dominate”, we refer to the
comparison of their lifetime. In practical cases, the dominant role should be assessed by
combining their corresponding residues or discontinuity, which encode their contribu-
tion to the retarded correlation functions. This issue can be addressed using numerical
calculations outlined in the first comment.

5 The novel relaxation time approximation

This section focuses on the case of hard interactions, where the relaxation time approximation
isvalidated. Despite its validation, the relaxation time approximation by Anderson and Witting
still has inherent flaws as it fails to respect the collision invariance of the Boltzmann collision
operator, which is tantamount to microscopic conservation laws. To address this issue, the
counter terms to restore collision invariance are introduced,

5
_EO =~ (_YG + Y6Z |¢n>(¢n|> 5 (34)

n=1

which is referred to as the novel RTA in [21,32], and is also known as the mutilated operator
in [40-42] (see chapter V of [22] for an earlier discussion). Here |1)),,) denotes the orthonormal
eigenfunctions of L, with zero eigenvalues, and y¢ represents the smallest positive eigenvalue
with the dimension of [E]. Thus we recover the collision invariance: Ly|y,) =0,n=1,---5.
To relate it to the traditional RTA, one needs to identify the relaxation time as 73 = % When
L, acts on other eigenfunctions, it results in Ly|v),,) = yelY,,) for n > 5, collapsing all positive
eigenvalues into the smallest positive one. This is why the model in Eq. (34) is sometimes
referred to as “mutilated” [22].
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Macroscopic conservation laws are inherently restored when microscopic conservation
laws, specifically the collision invariance of the collision operator, are respected in the model’s
construction, thereby simultaneously fixing the basic flaws. The novel RTA provides the flex-
ibility to adjust the matching conditions used in kinetic theory, a feature not present in the
traditional RTA as discussed in [32, 40, 43-45]. This flexibility is particularly advantageous
when discussing hydrodynamic frame dependence, such as in the first-order causal theory of
the BDNK type [46-49].

By specifying the inner product definition, we can cast Eq. (34) into a less abstract form.
For brevity, we omit the x dependence in this section. Omitting the derivation details (for
which we refer readers to [32]), the novel RTA can be formulated as follows

@Lx0) oA ®) ) (Lpg ()

35
an ™) P e |

1
—Lox(p)= T x(p)—

Here the orthogonal basis is constructed from the collision invariants 1 and p*, and given by

(1,1)

(LE,)

and the definition for the inner product bracket is invoked

0 — 0 _
V=1, PY=1-

E,, pW=aMp,, (36)

(B,C)= J dPw(p)B(p)C(p), (37)

with the weight function

w(p) = fo(p)E,, (38)

note that the weight function is the same as the one in Eq. (6), as it should be. In Eq. (35),
the novel RTA is constructed by adding counter terms to the RTA, but it can also be derived
through an alternative method, as shall be given below. To proceed, we expand y(p) as the
linear combination of the eigenfunctions of £ as

_ - _ (@), n)
x(p)—zn:anwn, with a, = W)

where the summation can also denote the integral for continuous spectra. Then the action of
Ly on y leads to

(39)

[e°] N (ee]
EOX(p) = Z anYnlljn = Z an}/nwn +TrN Z anwn
n=1 n=1 n=N+1

N (40)
= a,(ra =1 ¥n + v 2 (P),

n=1

where as prescribed previously v, is sequenced in ascending order, and we make the approx-
imation in the first line [50]. If N = 6, then the second term in the last line matches the RTA
collision kernel. Given that y; = O for i ranging from 1 to 5, the above equation can be cast
into
5
Lox(P)=16x(P) =76 Y . 0ty 41)

n=1

15


https://scipost.org
https://scipost.org/SciPostPhys.20.1.020

e SciPost Phys. 20, 020 (2026)

where the second term on the right-hand side precisely constitutes the counter term required
to restore collision invariance. Hence, Eq. (40) encompasses Eq. (35) as a particular case. One
can also show that the collision invariance is restored for N > 6. Compared to the construc-
tions in [32,40,42], the method introduced here embodies the essence of truncation that leads
to RTA and is capable of accommodating a broader spectrum of modified RTAs. By increasing
N, we can incorporate additional eigenvalues and eigenfunctions into the original RTA if avail-
able. This approach is beneficial when our knowledge is limited to a finite set of eigenvalues
and eigenfunctions (these can be determined numerically at least [14]), when we attempt to
integrate the relevant information into the RTA. Furthermore, the model in Eq. (40), serving as
an intermediate between the RTA and the full linearized collision operator, can be fine-tuned
to balance accuracy and simplicity, allowing for a judicious compromise.

6 Summary and outlook

In this paper, we revisit the widely used relaxation time approximation within the linearized
Boltzmann equation. According to the mathematical analysis on the eigenspectrum of lin-
earized Boltzmann collision operator £, the RTA model is justified only for hard interactions,
thereby ruling out the energy-dependent parametrization in Eq. (8). The consideration is
grounded on mathematical aspects, and Eq. (8) can effectively serve as a convenient param-
eterized model. Furthermore, Eq. (8) sheds light on the redefinition of linearized collision
operator denoted as £,. We also provide a derivation of the novel RTA to restore the collision
invariance by truncating the linearized collision operator, instead of by adding counter terms.

For discussing the non-analytical structures within the retarded correlators, we find that fo-
cusing on L and its eigenspectrum properties is the simplest approach. When interactions are
hard, the RTA is well-defined, and the analytical properties of retarded correlators, as detailed
in [7], are applicable. There is a gap between the branch-cut lines and the real axis Im w = 0.
Therefore, the gapless hydrodynamic modes are well-defined low-energy degrees of freedom
when k is small. However, according to mathematical derivations, relativistic interactions are
often soft, leading us to focus on the alternative scenario in most cases. In scenarios with soft
interactions, the RTA is no longer well-justified, and the dominating long-lived non-analytical
structure turns into the branch-cut or the non-hydrodynamic modes. Our conclusion is con-
sistent with the previous related studies with the comparison details elaborated in the main
text. Note that if the particles constituting the system are massive or the perturbations are
inhomogeneous, the non-analytical structures would be more complicated and richer.

There are possible extensions to the present research. As mentioned in 3.4, we can estab-
lish a dictionary between various field theories and the eigenspectrum structure within their
linearized kinetic description. This can help us determine the dominant non-analytical struc-
ture and derive all possible RTA models. The former concerns the properties of the retarded
correlation function of many-body systems, while the latter provides a solid theoretical ba-
sis for RTA, if any. We believe that applying RTA to a justified system is theoretically more
consistent than doing so without justification, which is one of the motivations for this work.
Additionally, almost all related research on the properties of retarded correlators is based on
the linearized kinetic description. It would be interesting to explore the impacts of the nonlin-
ear structure contained in the complete kinetic description, such as the Boltzmann equation,
on the present conclusions.
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